xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 367e5927)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
255 		      void __user *arg);
256 
257 #ifdef CONFIG_COMPAT
258 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
259 	void __user *arg);
260 #endif
261 
262 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
263 static struct CommandList *cmd_alloc(struct ctlr_info *h);
264 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
266 					    struct scsi_cmnd *scmd);
267 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
268 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
269 	int cmd_type);
270 static void hpsa_free_cmd_pool(struct ctlr_info *h);
271 #define VPD_PAGE (1 << 8)
272 #define HPSA_SIMPLE_ERROR_BITS 0x03
273 
274 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
275 static void hpsa_scan_start(struct Scsi_Host *);
276 static int hpsa_scan_finished(struct Scsi_Host *sh,
277 	unsigned long elapsed_time);
278 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
279 
280 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
281 static int hpsa_slave_alloc(struct scsi_device *sdev);
282 static int hpsa_slave_configure(struct scsi_device *sdev);
283 static void hpsa_slave_destroy(struct scsi_device *sdev);
284 
285 static void hpsa_update_scsi_devices(struct ctlr_info *h);
286 static int check_for_unit_attention(struct ctlr_info *h,
287 	struct CommandList *c);
288 static void check_ioctl_unit_attention(struct ctlr_info *h,
289 	struct CommandList *c);
290 /* performant mode helper functions */
291 static void calc_bucket_map(int *bucket, int num_buckets,
292 	int nsgs, int min_blocks, u32 *bucket_map);
293 static void hpsa_free_performant_mode(struct ctlr_info *h);
294 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
295 static inline u32 next_command(struct ctlr_info *h, u8 q);
296 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
297 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
298 			       u64 *cfg_offset);
299 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
300 				    unsigned long *memory_bar);
301 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
302 				bool *legacy_board);
303 static int wait_for_device_to_become_ready(struct ctlr_info *h,
304 					   unsigned char lunaddr[],
305 					   int reply_queue);
306 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
307 				     int wait_for_ready);
308 static inline void finish_cmd(struct CommandList *c);
309 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
310 #define BOARD_NOT_READY 0
311 #define BOARD_READY 1
312 static void hpsa_drain_accel_commands(struct ctlr_info *h);
313 static void hpsa_flush_cache(struct ctlr_info *h);
314 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
315 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
316 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
317 static void hpsa_command_resubmit_worker(struct work_struct *work);
318 static u32 lockup_detected(struct ctlr_info *h);
319 static int detect_controller_lockup(struct ctlr_info *h);
320 static void hpsa_disable_rld_caching(struct ctlr_info *h);
321 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
322 	struct ReportExtendedLUNdata *buf, int bufsize);
323 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
324 	unsigned char scsi3addr[], u8 page);
325 static int hpsa_luns_changed(struct ctlr_info *h);
326 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
327 			       struct hpsa_scsi_dev_t *dev,
328 			       unsigned char *scsi3addr);
329 
330 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
331 {
332 	unsigned long *priv = shost_priv(sdev->host);
333 	return (struct ctlr_info *) *priv;
334 }
335 
336 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
337 {
338 	unsigned long *priv = shost_priv(sh);
339 	return (struct ctlr_info *) *priv;
340 }
341 
342 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
343 {
344 	return c->scsi_cmd == SCSI_CMD_IDLE;
345 }
346 
347 static inline bool hpsa_is_pending_event(struct CommandList *c)
348 {
349 	return c->reset_pending;
350 }
351 
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 			u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 	struct scsi_sense_hdr sshdr;
357 	bool rc;
358 
359 	*sense_key = -1;
360 	*asc = -1;
361 	*ascq = -1;
362 
363 	if (sense_data_len < 1)
364 		return;
365 
366 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 	if (rc) {
368 		*sense_key = sshdr.sense_key;
369 		*asc = sshdr.asc;
370 		*ascq = sshdr.ascq;
371 	}
372 }
373 
374 static int check_for_unit_attention(struct ctlr_info *h,
375 	struct CommandList *c)
376 {
377 	u8 sense_key, asc, ascq;
378 	int sense_len;
379 
380 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 		sense_len = sizeof(c->err_info->SenseInfo);
382 	else
383 		sense_len = c->err_info->SenseLen;
384 
385 	decode_sense_data(c->err_info->SenseInfo, sense_len,
386 				&sense_key, &asc, &ascq);
387 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 		return 0;
389 
390 	switch (asc) {
391 	case STATE_CHANGED:
392 		dev_warn(&h->pdev->dev,
393 			"%s: a state change detected, command retried\n",
394 			h->devname);
395 		break;
396 	case LUN_FAILED:
397 		dev_warn(&h->pdev->dev,
398 			"%s: LUN failure detected\n", h->devname);
399 		break;
400 	case REPORT_LUNS_CHANGED:
401 		dev_warn(&h->pdev->dev,
402 			"%s: report LUN data changed\n", h->devname);
403 	/*
404 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 	 * target (array) devices.
406 	 */
407 		break;
408 	case POWER_OR_RESET:
409 		dev_warn(&h->pdev->dev,
410 			"%s: a power on or device reset detected\n",
411 			h->devname);
412 		break;
413 	case UNIT_ATTENTION_CLEARED:
414 		dev_warn(&h->pdev->dev,
415 			"%s: unit attention cleared by another initiator\n",
416 			h->devname);
417 		break;
418 	default:
419 		dev_warn(&h->pdev->dev,
420 			"%s: unknown unit attention detected\n",
421 			h->devname);
422 		break;
423 	}
424 	return 1;
425 }
426 
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 		return 0;
433 	dev_warn(&h->pdev->dev, HPSA "device busy");
434 	return 1;
435 }
436 
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	int ld;
442 	struct ctlr_info *h;
443 	struct Scsi_Host *shost = class_to_shost(dev);
444 
445 	h = shost_to_hba(shost);
446 	ld = lockup_detected(h);
447 
448 	return sprintf(buf, "ld=%d\n", ld);
449 }
450 
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 					 struct device_attribute *attr,
453 					 const char *buf, size_t count)
454 {
455 	int status, len;
456 	struct ctlr_info *h;
457 	struct Scsi_Host *shost = class_to_shost(dev);
458 	char tmpbuf[10];
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 	strncpy(tmpbuf, buf, len);
464 	tmpbuf[len] = '\0';
465 	if (sscanf(tmpbuf, "%d", &status) != 1)
466 		return -EINVAL;
467 	h = shost_to_hba(shost);
468 	h->acciopath_status = !!status;
469 	dev_warn(&h->pdev->dev,
470 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 		h->acciopath_status ? "enabled" : "disabled");
472 	return count;
473 }
474 
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 					 struct device_attribute *attr,
477 					 const char *buf, size_t count)
478 {
479 	int debug_level, len;
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 	char tmpbuf[10];
483 
484 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 		return -EACCES;
486 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 	strncpy(tmpbuf, buf, len);
488 	tmpbuf[len] = '\0';
489 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 		return -EINVAL;
491 	if (debug_level < 0)
492 		debug_level = 0;
493 	h = shost_to_hba(shost);
494 	h->raid_offload_debug = debug_level;
495 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 		h->raid_offload_debug);
497 	return count;
498 }
499 
500 static ssize_t host_store_rescan(struct device *dev,
501 				 struct device_attribute *attr,
502 				 const char *buf, size_t count)
503 {
504 	struct ctlr_info *h;
505 	struct Scsi_Host *shost = class_to_shost(dev);
506 	h = shost_to_hba(shost);
507 	hpsa_scan_start(h->scsi_host);
508 	return count;
509 }
510 
511 static ssize_t host_show_firmware_revision(struct device *dev,
512 	     struct device_attribute *attr, char *buf)
513 {
514 	struct ctlr_info *h;
515 	struct Scsi_Host *shost = class_to_shost(dev);
516 	unsigned char *fwrev;
517 
518 	h = shost_to_hba(shost);
519 	if (!h->hba_inquiry_data)
520 		return 0;
521 	fwrev = &h->hba_inquiry_data[32];
522 	return snprintf(buf, 20, "%c%c%c%c\n",
523 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
524 }
525 
526 static ssize_t host_show_commands_outstanding(struct device *dev,
527 	     struct device_attribute *attr, char *buf)
528 {
529 	struct Scsi_Host *shost = class_to_shost(dev);
530 	struct ctlr_info *h = shost_to_hba(shost);
531 
532 	return snprintf(buf, 20, "%d\n",
533 			atomic_read(&h->commands_outstanding));
534 }
535 
536 static ssize_t host_show_transport_mode(struct device *dev,
537 	struct device_attribute *attr, char *buf)
538 {
539 	struct ctlr_info *h;
540 	struct Scsi_Host *shost = class_to_shost(dev);
541 
542 	h = shost_to_hba(shost);
543 	return snprintf(buf, 20, "%s\n",
544 		h->transMethod & CFGTBL_Trans_Performant ?
545 			"performant" : "simple");
546 }
547 
548 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
549 	struct device_attribute *attr, char *buf)
550 {
551 	struct ctlr_info *h;
552 	struct Scsi_Host *shost = class_to_shost(dev);
553 
554 	h = shost_to_hba(shost);
555 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
556 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
557 }
558 
559 /* List of controllers which cannot be hard reset on kexec with reset_devices */
560 static u32 unresettable_controller[] = {
561 	0x324a103C, /* Smart Array P712m */
562 	0x324b103C, /* Smart Array P711m */
563 	0x3223103C, /* Smart Array P800 */
564 	0x3234103C, /* Smart Array P400 */
565 	0x3235103C, /* Smart Array P400i */
566 	0x3211103C, /* Smart Array E200i */
567 	0x3212103C, /* Smart Array E200 */
568 	0x3213103C, /* Smart Array E200i */
569 	0x3214103C, /* Smart Array E200i */
570 	0x3215103C, /* Smart Array E200i */
571 	0x3237103C, /* Smart Array E500 */
572 	0x323D103C, /* Smart Array P700m */
573 	0x40800E11, /* Smart Array 5i */
574 	0x409C0E11, /* Smart Array 6400 */
575 	0x409D0E11, /* Smart Array 6400 EM */
576 	0x40700E11, /* Smart Array 5300 */
577 	0x40820E11, /* Smart Array 532 */
578 	0x40830E11, /* Smart Array 5312 */
579 	0x409A0E11, /* Smart Array 641 */
580 	0x409B0E11, /* Smart Array 642 */
581 	0x40910E11, /* Smart Array 6i */
582 };
583 
584 /* List of controllers which cannot even be soft reset */
585 static u32 soft_unresettable_controller[] = {
586 	0x40800E11, /* Smart Array 5i */
587 	0x40700E11, /* Smart Array 5300 */
588 	0x40820E11, /* Smart Array 532 */
589 	0x40830E11, /* Smart Array 5312 */
590 	0x409A0E11, /* Smart Array 641 */
591 	0x409B0E11, /* Smart Array 642 */
592 	0x40910E11, /* Smart Array 6i */
593 	/* Exclude 640x boards.  These are two pci devices in one slot
594 	 * which share a battery backed cache module.  One controls the
595 	 * cache, the other accesses the cache through the one that controls
596 	 * it.  If we reset the one controlling the cache, the other will
597 	 * likely not be happy.  Just forbid resetting this conjoined mess.
598 	 * The 640x isn't really supported by hpsa anyway.
599 	 */
600 	0x409C0E11, /* Smart Array 6400 */
601 	0x409D0E11, /* Smart Array 6400 EM */
602 };
603 
604 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
605 {
606 	int i;
607 
608 	for (i = 0; i < nelems; i++)
609 		if (a[i] == board_id)
610 			return 1;
611 	return 0;
612 }
613 
614 static int ctlr_is_hard_resettable(u32 board_id)
615 {
616 	return !board_id_in_array(unresettable_controller,
617 			ARRAY_SIZE(unresettable_controller), board_id);
618 }
619 
620 static int ctlr_is_soft_resettable(u32 board_id)
621 {
622 	return !board_id_in_array(soft_unresettable_controller,
623 			ARRAY_SIZE(soft_unresettable_controller), board_id);
624 }
625 
626 static int ctlr_is_resettable(u32 board_id)
627 {
628 	return ctlr_is_hard_resettable(board_id) ||
629 		ctlr_is_soft_resettable(board_id);
630 }
631 
632 static ssize_t host_show_resettable(struct device *dev,
633 	struct device_attribute *attr, char *buf)
634 {
635 	struct ctlr_info *h;
636 	struct Scsi_Host *shost = class_to_shost(dev);
637 
638 	h = shost_to_hba(shost);
639 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
640 }
641 
642 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
643 {
644 	return (scsi3addr[3] & 0xC0) == 0x40;
645 }
646 
647 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
648 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 };
650 #define HPSA_RAID_0	0
651 #define HPSA_RAID_4	1
652 #define HPSA_RAID_1	2	/* also used for RAID 10 */
653 #define HPSA_RAID_5	3	/* also used for RAID 50 */
654 #define HPSA_RAID_51	4
655 #define HPSA_RAID_6	5	/* also used for RAID 60 */
656 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
657 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
658 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659 
660 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
661 {
662 	return !device->physical_device;
663 }
664 
665 static ssize_t raid_level_show(struct device *dev,
666 	     struct device_attribute *attr, char *buf)
667 {
668 	ssize_t l = 0;
669 	unsigned char rlevel;
670 	struct ctlr_info *h;
671 	struct scsi_device *sdev;
672 	struct hpsa_scsi_dev_t *hdev;
673 	unsigned long flags;
674 
675 	sdev = to_scsi_device(dev);
676 	h = sdev_to_hba(sdev);
677 	spin_lock_irqsave(&h->lock, flags);
678 	hdev = sdev->hostdata;
679 	if (!hdev) {
680 		spin_unlock_irqrestore(&h->lock, flags);
681 		return -ENODEV;
682 	}
683 
684 	/* Is this even a logical drive? */
685 	if (!is_logical_device(hdev)) {
686 		spin_unlock_irqrestore(&h->lock, flags);
687 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
688 		return l;
689 	}
690 
691 	rlevel = hdev->raid_level;
692 	spin_unlock_irqrestore(&h->lock, flags);
693 	if (rlevel > RAID_UNKNOWN)
694 		rlevel = RAID_UNKNOWN;
695 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
696 	return l;
697 }
698 
699 static ssize_t lunid_show(struct device *dev,
700 	     struct device_attribute *attr, char *buf)
701 {
702 	struct ctlr_info *h;
703 	struct scsi_device *sdev;
704 	struct hpsa_scsi_dev_t *hdev;
705 	unsigned long flags;
706 	unsigned char lunid[8];
707 
708 	sdev = to_scsi_device(dev);
709 	h = sdev_to_hba(sdev);
710 	spin_lock_irqsave(&h->lock, flags);
711 	hdev = sdev->hostdata;
712 	if (!hdev) {
713 		spin_unlock_irqrestore(&h->lock, flags);
714 		return -ENODEV;
715 	}
716 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
717 	spin_unlock_irqrestore(&h->lock, flags);
718 	return snprintf(buf, 20, "0x%8phN\n", lunid);
719 }
720 
721 static ssize_t unique_id_show(struct device *dev,
722 	     struct device_attribute *attr, char *buf)
723 {
724 	struct ctlr_info *h;
725 	struct scsi_device *sdev;
726 	struct hpsa_scsi_dev_t *hdev;
727 	unsigned long flags;
728 	unsigned char sn[16];
729 
730 	sdev = to_scsi_device(dev);
731 	h = sdev_to_hba(sdev);
732 	spin_lock_irqsave(&h->lock, flags);
733 	hdev = sdev->hostdata;
734 	if (!hdev) {
735 		spin_unlock_irqrestore(&h->lock, flags);
736 		return -ENODEV;
737 	}
738 	memcpy(sn, hdev->device_id, sizeof(sn));
739 	spin_unlock_irqrestore(&h->lock, flags);
740 	return snprintf(buf, 16 * 2 + 2,
741 			"%02X%02X%02X%02X%02X%02X%02X%02X"
742 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
743 			sn[0], sn[1], sn[2], sn[3],
744 			sn[4], sn[5], sn[6], sn[7],
745 			sn[8], sn[9], sn[10], sn[11],
746 			sn[12], sn[13], sn[14], sn[15]);
747 }
748 
749 static ssize_t sas_address_show(struct device *dev,
750 	      struct device_attribute *attr, char *buf)
751 {
752 	struct ctlr_info *h;
753 	struct scsi_device *sdev;
754 	struct hpsa_scsi_dev_t *hdev;
755 	unsigned long flags;
756 	u64 sas_address;
757 
758 	sdev = to_scsi_device(dev);
759 	h = sdev_to_hba(sdev);
760 	spin_lock_irqsave(&h->lock, flags);
761 	hdev = sdev->hostdata;
762 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
763 		spin_unlock_irqrestore(&h->lock, flags);
764 		return -ENODEV;
765 	}
766 	sas_address = hdev->sas_address;
767 	spin_unlock_irqrestore(&h->lock, flags);
768 
769 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
770 }
771 
772 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
773 	     struct device_attribute *attr, char *buf)
774 {
775 	struct ctlr_info *h;
776 	struct scsi_device *sdev;
777 	struct hpsa_scsi_dev_t *hdev;
778 	unsigned long flags;
779 	int offload_enabled;
780 
781 	sdev = to_scsi_device(dev);
782 	h = sdev_to_hba(sdev);
783 	spin_lock_irqsave(&h->lock, flags);
784 	hdev = sdev->hostdata;
785 	if (!hdev) {
786 		spin_unlock_irqrestore(&h->lock, flags);
787 		return -ENODEV;
788 	}
789 	offload_enabled = hdev->offload_enabled;
790 	spin_unlock_irqrestore(&h->lock, flags);
791 
792 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
793 		return snprintf(buf, 20, "%d\n", offload_enabled);
794 	else
795 		return snprintf(buf, 40, "%s\n",
796 				"Not applicable for a controller");
797 }
798 
799 #define MAX_PATHS 8
800 static ssize_t path_info_show(struct device *dev,
801 	     struct device_attribute *attr, char *buf)
802 {
803 	struct ctlr_info *h;
804 	struct scsi_device *sdev;
805 	struct hpsa_scsi_dev_t *hdev;
806 	unsigned long flags;
807 	int i;
808 	int output_len = 0;
809 	u8 box;
810 	u8 bay;
811 	u8 path_map_index = 0;
812 	char *active;
813 	unsigned char phys_connector[2];
814 
815 	sdev = to_scsi_device(dev);
816 	h = sdev_to_hba(sdev);
817 	spin_lock_irqsave(&h->devlock, flags);
818 	hdev = sdev->hostdata;
819 	if (!hdev) {
820 		spin_unlock_irqrestore(&h->devlock, flags);
821 		return -ENODEV;
822 	}
823 
824 	bay = hdev->bay;
825 	for (i = 0; i < MAX_PATHS; i++) {
826 		path_map_index = 1<<i;
827 		if (i == hdev->active_path_index)
828 			active = "Active";
829 		else if (hdev->path_map & path_map_index)
830 			active = "Inactive";
831 		else
832 			continue;
833 
834 		output_len += scnprintf(buf + output_len,
835 				PAGE_SIZE - output_len,
836 				"[%d:%d:%d:%d] %20.20s ",
837 				h->scsi_host->host_no,
838 				hdev->bus, hdev->target, hdev->lun,
839 				scsi_device_type(hdev->devtype));
840 
841 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
842 			output_len += scnprintf(buf + output_len,
843 						PAGE_SIZE - output_len,
844 						"%s\n", active);
845 			continue;
846 		}
847 
848 		box = hdev->box[i];
849 		memcpy(&phys_connector, &hdev->phys_connector[i],
850 			sizeof(phys_connector));
851 		if (phys_connector[0] < '0')
852 			phys_connector[0] = '0';
853 		if (phys_connector[1] < '0')
854 			phys_connector[1] = '0';
855 		output_len += scnprintf(buf + output_len,
856 				PAGE_SIZE - output_len,
857 				"PORT: %.2s ",
858 				phys_connector);
859 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
860 			hdev->expose_device) {
861 			if (box == 0 || box == 0xFF) {
862 				output_len += scnprintf(buf + output_len,
863 					PAGE_SIZE - output_len,
864 					"BAY: %hhu %s\n",
865 					bay, active);
866 			} else {
867 				output_len += scnprintf(buf + output_len,
868 					PAGE_SIZE - output_len,
869 					"BOX: %hhu BAY: %hhu %s\n",
870 					box, bay, active);
871 			}
872 		} else if (box != 0 && box != 0xFF) {
873 			output_len += scnprintf(buf + output_len,
874 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
875 				box, active);
876 		} else
877 			output_len += scnprintf(buf + output_len,
878 				PAGE_SIZE - output_len, "%s\n", active);
879 	}
880 
881 	spin_unlock_irqrestore(&h->devlock, flags);
882 	return output_len;
883 }
884 
885 static ssize_t host_show_ctlr_num(struct device *dev,
886 	struct device_attribute *attr, char *buf)
887 {
888 	struct ctlr_info *h;
889 	struct Scsi_Host *shost = class_to_shost(dev);
890 
891 	h = shost_to_hba(shost);
892 	return snprintf(buf, 20, "%d\n", h->ctlr);
893 }
894 
895 static ssize_t host_show_legacy_board(struct device *dev,
896 	struct device_attribute *attr, char *buf)
897 {
898 	struct ctlr_info *h;
899 	struct Scsi_Host *shost = class_to_shost(dev);
900 
901 	h = shost_to_hba(shost);
902 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
903 }
904 
905 static DEVICE_ATTR_RO(raid_level);
906 static DEVICE_ATTR_RO(lunid);
907 static DEVICE_ATTR_RO(unique_id);
908 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
909 static DEVICE_ATTR_RO(sas_address);
910 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
911 			host_show_hp_ssd_smart_path_enabled, NULL);
912 static DEVICE_ATTR_RO(path_info);
913 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
914 		host_show_hp_ssd_smart_path_status,
915 		host_store_hp_ssd_smart_path_status);
916 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
917 			host_store_raid_offload_debug);
918 static DEVICE_ATTR(firmware_revision, S_IRUGO,
919 	host_show_firmware_revision, NULL);
920 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
921 	host_show_commands_outstanding, NULL);
922 static DEVICE_ATTR(transport_mode, S_IRUGO,
923 	host_show_transport_mode, NULL);
924 static DEVICE_ATTR(resettable, S_IRUGO,
925 	host_show_resettable, NULL);
926 static DEVICE_ATTR(lockup_detected, S_IRUGO,
927 	host_show_lockup_detected, NULL);
928 static DEVICE_ATTR(ctlr_num, S_IRUGO,
929 	host_show_ctlr_num, NULL);
930 static DEVICE_ATTR(legacy_board, S_IRUGO,
931 	host_show_legacy_board, NULL);
932 
933 static struct device_attribute *hpsa_sdev_attrs[] = {
934 	&dev_attr_raid_level,
935 	&dev_attr_lunid,
936 	&dev_attr_unique_id,
937 	&dev_attr_hp_ssd_smart_path_enabled,
938 	&dev_attr_path_info,
939 	&dev_attr_sas_address,
940 	NULL,
941 };
942 
943 static struct device_attribute *hpsa_shost_attrs[] = {
944 	&dev_attr_rescan,
945 	&dev_attr_firmware_revision,
946 	&dev_attr_commands_outstanding,
947 	&dev_attr_transport_mode,
948 	&dev_attr_resettable,
949 	&dev_attr_hp_ssd_smart_path_status,
950 	&dev_attr_raid_offload_debug,
951 	&dev_attr_lockup_detected,
952 	&dev_attr_ctlr_num,
953 	&dev_attr_legacy_board,
954 	NULL,
955 };
956 
957 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
958 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
959 
960 static struct scsi_host_template hpsa_driver_template = {
961 	.module			= THIS_MODULE,
962 	.name			= HPSA,
963 	.proc_name		= HPSA,
964 	.queuecommand		= hpsa_scsi_queue_command,
965 	.scan_start		= hpsa_scan_start,
966 	.scan_finished		= hpsa_scan_finished,
967 	.change_queue_depth	= hpsa_change_queue_depth,
968 	.this_id		= -1,
969 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 	.ioctl			= hpsa_ioctl,
971 	.slave_alloc		= hpsa_slave_alloc,
972 	.slave_configure	= hpsa_slave_configure,
973 	.slave_destroy		= hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 	.compat_ioctl		= hpsa_compat_ioctl,
976 #endif
977 	.sdev_attrs = hpsa_sdev_attrs,
978 	.shost_attrs = hpsa_shost_attrs,
979 	.max_sectors = 2048,
980 	.no_write_same = 1,
981 };
982 
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 	u32 a;
986 	struct reply_queue_buffer *rq = &h->reply_queue[q];
987 
988 	if (h->transMethod & CFGTBL_Trans_io_accel1)
989 		return h->access.command_completed(h, q);
990 
991 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 		return h->access.command_completed(h, q);
993 
994 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 		a = rq->head[rq->current_entry];
996 		rq->current_entry++;
997 		atomic_dec(&h->commands_outstanding);
998 	} else {
999 		a = FIFO_EMPTY;
1000 	}
1001 	/* Check for wraparound */
1002 	if (rq->current_entry == h->max_commands) {
1003 		rq->current_entry = 0;
1004 		rq->wraparound ^= 1;
1005 	}
1006 	return a;
1007 }
1008 
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034 
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 					int reply_queue)
1043 {
1044 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 		if (unlikely(!h->msix_vectors))
1047 			return;
1048 		c->Header.ReplyQueue = reply_queue;
1049 	}
1050 }
1051 
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053 						struct CommandList *c,
1054 						int reply_queue)
1055 {
1056 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057 
1058 	/*
1059 	 * Tell the controller to post the reply to the queue for this
1060 	 * processor.  This seems to give the best I/O throughput.
1061 	 */
1062 	cp->ReplyQueue = reply_queue;
1063 	/*
1064 	 * Set the bits in the address sent down to include:
1065 	 *  - performant mode bit (bit 0)
1066 	 *  - pull count (bits 1-3)
1067 	 *  - command type (bits 4-6)
1068 	 */
1069 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070 					IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072 
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074 						struct CommandList *c,
1075 						int reply_queue)
1076 {
1077 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078 		&h->ioaccel2_cmd_pool[c->cmdindex];
1079 
1080 	/* Tell the controller to post the reply to the queue for this
1081 	 * processor.  This seems to give the best I/O throughput.
1082 	 */
1083 	cp->reply_queue = reply_queue;
1084 	/* Set the bits in the address sent down to include:
1085 	 *  - performant mode bit not used in ioaccel mode 2
1086 	 *  - pull count (bits 0-3)
1087 	 *  - command type isn't needed for ioaccel2
1088 	 */
1089 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091 
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093 						struct CommandList *c,
1094 						int reply_queue)
1095 {
1096 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097 
1098 	/*
1099 	 * Tell the controller to post the reply to the queue for this
1100 	 * processor.  This seems to give the best I/O throughput.
1101 	 */
1102 	cp->reply_queue = reply_queue;
1103 	/*
1104 	 * Set the bits in the address sent down to include:
1105 	 *  - performant mode bit not used in ioaccel mode 2
1106 	 *  - pull count (bits 0-3)
1107 	 *  - command type isn't needed for ioaccel2
1108 	 */
1109 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111 
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116 
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126 		struct CommandList *c)
1127 {
1128 	if (!is_firmware_flash_cmd(c->Request.CDB))
1129 		return;
1130 	atomic_inc(&h->firmware_flash_in_progress);
1131 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133 
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135 		struct CommandList *c)
1136 {
1137 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1138 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1139 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141 
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143 	struct CommandList *c, int reply_queue)
1144 {
1145 	dial_down_lockup_detection_during_fw_flash(h, c);
1146 	atomic_inc(&h->commands_outstanding);
1147 
1148 	reply_queue = h->reply_map[raw_smp_processor_id()];
1149 	switch (c->cmd_type) {
1150 	case CMD_IOACCEL1:
1151 		set_ioaccel1_performant_mode(h, c, reply_queue);
1152 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153 		break;
1154 	case CMD_IOACCEL2:
1155 		set_ioaccel2_performant_mode(h, c, reply_queue);
1156 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157 		break;
1158 	case IOACCEL2_TMF:
1159 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 		break;
1162 	default:
1163 		set_performant_mode(h, c, reply_queue);
1164 		h->access.submit_command(h, c);
1165 	}
1166 }
1167 
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170 	if (unlikely(hpsa_is_pending_event(c)))
1171 		return finish_cmd(c);
1172 
1173 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175 
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180 
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183 	if (!h->hba_inquiry_data)
1184 		return 0;
1185 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186 		return 1;
1187 	return 0;
1188 }
1189 
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193 	/* finds an unused bus, target, lun for a new physical device
1194 	 * assumes h->devlock is held
1195 	 */
1196 	int i, found = 0;
1197 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198 
1199 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200 
1201 	for (i = 0; i < h->ndevices; i++) {
1202 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203 			__set_bit(h->dev[i]->target, lun_taken);
1204 	}
1205 
1206 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207 	if (i < HPSA_MAX_DEVICES) {
1208 		/* *bus = 1; */
1209 		*target = i;
1210 		*lun = 0;
1211 		found = 1;
1212 	}
1213 	return !found;
1214 }
1215 
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217 	struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220 	char label[LABEL_SIZE];
1221 
1222 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223 		return;
1224 
1225 	switch (dev->devtype) {
1226 	case TYPE_RAID:
1227 		snprintf(label, LABEL_SIZE, "controller");
1228 		break;
1229 	case TYPE_ENCLOSURE:
1230 		snprintf(label, LABEL_SIZE, "enclosure");
1231 		break;
1232 	case TYPE_DISK:
1233 	case TYPE_ZBC:
1234 		if (dev->external)
1235 			snprintf(label, LABEL_SIZE, "external");
1236 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237 			snprintf(label, LABEL_SIZE, "%s",
1238 				raid_label[PHYSICAL_DRIVE]);
1239 		else
1240 			snprintf(label, LABEL_SIZE, "RAID-%s",
1241 				dev->raid_level > RAID_UNKNOWN ? "?" :
1242 				raid_label[dev->raid_level]);
1243 		break;
1244 	case TYPE_ROM:
1245 		snprintf(label, LABEL_SIZE, "rom");
1246 		break;
1247 	case TYPE_TAPE:
1248 		snprintf(label, LABEL_SIZE, "tape");
1249 		break;
1250 	case TYPE_MEDIUM_CHANGER:
1251 		snprintf(label, LABEL_SIZE, "changer");
1252 		break;
1253 	default:
1254 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1255 		break;
1256 	}
1257 
1258 	dev_printk(level, &h->pdev->dev,
1259 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261 			description,
1262 			scsi_device_type(dev->devtype),
1263 			dev->vendor,
1264 			dev->model,
1265 			label,
1266 			dev->offload_config ? '+' : '-',
1267 			dev->offload_to_be_enabled ? '+' : '-',
1268 			dev->expose_device);
1269 }
1270 
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273 		struct hpsa_scsi_dev_t *device,
1274 		struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276 	/* assumes h->devlock is held */
1277 	int n = h->ndevices;
1278 	int i;
1279 	unsigned char addr1[8], addr2[8];
1280 	struct hpsa_scsi_dev_t *sd;
1281 
1282 	if (n >= HPSA_MAX_DEVICES) {
1283 		dev_err(&h->pdev->dev, "too many devices, some will be "
1284 			"inaccessible.\n");
1285 		return -1;
1286 	}
1287 
1288 	/* physical devices do not have lun or target assigned until now. */
1289 	if (device->lun != -1)
1290 		/* Logical device, lun is already assigned. */
1291 		goto lun_assigned;
1292 
1293 	/* If this device a non-zero lun of a multi-lun device
1294 	 * byte 4 of the 8-byte LUN addr will contain the logical
1295 	 * unit no, zero otherwise.
1296 	 */
1297 	if (device->scsi3addr[4] == 0) {
1298 		/* This is not a non-zero lun of a multi-lun device */
1299 		if (hpsa_find_target_lun(h, device->scsi3addr,
1300 			device->bus, &device->target, &device->lun) != 0)
1301 			return -1;
1302 		goto lun_assigned;
1303 	}
1304 
1305 	/* This is a non-zero lun of a multi-lun device.
1306 	 * Search through our list and find the device which
1307 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 	 * Assign the same bus and target for this new LUN.
1309 	 * Use the logical unit number from the firmware.
1310 	 */
1311 	memcpy(addr1, device->scsi3addr, 8);
1312 	addr1[4] = 0;
1313 	addr1[5] = 0;
1314 	for (i = 0; i < n; i++) {
1315 		sd = h->dev[i];
1316 		memcpy(addr2, sd->scsi3addr, 8);
1317 		addr2[4] = 0;
1318 		addr2[5] = 0;
1319 		/* differ only in byte 4 and 5? */
1320 		if (memcmp(addr1, addr2, 8) == 0) {
1321 			device->bus = sd->bus;
1322 			device->target = sd->target;
1323 			device->lun = device->scsi3addr[4];
1324 			break;
1325 		}
1326 	}
1327 	if (device->lun == -1) {
1328 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329 			" suspect firmware bug or unsupported hardware "
1330 			"configuration.\n");
1331 		return -1;
1332 	}
1333 
1334 lun_assigned:
1335 
1336 	h->dev[n] = device;
1337 	h->ndevices++;
1338 	added[*nadded] = device;
1339 	(*nadded)++;
1340 	hpsa_show_dev_msg(KERN_INFO, h, device,
1341 		device->expose_device ? "added" : "masked");
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351 	int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353 	/* assumes h->devlock is held */
1354 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355 
1356 	/* Raid level changed. */
1357 	h->dev[entry]->raid_level = new_entry->raid_level;
1358 
1359 	/*
1360 	 * ioacccel_handle may have changed for a dual domain disk
1361 	 */
1362 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363 
1364 	/* Raid offload parameters changed.  Careful about the ordering. */
1365 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366 		/*
1367 		 * if drive is newly offload_enabled, we want to copy the
1368 		 * raid map data first.  If previously offload_enabled and
1369 		 * offload_config were set, raid map data had better be
1370 		 * the same as it was before. If raid map data has changed
1371 		 * then it had better be the case that
1372 		 * h->dev[entry]->offload_enabled is currently 0.
1373 		 */
1374 		h->dev[entry]->raid_map = new_entry->raid_map;
1375 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 	}
1377 	if (new_entry->offload_to_be_enabled) {
1378 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 	}
1381 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 	h->dev[entry]->offload_config = new_entry->offload_config;
1383 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385 
1386 	/*
1387 	 * We can turn off ioaccel offload now, but need to delay turning
1388 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 	 * can't do that until all the devices are updated.
1390 	 */
1391 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392 
1393 	/*
1394 	 * turn ioaccel off immediately if told to do so.
1395 	 */
1396 	if (!new_entry->offload_to_be_enabled)
1397 		h->dev[entry]->offload_enabled = 0;
1398 
1399 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401 
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404 	int entry, struct hpsa_scsi_dev_t *new_entry,
1405 	struct hpsa_scsi_dev_t *added[], int *nadded,
1406 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408 	/* assumes h->devlock is held */
1409 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410 	removed[*nremoved] = h->dev[entry];
1411 	(*nremoved)++;
1412 
1413 	/*
1414 	 * New physical devices won't have target/lun assigned yet
1415 	 * so we need to preserve the values in the slot we are replacing.
1416 	 */
1417 	if (new_entry->target == -1) {
1418 		new_entry->target = h->dev[entry]->target;
1419 		new_entry->lun = h->dev[entry]->lun;
1420 	}
1421 
1422 	h->dev[entry] = new_entry;
1423 	added[*nadded] = new_entry;
1424 	(*nadded)++;
1425 
1426 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428 
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 	/* assumes h->devlock is held */
1434 	int i;
1435 	struct hpsa_scsi_dev_t *sd;
1436 
1437 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438 
1439 	sd = h->dev[entry];
1440 	removed[*nremoved] = h->dev[entry];
1441 	(*nremoved)++;
1442 
1443 	for (i = entry; i < h->ndevices-1; i++)
1444 		h->dev[i] = h->dev[i+1];
1445 	h->ndevices--;
1446 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448 
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 	(a)[7] == (b)[7] && \
1451 	(a)[6] == (b)[6] && \
1452 	(a)[5] == (b)[5] && \
1453 	(a)[4] == (b)[4] && \
1454 	(a)[3] == (b)[3] && \
1455 	(a)[2] == (b)[2] && \
1456 	(a)[1] == (b)[1] && \
1457 	(a)[0] == (b)[0])
1458 
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 	struct hpsa_scsi_dev_t *added)
1461 {
1462 	/* called when scsi_add_device fails in order to re-adjust
1463 	 * h->dev[] to match the mid layer's view.
1464 	 */
1465 	unsigned long flags;
1466 	int i, j;
1467 
1468 	spin_lock_irqsave(&h->lock, flags);
1469 	for (i = 0; i < h->ndevices; i++) {
1470 		if (h->dev[i] == added) {
1471 			for (j = i; j < h->ndevices-1; j++)
1472 				h->dev[j] = h->dev[j+1];
1473 			h->ndevices--;
1474 			break;
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&h->lock, flags);
1478 	kfree(added);
1479 }
1480 
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* we compare everything except lun and target as these
1485 	 * are not yet assigned.  Compare parts likely
1486 	 * to differ first
1487 	 */
1488 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 		sizeof(dev1->scsi3addr)) != 0)
1490 		return 0;
1491 	if (memcmp(dev1->device_id, dev2->device_id,
1492 		sizeof(dev1->device_id)) != 0)
1493 		return 0;
1494 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 		return 0;
1498 	if (dev1->devtype != dev2->devtype)
1499 		return 0;
1500 	if (dev1->bus != dev2->bus)
1501 		return 0;
1502 	return 1;
1503 }
1504 
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 	struct hpsa_scsi_dev_t *dev2)
1507 {
1508 	/* Device attributes that can change, but don't mean
1509 	 * that the device is a different device, nor that the OS
1510 	 * needs to be told anything about the change.
1511 	 */
1512 	if (dev1->raid_level != dev2->raid_level)
1513 		return 1;
1514 	if (dev1->offload_config != dev2->offload_config)
1515 		return 1;
1516 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517 		return 1;
1518 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 		if (dev1->queue_depth != dev2->queue_depth)
1520 			return 1;
1521 	/*
1522 	 * This can happen for dual domain devices. An active
1523 	 * path change causes the ioaccel handle to change
1524 	 *
1525 	 * for example note the handle differences between p0 and p1
1526 	 * Device                    WWN               ,WWN hash,Handle
1527 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529 	 */
1530 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531 		return 1;
1532 	return 0;
1533 }
1534 
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545 	int *index)
1546 {
1547 	int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552 	if (needle == NULL)
1553 		return DEVICE_NOT_FOUND;
1554 
1555 	for (i = 0; i < haystack_size; i++) {
1556 		if (haystack[i] == NULL) /* previously removed. */
1557 			continue;
1558 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559 			*index = i;
1560 			if (device_is_the_same(needle, haystack[i])) {
1561 				if (device_updated(needle, haystack[i]))
1562 					return DEVICE_UPDATED;
1563 				return DEVICE_SAME;
1564 			} else {
1565 				/* Keep offline devices offline */
1566 				if (needle->volume_offline)
1567 					return DEVICE_NOT_FOUND;
1568 				return DEVICE_CHANGED;
1569 			}
1570 		}
1571 	}
1572 	*index = -1;
1573 	return DEVICE_NOT_FOUND;
1574 }
1575 
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577 					unsigned char scsi3addr[])
1578 {
1579 	struct offline_device_entry *device;
1580 	unsigned long flags;
1581 
1582 	/* Check to see if device is already on the list */
1583 	spin_lock_irqsave(&h->offline_device_lock, flags);
1584 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585 		if (memcmp(device->scsi3addr, scsi3addr,
1586 			sizeof(device->scsi3addr)) == 0) {
1587 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 			return;
1589 		}
1590 	}
1591 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592 
1593 	/* Device is not on the list, add it. */
1594 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1595 	if (!device)
1596 		return;
1597 
1598 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599 	spin_lock_irqsave(&h->offline_device_lock, flags);
1600 	list_add_tail(&device->offline_list, &h->offline_device_list);
1601 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603 
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606 	struct hpsa_scsi_dev_t *sd)
1607 {
1608 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609 		dev_info(&h->pdev->dev,
1610 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 			h->scsi_host->host_no,
1612 			sd->bus, sd->target, sd->lun);
1613 	switch (sd->volume_offline) {
1614 	case HPSA_LV_OK:
1615 		break;
1616 	case HPSA_LV_UNDERGOING_ERASE:
1617 		dev_info(&h->pdev->dev,
1618 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 			h->scsi_host->host_no,
1620 			sd->bus, sd->target, sd->lun);
1621 		break;
1622 	case HPSA_LV_NOT_AVAILABLE:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_UNDERGOING_RPI:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_PENDING_RPI:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_ENCRYPTED_NO_KEY:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_PENDING_ENCRYPTION:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	}
1683 }
1684 
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1691 				struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693 	struct raid_map_data *map = &logical_drive->raid_map;
1694 	struct raid_map_disk_data *dd = &map->data[0];
1695 	int i, j;
1696 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697 				le16_to_cpu(map->metadata_disks_per_row);
1698 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699 				le16_to_cpu(map->layout_map_count) *
1700 				total_disks_per_row;
1701 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702 				total_disks_per_row;
1703 	int qdepth;
1704 
1705 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707 
1708 	logical_drive->nphysical_disks = nraid_map_entries;
1709 
1710 	qdepth = 0;
1711 	for (i = 0; i < nraid_map_entries; i++) {
1712 		logical_drive->phys_disk[i] = NULL;
1713 		if (!logical_drive->offload_config)
1714 			continue;
1715 		for (j = 0; j < ndevices; j++) {
1716 			if (dev[j] == NULL)
1717 				continue;
1718 			if (dev[j]->devtype != TYPE_DISK &&
1719 			    dev[j]->devtype != TYPE_ZBC)
1720 				continue;
1721 			if (is_logical_device(dev[j]))
1722 				continue;
1723 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724 				continue;
1725 
1726 			logical_drive->phys_disk[i] = dev[j];
1727 			if (i < nphys_disk)
1728 				qdepth = min(h->nr_cmds, qdepth +
1729 				    logical_drive->phys_disk[i]->queue_depth);
1730 			break;
1731 		}
1732 
1733 		/*
1734 		 * This can happen if a physical drive is removed and
1735 		 * the logical drive is degraded.  In that case, the RAID
1736 		 * map data will refer to a physical disk which isn't actually
1737 		 * present.  And in that case offload_enabled should already
1738 		 * be 0, but we'll turn it off here just in case
1739 		 */
1740 		if (!logical_drive->phys_disk[i]) {
1741 			dev_warn(&h->pdev->dev,
1742 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743 				__func__,
1744 				h->scsi_host->host_no, logical_drive->bus,
1745 				logical_drive->target, logical_drive->lun);
1746 			logical_drive->offload_enabled = 0;
1747 			logical_drive->offload_to_be_enabled = 0;
1748 			logical_drive->queue_depth = 8;
1749 		}
1750 	}
1751 	if (nraid_map_entries)
1752 		/*
1753 		 * This is correct for reads, too high for full stripe writes,
1754 		 * way too high for partial stripe writes
1755 		 */
1756 		logical_drive->queue_depth = qdepth;
1757 	else {
1758 		if (logical_drive->external)
1759 			logical_drive->queue_depth = EXTERNAL_QD;
1760 		else
1761 			logical_drive->queue_depth = h->nr_cmds;
1762 	}
1763 }
1764 
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768 	int i;
1769 
1770 	for (i = 0; i < ndevices; i++) {
1771 		if (dev[i] == NULL)
1772 			continue;
1773 		if (dev[i]->devtype != TYPE_DISK &&
1774 		    dev[i]->devtype != TYPE_ZBC)
1775 			continue;
1776 		if (!is_logical_device(dev[i]))
1777 			continue;
1778 
1779 		/*
1780 		 * If offload is currently enabled, the RAID map and
1781 		 * phys_disk[] assignment *better* not be changing
1782 		 * because we would be changing ioaccel phsy_disk[] pointers
1783 		 * on a ioaccel volume processing I/O requests.
1784 		 *
1785 		 * If an ioaccel volume status changed, initially because it was
1786 		 * re-configured and thus underwent a transformation, or
1787 		 * a drive failed, we would have received a state change
1788 		 * request and ioaccel should have been turned off. When the
1789 		 * transformation completes, we get another state change
1790 		 * request to turn ioaccel back on. In this case, we need
1791 		 * to update the ioaccel information.
1792 		 *
1793 		 * Thus: If it is not currently enabled, but will be after
1794 		 * the scan completes, make sure the ioaccel pointers
1795 		 * are up to date.
1796 		 */
1797 
1798 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800 	}
1801 }
1802 
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805 	int rc = 0;
1806 
1807 	if (!h->scsi_host)
1808 		return 1;
1809 
1810 	if (is_logical_device(device)) /* RAID */
1811 		rc = scsi_add_device(h->scsi_host, device->bus,
1812 					device->target, device->lun);
1813 	else /* HBA */
1814 		rc = hpsa_add_sas_device(h->sas_host, device);
1815 
1816 	return rc;
1817 }
1818 
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 						struct hpsa_scsi_dev_t *dev)
1821 {
1822 	int i;
1823 	int count = 0;
1824 
1825 	for (i = 0; i < h->nr_cmds; i++) {
1826 		struct CommandList *c = h->cmd_pool + i;
1827 		int refcount = atomic_inc_return(&c->refcount);
1828 
1829 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 				dev->scsi3addr)) {
1831 			unsigned long flags;
1832 
1833 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1834 			if (!hpsa_is_cmd_idle(c))
1835 				++count;
1836 			spin_unlock_irqrestore(&h->lock, flags);
1837 		}
1838 
1839 		cmd_free(h, c);
1840 	}
1841 
1842 	return count;
1843 }
1844 
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846 						struct hpsa_scsi_dev_t *device)
1847 {
1848 	int cmds = 0;
1849 	int waits = 0;
1850 
1851 	while (1) {
1852 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 		if (cmds == 0)
1854 			break;
1855 		if (++waits > 20)
1856 			break;
1857 		msleep(1000);
1858 	}
1859 
1860 	if (waits > 20)
1861 		dev_warn(&h->pdev->dev,
1862 			"%s: removing device with %d outstanding commands!\n",
1863 			__func__, cmds);
1864 }
1865 
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867 			struct hpsa_scsi_dev_t *device)
1868 {
1869 	struct scsi_device *sdev = NULL;
1870 
1871 	if (!h->scsi_host)
1872 		return;
1873 
1874 	/*
1875 	 * Allow for commands to drain
1876 	 */
1877 	device->removed = 1;
1878 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879 
1880 	if (is_logical_device(device)) { /* RAID */
1881 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882 						device->target, device->lun);
1883 		if (sdev) {
1884 			scsi_remove_device(sdev);
1885 			scsi_device_put(sdev);
1886 		} else {
1887 			/*
1888 			 * We don't expect to get here.  Future commands
1889 			 * to this device will get a selection timeout as
1890 			 * if the device were gone.
1891 			 */
1892 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1893 					"didn't find device for removal.");
1894 		}
1895 	} else { /* HBA */
1896 
1897 		hpsa_remove_sas_device(device);
1898 	}
1899 }
1900 
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902 	struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904 	/* sd contains scsi3 addresses and devtypes, and inquiry
1905 	 * data.  This function takes what's in sd to be the current
1906 	 * reality and updates h->dev[] to reflect that reality.
1907 	 */
1908 	int i, entry, device_change, changes = 0;
1909 	struct hpsa_scsi_dev_t *csd;
1910 	unsigned long flags;
1911 	struct hpsa_scsi_dev_t **added, **removed;
1912 	int nadded, nremoved;
1913 
1914 	/*
1915 	 * A reset can cause a device status to change
1916 	 * re-schedule the scan to see what happened.
1917 	 */
1918 	spin_lock_irqsave(&h->reset_lock, flags);
1919 	if (h->reset_in_progress) {
1920 		h->drv_req_rescan = 1;
1921 		spin_unlock_irqrestore(&h->reset_lock, flags);
1922 		return;
1923 	}
1924 	spin_unlock_irqrestore(&h->reset_lock, flags);
1925 
1926 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928 
1929 	if (!added || !removed) {
1930 		dev_warn(&h->pdev->dev, "out of memory in "
1931 			"adjust_hpsa_scsi_table\n");
1932 		goto free_and_out;
1933 	}
1934 
1935 	spin_lock_irqsave(&h->devlock, flags);
1936 
1937 	/* find any devices in h->dev[] that are not in
1938 	 * sd[] and remove them from h->dev[], and for any
1939 	 * devices which have changed, remove the old device
1940 	 * info and add the new device info.
1941 	 * If minor device attributes change, just update
1942 	 * the existing device structure.
1943 	 */
1944 	i = 0;
1945 	nremoved = 0;
1946 	nadded = 0;
1947 	while (i < h->ndevices) {
1948 		csd = h->dev[i];
1949 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950 		if (device_change == DEVICE_NOT_FOUND) {
1951 			changes++;
1952 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953 			continue; /* remove ^^^, hence i not incremented */
1954 		} else if (device_change == DEVICE_CHANGED) {
1955 			changes++;
1956 			hpsa_scsi_replace_entry(h, i, sd[entry],
1957 				added, &nadded, removed, &nremoved);
1958 			/* Set it to NULL to prevent it from being freed
1959 			 * at the bottom of hpsa_update_scsi_devices()
1960 			 */
1961 			sd[entry] = NULL;
1962 		} else if (device_change == DEVICE_UPDATED) {
1963 			hpsa_scsi_update_entry(h, i, sd[entry]);
1964 		}
1965 		i++;
1966 	}
1967 
1968 	/* Now, make sure every device listed in sd[] is also
1969 	 * listed in h->dev[], adding them if they aren't found
1970 	 */
1971 
1972 	for (i = 0; i < nsds; i++) {
1973 		if (!sd[i]) /* if already added above. */
1974 			continue;
1975 
1976 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 		 * as the SCSI mid-layer does not handle such devices well.
1978 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 		 * at 160Hz, and prevents the system from coming up.
1980 		 */
1981 		if (sd[i]->volume_offline) {
1982 			hpsa_show_volume_status(h, sd[i]);
1983 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984 			continue;
1985 		}
1986 
1987 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988 					h->ndevices, &entry);
1989 		if (device_change == DEVICE_NOT_FOUND) {
1990 			changes++;
1991 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992 				break;
1993 			sd[i] = NULL; /* prevent from being freed later. */
1994 		} else if (device_change == DEVICE_CHANGED) {
1995 			/* should never happen... */
1996 			changes++;
1997 			dev_warn(&h->pdev->dev,
1998 				"device unexpectedly changed.\n");
1999 			/* but if it does happen, we just ignore that device */
2000 		}
2001 	}
2002 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003 
2004 	/*
2005 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 	 * any logical drives that need it enabled.
2007 	 *
2008 	 * The raid map should be current by now.
2009 	 *
2010 	 * We are updating the device list used for I/O requests.
2011 	 */
2012 	for (i = 0; i < h->ndevices; i++) {
2013 		if (h->dev[i] == NULL)
2014 			continue;
2015 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016 	}
2017 
2018 	spin_unlock_irqrestore(&h->devlock, flags);
2019 
2020 	/* Monitor devices which are in one of several NOT READY states to be
2021 	 * brought online later. This must be done without holding h->devlock,
2022 	 * so don't touch h->dev[]
2023 	 */
2024 	for (i = 0; i < nsds; i++) {
2025 		if (!sd[i]) /* if already added above. */
2026 			continue;
2027 		if (sd[i]->volume_offline)
2028 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029 	}
2030 
2031 	/* Don't notify scsi mid layer of any changes the first time through
2032 	 * (or if there are no changes) scsi_scan_host will do it later the
2033 	 * first time through.
2034 	 */
2035 	if (!changes)
2036 		goto free_and_out;
2037 
2038 	/* Notify scsi mid layer of any removed devices */
2039 	for (i = 0; i < nremoved; i++) {
2040 		if (removed[i] == NULL)
2041 			continue;
2042 		if (removed[i]->expose_device)
2043 			hpsa_remove_device(h, removed[i]);
2044 		kfree(removed[i]);
2045 		removed[i] = NULL;
2046 	}
2047 
2048 	/* Notify scsi mid layer of any added devices */
2049 	for (i = 0; i < nadded; i++) {
2050 		int rc = 0;
2051 
2052 		if (added[i] == NULL)
2053 			continue;
2054 		if (!(added[i]->expose_device))
2055 			continue;
2056 		rc = hpsa_add_device(h, added[i]);
2057 		if (!rc)
2058 			continue;
2059 		dev_warn(&h->pdev->dev,
2060 			"addition failed %d, device not added.", rc);
2061 		/* now we have to remove it from h->dev,
2062 		 * since it didn't get added to scsi mid layer
2063 		 */
2064 		fixup_botched_add(h, added[i]);
2065 		h->drv_req_rescan = 1;
2066 	}
2067 
2068 free_and_out:
2069 	kfree(added);
2070 	kfree(removed);
2071 }
2072 
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078 	int bus, int target, int lun)
2079 {
2080 	int i;
2081 	struct hpsa_scsi_dev_t *sd;
2082 
2083 	for (i = 0; i < h->ndevices; i++) {
2084 		sd = h->dev[i];
2085 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086 			return sd;
2087 	}
2088 	return NULL;
2089 }
2090 
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093 	struct hpsa_scsi_dev_t *sd = NULL;
2094 	unsigned long flags;
2095 	struct ctlr_info *h;
2096 
2097 	h = sdev_to_hba(sdev);
2098 	spin_lock_irqsave(&h->devlock, flags);
2099 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100 		struct scsi_target *starget;
2101 		struct sas_rphy *rphy;
2102 
2103 		starget = scsi_target(sdev);
2104 		rphy = target_to_rphy(starget);
2105 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106 		if (sd) {
2107 			sd->target = sdev_id(sdev);
2108 			sd->lun = sdev->lun;
2109 		}
2110 	}
2111 	if (!sd)
2112 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113 					sdev_id(sdev), sdev->lun);
2114 
2115 	if (sd && sd->expose_device) {
2116 		atomic_set(&sd->ioaccel_cmds_out, 0);
2117 		sdev->hostdata = sd;
2118 	} else
2119 		sdev->hostdata = NULL;
2120 	spin_unlock_irqrestore(&h->devlock, flags);
2121 	return 0;
2122 }
2123 
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127 	struct hpsa_scsi_dev_t *sd;
2128 	int queue_depth;
2129 
2130 	sd = sdev->hostdata;
2131 	sdev->no_uld_attach = !sd || !sd->expose_device;
2132 
2133 	if (sd) {
2134 		if (sd->external)
2135 			queue_depth = EXTERNAL_QD;
2136 		else
2137 			queue_depth = sd->queue_depth != 0 ?
2138 					sd->queue_depth : sdev->host->can_queue;
2139 	} else
2140 		queue_depth = sdev->host->can_queue;
2141 
2142 	scsi_change_queue_depth(sdev, queue_depth);
2143 
2144 	return 0;
2145 }
2146 
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149 	/* nothing to do. */
2150 }
2151 
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154 	int i;
2155 
2156 	if (!h->ioaccel2_cmd_sg_list)
2157 		return;
2158 	for (i = 0; i < h->nr_cmds; i++) {
2159 		kfree(h->ioaccel2_cmd_sg_list[i]);
2160 		h->ioaccel2_cmd_sg_list[i] = NULL;
2161 	}
2162 	kfree(h->ioaccel2_cmd_sg_list);
2163 	h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165 
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168 	int i;
2169 
2170 	if (h->chainsize <= 0)
2171 		return 0;
2172 
2173 	h->ioaccel2_cmd_sg_list =
2174 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175 					GFP_KERNEL);
2176 	if (!h->ioaccel2_cmd_sg_list)
2177 		return -ENOMEM;
2178 	for (i = 0; i < h->nr_cmds; i++) {
2179 		h->ioaccel2_cmd_sg_list[i] =
2180 			kmalloc_array(h->maxsgentries,
2181 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182 				      GFP_KERNEL);
2183 		if (!h->ioaccel2_cmd_sg_list[i])
2184 			goto clean;
2185 	}
2186 	return 0;
2187 
2188 clean:
2189 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2190 	return -ENOMEM;
2191 }
2192 
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195 	int i;
2196 
2197 	if (!h->cmd_sg_list)
2198 		return;
2199 	for (i = 0; i < h->nr_cmds; i++) {
2200 		kfree(h->cmd_sg_list[i]);
2201 		h->cmd_sg_list[i] = NULL;
2202 	}
2203 	kfree(h->cmd_sg_list);
2204 	h->cmd_sg_list = NULL;
2205 }
2206 
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209 	int i;
2210 
2211 	if (h->chainsize <= 0)
2212 		return 0;
2213 
2214 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215 				 GFP_KERNEL);
2216 	if (!h->cmd_sg_list)
2217 		return -ENOMEM;
2218 
2219 	for (i = 0; i < h->nr_cmds; i++) {
2220 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221 						  sizeof(*h->cmd_sg_list[i]),
2222 						  GFP_KERNEL);
2223 		if (!h->cmd_sg_list[i])
2224 			goto clean;
2225 
2226 	}
2227 	return 0;
2228 
2229 clean:
2230 	hpsa_free_sg_chain_blocks(h);
2231 	return -ENOMEM;
2232 }
2233 
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235 	struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237 	struct ioaccel2_sg_element *chain_block;
2238 	u64 temp64;
2239 	u32 chain_size;
2240 
2241 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242 	chain_size = le32_to_cpu(cp->sg[0].length);
2243 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244 				DMA_TO_DEVICE);
2245 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246 		/* prevent subsequent unmapping */
2247 		cp->sg->address = 0;
2248 		return -1;
2249 	}
2250 	cp->sg->address = cpu_to_le64(temp64);
2251 	return 0;
2252 }
2253 
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255 	struct io_accel2_cmd *cp)
2256 {
2257 	struct ioaccel2_sg_element *chain_sg;
2258 	u64 temp64;
2259 	u32 chain_size;
2260 
2261 	chain_sg = cp->sg;
2262 	temp64 = le64_to_cpu(chain_sg->address);
2263 	chain_size = le32_to_cpu(cp->sg[0].length);
2264 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2265 }
2266 
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268 	struct CommandList *c)
2269 {
2270 	struct SGDescriptor *chain_sg, *chain_block;
2271 	u64 temp64;
2272 	u32 chain_len;
2273 
2274 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275 	chain_block = h->cmd_sg_list[c->cmdindex];
2276 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277 	chain_len = sizeof(*chain_sg) *
2278 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279 	chain_sg->Len = cpu_to_le32(chain_len);
2280 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281 				DMA_TO_DEVICE);
2282 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283 		/* prevent subsequent unmapping */
2284 		chain_sg->Addr = cpu_to_le64(0);
2285 		return -1;
2286 	}
2287 	chain_sg->Addr = cpu_to_le64(temp64);
2288 	return 0;
2289 }
2290 
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292 	struct CommandList *c)
2293 {
2294 	struct SGDescriptor *chain_sg;
2295 
2296 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297 		return;
2298 
2299 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2302 }
2303 
2304 
2305 /* Decode the various types of errors on ioaccel2 path.
2306  * Return 1 for any error that should generate a RAID path retry.
2307  * Return 0 for errors that don't require a RAID path retry.
2308  */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310 					struct CommandList *c,
2311 					struct scsi_cmnd *cmd,
2312 					struct io_accel2_cmd *c2,
2313 					struct hpsa_scsi_dev_t *dev)
2314 {
2315 	int data_len;
2316 	int retry = 0;
2317 	u32 ioaccel2_resid = 0;
2318 
2319 	switch (c2->error_data.serv_response) {
2320 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321 		switch (c2->error_data.status) {
2322 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323 			break;
2324 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2326 			if (c2->error_data.data_present !=
2327 					IOACCEL2_SENSE_DATA_PRESENT) {
2328 				memset(cmd->sense_buffer, 0,
2329 					SCSI_SENSE_BUFFERSIZE);
2330 				break;
2331 			}
2332 			/* copy the sense data */
2333 			data_len = c2->error_data.sense_data_len;
2334 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2335 				data_len = SCSI_SENSE_BUFFERSIZE;
2336 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2337 				data_len =
2338 					sizeof(c2->error_data.sense_data_buff);
2339 			memcpy(cmd->sense_buffer,
2340 				c2->error_data.sense_data_buff, data_len);
2341 			retry = 1;
2342 			break;
2343 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344 			retry = 1;
2345 			break;
2346 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347 			retry = 1;
2348 			break;
2349 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350 			retry = 1;
2351 			break;
2352 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353 			retry = 1;
2354 			break;
2355 		default:
2356 			retry = 1;
2357 			break;
2358 		}
2359 		break;
2360 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2361 		switch (c2->error_data.status) {
2362 		case IOACCEL2_STATUS_SR_IO_ERROR:
2363 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2364 		case IOACCEL2_STATUS_SR_OVERRUN:
2365 			retry = 1;
2366 			break;
2367 		case IOACCEL2_STATUS_SR_UNDERRUN:
2368 			cmd->result = (DID_OK << 16);		/* host byte */
2369 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2370 			ioaccel2_resid = get_unaligned_le32(
2371 						&c2->error_data.resid_cnt[0]);
2372 			scsi_set_resid(cmd, ioaccel2_resid);
2373 			break;
2374 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377 			/*
2378 			 * Did an HBA disk disappear? We will eventually
2379 			 * get a state change event from the controller but
2380 			 * in the meantime, we need to tell the OS that the
2381 			 * HBA disk is no longer there and stop I/O
2382 			 * from going down. This allows the potential re-insert
2383 			 * of the disk to get the same device node.
2384 			 */
2385 			if (dev->physical_device && dev->expose_device) {
2386 				cmd->result = DID_NO_CONNECT << 16;
2387 				dev->removed = 1;
2388 				h->drv_req_rescan = 1;
2389 				dev_warn(&h->pdev->dev,
2390 					"%s: device is gone!\n", __func__);
2391 			} else
2392 				/*
2393 				 * Retry by sending down the RAID path.
2394 				 * We will get an event from ctlr to
2395 				 * trigger rescan regardless.
2396 				 */
2397 				retry = 1;
2398 			break;
2399 		default:
2400 			retry = 1;
2401 		}
2402 		break;
2403 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404 		break;
2405 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406 		break;
2407 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408 		retry = 1;
2409 		break;
2410 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411 		break;
2412 	default:
2413 		retry = 1;
2414 		break;
2415 	}
2416 
2417 	return retry;	/* retry on raid path? */
2418 }
2419 
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421 		struct CommandList *c)
2422 {
2423 	bool do_wake = false;
2424 
2425 	/*
2426 	 * Reset c->scsi_cmd here so that the reset handler will know
2427 	 * this command has completed.  Then, check to see if the handler is
2428 	 * waiting for this command, and, if so, wake it.
2429 	 */
2430 	c->scsi_cmd = SCSI_CMD_IDLE;
2431 	mb();	/* Declare command idle before checking for pending events. */
2432 	if (c->reset_pending) {
2433 		unsigned long flags;
2434 		struct hpsa_scsi_dev_t *dev;
2435 
2436 		/*
2437 		 * There appears to be a reset pending; lock the lock and
2438 		 * reconfirm.  If so, then decrement the count of outstanding
2439 		 * commands and wake the reset command if this is the last one.
2440 		 */
2441 		spin_lock_irqsave(&h->lock, flags);
2442 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2443 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444 			do_wake = true;
2445 		c->reset_pending = NULL;
2446 		spin_unlock_irqrestore(&h->lock, flags);
2447 	}
2448 
2449 	if (do_wake)
2450 		wake_up_all(&h->event_sync_wait_queue);
2451 }
2452 
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454 				      struct CommandList *c)
2455 {
2456 	hpsa_cmd_resolve_events(h, c);
2457 	cmd_tagged_free(h, c);
2458 }
2459 
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461 		struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463 	hpsa_cmd_resolve_and_free(h, c);
2464 	if (cmd && cmd->scsi_done)
2465 		cmd->scsi_done(cmd);
2466 }
2467 
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473 
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475 		struct CommandList *c, struct scsi_cmnd *cmd,
2476 		struct hpsa_scsi_dev_t *dev)
2477 {
2478 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479 
2480 	/* check for good status */
2481 	if (likely(c2->error_data.serv_response == 0 &&
2482 			c2->error_data.status == 0))
2483 		return hpsa_cmd_free_and_done(h, c, cmd);
2484 
2485 	/*
2486 	 * Any RAID offload error results in retry which will use
2487 	 * the normal I/O path so the controller can handle whatever is
2488 	 * wrong.
2489 	 */
2490 	if (is_logical_device(dev) &&
2491 		c2->error_data.serv_response ==
2492 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2493 		if (c2->error_data.status ==
2494 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495 			dev->offload_enabled = 0;
2496 			dev->offload_to_be_enabled = 0;
2497 		}
2498 
2499 		return hpsa_retry_cmd(h, c);
2500 	}
2501 
2502 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503 		return hpsa_retry_cmd(h, c);
2504 
2505 	return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507 
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510 					struct CommandList *cp)
2511 {
2512 	u8 tmf_status = cp->err_info->ScsiStatus;
2513 
2514 	switch (tmf_status) {
2515 	case CISS_TMF_COMPLETE:
2516 		/*
2517 		 * CISS_TMF_COMPLETE never happens, instead,
2518 		 * ei->CommandStatus == 0 for this case.
2519 		 */
2520 	case CISS_TMF_SUCCESS:
2521 		return 0;
2522 	case CISS_TMF_INVALID_FRAME:
2523 	case CISS_TMF_NOT_SUPPORTED:
2524 	case CISS_TMF_FAILED:
2525 	case CISS_TMF_WRONG_LUN:
2526 	case CISS_TMF_OVERLAPPED_TAG:
2527 		break;
2528 	default:
2529 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530 				tmf_status);
2531 		break;
2532 	}
2533 	return -tmf_status;
2534 }
2535 
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538 	struct scsi_cmnd *cmd;
2539 	struct ctlr_info *h;
2540 	struct ErrorInfo *ei;
2541 	struct hpsa_scsi_dev_t *dev;
2542 	struct io_accel2_cmd *c2;
2543 
2544 	u8 sense_key;
2545 	u8 asc;      /* additional sense code */
2546 	u8 ascq;     /* additional sense code qualifier */
2547 	unsigned long sense_data_size;
2548 
2549 	ei = cp->err_info;
2550 	cmd = cp->scsi_cmd;
2551 	h = cp->h;
2552 
2553 	if (!cmd->device) {
2554 		cmd->result = DID_NO_CONNECT << 16;
2555 		return hpsa_cmd_free_and_done(h, cp, cmd);
2556 	}
2557 
2558 	dev = cmd->device->hostdata;
2559 	if (!dev) {
2560 		cmd->result = DID_NO_CONNECT << 16;
2561 		return hpsa_cmd_free_and_done(h, cp, cmd);
2562 	}
2563 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564 
2565 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566 	if ((cp->cmd_type == CMD_SCSI) &&
2567 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568 		hpsa_unmap_sg_chain_block(h, cp);
2569 
2570 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2571 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573 
2574 	cmd->result = (DID_OK << 16); 		/* host byte */
2575 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2576 
2577 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578 		if (dev->physical_device && dev->expose_device &&
2579 			dev->removed) {
2580 			cmd->result = DID_NO_CONNECT << 16;
2581 			return hpsa_cmd_free_and_done(h, cp, cmd);
2582 		}
2583 		if (likely(cp->phys_disk != NULL))
2584 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585 	}
2586 
2587 	/*
2588 	 * We check for lockup status here as it may be set for
2589 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590 	 * fail_all_oustanding_cmds()
2591 	 */
2592 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593 		/* DID_NO_CONNECT will prevent a retry */
2594 		cmd->result = DID_NO_CONNECT << 16;
2595 		return hpsa_cmd_free_and_done(h, cp, cmd);
2596 	}
2597 
2598 	if ((unlikely(hpsa_is_pending_event(cp))))
2599 		if (cp->reset_pending)
2600 			return hpsa_cmd_free_and_done(h, cp, cmd);
2601 
2602 	if (cp->cmd_type == CMD_IOACCEL2)
2603 		return process_ioaccel2_completion(h, cp, cmd, dev);
2604 
2605 	scsi_set_resid(cmd, ei->ResidualCnt);
2606 	if (ei->CommandStatus == 0)
2607 		return hpsa_cmd_free_and_done(h, cp, cmd);
2608 
2609 	/* For I/O accelerator commands, copy over some fields to the normal
2610 	 * CISS header used below for error handling.
2611 	 */
2612 	if (cp->cmd_type == CMD_IOACCEL1) {
2613 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614 		cp->Header.SGList = scsi_sg_count(cmd);
2615 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618 		cp->Header.tag = c->tag;
2619 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621 
2622 		/* Any RAID offload error results in retry which will use
2623 		 * the normal I/O path so the controller can handle whatever's
2624 		 * wrong.
2625 		 */
2626 		if (is_logical_device(dev)) {
2627 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628 				dev->offload_enabled = 0;
2629 			return hpsa_retry_cmd(h, cp);
2630 		}
2631 	}
2632 
2633 	/* an error has occurred */
2634 	switch (ei->CommandStatus) {
2635 
2636 	case CMD_TARGET_STATUS:
2637 		cmd->result |= ei->ScsiStatus;
2638 		/* copy the sense data */
2639 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641 		else
2642 			sense_data_size = sizeof(ei->SenseInfo);
2643 		if (ei->SenseLen < sense_data_size)
2644 			sense_data_size = ei->SenseLen;
2645 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646 		if (ei->ScsiStatus)
2647 			decode_sense_data(ei->SenseInfo, sense_data_size,
2648 				&sense_key, &asc, &ascq);
2649 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650 			if (sense_key == ABORTED_COMMAND) {
2651 				cmd->result |= DID_SOFT_ERROR << 16;
2652 				break;
2653 			}
2654 			break;
2655 		}
2656 		/* Problem was not a check condition
2657 		 * Pass it up to the upper layers...
2658 		 */
2659 		if (ei->ScsiStatus) {
2660 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2661 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2662 				"Returning result: 0x%x\n",
2663 				cp, ei->ScsiStatus,
2664 				sense_key, asc, ascq,
2665 				cmd->result);
2666 		} else {  /* scsi status is zero??? How??? */
2667 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2668 				"Returning no connection.\n", cp),
2669 
2670 			/* Ordinarily, this case should never happen,
2671 			 * but there is a bug in some released firmware
2672 			 * revisions that allows it to happen if, for
2673 			 * example, a 4100 backplane loses power and
2674 			 * the tape drive is in it.  We assume that
2675 			 * it's a fatal error of some kind because we
2676 			 * can't show that it wasn't. We will make it
2677 			 * look like selection timeout since that is
2678 			 * the most common reason for this to occur,
2679 			 * and it's severe enough.
2680 			 */
2681 
2682 			cmd->result = DID_NO_CONNECT << 16;
2683 		}
2684 		break;
2685 
2686 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2687 		break;
2688 	case CMD_DATA_OVERRUN:
2689 		dev_warn(&h->pdev->dev,
2690 			"CDB %16phN data overrun\n", cp->Request.CDB);
2691 		break;
2692 	case CMD_INVALID: {
2693 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2694 		print_cmd(cp); */
2695 		/* We get CMD_INVALID if you address a non-existent device
2696 		 * instead of a selection timeout (no response).  You will
2697 		 * see this if you yank out a drive, then try to access it.
2698 		 * This is kind of a shame because it means that any other
2699 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2700 		 * missing target. */
2701 		cmd->result = DID_NO_CONNECT << 16;
2702 	}
2703 		break;
2704 	case CMD_PROTOCOL_ERR:
2705 		cmd->result = DID_ERROR << 16;
2706 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2707 				cp->Request.CDB);
2708 		break;
2709 	case CMD_HARDWARE_ERR:
2710 		cmd->result = DID_ERROR << 16;
2711 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2712 			cp->Request.CDB);
2713 		break;
2714 	case CMD_CONNECTION_LOST:
2715 		cmd->result = DID_ERROR << 16;
2716 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2717 			cp->Request.CDB);
2718 		break;
2719 	case CMD_ABORTED:
2720 		cmd->result = DID_ABORT << 16;
2721 		break;
2722 	case CMD_ABORT_FAILED:
2723 		cmd->result = DID_ERROR << 16;
2724 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2725 			cp->Request.CDB);
2726 		break;
2727 	case CMD_UNSOLICITED_ABORT:
2728 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2729 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2730 			cp->Request.CDB);
2731 		break;
2732 	case CMD_TIMEOUT:
2733 		cmd->result = DID_TIME_OUT << 16;
2734 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2735 			cp->Request.CDB);
2736 		break;
2737 	case CMD_UNABORTABLE:
2738 		cmd->result = DID_ERROR << 16;
2739 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2740 		break;
2741 	case CMD_TMF_STATUS:
2742 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2743 			cmd->result = DID_ERROR << 16;
2744 		break;
2745 	case CMD_IOACCEL_DISABLED:
2746 		/* This only handles the direct pass-through case since RAID
2747 		 * offload is handled above.  Just attempt a retry.
2748 		 */
2749 		cmd->result = DID_SOFT_ERROR << 16;
2750 		dev_warn(&h->pdev->dev,
2751 				"cp %p had HP SSD Smart Path error\n", cp);
2752 		break;
2753 	default:
2754 		cmd->result = DID_ERROR << 16;
2755 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2756 				cp, ei->CommandStatus);
2757 	}
2758 
2759 	return hpsa_cmd_free_and_done(h, cp, cmd);
2760 }
2761 
2762 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2763 		int sg_used, enum dma_data_direction data_direction)
2764 {
2765 	int i;
2766 
2767 	for (i = 0; i < sg_used; i++)
2768 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2769 				le32_to_cpu(c->SG[i].Len),
2770 				data_direction);
2771 }
2772 
2773 static int hpsa_map_one(struct pci_dev *pdev,
2774 		struct CommandList *cp,
2775 		unsigned char *buf,
2776 		size_t buflen,
2777 		enum dma_data_direction data_direction)
2778 {
2779 	u64 addr64;
2780 
2781 	if (buflen == 0 || data_direction == DMA_NONE) {
2782 		cp->Header.SGList = 0;
2783 		cp->Header.SGTotal = cpu_to_le16(0);
2784 		return 0;
2785 	}
2786 
2787 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2788 	if (dma_mapping_error(&pdev->dev, addr64)) {
2789 		/* Prevent subsequent unmap of something never mapped */
2790 		cp->Header.SGList = 0;
2791 		cp->Header.SGTotal = cpu_to_le16(0);
2792 		return -1;
2793 	}
2794 	cp->SG[0].Addr = cpu_to_le64(addr64);
2795 	cp->SG[0].Len = cpu_to_le32(buflen);
2796 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2797 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2798 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2799 	return 0;
2800 }
2801 
2802 #define NO_TIMEOUT ((unsigned long) -1)
2803 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2804 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2805 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2806 {
2807 	DECLARE_COMPLETION_ONSTACK(wait);
2808 
2809 	c->waiting = &wait;
2810 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2811 	if (timeout_msecs == NO_TIMEOUT) {
2812 		/* TODO: get rid of this no-timeout thing */
2813 		wait_for_completion_io(&wait);
2814 		return IO_OK;
2815 	}
2816 	if (!wait_for_completion_io_timeout(&wait,
2817 					msecs_to_jiffies(timeout_msecs))) {
2818 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2819 		return -ETIMEDOUT;
2820 	}
2821 	return IO_OK;
2822 }
2823 
2824 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2825 				   int reply_queue, unsigned long timeout_msecs)
2826 {
2827 	if (unlikely(lockup_detected(h))) {
2828 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2829 		return IO_OK;
2830 	}
2831 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2832 }
2833 
2834 static u32 lockup_detected(struct ctlr_info *h)
2835 {
2836 	int cpu;
2837 	u32 rc, *lockup_detected;
2838 
2839 	cpu = get_cpu();
2840 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2841 	rc = *lockup_detected;
2842 	put_cpu();
2843 	return rc;
2844 }
2845 
2846 #define MAX_DRIVER_CMD_RETRIES 25
2847 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2848 		struct CommandList *c, enum dma_data_direction data_direction,
2849 		unsigned long timeout_msecs)
2850 {
2851 	int backoff_time = 10, retry_count = 0;
2852 	int rc;
2853 
2854 	do {
2855 		memset(c->err_info, 0, sizeof(*c->err_info));
2856 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2857 						  timeout_msecs);
2858 		if (rc)
2859 			break;
2860 		retry_count++;
2861 		if (retry_count > 3) {
2862 			msleep(backoff_time);
2863 			if (backoff_time < 1000)
2864 				backoff_time *= 2;
2865 		}
2866 	} while ((check_for_unit_attention(h, c) ||
2867 			check_for_busy(h, c)) &&
2868 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2869 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2870 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2871 		rc = -EIO;
2872 	return rc;
2873 }
2874 
2875 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2876 				struct CommandList *c)
2877 {
2878 	const u8 *cdb = c->Request.CDB;
2879 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2880 
2881 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2882 		 txt, lun, cdb);
2883 }
2884 
2885 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2886 			struct CommandList *cp)
2887 {
2888 	const struct ErrorInfo *ei = cp->err_info;
2889 	struct device *d = &cp->h->pdev->dev;
2890 	u8 sense_key, asc, ascq;
2891 	int sense_len;
2892 
2893 	switch (ei->CommandStatus) {
2894 	case CMD_TARGET_STATUS:
2895 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2896 			sense_len = sizeof(ei->SenseInfo);
2897 		else
2898 			sense_len = ei->SenseLen;
2899 		decode_sense_data(ei->SenseInfo, sense_len,
2900 					&sense_key, &asc, &ascq);
2901 		hpsa_print_cmd(h, "SCSI status", cp);
2902 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2903 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2904 				sense_key, asc, ascq);
2905 		else
2906 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2907 		if (ei->ScsiStatus == 0)
2908 			dev_warn(d, "SCSI status is abnormally zero.  "
2909 			"(probably indicates selection timeout "
2910 			"reported incorrectly due to a known "
2911 			"firmware bug, circa July, 2001.)\n");
2912 		break;
2913 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2914 		break;
2915 	case CMD_DATA_OVERRUN:
2916 		hpsa_print_cmd(h, "overrun condition", cp);
2917 		break;
2918 	case CMD_INVALID: {
2919 		/* controller unfortunately reports SCSI passthru's
2920 		 * to non-existent targets as invalid commands.
2921 		 */
2922 		hpsa_print_cmd(h, "invalid command", cp);
2923 		dev_warn(d, "probably means device no longer present\n");
2924 		}
2925 		break;
2926 	case CMD_PROTOCOL_ERR:
2927 		hpsa_print_cmd(h, "protocol error", cp);
2928 		break;
2929 	case CMD_HARDWARE_ERR:
2930 		hpsa_print_cmd(h, "hardware error", cp);
2931 		break;
2932 	case CMD_CONNECTION_LOST:
2933 		hpsa_print_cmd(h, "connection lost", cp);
2934 		break;
2935 	case CMD_ABORTED:
2936 		hpsa_print_cmd(h, "aborted", cp);
2937 		break;
2938 	case CMD_ABORT_FAILED:
2939 		hpsa_print_cmd(h, "abort failed", cp);
2940 		break;
2941 	case CMD_UNSOLICITED_ABORT:
2942 		hpsa_print_cmd(h, "unsolicited abort", cp);
2943 		break;
2944 	case CMD_TIMEOUT:
2945 		hpsa_print_cmd(h, "timed out", cp);
2946 		break;
2947 	case CMD_UNABORTABLE:
2948 		hpsa_print_cmd(h, "unabortable", cp);
2949 		break;
2950 	case CMD_CTLR_LOCKUP:
2951 		hpsa_print_cmd(h, "controller lockup detected", cp);
2952 		break;
2953 	default:
2954 		hpsa_print_cmd(h, "unknown status", cp);
2955 		dev_warn(d, "Unknown command status %x\n",
2956 				ei->CommandStatus);
2957 	}
2958 }
2959 
2960 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2961 					u8 page, u8 *buf, size_t bufsize)
2962 {
2963 	int rc = IO_OK;
2964 	struct CommandList *c;
2965 	struct ErrorInfo *ei;
2966 
2967 	c = cmd_alloc(h);
2968 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2969 			page, scsi3addr, TYPE_CMD)) {
2970 		rc = -1;
2971 		goto out;
2972 	}
2973 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2974 			NO_TIMEOUT);
2975 	if (rc)
2976 		goto out;
2977 	ei = c->err_info;
2978 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2979 		hpsa_scsi_interpret_error(h, c);
2980 		rc = -1;
2981 	}
2982 out:
2983 	cmd_free(h, c);
2984 	return rc;
2985 }
2986 
2987 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2988 						u8 *scsi3addr)
2989 {
2990 	u8 *buf;
2991 	u64 sa = 0;
2992 	int rc = 0;
2993 
2994 	buf = kzalloc(1024, GFP_KERNEL);
2995 	if (!buf)
2996 		return 0;
2997 
2998 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2999 					buf, 1024);
3000 
3001 	if (rc)
3002 		goto out;
3003 
3004 	sa = get_unaligned_be64(buf+12);
3005 
3006 out:
3007 	kfree(buf);
3008 	return sa;
3009 }
3010 
3011 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3012 			u16 page, unsigned char *buf,
3013 			unsigned char bufsize)
3014 {
3015 	int rc = IO_OK;
3016 	struct CommandList *c;
3017 	struct ErrorInfo *ei;
3018 
3019 	c = cmd_alloc(h);
3020 
3021 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3022 			page, scsi3addr, TYPE_CMD)) {
3023 		rc = -1;
3024 		goto out;
3025 	}
3026 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3027 			NO_TIMEOUT);
3028 	if (rc)
3029 		goto out;
3030 	ei = c->err_info;
3031 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3032 		hpsa_scsi_interpret_error(h, c);
3033 		rc = -1;
3034 	}
3035 out:
3036 	cmd_free(h, c);
3037 	return rc;
3038 }
3039 
3040 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3041 	u8 reset_type, int reply_queue)
3042 {
3043 	int rc = IO_OK;
3044 	struct CommandList *c;
3045 	struct ErrorInfo *ei;
3046 
3047 	c = cmd_alloc(h);
3048 
3049 
3050 	/* fill_cmd can't fail here, no data buffer to map. */
3051 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3052 			scsi3addr, TYPE_MSG);
3053 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3054 	if (rc) {
3055 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3056 		goto out;
3057 	}
3058 	/* no unmap needed here because no data xfer. */
3059 
3060 	ei = c->err_info;
3061 	if (ei->CommandStatus != 0) {
3062 		hpsa_scsi_interpret_error(h, c);
3063 		rc = -1;
3064 	}
3065 out:
3066 	cmd_free(h, c);
3067 	return rc;
3068 }
3069 
3070 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3071 			       struct hpsa_scsi_dev_t *dev,
3072 			       unsigned char *scsi3addr)
3073 {
3074 	int i;
3075 	bool match = false;
3076 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3077 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3078 
3079 	if (hpsa_is_cmd_idle(c))
3080 		return false;
3081 
3082 	switch (c->cmd_type) {
3083 	case CMD_SCSI:
3084 	case CMD_IOCTL_PEND:
3085 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3086 				sizeof(c->Header.LUN.LunAddrBytes));
3087 		break;
3088 
3089 	case CMD_IOACCEL1:
3090 	case CMD_IOACCEL2:
3091 		if (c->phys_disk == dev) {
3092 			/* HBA mode match */
3093 			match = true;
3094 		} else {
3095 			/* Possible RAID mode -- check each phys dev. */
3096 			/* FIXME:  Do we need to take out a lock here?  If
3097 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3098 			 * instead. */
3099 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3100 				/* FIXME: an alternate test might be
3101 				 *
3102 				 * match = dev->phys_disk[i]->ioaccel_handle
3103 				 *              == c2->scsi_nexus;      */
3104 				match = dev->phys_disk[i] == c->phys_disk;
3105 			}
3106 		}
3107 		break;
3108 
3109 	case IOACCEL2_TMF:
3110 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111 			match = dev->phys_disk[i]->ioaccel_handle ==
3112 					le32_to_cpu(ac->it_nexus);
3113 		}
3114 		break;
3115 
3116 	case 0:		/* The command is in the middle of being initialized. */
3117 		match = false;
3118 		break;
3119 
3120 	default:
3121 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3122 			c->cmd_type);
3123 		BUG();
3124 	}
3125 
3126 	return match;
3127 }
3128 
3129 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3130 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3131 {
3132 	int i;
3133 	int rc = 0;
3134 
3135 	/* We can really only handle one reset at a time */
3136 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3137 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3138 		return -EINTR;
3139 	}
3140 
3141 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3142 
3143 	for (i = 0; i < h->nr_cmds; i++) {
3144 		struct CommandList *c = h->cmd_pool + i;
3145 		int refcount = atomic_inc_return(&c->refcount);
3146 
3147 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3148 			unsigned long flags;
3149 
3150 			/*
3151 			 * Mark the target command as having a reset pending,
3152 			 * then lock a lock so that the command cannot complete
3153 			 * while we're considering it.  If the command is not
3154 			 * idle then count it; otherwise revoke the event.
3155 			 */
3156 			c->reset_pending = dev;
3157 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3158 			if (!hpsa_is_cmd_idle(c))
3159 				atomic_inc(&dev->reset_cmds_out);
3160 			else
3161 				c->reset_pending = NULL;
3162 			spin_unlock_irqrestore(&h->lock, flags);
3163 		}
3164 
3165 		cmd_free(h, c);
3166 	}
3167 
3168 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3169 	if (!rc)
3170 		wait_event(h->event_sync_wait_queue,
3171 			atomic_read(&dev->reset_cmds_out) == 0 ||
3172 			lockup_detected(h));
3173 
3174 	if (unlikely(lockup_detected(h))) {
3175 		dev_warn(&h->pdev->dev,
3176 			 "Controller lockup detected during reset wait\n");
3177 		rc = -ENODEV;
3178 	}
3179 
3180 	if (unlikely(rc))
3181 		atomic_set(&dev->reset_cmds_out, 0);
3182 	else
3183 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3184 
3185 	mutex_unlock(&h->reset_mutex);
3186 	return rc;
3187 }
3188 
3189 static void hpsa_get_raid_level(struct ctlr_info *h,
3190 	unsigned char *scsi3addr, unsigned char *raid_level)
3191 {
3192 	int rc;
3193 	unsigned char *buf;
3194 
3195 	*raid_level = RAID_UNKNOWN;
3196 	buf = kzalloc(64, GFP_KERNEL);
3197 	if (!buf)
3198 		return;
3199 
3200 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3201 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3202 		goto exit;
3203 
3204 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3205 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3206 
3207 	if (rc == 0)
3208 		*raid_level = buf[8];
3209 	if (*raid_level > RAID_UNKNOWN)
3210 		*raid_level = RAID_UNKNOWN;
3211 exit:
3212 	kfree(buf);
3213 	return;
3214 }
3215 
3216 #define HPSA_MAP_DEBUG
3217 #ifdef HPSA_MAP_DEBUG
3218 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3219 				struct raid_map_data *map_buff)
3220 {
3221 	struct raid_map_disk_data *dd = &map_buff->data[0];
3222 	int map, row, col;
3223 	u16 map_cnt, row_cnt, disks_per_row;
3224 
3225 	if (rc != 0)
3226 		return;
3227 
3228 	/* Show details only if debugging has been activated. */
3229 	if (h->raid_offload_debug < 2)
3230 		return;
3231 
3232 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3233 				le32_to_cpu(map_buff->structure_size));
3234 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3235 			le32_to_cpu(map_buff->volume_blk_size));
3236 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3237 			le64_to_cpu(map_buff->volume_blk_cnt));
3238 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3239 			map_buff->phys_blk_shift);
3240 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3241 			map_buff->parity_rotation_shift);
3242 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3243 			le16_to_cpu(map_buff->strip_size));
3244 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3245 			le64_to_cpu(map_buff->disk_starting_blk));
3246 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3247 			le64_to_cpu(map_buff->disk_blk_cnt));
3248 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3249 			le16_to_cpu(map_buff->data_disks_per_row));
3250 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3251 			le16_to_cpu(map_buff->metadata_disks_per_row));
3252 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3253 			le16_to_cpu(map_buff->row_cnt));
3254 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3255 			le16_to_cpu(map_buff->layout_map_count));
3256 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3257 			le16_to_cpu(map_buff->flags));
3258 	dev_info(&h->pdev->dev, "encryption = %s\n",
3259 			le16_to_cpu(map_buff->flags) &
3260 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3261 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3262 			le16_to_cpu(map_buff->dekindex));
3263 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3264 	for (map = 0; map < map_cnt; map++) {
3265 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3266 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3267 		for (row = 0; row < row_cnt; row++) {
3268 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3269 			disks_per_row =
3270 				le16_to_cpu(map_buff->data_disks_per_row);
3271 			for (col = 0; col < disks_per_row; col++, dd++)
3272 				dev_info(&h->pdev->dev,
3273 					"    D%02u: h=0x%04x xor=%u,%u\n",
3274 					col, dd->ioaccel_handle,
3275 					dd->xor_mult[0], dd->xor_mult[1]);
3276 			disks_per_row =
3277 				le16_to_cpu(map_buff->metadata_disks_per_row);
3278 			for (col = 0; col < disks_per_row; col++, dd++)
3279 				dev_info(&h->pdev->dev,
3280 					"    M%02u: h=0x%04x xor=%u,%u\n",
3281 					col, dd->ioaccel_handle,
3282 					dd->xor_mult[0], dd->xor_mult[1]);
3283 		}
3284 	}
3285 }
3286 #else
3287 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3288 			__attribute__((unused)) int rc,
3289 			__attribute__((unused)) struct raid_map_data *map_buff)
3290 {
3291 }
3292 #endif
3293 
3294 static int hpsa_get_raid_map(struct ctlr_info *h,
3295 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3296 {
3297 	int rc = 0;
3298 	struct CommandList *c;
3299 	struct ErrorInfo *ei;
3300 
3301 	c = cmd_alloc(h);
3302 
3303 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3304 			sizeof(this_device->raid_map), 0,
3305 			scsi3addr, TYPE_CMD)) {
3306 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3307 		cmd_free(h, c);
3308 		return -1;
3309 	}
3310 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3311 			NO_TIMEOUT);
3312 	if (rc)
3313 		goto out;
3314 	ei = c->err_info;
3315 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3316 		hpsa_scsi_interpret_error(h, c);
3317 		rc = -1;
3318 		goto out;
3319 	}
3320 	cmd_free(h, c);
3321 
3322 	/* @todo in the future, dynamically allocate RAID map memory */
3323 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3324 				sizeof(this_device->raid_map)) {
3325 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3326 		rc = -1;
3327 	}
3328 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3329 	return rc;
3330 out:
3331 	cmd_free(h, c);
3332 	return rc;
3333 }
3334 
3335 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3336 		unsigned char scsi3addr[], u16 bmic_device_index,
3337 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3338 {
3339 	int rc = IO_OK;
3340 	struct CommandList *c;
3341 	struct ErrorInfo *ei;
3342 
3343 	c = cmd_alloc(h);
3344 
3345 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3346 		0, RAID_CTLR_LUNID, TYPE_CMD);
3347 	if (rc)
3348 		goto out;
3349 
3350 	c->Request.CDB[2] = bmic_device_index & 0xff;
3351 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3352 
3353 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3354 			NO_TIMEOUT);
3355 	if (rc)
3356 		goto out;
3357 	ei = c->err_info;
3358 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3359 		hpsa_scsi_interpret_error(h, c);
3360 		rc = -1;
3361 	}
3362 out:
3363 	cmd_free(h, c);
3364 	return rc;
3365 }
3366 
3367 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3368 	struct bmic_identify_controller *buf, size_t bufsize)
3369 {
3370 	int rc = IO_OK;
3371 	struct CommandList *c;
3372 	struct ErrorInfo *ei;
3373 
3374 	c = cmd_alloc(h);
3375 
3376 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3377 		0, RAID_CTLR_LUNID, TYPE_CMD);
3378 	if (rc)
3379 		goto out;
3380 
3381 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3382 			NO_TIMEOUT);
3383 	if (rc)
3384 		goto out;
3385 	ei = c->err_info;
3386 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3387 		hpsa_scsi_interpret_error(h, c);
3388 		rc = -1;
3389 	}
3390 out:
3391 	cmd_free(h, c);
3392 	return rc;
3393 }
3394 
3395 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3396 		unsigned char scsi3addr[], u16 bmic_device_index,
3397 		struct bmic_identify_physical_device *buf, size_t bufsize)
3398 {
3399 	int rc = IO_OK;
3400 	struct CommandList *c;
3401 	struct ErrorInfo *ei;
3402 
3403 	c = cmd_alloc(h);
3404 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3405 		0, RAID_CTLR_LUNID, TYPE_CMD);
3406 	if (rc)
3407 		goto out;
3408 
3409 	c->Request.CDB[2] = bmic_device_index & 0xff;
3410 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3411 
3412 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3413 						NO_TIMEOUT);
3414 	ei = c->err_info;
3415 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3416 		hpsa_scsi_interpret_error(h, c);
3417 		rc = -1;
3418 	}
3419 out:
3420 	cmd_free(h, c);
3421 
3422 	return rc;
3423 }
3424 
3425 /*
3426  * get enclosure information
3427  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3428  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3429  * Uses id_physical_device to determine the box_index.
3430  */
3431 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3432 			unsigned char *scsi3addr,
3433 			struct ReportExtendedLUNdata *rlep, int rle_index,
3434 			struct hpsa_scsi_dev_t *encl_dev)
3435 {
3436 	int rc = -1;
3437 	struct CommandList *c = NULL;
3438 	struct ErrorInfo *ei = NULL;
3439 	struct bmic_sense_storage_box_params *bssbp = NULL;
3440 	struct bmic_identify_physical_device *id_phys = NULL;
3441 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3442 	u16 bmic_device_index = 0;
3443 
3444 	encl_dev->eli =
3445 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3446 
3447 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3448 
3449 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3450 		rc = IO_OK;
3451 		goto out;
3452 	}
3453 
3454 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3455 		rc = IO_OK;
3456 		goto out;
3457 	}
3458 
3459 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3460 	if (!bssbp)
3461 		goto out;
3462 
3463 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3464 	if (!id_phys)
3465 		goto out;
3466 
3467 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3468 						id_phys, sizeof(*id_phys));
3469 	if (rc) {
3470 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3471 			__func__, encl_dev->external, bmic_device_index);
3472 		goto out;
3473 	}
3474 
3475 	c = cmd_alloc(h);
3476 
3477 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3478 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3479 
3480 	if (rc)
3481 		goto out;
3482 
3483 	if (id_phys->phys_connector[1] == 'E')
3484 		c->Request.CDB[5] = id_phys->box_index;
3485 	else
3486 		c->Request.CDB[5] = 0;
3487 
3488 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3489 						NO_TIMEOUT);
3490 	if (rc)
3491 		goto out;
3492 
3493 	ei = c->err_info;
3494 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3495 		rc = -1;
3496 		goto out;
3497 	}
3498 
3499 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3500 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3501 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3502 
3503 	rc = IO_OK;
3504 out:
3505 	kfree(bssbp);
3506 	kfree(id_phys);
3507 
3508 	if (c)
3509 		cmd_free(h, c);
3510 
3511 	if (rc != IO_OK)
3512 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3513 			"Error, could not get enclosure information");
3514 }
3515 
3516 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3517 						unsigned char *scsi3addr)
3518 {
3519 	struct ReportExtendedLUNdata *physdev;
3520 	u32 nphysicals;
3521 	u64 sa = 0;
3522 	int i;
3523 
3524 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3525 	if (!physdev)
3526 		return 0;
3527 
3528 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3529 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3530 		kfree(physdev);
3531 		return 0;
3532 	}
3533 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3534 
3535 	for (i = 0; i < nphysicals; i++)
3536 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3537 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3538 			break;
3539 		}
3540 
3541 	kfree(physdev);
3542 
3543 	return sa;
3544 }
3545 
3546 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3547 					struct hpsa_scsi_dev_t *dev)
3548 {
3549 	int rc;
3550 	u64 sa = 0;
3551 
3552 	if (is_hba_lunid(scsi3addr)) {
3553 		struct bmic_sense_subsystem_info *ssi;
3554 
3555 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3556 		if (!ssi)
3557 			return;
3558 
3559 		rc = hpsa_bmic_sense_subsystem_information(h,
3560 					scsi3addr, 0, ssi, sizeof(*ssi));
3561 		if (rc == 0) {
3562 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3563 			h->sas_address = sa;
3564 		}
3565 
3566 		kfree(ssi);
3567 	} else
3568 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3569 
3570 	dev->sas_address = sa;
3571 }
3572 
3573 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3574 	struct ReportExtendedLUNdata *physdev)
3575 {
3576 	u32 nphysicals;
3577 	int i;
3578 
3579 	if (h->discovery_polling)
3580 		return;
3581 
3582 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3583 
3584 	for (i = 0; i < nphysicals; i++) {
3585 		if (physdev->LUN[i].device_type ==
3586 			BMIC_DEVICE_TYPE_CONTROLLER
3587 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3588 			dev_info(&h->pdev->dev,
3589 				"External controller present, activate discovery polling and disable rld caching\n");
3590 			hpsa_disable_rld_caching(h);
3591 			h->discovery_polling = 1;
3592 			break;
3593 		}
3594 	}
3595 }
3596 
3597 /* Get a device id from inquiry page 0x83 */
3598 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3599 	unsigned char scsi3addr[], u8 page)
3600 {
3601 	int rc;
3602 	int i;
3603 	int pages;
3604 	unsigned char *buf, bufsize;
3605 
3606 	buf = kzalloc(256, GFP_KERNEL);
3607 	if (!buf)
3608 		return false;
3609 
3610 	/* Get the size of the page list first */
3611 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3612 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3613 				buf, HPSA_VPD_HEADER_SZ);
3614 	if (rc != 0)
3615 		goto exit_unsupported;
3616 	pages = buf[3];
3617 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3618 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3619 	else
3620 		bufsize = 255;
3621 
3622 	/* Get the whole VPD page list */
3623 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3624 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3625 				buf, bufsize);
3626 	if (rc != 0)
3627 		goto exit_unsupported;
3628 
3629 	pages = buf[3];
3630 	for (i = 1; i <= pages; i++)
3631 		if (buf[3 + i] == page)
3632 			goto exit_supported;
3633 exit_unsupported:
3634 	kfree(buf);
3635 	return false;
3636 exit_supported:
3637 	kfree(buf);
3638 	return true;
3639 }
3640 
3641 /*
3642  * Called during a scan operation.
3643  * Sets ioaccel status on the new device list, not the existing device list
3644  *
3645  * The device list used during I/O will be updated later in
3646  * adjust_hpsa_scsi_table.
3647  */
3648 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3649 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3650 {
3651 	int rc;
3652 	unsigned char *buf;
3653 	u8 ioaccel_status;
3654 
3655 	this_device->offload_config = 0;
3656 	this_device->offload_enabled = 0;
3657 	this_device->offload_to_be_enabled = 0;
3658 
3659 	buf = kzalloc(64, GFP_KERNEL);
3660 	if (!buf)
3661 		return;
3662 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3663 		goto out;
3664 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3665 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3666 	if (rc != 0)
3667 		goto out;
3668 
3669 #define IOACCEL_STATUS_BYTE 4
3670 #define OFFLOAD_CONFIGURED_BIT 0x01
3671 #define OFFLOAD_ENABLED_BIT 0x02
3672 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3673 	this_device->offload_config =
3674 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3675 	if (this_device->offload_config) {
3676 		this_device->offload_to_be_enabled =
3677 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3678 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3679 			this_device->offload_to_be_enabled = 0;
3680 	}
3681 
3682 out:
3683 	kfree(buf);
3684 	return;
3685 }
3686 
3687 /* Get the device id from inquiry page 0x83 */
3688 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3689 	unsigned char *device_id, int index, int buflen)
3690 {
3691 	int rc;
3692 	unsigned char *buf;
3693 
3694 	/* Does controller have VPD for device id? */
3695 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3696 		return 1; /* not supported */
3697 
3698 	buf = kzalloc(64, GFP_KERNEL);
3699 	if (!buf)
3700 		return -ENOMEM;
3701 
3702 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3703 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3704 	if (rc == 0) {
3705 		if (buflen > 16)
3706 			buflen = 16;
3707 		memcpy(device_id, &buf[8], buflen);
3708 	}
3709 
3710 	kfree(buf);
3711 
3712 	return rc; /*0 - got id,  otherwise, didn't */
3713 }
3714 
3715 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3716 		void *buf, int bufsize,
3717 		int extended_response)
3718 {
3719 	int rc = IO_OK;
3720 	struct CommandList *c;
3721 	unsigned char scsi3addr[8];
3722 	struct ErrorInfo *ei;
3723 
3724 	c = cmd_alloc(h);
3725 
3726 	/* address the controller */
3727 	memset(scsi3addr, 0, sizeof(scsi3addr));
3728 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3729 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3730 		rc = -EAGAIN;
3731 		goto out;
3732 	}
3733 	if (extended_response)
3734 		c->Request.CDB[1] = extended_response;
3735 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3736 			NO_TIMEOUT);
3737 	if (rc)
3738 		goto out;
3739 	ei = c->err_info;
3740 	if (ei->CommandStatus != 0 &&
3741 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3742 		hpsa_scsi_interpret_error(h, c);
3743 		rc = -EIO;
3744 	} else {
3745 		struct ReportLUNdata *rld = buf;
3746 
3747 		if (rld->extended_response_flag != extended_response) {
3748 			if (!h->legacy_board) {
3749 				dev_err(&h->pdev->dev,
3750 					"report luns requested format %u, got %u\n",
3751 					extended_response,
3752 					rld->extended_response_flag);
3753 				rc = -EINVAL;
3754 			} else
3755 				rc = -EOPNOTSUPP;
3756 		}
3757 	}
3758 out:
3759 	cmd_free(h, c);
3760 	return rc;
3761 }
3762 
3763 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3764 		struct ReportExtendedLUNdata *buf, int bufsize)
3765 {
3766 	int rc;
3767 	struct ReportLUNdata *lbuf;
3768 
3769 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3770 				      HPSA_REPORT_PHYS_EXTENDED);
3771 	if (!rc || rc != -EOPNOTSUPP)
3772 		return rc;
3773 
3774 	/* REPORT PHYS EXTENDED is not supported */
3775 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3776 	if (!lbuf)
3777 		return -ENOMEM;
3778 
3779 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3780 	if (!rc) {
3781 		int i;
3782 		u32 nphys;
3783 
3784 		/* Copy ReportLUNdata header */
3785 		memcpy(buf, lbuf, 8);
3786 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3787 		for (i = 0; i < nphys; i++)
3788 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3789 	}
3790 	kfree(lbuf);
3791 	return rc;
3792 }
3793 
3794 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3795 		struct ReportLUNdata *buf, int bufsize)
3796 {
3797 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3798 }
3799 
3800 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3801 	int bus, int target, int lun)
3802 {
3803 	device->bus = bus;
3804 	device->target = target;
3805 	device->lun = lun;
3806 }
3807 
3808 /* Use VPD inquiry to get details of volume status */
3809 static int hpsa_get_volume_status(struct ctlr_info *h,
3810 					unsigned char scsi3addr[])
3811 {
3812 	int rc;
3813 	int status;
3814 	int size;
3815 	unsigned char *buf;
3816 
3817 	buf = kzalloc(64, GFP_KERNEL);
3818 	if (!buf)
3819 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3820 
3821 	/* Does controller have VPD for logical volume status? */
3822 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3823 		goto exit_failed;
3824 
3825 	/* Get the size of the VPD return buffer */
3826 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3827 					buf, HPSA_VPD_HEADER_SZ);
3828 	if (rc != 0)
3829 		goto exit_failed;
3830 	size = buf[3];
3831 
3832 	/* Now get the whole VPD buffer */
3833 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3834 					buf, size + HPSA_VPD_HEADER_SZ);
3835 	if (rc != 0)
3836 		goto exit_failed;
3837 	status = buf[4]; /* status byte */
3838 
3839 	kfree(buf);
3840 	return status;
3841 exit_failed:
3842 	kfree(buf);
3843 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3844 }
3845 
3846 /* Determine offline status of a volume.
3847  * Return either:
3848  *  0 (not offline)
3849  *  0xff (offline for unknown reasons)
3850  *  # (integer code indicating one of several NOT READY states
3851  *     describing why a volume is to be kept offline)
3852  */
3853 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3854 					unsigned char scsi3addr[])
3855 {
3856 	struct CommandList *c;
3857 	unsigned char *sense;
3858 	u8 sense_key, asc, ascq;
3859 	int sense_len;
3860 	int rc, ldstat = 0;
3861 	u16 cmd_status;
3862 	u8 scsi_status;
3863 #define ASC_LUN_NOT_READY 0x04
3864 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3865 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3866 
3867 	c = cmd_alloc(h);
3868 
3869 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3870 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3871 					NO_TIMEOUT);
3872 	if (rc) {
3873 		cmd_free(h, c);
3874 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3875 	}
3876 	sense = c->err_info->SenseInfo;
3877 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3878 		sense_len = sizeof(c->err_info->SenseInfo);
3879 	else
3880 		sense_len = c->err_info->SenseLen;
3881 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3882 	cmd_status = c->err_info->CommandStatus;
3883 	scsi_status = c->err_info->ScsiStatus;
3884 	cmd_free(h, c);
3885 
3886 	/* Determine the reason for not ready state */
3887 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3888 
3889 	/* Keep volume offline in certain cases: */
3890 	switch (ldstat) {
3891 	case HPSA_LV_FAILED:
3892 	case HPSA_LV_UNDERGOING_ERASE:
3893 	case HPSA_LV_NOT_AVAILABLE:
3894 	case HPSA_LV_UNDERGOING_RPI:
3895 	case HPSA_LV_PENDING_RPI:
3896 	case HPSA_LV_ENCRYPTED_NO_KEY:
3897 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3898 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3899 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3900 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3901 		return ldstat;
3902 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3903 		/* If VPD status page isn't available,
3904 		 * use ASC/ASCQ to determine state
3905 		 */
3906 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3907 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3908 			return ldstat;
3909 		break;
3910 	default:
3911 		break;
3912 	}
3913 	return HPSA_LV_OK;
3914 }
3915 
3916 static int hpsa_update_device_info(struct ctlr_info *h,
3917 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3918 	unsigned char *is_OBDR_device)
3919 {
3920 
3921 #define OBDR_SIG_OFFSET 43
3922 #define OBDR_TAPE_SIG "$DR-10"
3923 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3924 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3925 
3926 	unsigned char *inq_buff;
3927 	unsigned char *obdr_sig;
3928 	int rc = 0;
3929 
3930 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3931 	if (!inq_buff) {
3932 		rc = -ENOMEM;
3933 		goto bail_out;
3934 	}
3935 
3936 	/* Do an inquiry to the device to see what it is. */
3937 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3938 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3939 		dev_err(&h->pdev->dev,
3940 			"%s: inquiry failed, device will be skipped.\n",
3941 			__func__);
3942 		rc = HPSA_INQUIRY_FAILED;
3943 		goto bail_out;
3944 	}
3945 
3946 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3947 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3948 
3949 	this_device->devtype = (inq_buff[0] & 0x1f);
3950 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3951 	memcpy(this_device->vendor, &inq_buff[8],
3952 		sizeof(this_device->vendor));
3953 	memcpy(this_device->model, &inq_buff[16],
3954 		sizeof(this_device->model));
3955 	this_device->rev = inq_buff[2];
3956 	memset(this_device->device_id, 0,
3957 		sizeof(this_device->device_id));
3958 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3959 		sizeof(this_device->device_id)) < 0)
3960 		dev_err(&h->pdev->dev,
3961 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3962 			h->ctlr, __func__,
3963 			h->scsi_host->host_no,
3964 			this_device->target, this_device->lun,
3965 			scsi_device_type(this_device->devtype),
3966 			this_device->model);
3967 
3968 	if ((this_device->devtype == TYPE_DISK ||
3969 		this_device->devtype == TYPE_ZBC) &&
3970 		is_logical_dev_addr_mode(scsi3addr)) {
3971 		unsigned char volume_offline;
3972 
3973 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3974 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3975 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3976 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3977 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3978 		    h->legacy_board) {
3979 			/*
3980 			 * Legacy boards might not support volume status
3981 			 */
3982 			dev_info(&h->pdev->dev,
3983 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3984 				 this_device->target, this_device->lun);
3985 			volume_offline = 0;
3986 		}
3987 		this_device->volume_offline = volume_offline;
3988 		if (volume_offline == HPSA_LV_FAILED) {
3989 			rc = HPSA_LV_FAILED;
3990 			dev_err(&h->pdev->dev,
3991 				"%s: LV failed, device will be skipped.\n",
3992 				__func__);
3993 			goto bail_out;
3994 		}
3995 	} else {
3996 		this_device->raid_level = RAID_UNKNOWN;
3997 		this_device->offload_config = 0;
3998 		this_device->offload_enabled = 0;
3999 		this_device->offload_to_be_enabled = 0;
4000 		this_device->hba_ioaccel_enabled = 0;
4001 		this_device->volume_offline = 0;
4002 		this_device->queue_depth = h->nr_cmds;
4003 	}
4004 
4005 	if (this_device->external)
4006 		this_device->queue_depth = EXTERNAL_QD;
4007 
4008 	if (is_OBDR_device) {
4009 		/* See if this is a One-Button-Disaster-Recovery device
4010 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4011 		 */
4012 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4013 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4014 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4015 						OBDR_SIG_LEN) == 0);
4016 	}
4017 	kfree(inq_buff);
4018 	return 0;
4019 
4020 bail_out:
4021 	kfree(inq_buff);
4022 	return rc;
4023 }
4024 
4025 /*
4026  * Helper function to assign bus, target, lun mapping of devices.
4027  * Logical drive target and lun are assigned at this time, but
4028  * physical device lun and target assignment are deferred (assigned
4029  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4030 */
4031 static void figure_bus_target_lun(struct ctlr_info *h,
4032 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4033 {
4034 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4035 
4036 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4037 		/* physical device, target and lun filled in later */
4038 		if (is_hba_lunid(lunaddrbytes)) {
4039 			int bus = HPSA_HBA_BUS;
4040 
4041 			if (!device->rev)
4042 				bus = HPSA_LEGACY_HBA_BUS;
4043 			hpsa_set_bus_target_lun(device,
4044 					bus, 0, lunid & 0x3fff);
4045 		} else
4046 			/* defer target, lun assignment for physical devices */
4047 			hpsa_set_bus_target_lun(device,
4048 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4049 		return;
4050 	}
4051 	/* It's a logical device */
4052 	if (device->external) {
4053 		hpsa_set_bus_target_lun(device,
4054 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4055 			lunid & 0x00ff);
4056 		return;
4057 	}
4058 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4059 				0, lunid & 0x3fff);
4060 }
4061 
4062 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4063 	int i, int nphysicals, int nlocal_logicals)
4064 {
4065 	/* In report logicals, local logicals are listed first,
4066 	* then any externals.
4067 	*/
4068 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4069 
4070 	if (i == raid_ctlr_position)
4071 		return 0;
4072 
4073 	if (i < logicals_start)
4074 		return 0;
4075 
4076 	/* i is in logicals range, but still within local logicals */
4077 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4078 		return 0;
4079 
4080 	return 1; /* it's an external lun */
4081 }
4082 
4083 /*
4084  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4085  * logdev.  The number of luns in physdev and logdev are returned in
4086  * *nphysicals and *nlogicals, respectively.
4087  * Returns 0 on success, -1 otherwise.
4088  */
4089 static int hpsa_gather_lun_info(struct ctlr_info *h,
4090 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4091 	struct ReportLUNdata *logdev, u32 *nlogicals)
4092 {
4093 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4094 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4095 		return -1;
4096 	}
4097 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4098 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4099 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4100 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4101 		*nphysicals = HPSA_MAX_PHYS_LUN;
4102 	}
4103 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4104 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4105 		return -1;
4106 	}
4107 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4108 	/* Reject Logicals in excess of our max capability. */
4109 	if (*nlogicals > HPSA_MAX_LUN) {
4110 		dev_warn(&h->pdev->dev,
4111 			"maximum logical LUNs (%d) exceeded.  "
4112 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4113 			*nlogicals - HPSA_MAX_LUN);
4114 		*nlogicals = HPSA_MAX_LUN;
4115 	}
4116 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4117 		dev_warn(&h->pdev->dev,
4118 			"maximum logical + physical LUNs (%d) exceeded. "
4119 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4120 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4121 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4122 	}
4123 	return 0;
4124 }
4125 
4126 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4127 	int i, int nphysicals, int nlogicals,
4128 	struct ReportExtendedLUNdata *physdev_list,
4129 	struct ReportLUNdata *logdev_list)
4130 {
4131 	/* Helper function, figure out where the LUN ID info is coming from
4132 	 * given index i, lists of physical and logical devices, where in
4133 	 * the list the raid controller is supposed to appear (first or last)
4134 	 */
4135 
4136 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4137 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4138 
4139 	if (i == raid_ctlr_position)
4140 		return RAID_CTLR_LUNID;
4141 
4142 	if (i < logicals_start)
4143 		return &physdev_list->LUN[i -
4144 				(raid_ctlr_position == 0)].lunid[0];
4145 
4146 	if (i < last_device)
4147 		return &logdev_list->LUN[i - nphysicals -
4148 			(raid_ctlr_position == 0)][0];
4149 	BUG();
4150 	return NULL;
4151 }
4152 
4153 /* get physical drive ioaccel handle and queue depth */
4154 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4155 		struct hpsa_scsi_dev_t *dev,
4156 		struct ReportExtendedLUNdata *rlep, int rle_index,
4157 		struct bmic_identify_physical_device *id_phys)
4158 {
4159 	int rc;
4160 	struct ext_report_lun_entry *rle;
4161 
4162 	rle = &rlep->LUN[rle_index];
4163 
4164 	dev->ioaccel_handle = rle->ioaccel_handle;
4165 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4166 		dev->hba_ioaccel_enabled = 1;
4167 	memset(id_phys, 0, sizeof(*id_phys));
4168 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4169 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4170 			sizeof(*id_phys));
4171 	if (!rc)
4172 		/* Reserve space for FW operations */
4173 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4174 #define DRIVE_QUEUE_DEPTH 7
4175 		dev->queue_depth =
4176 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4177 				DRIVE_CMDS_RESERVED_FOR_FW;
4178 	else
4179 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4180 }
4181 
4182 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4183 	struct ReportExtendedLUNdata *rlep, int rle_index,
4184 	struct bmic_identify_physical_device *id_phys)
4185 {
4186 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4187 
4188 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4189 		this_device->hba_ioaccel_enabled = 1;
4190 
4191 	memcpy(&this_device->active_path_index,
4192 		&id_phys->active_path_number,
4193 		sizeof(this_device->active_path_index));
4194 	memcpy(&this_device->path_map,
4195 		&id_phys->redundant_path_present_map,
4196 		sizeof(this_device->path_map));
4197 	memcpy(&this_device->box,
4198 		&id_phys->alternate_paths_phys_box_on_port,
4199 		sizeof(this_device->box));
4200 	memcpy(&this_device->phys_connector,
4201 		&id_phys->alternate_paths_phys_connector,
4202 		sizeof(this_device->phys_connector));
4203 	memcpy(&this_device->bay,
4204 		&id_phys->phys_bay_in_box,
4205 		sizeof(this_device->bay));
4206 }
4207 
4208 /* get number of local logical disks. */
4209 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4210 	struct bmic_identify_controller *id_ctlr,
4211 	u32 *nlocals)
4212 {
4213 	int rc;
4214 
4215 	if (!id_ctlr) {
4216 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4217 			__func__);
4218 		return -ENOMEM;
4219 	}
4220 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4221 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4222 	if (!rc)
4223 		if (id_ctlr->configured_logical_drive_count < 255)
4224 			*nlocals = id_ctlr->configured_logical_drive_count;
4225 		else
4226 			*nlocals = le16_to_cpu(
4227 					id_ctlr->extended_logical_unit_count);
4228 	else
4229 		*nlocals = -1;
4230 	return rc;
4231 }
4232 
4233 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4234 {
4235 	struct bmic_identify_physical_device *id_phys;
4236 	bool is_spare = false;
4237 	int rc;
4238 
4239 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4240 	if (!id_phys)
4241 		return false;
4242 
4243 	rc = hpsa_bmic_id_physical_device(h,
4244 					lunaddrbytes,
4245 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4246 					id_phys, sizeof(*id_phys));
4247 	if (rc == 0)
4248 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4249 
4250 	kfree(id_phys);
4251 	return is_spare;
4252 }
4253 
4254 #define RPL_DEV_FLAG_NON_DISK                           0x1
4255 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4257 
4258 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4259 
4260 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4261 				struct ext_report_lun_entry *rle)
4262 {
4263 	u8 device_flags;
4264 	u8 device_type;
4265 
4266 	if (!MASKED_DEVICE(lunaddrbytes))
4267 		return false;
4268 
4269 	device_flags = rle->device_flags;
4270 	device_type = rle->device_type;
4271 
4272 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4273 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4274 			return false;
4275 		return true;
4276 	}
4277 
4278 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4279 		return false;
4280 
4281 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4282 		return false;
4283 
4284 	/*
4285 	 * Spares may be spun down, we do not want to
4286 	 * do an Inquiry to a RAID set spare drive as
4287 	 * that would have them spun up, that is a
4288 	 * performance hit because I/O to the RAID device
4289 	 * stops while the spin up occurs which can take
4290 	 * over 50 seconds.
4291 	 */
4292 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4293 		return true;
4294 
4295 	return false;
4296 }
4297 
4298 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4299 {
4300 	/* the idea here is we could get notified
4301 	 * that some devices have changed, so we do a report
4302 	 * physical luns and report logical luns cmd, and adjust
4303 	 * our list of devices accordingly.
4304 	 *
4305 	 * The scsi3addr's of devices won't change so long as the
4306 	 * adapter is not reset.  That means we can rescan and
4307 	 * tell which devices we already know about, vs. new
4308 	 * devices, vs.  disappearing devices.
4309 	 */
4310 	struct ReportExtendedLUNdata *physdev_list = NULL;
4311 	struct ReportLUNdata *logdev_list = NULL;
4312 	struct bmic_identify_physical_device *id_phys = NULL;
4313 	struct bmic_identify_controller *id_ctlr = NULL;
4314 	u32 nphysicals = 0;
4315 	u32 nlogicals = 0;
4316 	u32 nlocal_logicals = 0;
4317 	u32 ndev_allocated = 0;
4318 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4319 	int ncurrent = 0;
4320 	int i, n_ext_target_devs, ndevs_to_allocate;
4321 	int raid_ctlr_position;
4322 	bool physical_device;
4323 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4324 
4325 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4326 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4327 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4328 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4329 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4330 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4331 
4332 	if (!currentsd || !physdev_list || !logdev_list ||
4333 		!tmpdevice || !id_phys || !id_ctlr) {
4334 		dev_err(&h->pdev->dev, "out of memory\n");
4335 		goto out;
4336 	}
4337 	memset(lunzerobits, 0, sizeof(lunzerobits));
4338 
4339 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4340 
4341 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4342 			logdev_list, &nlogicals)) {
4343 		h->drv_req_rescan = 1;
4344 		goto out;
4345 	}
4346 
4347 	/* Set number of local logicals (non PTRAID) */
4348 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4349 		dev_warn(&h->pdev->dev,
4350 			"%s: Can't determine number of local logical devices.\n",
4351 			__func__);
4352 	}
4353 
4354 	/* We might see up to the maximum number of logical and physical disks
4355 	 * plus external target devices, and a device for the local RAID
4356 	 * controller.
4357 	 */
4358 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4359 
4360 	hpsa_ext_ctrl_present(h, physdev_list);
4361 
4362 	/* Allocate the per device structures */
4363 	for (i = 0; i < ndevs_to_allocate; i++) {
4364 		if (i >= HPSA_MAX_DEVICES) {
4365 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4366 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4367 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4368 			break;
4369 		}
4370 
4371 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4372 		if (!currentsd[i]) {
4373 			h->drv_req_rescan = 1;
4374 			goto out;
4375 		}
4376 		ndev_allocated++;
4377 	}
4378 
4379 	if (is_scsi_rev_5(h))
4380 		raid_ctlr_position = 0;
4381 	else
4382 		raid_ctlr_position = nphysicals + nlogicals;
4383 
4384 	/* adjust our table of devices */
4385 	n_ext_target_devs = 0;
4386 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4387 		u8 *lunaddrbytes, is_OBDR = 0;
4388 		int rc = 0;
4389 		int phys_dev_index = i - (raid_ctlr_position == 0);
4390 		bool skip_device = false;
4391 
4392 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4393 
4394 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4395 
4396 		/* Figure out where the LUN ID info is coming from */
4397 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4398 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4399 
4400 		/* Determine if this is a lun from an external target array */
4401 		tmpdevice->external =
4402 			figure_external_status(h, raid_ctlr_position, i,
4403 						nphysicals, nlocal_logicals);
4404 
4405 		/*
4406 		 * Skip over some devices such as a spare.
4407 		 */
4408 		if (!tmpdevice->external && physical_device) {
4409 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4410 					&physdev_list->LUN[phys_dev_index]);
4411 			if (skip_device)
4412 				continue;
4413 		}
4414 
4415 		/* Get device type, vendor, model, device id, raid_map */
4416 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4417 							&is_OBDR);
4418 		if (rc == -ENOMEM) {
4419 			dev_warn(&h->pdev->dev,
4420 				"Out of memory, rescan deferred.\n");
4421 			h->drv_req_rescan = 1;
4422 			goto out;
4423 		}
4424 		if (rc) {
4425 			h->drv_req_rescan = 1;
4426 			continue;
4427 		}
4428 
4429 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4430 		this_device = currentsd[ncurrent];
4431 
4432 		*this_device = *tmpdevice;
4433 		this_device->physical_device = physical_device;
4434 
4435 		/*
4436 		 * Expose all devices except for physical devices that
4437 		 * are masked.
4438 		 */
4439 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4440 			this_device->expose_device = 0;
4441 		else
4442 			this_device->expose_device = 1;
4443 
4444 
4445 		/*
4446 		 * Get the SAS address for physical devices that are exposed.
4447 		 */
4448 		if (this_device->physical_device && this_device->expose_device)
4449 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4450 
4451 		switch (this_device->devtype) {
4452 		case TYPE_ROM:
4453 			/* We don't *really* support actual CD-ROM devices,
4454 			 * just "One Button Disaster Recovery" tape drive
4455 			 * which temporarily pretends to be a CD-ROM drive.
4456 			 * So we check that the device is really an OBDR tape
4457 			 * device by checking for "$DR-10" in bytes 43-48 of
4458 			 * the inquiry data.
4459 			 */
4460 			if (is_OBDR)
4461 				ncurrent++;
4462 			break;
4463 		case TYPE_DISK:
4464 		case TYPE_ZBC:
4465 			if (this_device->physical_device) {
4466 				/* The disk is in HBA mode. */
4467 				/* Never use RAID mapper in HBA mode. */
4468 				this_device->offload_enabled = 0;
4469 				hpsa_get_ioaccel_drive_info(h, this_device,
4470 					physdev_list, phys_dev_index, id_phys);
4471 				hpsa_get_path_info(this_device,
4472 					physdev_list, phys_dev_index, id_phys);
4473 			}
4474 			ncurrent++;
4475 			break;
4476 		case TYPE_TAPE:
4477 		case TYPE_MEDIUM_CHANGER:
4478 			ncurrent++;
4479 			break;
4480 		case TYPE_ENCLOSURE:
4481 			if (!this_device->external)
4482 				hpsa_get_enclosure_info(h, lunaddrbytes,
4483 						physdev_list, phys_dev_index,
4484 						this_device);
4485 			ncurrent++;
4486 			break;
4487 		case TYPE_RAID:
4488 			/* Only present the Smartarray HBA as a RAID controller.
4489 			 * If it's a RAID controller other than the HBA itself
4490 			 * (an external RAID controller, MSA500 or similar)
4491 			 * don't present it.
4492 			 */
4493 			if (!is_hba_lunid(lunaddrbytes))
4494 				break;
4495 			ncurrent++;
4496 			break;
4497 		default:
4498 			break;
4499 		}
4500 		if (ncurrent >= HPSA_MAX_DEVICES)
4501 			break;
4502 	}
4503 
4504 	if (h->sas_host == NULL) {
4505 		int rc = 0;
4506 
4507 		rc = hpsa_add_sas_host(h);
4508 		if (rc) {
4509 			dev_warn(&h->pdev->dev,
4510 				"Could not add sas host %d\n", rc);
4511 			goto out;
4512 		}
4513 	}
4514 
4515 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4516 out:
4517 	kfree(tmpdevice);
4518 	for (i = 0; i < ndev_allocated; i++)
4519 		kfree(currentsd[i]);
4520 	kfree(currentsd);
4521 	kfree(physdev_list);
4522 	kfree(logdev_list);
4523 	kfree(id_ctlr);
4524 	kfree(id_phys);
4525 }
4526 
4527 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4528 				   struct scatterlist *sg)
4529 {
4530 	u64 addr64 = (u64) sg_dma_address(sg);
4531 	unsigned int len = sg_dma_len(sg);
4532 
4533 	desc->Addr = cpu_to_le64(addr64);
4534 	desc->Len = cpu_to_le32(len);
4535 	desc->Ext = 0;
4536 }
4537 
4538 /*
4539  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4540  * dma mapping  and fills in the scatter gather entries of the
4541  * hpsa command, cp.
4542  */
4543 static int hpsa_scatter_gather(struct ctlr_info *h,
4544 		struct CommandList *cp,
4545 		struct scsi_cmnd *cmd)
4546 {
4547 	struct scatterlist *sg;
4548 	int use_sg, i, sg_limit, chained, last_sg;
4549 	struct SGDescriptor *curr_sg;
4550 
4551 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4552 
4553 	use_sg = scsi_dma_map(cmd);
4554 	if (use_sg < 0)
4555 		return use_sg;
4556 
4557 	if (!use_sg)
4558 		goto sglist_finished;
4559 
4560 	/*
4561 	 * If the number of entries is greater than the max for a single list,
4562 	 * then we have a chained list; we will set up all but one entry in the
4563 	 * first list (the last entry is saved for link information);
4564 	 * otherwise, we don't have a chained list and we'll set up at each of
4565 	 * the entries in the one list.
4566 	 */
4567 	curr_sg = cp->SG;
4568 	chained = use_sg > h->max_cmd_sg_entries;
4569 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4570 	last_sg = scsi_sg_count(cmd) - 1;
4571 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4572 		hpsa_set_sg_descriptor(curr_sg, sg);
4573 		curr_sg++;
4574 	}
4575 
4576 	if (chained) {
4577 		/*
4578 		 * Continue with the chained list.  Set curr_sg to the chained
4579 		 * list.  Modify the limit to the total count less the entries
4580 		 * we've already set up.  Resume the scan at the list entry
4581 		 * where the previous loop left off.
4582 		 */
4583 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4584 		sg_limit = use_sg - sg_limit;
4585 		for_each_sg(sg, sg, sg_limit, i) {
4586 			hpsa_set_sg_descriptor(curr_sg, sg);
4587 			curr_sg++;
4588 		}
4589 	}
4590 
4591 	/* Back the pointer up to the last entry and mark it as "last". */
4592 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4593 
4594 	if (use_sg + chained > h->maxSG)
4595 		h->maxSG = use_sg + chained;
4596 
4597 	if (chained) {
4598 		cp->Header.SGList = h->max_cmd_sg_entries;
4599 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4600 		if (hpsa_map_sg_chain_block(h, cp)) {
4601 			scsi_dma_unmap(cmd);
4602 			return -1;
4603 		}
4604 		return 0;
4605 	}
4606 
4607 sglist_finished:
4608 
4609 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4610 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4611 	return 0;
4612 }
4613 
4614 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4615 						u8 *cdb, int cdb_len,
4616 						const char *func)
4617 {
4618 	dev_warn(&h->pdev->dev,
4619 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4620 		 func, cdb_len, cdb);
4621 }
4622 
4623 #define IO_ACCEL_INELIGIBLE 1
4624 /* zero-length transfers trigger hardware errors. */
4625 static bool is_zero_length_transfer(u8 *cdb)
4626 {
4627 	u32 block_cnt;
4628 
4629 	/* Block zero-length transfer sizes on certain commands. */
4630 	switch (cdb[0]) {
4631 	case READ_10:
4632 	case WRITE_10:
4633 	case VERIFY:		/* 0x2F */
4634 	case WRITE_VERIFY:	/* 0x2E */
4635 		block_cnt = get_unaligned_be16(&cdb[7]);
4636 		break;
4637 	case READ_12:
4638 	case WRITE_12:
4639 	case VERIFY_12: /* 0xAF */
4640 	case WRITE_VERIFY_12:	/* 0xAE */
4641 		block_cnt = get_unaligned_be32(&cdb[6]);
4642 		break;
4643 	case READ_16:
4644 	case WRITE_16:
4645 	case VERIFY_16:		/* 0x8F */
4646 		block_cnt = get_unaligned_be32(&cdb[10]);
4647 		break;
4648 	default:
4649 		return false;
4650 	}
4651 
4652 	return block_cnt == 0;
4653 }
4654 
4655 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4656 {
4657 	int is_write = 0;
4658 	u32 block;
4659 	u32 block_cnt;
4660 
4661 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4662 	switch (cdb[0]) {
4663 	case WRITE_6:
4664 	case WRITE_12:
4665 		is_write = 1;
4666 		/* fall through */
4667 	case READ_6:
4668 	case READ_12:
4669 		if (*cdb_len == 6) {
4670 			block = (((cdb[1] & 0x1F) << 16) |
4671 				(cdb[2] << 8) |
4672 				cdb[3]);
4673 			block_cnt = cdb[4];
4674 			if (block_cnt == 0)
4675 				block_cnt = 256;
4676 		} else {
4677 			BUG_ON(*cdb_len != 12);
4678 			block = get_unaligned_be32(&cdb[2]);
4679 			block_cnt = get_unaligned_be32(&cdb[6]);
4680 		}
4681 		if (block_cnt > 0xffff)
4682 			return IO_ACCEL_INELIGIBLE;
4683 
4684 		cdb[0] = is_write ? WRITE_10 : READ_10;
4685 		cdb[1] = 0;
4686 		cdb[2] = (u8) (block >> 24);
4687 		cdb[3] = (u8) (block >> 16);
4688 		cdb[4] = (u8) (block >> 8);
4689 		cdb[5] = (u8) (block);
4690 		cdb[6] = 0;
4691 		cdb[7] = (u8) (block_cnt >> 8);
4692 		cdb[8] = (u8) (block_cnt);
4693 		cdb[9] = 0;
4694 		*cdb_len = 10;
4695 		break;
4696 	}
4697 	return 0;
4698 }
4699 
4700 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4701 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4702 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4703 {
4704 	struct scsi_cmnd *cmd = c->scsi_cmd;
4705 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4706 	unsigned int len;
4707 	unsigned int total_len = 0;
4708 	struct scatterlist *sg;
4709 	u64 addr64;
4710 	int use_sg, i;
4711 	struct SGDescriptor *curr_sg;
4712 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4713 
4714 	/* TODO: implement chaining support */
4715 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4716 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4717 		return IO_ACCEL_INELIGIBLE;
4718 	}
4719 
4720 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4721 
4722 	if (is_zero_length_transfer(cdb)) {
4723 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4724 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4725 		return IO_ACCEL_INELIGIBLE;
4726 	}
4727 
4728 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4729 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4730 		return IO_ACCEL_INELIGIBLE;
4731 	}
4732 
4733 	c->cmd_type = CMD_IOACCEL1;
4734 
4735 	/* Adjust the DMA address to point to the accelerated command buffer */
4736 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4737 				(c->cmdindex * sizeof(*cp));
4738 	BUG_ON(c->busaddr & 0x0000007F);
4739 
4740 	use_sg = scsi_dma_map(cmd);
4741 	if (use_sg < 0) {
4742 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4743 		return use_sg;
4744 	}
4745 
4746 	if (use_sg) {
4747 		curr_sg = cp->SG;
4748 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4749 			addr64 = (u64) sg_dma_address(sg);
4750 			len  = sg_dma_len(sg);
4751 			total_len += len;
4752 			curr_sg->Addr = cpu_to_le64(addr64);
4753 			curr_sg->Len = cpu_to_le32(len);
4754 			curr_sg->Ext = cpu_to_le32(0);
4755 			curr_sg++;
4756 		}
4757 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4758 
4759 		switch (cmd->sc_data_direction) {
4760 		case DMA_TO_DEVICE:
4761 			control |= IOACCEL1_CONTROL_DATA_OUT;
4762 			break;
4763 		case DMA_FROM_DEVICE:
4764 			control |= IOACCEL1_CONTROL_DATA_IN;
4765 			break;
4766 		case DMA_NONE:
4767 			control |= IOACCEL1_CONTROL_NODATAXFER;
4768 			break;
4769 		default:
4770 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4771 			cmd->sc_data_direction);
4772 			BUG();
4773 			break;
4774 		}
4775 	} else {
4776 		control |= IOACCEL1_CONTROL_NODATAXFER;
4777 	}
4778 
4779 	c->Header.SGList = use_sg;
4780 	/* Fill out the command structure to submit */
4781 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4782 	cp->transfer_len = cpu_to_le32(total_len);
4783 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4784 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4785 	cp->control = cpu_to_le32(control);
4786 	memcpy(cp->CDB, cdb, cdb_len);
4787 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4788 	/* Tag was already set at init time. */
4789 	enqueue_cmd_and_start_io(h, c);
4790 	return 0;
4791 }
4792 
4793 /*
4794  * Queue a command directly to a device behind the controller using the
4795  * I/O accelerator path.
4796  */
4797 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4798 	struct CommandList *c)
4799 {
4800 	struct scsi_cmnd *cmd = c->scsi_cmd;
4801 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4802 
4803 	if (!dev)
4804 		return -1;
4805 
4806 	c->phys_disk = dev;
4807 
4808 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4809 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4810 }
4811 
4812 /*
4813  * Set encryption parameters for the ioaccel2 request
4814  */
4815 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4816 	struct CommandList *c, struct io_accel2_cmd *cp)
4817 {
4818 	struct scsi_cmnd *cmd = c->scsi_cmd;
4819 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4820 	struct raid_map_data *map = &dev->raid_map;
4821 	u64 first_block;
4822 
4823 	/* Are we doing encryption on this device */
4824 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4825 		return;
4826 	/* Set the data encryption key index. */
4827 	cp->dekindex = map->dekindex;
4828 
4829 	/* Set the encryption enable flag, encoded into direction field. */
4830 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4831 
4832 	/* Set encryption tweak values based on logical block address
4833 	 * If block size is 512, tweak value is LBA.
4834 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4835 	 */
4836 	switch (cmd->cmnd[0]) {
4837 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4838 	case READ_6:
4839 	case WRITE_6:
4840 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4841 				(cmd->cmnd[2] << 8) |
4842 				cmd->cmnd[3]);
4843 		break;
4844 	case WRITE_10:
4845 	case READ_10:
4846 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4847 	case WRITE_12:
4848 	case READ_12:
4849 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4850 		break;
4851 	case WRITE_16:
4852 	case READ_16:
4853 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4854 		break;
4855 	default:
4856 		dev_err(&h->pdev->dev,
4857 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4858 			__func__, cmd->cmnd[0]);
4859 		BUG();
4860 		break;
4861 	}
4862 
4863 	if (le32_to_cpu(map->volume_blk_size) != 512)
4864 		first_block = first_block *
4865 				le32_to_cpu(map->volume_blk_size)/512;
4866 
4867 	cp->tweak_lower = cpu_to_le32(first_block);
4868 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4869 }
4870 
4871 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4872 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4873 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4874 {
4875 	struct scsi_cmnd *cmd = c->scsi_cmd;
4876 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4877 	struct ioaccel2_sg_element *curr_sg;
4878 	int use_sg, i;
4879 	struct scatterlist *sg;
4880 	u64 addr64;
4881 	u32 len;
4882 	u32 total_len = 0;
4883 
4884 	if (!cmd->device)
4885 		return -1;
4886 
4887 	if (!cmd->device->hostdata)
4888 		return -1;
4889 
4890 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4891 
4892 	if (is_zero_length_transfer(cdb)) {
4893 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4894 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4895 		return IO_ACCEL_INELIGIBLE;
4896 	}
4897 
4898 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4899 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4900 		return IO_ACCEL_INELIGIBLE;
4901 	}
4902 
4903 	c->cmd_type = CMD_IOACCEL2;
4904 	/* Adjust the DMA address to point to the accelerated command buffer */
4905 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4906 				(c->cmdindex * sizeof(*cp));
4907 	BUG_ON(c->busaddr & 0x0000007F);
4908 
4909 	memset(cp, 0, sizeof(*cp));
4910 	cp->IU_type = IOACCEL2_IU_TYPE;
4911 
4912 	use_sg = scsi_dma_map(cmd);
4913 	if (use_sg < 0) {
4914 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4915 		return use_sg;
4916 	}
4917 
4918 	if (use_sg) {
4919 		curr_sg = cp->sg;
4920 		if (use_sg > h->ioaccel_maxsg) {
4921 			addr64 = le64_to_cpu(
4922 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4923 			curr_sg->address = cpu_to_le64(addr64);
4924 			curr_sg->length = 0;
4925 			curr_sg->reserved[0] = 0;
4926 			curr_sg->reserved[1] = 0;
4927 			curr_sg->reserved[2] = 0;
4928 			curr_sg->chain_indicator = 0x80;
4929 
4930 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4931 		}
4932 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4933 			addr64 = (u64) sg_dma_address(sg);
4934 			len  = sg_dma_len(sg);
4935 			total_len += len;
4936 			curr_sg->address = cpu_to_le64(addr64);
4937 			curr_sg->length = cpu_to_le32(len);
4938 			curr_sg->reserved[0] = 0;
4939 			curr_sg->reserved[1] = 0;
4940 			curr_sg->reserved[2] = 0;
4941 			curr_sg->chain_indicator = 0;
4942 			curr_sg++;
4943 		}
4944 
4945 		switch (cmd->sc_data_direction) {
4946 		case DMA_TO_DEVICE:
4947 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4948 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4949 			break;
4950 		case DMA_FROM_DEVICE:
4951 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4952 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4953 			break;
4954 		case DMA_NONE:
4955 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4956 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4957 			break;
4958 		default:
4959 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4960 				cmd->sc_data_direction);
4961 			BUG();
4962 			break;
4963 		}
4964 	} else {
4965 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4966 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4967 	}
4968 
4969 	/* Set encryption parameters, if necessary */
4970 	set_encrypt_ioaccel2(h, c, cp);
4971 
4972 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4973 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4974 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4975 
4976 	cp->data_len = cpu_to_le32(total_len);
4977 	cp->err_ptr = cpu_to_le64(c->busaddr +
4978 			offsetof(struct io_accel2_cmd, error_data));
4979 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4980 
4981 	/* fill in sg elements */
4982 	if (use_sg > h->ioaccel_maxsg) {
4983 		cp->sg_count = 1;
4984 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4985 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4986 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4987 			scsi_dma_unmap(cmd);
4988 			return -1;
4989 		}
4990 	} else
4991 		cp->sg_count = (u8) use_sg;
4992 
4993 	enqueue_cmd_and_start_io(h, c);
4994 	return 0;
4995 }
4996 
4997 /*
4998  * Queue a command to the correct I/O accelerator path.
4999  */
5000 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5001 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5002 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5003 {
5004 	if (!c->scsi_cmd->device)
5005 		return -1;
5006 
5007 	if (!c->scsi_cmd->device->hostdata)
5008 		return -1;
5009 
5010 	/* Try to honor the device's queue depth */
5011 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5012 					phys_disk->queue_depth) {
5013 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5014 		return IO_ACCEL_INELIGIBLE;
5015 	}
5016 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5017 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5018 						cdb, cdb_len, scsi3addr,
5019 						phys_disk);
5020 	else
5021 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5022 						cdb, cdb_len, scsi3addr,
5023 						phys_disk);
5024 }
5025 
5026 static void raid_map_helper(struct raid_map_data *map,
5027 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5028 {
5029 	if (offload_to_mirror == 0)  {
5030 		/* use physical disk in the first mirrored group. */
5031 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5032 		return;
5033 	}
5034 	do {
5035 		/* determine mirror group that *map_index indicates */
5036 		*current_group = *map_index /
5037 			le16_to_cpu(map->data_disks_per_row);
5038 		if (offload_to_mirror == *current_group)
5039 			continue;
5040 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5041 			/* select map index from next group */
5042 			*map_index += le16_to_cpu(map->data_disks_per_row);
5043 			(*current_group)++;
5044 		} else {
5045 			/* select map index from first group */
5046 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5047 			*current_group = 0;
5048 		}
5049 	} while (offload_to_mirror != *current_group);
5050 }
5051 
5052 /*
5053  * Attempt to perform offload RAID mapping for a logical volume I/O.
5054  */
5055 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5056 	struct CommandList *c)
5057 {
5058 	struct scsi_cmnd *cmd = c->scsi_cmd;
5059 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5060 	struct raid_map_data *map = &dev->raid_map;
5061 	struct raid_map_disk_data *dd = &map->data[0];
5062 	int is_write = 0;
5063 	u32 map_index;
5064 	u64 first_block, last_block;
5065 	u32 block_cnt;
5066 	u32 blocks_per_row;
5067 	u64 first_row, last_row;
5068 	u32 first_row_offset, last_row_offset;
5069 	u32 first_column, last_column;
5070 	u64 r0_first_row, r0_last_row;
5071 	u32 r5or6_blocks_per_row;
5072 	u64 r5or6_first_row, r5or6_last_row;
5073 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5074 	u32 r5or6_first_column, r5or6_last_column;
5075 	u32 total_disks_per_row;
5076 	u32 stripesize;
5077 	u32 first_group, last_group, current_group;
5078 	u32 map_row;
5079 	u32 disk_handle;
5080 	u64 disk_block;
5081 	u32 disk_block_cnt;
5082 	u8 cdb[16];
5083 	u8 cdb_len;
5084 	u16 strip_size;
5085 #if BITS_PER_LONG == 32
5086 	u64 tmpdiv;
5087 #endif
5088 	int offload_to_mirror;
5089 
5090 	if (!dev)
5091 		return -1;
5092 
5093 	/* check for valid opcode, get LBA and block count */
5094 	switch (cmd->cmnd[0]) {
5095 	case WRITE_6:
5096 		is_write = 1;
5097 		/* fall through */
5098 	case READ_6:
5099 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5100 				(cmd->cmnd[2] << 8) |
5101 				cmd->cmnd[3]);
5102 		block_cnt = cmd->cmnd[4];
5103 		if (block_cnt == 0)
5104 			block_cnt = 256;
5105 		break;
5106 	case WRITE_10:
5107 		is_write = 1;
5108 		/* fall through */
5109 	case READ_10:
5110 		first_block =
5111 			(((u64) cmd->cmnd[2]) << 24) |
5112 			(((u64) cmd->cmnd[3]) << 16) |
5113 			(((u64) cmd->cmnd[4]) << 8) |
5114 			cmd->cmnd[5];
5115 		block_cnt =
5116 			(((u32) cmd->cmnd[7]) << 8) |
5117 			cmd->cmnd[8];
5118 		break;
5119 	case WRITE_12:
5120 		is_write = 1;
5121 		/* fall through */
5122 	case READ_12:
5123 		first_block =
5124 			(((u64) cmd->cmnd[2]) << 24) |
5125 			(((u64) cmd->cmnd[3]) << 16) |
5126 			(((u64) cmd->cmnd[4]) << 8) |
5127 			cmd->cmnd[5];
5128 		block_cnt =
5129 			(((u32) cmd->cmnd[6]) << 24) |
5130 			(((u32) cmd->cmnd[7]) << 16) |
5131 			(((u32) cmd->cmnd[8]) << 8) |
5132 		cmd->cmnd[9];
5133 		break;
5134 	case WRITE_16:
5135 		is_write = 1;
5136 		/* fall through */
5137 	case READ_16:
5138 		first_block =
5139 			(((u64) cmd->cmnd[2]) << 56) |
5140 			(((u64) cmd->cmnd[3]) << 48) |
5141 			(((u64) cmd->cmnd[4]) << 40) |
5142 			(((u64) cmd->cmnd[5]) << 32) |
5143 			(((u64) cmd->cmnd[6]) << 24) |
5144 			(((u64) cmd->cmnd[7]) << 16) |
5145 			(((u64) cmd->cmnd[8]) << 8) |
5146 			cmd->cmnd[9];
5147 		block_cnt =
5148 			(((u32) cmd->cmnd[10]) << 24) |
5149 			(((u32) cmd->cmnd[11]) << 16) |
5150 			(((u32) cmd->cmnd[12]) << 8) |
5151 			cmd->cmnd[13];
5152 		break;
5153 	default:
5154 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5155 	}
5156 	last_block = first_block + block_cnt - 1;
5157 
5158 	/* check for write to non-RAID-0 */
5159 	if (is_write && dev->raid_level != 0)
5160 		return IO_ACCEL_INELIGIBLE;
5161 
5162 	/* check for invalid block or wraparound */
5163 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5164 		last_block < first_block)
5165 		return IO_ACCEL_INELIGIBLE;
5166 
5167 	/* calculate stripe information for the request */
5168 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5169 				le16_to_cpu(map->strip_size);
5170 	strip_size = le16_to_cpu(map->strip_size);
5171 #if BITS_PER_LONG == 32
5172 	tmpdiv = first_block;
5173 	(void) do_div(tmpdiv, blocks_per_row);
5174 	first_row = tmpdiv;
5175 	tmpdiv = last_block;
5176 	(void) do_div(tmpdiv, blocks_per_row);
5177 	last_row = tmpdiv;
5178 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5179 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5180 	tmpdiv = first_row_offset;
5181 	(void) do_div(tmpdiv, strip_size);
5182 	first_column = tmpdiv;
5183 	tmpdiv = last_row_offset;
5184 	(void) do_div(tmpdiv, strip_size);
5185 	last_column = tmpdiv;
5186 #else
5187 	first_row = first_block / blocks_per_row;
5188 	last_row = last_block / blocks_per_row;
5189 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5190 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5191 	first_column = first_row_offset / strip_size;
5192 	last_column = last_row_offset / strip_size;
5193 #endif
5194 
5195 	/* if this isn't a single row/column then give to the controller */
5196 	if ((first_row != last_row) || (first_column != last_column))
5197 		return IO_ACCEL_INELIGIBLE;
5198 
5199 	/* proceeding with driver mapping */
5200 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5201 				le16_to_cpu(map->metadata_disks_per_row);
5202 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5203 				le16_to_cpu(map->row_cnt);
5204 	map_index = (map_row * total_disks_per_row) + first_column;
5205 
5206 	switch (dev->raid_level) {
5207 	case HPSA_RAID_0:
5208 		break; /* nothing special to do */
5209 	case HPSA_RAID_1:
5210 		/* Handles load balance across RAID 1 members.
5211 		 * (2-drive R1 and R10 with even # of drives.)
5212 		 * Appropriate for SSDs, not optimal for HDDs
5213 		 */
5214 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5215 		if (dev->offload_to_mirror)
5216 			map_index += le16_to_cpu(map->data_disks_per_row);
5217 		dev->offload_to_mirror = !dev->offload_to_mirror;
5218 		break;
5219 	case HPSA_RAID_ADM:
5220 		/* Handles N-way mirrors  (R1-ADM)
5221 		 * and R10 with # of drives divisible by 3.)
5222 		 */
5223 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5224 
5225 		offload_to_mirror = dev->offload_to_mirror;
5226 		raid_map_helper(map, offload_to_mirror,
5227 				&map_index, &current_group);
5228 		/* set mirror group to use next time */
5229 		offload_to_mirror =
5230 			(offload_to_mirror >=
5231 			le16_to_cpu(map->layout_map_count) - 1)
5232 			? 0 : offload_to_mirror + 1;
5233 		dev->offload_to_mirror = offload_to_mirror;
5234 		/* Avoid direct use of dev->offload_to_mirror within this
5235 		 * function since multiple threads might simultaneously
5236 		 * increment it beyond the range of dev->layout_map_count -1.
5237 		 */
5238 		break;
5239 	case HPSA_RAID_5:
5240 	case HPSA_RAID_6:
5241 		if (le16_to_cpu(map->layout_map_count) <= 1)
5242 			break;
5243 
5244 		/* Verify first and last block are in same RAID group */
5245 		r5or6_blocks_per_row =
5246 			le16_to_cpu(map->strip_size) *
5247 			le16_to_cpu(map->data_disks_per_row);
5248 		BUG_ON(r5or6_blocks_per_row == 0);
5249 		stripesize = r5or6_blocks_per_row *
5250 			le16_to_cpu(map->layout_map_count);
5251 #if BITS_PER_LONG == 32
5252 		tmpdiv = first_block;
5253 		first_group = do_div(tmpdiv, stripesize);
5254 		tmpdiv = first_group;
5255 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5256 		first_group = tmpdiv;
5257 		tmpdiv = last_block;
5258 		last_group = do_div(tmpdiv, stripesize);
5259 		tmpdiv = last_group;
5260 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5261 		last_group = tmpdiv;
5262 #else
5263 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5264 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5265 #endif
5266 		if (first_group != last_group)
5267 			return IO_ACCEL_INELIGIBLE;
5268 
5269 		/* Verify request is in a single row of RAID 5/6 */
5270 #if BITS_PER_LONG == 32
5271 		tmpdiv = first_block;
5272 		(void) do_div(tmpdiv, stripesize);
5273 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5274 		tmpdiv = last_block;
5275 		(void) do_div(tmpdiv, stripesize);
5276 		r5or6_last_row = r0_last_row = tmpdiv;
5277 #else
5278 		first_row = r5or6_first_row = r0_first_row =
5279 						first_block / stripesize;
5280 		r5or6_last_row = r0_last_row = last_block / stripesize;
5281 #endif
5282 		if (r5or6_first_row != r5or6_last_row)
5283 			return IO_ACCEL_INELIGIBLE;
5284 
5285 
5286 		/* Verify request is in a single column */
5287 #if BITS_PER_LONG == 32
5288 		tmpdiv = first_block;
5289 		first_row_offset = do_div(tmpdiv, stripesize);
5290 		tmpdiv = first_row_offset;
5291 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5292 		r5or6_first_row_offset = first_row_offset;
5293 		tmpdiv = last_block;
5294 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5295 		tmpdiv = r5or6_last_row_offset;
5296 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5297 		tmpdiv = r5or6_first_row_offset;
5298 		(void) do_div(tmpdiv, map->strip_size);
5299 		first_column = r5or6_first_column = tmpdiv;
5300 		tmpdiv = r5or6_last_row_offset;
5301 		(void) do_div(tmpdiv, map->strip_size);
5302 		r5or6_last_column = tmpdiv;
5303 #else
5304 		first_row_offset = r5or6_first_row_offset =
5305 			(u32)((first_block % stripesize) %
5306 						r5or6_blocks_per_row);
5307 
5308 		r5or6_last_row_offset =
5309 			(u32)((last_block % stripesize) %
5310 						r5or6_blocks_per_row);
5311 
5312 		first_column = r5or6_first_column =
5313 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5314 		r5or6_last_column =
5315 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5316 #endif
5317 		if (r5or6_first_column != r5or6_last_column)
5318 			return IO_ACCEL_INELIGIBLE;
5319 
5320 		/* Request is eligible */
5321 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5322 			le16_to_cpu(map->row_cnt);
5323 
5324 		map_index = (first_group *
5325 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5326 			(map_row * total_disks_per_row) + first_column;
5327 		break;
5328 	default:
5329 		return IO_ACCEL_INELIGIBLE;
5330 	}
5331 
5332 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5333 		return IO_ACCEL_INELIGIBLE;
5334 
5335 	c->phys_disk = dev->phys_disk[map_index];
5336 	if (!c->phys_disk)
5337 		return IO_ACCEL_INELIGIBLE;
5338 
5339 	disk_handle = dd[map_index].ioaccel_handle;
5340 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5341 			first_row * le16_to_cpu(map->strip_size) +
5342 			(first_row_offset - first_column *
5343 			le16_to_cpu(map->strip_size));
5344 	disk_block_cnt = block_cnt;
5345 
5346 	/* handle differing logical/physical block sizes */
5347 	if (map->phys_blk_shift) {
5348 		disk_block <<= map->phys_blk_shift;
5349 		disk_block_cnt <<= map->phys_blk_shift;
5350 	}
5351 	BUG_ON(disk_block_cnt > 0xffff);
5352 
5353 	/* build the new CDB for the physical disk I/O */
5354 	if (disk_block > 0xffffffff) {
5355 		cdb[0] = is_write ? WRITE_16 : READ_16;
5356 		cdb[1] = 0;
5357 		cdb[2] = (u8) (disk_block >> 56);
5358 		cdb[3] = (u8) (disk_block >> 48);
5359 		cdb[4] = (u8) (disk_block >> 40);
5360 		cdb[5] = (u8) (disk_block >> 32);
5361 		cdb[6] = (u8) (disk_block >> 24);
5362 		cdb[7] = (u8) (disk_block >> 16);
5363 		cdb[8] = (u8) (disk_block >> 8);
5364 		cdb[9] = (u8) (disk_block);
5365 		cdb[10] = (u8) (disk_block_cnt >> 24);
5366 		cdb[11] = (u8) (disk_block_cnt >> 16);
5367 		cdb[12] = (u8) (disk_block_cnt >> 8);
5368 		cdb[13] = (u8) (disk_block_cnt);
5369 		cdb[14] = 0;
5370 		cdb[15] = 0;
5371 		cdb_len = 16;
5372 	} else {
5373 		cdb[0] = is_write ? WRITE_10 : READ_10;
5374 		cdb[1] = 0;
5375 		cdb[2] = (u8) (disk_block >> 24);
5376 		cdb[3] = (u8) (disk_block >> 16);
5377 		cdb[4] = (u8) (disk_block >> 8);
5378 		cdb[5] = (u8) (disk_block);
5379 		cdb[6] = 0;
5380 		cdb[7] = (u8) (disk_block_cnt >> 8);
5381 		cdb[8] = (u8) (disk_block_cnt);
5382 		cdb[9] = 0;
5383 		cdb_len = 10;
5384 	}
5385 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5386 						dev->scsi3addr,
5387 						dev->phys_disk[map_index]);
5388 }
5389 
5390 /*
5391  * Submit commands down the "normal" RAID stack path
5392  * All callers to hpsa_ciss_submit must check lockup_detected
5393  * beforehand, before (opt.) and after calling cmd_alloc
5394  */
5395 static int hpsa_ciss_submit(struct ctlr_info *h,
5396 	struct CommandList *c, struct scsi_cmnd *cmd,
5397 	unsigned char scsi3addr[])
5398 {
5399 	cmd->host_scribble = (unsigned char *) c;
5400 	c->cmd_type = CMD_SCSI;
5401 	c->scsi_cmd = cmd;
5402 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5403 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5404 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5405 
5406 	/* Fill in the request block... */
5407 
5408 	c->Request.Timeout = 0;
5409 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5410 	c->Request.CDBLen = cmd->cmd_len;
5411 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5412 	switch (cmd->sc_data_direction) {
5413 	case DMA_TO_DEVICE:
5414 		c->Request.type_attr_dir =
5415 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5416 		break;
5417 	case DMA_FROM_DEVICE:
5418 		c->Request.type_attr_dir =
5419 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5420 		break;
5421 	case DMA_NONE:
5422 		c->Request.type_attr_dir =
5423 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5424 		break;
5425 	case DMA_BIDIRECTIONAL:
5426 		/* This can happen if a buggy application does a scsi passthru
5427 		 * and sets both inlen and outlen to non-zero. ( see
5428 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5429 		 */
5430 
5431 		c->Request.type_attr_dir =
5432 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5433 		/* This is technically wrong, and hpsa controllers should
5434 		 * reject it with CMD_INVALID, which is the most correct
5435 		 * response, but non-fibre backends appear to let it
5436 		 * slide by, and give the same results as if this field
5437 		 * were set correctly.  Either way is acceptable for
5438 		 * our purposes here.
5439 		 */
5440 
5441 		break;
5442 
5443 	default:
5444 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5445 			cmd->sc_data_direction);
5446 		BUG();
5447 		break;
5448 	}
5449 
5450 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5451 		hpsa_cmd_resolve_and_free(h, c);
5452 		return SCSI_MLQUEUE_HOST_BUSY;
5453 	}
5454 	enqueue_cmd_and_start_io(h, c);
5455 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5456 	return 0;
5457 }
5458 
5459 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5460 				struct CommandList *c)
5461 {
5462 	dma_addr_t cmd_dma_handle, err_dma_handle;
5463 
5464 	/* Zero out all of commandlist except the last field, refcount */
5465 	memset(c, 0, offsetof(struct CommandList, refcount));
5466 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5467 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5468 	c->err_info = h->errinfo_pool + index;
5469 	memset(c->err_info, 0, sizeof(*c->err_info));
5470 	err_dma_handle = h->errinfo_pool_dhandle
5471 	    + index * sizeof(*c->err_info);
5472 	c->cmdindex = index;
5473 	c->busaddr = (u32) cmd_dma_handle;
5474 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5475 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5476 	c->h = h;
5477 	c->scsi_cmd = SCSI_CMD_IDLE;
5478 }
5479 
5480 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5481 {
5482 	int i;
5483 
5484 	for (i = 0; i < h->nr_cmds; i++) {
5485 		struct CommandList *c = h->cmd_pool + i;
5486 
5487 		hpsa_cmd_init(h, i, c);
5488 		atomic_set(&c->refcount, 0);
5489 	}
5490 }
5491 
5492 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5493 				struct CommandList *c)
5494 {
5495 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5496 
5497 	BUG_ON(c->cmdindex != index);
5498 
5499 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5500 	memset(c->err_info, 0, sizeof(*c->err_info));
5501 	c->busaddr = (u32) cmd_dma_handle;
5502 }
5503 
5504 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5505 		struct CommandList *c, struct scsi_cmnd *cmd,
5506 		unsigned char *scsi3addr)
5507 {
5508 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5509 	int rc = IO_ACCEL_INELIGIBLE;
5510 
5511 	if (!dev)
5512 		return SCSI_MLQUEUE_HOST_BUSY;
5513 
5514 	cmd->host_scribble = (unsigned char *) c;
5515 
5516 	if (dev->offload_enabled) {
5517 		hpsa_cmd_init(h, c->cmdindex, c);
5518 		c->cmd_type = CMD_SCSI;
5519 		c->scsi_cmd = cmd;
5520 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5521 		if (rc < 0)     /* scsi_dma_map failed. */
5522 			rc = SCSI_MLQUEUE_HOST_BUSY;
5523 	} else if (dev->hba_ioaccel_enabled) {
5524 		hpsa_cmd_init(h, c->cmdindex, c);
5525 		c->cmd_type = CMD_SCSI;
5526 		c->scsi_cmd = cmd;
5527 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5528 		if (rc < 0)     /* scsi_dma_map failed. */
5529 			rc = SCSI_MLQUEUE_HOST_BUSY;
5530 	}
5531 	return rc;
5532 }
5533 
5534 static void hpsa_command_resubmit_worker(struct work_struct *work)
5535 {
5536 	struct scsi_cmnd *cmd;
5537 	struct hpsa_scsi_dev_t *dev;
5538 	struct CommandList *c = container_of(work, struct CommandList, work);
5539 
5540 	cmd = c->scsi_cmd;
5541 	dev = cmd->device->hostdata;
5542 	if (!dev) {
5543 		cmd->result = DID_NO_CONNECT << 16;
5544 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5545 	}
5546 	if (c->reset_pending)
5547 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5548 	if (c->cmd_type == CMD_IOACCEL2) {
5549 		struct ctlr_info *h = c->h;
5550 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5551 		int rc;
5552 
5553 		if (c2->error_data.serv_response ==
5554 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5555 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5556 			if (rc == 0)
5557 				return;
5558 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5559 				/*
5560 				 * If we get here, it means dma mapping failed.
5561 				 * Try again via scsi mid layer, which will
5562 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5563 				 */
5564 				cmd->result = DID_IMM_RETRY << 16;
5565 				return hpsa_cmd_free_and_done(h, c, cmd);
5566 			}
5567 			/* else, fall thru and resubmit down CISS path */
5568 		}
5569 	}
5570 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5571 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5572 		/*
5573 		 * If we get here, it means dma mapping failed. Try
5574 		 * again via scsi mid layer, which will then get
5575 		 * SCSI_MLQUEUE_HOST_BUSY.
5576 		 *
5577 		 * hpsa_ciss_submit will have already freed c
5578 		 * if it encountered a dma mapping failure.
5579 		 */
5580 		cmd->result = DID_IMM_RETRY << 16;
5581 		cmd->scsi_done(cmd);
5582 	}
5583 }
5584 
5585 /* Running in struct Scsi_Host->host_lock less mode */
5586 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5587 {
5588 	struct ctlr_info *h;
5589 	struct hpsa_scsi_dev_t *dev;
5590 	unsigned char scsi3addr[8];
5591 	struct CommandList *c;
5592 	int rc = 0;
5593 
5594 	/* Get the ptr to our adapter structure out of cmd->host. */
5595 	h = sdev_to_hba(cmd->device);
5596 
5597 	BUG_ON(cmd->request->tag < 0);
5598 
5599 	dev = cmd->device->hostdata;
5600 	if (!dev) {
5601 		cmd->result = DID_NO_CONNECT << 16;
5602 		cmd->scsi_done(cmd);
5603 		return 0;
5604 	}
5605 
5606 	if (dev->removed) {
5607 		cmd->result = DID_NO_CONNECT << 16;
5608 		cmd->scsi_done(cmd);
5609 		return 0;
5610 	}
5611 
5612 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5613 
5614 	if (unlikely(lockup_detected(h))) {
5615 		cmd->result = DID_NO_CONNECT << 16;
5616 		cmd->scsi_done(cmd);
5617 		return 0;
5618 	}
5619 	c = cmd_tagged_alloc(h, cmd);
5620 
5621 	/*
5622 	 * Call alternate submit routine for I/O accelerated commands.
5623 	 * Retries always go down the normal I/O path.
5624 	 */
5625 	if (likely(cmd->retries == 0 &&
5626 			!blk_rq_is_passthrough(cmd->request) &&
5627 			h->acciopath_status)) {
5628 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5629 		if (rc == 0)
5630 			return 0;
5631 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5632 			hpsa_cmd_resolve_and_free(h, c);
5633 			return SCSI_MLQUEUE_HOST_BUSY;
5634 		}
5635 	}
5636 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5637 }
5638 
5639 static void hpsa_scan_complete(struct ctlr_info *h)
5640 {
5641 	unsigned long flags;
5642 
5643 	spin_lock_irqsave(&h->scan_lock, flags);
5644 	h->scan_finished = 1;
5645 	wake_up(&h->scan_wait_queue);
5646 	spin_unlock_irqrestore(&h->scan_lock, flags);
5647 }
5648 
5649 static void hpsa_scan_start(struct Scsi_Host *sh)
5650 {
5651 	struct ctlr_info *h = shost_to_hba(sh);
5652 	unsigned long flags;
5653 
5654 	/*
5655 	 * Don't let rescans be initiated on a controller known to be locked
5656 	 * up.  If the controller locks up *during* a rescan, that thread is
5657 	 * probably hosed, but at least we can prevent new rescan threads from
5658 	 * piling up on a locked up controller.
5659 	 */
5660 	if (unlikely(lockup_detected(h)))
5661 		return hpsa_scan_complete(h);
5662 
5663 	/*
5664 	 * If a scan is already waiting to run, no need to add another
5665 	 */
5666 	spin_lock_irqsave(&h->scan_lock, flags);
5667 	if (h->scan_waiting) {
5668 		spin_unlock_irqrestore(&h->scan_lock, flags);
5669 		return;
5670 	}
5671 
5672 	spin_unlock_irqrestore(&h->scan_lock, flags);
5673 
5674 	/* wait until any scan already in progress is finished. */
5675 	while (1) {
5676 		spin_lock_irqsave(&h->scan_lock, flags);
5677 		if (h->scan_finished)
5678 			break;
5679 		h->scan_waiting = 1;
5680 		spin_unlock_irqrestore(&h->scan_lock, flags);
5681 		wait_event(h->scan_wait_queue, h->scan_finished);
5682 		/* Note: We don't need to worry about a race between this
5683 		 * thread and driver unload because the midlayer will
5684 		 * have incremented the reference count, so unload won't
5685 		 * happen if we're in here.
5686 		 */
5687 	}
5688 	h->scan_finished = 0; /* mark scan as in progress */
5689 	h->scan_waiting = 0;
5690 	spin_unlock_irqrestore(&h->scan_lock, flags);
5691 
5692 	if (unlikely(lockup_detected(h)))
5693 		return hpsa_scan_complete(h);
5694 
5695 	/*
5696 	 * Do the scan after a reset completion
5697 	 */
5698 	spin_lock_irqsave(&h->reset_lock, flags);
5699 	if (h->reset_in_progress) {
5700 		h->drv_req_rescan = 1;
5701 		spin_unlock_irqrestore(&h->reset_lock, flags);
5702 		hpsa_scan_complete(h);
5703 		return;
5704 	}
5705 	spin_unlock_irqrestore(&h->reset_lock, flags);
5706 
5707 	hpsa_update_scsi_devices(h);
5708 
5709 	hpsa_scan_complete(h);
5710 }
5711 
5712 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5713 {
5714 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5715 
5716 	if (!logical_drive)
5717 		return -ENODEV;
5718 
5719 	if (qdepth < 1)
5720 		qdepth = 1;
5721 	else if (qdepth > logical_drive->queue_depth)
5722 		qdepth = logical_drive->queue_depth;
5723 
5724 	return scsi_change_queue_depth(sdev, qdepth);
5725 }
5726 
5727 static int hpsa_scan_finished(struct Scsi_Host *sh,
5728 	unsigned long elapsed_time)
5729 {
5730 	struct ctlr_info *h = shost_to_hba(sh);
5731 	unsigned long flags;
5732 	int finished;
5733 
5734 	spin_lock_irqsave(&h->scan_lock, flags);
5735 	finished = h->scan_finished;
5736 	spin_unlock_irqrestore(&h->scan_lock, flags);
5737 	return finished;
5738 }
5739 
5740 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5741 {
5742 	struct Scsi_Host *sh;
5743 
5744 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5745 	if (sh == NULL) {
5746 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5747 		return -ENOMEM;
5748 	}
5749 
5750 	sh->io_port = 0;
5751 	sh->n_io_port = 0;
5752 	sh->this_id = -1;
5753 	sh->max_channel = 3;
5754 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5755 	sh->max_lun = HPSA_MAX_LUN;
5756 	sh->max_id = HPSA_MAX_LUN;
5757 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5758 	sh->cmd_per_lun = sh->can_queue;
5759 	sh->sg_tablesize = h->maxsgentries;
5760 	sh->transportt = hpsa_sas_transport_template;
5761 	sh->hostdata[0] = (unsigned long) h;
5762 	sh->irq = pci_irq_vector(h->pdev, 0);
5763 	sh->unique_id = sh->irq;
5764 
5765 	h->scsi_host = sh;
5766 	return 0;
5767 }
5768 
5769 static int hpsa_scsi_add_host(struct ctlr_info *h)
5770 {
5771 	int rv;
5772 
5773 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5774 	if (rv) {
5775 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5776 		return rv;
5777 	}
5778 	scsi_scan_host(h->scsi_host);
5779 	return 0;
5780 }
5781 
5782 /*
5783  * The block layer has already gone to the trouble of picking out a unique,
5784  * small-integer tag for this request.  We use an offset from that value as
5785  * an index to select our command block.  (The offset allows us to reserve the
5786  * low-numbered entries for our own uses.)
5787  */
5788 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5789 {
5790 	int idx = scmd->request->tag;
5791 
5792 	if (idx < 0)
5793 		return idx;
5794 
5795 	/* Offset to leave space for internal cmds. */
5796 	return idx += HPSA_NRESERVED_CMDS;
5797 }
5798 
5799 /*
5800  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5801  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5802  */
5803 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5804 				struct CommandList *c, unsigned char lunaddr[],
5805 				int reply_queue)
5806 {
5807 	int rc;
5808 
5809 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5810 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5811 			NULL, 0, 0, lunaddr, TYPE_CMD);
5812 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5813 	if (rc)
5814 		return rc;
5815 	/* no unmap needed here because no data xfer. */
5816 
5817 	/* Check if the unit is already ready. */
5818 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5819 		return 0;
5820 
5821 	/*
5822 	 * The first command sent after reset will receive "unit attention" to
5823 	 * indicate that the LUN has been reset...this is actually what we're
5824 	 * looking for (but, success is good too).
5825 	 */
5826 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5827 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5828 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5829 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5830 		return 0;
5831 
5832 	return 1;
5833 }
5834 
5835 /*
5836  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5837  * returns zero when the unit is ready, and non-zero when giving up.
5838  */
5839 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5840 				struct CommandList *c,
5841 				unsigned char lunaddr[], int reply_queue)
5842 {
5843 	int rc;
5844 	int count = 0;
5845 	int waittime = 1; /* seconds */
5846 
5847 	/* Send test unit ready until device ready, or give up. */
5848 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5849 
5850 		/*
5851 		 * Wait for a bit.  do this first, because if we send
5852 		 * the TUR right away, the reset will just abort it.
5853 		 */
5854 		msleep(1000 * waittime);
5855 
5856 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5857 		if (!rc)
5858 			break;
5859 
5860 		/* Increase wait time with each try, up to a point. */
5861 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5862 			waittime *= 2;
5863 
5864 		dev_warn(&h->pdev->dev,
5865 			 "waiting %d secs for device to become ready.\n",
5866 			 waittime);
5867 	}
5868 
5869 	return rc;
5870 }
5871 
5872 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5873 					   unsigned char lunaddr[],
5874 					   int reply_queue)
5875 {
5876 	int first_queue;
5877 	int last_queue;
5878 	int rq;
5879 	int rc = 0;
5880 	struct CommandList *c;
5881 
5882 	c = cmd_alloc(h);
5883 
5884 	/*
5885 	 * If no specific reply queue was requested, then send the TUR
5886 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5887 	 * the loop exactly once using only the specified queue.
5888 	 */
5889 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5890 		first_queue = 0;
5891 		last_queue = h->nreply_queues - 1;
5892 	} else {
5893 		first_queue = reply_queue;
5894 		last_queue = reply_queue;
5895 	}
5896 
5897 	for (rq = first_queue; rq <= last_queue; rq++) {
5898 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5899 		if (rc)
5900 			break;
5901 	}
5902 
5903 	if (rc)
5904 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5905 	else
5906 		dev_warn(&h->pdev->dev, "device is ready.\n");
5907 
5908 	cmd_free(h, c);
5909 	return rc;
5910 }
5911 
5912 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5913  * complaining.  Doing a host- or bus-reset can't do anything good here.
5914  */
5915 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5916 {
5917 	int rc = SUCCESS;
5918 	struct ctlr_info *h;
5919 	struct hpsa_scsi_dev_t *dev;
5920 	u8 reset_type;
5921 	char msg[48];
5922 	unsigned long flags;
5923 
5924 	/* find the controller to which the command to be aborted was sent */
5925 	h = sdev_to_hba(scsicmd->device);
5926 	if (h == NULL) /* paranoia */
5927 		return FAILED;
5928 
5929 	spin_lock_irqsave(&h->reset_lock, flags);
5930 	h->reset_in_progress = 1;
5931 	spin_unlock_irqrestore(&h->reset_lock, flags);
5932 
5933 	if (lockup_detected(h)) {
5934 		rc = FAILED;
5935 		goto return_reset_status;
5936 	}
5937 
5938 	dev = scsicmd->device->hostdata;
5939 	if (!dev) {
5940 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5941 		rc = FAILED;
5942 		goto return_reset_status;
5943 	}
5944 
5945 	if (dev->devtype == TYPE_ENCLOSURE) {
5946 		rc = SUCCESS;
5947 		goto return_reset_status;
5948 	}
5949 
5950 	/* if controller locked up, we can guarantee command won't complete */
5951 	if (lockup_detected(h)) {
5952 		snprintf(msg, sizeof(msg),
5953 			 "cmd %d RESET FAILED, lockup detected",
5954 			 hpsa_get_cmd_index(scsicmd));
5955 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5956 		rc = FAILED;
5957 		goto return_reset_status;
5958 	}
5959 
5960 	/* this reset request might be the result of a lockup; check */
5961 	if (detect_controller_lockup(h)) {
5962 		snprintf(msg, sizeof(msg),
5963 			 "cmd %d RESET FAILED, new lockup detected",
5964 			 hpsa_get_cmd_index(scsicmd));
5965 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5966 		rc = FAILED;
5967 		goto return_reset_status;
5968 	}
5969 
5970 	/* Do not attempt on controller */
5971 	if (is_hba_lunid(dev->scsi3addr)) {
5972 		rc = SUCCESS;
5973 		goto return_reset_status;
5974 	}
5975 
5976 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5977 		reset_type = HPSA_DEVICE_RESET_MSG;
5978 	else
5979 		reset_type = HPSA_PHYS_TARGET_RESET;
5980 
5981 	sprintf(msg, "resetting %s",
5982 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5983 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5984 
5985 	/* send a reset to the SCSI LUN which the command was sent to */
5986 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5987 			   DEFAULT_REPLY_QUEUE);
5988 	if (rc == 0)
5989 		rc = SUCCESS;
5990 	else
5991 		rc = FAILED;
5992 
5993 	sprintf(msg, "reset %s %s",
5994 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5995 		rc == SUCCESS ? "completed successfully" : "failed");
5996 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5997 
5998 return_reset_status:
5999 	spin_lock_irqsave(&h->reset_lock, flags);
6000 	h->reset_in_progress = 0;
6001 	spin_unlock_irqrestore(&h->reset_lock, flags);
6002 	return rc;
6003 }
6004 
6005 /*
6006  * For operations with an associated SCSI command, a command block is allocated
6007  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6008  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6009  * the complement, although cmd_free() may be called instead.
6010  */
6011 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6012 					    struct scsi_cmnd *scmd)
6013 {
6014 	int idx = hpsa_get_cmd_index(scmd);
6015 	struct CommandList *c = h->cmd_pool + idx;
6016 
6017 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6018 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6019 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6020 		/* The index value comes from the block layer, so if it's out of
6021 		 * bounds, it's probably not our bug.
6022 		 */
6023 		BUG();
6024 	}
6025 
6026 	atomic_inc(&c->refcount);
6027 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6028 		/*
6029 		 * We expect that the SCSI layer will hand us a unique tag
6030 		 * value.  Thus, there should never be a collision here between
6031 		 * two requests...because if the selected command isn't idle
6032 		 * then someone is going to be very disappointed.
6033 		 */
6034 		dev_err(&h->pdev->dev,
6035 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6036 			idx);
6037 		if (c->scsi_cmd != NULL)
6038 			scsi_print_command(c->scsi_cmd);
6039 		scsi_print_command(scmd);
6040 	}
6041 
6042 	hpsa_cmd_partial_init(h, idx, c);
6043 	return c;
6044 }
6045 
6046 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6047 {
6048 	/*
6049 	 * Release our reference to the block.  We don't need to do anything
6050 	 * else to free it, because it is accessed by index.
6051 	 */
6052 	(void)atomic_dec(&c->refcount);
6053 }
6054 
6055 /*
6056  * For operations that cannot sleep, a command block is allocated at init,
6057  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6058  * which ones are free or in use.  Lock must be held when calling this.
6059  * cmd_free() is the complement.
6060  * This function never gives up and returns NULL.  If it hangs,
6061  * another thread must call cmd_free() to free some tags.
6062  */
6063 
6064 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6065 {
6066 	struct CommandList *c;
6067 	int refcount, i;
6068 	int offset = 0;
6069 
6070 	/*
6071 	 * There is some *extremely* small but non-zero chance that that
6072 	 * multiple threads could get in here, and one thread could
6073 	 * be scanning through the list of bits looking for a free
6074 	 * one, but the free ones are always behind him, and other
6075 	 * threads sneak in behind him and eat them before he can
6076 	 * get to them, so that while there is always a free one, a
6077 	 * very unlucky thread might be starved anyway, never able to
6078 	 * beat the other threads.  In reality, this happens so
6079 	 * infrequently as to be indistinguishable from never.
6080 	 *
6081 	 * Note that we start allocating commands before the SCSI host structure
6082 	 * is initialized.  Since the search starts at bit zero, this
6083 	 * all works, since we have at least one command structure available;
6084 	 * however, it means that the structures with the low indexes have to be
6085 	 * reserved for driver-initiated requests, while requests from the block
6086 	 * layer will use the higher indexes.
6087 	 */
6088 
6089 	for (;;) {
6090 		i = find_next_zero_bit(h->cmd_pool_bits,
6091 					HPSA_NRESERVED_CMDS,
6092 					offset);
6093 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6094 			offset = 0;
6095 			continue;
6096 		}
6097 		c = h->cmd_pool + i;
6098 		refcount = atomic_inc_return(&c->refcount);
6099 		if (unlikely(refcount > 1)) {
6100 			cmd_free(h, c); /* already in use */
6101 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6102 			continue;
6103 		}
6104 		set_bit(i & (BITS_PER_LONG - 1),
6105 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6106 		break; /* it's ours now. */
6107 	}
6108 	hpsa_cmd_partial_init(h, i, c);
6109 	return c;
6110 }
6111 
6112 /*
6113  * This is the complementary operation to cmd_alloc().  Note, however, in some
6114  * corner cases it may also be used to free blocks allocated by
6115  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6116  * the clear-bit is harmless.
6117  */
6118 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6119 {
6120 	if (atomic_dec_and_test(&c->refcount)) {
6121 		int i;
6122 
6123 		i = c - h->cmd_pool;
6124 		clear_bit(i & (BITS_PER_LONG - 1),
6125 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6126 	}
6127 }
6128 
6129 #ifdef CONFIG_COMPAT
6130 
6131 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6132 	void __user *arg)
6133 {
6134 	IOCTL32_Command_struct __user *arg32 =
6135 	    (IOCTL32_Command_struct __user *) arg;
6136 	IOCTL_Command_struct arg64;
6137 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6138 	int err;
6139 	u32 cp;
6140 
6141 	memset(&arg64, 0, sizeof(arg64));
6142 	err = 0;
6143 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6144 			   sizeof(arg64.LUN_info));
6145 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6146 			   sizeof(arg64.Request));
6147 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6148 			   sizeof(arg64.error_info));
6149 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6150 	err |= get_user(cp, &arg32->buf);
6151 	arg64.buf = compat_ptr(cp);
6152 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6153 
6154 	if (err)
6155 		return -EFAULT;
6156 
6157 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6158 	if (err)
6159 		return err;
6160 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6161 			 sizeof(arg32->error_info));
6162 	if (err)
6163 		return -EFAULT;
6164 	return err;
6165 }
6166 
6167 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6168 	unsigned int cmd, void __user *arg)
6169 {
6170 	BIG_IOCTL32_Command_struct __user *arg32 =
6171 	    (BIG_IOCTL32_Command_struct __user *) arg;
6172 	BIG_IOCTL_Command_struct arg64;
6173 	BIG_IOCTL_Command_struct __user *p =
6174 	    compat_alloc_user_space(sizeof(arg64));
6175 	int err;
6176 	u32 cp;
6177 
6178 	memset(&arg64, 0, sizeof(arg64));
6179 	err = 0;
6180 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6181 			   sizeof(arg64.LUN_info));
6182 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6183 			   sizeof(arg64.Request));
6184 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6185 			   sizeof(arg64.error_info));
6186 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6187 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6188 	err |= get_user(cp, &arg32->buf);
6189 	arg64.buf = compat_ptr(cp);
6190 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6191 
6192 	if (err)
6193 		return -EFAULT;
6194 
6195 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6196 	if (err)
6197 		return err;
6198 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6199 			 sizeof(arg32->error_info));
6200 	if (err)
6201 		return -EFAULT;
6202 	return err;
6203 }
6204 
6205 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6206 			     void __user *arg)
6207 {
6208 	switch (cmd) {
6209 	case CCISS_GETPCIINFO:
6210 	case CCISS_GETINTINFO:
6211 	case CCISS_SETINTINFO:
6212 	case CCISS_GETNODENAME:
6213 	case CCISS_SETNODENAME:
6214 	case CCISS_GETHEARTBEAT:
6215 	case CCISS_GETBUSTYPES:
6216 	case CCISS_GETFIRMVER:
6217 	case CCISS_GETDRIVVER:
6218 	case CCISS_REVALIDVOLS:
6219 	case CCISS_DEREGDISK:
6220 	case CCISS_REGNEWDISK:
6221 	case CCISS_REGNEWD:
6222 	case CCISS_RESCANDISK:
6223 	case CCISS_GETLUNINFO:
6224 		return hpsa_ioctl(dev, cmd, arg);
6225 
6226 	case CCISS_PASSTHRU32:
6227 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6228 	case CCISS_BIG_PASSTHRU32:
6229 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6230 
6231 	default:
6232 		return -ENOIOCTLCMD;
6233 	}
6234 }
6235 #endif
6236 
6237 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6238 {
6239 	struct hpsa_pci_info pciinfo;
6240 
6241 	if (!argp)
6242 		return -EINVAL;
6243 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6244 	pciinfo.bus = h->pdev->bus->number;
6245 	pciinfo.dev_fn = h->pdev->devfn;
6246 	pciinfo.board_id = h->board_id;
6247 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6248 		return -EFAULT;
6249 	return 0;
6250 }
6251 
6252 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6253 {
6254 	DriverVer_type DriverVer;
6255 	unsigned char vmaj, vmin, vsubmin;
6256 	int rc;
6257 
6258 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6259 		&vmaj, &vmin, &vsubmin);
6260 	if (rc != 3) {
6261 		dev_info(&h->pdev->dev, "driver version string '%s' "
6262 			"unrecognized.", HPSA_DRIVER_VERSION);
6263 		vmaj = 0;
6264 		vmin = 0;
6265 		vsubmin = 0;
6266 	}
6267 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6268 	if (!argp)
6269 		return -EINVAL;
6270 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6271 		return -EFAULT;
6272 	return 0;
6273 }
6274 
6275 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6276 {
6277 	IOCTL_Command_struct iocommand;
6278 	struct CommandList *c;
6279 	char *buff = NULL;
6280 	u64 temp64;
6281 	int rc = 0;
6282 
6283 	if (!argp)
6284 		return -EINVAL;
6285 	if (!capable(CAP_SYS_RAWIO))
6286 		return -EPERM;
6287 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6288 		return -EFAULT;
6289 	if ((iocommand.buf_size < 1) &&
6290 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6291 		return -EINVAL;
6292 	}
6293 	if (iocommand.buf_size > 0) {
6294 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6295 		if (buff == NULL)
6296 			return -ENOMEM;
6297 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6298 			/* Copy the data into the buffer we created */
6299 			if (copy_from_user(buff, iocommand.buf,
6300 				iocommand.buf_size)) {
6301 				rc = -EFAULT;
6302 				goto out_kfree;
6303 			}
6304 		} else {
6305 			memset(buff, 0, iocommand.buf_size);
6306 		}
6307 	}
6308 	c = cmd_alloc(h);
6309 
6310 	/* Fill in the command type */
6311 	c->cmd_type = CMD_IOCTL_PEND;
6312 	c->scsi_cmd = SCSI_CMD_BUSY;
6313 	/* Fill in Command Header */
6314 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6315 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6316 		c->Header.SGList = 1;
6317 		c->Header.SGTotal = cpu_to_le16(1);
6318 	} else	{ /* no buffers to fill */
6319 		c->Header.SGList = 0;
6320 		c->Header.SGTotal = cpu_to_le16(0);
6321 	}
6322 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6323 
6324 	/* Fill in Request block */
6325 	memcpy(&c->Request, &iocommand.Request,
6326 		sizeof(c->Request));
6327 
6328 	/* Fill in the scatter gather information */
6329 	if (iocommand.buf_size > 0) {
6330 		temp64 = dma_map_single(&h->pdev->dev, buff,
6331 			iocommand.buf_size, DMA_BIDIRECTIONAL);
6332 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6333 			c->SG[0].Addr = cpu_to_le64(0);
6334 			c->SG[0].Len = cpu_to_le32(0);
6335 			rc = -ENOMEM;
6336 			goto out;
6337 		}
6338 		c->SG[0].Addr = cpu_to_le64(temp64);
6339 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6340 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6341 	}
6342 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6343 					NO_TIMEOUT);
6344 	if (iocommand.buf_size > 0)
6345 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6346 	check_ioctl_unit_attention(h, c);
6347 	if (rc) {
6348 		rc = -EIO;
6349 		goto out;
6350 	}
6351 
6352 	/* Copy the error information out */
6353 	memcpy(&iocommand.error_info, c->err_info,
6354 		sizeof(iocommand.error_info));
6355 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6356 		rc = -EFAULT;
6357 		goto out;
6358 	}
6359 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6360 		iocommand.buf_size > 0) {
6361 		/* Copy the data out of the buffer we created */
6362 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6363 			rc = -EFAULT;
6364 			goto out;
6365 		}
6366 	}
6367 out:
6368 	cmd_free(h, c);
6369 out_kfree:
6370 	kfree(buff);
6371 	return rc;
6372 }
6373 
6374 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6375 {
6376 	BIG_IOCTL_Command_struct *ioc;
6377 	struct CommandList *c;
6378 	unsigned char **buff = NULL;
6379 	int *buff_size = NULL;
6380 	u64 temp64;
6381 	BYTE sg_used = 0;
6382 	int status = 0;
6383 	u32 left;
6384 	u32 sz;
6385 	BYTE __user *data_ptr;
6386 
6387 	if (!argp)
6388 		return -EINVAL;
6389 	if (!capable(CAP_SYS_RAWIO))
6390 		return -EPERM;
6391 	ioc = vmemdup_user(argp, sizeof(*ioc));
6392 	if (IS_ERR(ioc)) {
6393 		status = PTR_ERR(ioc);
6394 		goto cleanup1;
6395 	}
6396 	if ((ioc->buf_size < 1) &&
6397 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6398 		status = -EINVAL;
6399 		goto cleanup1;
6400 	}
6401 	/* Check kmalloc limits  using all SGs */
6402 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6403 		status = -EINVAL;
6404 		goto cleanup1;
6405 	}
6406 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6407 		status = -EINVAL;
6408 		goto cleanup1;
6409 	}
6410 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6411 	if (!buff) {
6412 		status = -ENOMEM;
6413 		goto cleanup1;
6414 	}
6415 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6416 	if (!buff_size) {
6417 		status = -ENOMEM;
6418 		goto cleanup1;
6419 	}
6420 	left = ioc->buf_size;
6421 	data_ptr = ioc->buf;
6422 	while (left) {
6423 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6424 		buff_size[sg_used] = sz;
6425 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6426 		if (buff[sg_used] == NULL) {
6427 			status = -ENOMEM;
6428 			goto cleanup1;
6429 		}
6430 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6431 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6432 				status = -EFAULT;
6433 				goto cleanup1;
6434 			}
6435 		} else
6436 			memset(buff[sg_used], 0, sz);
6437 		left -= sz;
6438 		data_ptr += sz;
6439 		sg_used++;
6440 	}
6441 	c = cmd_alloc(h);
6442 
6443 	c->cmd_type = CMD_IOCTL_PEND;
6444 	c->scsi_cmd = SCSI_CMD_BUSY;
6445 	c->Header.ReplyQueue = 0;
6446 	c->Header.SGList = (u8) sg_used;
6447 	c->Header.SGTotal = cpu_to_le16(sg_used);
6448 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6449 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6450 	if (ioc->buf_size > 0) {
6451 		int i;
6452 		for (i = 0; i < sg_used; i++) {
6453 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6454 				    buff_size[i], DMA_BIDIRECTIONAL);
6455 			if (dma_mapping_error(&h->pdev->dev,
6456 							(dma_addr_t) temp64)) {
6457 				c->SG[i].Addr = cpu_to_le64(0);
6458 				c->SG[i].Len = cpu_to_le32(0);
6459 				hpsa_pci_unmap(h->pdev, c, i,
6460 					DMA_BIDIRECTIONAL);
6461 				status = -ENOMEM;
6462 				goto cleanup0;
6463 			}
6464 			c->SG[i].Addr = cpu_to_le64(temp64);
6465 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6466 			c->SG[i].Ext = cpu_to_le32(0);
6467 		}
6468 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6469 	}
6470 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6471 						NO_TIMEOUT);
6472 	if (sg_used)
6473 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6474 	check_ioctl_unit_attention(h, c);
6475 	if (status) {
6476 		status = -EIO;
6477 		goto cleanup0;
6478 	}
6479 
6480 	/* Copy the error information out */
6481 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6482 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6483 		status = -EFAULT;
6484 		goto cleanup0;
6485 	}
6486 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6487 		int i;
6488 
6489 		/* Copy the data out of the buffer we created */
6490 		BYTE __user *ptr = ioc->buf;
6491 		for (i = 0; i < sg_used; i++) {
6492 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6493 				status = -EFAULT;
6494 				goto cleanup0;
6495 			}
6496 			ptr += buff_size[i];
6497 		}
6498 	}
6499 	status = 0;
6500 cleanup0:
6501 	cmd_free(h, c);
6502 cleanup1:
6503 	if (buff) {
6504 		int i;
6505 
6506 		for (i = 0; i < sg_used; i++)
6507 			kfree(buff[i]);
6508 		kfree(buff);
6509 	}
6510 	kfree(buff_size);
6511 	kvfree(ioc);
6512 	return status;
6513 }
6514 
6515 static void check_ioctl_unit_attention(struct ctlr_info *h,
6516 	struct CommandList *c)
6517 {
6518 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6519 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6520 		(void) check_for_unit_attention(h, c);
6521 }
6522 
6523 /*
6524  * ioctl
6525  */
6526 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6527 		      void __user *arg)
6528 {
6529 	struct ctlr_info *h;
6530 	void __user *argp = (void __user *)arg;
6531 	int rc;
6532 
6533 	h = sdev_to_hba(dev);
6534 
6535 	switch (cmd) {
6536 	case CCISS_DEREGDISK:
6537 	case CCISS_REGNEWDISK:
6538 	case CCISS_REGNEWD:
6539 		hpsa_scan_start(h->scsi_host);
6540 		return 0;
6541 	case CCISS_GETPCIINFO:
6542 		return hpsa_getpciinfo_ioctl(h, argp);
6543 	case CCISS_GETDRIVVER:
6544 		return hpsa_getdrivver_ioctl(h, argp);
6545 	case CCISS_PASSTHRU:
6546 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6547 			return -EAGAIN;
6548 		rc = hpsa_passthru_ioctl(h, argp);
6549 		atomic_inc(&h->passthru_cmds_avail);
6550 		return rc;
6551 	case CCISS_BIG_PASSTHRU:
6552 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6553 			return -EAGAIN;
6554 		rc = hpsa_big_passthru_ioctl(h, argp);
6555 		atomic_inc(&h->passthru_cmds_avail);
6556 		return rc;
6557 	default:
6558 		return -ENOTTY;
6559 	}
6560 }
6561 
6562 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6563 				u8 reset_type)
6564 {
6565 	struct CommandList *c;
6566 
6567 	c = cmd_alloc(h);
6568 
6569 	/* fill_cmd can't fail here, no data buffer to map */
6570 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6571 		RAID_CTLR_LUNID, TYPE_MSG);
6572 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6573 	c->waiting = NULL;
6574 	enqueue_cmd_and_start_io(h, c);
6575 	/* Don't wait for completion, the reset won't complete.  Don't free
6576 	 * the command either.  This is the last command we will send before
6577 	 * re-initializing everything, so it doesn't matter and won't leak.
6578 	 */
6579 	return;
6580 }
6581 
6582 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6583 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6584 	int cmd_type)
6585 {
6586 	enum dma_data_direction dir = DMA_NONE;
6587 
6588 	c->cmd_type = CMD_IOCTL_PEND;
6589 	c->scsi_cmd = SCSI_CMD_BUSY;
6590 	c->Header.ReplyQueue = 0;
6591 	if (buff != NULL && size > 0) {
6592 		c->Header.SGList = 1;
6593 		c->Header.SGTotal = cpu_to_le16(1);
6594 	} else {
6595 		c->Header.SGList = 0;
6596 		c->Header.SGTotal = cpu_to_le16(0);
6597 	}
6598 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6599 
6600 	if (cmd_type == TYPE_CMD) {
6601 		switch (cmd) {
6602 		case HPSA_INQUIRY:
6603 			/* are we trying to read a vital product page */
6604 			if (page_code & VPD_PAGE) {
6605 				c->Request.CDB[1] = 0x01;
6606 				c->Request.CDB[2] = (page_code & 0xff);
6607 			}
6608 			c->Request.CDBLen = 6;
6609 			c->Request.type_attr_dir =
6610 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6611 			c->Request.Timeout = 0;
6612 			c->Request.CDB[0] = HPSA_INQUIRY;
6613 			c->Request.CDB[4] = size & 0xFF;
6614 			break;
6615 		case RECEIVE_DIAGNOSTIC:
6616 			c->Request.CDBLen = 6;
6617 			c->Request.type_attr_dir =
6618 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6619 			c->Request.Timeout = 0;
6620 			c->Request.CDB[0] = cmd;
6621 			c->Request.CDB[1] = 1;
6622 			c->Request.CDB[2] = 1;
6623 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6624 			c->Request.CDB[4] = size & 0xFF;
6625 			break;
6626 		case HPSA_REPORT_LOG:
6627 		case HPSA_REPORT_PHYS:
6628 			/* Talking to controller so It's a physical command
6629 			   mode = 00 target = 0.  Nothing to write.
6630 			 */
6631 			c->Request.CDBLen = 12;
6632 			c->Request.type_attr_dir =
6633 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6634 			c->Request.Timeout = 0;
6635 			c->Request.CDB[0] = cmd;
6636 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6637 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6638 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6639 			c->Request.CDB[9] = size & 0xFF;
6640 			break;
6641 		case BMIC_SENSE_DIAG_OPTIONS:
6642 			c->Request.CDBLen = 16;
6643 			c->Request.type_attr_dir =
6644 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6645 			c->Request.Timeout = 0;
6646 			/* Spec says this should be BMIC_WRITE */
6647 			c->Request.CDB[0] = BMIC_READ;
6648 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6649 			break;
6650 		case BMIC_SET_DIAG_OPTIONS:
6651 			c->Request.CDBLen = 16;
6652 			c->Request.type_attr_dir =
6653 					TYPE_ATTR_DIR(cmd_type,
6654 						ATTR_SIMPLE, XFER_WRITE);
6655 			c->Request.Timeout = 0;
6656 			c->Request.CDB[0] = BMIC_WRITE;
6657 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6658 			break;
6659 		case HPSA_CACHE_FLUSH:
6660 			c->Request.CDBLen = 12;
6661 			c->Request.type_attr_dir =
6662 					TYPE_ATTR_DIR(cmd_type,
6663 						ATTR_SIMPLE, XFER_WRITE);
6664 			c->Request.Timeout = 0;
6665 			c->Request.CDB[0] = BMIC_WRITE;
6666 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6667 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6668 			c->Request.CDB[8] = size & 0xFF;
6669 			break;
6670 		case TEST_UNIT_READY:
6671 			c->Request.CDBLen = 6;
6672 			c->Request.type_attr_dir =
6673 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6674 			c->Request.Timeout = 0;
6675 			break;
6676 		case HPSA_GET_RAID_MAP:
6677 			c->Request.CDBLen = 12;
6678 			c->Request.type_attr_dir =
6679 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6680 			c->Request.Timeout = 0;
6681 			c->Request.CDB[0] = HPSA_CISS_READ;
6682 			c->Request.CDB[1] = cmd;
6683 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6684 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6685 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6686 			c->Request.CDB[9] = size & 0xFF;
6687 			break;
6688 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6689 			c->Request.CDBLen = 10;
6690 			c->Request.type_attr_dir =
6691 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6692 			c->Request.Timeout = 0;
6693 			c->Request.CDB[0] = BMIC_READ;
6694 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6695 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6696 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6697 			break;
6698 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6699 			c->Request.CDBLen = 10;
6700 			c->Request.type_attr_dir =
6701 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6702 			c->Request.Timeout = 0;
6703 			c->Request.CDB[0] = BMIC_READ;
6704 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6705 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6706 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6707 			break;
6708 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6709 			c->Request.CDBLen = 10;
6710 			c->Request.type_attr_dir =
6711 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712 			c->Request.Timeout = 0;
6713 			c->Request.CDB[0] = BMIC_READ;
6714 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6715 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6716 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6717 			break;
6718 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6719 			c->Request.CDBLen = 10;
6720 			c->Request.type_attr_dir =
6721 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6722 			c->Request.Timeout = 0;
6723 			c->Request.CDB[0] = BMIC_READ;
6724 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6725 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6726 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6727 			break;
6728 		case BMIC_IDENTIFY_CONTROLLER:
6729 			c->Request.CDBLen = 10;
6730 			c->Request.type_attr_dir =
6731 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732 			c->Request.Timeout = 0;
6733 			c->Request.CDB[0] = BMIC_READ;
6734 			c->Request.CDB[1] = 0;
6735 			c->Request.CDB[2] = 0;
6736 			c->Request.CDB[3] = 0;
6737 			c->Request.CDB[4] = 0;
6738 			c->Request.CDB[5] = 0;
6739 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6740 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6741 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6742 			c->Request.CDB[9] = 0;
6743 			break;
6744 		default:
6745 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6746 			BUG();
6747 		}
6748 	} else if (cmd_type == TYPE_MSG) {
6749 		switch (cmd) {
6750 
6751 		case  HPSA_PHYS_TARGET_RESET:
6752 			c->Request.CDBLen = 16;
6753 			c->Request.type_attr_dir =
6754 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6755 			c->Request.Timeout = 0; /* Don't time out */
6756 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6757 			c->Request.CDB[0] = HPSA_RESET;
6758 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6759 			/* Physical target reset needs no control bytes 4-7*/
6760 			c->Request.CDB[4] = 0x00;
6761 			c->Request.CDB[5] = 0x00;
6762 			c->Request.CDB[6] = 0x00;
6763 			c->Request.CDB[7] = 0x00;
6764 			break;
6765 		case  HPSA_DEVICE_RESET_MSG:
6766 			c->Request.CDBLen = 16;
6767 			c->Request.type_attr_dir =
6768 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6769 			c->Request.Timeout = 0; /* Don't time out */
6770 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6771 			c->Request.CDB[0] =  cmd;
6772 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6773 			/* If bytes 4-7 are zero, it means reset the */
6774 			/* LunID device */
6775 			c->Request.CDB[4] = 0x00;
6776 			c->Request.CDB[5] = 0x00;
6777 			c->Request.CDB[6] = 0x00;
6778 			c->Request.CDB[7] = 0x00;
6779 			break;
6780 		default:
6781 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6782 				cmd);
6783 			BUG();
6784 		}
6785 	} else {
6786 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6787 		BUG();
6788 	}
6789 
6790 	switch (GET_DIR(c->Request.type_attr_dir)) {
6791 	case XFER_READ:
6792 		dir = DMA_FROM_DEVICE;
6793 		break;
6794 	case XFER_WRITE:
6795 		dir = DMA_TO_DEVICE;
6796 		break;
6797 	case XFER_NONE:
6798 		dir = DMA_NONE;
6799 		break;
6800 	default:
6801 		dir = DMA_BIDIRECTIONAL;
6802 	}
6803 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6804 		return -1;
6805 	return 0;
6806 }
6807 
6808 /*
6809  * Map (physical) PCI mem into (virtual) kernel space
6810  */
6811 static void __iomem *remap_pci_mem(ulong base, ulong size)
6812 {
6813 	ulong page_base = ((ulong) base) & PAGE_MASK;
6814 	ulong page_offs = ((ulong) base) - page_base;
6815 	void __iomem *page_remapped = ioremap_nocache(page_base,
6816 		page_offs + size);
6817 
6818 	return page_remapped ? (page_remapped + page_offs) : NULL;
6819 }
6820 
6821 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6822 {
6823 	return h->access.command_completed(h, q);
6824 }
6825 
6826 static inline bool interrupt_pending(struct ctlr_info *h)
6827 {
6828 	return h->access.intr_pending(h);
6829 }
6830 
6831 static inline long interrupt_not_for_us(struct ctlr_info *h)
6832 {
6833 	return (h->access.intr_pending(h) == 0) ||
6834 		(h->interrupts_enabled == 0);
6835 }
6836 
6837 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6838 	u32 raw_tag)
6839 {
6840 	if (unlikely(tag_index >= h->nr_cmds)) {
6841 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6842 		return 1;
6843 	}
6844 	return 0;
6845 }
6846 
6847 static inline void finish_cmd(struct CommandList *c)
6848 {
6849 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6850 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6851 			|| c->cmd_type == CMD_IOACCEL2))
6852 		complete_scsi_command(c);
6853 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6854 		complete(c->waiting);
6855 }
6856 
6857 /* process completion of an indexed ("direct lookup") command */
6858 static inline void process_indexed_cmd(struct ctlr_info *h,
6859 	u32 raw_tag)
6860 {
6861 	u32 tag_index;
6862 	struct CommandList *c;
6863 
6864 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6865 	if (!bad_tag(h, tag_index, raw_tag)) {
6866 		c = h->cmd_pool + tag_index;
6867 		finish_cmd(c);
6868 	}
6869 }
6870 
6871 /* Some controllers, like p400, will give us one interrupt
6872  * after a soft reset, even if we turned interrupts off.
6873  * Only need to check for this in the hpsa_xxx_discard_completions
6874  * functions.
6875  */
6876 static int ignore_bogus_interrupt(struct ctlr_info *h)
6877 {
6878 	if (likely(!reset_devices))
6879 		return 0;
6880 
6881 	if (likely(h->interrupts_enabled))
6882 		return 0;
6883 
6884 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6885 		"(known firmware bug.)  Ignoring.\n");
6886 
6887 	return 1;
6888 }
6889 
6890 /*
6891  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6892  * Relies on (h-q[x] == x) being true for x such that
6893  * 0 <= x < MAX_REPLY_QUEUES.
6894  */
6895 static struct ctlr_info *queue_to_hba(u8 *queue)
6896 {
6897 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6898 }
6899 
6900 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6901 {
6902 	struct ctlr_info *h = queue_to_hba(queue);
6903 	u8 q = *(u8 *) queue;
6904 	u32 raw_tag;
6905 
6906 	if (ignore_bogus_interrupt(h))
6907 		return IRQ_NONE;
6908 
6909 	if (interrupt_not_for_us(h))
6910 		return IRQ_NONE;
6911 	h->last_intr_timestamp = get_jiffies_64();
6912 	while (interrupt_pending(h)) {
6913 		raw_tag = get_next_completion(h, q);
6914 		while (raw_tag != FIFO_EMPTY)
6915 			raw_tag = next_command(h, q);
6916 	}
6917 	return IRQ_HANDLED;
6918 }
6919 
6920 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6921 {
6922 	struct ctlr_info *h = queue_to_hba(queue);
6923 	u32 raw_tag;
6924 	u8 q = *(u8 *) queue;
6925 
6926 	if (ignore_bogus_interrupt(h))
6927 		return IRQ_NONE;
6928 
6929 	h->last_intr_timestamp = get_jiffies_64();
6930 	raw_tag = get_next_completion(h, q);
6931 	while (raw_tag != FIFO_EMPTY)
6932 		raw_tag = next_command(h, q);
6933 	return IRQ_HANDLED;
6934 }
6935 
6936 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6937 {
6938 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6939 	u32 raw_tag;
6940 	u8 q = *(u8 *) queue;
6941 
6942 	if (interrupt_not_for_us(h))
6943 		return IRQ_NONE;
6944 	h->last_intr_timestamp = get_jiffies_64();
6945 	while (interrupt_pending(h)) {
6946 		raw_tag = get_next_completion(h, q);
6947 		while (raw_tag != FIFO_EMPTY) {
6948 			process_indexed_cmd(h, raw_tag);
6949 			raw_tag = next_command(h, q);
6950 		}
6951 	}
6952 	return IRQ_HANDLED;
6953 }
6954 
6955 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6956 {
6957 	struct ctlr_info *h = queue_to_hba(queue);
6958 	u32 raw_tag;
6959 	u8 q = *(u8 *) queue;
6960 
6961 	h->last_intr_timestamp = get_jiffies_64();
6962 	raw_tag = get_next_completion(h, q);
6963 	while (raw_tag != FIFO_EMPTY) {
6964 		process_indexed_cmd(h, raw_tag);
6965 		raw_tag = next_command(h, q);
6966 	}
6967 	return IRQ_HANDLED;
6968 }
6969 
6970 /* Send a message CDB to the firmware. Careful, this only works
6971  * in simple mode, not performant mode due to the tag lookup.
6972  * We only ever use this immediately after a controller reset.
6973  */
6974 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6975 			unsigned char type)
6976 {
6977 	struct Command {
6978 		struct CommandListHeader CommandHeader;
6979 		struct RequestBlock Request;
6980 		struct ErrDescriptor ErrorDescriptor;
6981 	};
6982 	struct Command *cmd;
6983 	static const size_t cmd_sz = sizeof(*cmd) +
6984 					sizeof(cmd->ErrorDescriptor);
6985 	dma_addr_t paddr64;
6986 	__le32 paddr32;
6987 	u32 tag;
6988 	void __iomem *vaddr;
6989 	int i, err;
6990 
6991 	vaddr = pci_ioremap_bar(pdev, 0);
6992 	if (vaddr == NULL)
6993 		return -ENOMEM;
6994 
6995 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6996 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6997 	 * memory.
6998 	 */
6999 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7000 	if (err) {
7001 		iounmap(vaddr);
7002 		return err;
7003 	}
7004 
7005 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7006 	if (cmd == NULL) {
7007 		iounmap(vaddr);
7008 		return -ENOMEM;
7009 	}
7010 
7011 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7012 	 * although there's no guarantee, we assume that the address is at
7013 	 * least 4-byte aligned (most likely, it's page-aligned).
7014 	 */
7015 	paddr32 = cpu_to_le32(paddr64);
7016 
7017 	cmd->CommandHeader.ReplyQueue = 0;
7018 	cmd->CommandHeader.SGList = 0;
7019 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7020 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7021 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7022 
7023 	cmd->Request.CDBLen = 16;
7024 	cmd->Request.type_attr_dir =
7025 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7026 	cmd->Request.Timeout = 0; /* Don't time out */
7027 	cmd->Request.CDB[0] = opcode;
7028 	cmd->Request.CDB[1] = type;
7029 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7030 	cmd->ErrorDescriptor.Addr =
7031 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7032 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7033 
7034 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7035 
7036 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7037 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7038 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7039 			break;
7040 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7041 	}
7042 
7043 	iounmap(vaddr);
7044 
7045 	/* we leak the DMA buffer here ... no choice since the controller could
7046 	 *  still complete the command.
7047 	 */
7048 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7049 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7050 			opcode, type);
7051 		return -ETIMEDOUT;
7052 	}
7053 
7054 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7055 
7056 	if (tag & HPSA_ERROR_BIT) {
7057 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7058 			opcode, type);
7059 		return -EIO;
7060 	}
7061 
7062 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7063 		opcode, type);
7064 	return 0;
7065 }
7066 
7067 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7068 
7069 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7070 	void __iomem *vaddr, u32 use_doorbell)
7071 {
7072 
7073 	if (use_doorbell) {
7074 		/* For everything after the P600, the PCI power state method
7075 		 * of resetting the controller doesn't work, so we have this
7076 		 * other way using the doorbell register.
7077 		 */
7078 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7079 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7080 
7081 		/* PMC hardware guys tell us we need a 10 second delay after
7082 		 * doorbell reset and before any attempt to talk to the board
7083 		 * at all to ensure that this actually works and doesn't fall
7084 		 * over in some weird corner cases.
7085 		 */
7086 		msleep(10000);
7087 	} else { /* Try to do it the PCI power state way */
7088 
7089 		/* Quoting from the Open CISS Specification: "The Power
7090 		 * Management Control/Status Register (CSR) controls the power
7091 		 * state of the device.  The normal operating state is D0,
7092 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7093 		 * the controller, place the interface device in D3 then to D0,
7094 		 * this causes a secondary PCI reset which will reset the
7095 		 * controller." */
7096 
7097 		int rc = 0;
7098 
7099 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7100 
7101 		/* enter the D3hot power management state */
7102 		rc = pci_set_power_state(pdev, PCI_D3hot);
7103 		if (rc)
7104 			return rc;
7105 
7106 		msleep(500);
7107 
7108 		/* enter the D0 power management state */
7109 		rc = pci_set_power_state(pdev, PCI_D0);
7110 		if (rc)
7111 			return rc;
7112 
7113 		/*
7114 		 * The P600 requires a small delay when changing states.
7115 		 * Otherwise we may think the board did not reset and we bail.
7116 		 * This for kdump only and is particular to the P600.
7117 		 */
7118 		msleep(500);
7119 	}
7120 	return 0;
7121 }
7122 
7123 static void init_driver_version(char *driver_version, int len)
7124 {
7125 	memset(driver_version, 0, len);
7126 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7127 }
7128 
7129 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7130 {
7131 	char *driver_version;
7132 	int i, size = sizeof(cfgtable->driver_version);
7133 
7134 	driver_version = kmalloc(size, GFP_KERNEL);
7135 	if (!driver_version)
7136 		return -ENOMEM;
7137 
7138 	init_driver_version(driver_version, size);
7139 	for (i = 0; i < size; i++)
7140 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7141 	kfree(driver_version);
7142 	return 0;
7143 }
7144 
7145 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7146 					  unsigned char *driver_ver)
7147 {
7148 	int i;
7149 
7150 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7151 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7152 }
7153 
7154 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7155 {
7156 
7157 	char *driver_ver, *old_driver_ver;
7158 	int rc, size = sizeof(cfgtable->driver_version);
7159 
7160 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7161 	if (!old_driver_ver)
7162 		return -ENOMEM;
7163 	driver_ver = old_driver_ver + size;
7164 
7165 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7166 	 * should have been changed, otherwise we know the reset failed.
7167 	 */
7168 	init_driver_version(old_driver_ver, size);
7169 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7170 	rc = !memcmp(driver_ver, old_driver_ver, size);
7171 	kfree(old_driver_ver);
7172 	return rc;
7173 }
7174 /* This does a hard reset of the controller using PCI power management
7175  * states or the using the doorbell register.
7176  */
7177 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7178 {
7179 	u64 cfg_offset;
7180 	u32 cfg_base_addr;
7181 	u64 cfg_base_addr_index;
7182 	void __iomem *vaddr;
7183 	unsigned long paddr;
7184 	u32 misc_fw_support;
7185 	int rc;
7186 	struct CfgTable __iomem *cfgtable;
7187 	u32 use_doorbell;
7188 	u16 command_register;
7189 
7190 	/* For controllers as old as the P600, this is very nearly
7191 	 * the same thing as
7192 	 *
7193 	 * pci_save_state(pci_dev);
7194 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7195 	 * pci_set_power_state(pci_dev, PCI_D0);
7196 	 * pci_restore_state(pci_dev);
7197 	 *
7198 	 * For controllers newer than the P600, the pci power state
7199 	 * method of resetting doesn't work so we have another way
7200 	 * using the doorbell register.
7201 	 */
7202 
7203 	if (!ctlr_is_resettable(board_id)) {
7204 		dev_warn(&pdev->dev, "Controller not resettable\n");
7205 		return -ENODEV;
7206 	}
7207 
7208 	/* if controller is soft- but not hard resettable... */
7209 	if (!ctlr_is_hard_resettable(board_id))
7210 		return -ENOTSUPP; /* try soft reset later. */
7211 
7212 	/* Save the PCI command register */
7213 	pci_read_config_word(pdev, 4, &command_register);
7214 	pci_save_state(pdev);
7215 
7216 	/* find the first memory BAR, so we can find the cfg table */
7217 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7218 	if (rc)
7219 		return rc;
7220 	vaddr = remap_pci_mem(paddr, 0x250);
7221 	if (!vaddr)
7222 		return -ENOMEM;
7223 
7224 	/* find cfgtable in order to check if reset via doorbell is supported */
7225 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7226 					&cfg_base_addr_index, &cfg_offset);
7227 	if (rc)
7228 		goto unmap_vaddr;
7229 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7230 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7231 	if (!cfgtable) {
7232 		rc = -ENOMEM;
7233 		goto unmap_vaddr;
7234 	}
7235 	rc = write_driver_ver_to_cfgtable(cfgtable);
7236 	if (rc)
7237 		goto unmap_cfgtable;
7238 
7239 	/* If reset via doorbell register is supported, use that.
7240 	 * There are two such methods.  Favor the newest method.
7241 	 */
7242 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7243 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7244 	if (use_doorbell) {
7245 		use_doorbell = DOORBELL_CTLR_RESET2;
7246 	} else {
7247 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7248 		if (use_doorbell) {
7249 			dev_warn(&pdev->dev,
7250 				"Soft reset not supported. Firmware update is required.\n");
7251 			rc = -ENOTSUPP; /* try soft reset */
7252 			goto unmap_cfgtable;
7253 		}
7254 	}
7255 
7256 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7257 	if (rc)
7258 		goto unmap_cfgtable;
7259 
7260 	pci_restore_state(pdev);
7261 	pci_write_config_word(pdev, 4, command_register);
7262 
7263 	/* Some devices (notably the HP Smart Array 5i Controller)
7264 	   need a little pause here */
7265 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7266 
7267 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7268 	if (rc) {
7269 		dev_warn(&pdev->dev,
7270 			"Failed waiting for board to become ready after hard reset\n");
7271 		goto unmap_cfgtable;
7272 	}
7273 
7274 	rc = controller_reset_failed(vaddr);
7275 	if (rc < 0)
7276 		goto unmap_cfgtable;
7277 	if (rc) {
7278 		dev_warn(&pdev->dev, "Unable to successfully reset "
7279 			"controller. Will try soft reset.\n");
7280 		rc = -ENOTSUPP;
7281 	} else {
7282 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7283 	}
7284 
7285 unmap_cfgtable:
7286 	iounmap(cfgtable);
7287 
7288 unmap_vaddr:
7289 	iounmap(vaddr);
7290 	return rc;
7291 }
7292 
7293 /*
7294  *  We cannot read the structure directly, for portability we must use
7295  *   the io functions.
7296  *   This is for debug only.
7297  */
7298 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7299 {
7300 #ifdef HPSA_DEBUG
7301 	int i;
7302 	char temp_name[17];
7303 
7304 	dev_info(dev, "Controller Configuration information\n");
7305 	dev_info(dev, "------------------------------------\n");
7306 	for (i = 0; i < 4; i++)
7307 		temp_name[i] = readb(&(tb->Signature[i]));
7308 	temp_name[4] = '\0';
7309 	dev_info(dev, "   Signature = %s\n", temp_name);
7310 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7311 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7312 	       readl(&(tb->TransportSupport)));
7313 	dev_info(dev, "   Transport methods active = 0x%x\n",
7314 	       readl(&(tb->TransportActive)));
7315 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7316 	       readl(&(tb->HostWrite.TransportRequest)));
7317 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7318 	       readl(&(tb->HostWrite.CoalIntDelay)));
7319 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7320 	       readl(&(tb->HostWrite.CoalIntCount)));
7321 	dev_info(dev, "   Max outstanding commands = %d\n",
7322 	       readl(&(tb->CmdsOutMax)));
7323 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7324 	for (i = 0; i < 16; i++)
7325 		temp_name[i] = readb(&(tb->ServerName[i]));
7326 	temp_name[16] = '\0';
7327 	dev_info(dev, "   Server Name = %s\n", temp_name);
7328 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7329 		readl(&(tb->HeartBeat)));
7330 #endif				/* HPSA_DEBUG */
7331 }
7332 
7333 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7334 {
7335 	int i, offset, mem_type, bar_type;
7336 
7337 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7338 		return 0;
7339 	offset = 0;
7340 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7341 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7342 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7343 			offset += 4;
7344 		else {
7345 			mem_type = pci_resource_flags(pdev, i) &
7346 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7347 			switch (mem_type) {
7348 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7349 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7350 				offset += 4;	/* 32 bit */
7351 				break;
7352 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7353 				offset += 8;
7354 				break;
7355 			default:	/* reserved in PCI 2.2 */
7356 				dev_warn(&pdev->dev,
7357 				       "base address is invalid\n");
7358 				return -1;
7359 				break;
7360 			}
7361 		}
7362 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7363 			return i + 1;
7364 	}
7365 	return -1;
7366 }
7367 
7368 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7369 {
7370 	pci_free_irq_vectors(h->pdev);
7371 	h->msix_vectors = 0;
7372 }
7373 
7374 static void hpsa_setup_reply_map(struct ctlr_info *h)
7375 {
7376 	const struct cpumask *mask;
7377 	unsigned int queue, cpu;
7378 
7379 	for (queue = 0; queue < h->msix_vectors; queue++) {
7380 		mask = pci_irq_get_affinity(h->pdev, queue);
7381 		if (!mask)
7382 			goto fallback;
7383 
7384 		for_each_cpu(cpu, mask)
7385 			h->reply_map[cpu] = queue;
7386 	}
7387 	return;
7388 
7389 fallback:
7390 	for_each_possible_cpu(cpu)
7391 		h->reply_map[cpu] = 0;
7392 }
7393 
7394 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7395  * controllers that are capable. If not, we use legacy INTx mode.
7396  */
7397 static int hpsa_interrupt_mode(struct ctlr_info *h)
7398 {
7399 	unsigned int flags = PCI_IRQ_LEGACY;
7400 	int ret;
7401 
7402 	/* Some boards advertise MSI but don't really support it */
7403 	switch (h->board_id) {
7404 	case 0x40700E11:
7405 	case 0x40800E11:
7406 	case 0x40820E11:
7407 	case 0x40830E11:
7408 		break;
7409 	default:
7410 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7411 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7412 		if (ret > 0) {
7413 			h->msix_vectors = ret;
7414 			return 0;
7415 		}
7416 
7417 		flags |= PCI_IRQ_MSI;
7418 		break;
7419 	}
7420 
7421 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7422 	if (ret < 0)
7423 		return ret;
7424 	return 0;
7425 }
7426 
7427 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7428 				bool *legacy_board)
7429 {
7430 	int i;
7431 	u32 subsystem_vendor_id, subsystem_device_id;
7432 
7433 	subsystem_vendor_id = pdev->subsystem_vendor;
7434 	subsystem_device_id = pdev->subsystem_device;
7435 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7436 		    subsystem_vendor_id;
7437 
7438 	if (legacy_board)
7439 		*legacy_board = false;
7440 	for (i = 0; i < ARRAY_SIZE(products); i++)
7441 		if (*board_id == products[i].board_id) {
7442 			if (products[i].access != &SA5A_access &&
7443 			    products[i].access != &SA5B_access)
7444 				return i;
7445 			dev_warn(&pdev->dev,
7446 				 "legacy board ID: 0x%08x\n",
7447 				 *board_id);
7448 			if (legacy_board)
7449 			    *legacy_board = true;
7450 			return i;
7451 		}
7452 
7453 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7454 	if (legacy_board)
7455 		*legacy_board = true;
7456 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7457 }
7458 
7459 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7460 				    unsigned long *memory_bar)
7461 {
7462 	int i;
7463 
7464 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7465 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7466 			/* addressing mode bits already removed */
7467 			*memory_bar = pci_resource_start(pdev, i);
7468 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7469 				*memory_bar);
7470 			return 0;
7471 		}
7472 	dev_warn(&pdev->dev, "no memory BAR found\n");
7473 	return -ENODEV;
7474 }
7475 
7476 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7477 				     int wait_for_ready)
7478 {
7479 	int i, iterations;
7480 	u32 scratchpad;
7481 	if (wait_for_ready)
7482 		iterations = HPSA_BOARD_READY_ITERATIONS;
7483 	else
7484 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7485 
7486 	for (i = 0; i < iterations; i++) {
7487 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7488 		if (wait_for_ready) {
7489 			if (scratchpad == HPSA_FIRMWARE_READY)
7490 				return 0;
7491 		} else {
7492 			if (scratchpad != HPSA_FIRMWARE_READY)
7493 				return 0;
7494 		}
7495 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7496 	}
7497 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7498 	return -ENODEV;
7499 }
7500 
7501 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7502 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7503 			       u64 *cfg_offset)
7504 {
7505 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7506 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7507 	*cfg_base_addr &= (u32) 0x0000ffff;
7508 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7509 	if (*cfg_base_addr_index == -1) {
7510 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7511 		return -ENODEV;
7512 	}
7513 	return 0;
7514 }
7515 
7516 static void hpsa_free_cfgtables(struct ctlr_info *h)
7517 {
7518 	if (h->transtable) {
7519 		iounmap(h->transtable);
7520 		h->transtable = NULL;
7521 	}
7522 	if (h->cfgtable) {
7523 		iounmap(h->cfgtable);
7524 		h->cfgtable = NULL;
7525 	}
7526 }
7527 
7528 /* Find and map CISS config table and transfer table
7529 + * several items must be unmapped (freed) later
7530 + * */
7531 static int hpsa_find_cfgtables(struct ctlr_info *h)
7532 {
7533 	u64 cfg_offset;
7534 	u32 cfg_base_addr;
7535 	u64 cfg_base_addr_index;
7536 	u32 trans_offset;
7537 	int rc;
7538 
7539 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7540 		&cfg_base_addr_index, &cfg_offset);
7541 	if (rc)
7542 		return rc;
7543 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7544 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7545 	if (!h->cfgtable) {
7546 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7547 		return -ENOMEM;
7548 	}
7549 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7550 	if (rc)
7551 		return rc;
7552 	/* Find performant mode table. */
7553 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7554 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7555 				cfg_base_addr_index)+cfg_offset+trans_offset,
7556 				sizeof(*h->transtable));
7557 	if (!h->transtable) {
7558 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7559 		hpsa_free_cfgtables(h);
7560 		return -ENOMEM;
7561 	}
7562 	return 0;
7563 }
7564 
7565 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7566 {
7567 #define MIN_MAX_COMMANDS 16
7568 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7569 
7570 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7571 
7572 	/* Limit commands in memory limited kdump scenario. */
7573 	if (reset_devices && h->max_commands > 32)
7574 		h->max_commands = 32;
7575 
7576 	if (h->max_commands < MIN_MAX_COMMANDS) {
7577 		dev_warn(&h->pdev->dev,
7578 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7579 			h->max_commands,
7580 			MIN_MAX_COMMANDS);
7581 		h->max_commands = MIN_MAX_COMMANDS;
7582 	}
7583 }
7584 
7585 /* If the controller reports that the total max sg entries is greater than 512,
7586  * then we know that chained SG blocks work.  (Original smart arrays did not
7587  * support chained SG blocks and would return zero for max sg entries.)
7588  */
7589 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7590 {
7591 	return h->maxsgentries > 512;
7592 }
7593 
7594 /* Interrogate the hardware for some limits:
7595  * max commands, max SG elements without chaining, and with chaining,
7596  * SG chain block size, etc.
7597  */
7598 static void hpsa_find_board_params(struct ctlr_info *h)
7599 {
7600 	hpsa_get_max_perf_mode_cmds(h);
7601 	h->nr_cmds = h->max_commands;
7602 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7603 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7604 	if (hpsa_supports_chained_sg_blocks(h)) {
7605 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7606 		h->max_cmd_sg_entries = 32;
7607 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7608 		h->maxsgentries--; /* save one for chain pointer */
7609 	} else {
7610 		/*
7611 		 * Original smart arrays supported at most 31 s/g entries
7612 		 * embedded inline in the command (trying to use more
7613 		 * would lock up the controller)
7614 		 */
7615 		h->max_cmd_sg_entries = 31;
7616 		h->maxsgentries = 31; /* default to traditional values */
7617 		h->chainsize = 0;
7618 	}
7619 
7620 	/* Find out what task management functions are supported and cache */
7621 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7622 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7623 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7624 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7625 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7626 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7627 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7628 }
7629 
7630 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7631 {
7632 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7633 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7634 		return false;
7635 	}
7636 	return true;
7637 }
7638 
7639 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7640 {
7641 	u32 driver_support;
7642 
7643 	driver_support = readl(&(h->cfgtable->driver_support));
7644 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7645 #ifdef CONFIG_X86
7646 	driver_support |= ENABLE_SCSI_PREFETCH;
7647 #endif
7648 	driver_support |= ENABLE_UNIT_ATTN;
7649 	writel(driver_support, &(h->cfgtable->driver_support));
7650 }
7651 
7652 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7653  * in a prefetch beyond physical memory.
7654  */
7655 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7656 {
7657 	u32 dma_prefetch;
7658 
7659 	if (h->board_id != 0x3225103C)
7660 		return;
7661 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7662 	dma_prefetch |= 0x8000;
7663 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7664 }
7665 
7666 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7667 {
7668 	int i;
7669 	u32 doorbell_value;
7670 	unsigned long flags;
7671 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7672 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7673 		spin_lock_irqsave(&h->lock, flags);
7674 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7675 		spin_unlock_irqrestore(&h->lock, flags);
7676 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7677 			goto done;
7678 		/* delay and try again */
7679 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7680 	}
7681 	return -ENODEV;
7682 done:
7683 	return 0;
7684 }
7685 
7686 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7687 {
7688 	int i;
7689 	u32 doorbell_value;
7690 	unsigned long flags;
7691 
7692 	/* under certain very rare conditions, this can take awhile.
7693 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7694 	 * as we enter this code.)
7695 	 */
7696 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7697 		if (h->remove_in_progress)
7698 			goto done;
7699 		spin_lock_irqsave(&h->lock, flags);
7700 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7701 		spin_unlock_irqrestore(&h->lock, flags);
7702 		if (!(doorbell_value & CFGTBL_ChangeReq))
7703 			goto done;
7704 		/* delay and try again */
7705 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7706 	}
7707 	return -ENODEV;
7708 done:
7709 	return 0;
7710 }
7711 
7712 /* return -ENODEV or other reason on error, 0 on success */
7713 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7714 {
7715 	u32 trans_support;
7716 
7717 	trans_support = readl(&(h->cfgtable->TransportSupport));
7718 	if (!(trans_support & SIMPLE_MODE))
7719 		return -ENOTSUPP;
7720 
7721 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7722 
7723 	/* Update the field, and then ring the doorbell */
7724 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7725 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7726 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7727 	if (hpsa_wait_for_mode_change_ack(h))
7728 		goto error;
7729 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7730 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7731 		goto error;
7732 	h->transMethod = CFGTBL_Trans_Simple;
7733 	return 0;
7734 error:
7735 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7736 	return -ENODEV;
7737 }
7738 
7739 /* free items allocated or mapped by hpsa_pci_init */
7740 static void hpsa_free_pci_init(struct ctlr_info *h)
7741 {
7742 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7743 	iounmap(h->vaddr);			/* pci_init 3 */
7744 	h->vaddr = NULL;
7745 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7746 	/*
7747 	 * call pci_disable_device before pci_release_regions per
7748 	 * Documentation/PCI/pci.txt
7749 	 */
7750 	pci_disable_device(h->pdev);		/* pci_init 1 */
7751 	pci_release_regions(h->pdev);		/* pci_init 2 */
7752 }
7753 
7754 /* several items must be freed later */
7755 static int hpsa_pci_init(struct ctlr_info *h)
7756 {
7757 	int prod_index, err;
7758 	bool legacy_board;
7759 
7760 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7761 	if (prod_index < 0)
7762 		return prod_index;
7763 	h->product_name = products[prod_index].product_name;
7764 	h->access = *(products[prod_index].access);
7765 	h->legacy_board = legacy_board;
7766 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7767 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7768 
7769 	err = pci_enable_device(h->pdev);
7770 	if (err) {
7771 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7772 		pci_disable_device(h->pdev);
7773 		return err;
7774 	}
7775 
7776 	err = pci_request_regions(h->pdev, HPSA);
7777 	if (err) {
7778 		dev_err(&h->pdev->dev,
7779 			"failed to obtain PCI resources\n");
7780 		pci_disable_device(h->pdev);
7781 		return err;
7782 	}
7783 
7784 	pci_set_master(h->pdev);
7785 
7786 	err = hpsa_interrupt_mode(h);
7787 	if (err)
7788 		goto clean1;
7789 
7790 	/* setup mapping between CPU and reply queue */
7791 	hpsa_setup_reply_map(h);
7792 
7793 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7794 	if (err)
7795 		goto clean2;	/* intmode+region, pci */
7796 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7797 	if (!h->vaddr) {
7798 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7799 		err = -ENOMEM;
7800 		goto clean2;	/* intmode+region, pci */
7801 	}
7802 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7803 	if (err)
7804 		goto clean3;	/* vaddr, intmode+region, pci */
7805 	err = hpsa_find_cfgtables(h);
7806 	if (err)
7807 		goto clean3;	/* vaddr, intmode+region, pci */
7808 	hpsa_find_board_params(h);
7809 
7810 	if (!hpsa_CISS_signature_present(h)) {
7811 		err = -ENODEV;
7812 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7813 	}
7814 	hpsa_set_driver_support_bits(h);
7815 	hpsa_p600_dma_prefetch_quirk(h);
7816 	err = hpsa_enter_simple_mode(h);
7817 	if (err)
7818 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7819 	return 0;
7820 
7821 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7822 	hpsa_free_cfgtables(h);
7823 clean3:	/* vaddr, intmode+region, pci */
7824 	iounmap(h->vaddr);
7825 	h->vaddr = NULL;
7826 clean2:	/* intmode+region, pci */
7827 	hpsa_disable_interrupt_mode(h);
7828 clean1:
7829 	/*
7830 	 * call pci_disable_device before pci_release_regions per
7831 	 * Documentation/PCI/pci.txt
7832 	 */
7833 	pci_disable_device(h->pdev);
7834 	pci_release_regions(h->pdev);
7835 	return err;
7836 }
7837 
7838 static void hpsa_hba_inquiry(struct ctlr_info *h)
7839 {
7840 	int rc;
7841 
7842 #define HBA_INQUIRY_BYTE_COUNT 64
7843 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7844 	if (!h->hba_inquiry_data)
7845 		return;
7846 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7847 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7848 	if (rc != 0) {
7849 		kfree(h->hba_inquiry_data);
7850 		h->hba_inquiry_data = NULL;
7851 	}
7852 }
7853 
7854 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7855 {
7856 	int rc, i;
7857 	void __iomem *vaddr;
7858 
7859 	if (!reset_devices)
7860 		return 0;
7861 
7862 	/* kdump kernel is loading, we don't know in which state is
7863 	 * the pci interface. The dev->enable_cnt is equal zero
7864 	 * so we call enable+disable, wait a while and switch it on.
7865 	 */
7866 	rc = pci_enable_device(pdev);
7867 	if (rc) {
7868 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7869 		return -ENODEV;
7870 	}
7871 	pci_disable_device(pdev);
7872 	msleep(260);			/* a randomly chosen number */
7873 	rc = pci_enable_device(pdev);
7874 	if (rc) {
7875 		dev_warn(&pdev->dev, "failed to enable device.\n");
7876 		return -ENODEV;
7877 	}
7878 
7879 	pci_set_master(pdev);
7880 
7881 	vaddr = pci_ioremap_bar(pdev, 0);
7882 	if (vaddr == NULL) {
7883 		rc = -ENOMEM;
7884 		goto out_disable;
7885 	}
7886 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7887 	iounmap(vaddr);
7888 
7889 	/* Reset the controller with a PCI power-cycle or via doorbell */
7890 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7891 
7892 	/* -ENOTSUPP here means we cannot reset the controller
7893 	 * but it's already (and still) up and running in
7894 	 * "performant mode".  Or, it might be 640x, which can't reset
7895 	 * due to concerns about shared bbwc between 6402/6404 pair.
7896 	 */
7897 	if (rc)
7898 		goto out_disable;
7899 
7900 	/* Now try to get the controller to respond to a no-op */
7901 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7902 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7903 		if (hpsa_noop(pdev) == 0)
7904 			break;
7905 		else
7906 			dev_warn(&pdev->dev, "no-op failed%s\n",
7907 					(i < 11 ? "; re-trying" : ""));
7908 	}
7909 
7910 out_disable:
7911 
7912 	pci_disable_device(pdev);
7913 	return rc;
7914 }
7915 
7916 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7917 {
7918 	kfree(h->cmd_pool_bits);
7919 	h->cmd_pool_bits = NULL;
7920 	if (h->cmd_pool) {
7921 		dma_free_coherent(&h->pdev->dev,
7922 				h->nr_cmds * sizeof(struct CommandList),
7923 				h->cmd_pool,
7924 				h->cmd_pool_dhandle);
7925 		h->cmd_pool = NULL;
7926 		h->cmd_pool_dhandle = 0;
7927 	}
7928 	if (h->errinfo_pool) {
7929 		dma_free_coherent(&h->pdev->dev,
7930 				h->nr_cmds * sizeof(struct ErrorInfo),
7931 				h->errinfo_pool,
7932 				h->errinfo_pool_dhandle);
7933 		h->errinfo_pool = NULL;
7934 		h->errinfo_pool_dhandle = 0;
7935 	}
7936 }
7937 
7938 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7939 {
7940 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7941 				   sizeof(unsigned long),
7942 				   GFP_KERNEL);
7943 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7944 		    h->nr_cmds * sizeof(*h->cmd_pool),
7945 		    &h->cmd_pool_dhandle, GFP_KERNEL);
7946 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7947 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7948 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
7949 	if ((h->cmd_pool_bits == NULL)
7950 	    || (h->cmd_pool == NULL)
7951 	    || (h->errinfo_pool == NULL)) {
7952 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7953 		goto clean_up;
7954 	}
7955 	hpsa_preinitialize_commands(h);
7956 	return 0;
7957 clean_up:
7958 	hpsa_free_cmd_pool(h);
7959 	return -ENOMEM;
7960 }
7961 
7962 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7963 static void hpsa_free_irqs(struct ctlr_info *h)
7964 {
7965 	int i;
7966 
7967 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7968 		/* Single reply queue, only one irq to free */
7969 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7970 		h->q[h->intr_mode] = 0;
7971 		return;
7972 	}
7973 
7974 	for (i = 0; i < h->msix_vectors; i++) {
7975 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7976 		h->q[i] = 0;
7977 	}
7978 	for (; i < MAX_REPLY_QUEUES; i++)
7979 		h->q[i] = 0;
7980 }
7981 
7982 /* returns 0 on success; cleans up and returns -Enn on error */
7983 static int hpsa_request_irqs(struct ctlr_info *h,
7984 	irqreturn_t (*msixhandler)(int, void *),
7985 	irqreturn_t (*intxhandler)(int, void *))
7986 {
7987 	int rc, i;
7988 
7989 	/*
7990 	 * initialize h->q[x] = x so that interrupt handlers know which
7991 	 * queue to process.
7992 	 */
7993 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7994 		h->q[i] = (u8) i;
7995 
7996 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7997 		/* If performant mode and MSI-X, use multiple reply queues */
7998 		for (i = 0; i < h->msix_vectors; i++) {
7999 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8000 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8001 					0, h->intrname[i],
8002 					&h->q[i]);
8003 			if (rc) {
8004 				int j;
8005 
8006 				dev_err(&h->pdev->dev,
8007 					"failed to get irq %d for %s\n",
8008 				       pci_irq_vector(h->pdev, i), h->devname);
8009 				for (j = 0; j < i; j++) {
8010 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8011 					h->q[j] = 0;
8012 				}
8013 				for (; j < MAX_REPLY_QUEUES; j++)
8014 					h->q[j] = 0;
8015 				return rc;
8016 			}
8017 		}
8018 	} else {
8019 		/* Use single reply pool */
8020 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8021 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8022 				h->msix_vectors ? "x" : "");
8023 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8024 				msixhandler, 0,
8025 				h->intrname[0],
8026 				&h->q[h->intr_mode]);
8027 		} else {
8028 			sprintf(h->intrname[h->intr_mode],
8029 				"%s-intx", h->devname);
8030 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8031 				intxhandler, IRQF_SHARED,
8032 				h->intrname[0],
8033 				&h->q[h->intr_mode]);
8034 		}
8035 	}
8036 	if (rc) {
8037 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8038 		       pci_irq_vector(h->pdev, 0), h->devname);
8039 		hpsa_free_irqs(h);
8040 		return -ENODEV;
8041 	}
8042 	return 0;
8043 }
8044 
8045 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8046 {
8047 	int rc;
8048 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8049 
8050 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8051 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8052 	if (rc) {
8053 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8054 		return rc;
8055 	}
8056 
8057 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8058 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8059 	if (rc) {
8060 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8061 			"after soft reset.\n");
8062 		return rc;
8063 	}
8064 
8065 	return 0;
8066 }
8067 
8068 static void hpsa_free_reply_queues(struct ctlr_info *h)
8069 {
8070 	int i;
8071 
8072 	for (i = 0; i < h->nreply_queues; i++) {
8073 		if (!h->reply_queue[i].head)
8074 			continue;
8075 		dma_free_coherent(&h->pdev->dev,
8076 					h->reply_queue_size,
8077 					h->reply_queue[i].head,
8078 					h->reply_queue[i].busaddr);
8079 		h->reply_queue[i].head = NULL;
8080 		h->reply_queue[i].busaddr = 0;
8081 	}
8082 	h->reply_queue_size = 0;
8083 }
8084 
8085 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8086 {
8087 	hpsa_free_performant_mode(h);		/* init_one 7 */
8088 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8089 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8090 	hpsa_free_irqs(h);			/* init_one 4 */
8091 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8092 	h->scsi_host = NULL;			/* init_one 3 */
8093 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8094 	free_percpu(h->lockup_detected);	/* init_one 2 */
8095 	h->lockup_detected = NULL;		/* init_one 2 */
8096 	if (h->resubmit_wq) {
8097 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8098 		h->resubmit_wq = NULL;
8099 	}
8100 	if (h->rescan_ctlr_wq) {
8101 		destroy_workqueue(h->rescan_ctlr_wq);
8102 		h->rescan_ctlr_wq = NULL;
8103 	}
8104 	kfree(h);				/* init_one 1 */
8105 }
8106 
8107 /* Called when controller lockup detected. */
8108 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8109 {
8110 	int i, refcount;
8111 	struct CommandList *c;
8112 	int failcount = 0;
8113 
8114 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8115 	for (i = 0; i < h->nr_cmds; i++) {
8116 		c = h->cmd_pool + i;
8117 		refcount = atomic_inc_return(&c->refcount);
8118 		if (refcount > 1) {
8119 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8120 			finish_cmd(c);
8121 			atomic_dec(&h->commands_outstanding);
8122 			failcount++;
8123 		}
8124 		cmd_free(h, c);
8125 	}
8126 	dev_warn(&h->pdev->dev,
8127 		"failed %d commands in fail_all\n", failcount);
8128 }
8129 
8130 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8131 {
8132 	int cpu;
8133 
8134 	for_each_online_cpu(cpu) {
8135 		u32 *lockup_detected;
8136 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8137 		*lockup_detected = value;
8138 	}
8139 	wmb(); /* be sure the per-cpu variables are out to memory */
8140 }
8141 
8142 static void controller_lockup_detected(struct ctlr_info *h)
8143 {
8144 	unsigned long flags;
8145 	u32 lockup_detected;
8146 
8147 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8148 	spin_lock_irqsave(&h->lock, flags);
8149 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8150 	if (!lockup_detected) {
8151 		/* no heartbeat, but controller gave us a zero. */
8152 		dev_warn(&h->pdev->dev,
8153 			"lockup detected after %d but scratchpad register is zero\n",
8154 			h->heartbeat_sample_interval / HZ);
8155 		lockup_detected = 0xffffffff;
8156 	}
8157 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8158 	spin_unlock_irqrestore(&h->lock, flags);
8159 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8160 			lockup_detected, h->heartbeat_sample_interval / HZ);
8161 	if (lockup_detected == 0xffff0000) {
8162 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8163 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8164 	}
8165 	pci_disable_device(h->pdev);
8166 	fail_all_outstanding_cmds(h);
8167 }
8168 
8169 static int detect_controller_lockup(struct ctlr_info *h)
8170 {
8171 	u64 now;
8172 	u32 heartbeat;
8173 	unsigned long flags;
8174 
8175 	now = get_jiffies_64();
8176 	/* If we've received an interrupt recently, we're ok. */
8177 	if (time_after64(h->last_intr_timestamp +
8178 				(h->heartbeat_sample_interval), now))
8179 		return false;
8180 
8181 	/*
8182 	 * If we've already checked the heartbeat recently, we're ok.
8183 	 * This could happen if someone sends us a signal. We
8184 	 * otherwise don't care about signals in this thread.
8185 	 */
8186 	if (time_after64(h->last_heartbeat_timestamp +
8187 				(h->heartbeat_sample_interval), now))
8188 		return false;
8189 
8190 	/* If heartbeat has not changed since we last looked, we're not ok. */
8191 	spin_lock_irqsave(&h->lock, flags);
8192 	heartbeat = readl(&h->cfgtable->HeartBeat);
8193 	spin_unlock_irqrestore(&h->lock, flags);
8194 	if (h->last_heartbeat == heartbeat) {
8195 		controller_lockup_detected(h);
8196 		return true;
8197 	}
8198 
8199 	/* We're ok. */
8200 	h->last_heartbeat = heartbeat;
8201 	h->last_heartbeat_timestamp = now;
8202 	return false;
8203 }
8204 
8205 /*
8206  * Set ioaccel status for all ioaccel volumes.
8207  *
8208  * Called from monitor controller worker (hpsa_event_monitor_worker)
8209  *
8210  * A Volume (or Volumes that comprise an Array set may be undergoing a
8211  * transformation, so we will be turning off ioaccel for all volumes that
8212  * make up the Array.
8213  */
8214 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8215 {
8216 	int rc;
8217 	int i;
8218 	u8 ioaccel_status;
8219 	unsigned char *buf;
8220 	struct hpsa_scsi_dev_t *device;
8221 
8222 	if (!h)
8223 		return;
8224 
8225 	buf = kmalloc(64, GFP_KERNEL);
8226 	if (!buf)
8227 		return;
8228 
8229 	/*
8230 	 * Run through current device list used during I/O requests.
8231 	 */
8232 	for (i = 0; i < h->ndevices; i++) {
8233 		device = h->dev[i];
8234 
8235 		if (!device)
8236 			continue;
8237 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8238 						HPSA_VPD_LV_IOACCEL_STATUS))
8239 			continue;
8240 
8241 		memset(buf, 0, 64);
8242 
8243 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8244 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8245 					buf, 64);
8246 		if (rc != 0)
8247 			continue;
8248 
8249 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8250 		device->offload_config =
8251 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8252 		if (device->offload_config)
8253 			device->offload_to_be_enabled =
8254 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8255 
8256 		/*
8257 		 * Immediately turn off ioaccel for any volume the
8258 		 * controller tells us to. Some of the reasons could be:
8259 		 *    transformation - change to the LVs of an Array.
8260 		 *    degraded volume - component failure
8261 		 *
8262 		 * If ioaccel is to be re-enabled, re-enable later during the
8263 		 * scan operation so the driver can get a fresh raidmap
8264 		 * before turning ioaccel back on.
8265 		 *
8266 		 */
8267 		if (!device->offload_to_be_enabled)
8268 			device->offload_enabled = 0;
8269 	}
8270 
8271 	kfree(buf);
8272 }
8273 
8274 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8275 {
8276 	char *event_type;
8277 
8278 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8279 		return;
8280 
8281 	/* Ask the controller to clear the events we're handling. */
8282 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8283 			| CFGTBL_Trans_io_accel2)) &&
8284 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8285 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8286 
8287 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8288 			event_type = "state change";
8289 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8290 			event_type = "configuration change";
8291 		/* Stop sending new RAID offload reqs via the IO accelerator */
8292 		scsi_block_requests(h->scsi_host);
8293 		hpsa_set_ioaccel_status(h);
8294 		hpsa_drain_accel_commands(h);
8295 		/* Set 'accelerator path config change' bit */
8296 		dev_warn(&h->pdev->dev,
8297 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8298 			h->events, event_type);
8299 		writel(h->events, &(h->cfgtable->clear_event_notify));
8300 		/* Set the "clear event notify field update" bit 6 */
8301 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8302 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8303 		hpsa_wait_for_clear_event_notify_ack(h);
8304 		scsi_unblock_requests(h->scsi_host);
8305 	} else {
8306 		/* Acknowledge controller notification events. */
8307 		writel(h->events, &(h->cfgtable->clear_event_notify));
8308 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8309 		hpsa_wait_for_clear_event_notify_ack(h);
8310 	}
8311 	return;
8312 }
8313 
8314 /* Check a register on the controller to see if there are configuration
8315  * changes (added/changed/removed logical drives, etc.) which mean that
8316  * we should rescan the controller for devices.
8317  * Also check flag for driver-initiated rescan.
8318  */
8319 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8320 {
8321 	if (h->drv_req_rescan) {
8322 		h->drv_req_rescan = 0;
8323 		return 1;
8324 	}
8325 
8326 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8327 		return 0;
8328 
8329 	h->events = readl(&(h->cfgtable->event_notify));
8330 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8331 }
8332 
8333 /*
8334  * Check if any of the offline devices have become ready
8335  */
8336 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8337 {
8338 	unsigned long flags;
8339 	struct offline_device_entry *d;
8340 	struct list_head *this, *tmp;
8341 
8342 	spin_lock_irqsave(&h->offline_device_lock, flags);
8343 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8344 		d = list_entry(this, struct offline_device_entry,
8345 				offline_list);
8346 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8347 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8348 			spin_lock_irqsave(&h->offline_device_lock, flags);
8349 			list_del(&d->offline_list);
8350 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8351 			return 1;
8352 		}
8353 		spin_lock_irqsave(&h->offline_device_lock, flags);
8354 	}
8355 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8356 	return 0;
8357 }
8358 
8359 static int hpsa_luns_changed(struct ctlr_info *h)
8360 {
8361 	int rc = 1; /* assume there are changes */
8362 	struct ReportLUNdata *logdev = NULL;
8363 
8364 	/* if we can't find out if lun data has changed,
8365 	 * assume that it has.
8366 	 */
8367 
8368 	if (!h->lastlogicals)
8369 		return rc;
8370 
8371 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8372 	if (!logdev)
8373 		return rc;
8374 
8375 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8376 		dev_warn(&h->pdev->dev,
8377 			"report luns failed, can't track lun changes.\n");
8378 		goto out;
8379 	}
8380 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8381 		dev_info(&h->pdev->dev,
8382 			"Lun changes detected.\n");
8383 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8384 		goto out;
8385 	} else
8386 		rc = 0; /* no changes detected. */
8387 out:
8388 	kfree(logdev);
8389 	return rc;
8390 }
8391 
8392 static void hpsa_perform_rescan(struct ctlr_info *h)
8393 {
8394 	struct Scsi_Host *sh = NULL;
8395 	unsigned long flags;
8396 
8397 	/*
8398 	 * Do the scan after the reset
8399 	 */
8400 	spin_lock_irqsave(&h->reset_lock, flags);
8401 	if (h->reset_in_progress) {
8402 		h->drv_req_rescan = 1;
8403 		spin_unlock_irqrestore(&h->reset_lock, flags);
8404 		return;
8405 	}
8406 	spin_unlock_irqrestore(&h->reset_lock, flags);
8407 
8408 	sh = scsi_host_get(h->scsi_host);
8409 	if (sh != NULL) {
8410 		hpsa_scan_start(sh);
8411 		scsi_host_put(sh);
8412 		h->drv_req_rescan = 0;
8413 	}
8414 }
8415 
8416 /*
8417  * watch for controller events
8418  */
8419 static void hpsa_event_monitor_worker(struct work_struct *work)
8420 {
8421 	struct ctlr_info *h = container_of(to_delayed_work(work),
8422 					struct ctlr_info, event_monitor_work);
8423 	unsigned long flags;
8424 
8425 	spin_lock_irqsave(&h->lock, flags);
8426 	if (h->remove_in_progress) {
8427 		spin_unlock_irqrestore(&h->lock, flags);
8428 		return;
8429 	}
8430 	spin_unlock_irqrestore(&h->lock, flags);
8431 
8432 	if (hpsa_ctlr_needs_rescan(h)) {
8433 		hpsa_ack_ctlr_events(h);
8434 		hpsa_perform_rescan(h);
8435 	}
8436 
8437 	spin_lock_irqsave(&h->lock, flags);
8438 	if (!h->remove_in_progress)
8439 		schedule_delayed_work(&h->event_monitor_work,
8440 					HPSA_EVENT_MONITOR_INTERVAL);
8441 	spin_unlock_irqrestore(&h->lock, flags);
8442 }
8443 
8444 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8445 {
8446 	unsigned long flags;
8447 	struct ctlr_info *h = container_of(to_delayed_work(work),
8448 					struct ctlr_info, rescan_ctlr_work);
8449 
8450 	spin_lock_irqsave(&h->lock, flags);
8451 	if (h->remove_in_progress) {
8452 		spin_unlock_irqrestore(&h->lock, flags);
8453 		return;
8454 	}
8455 	spin_unlock_irqrestore(&h->lock, flags);
8456 
8457 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8458 		hpsa_perform_rescan(h);
8459 	} else if (h->discovery_polling) {
8460 		if (hpsa_luns_changed(h)) {
8461 			dev_info(&h->pdev->dev,
8462 				"driver discovery polling rescan.\n");
8463 			hpsa_perform_rescan(h);
8464 		}
8465 	}
8466 	spin_lock_irqsave(&h->lock, flags);
8467 	if (!h->remove_in_progress)
8468 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8469 				h->heartbeat_sample_interval);
8470 	spin_unlock_irqrestore(&h->lock, flags);
8471 }
8472 
8473 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8474 {
8475 	unsigned long flags;
8476 	struct ctlr_info *h = container_of(to_delayed_work(work),
8477 					struct ctlr_info, monitor_ctlr_work);
8478 
8479 	detect_controller_lockup(h);
8480 	if (lockup_detected(h))
8481 		return;
8482 
8483 	spin_lock_irqsave(&h->lock, flags);
8484 	if (!h->remove_in_progress)
8485 		schedule_delayed_work(&h->monitor_ctlr_work,
8486 				h->heartbeat_sample_interval);
8487 	spin_unlock_irqrestore(&h->lock, flags);
8488 }
8489 
8490 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8491 						char *name)
8492 {
8493 	struct workqueue_struct *wq = NULL;
8494 
8495 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8496 	if (!wq)
8497 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8498 
8499 	return wq;
8500 }
8501 
8502 static void hpda_free_ctlr_info(struct ctlr_info *h)
8503 {
8504 	kfree(h->reply_map);
8505 	kfree(h);
8506 }
8507 
8508 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8509 {
8510 	struct ctlr_info *h;
8511 
8512 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8513 	if (!h)
8514 		return NULL;
8515 
8516 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8517 	if (!h->reply_map) {
8518 		kfree(h);
8519 		return NULL;
8520 	}
8521 	return h;
8522 }
8523 
8524 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8525 {
8526 	int dac, rc;
8527 	struct ctlr_info *h;
8528 	int try_soft_reset = 0;
8529 	unsigned long flags;
8530 	u32 board_id;
8531 
8532 	if (number_of_controllers == 0)
8533 		printk(KERN_INFO DRIVER_NAME "\n");
8534 
8535 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8536 	if (rc < 0) {
8537 		dev_warn(&pdev->dev, "Board ID not found\n");
8538 		return rc;
8539 	}
8540 
8541 	rc = hpsa_init_reset_devices(pdev, board_id);
8542 	if (rc) {
8543 		if (rc != -ENOTSUPP)
8544 			return rc;
8545 		/* If the reset fails in a particular way (it has no way to do
8546 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8547 		 * a soft reset once we get the controller configured up to the
8548 		 * point that it can accept a command.
8549 		 */
8550 		try_soft_reset = 1;
8551 		rc = 0;
8552 	}
8553 
8554 reinit_after_soft_reset:
8555 
8556 	/* Command structures must be aligned on a 32-byte boundary because
8557 	 * the 5 lower bits of the address are used by the hardware. and by
8558 	 * the driver.  See comments in hpsa.h for more info.
8559 	 */
8560 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8561 	h = hpda_alloc_ctlr_info();
8562 	if (!h) {
8563 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8564 		return -ENOMEM;
8565 	}
8566 
8567 	h->pdev = pdev;
8568 
8569 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8570 	INIT_LIST_HEAD(&h->offline_device_list);
8571 	spin_lock_init(&h->lock);
8572 	spin_lock_init(&h->offline_device_lock);
8573 	spin_lock_init(&h->scan_lock);
8574 	spin_lock_init(&h->reset_lock);
8575 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8576 
8577 	/* Allocate and clear per-cpu variable lockup_detected */
8578 	h->lockup_detected = alloc_percpu(u32);
8579 	if (!h->lockup_detected) {
8580 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8581 		rc = -ENOMEM;
8582 		goto clean1;	/* aer/h */
8583 	}
8584 	set_lockup_detected_for_all_cpus(h, 0);
8585 
8586 	rc = hpsa_pci_init(h);
8587 	if (rc)
8588 		goto clean2;	/* lu, aer/h */
8589 
8590 	/* relies on h-> settings made by hpsa_pci_init, including
8591 	 * interrupt_mode h->intr */
8592 	rc = hpsa_scsi_host_alloc(h);
8593 	if (rc)
8594 		goto clean2_5;	/* pci, lu, aer/h */
8595 
8596 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8597 	h->ctlr = number_of_controllers;
8598 	number_of_controllers++;
8599 
8600 	/* configure PCI DMA stuff */
8601 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8602 	if (rc == 0) {
8603 		dac = 1;
8604 	} else {
8605 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8606 		if (rc == 0) {
8607 			dac = 0;
8608 		} else {
8609 			dev_err(&pdev->dev, "no suitable DMA available\n");
8610 			goto clean3;	/* shost, pci, lu, aer/h */
8611 		}
8612 	}
8613 
8614 	/* make sure the board interrupts are off */
8615 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8616 
8617 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8618 	if (rc)
8619 		goto clean3;	/* shost, pci, lu, aer/h */
8620 	rc = hpsa_alloc_cmd_pool(h);
8621 	if (rc)
8622 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8623 	rc = hpsa_alloc_sg_chain_blocks(h);
8624 	if (rc)
8625 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8626 	init_waitqueue_head(&h->scan_wait_queue);
8627 	init_waitqueue_head(&h->event_sync_wait_queue);
8628 	mutex_init(&h->reset_mutex);
8629 	h->scan_finished = 1; /* no scan currently in progress */
8630 	h->scan_waiting = 0;
8631 
8632 	pci_set_drvdata(pdev, h);
8633 	h->ndevices = 0;
8634 
8635 	spin_lock_init(&h->devlock);
8636 	rc = hpsa_put_ctlr_into_performant_mode(h);
8637 	if (rc)
8638 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8639 
8640 	/* create the resubmit workqueue */
8641 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8642 	if (!h->rescan_ctlr_wq) {
8643 		rc = -ENOMEM;
8644 		goto clean7;
8645 	}
8646 
8647 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8648 	if (!h->resubmit_wq) {
8649 		rc = -ENOMEM;
8650 		goto clean7;	/* aer/h */
8651 	}
8652 
8653 	/*
8654 	 * At this point, the controller is ready to take commands.
8655 	 * Now, if reset_devices and the hard reset didn't work, try
8656 	 * the soft reset and see if that works.
8657 	 */
8658 	if (try_soft_reset) {
8659 
8660 		/* This is kind of gross.  We may or may not get a completion
8661 		 * from the soft reset command, and if we do, then the value
8662 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8663 		 * after the reset throwing away any completions we get during
8664 		 * that time.  Unregister the interrupt handler and register
8665 		 * fake ones to scoop up any residual completions.
8666 		 */
8667 		spin_lock_irqsave(&h->lock, flags);
8668 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8669 		spin_unlock_irqrestore(&h->lock, flags);
8670 		hpsa_free_irqs(h);
8671 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8672 					hpsa_intx_discard_completions);
8673 		if (rc) {
8674 			dev_warn(&h->pdev->dev,
8675 				"Failed to request_irq after soft reset.\n");
8676 			/*
8677 			 * cannot goto clean7 or free_irqs will be called
8678 			 * again. Instead, do its work
8679 			 */
8680 			hpsa_free_performant_mode(h);	/* clean7 */
8681 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8682 			hpsa_free_cmd_pool(h);		/* clean5 */
8683 			/*
8684 			 * skip hpsa_free_irqs(h) clean4 since that
8685 			 * was just called before request_irqs failed
8686 			 */
8687 			goto clean3;
8688 		}
8689 
8690 		rc = hpsa_kdump_soft_reset(h);
8691 		if (rc)
8692 			/* Neither hard nor soft reset worked, we're hosed. */
8693 			goto clean7;
8694 
8695 		dev_info(&h->pdev->dev, "Board READY.\n");
8696 		dev_info(&h->pdev->dev,
8697 			"Waiting for stale completions to drain.\n");
8698 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8699 		msleep(10000);
8700 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8701 
8702 		rc = controller_reset_failed(h->cfgtable);
8703 		if (rc)
8704 			dev_info(&h->pdev->dev,
8705 				"Soft reset appears to have failed.\n");
8706 
8707 		/* since the controller's reset, we have to go back and re-init
8708 		 * everything.  Easiest to just forget what we've done and do it
8709 		 * all over again.
8710 		 */
8711 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8712 		try_soft_reset = 0;
8713 		if (rc)
8714 			/* don't goto clean, we already unallocated */
8715 			return -ENODEV;
8716 
8717 		goto reinit_after_soft_reset;
8718 	}
8719 
8720 	/* Enable Accelerated IO path at driver layer */
8721 	h->acciopath_status = 1;
8722 	/* Disable discovery polling.*/
8723 	h->discovery_polling = 0;
8724 
8725 
8726 	/* Turn the interrupts on so we can service requests */
8727 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8728 
8729 	hpsa_hba_inquiry(h);
8730 
8731 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8732 	if (!h->lastlogicals)
8733 		dev_info(&h->pdev->dev,
8734 			"Can't track change to report lun data\n");
8735 
8736 	/* hook into SCSI subsystem */
8737 	rc = hpsa_scsi_add_host(h);
8738 	if (rc)
8739 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8740 
8741 	/* Monitor the controller for firmware lockups */
8742 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8743 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8744 	schedule_delayed_work(&h->monitor_ctlr_work,
8745 				h->heartbeat_sample_interval);
8746 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8747 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8748 				h->heartbeat_sample_interval);
8749 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8750 	schedule_delayed_work(&h->event_monitor_work,
8751 				HPSA_EVENT_MONITOR_INTERVAL);
8752 	return 0;
8753 
8754 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8755 	hpsa_free_performant_mode(h);
8756 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8757 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8758 	hpsa_free_sg_chain_blocks(h);
8759 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8760 	hpsa_free_cmd_pool(h);
8761 clean4: /* irq, shost, pci, lu, aer/h */
8762 	hpsa_free_irqs(h);
8763 clean3: /* shost, pci, lu, aer/h */
8764 	scsi_host_put(h->scsi_host);
8765 	h->scsi_host = NULL;
8766 clean2_5: /* pci, lu, aer/h */
8767 	hpsa_free_pci_init(h);
8768 clean2: /* lu, aer/h */
8769 	if (h->lockup_detected) {
8770 		free_percpu(h->lockup_detected);
8771 		h->lockup_detected = NULL;
8772 	}
8773 clean1:	/* wq/aer/h */
8774 	if (h->resubmit_wq) {
8775 		destroy_workqueue(h->resubmit_wq);
8776 		h->resubmit_wq = NULL;
8777 	}
8778 	if (h->rescan_ctlr_wq) {
8779 		destroy_workqueue(h->rescan_ctlr_wq);
8780 		h->rescan_ctlr_wq = NULL;
8781 	}
8782 	kfree(h);
8783 	return rc;
8784 }
8785 
8786 static void hpsa_flush_cache(struct ctlr_info *h)
8787 {
8788 	char *flush_buf;
8789 	struct CommandList *c;
8790 	int rc;
8791 
8792 	if (unlikely(lockup_detected(h)))
8793 		return;
8794 	flush_buf = kzalloc(4, GFP_KERNEL);
8795 	if (!flush_buf)
8796 		return;
8797 
8798 	c = cmd_alloc(h);
8799 
8800 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8801 		RAID_CTLR_LUNID, TYPE_CMD)) {
8802 		goto out;
8803 	}
8804 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8805 			DEFAULT_TIMEOUT);
8806 	if (rc)
8807 		goto out;
8808 	if (c->err_info->CommandStatus != 0)
8809 out:
8810 		dev_warn(&h->pdev->dev,
8811 			"error flushing cache on controller\n");
8812 	cmd_free(h, c);
8813 	kfree(flush_buf);
8814 }
8815 
8816 /* Make controller gather fresh report lun data each time we
8817  * send down a report luns request
8818  */
8819 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8820 {
8821 	u32 *options;
8822 	struct CommandList *c;
8823 	int rc;
8824 
8825 	/* Don't bother trying to set diag options if locked up */
8826 	if (unlikely(h->lockup_detected))
8827 		return;
8828 
8829 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8830 	if (!options)
8831 		return;
8832 
8833 	c = cmd_alloc(h);
8834 
8835 	/* first, get the current diag options settings */
8836 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8837 		RAID_CTLR_LUNID, TYPE_CMD))
8838 		goto errout;
8839 
8840 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8841 			NO_TIMEOUT);
8842 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8843 		goto errout;
8844 
8845 	/* Now, set the bit for disabling the RLD caching */
8846 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8847 
8848 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8849 		RAID_CTLR_LUNID, TYPE_CMD))
8850 		goto errout;
8851 
8852 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8853 			NO_TIMEOUT);
8854 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8855 		goto errout;
8856 
8857 	/* Now verify that it got set: */
8858 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8859 		RAID_CTLR_LUNID, TYPE_CMD))
8860 		goto errout;
8861 
8862 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8863 			NO_TIMEOUT);
8864 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8865 		goto errout;
8866 
8867 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8868 		goto out;
8869 
8870 errout:
8871 	dev_err(&h->pdev->dev,
8872 			"Error: failed to disable report lun data caching.\n");
8873 out:
8874 	cmd_free(h, c);
8875 	kfree(options);
8876 }
8877 
8878 static void __hpsa_shutdown(struct pci_dev *pdev)
8879 {
8880 	struct ctlr_info *h;
8881 
8882 	h = pci_get_drvdata(pdev);
8883 	/* Turn board interrupts off  and send the flush cache command
8884 	 * sendcmd will turn off interrupt, and send the flush...
8885 	 * To write all data in the battery backed cache to disks
8886 	 */
8887 	hpsa_flush_cache(h);
8888 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8889 	hpsa_free_irqs(h);			/* init_one 4 */
8890 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8891 }
8892 
8893 static void hpsa_shutdown(struct pci_dev *pdev)
8894 {
8895 	__hpsa_shutdown(pdev);
8896 	pci_disable_device(pdev);
8897 }
8898 
8899 static void hpsa_free_device_info(struct ctlr_info *h)
8900 {
8901 	int i;
8902 
8903 	for (i = 0; i < h->ndevices; i++) {
8904 		kfree(h->dev[i]);
8905 		h->dev[i] = NULL;
8906 	}
8907 }
8908 
8909 static void hpsa_remove_one(struct pci_dev *pdev)
8910 {
8911 	struct ctlr_info *h;
8912 	unsigned long flags;
8913 
8914 	if (pci_get_drvdata(pdev) == NULL) {
8915 		dev_err(&pdev->dev, "unable to remove device\n");
8916 		return;
8917 	}
8918 	h = pci_get_drvdata(pdev);
8919 
8920 	/* Get rid of any controller monitoring work items */
8921 	spin_lock_irqsave(&h->lock, flags);
8922 	h->remove_in_progress = 1;
8923 	spin_unlock_irqrestore(&h->lock, flags);
8924 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8925 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8926 	cancel_delayed_work_sync(&h->event_monitor_work);
8927 	destroy_workqueue(h->rescan_ctlr_wq);
8928 	destroy_workqueue(h->resubmit_wq);
8929 
8930 	hpsa_delete_sas_host(h);
8931 
8932 	/*
8933 	 * Call before disabling interrupts.
8934 	 * scsi_remove_host can trigger I/O operations especially
8935 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8936 	 * operations which cannot complete and will hang the system.
8937 	 */
8938 	if (h->scsi_host)
8939 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8940 	/* includes hpsa_free_irqs - init_one 4 */
8941 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8942 	__hpsa_shutdown(pdev);
8943 
8944 	hpsa_free_device_info(h);		/* scan */
8945 
8946 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8947 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8948 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8949 	hpsa_free_performant_mode(h);			/* init_one 7 */
8950 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8951 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8952 	kfree(h->lastlogicals);
8953 
8954 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8955 
8956 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8957 	h->scsi_host = NULL;				/* init_one 3 */
8958 
8959 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8960 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8961 
8962 	free_percpu(h->lockup_detected);		/* init_one 2 */
8963 	h->lockup_detected = NULL;			/* init_one 2 */
8964 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8965 
8966 	hpda_free_ctlr_info(h);				/* init_one 1 */
8967 }
8968 
8969 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8970 	__attribute__((unused)) pm_message_t state)
8971 {
8972 	return -ENOSYS;
8973 }
8974 
8975 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8976 {
8977 	return -ENOSYS;
8978 }
8979 
8980 static struct pci_driver hpsa_pci_driver = {
8981 	.name = HPSA,
8982 	.probe = hpsa_init_one,
8983 	.remove = hpsa_remove_one,
8984 	.id_table = hpsa_pci_device_id,	/* id_table */
8985 	.shutdown = hpsa_shutdown,
8986 	.suspend = hpsa_suspend,
8987 	.resume = hpsa_resume,
8988 };
8989 
8990 /* Fill in bucket_map[], given nsgs (the max number of
8991  * scatter gather elements supported) and bucket[],
8992  * which is an array of 8 integers.  The bucket[] array
8993  * contains 8 different DMA transfer sizes (in 16
8994  * byte increments) which the controller uses to fetch
8995  * commands.  This function fills in bucket_map[], which
8996  * maps a given number of scatter gather elements to one of
8997  * the 8 DMA transfer sizes.  The point of it is to allow the
8998  * controller to only do as much DMA as needed to fetch the
8999  * command, with the DMA transfer size encoded in the lower
9000  * bits of the command address.
9001  */
9002 static void  calc_bucket_map(int bucket[], int num_buckets,
9003 	int nsgs, int min_blocks, u32 *bucket_map)
9004 {
9005 	int i, j, b, size;
9006 
9007 	/* Note, bucket_map must have nsgs+1 entries. */
9008 	for (i = 0; i <= nsgs; i++) {
9009 		/* Compute size of a command with i SG entries */
9010 		size = i + min_blocks;
9011 		b = num_buckets; /* Assume the biggest bucket */
9012 		/* Find the bucket that is just big enough */
9013 		for (j = 0; j < num_buckets; j++) {
9014 			if (bucket[j] >= size) {
9015 				b = j;
9016 				break;
9017 			}
9018 		}
9019 		/* for a command with i SG entries, use bucket b. */
9020 		bucket_map[i] = b;
9021 	}
9022 }
9023 
9024 /*
9025  * return -ENODEV on err, 0 on success (or no action)
9026  * allocates numerous items that must be freed later
9027  */
9028 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9029 {
9030 	int i;
9031 	unsigned long register_value;
9032 	unsigned long transMethod = CFGTBL_Trans_Performant |
9033 			(trans_support & CFGTBL_Trans_use_short_tags) |
9034 				CFGTBL_Trans_enable_directed_msix |
9035 			(trans_support & (CFGTBL_Trans_io_accel1 |
9036 				CFGTBL_Trans_io_accel2));
9037 	struct access_method access = SA5_performant_access;
9038 
9039 	/* This is a bit complicated.  There are 8 registers on
9040 	 * the controller which we write to to tell it 8 different
9041 	 * sizes of commands which there may be.  It's a way of
9042 	 * reducing the DMA done to fetch each command.  Encoded into
9043 	 * each command's tag are 3 bits which communicate to the controller
9044 	 * which of the eight sizes that command fits within.  The size of
9045 	 * each command depends on how many scatter gather entries there are.
9046 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9047 	 * with the number of 16-byte blocks a command of that size requires.
9048 	 * The smallest command possible requires 5 such 16 byte blocks.
9049 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9050 	 * blocks.  Note, this only extends to the SG entries contained
9051 	 * within the command block, and does not extend to chained blocks
9052 	 * of SG elements.   bft[] contains the eight values we write to
9053 	 * the registers.  They are not evenly distributed, but have more
9054 	 * sizes for small commands, and fewer sizes for larger commands.
9055 	 */
9056 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9057 #define MIN_IOACCEL2_BFT_ENTRY 5
9058 #define HPSA_IOACCEL2_HEADER_SZ 4
9059 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9060 			13, 14, 15, 16, 17, 18, 19,
9061 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9062 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9063 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9064 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9065 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9066 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9067 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9068 	/*  5 = 1 s/g entry or 4k
9069 	 *  6 = 2 s/g entry or 8k
9070 	 *  8 = 4 s/g entry or 16k
9071 	 * 10 = 6 s/g entry or 24k
9072 	 */
9073 
9074 	/* If the controller supports either ioaccel method then
9075 	 * we can also use the RAID stack submit path that does not
9076 	 * perform the superfluous readl() after each command submission.
9077 	 */
9078 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9079 		access = SA5_performant_access_no_read;
9080 
9081 	/* Controller spec: zero out this buffer. */
9082 	for (i = 0; i < h->nreply_queues; i++)
9083 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9084 
9085 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9086 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9087 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9088 	for (i = 0; i < 8; i++)
9089 		writel(bft[i], &h->transtable->BlockFetch[i]);
9090 
9091 	/* size of controller ring buffer */
9092 	writel(h->max_commands, &h->transtable->RepQSize);
9093 	writel(h->nreply_queues, &h->transtable->RepQCount);
9094 	writel(0, &h->transtable->RepQCtrAddrLow32);
9095 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9096 
9097 	for (i = 0; i < h->nreply_queues; i++) {
9098 		writel(0, &h->transtable->RepQAddr[i].upper);
9099 		writel(h->reply_queue[i].busaddr,
9100 			&h->transtable->RepQAddr[i].lower);
9101 	}
9102 
9103 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9104 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9105 	/*
9106 	 * enable outbound interrupt coalescing in accelerator mode;
9107 	 */
9108 	if (trans_support & CFGTBL_Trans_io_accel1) {
9109 		access = SA5_ioaccel_mode1_access;
9110 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9111 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9112 	} else
9113 		if (trans_support & CFGTBL_Trans_io_accel2)
9114 			access = SA5_ioaccel_mode2_access;
9115 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9116 	if (hpsa_wait_for_mode_change_ack(h)) {
9117 		dev_err(&h->pdev->dev,
9118 			"performant mode problem - doorbell timeout\n");
9119 		return -ENODEV;
9120 	}
9121 	register_value = readl(&(h->cfgtable->TransportActive));
9122 	if (!(register_value & CFGTBL_Trans_Performant)) {
9123 		dev_err(&h->pdev->dev,
9124 			"performant mode problem - transport not active\n");
9125 		return -ENODEV;
9126 	}
9127 	/* Change the access methods to the performant access methods */
9128 	h->access = access;
9129 	h->transMethod = transMethod;
9130 
9131 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9132 		(trans_support & CFGTBL_Trans_io_accel2)))
9133 		return 0;
9134 
9135 	if (trans_support & CFGTBL_Trans_io_accel1) {
9136 		/* Set up I/O accelerator mode */
9137 		for (i = 0; i < h->nreply_queues; i++) {
9138 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9139 			h->reply_queue[i].current_entry =
9140 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9141 		}
9142 		bft[7] = h->ioaccel_maxsg + 8;
9143 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9144 				h->ioaccel1_blockFetchTable);
9145 
9146 		/* initialize all reply queue entries to unused */
9147 		for (i = 0; i < h->nreply_queues; i++)
9148 			memset(h->reply_queue[i].head,
9149 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9150 				h->reply_queue_size);
9151 
9152 		/* set all the constant fields in the accelerator command
9153 		 * frames once at init time to save CPU cycles later.
9154 		 */
9155 		for (i = 0; i < h->nr_cmds; i++) {
9156 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9157 
9158 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9159 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9160 					(i * sizeof(struct ErrorInfo)));
9161 			cp->err_info_len = sizeof(struct ErrorInfo);
9162 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9163 			cp->host_context_flags =
9164 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9165 			cp->timeout_sec = 0;
9166 			cp->ReplyQueue = 0;
9167 			cp->tag =
9168 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9169 			cp->host_addr =
9170 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9171 					(i * sizeof(struct io_accel1_cmd)));
9172 		}
9173 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9174 		u64 cfg_offset, cfg_base_addr_index;
9175 		u32 bft2_offset, cfg_base_addr;
9176 		int rc;
9177 
9178 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9179 			&cfg_base_addr_index, &cfg_offset);
9180 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9181 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9182 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9183 				4, h->ioaccel2_blockFetchTable);
9184 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9185 		BUILD_BUG_ON(offsetof(struct CfgTable,
9186 				io_accel_request_size_offset) != 0xb8);
9187 		h->ioaccel2_bft2_regs =
9188 			remap_pci_mem(pci_resource_start(h->pdev,
9189 					cfg_base_addr_index) +
9190 					cfg_offset + bft2_offset,
9191 					ARRAY_SIZE(bft2) *
9192 					sizeof(*h->ioaccel2_bft2_regs));
9193 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9194 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9195 	}
9196 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9197 	if (hpsa_wait_for_mode_change_ack(h)) {
9198 		dev_err(&h->pdev->dev,
9199 			"performant mode problem - enabling ioaccel mode\n");
9200 		return -ENODEV;
9201 	}
9202 	return 0;
9203 }
9204 
9205 /* Free ioaccel1 mode command blocks and block fetch table */
9206 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9207 {
9208 	if (h->ioaccel_cmd_pool) {
9209 		pci_free_consistent(h->pdev,
9210 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9211 			h->ioaccel_cmd_pool,
9212 			h->ioaccel_cmd_pool_dhandle);
9213 		h->ioaccel_cmd_pool = NULL;
9214 		h->ioaccel_cmd_pool_dhandle = 0;
9215 	}
9216 	kfree(h->ioaccel1_blockFetchTable);
9217 	h->ioaccel1_blockFetchTable = NULL;
9218 }
9219 
9220 /* Allocate ioaccel1 mode command blocks and block fetch table */
9221 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9222 {
9223 	h->ioaccel_maxsg =
9224 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9225 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9226 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9227 
9228 	/* Command structures must be aligned on a 128-byte boundary
9229 	 * because the 7 lower bits of the address are used by the
9230 	 * hardware.
9231 	 */
9232 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9233 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9234 	h->ioaccel_cmd_pool =
9235 		dma_alloc_coherent(&h->pdev->dev,
9236 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9237 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9238 
9239 	h->ioaccel1_blockFetchTable =
9240 		kmalloc(((h->ioaccel_maxsg + 1) *
9241 				sizeof(u32)), GFP_KERNEL);
9242 
9243 	if ((h->ioaccel_cmd_pool == NULL) ||
9244 		(h->ioaccel1_blockFetchTable == NULL))
9245 		goto clean_up;
9246 
9247 	memset(h->ioaccel_cmd_pool, 0,
9248 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9249 	return 0;
9250 
9251 clean_up:
9252 	hpsa_free_ioaccel1_cmd_and_bft(h);
9253 	return -ENOMEM;
9254 }
9255 
9256 /* Free ioaccel2 mode command blocks and block fetch table */
9257 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9258 {
9259 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9260 
9261 	if (h->ioaccel2_cmd_pool) {
9262 		pci_free_consistent(h->pdev,
9263 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9264 			h->ioaccel2_cmd_pool,
9265 			h->ioaccel2_cmd_pool_dhandle);
9266 		h->ioaccel2_cmd_pool = NULL;
9267 		h->ioaccel2_cmd_pool_dhandle = 0;
9268 	}
9269 	kfree(h->ioaccel2_blockFetchTable);
9270 	h->ioaccel2_blockFetchTable = NULL;
9271 }
9272 
9273 /* Allocate ioaccel2 mode command blocks and block fetch table */
9274 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9275 {
9276 	int rc;
9277 
9278 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9279 
9280 	h->ioaccel_maxsg =
9281 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9282 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9283 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9284 
9285 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9286 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9287 	h->ioaccel2_cmd_pool =
9288 		dma_alloc_coherent(&h->pdev->dev,
9289 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9290 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9291 
9292 	h->ioaccel2_blockFetchTable =
9293 		kmalloc(((h->ioaccel_maxsg + 1) *
9294 				sizeof(u32)), GFP_KERNEL);
9295 
9296 	if ((h->ioaccel2_cmd_pool == NULL) ||
9297 		(h->ioaccel2_blockFetchTable == NULL)) {
9298 		rc = -ENOMEM;
9299 		goto clean_up;
9300 	}
9301 
9302 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9303 	if (rc)
9304 		goto clean_up;
9305 
9306 	memset(h->ioaccel2_cmd_pool, 0,
9307 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9308 	return 0;
9309 
9310 clean_up:
9311 	hpsa_free_ioaccel2_cmd_and_bft(h);
9312 	return rc;
9313 }
9314 
9315 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9316 static void hpsa_free_performant_mode(struct ctlr_info *h)
9317 {
9318 	kfree(h->blockFetchTable);
9319 	h->blockFetchTable = NULL;
9320 	hpsa_free_reply_queues(h);
9321 	hpsa_free_ioaccel1_cmd_and_bft(h);
9322 	hpsa_free_ioaccel2_cmd_and_bft(h);
9323 }
9324 
9325 /* return -ENODEV on error, 0 on success (or no action)
9326  * allocates numerous items that must be freed later
9327  */
9328 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9329 {
9330 	u32 trans_support;
9331 	unsigned long transMethod = CFGTBL_Trans_Performant |
9332 					CFGTBL_Trans_use_short_tags;
9333 	int i, rc;
9334 
9335 	if (hpsa_simple_mode)
9336 		return 0;
9337 
9338 	trans_support = readl(&(h->cfgtable->TransportSupport));
9339 	if (!(trans_support & PERFORMANT_MODE))
9340 		return 0;
9341 
9342 	/* Check for I/O accelerator mode support */
9343 	if (trans_support & CFGTBL_Trans_io_accel1) {
9344 		transMethod |= CFGTBL_Trans_io_accel1 |
9345 				CFGTBL_Trans_enable_directed_msix;
9346 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9347 		if (rc)
9348 			return rc;
9349 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9350 		transMethod |= CFGTBL_Trans_io_accel2 |
9351 				CFGTBL_Trans_enable_directed_msix;
9352 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9353 		if (rc)
9354 			return rc;
9355 	}
9356 
9357 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9358 	hpsa_get_max_perf_mode_cmds(h);
9359 	/* Performant mode ring buffer and supporting data structures */
9360 	h->reply_queue_size = h->max_commands * sizeof(u64);
9361 
9362 	for (i = 0; i < h->nreply_queues; i++) {
9363 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9364 						h->reply_queue_size,
9365 						&h->reply_queue[i].busaddr,
9366 						GFP_KERNEL);
9367 		if (!h->reply_queue[i].head) {
9368 			rc = -ENOMEM;
9369 			goto clean1;	/* rq, ioaccel */
9370 		}
9371 		h->reply_queue[i].size = h->max_commands;
9372 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9373 		h->reply_queue[i].current_entry = 0;
9374 	}
9375 
9376 	/* Need a block fetch table for performant mode */
9377 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9378 				sizeof(u32)), GFP_KERNEL);
9379 	if (!h->blockFetchTable) {
9380 		rc = -ENOMEM;
9381 		goto clean1;	/* rq, ioaccel */
9382 	}
9383 
9384 	rc = hpsa_enter_performant_mode(h, trans_support);
9385 	if (rc)
9386 		goto clean2;	/* bft, rq, ioaccel */
9387 	return 0;
9388 
9389 clean2:	/* bft, rq, ioaccel */
9390 	kfree(h->blockFetchTable);
9391 	h->blockFetchTable = NULL;
9392 clean1:	/* rq, ioaccel */
9393 	hpsa_free_reply_queues(h);
9394 	hpsa_free_ioaccel1_cmd_and_bft(h);
9395 	hpsa_free_ioaccel2_cmd_and_bft(h);
9396 	return rc;
9397 }
9398 
9399 static int is_accelerated_cmd(struct CommandList *c)
9400 {
9401 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9402 }
9403 
9404 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9405 {
9406 	struct CommandList *c = NULL;
9407 	int i, accel_cmds_out;
9408 	int refcount;
9409 
9410 	do { /* wait for all outstanding ioaccel commands to drain out */
9411 		accel_cmds_out = 0;
9412 		for (i = 0; i < h->nr_cmds; i++) {
9413 			c = h->cmd_pool + i;
9414 			refcount = atomic_inc_return(&c->refcount);
9415 			if (refcount > 1) /* Command is allocated */
9416 				accel_cmds_out += is_accelerated_cmd(c);
9417 			cmd_free(h, c);
9418 		}
9419 		if (accel_cmds_out <= 0)
9420 			break;
9421 		msleep(100);
9422 	} while (1);
9423 }
9424 
9425 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9426 				struct hpsa_sas_port *hpsa_sas_port)
9427 {
9428 	struct hpsa_sas_phy *hpsa_sas_phy;
9429 	struct sas_phy *phy;
9430 
9431 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9432 	if (!hpsa_sas_phy)
9433 		return NULL;
9434 
9435 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9436 		hpsa_sas_port->next_phy_index);
9437 	if (!phy) {
9438 		kfree(hpsa_sas_phy);
9439 		return NULL;
9440 	}
9441 
9442 	hpsa_sas_port->next_phy_index++;
9443 	hpsa_sas_phy->phy = phy;
9444 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9445 
9446 	return hpsa_sas_phy;
9447 }
9448 
9449 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9450 {
9451 	struct sas_phy *phy = hpsa_sas_phy->phy;
9452 
9453 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9454 	if (hpsa_sas_phy->added_to_port)
9455 		list_del(&hpsa_sas_phy->phy_list_entry);
9456 	sas_phy_delete(phy);
9457 	kfree(hpsa_sas_phy);
9458 }
9459 
9460 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9461 {
9462 	int rc;
9463 	struct hpsa_sas_port *hpsa_sas_port;
9464 	struct sas_phy *phy;
9465 	struct sas_identify *identify;
9466 
9467 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9468 	phy = hpsa_sas_phy->phy;
9469 
9470 	identify = &phy->identify;
9471 	memset(identify, 0, sizeof(*identify));
9472 	identify->sas_address = hpsa_sas_port->sas_address;
9473 	identify->device_type = SAS_END_DEVICE;
9474 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9475 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9476 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9477 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9478 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9479 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9480 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9481 
9482 	rc = sas_phy_add(hpsa_sas_phy->phy);
9483 	if (rc)
9484 		return rc;
9485 
9486 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9487 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9488 			&hpsa_sas_port->phy_list_head);
9489 	hpsa_sas_phy->added_to_port = true;
9490 
9491 	return 0;
9492 }
9493 
9494 static int
9495 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9496 				struct sas_rphy *rphy)
9497 {
9498 	struct sas_identify *identify;
9499 
9500 	identify = &rphy->identify;
9501 	identify->sas_address = hpsa_sas_port->sas_address;
9502 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9503 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9504 
9505 	return sas_rphy_add(rphy);
9506 }
9507 
9508 static struct hpsa_sas_port
9509 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9510 				u64 sas_address)
9511 {
9512 	int rc;
9513 	struct hpsa_sas_port *hpsa_sas_port;
9514 	struct sas_port *port;
9515 
9516 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9517 	if (!hpsa_sas_port)
9518 		return NULL;
9519 
9520 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9521 	hpsa_sas_port->parent_node = hpsa_sas_node;
9522 
9523 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9524 	if (!port)
9525 		goto free_hpsa_port;
9526 
9527 	rc = sas_port_add(port);
9528 	if (rc)
9529 		goto free_sas_port;
9530 
9531 	hpsa_sas_port->port = port;
9532 	hpsa_sas_port->sas_address = sas_address;
9533 	list_add_tail(&hpsa_sas_port->port_list_entry,
9534 			&hpsa_sas_node->port_list_head);
9535 
9536 	return hpsa_sas_port;
9537 
9538 free_sas_port:
9539 	sas_port_free(port);
9540 free_hpsa_port:
9541 	kfree(hpsa_sas_port);
9542 
9543 	return NULL;
9544 }
9545 
9546 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9547 {
9548 	struct hpsa_sas_phy *hpsa_sas_phy;
9549 	struct hpsa_sas_phy *next;
9550 
9551 	list_for_each_entry_safe(hpsa_sas_phy, next,
9552 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9553 		hpsa_free_sas_phy(hpsa_sas_phy);
9554 
9555 	sas_port_delete(hpsa_sas_port->port);
9556 	list_del(&hpsa_sas_port->port_list_entry);
9557 	kfree(hpsa_sas_port);
9558 }
9559 
9560 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9561 {
9562 	struct hpsa_sas_node *hpsa_sas_node;
9563 
9564 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9565 	if (hpsa_sas_node) {
9566 		hpsa_sas_node->parent_dev = parent_dev;
9567 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9568 	}
9569 
9570 	return hpsa_sas_node;
9571 }
9572 
9573 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9574 {
9575 	struct hpsa_sas_port *hpsa_sas_port;
9576 	struct hpsa_sas_port *next;
9577 
9578 	if (!hpsa_sas_node)
9579 		return;
9580 
9581 	list_for_each_entry_safe(hpsa_sas_port, next,
9582 			&hpsa_sas_node->port_list_head, port_list_entry)
9583 		hpsa_free_sas_port(hpsa_sas_port);
9584 
9585 	kfree(hpsa_sas_node);
9586 }
9587 
9588 static struct hpsa_scsi_dev_t
9589 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9590 					struct sas_rphy *rphy)
9591 {
9592 	int i;
9593 	struct hpsa_scsi_dev_t *device;
9594 
9595 	for (i = 0; i < h->ndevices; i++) {
9596 		device = h->dev[i];
9597 		if (!device->sas_port)
9598 			continue;
9599 		if (device->sas_port->rphy == rphy)
9600 			return device;
9601 	}
9602 
9603 	return NULL;
9604 }
9605 
9606 static int hpsa_add_sas_host(struct ctlr_info *h)
9607 {
9608 	int rc;
9609 	struct device *parent_dev;
9610 	struct hpsa_sas_node *hpsa_sas_node;
9611 	struct hpsa_sas_port *hpsa_sas_port;
9612 	struct hpsa_sas_phy *hpsa_sas_phy;
9613 
9614 	parent_dev = &h->scsi_host->shost_dev;
9615 
9616 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9617 	if (!hpsa_sas_node)
9618 		return -ENOMEM;
9619 
9620 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9621 	if (!hpsa_sas_port) {
9622 		rc = -ENODEV;
9623 		goto free_sas_node;
9624 	}
9625 
9626 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9627 	if (!hpsa_sas_phy) {
9628 		rc = -ENODEV;
9629 		goto free_sas_port;
9630 	}
9631 
9632 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9633 	if (rc)
9634 		goto free_sas_phy;
9635 
9636 	h->sas_host = hpsa_sas_node;
9637 
9638 	return 0;
9639 
9640 free_sas_phy:
9641 	hpsa_free_sas_phy(hpsa_sas_phy);
9642 free_sas_port:
9643 	hpsa_free_sas_port(hpsa_sas_port);
9644 free_sas_node:
9645 	hpsa_free_sas_node(hpsa_sas_node);
9646 
9647 	return rc;
9648 }
9649 
9650 static void hpsa_delete_sas_host(struct ctlr_info *h)
9651 {
9652 	hpsa_free_sas_node(h->sas_host);
9653 }
9654 
9655 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9656 				struct hpsa_scsi_dev_t *device)
9657 {
9658 	int rc;
9659 	struct hpsa_sas_port *hpsa_sas_port;
9660 	struct sas_rphy *rphy;
9661 
9662 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9663 	if (!hpsa_sas_port)
9664 		return -ENOMEM;
9665 
9666 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9667 	if (!rphy) {
9668 		rc = -ENODEV;
9669 		goto free_sas_port;
9670 	}
9671 
9672 	hpsa_sas_port->rphy = rphy;
9673 	device->sas_port = hpsa_sas_port;
9674 
9675 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9676 	if (rc)
9677 		goto free_sas_port;
9678 
9679 	return 0;
9680 
9681 free_sas_port:
9682 	hpsa_free_sas_port(hpsa_sas_port);
9683 	device->sas_port = NULL;
9684 
9685 	return rc;
9686 }
9687 
9688 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9689 {
9690 	if (device->sas_port) {
9691 		hpsa_free_sas_port(device->sas_port);
9692 		device->sas_port = NULL;
9693 	}
9694 }
9695 
9696 static int
9697 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9698 {
9699 	return 0;
9700 }
9701 
9702 static int
9703 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9704 {
9705 	struct Scsi_Host *shost = phy_to_shost(rphy);
9706 	struct ctlr_info *h;
9707 	struct hpsa_scsi_dev_t *sd;
9708 
9709 	if (!shost)
9710 		return -ENXIO;
9711 
9712 	h = shost_to_hba(shost);
9713 
9714 	if (!h)
9715 		return -ENXIO;
9716 
9717 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9718 	if (!sd)
9719 		return -ENXIO;
9720 
9721 	*identifier = sd->eli;
9722 
9723 	return 0;
9724 }
9725 
9726 static int
9727 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9728 {
9729 	return -ENXIO;
9730 }
9731 
9732 static int
9733 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9734 {
9735 	return 0;
9736 }
9737 
9738 static int
9739 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9740 {
9741 	return 0;
9742 }
9743 
9744 static int
9745 hpsa_sas_phy_setup(struct sas_phy *phy)
9746 {
9747 	return 0;
9748 }
9749 
9750 static void
9751 hpsa_sas_phy_release(struct sas_phy *phy)
9752 {
9753 }
9754 
9755 static int
9756 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9757 {
9758 	return -EINVAL;
9759 }
9760 
9761 static struct sas_function_template hpsa_sas_transport_functions = {
9762 	.get_linkerrors = hpsa_sas_get_linkerrors,
9763 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9764 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9765 	.phy_reset = hpsa_sas_phy_reset,
9766 	.phy_enable = hpsa_sas_phy_enable,
9767 	.phy_setup = hpsa_sas_phy_setup,
9768 	.phy_release = hpsa_sas_phy_release,
9769 	.set_phy_speed = hpsa_sas_phy_speed,
9770 };
9771 
9772 /*
9773  *  This is it.  Register the PCI driver information for the cards we control
9774  *  the OS will call our registered routines when it finds one of our cards.
9775  */
9776 static int __init hpsa_init(void)
9777 {
9778 	int rc;
9779 
9780 	hpsa_sas_transport_template =
9781 		sas_attach_transport(&hpsa_sas_transport_functions);
9782 	if (!hpsa_sas_transport_template)
9783 		return -ENODEV;
9784 
9785 	rc = pci_register_driver(&hpsa_pci_driver);
9786 
9787 	if (rc)
9788 		sas_release_transport(hpsa_sas_transport_template);
9789 
9790 	return rc;
9791 }
9792 
9793 static void __exit hpsa_cleanup(void)
9794 {
9795 	pci_unregister_driver(&hpsa_pci_driver);
9796 	sas_release_transport(hpsa_sas_transport_template);
9797 }
9798 
9799 static void __attribute__((unused)) verify_offsets(void)
9800 {
9801 #define VERIFY_OFFSET(member, offset) \
9802 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9803 
9804 	VERIFY_OFFSET(structure_size, 0);
9805 	VERIFY_OFFSET(volume_blk_size, 4);
9806 	VERIFY_OFFSET(volume_blk_cnt, 8);
9807 	VERIFY_OFFSET(phys_blk_shift, 16);
9808 	VERIFY_OFFSET(parity_rotation_shift, 17);
9809 	VERIFY_OFFSET(strip_size, 18);
9810 	VERIFY_OFFSET(disk_starting_blk, 20);
9811 	VERIFY_OFFSET(disk_blk_cnt, 28);
9812 	VERIFY_OFFSET(data_disks_per_row, 36);
9813 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9814 	VERIFY_OFFSET(row_cnt, 40);
9815 	VERIFY_OFFSET(layout_map_count, 42);
9816 	VERIFY_OFFSET(flags, 44);
9817 	VERIFY_OFFSET(dekindex, 46);
9818 	/* VERIFY_OFFSET(reserved, 48 */
9819 	VERIFY_OFFSET(data, 64);
9820 
9821 #undef VERIFY_OFFSET
9822 
9823 #define VERIFY_OFFSET(member, offset) \
9824 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9825 
9826 	VERIFY_OFFSET(IU_type, 0);
9827 	VERIFY_OFFSET(direction, 1);
9828 	VERIFY_OFFSET(reply_queue, 2);
9829 	/* VERIFY_OFFSET(reserved1, 3);  */
9830 	VERIFY_OFFSET(scsi_nexus, 4);
9831 	VERIFY_OFFSET(Tag, 8);
9832 	VERIFY_OFFSET(cdb, 16);
9833 	VERIFY_OFFSET(cciss_lun, 32);
9834 	VERIFY_OFFSET(data_len, 40);
9835 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9836 	VERIFY_OFFSET(sg_count, 45);
9837 	/* VERIFY_OFFSET(reserved3 */
9838 	VERIFY_OFFSET(err_ptr, 48);
9839 	VERIFY_OFFSET(err_len, 56);
9840 	/* VERIFY_OFFSET(reserved4  */
9841 	VERIFY_OFFSET(sg, 64);
9842 
9843 #undef VERIFY_OFFSET
9844 
9845 #define VERIFY_OFFSET(member, offset) \
9846 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9847 
9848 	VERIFY_OFFSET(dev_handle, 0x00);
9849 	VERIFY_OFFSET(reserved1, 0x02);
9850 	VERIFY_OFFSET(function, 0x03);
9851 	VERIFY_OFFSET(reserved2, 0x04);
9852 	VERIFY_OFFSET(err_info, 0x0C);
9853 	VERIFY_OFFSET(reserved3, 0x10);
9854 	VERIFY_OFFSET(err_info_len, 0x12);
9855 	VERIFY_OFFSET(reserved4, 0x13);
9856 	VERIFY_OFFSET(sgl_offset, 0x14);
9857 	VERIFY_OFFSET(reserved5, 0x15);
9858 	VERIFY_OFFSET(transfer_len, 0x1C);
9859 	VERIFY_OFFSET(reserved6, 0x20);
9860 	VERIFY_OFFSET(io_flags, 0x24);
9861 	VERIFY_OFFSET(reserved7, 0x26);
9862 	VERIFY_OFFSET(LUN, 0x34);
9863 	VERIFY_OFFSET(control, 0x3C);
9864 	VERIFY_OFFSET(CDB, 0x40);
9865 	VERIFY_OFFSET(reserved8, 0x50);
9866 	VERIFY_OFFSET(host_context_flags, 0x60);
9867 	VERIFY_OFFSET(timeout_sec, 0x62);
9868 	VERIFY_OFFSET(ReplyQueue, 0x64);
9869 	VERIFY_OFFSET(reserved9, 0x65);
9870 	VERIFY_OFFSET(tag, 0x68);
9871 	VERIFY_OFFSET(host_addr, 0x70);
9872 	VERIFY_OFFSET(CISS_LUN, 0x78);
9873 	VERIFY_OFFSET(SG, 0x78 + 8);
9874 #undef VERIFY_OFFSET
9875 }
9876 
9877 module_init(hpsa_init);
9878 module_exit(hpsa_cleanup);
9879