xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 33811026)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57 
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62 
63 /* How long to wait (in milliseconds) for board to go into simple mode */
64 #define MAX_CONFIG_WAIT 30000
65 #define MAX_IOCTL_CONFIG_WAIT 1000
66 
67 /*define how many times we will try a command because of bus resets */
68 #define MAX_CMD_RETRIES 3
69 
70 /* Embedded module documentation macros - see modules.h */
71 MODULE_AUTHOR("Hewlett-Packard Company");
72 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
73 	HPSA_DRIVER_VERSION);
74 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
75 MODULE_VERSION(HPSA_DRIVER_VERSION);
76 MODULE_LICENSE("GPL");
77 
78 static int hpsa_allow_any;
79 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_allow_any,
81 		"Allow hpsa driver to access unknown HP Smart Array hardware");
82 static int hpsa_simple_mode;
83 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
84 MODULE_PARM_DESC(hpsa_simple_mode,
85 	"Use 'simple mode' rather than 'performant mode'");
86 
87 /* define the PCI info for the cards we can control */
88 static const struct pci_device_id hpsa_pci_device_id[] = {
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
129 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
130 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
131 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
132 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
133 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
134 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
135 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
136 	{0,}
137 };
138 
139 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140 
141 /*  board_id = Subsystem Device ID & Vendor ID
142  *  product = Marketing Name for the board
143  *  access = Address of the struct of function pointers
144  */
145 static struct board_type products[] = {
146 	{0x3241103C, "Smart Array P212", &SA5_access},
147 	{0x3243103C, "Smart Array P410", &SA5_access},
148 	{0x3245103C, "Smart Array P410i", &SA5_access},
149 	{0x3247103C, "Smart Array P411", &SA5_access},
150 	{0x3249103C, "Smart Array P812", &SA5_access},
151 	{0x324A103C, "Smart Array P712m", &SA5_access},
152 	{0x324B103C, "Smart Array P711m", &SA5_access},
153 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
154 	{0x3350103C, "Smart Array P222", &SA5_access},
155 	{0x3351103C, "Smart Array P420", &SA5_access},
156 	{0x3352103C, "Smart Array P421", &SA5_access},
157 	{0x3353103C, "Smart Array P822", &SA5_access},
158 	{0x3354103C, "Smart Array P420i", &SA5_access},
159 	{0x3355103C, "Smart Array P220i", &SA5_access},
160 	{0x3356103C, "Smart Array P721m", &SA5_access},
161 	{0x1921103C, "Smart Array P830i", &SA5_access},
162 	{0x1922103C, "Smart Array P430", &SA5_access},
163 	{0x1923103C, "Smart Array P431", &SA5_access},
164 	{0x1924103C, "Smart Array P830", &SA5_access},
165 	{0x1926103C, "Smart Array P731m", &SA5_access},
166 	{0x1928103C, "Smart Array P230i", &SA5_access},
167 	{0x1929103C, "Smart Array P530", &SA5_access},
168 	{0x21BD103C, "Smart Array", &SA5_access},
169 	{0x21BE103C, "Smart Array", &SA5_access},
170 	{0x21BF103C, "Smart Array", &SA5_access},
171 	{0x21C0103C, "Smart Array", &SA5_access},
172 	{0x21C1103C, "Smart Array", &SA5_access},
173 	{0x21C2103C, "Smart Array", &SA5_access},
174 	{0x21C3103C, "Smart Array", &SA5_access},
175 	{0x21C4103C, "Smart Array", &SA5_access},
176 	{0x21C5103C, "Smart Array", &SA5_access},
177 	{0x21C6103C, "Smart Array", &SA5_access},
178 	{0x21C7103C, "Smart Array", &SA5_access},
179 	{0x21C8103C, "Smart Array", &SA5_access},
180 	{0x21C9103C, "Smart Array", &SA5_access},
181 	{0x21CA103C, "Smart Array", &SA5_access},
182 	{0x21CB103C, "Smart Array", &SA5_access},
183 	{0x21CC103C, "Smart Array", &SA5_access},
184 	{0x21CD103C, "Smart Array", &SA5_access},
185 	{0x21CE103C, "Smart Array", &SA5_access},
186 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
187 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
188 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
189 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
190 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
191 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
192 };
193 
194 static int number_of_controllers;
195 
196 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
197 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
198 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
199 
200 #ifdef CONFIG_COMPAT
201 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
202 	void __user *arg);
203 #endif
204 
205 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
206 static struct CommandList *cmd_alloc(struct ctlr_info *h);
207 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
208 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
209 	int cmd_type);
210 static void hpsa_free_cmd_pool(struct ctlr_info *h);
211 #define VPD_PAGE (1 << 8)
212 
213 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
214 static void hpsa_scan_start(struct Scsi_Host *);
215 static int hpsa_scan_finished(struct Scsi_Host *sh,
216 	unsigned long elapsed_time);
217 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
218 
219 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
220 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
221 static int hpsa_slave_alloc(struct scsi_device *sdev);
222 static void hpsa_slave_destroy(struct scsi_device *sdev);
223 
224 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
225 static int check_for_unit_attention(struct ctlr_info *h,
226 	struct CommandList *c);
227 static void check_ioctl_unit_attention(struct ctlr_info *h,
228 	struct CommandList *c);
229 /* performant mode helper functions */
230 static void calc_bucket_map(int *bucket, int num_buckets,
231 	int nsgs, int min_blocks, u32 *bucket_map);
232 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
233 static inline u32 next_command(struct ctlr_info *h, u8 q);
234 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
235 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
236 			       u64 *cfg_offset);
237 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
238 				    unsigned long *memory_bar);
239 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
240 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
241 				     int wait_for_ready);
242 static inline void finish_cmd(struct CommandList *c);
243 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
244 #define BOARD_NOT_READY 0
245 #define BOARD_READY 1
246 static void hpsa_drain_accel_commands(struct ctlr_info *h);
247 static void hpsa_flush_cache(struct ctlr_info *h);
248 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
249 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
250 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
251 static void hpsa_command_resubmit_worker(struct work_struct *work);
252 
253 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
254 {
255 	unsigned long *priv = shost_priv(sdev->host);
256 	return (struct ctlr_info *) *priv;
257 }
258 
259 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
260 {
261 	unsigned long *priv = shost_priv(sh);
262 	return (struct ctlr_info *) *priv;
263 }
264 
265 static int check_for_unit_attention(struct ctlr_info *h,
266 	struct CommandList *c)
267 {
268 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
269 		return 0;
270 
271 	switch (c->err_info->SenseInfo[12]) {
272 	case STATE_CHANGED:
273 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
274 			"detected, command retried\n", h->ctlr);
275 		break;
276 	case LUN_FAILED:
277 		dev_warn(&h->pdev->dev,
278 			HPSA "%d: LUN failure detected\n", h->ctlr);
279 		break;
280 	case REPORT_LUNS_CHANGED:
281 		dev_warn(&h->pdev->dev,
282 			HPSA "%d: report LUN data changed\n", h->ctlr);
283 	/*
284 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
285 	 * target (array) devices.
286 	 */
287 		break;
288 	case POWER_OR_RESET:
289 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
290 			"or device reset detected\n", h->ctlr);
291 		break;
292 	case UNIT_ATTENTION_CLEARED:
293 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
294 		    "cleared by another initiator\n", h->ctlr);
295 		break;
296 	default:
297 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
298 			"unit attention detected\n", h->ctlr);
299 		break;
300 	}
301 	return 1;
302 }
303 
304 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
305 {
306 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
307 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
308 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
309 		return 0;
310 	dev_warn(&h->pdev->dev, HPSA "device busy");
311 	return 1;
312 }
313 
314 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
315 					 struct device_attribute *attr,
316 					 const char *buf, size_t count)
317 {
318 	int status, len;
319 	struct ctlr_info *h;
320 	struct Scsi_Host *shost = class_to_shost(dev);
321 	char tmpbuf[10];
322 
323 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
324 		return -EACCES;
325 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
326 	strncpy(tmpbuf, buf, len);
327 	tmpbuf[len] = '\0';
328 	if (sscanf(tmpbuf, "%d", &status) != 1)
329 		return -EINVAL;
330 	h = shost_to_hba(shost);
331 	h->acciopath_status = !!status;
332 	dev_warn(&h->pdev->dev,
333 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
334 		h->acciopath_status ? "enabled" : "disabled");
335 	return count;
336 }
337 
338 static ssize_t host_store_raid_offload_debug(struct device *dev,
339 					 struct device_attribute *attr,
340 					 const char *buf, size_t count)
341 {
342 	int debug_level, len;
343 	struct ctlr_info *h;
344 	struct Scsi_Host *shost = class_to_shost(dev);
345 	char tmpbuf[10];
346 
347 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
348 		return -EACCES;
349 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
350 	strncpy(tmpbuf, buf, len);
351 	tmpbuf[len] = '\0';
352 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
353 		return -EINVAL;
354 	if (debug_level < 0)
355 		debug_level = 0;
356 	h = shost_to_hba(shost);
357 	h->raid_offload_debug = debug_level;
358 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
359 		h->raid_offload_debug);
360 	return count;
361 }
362 
363 static ssize_t host_store_rescan(struct device *dev,
364 				 struct device_attribute *attr,
365 				 const char *buf, size_t count)
366 {
367 	struct ctlr_info *h;
368 	struct Scsi_Host *shost = class_to_shost(dev);
369 	h = shost_to_hba(shost);
370 	hpsa_scan_start(h->scsi_host);
371 	return count;
372 }
373 
374 static ssize_t host_show_firmware_revision(struct device *dev,
375 	     struct device_attribute *attr, char *buf)
376 {
377 	struct ctlr_info *h;
378 	struct Scsi_Host *shost = class_to_shost(dev);
379 	unsigned char *fwrev;
380 
381 	h = shost_to_hba(shost);
382 	if (!h->hba_inquiry_data)
383 		return 0;
384 	fwrev = &h->hba_inquiry_data[32];
385 	return snprintf(buf, 20, "%c%c%c%c\n",
386 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
387 }
388 
389 static ssize_t host_show_commands_outstanding(struct device *dev,
390 	     struct device_attribute *attr, char *buf)
391 {
392 	struct Scsi_Host *shost = class_to_shost(dev);
393 	struct ctlr_info *h = shost_to_hba(shost);
394 
395 	return snprintf(buf, 20, "%d\n",
396 			atomic_read(&h->commands_outstanding));
397 }
398 
399 static ssize_t host_show_transport_mode(struct device *dev,
400 	struct device_attribute *attr, char *buf)
401 {
402 	struct ctlr_info *h;
403 	struct Scsi_Host *shost = class_to_shost(dev);
404 
405 	h = shost_to_hba(shost);
406 	return snprintf(buf, 20, "%s\n",
407 		h->transMethod & CFGTBL_Trans_Performant ?
408 			"performant" : "simple");
409 }
410 
411 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
412 	struct device_attribute *attr, char *buf)
413 {
414 	struct ctlr_info *h;
415 	struct Scsi_Host *shost = class_to_shost(dev);
416 
417 	h = shost_to_hba(shost);
418 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
419 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
420 }
421 
422 /* List of controllers which cannot be hard reset on kexec with reset_devices */
423 static u32 unresettable_controller[] = {
424 	0x324a103C, /* Smart Array P712m */
425 	0x324b103C, /* SmartArray P711m */
426 	0x3223103C, /* Smart Array P800 */
427 	0x3234103C, /* Smart Array P400 */
428 	0x3235103C, /* Smart Array P400i */
429 	0x3211103C, /* Smart Array E200i */
430 	0x3212103C, /* Smart Array E200 */
431 	0x3213103C, /* Smart Array E200i */
432 	0x3214103C, /* Smart Array E200i */
433 	0x3215103C, /* Smart Array E200i */
434 	0x3237103C, /* Smart Array E500 */
435 	0x323D103C, /* Smart Array P700m */
436 	0x40800E11, /* Smart Array 5i */
437 	0x409C0E11, /* Smart Array 6400 */
438 	0x409D0E11, /* Smart Array 6400 EM */
439 	0x40700E11, /* Smart Array 5300 */
440 	0x40820E11, /* Smart Array 532 */
441 	0x40830E11, /* Smart Array 5312 */
442 	0x409A0E11, /* Smart Array 641 */
443 	0x409B0E11, /* Smart Array 642 */
444 	0x40910E11, /* Smart Array 6i */
445 };
446 
447 /* List of controllers which cannot even be soft reset */
448 static u32 soft_unresettable_controller[] = {
449 	0x40800E11, /* Smart Array 5i */
450 	0x40700E11, /* Smart Array 5300 */
451 	0x40820E11, /* Smart Array 532 */
452 	0x40830E11, /* Smart Array 5312 */
453 	0x409A0E11, /* Smart Array 641 */
454 	0x409B0E11, /* Smart Array 642 */
455 	0x40910E11, /* Smart Array 6i */
456 	/* Exclude 640x boards.  These are two pci devices in one slot
457 	 * which share a battery backed cache module.  One controls the
458 	 * cache, the other accesses the cache through the one that controls
459 	 * it.  If we reset the one controlling the cache, the other will
460 	 * likely not be happy.  Just forbid resetting this conjoined mess.
461 	 * The 640x isn't really supported by hpsa anyway.
462 	 */
463 	0x409C0E11, /* Smart Array 6400 */
464 	0x409D0E11, /* Smart Array 6400 EM */
465 };
466 
467 static int ctlr_is_hard_resettable(u32 board_id)
468 {
469 	int i;
470 
471 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
472 		if (unresettable_controller[i] == board_id)
473 			return 0;
474 	return 1;
475 }
476 
477 static int ctlr_is_soft_resettable(u32 board_id)
478 {
479 	int i;
480 
481 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
482 		if (soft_unresettable_controller[i] == board_id)
483 			return 0;
484 	return 1;
485 }
486 
487 static int ctlr_is_resettable(u32 board_id)
488 {
489 	return ctlr_is_hard_resettable(board_id) ||
490 		ctlr_is_soft_resettable(board_id);
491 }
492 
493 static ssize_t host_show_resettable(struct device *dev,
494 	struct device_attribute *attr, char *buf)
495 {
496 	struct ctlr_info *h;
497 	struct Scsi_Host *shost = class_to_shost(dev);
498 
499 	h = shost_to_hba(shost);
500 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
501 }
502 
503 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
504 {
505 	return (scsi3addr[3] & 0xC0) == 0x40;
506 }
507 
508 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
509 	"1(+0)ADM", "UNKNOWN"
510 };
511 #define HPSA_RAID_0	0
512 #define HPSA_RAID_4	1
513 #define HPSA_RAID_1	2	/* also used for RAID 10 */
514 #define HPSA_RAID_5	3	/* also used for RAID 50 */
515 #define HPSA_RAID_51	4
516 #define HPSA_RAID_6	5	/* also used for RAID 60 */
517 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
518 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
519 
520 static ssize_t raid_level_show(struct device *dev,
521 	     struct device_attribute *attr, char *buf)
522 {
523 	ssize_t l = 0;
524 	unsigned char rlevel;
525 	struct ctlr_info *h;
526 	struct scsi_device *sdev;
527 	struct hpsa_scsi_dev_t *hdev;
528 	unsigned long flags;
529 
530 	sdev = to_scsi_device(dev);
531 	h = sdev_to_hba(sdev);
532 	spin_lock_irqsave(&h->lock, flags);
533 	hdev = sdev->hostdata;
534 	if (!hdev) {
535 		spin_unlock_irqrestore(&h->lock, flags);
536 		return -ENODEV;
537 	}
538 
539 	/* Is this even a logical drive? */
540 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
541 		spin_unlock_irqrestore(&h->lock, flags);
542 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
543 		return l;
544 	}
545 
546 	rlevel = hdev->raid_level;
547 	spin_unlock_irqrestore(&h->lock, flags);
548 	if (rlevel > RAID_UNKNOWN)
549 		rlevel = RAID_UNKNOWN;
550 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
551 	return l;
552 }
553 
554 static ssize_t lunid_show(struct device *dev,
555 	     struct device_attribute *attr, char *buf)
556 {
557 	struct ctlr_info *h;
558 	struct scsi_device *sdev;
559 	struct hpsa_scsi_dev_t *hdev;
560 	unsigned long flags;
561 	unsigned char lunid[8];
562 
563 	sdev = to_scsi_device(dev);
564 	h = sdev_to_hba(sdev);
565 	spin_lock_irqsave(&h->lock, flags);
566 	hdev = sdev->hostdata;
567 	if (!hdev) {
568 		spin_unlock_irqrestore(&h->lock, flags);
569 		return -ENODEV;
570 	}
571 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
572 	spin_unlock_irqrestore(&h->lock, flags);
573 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
574 		lunid[0], lunid[1], lunid[2], lunid[3],
575 		lunid[4], lunid[5], lunid[6], lunid[7]);
576 }
577 
578 static ssize_t unique_id_show(struct device *dev,
579 	     struct device_attribute *attr, char *buf)
580 {
581 	struct ctlr_info *h;
582 	struct scsi_device *sdev;
583 	struct hpsa_scsi_dev_t *hdev;
584 	unsigned long flags;
585 	unsigned char sn[16];
586 
587 	sdev = to_scsi_device(dev);
588 	h = sdev_to_hba(sdev);
589 	spin_lock_irqsave(&h->lock, flags);
590 	hdev = sdev->hostdata;
591 	if (!hdev) {
592 		spin_unlock_irqrestore(&h->lock, flags);
593 		return -ENODEV;
594 	}
595 	memcpy(sn, hdev->device_id, sizeof(sn));
596 	spin_unlock_irqrestore(&h->lock, flags);
597 	return snprintf(buf, 16 * 2 + 2,
598 			"%02X%02X%02X%02X%02X%02X%02X%02X"
599 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
600 			sn[0], sn[1], sn[2], sn[3],
601 			sn[4], sn[5], sn[6], sn[7],
602 			sn[8], sn[9], sn[10], sn[11],
603 			sn[12], sn[13], sn[14], sn[15]);
604 }
605 
606 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
607 	     struct device_attribute *attr, char *buf)
608 {
609 	struct ctlr_info *h;
610 	struct scsi_device *sdev;
611 	struct hpsa_scsi_dev_t *hdev;
612 	unsigned long flags;
613 	int offload_enabled;
614 
615 	sdev = to_scsi_device(dev);
616 	h = sdev_to_hba(sdev);
617 	spin_lock_irqsave(&h->lock, flags);
618 	hdev = sdev->hostdata;
619 	if (!hdev) {
620 		spin_unlock_irqrestore(&h->lock, flags);
621 		return -ENODEV;
622 	}
623 	offload_enabled = hdev->offload_enabled;
624 	spin_unlock_irqrestore(&h->lock, flags);
625 	return snprintf(buf, 20, "%d\n", offload_enabled);
626 }
627 
628 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
629 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
630 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
631 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
632 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
633 			host_show_hp_ssd_smart_path_enabled, NULL);
634 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
635 		host_show_hp_ssd_smart_path_status,
636 		host_store_hp_ssd_smart_path_status);
637 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
638 			host_store_raid_offload_debug);
639 static DEVICE_ATTR(firmware_revision, S_IRUGO,
640 	host_show_firmware_revision, NULL);
641 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
642 	host_show_commands_outstanding, NULL);
643 static DEVICE_ATTR(transport_mode, S_IRUGO,
644 	host_show_transport_mode, NULL);
645 static DEVICE_ATTR(resettable, S_IRUGO,
646 	host_show_resettable, NULL);
647 
648 static struct device_attribute *hpsa_sdev_attrs[] = {
649 	&dev_attr_raid_level,
650 	&dev_attr_lunid,
651 	&dev_attr_unique_id,
652 	&dev_attr_hp_ssd_smart_path_enabled,
653 	NULL,
654 };
655 
656 static struct device_attribute *hpsa_shost_attrs[] = {
657 	&dev_attr_rescan,
658 	&dev_attr_firmware_revision,
659 	&dev_attr_commands_outstanding,
660 	&dev_attr_transport_mode,
661 	&dev_attr_resettable,
662 	&dev_attr_hp_ssd_smart_path_status,
663 	&dev_attr_raid_offload_debug,
664 	NULL,
665 };
666 
667 static struct scsi_host_template hpsa_driver_template = {
668 	.module			= THIS_MODULE,
669 	.name			= HPSA,
670 	.proc_name		= HPSA,
671 	.queuecommand		= hpsa_scsi_queue_command,
672 	.scan_start		= hpsa_scan_start,
673 	.scan_finished		= hpsa_scan_finished,
674 	.change_queue_depth	= hpsa_change_queue_depth,
675 	.this_id		= -1,
676 	.use_clustering		= ENABLE_CLUSTERING,
677 	.eh_abort_handler	= hpsa_eh_abort_handler,
678 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
679 	.ioctl			= hpsa_ioctl,
680 	.slave_alloc		= hpsa_slave_alloc,
681 	.slave_destroy		= hpsa_slave_destroy,
682 #ifdef CONFIG_COMPAT
683 	.compat_ioctl		= hpsa_compat_ioctl,
684 #endif
685 	.sdev_attrs = hpsa_sdev_attrs,
686 	.shost_attrs = hpsa_shost_attrs,
687 	.max_sectors = 8192,
688 	.no_write_same = 1,
689 };
690 
691 static inline u32 next_command(struct ctlr_info *h, u8 q)
692 {
693 	u32 a;
694 	struct reply_queue_buffer *rq = &h->reply_queue[q];
695 
696 	if (h->transMethod & CFGTBL_Trans_io_accel1)
697 		return h->access.command_completed(h, q);
698 
699 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
700 		return h->access.command_completed(h, q);
701 
702 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
703 		a = rq->head[rq->current_entry];
704 		rq->current_entry++;
705 		atomic_dec(&h->commands_outstanding);
706 	} else {
707 		a = FIFO_EMPTY;
708 	}
709 	/* Check for wraparound */
710 	if (rq->current_entry == h->max_commands) {
711 		rq->current_entry = 0;
712 		rq->wraparound ^= 1;
713 	}
714 	return a;
715 }
716 
717 /*
718  * There are some special bits in the bus address of the
719  * command that we have to set for the controller to know
720  * how to process the command:
721  *
722  * Normal performant mode:
723  * bit 0: 1 means performant mode, 0 means simple mode.
724  * bits 1-3 = block fetch table entry
725  * bits 4-6 = command type (== 0)
726  *
727  * ioaccel1 mode:
728  * bit 0 = "performant mode" bit.
729  * bits 1-3 = block fetch table entry
730  * bits 4-6 = command type (== 110)
731  * (command type is needed because ioaccel1 mode
732  * commands are submitted through the same register as normal
733  * mode commands, so this is how the controller knows whether
734  * the command is normal mode or ioaccel1 mode.)
735  *
736  * ioaccel2 mode:
737  * bit 0 = "performant mode" bit.
738  * bits 1-4 = block fetch table entry (note extra bit)
739  * bits 4-6 = not needed, because ioaccel2 mode has
740  * a separate special register for submitting commands.
741  */
742 
743 /* set_performant_mode: Modify the tag for cciss performant
744  * set bit 0 for pull model, bits 3-1 for block fetch
745  * register number
746  */
747 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
748 {
749 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
750 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
751 		if (likely(h->msix_vector > 0))
752 			c->Header.ReplyQueue =
753 				raw_smp_processor_id() % h->nreply_queues;
754 	}
755 }
756 
757 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
758 						struct CommandList *c)
759 {
760 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
761 
762 	/* Tell the controller to post the reply to the queue for this
763 	 * processor.  This seems to give the best I/O throughput.
764 	 */
765 	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
766 	/* Set the bits in the address sent down to include:
767 	 *  - performant mode bit (bit 0)
768 	 *  - pull count (bits 1-3)
769 	 *  - command type (bits 4-6)
770 	 */
771 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
772 					IOACCEL1_BUSADDR_CMDTYPE;
773 }
774 
775 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
776 						struct CommandList *c)
777 {
778 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
779 
780 	/* Tell the controller to post the reply to the queue for this
781 	 * processor.  This seems to give the best I/O throughput.
782 	 */
783 	cp->reply_queue = smp_processor_id() % h->nreply_queues;
784 	/* Set the bits in the address sent down to include:
785 	 *  - performant mode bit not used in ioaccel mode 2
786 	 *  - pull count (bits 0-3)
787 	 *  - command type isn't needed for ioaccel2
788 	 */
789 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
790 }
791 
792 static int is_firmware_flash_cmd(u8 *cdb)
793 {
794 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
795 }
796 
797 /*
798  * During firmware flash, the heartbeat register may not update as frequently
799  * as it should.  So we dial down lockup detection during firmware flash. and
800  * dial it back up when firmware flash completes.
801  */
802 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
803 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
804 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
805 		struct CommandList *c)
806 {
807 	if (!is_firmware_flash_cmd(c->Request.CDB))
808 		return;
809 	atomic_inc(&h->firmware_flash_in_progress);
810 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
811 }
812 
813 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
814 		struct CommandList *c)
815 {
816 	if (is_firmware_flash_cmd(c->Request.CDB) &&
817 		atomic_dec_and_test(&h->firmware_flash_in_progress))
818 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
819 }
820 
821 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
822 	struct CommandList *c)
823 {
824 	switch (c->cmd_type) {
825 	case CMD_IOACCEL1:
826 		set_ioaccel1_performant_mode(h, c);
827 		break;
828 	case CMD_IOACCEL2:
829 		set_ioaccel2_performant_mode(h, c);
830 		break;
831 	default:
832 		set_performant_mode(h, c);
833 	}
834 	dial_down_lockup_detection_during_fw_flash(h, c);
835 	atomic_inc(&h->commands_outstanding);
836 	h->access.submit_command(h, c);
837 }
838 
839 static inline int is_hba_lunid(unsigned char scsi3addr[])
840 {
841 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
842 }
843 
844 static inline int is_scsi_rev_5(struct ctlr_info *h)
845 {
846 	if (!h->hba_inquiry_data)
847 		return 0;
848 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
849 		return 1;
850 	return 0;
851 }
852 
853 static int hpsa_find_target_lun(struct ctlr_info *h,
854 	unsigned char scsi3addr[], int bus, int *target, int *lun)
855 {
856 	/* finds an unused bus, target, lun for a new physical device
857 	 * assumes h->devlock is held
858 	 */
859 	int i, found = 0;
860 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
861 
862 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
863 
864 	for (i = 0; i < h->ndevices; i++) {
865 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
866 			__set_bit(h->dev[i]->target, lun_taken);
867 	}
868 
869 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
870 	if (i < HPSA_MAX_DEVICES) {
871 		/* *bus = 1; */
872 		*target = i;
873 		*lun = 0;
874 		found = 1;
875 	}
876 	return !found;
877 }
878 
879 /* Add an entry into h->dev[] array. */
880 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
881 		struct hpsa_scsi_dev_t *device,
882 		struct hpsa_scsi_dev_t *added[], int *nadded)
883 {
884 	/* assumes h->devlock is held */
885 	int n = h->ndevices;
886 	int i;
887 	unsigned char addr1[8], addr2[8];
888 	struct hpsa_scsi_dev_t *sd;
889 
890 	if (n >= HPSA_MAX_DEVICES) {
891 		dev_err(&h->pdev->dev, "too many devices, some will be "
892 			"inaccessible.\n");
893 		return -1;
894 	}
895 
896 	/* physical devices do not have lun or target assigned until now. */
897 	if (device->lun != -1)
898 		/* Logical device, lun is already assigned. */
899 		goto lun_assigned;
900 
901 	/* If this device a non-zero lun of a multi-lun device
902 	 * byte 4 of the 8-byte LUN addr will contain the logical
903 	 * unit no, zero otherwise.
904 	 */
905 	if (device->scsi3addr[4] == 0) {
906 		/* This is not a non-zero lun of a multi-lun device */
907 		if (hpsa_find_target_lun(h, device->scsi3addr,
908 			device->bus, &device->target, &device->lun) != 0)
909 			return -1;
910 		goto lun_assigned;
911 	}
912 
913 	/* This is a non-zero lun of a multi-lun device.
914 	 * Search through our list and find the device which
915 	 * has the same 8 byte LUN address, excepting byte 4.
916 	 * Assign the same bus and target for this new LUN.
917 	 * Use the logical unit number from the firmware.
918 	 */
919 	memcpy(addr1, device->scsi3addr, 8);
920 	addr1[4] = 0;
921 	for (i = 0; i < n; i++) {
922 		sd = h->dev[i];
923 		memcpy(addr2, sd->scsi3addr, 8);
924 		addr2[4] = 0;
925 		/* differ only in byte 4? */
926 		if (memcmp(addr1, addr2, 8) == 0) {
927 			device->bus = sd->bus;
928 			device->target = sd->target;
929 			device->lun = device->scsi3addr[4];
930 			break;
931 		}
932 	}
933 	if (device->lun == -1) {
934 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
935 			" suspect firmware bug or unsupported hardware "
936 			"configuration.\n");
937 			return -1;
938 	}
939 
940 lun_assigned:
941 
942 	h->dev[n] = device;
943 	h->ndevices++;
944 	added[*nadded] = device;
945 	(*nadded)++;
946 
947 	/* initially, (before registering with scsi layer) we don't
948 	 * know our hostno and we don't want to print anything first
949 	 * time anyway (the scsi layer's inquiries will show that info)
950 	 */
951 	/* if (hostno != -1) */
952 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
953 			scsi_device_type(device->devtype), hostno,
954 			device->bus, device->target, device->lun);
955 	return 0;
956 }
957 
958 /* Update an entry in h->dev[] array. */
959 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
960 	int entry, struct hpsa_scsi_dev_t *new_entry)
961 {
962 	/* assumes h->devlock is held */
963 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
964 
965 	/* Raid level changed. */
966 	h->dev[entry]->raid_level = new_entry->raid_level;
967 
968 	/* Raid offload parameters changed.  Careful about the ordering. */
969 	if (new_entry->offload_config && new_entry->offload_enabled) {
970 		/*
971 		 * if drive is newly offload_enabled, we want to copy the
972 		 * raid map data first.  If previously offload_enabled and
973 		 * offload_config were set, raid map data had better be
974 		 * the same as it was before.  if raid map data is changed
975 		 * then it had better be the case that
976 		 * h->dev[entry]->offload_enabled is currently 0.
977 		 */
978 		h->dev[entry]->raid_map = new_entry->raid_map;
979 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
980 		wmb(); /* ensure raid map updated prior to ->offload_enabled */
981 	}
982 	h->dev[entry]->offload_config = new_entry->offload_config;
983 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
984 	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
985 	h->dev[entry]->queue_depth = new_entry->queue_depth;
986 
987 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
988 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
989 		new_entry->target, new_entry->lun);
990 }
991 
992 /* Replace an entry from h->dev[] array. */
993 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
994 	int entry, struct hpsa_scsi_dev_t *new_entry,
995 	struct hpsa_scsi_dev_t *added[], int *nadded,
996 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
997 {
998 	/* assumes h->devlock is held */
999 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1000 	removed[*nremoved] = h->dev[entry];
1001 	(*nremoved)++;
1002 
1003 	/*
1004 	 * New physical devices won't have target/lun assigned yet
1005 	 * so we need to preserve the values in the slot we are replacing.
1006 	 */
1007 	if (new_entry->target == -1) {
1008 		new_entry->target = h->dev[entry]->target;
1009 		new_entry->lun = h->dev[entry]->lun;
1010 	}
1011 
1012 	h->dev[entry] = new_entry;
1013 	added[*nadded] = new_entry;
1014 	(*nadded)++;
1015 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1016 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1017 			new_entry->target, new_entry->lun);
1018 }
1019 
1020 /* Remove an entry from h->dev[] array. */
1021 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1022 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1023 {
1024 	/* assumes h->devlock is held */
1025 	int i;
1026 	struct hpsa_scsi_dev_t *sd;
1027 
1028 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1029 
1030 	sd = h->dev[entry];
1031 	removed[*nremoved] = h->dev[entry];
1032 	(*nremoved)++;
1033 
1034 	for (i = entry; i < h->ndevices-1; i++)
1035 		h->dev[i] = h->dev[i+1];
1036 	h->ndevices--;
1037 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1038 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1039 		sd->lun);
1040 }
1041 
1042 #define SCSI3ADDR_EQ(a, b) ( \
1043 	(a)[7] == (b)[7] && \
1044 	(a)[6] == (b)[6] && \
1045 	(a)[5] == (b)[5] && \
1046 	(a)[4] == (b)[4] && \
1047 	(a)[3] == (b)[3] && \
1048 	(a)[2] == (b)[2] && \
1049 	(a)[1] == (b)[1] && \
1050 	(a)[0] == (b)[0])
1051 
1052 static void fixup_botched_add(struct ctlr_info *h,
1053 	struct hpsa_scsi_dev_t *added)
1054 {
1055 	/* called when scsi_add_device fails in order to re-adjust
1056 	 * h->dev[] to match the mid layer's view.
1057 	 */
1058 	unsigned long flags;
1059 	int i, j;
1060 
1061 	spin_lock_irqsave(&h->lock, flags);
1062 	for (i = 0; i < h->ndevices; i++) {
1063 		if (h->dev[i] == added) {
1064 			for (j = i; j < h->ndevices-1; j++)
1065 				h->dev[j] = h->dev[j+1];
1066 			h->ndevices--;
1067 			break;
1068 		}
1069 	}
1070 	spin_unlock_irqrestore(&h->lock, flags);
1071 	kfree(added);
1072 }
1073 
1074 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1075 	struct hpsa_scsi_dev_t *dev2)
1076 {
1077 	/* we compare everything except lun and target as these
1078 	 * are not yet assigned.  Compare parts likely
1079 	 * to differ first
1080 	 */
1081 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1082 		sizeof(dev1->scsi3addr)) != 0)
1083 		return 0;
1084 	if (memcmp(dev1->device_id, dev2->device_id,
1085 		sizeof(dev1->device_id)) != 0)
1086 		return 0;
1087 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1088 		return 0;
1089 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1090 		return 0;
1091 	if (dev1->devtype != dev2->devtype)
1092 		return 0;
1093 	if (dev1->bus != dev2->bus)
1094 		return 0;
1095 	return 1;
1096 }
1097 
1098 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1099 	struct hpsa_scsi_dev_t *dev2)
1100 {
1101 	/* Device attributes that can change, but don't mean
1102 	 * that the device is a different device, nor that the OS
1103 	 * needs to be told anything about the change.
1104 	 */
1105 	if (dev1->raid_level != dev2->raid_level)
1106 		return 1;
1107 	if (dev1->offload_config != dev2->offload_config)
1108 		return 1;
1109 	if (dev1->offload_enabled != dev2->offload_enabled)
1110 		return 1;
1111 	if (dev1->queue_depth != dev2->queue_depth)
1112 		return 1;
1113 	return 0;
1114 }
1115 
1116 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1117  * and return needle location in *index.  If scsi3addr matches, but not
1118  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1119  * location in *index.
1120  * In the case of a minor device attribute change, such as RAID level, just
1121  * return DEVICE_UPDATED, along with the updated device's location in index.
1122  * If needle not found, return DEVICE_NOT_FOUND.
1123  */
1124 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1125 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1126 	int *index)
1127 {
1128 	int i;
1129 #define DEVICE_NOT_FOUND 0
1130 #define DEVICE_CHANGED 1
1131 #define DEVICE_SAME 2
1132 #define DEVICE_UPDATED 3
1133 	for (i = 0; i < haystack_size; i++) {
1134 		if (haystack[i] == NULL) /* previously removed. */
1135 			continue;
1136 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1137 			*index = i;
1138 			if (device_is_the_same(needle, haystack[i])) {
1139 				if (device_updated(needle, haystack[i]))
1140 					return DEVICE_UPDATED;
1141 				return DEVICE_SAME;
1142 			} else {
1143 				/* Keep offline devices offline */
1144 				if (needle->volume_offline)
1145 					return DEVICE_NOT_FOUND;
1146 				return DEVICE_CHANGED;
1147 			}
1148 		}
1149 	}
1150 	*index = -1;
1151 	return DEVICE_NOT_FOUND;
1152 }
1153 
1154 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1155 					unsigned char scsi3addr[])
1156 {
1157 	struct offline_device_entry *device;
1158 	unsigned long flags;
1159 
1160 	/* Check to see if device is already on the list */
1161 	spin_lock_irqsave(&h->offline_device_lock, flags);
1162 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1163 		if (memcmp(device->scsi3addr, scsi3addr,
1164 			sizeof(device->scsi3addr)) == 0) {
1165 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1166 			return;
1167 		}
1168 	}
1169 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1170 
1171 	/* Device is not on the list, add it. */
1172 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1173 	if (!device) {
1174 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1175 		return;
1176 	}
1177 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1178 	spin_lock_irqsave(&h->offline_device_lock, flags);
1179 	list_add_tail(&device->offline_list, &h->offline_device_list);
1180 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1181 }
1182 
1183 /* Print a message explaining various offline volume states */
1184 static void hpsa_show_volume_status(struct ctlr_info *h,
1185 	struct hpsa_scsi_dev_t *sd)
1186 {
1187 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1188 		dev_info(&h->pdev->dev,
1189 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1190 			h->scsi_host->host_no,
1191 			sd->bus, sd->target, sd->lun);
1192 	switch (sd->volume_offline) {
1193 	case HPSA_LV_OK:
1194 		break;
1195 	case HPSA_LV_UNDERGOING_ERASE:
1196 		dev_info(&h->pdev->dev,
1197 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1198 			h->scsi_host->host_no,
1199 			sd->bus, sd->target, sd->lun);
1200 		break;
1201 	case HPSA_LV_UNDERGOING_RPI:
1202 		dev_info(&h->pdev->dev,
1203 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1204 			h->scsi_host->host_no,
1205 			sd->bus, sd->target, sd->lun);
1206 		break;
1207 	case HPSA_LV_PENDING_RPI:
1208 		dev_info(&h->pdev->dev,
1209 				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1210 				h->scsi_host->host_no,
1211 				sd->bus, sd->target, sd->lun);
1212 		break;
1213 	case HPSA_LV_ENCRYPTED_NO_KEY:
1214 		dev_info(&h->pdev->dev,
1215 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1216 			h->scsi_host->host_no,
1217 			sd->bus, sd->target, sd->lun);
1218 		break;
1219 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1220 		dev_info(&h->pdev->dev,
1221 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1222 			h->scsi_host->host_no,
1223 			sd->bus, sd->target, sd->lun);
1224 		break;
1225 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1226 		dev_info(&h->pdev->dev,
1227 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1228 			h->scsi_host->host_no,
1229 			sd->bus, sd->target, sd->lun);
1230 		break;
1231 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1232 		dev_info(&h->pdev->dev,
1233 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1234 			h->scsi_host->host_no,
1235 			sd->bus, sd->target, sd->lun);
1236 		break;
1237 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1238 		dev_info(&h->pdev->dev,
1239 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1240 			h->scsi_host->host_no,
1241 			sd->bus, sd->target, sd->lun);
1242 		break;
1243 	case HPSA_LV_PENDING_ENCRYPTION:
1244 		dev_info(&h->pdev->dev,
1245 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1246 			h->scsi_host->host_no,
1247 			sd->bus, sd->target, sd->lun);
1248 		break;
1249 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1250 		dev_info(&h->pdev->dev,
1251 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1252 			h->scsi_host->host_no,
1253 			sd->bus, sd->target, sd->lun);
1254 		break;
1255 	}
1256 }
1257 
1258 /*
1259  * Figure the list of physical drive pointers for a logical drive with
1260  * raid offload configured.
1261  */
1262 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1263 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1264 				struct hpsa_scsi_dev_t *logical_drive)
1265 {
1266 	struct raid_map_data *map = &logical_drive->raid_map;
1267 	struct raid_map_disk_data *dd = &map->data[0];
1268 	int i, j;
1269 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1270 				le16_to_cpu(map->metadata_disks_per_row);
1271 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1272 				le16_to_cpu(map->layout_map_count) *
1273 				total_disks_per_row;
1274 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1275 				total_disks_per_row;
1276 	int qdepth;
1277 
1278 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1279 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1280 
1281 	qdepth = 0;
1282 	for (i = 0; i < nraid_map_entries; i++) {
1283 		logical_drive->phys_disk[i] = NULL;
1284 		if (!logical_drive->offload_config)
1285 			continue;
1286 		for (j = 0; j < ndevices; j++) {
1287 			if (dev[j]->devtype != TYPE_DISK)
1288 				continue;
1289 			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1290 				continue;
1291 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1292 				continue;
1293 
1294 			logical_drive->phys_disk[i] = dev[j];
1295 			if (i < nphys_disk)
1296 				qdepth = min(h->nr_cmds, qdepth +
1297 				    logical_drive->phys_disk[i]->queue_depth);
1298 			break;
1299 		}
1300 
1301 		/*
1302 		 * This can happen if a physical drive is removed and
1303 		 * the logical drive is degraded.  In that case, the RAID
1304 		 * map data will refer to a physical disk which isn't actually
1305 		 * present.  And in that case offload_enabled should already
1306 		 * be 0, but we'll turn it off here just in case
1307 		 */
1308 		if (!logical_drive->phys_disk[i]) {
1309 			logical_drive->offload_enabled = 0;
1310 			logical_drive->queue_depth = h->nr_cmds;
1311 		}
1312 	}
1313 	if (nraid_map_entries)
1314 		/*
1315 		 * This is correct for reads, too high for full stripe writes,
1316 		 * way too high for partial stripe writes
1317 		 */
1318 		logical_drive->queue_depth = qdepth;
1319 	else
1320 		logical_drive->queue_depth = h->nr_cmds;
1321 }
1322 
1323 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1324 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1325 {
1326 	int i;
1327 
1328 	for (i = 0; i < ndevices; i++) {
1329 		if (dev[i]->devtype != TYPE_DISK)
1330 			continue;
1331 		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1332 			continue;
1333 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1334 	}
1335 }
1336 
1337 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1338 	struct hpsa_scsi_dev_t *sd[], int nsds)
1339 {
1340 	/* sd contains scsi3 addresses and devtypes, and inquiry
1341 	 * data.  This function takes what's in sd to be the current
1342 	 * reality and updates h->dev[] to reflect that reality.
1343 	 */
1344 	int i, entry, device_change, changes = 0;
1345 	struct hpsa_scsi_dev_t *csd;
1346 	unsigned long flags;
1347 	struct hpsa_scsi_dev_t **added, **removed;
1348 	int nadded, nremoved;
1349 	struct Scsi_Host *sh = NULL;
1350 
1351 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1352 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1353 
1354 	if (!added || !removed) {
1355 		dev_warn(&h->pdev->dev, "out of memory in "
1356 			"adjust_hpsa_scsi_table\n");
1357 		goto free_and_out;
1358 	}
1359 
1360 	spin_lock_irqsave(&h->devlock, flags);
1361 
1362 	/* find any devices in h->dev[] that are not in
1363 	 * sd[] and remove them from h->dev[], and for any
1364 	 * devices which have changed, remove the old device
1365 	 * info and add the new device info.
1366 	 * If minor device attributes change, just update
1367 	 * the existing device structure.
1368 	 */
1369 	i = 0;
1370 	nremoved = 0;
1371 	nadded = 0;
1372 	while (i < h->ndevices) {
1373 		csd = h->dev[i];
1374 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1375 		if (device_change == DEVICE_NOT_FOUND) {
1376 			changes++;
1377 			hpsa_scsi_remove_entry(h, hostno, i,
1378 				removed, &nremoved);
1379 			continue; /* remove ^^^, hence i not incremented */
1380 		} else if (device_change == DEVICE_CHANGED) {
1381 			changes++;
1382 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1383 				added, &nadded, removed, &nremoved);
1384 			/* Set it to NULL to prevent it from being freed
1385 			 * at the bottom of hpsa_update_scsi_devices()
1386 			 */
1387 			sd[entry] = NULL;
1388 		} else if (device_change == DEVICE_UPDATED) {
1389 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1390 		}
1391 		i++;
1392 	}
1393 
1394 	/* Now, make sure every device listed in sd[] is also
1395 	 * listed in h->dev[], adding them if they aren't found
1396 	 */
1397 
1398 	for (i = 0; i < nsds; i++) {
1399 		if (!sd[i]) /* if already added above. */
1400 			continue;
1401 
1402 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1403 		 * as the SCSI mid-layer does not handle such devices well.
1404 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1405 		 * at 160Hz, and prevents the system from coming up.
1406 		 */
1407 		if (sd[i]->volume_offline) {
1408 			hpsa_show_volume_status(h, sd[i]);
1409 			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1410 				h->scsi_host->host_no,
1411 				sd[i]->bus, sd[i]->target, sd[i]->lun);
1412 			continue;
1413 		}
1414 
1415 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1416 					h->ndevices, &entry);
1417 		if (device_change == DEVICE_NOT_FOUND) {
1418 			changes++;
1419 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1420 				added, &nadded) != 0)
1421 				break;
1422 			sd[i] = NULL; /* prevent from being freed later. */
1423 		} else if (device_change == DEVICE_CHANGED) {
1424 			/* should never happen... */
1425 			changes++;
1426 			dev_warn(&h->pdev->dev,
1427 				"device unexpectedly changed.\n");
1428 			/* but if it does happen, we just ignore that device */
1429 		}
1430 	}
1431 	spin_unlock_irqrestore(&h->devlock, flags);
1432 
1433 	/* Monitor devices which are in one of several NOT READY states to be
1434 	 * brought online later. This must be done without holding h->devlock,
1435 	 * so don't touch h->dev[]
1436 	 */
1437 	for (i = 0; i < nsds; i++) {
1438 		if (!sd[i]) /* if already added above. */
1439 			continue;
1440 		if (sd[i]->volume_offline)
1441 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1442 	}
1443 
1444 	/* Don't notify scsi mid layer of any changes the first time through
1445 	 * (or if there are no changes) scsi_scan_host will do it later the
1446 	 * first time through.
1447 	 */
1448 	if (hostno == -1 || !changes)
1449 		goto free_and_out;
1450 
1451 	sh = h->scsi_host;
1452 	/* Notify scsi mid layer of any removed devices */
1453 	for (i = 0; i < nremoved; i++) {
1454 		struct scsi_device *sdev =
1455 			scsi_device_lookup(sh, removed[i]->bus,
1456 				removed[i]->target, removed[i]->lun);
1457 		if (sdev != NULL) {
1458 			scsi_remove_device(sdev);
1459 			scsi_device_put(sdev);
1460 		} else {
1461 			/* We don't expect to get here.
1462 			 * future cmds to this device will get selection
1463 			 * timeout as if the device was gone.
1464 			 */
1465 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1466 				" for removal.", hostno, removed[i]->bus,
1467 				removed[i]->target, removed[i]->lun);
1468 		}
1469 		kfree(removed[i]);
1470 		removed[i] = NULL;
1471 	}
1472 
1473 	/* Notify scsi mid layer of any added devices */
1474 	for (i = 0; i < nadded; i++) {
1475 		if (scsi_add_device(sh, added[i]->bus,
1476 			added[i]->target, added[i]->lun) == 0)
1477 			continue;
1478 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1479 			"device not added.\n", hostno, added[i]->bus,
1480 			added[i]->target, added[i]->lun);
1481 		/* now we have to remove it from h->dev,
1482 		 * since it didn't get added to scsi mid layer
1483 		 */
1484 		fixup_botched_add(h, added[i]);
1485 	}
1486 
1487 free_and_out:
1488 	kfree(added);
1489 	kfree(removed);
1490 }
1491 
1492 /*
1493  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1494  * Assume's h->devlock is held.
1495  */
1496 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1497 	int bus, int target, int lun)
1498 {
1499 	int i;
1500 	struct hpsa_scsi_dev_t *sd;
1501 
1502 	for (i = 0; i < h->ndevices; i++) {
1503 		sd = h->dev[i];
1504 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1505 			return sd;
1506 	}
1507 	return NULL;
1508 }
1509 
1510 /* link sdev->hostdata to our per-device structure. */
1511 static int hpsa_slave_alloc(struct scsi_device *sdev)
1512 {
1513 	struct hpsa_scsi_dev_t *sd;
1514 	unsigned long flags;
1515 	struct ctlr_info *h;
1516 
1517 	h = sdev_to_hba(sdev);
1518 	spin_lock_irqsave(&h->devlock, flags);
1519 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1520 		sdev_id(sdev), sdev->lun);
1521 	if (sd != NULL) {
1522 		sdev->hostdata = sd;
1523 		if (sd->queue_depth)
1524 			scsi_change_queue_depth(sdev, sd->queue_depth);
1525 		atomic_set(&sd->ioaccel_cmds_out, 0);
1526 	}
1527 	spin_unlock_irqrestore(&h->devlock, flags);
1528 	return 0;
1529 }
1530 
1531 static void hpsa_slave_destroy(struct scsi_device *sdev)
1532 {
1533 	/* nothing to do. */
1534 }
1535 
1536 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1537 {
1538 	int i;
1539 
1540 	if (!h->cmd_sg_list)
1541 		return;
1542 	for (i = 0; i < h->nr_cmds; i++) {
1543 		kfree(h->cmd_sg_list[i]);
1544 		h->cmd_sg_list[i] = NULL;
1545 	}
1546 	kfree(h->cmd_sg_list);
1547 	h->cmd_sg_list = NULL;
1548 }
1549 
1550 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1551 {
1552 	int i;
1553 
1554 	if (h->chainsize <= 0)
1555 		return 0;
1556 
1557 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1558 				GFP_KERNEL);
1559 	if (!h->cmd_sg_list) {
1560 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1561 		return -ENOMEM;
1562 	}
1563 	for (i = 0; i < h->nr_cmds; i++) {
1564 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1565 						h->chainsize, GFP_KERNEL);
1566 		if (!h->cmd_sg_list[i]) {
1567 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1568 			goto clean;
1569 		}
1570 	}
1571 	return 0;
1572 
1573 clean:
1574 	hpsa_free_sg_chain_blocks(h);
1575 	return -ENOMEM;
1576 }
1577 
1578 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1579 	struct CommandList *c)
1580 {
1581 	struct SGDescriptor *chain_sg, *chain_block;
1582 	u64 temp64;
1583 	u32 chain_len;
1584 
1585 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1586 	chain_block = h->cmd_sg_list[c->cmdindex];
1587 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1588 	chain_len = sizeof(*chain_sg) *
1589 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1590 	chain_sg->Len = cpu_to_le32(chain_len);
1591 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1592 				PCI_DMA_TODEVICE);
1593 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1594 		/* prevent subsequent unmapping */
1595 		chain_sg->Addr = cpu_to_le64(0);
1596 		return -1;
1597 	}
1598 	chain_sg->Addr = cpu_to_le64(temp64);
1599 	return 0;
1600 }
1601 
1602 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1603 	struct CommandList *c)
1604 {
1605 	struct SGDescriptor *chain_sg;
1606 
1607 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1608 		return;
1609 
1610 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1611 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1612 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1613 }
1614 
1615 
1616 /* Decode the various types of errors on ioaccel2 path.
1617  * Return 1 for any error that should generate a RAID path retry.
1618  * Return 0 for errors that don't require a RAID path retry.
1619  */
1620 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1621 					struct CommandList *c,
1622 					struct scsi_cmnd *cmd,
1623 					struct io_accel2_cmd *c2)
1624 {
1625 	int data_len;
1626 	int retry = 0;
1627 
1628 	switch (c2->error_data.serv_response) {
1629 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1630 		switch (c2->error_data.status) {
1631 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1632 			break;
1633 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1634 			dev_warn(&h->pdev->dev,
1635 				"%s: task complete with check condition.\n",
1636 				"HP SSD Smart Path");
1637 			cmd->result |= SAM_STAT_CHECK_CONDITION;
1638 			if (c2->error_data.data_present !=
1639 					IOACCEL2_SENSE_DATA_PRESENT) {
1640 				memset(cmd->sense_buffer, 0,
1641 					SCSI_SENSE_BUFFERSIZE);
1642 				break;
1643 			}
1644 			/* copy the sense data */
1645 			data_len = c2->error_data.sense_data_len;
1646 			if (data_len > SCSI_SENSE_BUFFERSIZE)
1647 				data_len = SCSI_SENSE_BUFFERSIZE;
1648 			if (data_len > sizeof(c2->error_data.sense_data_buff))
1649 				data_len =
1650 					sizeof(c2->error_data.sense_data_buff);
1651 			memcpy(cmd->sense_buffer,
1652 				c2->error_data.sense_data_buff, data_len);
1653 			retry = 1;
1654 			break;
1655 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1656 			dev_warn(&h->pdev->dev,
1657 				"%s: task complete with BUSY status.\n",
1658 				"HP SSD Smart Path");
1659 			retry = 1;
1660 			break;
1661 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1662 			dev_warn(&h->pdev->dev,
1663 				"%s: task complete with reservation conflict.\n",
1664 				"HP SSD Smart Path");
1665 			retry = 1;
1666 			break;
1667 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1668 			/* Make scsi midlayer do unlimited retries */
1669 			cmd->result = DID_IMM_RETRY << 16;
1670 			break;
1671 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1672 			dev_warn(&h->pdev->dev,
1673 				"%s: task complete with aborted status.\n",
1674 				"HP SSD Smart Path");
1675 			retry = 1;
1676 			break;
1677 		default:
1678 			dev_warn(&h->pdev->dev,
1679 				"%s: task complete with unrecognized status: 0x%02x\n",
1680 				"HP SSD Smart Path", c2->error_data.status);
1681 			retry = 1;
1682 			break;
1683 		}
1684 		break;
1685 	case IOACCEL2_SERV_RESPONSE_FAILURE:
1686 		/* don't expect to get here. */
1687 		dev_warn(&h->pdev->dev,
1688 			"unexpected delivery or target failure, status = 0x%02x\n",
1689 			c2->error_data.status);
1690 		retry = 1;
1691 		break;
1692 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1693 		break;
1694 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1695 		break;
1696 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1697 		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1698 		retry = 1;
1699 		break;
1700 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1701 		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1702 		break;
1703 	default:
1704 		dev_warn(&h->pdev->dev,
1705 			"%s: Unrecognized server response: 0x%02x\n",
1706 			"HP SSD Smart Path",
1707 			c2->error_data.serv_response);
1708 		retry = 1;
1709 		break;
1710 	}
1711 
1712 	return retry;	/* retry on raid path? */
1713 }
1714 
1715 static void process_ioaccel2_completion(struct ctlr_info *h,
1716 		struct CommandList *c, struct scsi_cmnd *cmd,
1717 		struct hpsa_scsi_dev_t *dev)
1718 {
1719 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1720 
1721 	/* check for good status */
1722 	if (likely(c2->error_data.serv_response == 0 &&
1723 			c2->error_data.status == 0)) {
1724 		cmd_free(h, c);
1725 		cmd->scsi_done(cmd);
1726 		return;
1727 	}
1728 
1729 	/* Any RAID offload error results in retry which will use
1730 	 * the normal I/O path so the controller can handle whatever's
1731 	 * wrong.
1732 	 */
1733 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1734 		c2->error_data.serv_response ==
1735 			IOACCEL2_SERV_RESPONSE_FAILURE) {
1736 		if (c2->error_data.status ==
1737 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1738 			dev->offload_enabled = 0;
1739 		goto retry_cmd;
1740 	}
1741 
1742 	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
1743 		goto retry_cmd;
1744 
1745 	cmd_free(h, c);
1746 	cmd->scsi_done(cmd);
1747 	return;
1748 
1749 retry_cmd:
1750 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
1751 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1752 }
1753 
1754 static void complete_scsi_command(struct CommandList *cp)
1755 {
1756 	struct scsi_cmnd *cmd;
1757 	struct ctlr_info *h;
1758 	struct ErrorInfo *ei;
1759 	struct hpsa_scsi_dev_t *dev;
1760 
1761 	unsigned char sense_key;
1762 	unsigned char asc;      /* additional sense code */
1763 	unsigned char ascq;     /* additional sense code qualifier */
1764 	unsigned long sense_data_size;
1765 
1766 	ei = cp->err_info;
1767 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1768 	h = cp->h;
1769 	dev = cmd->device->hostdata;
1770 
1771 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1772 	if ((cp->cmd_type == CMD_SCSI) &&
1773 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1774 		hpsa_unmap_sg_chain_block(h, cp);
1775 
1776 	cmd->result = (DID_OK << 16); 		/* host byte */
1777 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1778 
1779 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
1780 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1781 
1782 	if (cp->cmd_type == CMD_IOACCEL2)
1783 		return process_ioaccel2_completion(h, cp, cmd, dev);
1784 
1785 	cmd->result |= ei->ScsiStatus;
1786 
1787 	scsi_set_resid(cmd, ei->ResidualCnt);
1788 	if (ei->CommandStatus == 0) {
1789 		if (cp->cmd_type == CMD_IOACCEL1)
1790 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1791 		cmd_free(h, cp);
1792 		cmd->scsi_done(cmd);
1793 		return;
1794 	}
1795 
1796 	/* copy the sense data */
1797 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1798 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1799 	else
1800 		sense_data_size = sizeof(ei->SenseInfo);
1801 	if (ei->SenseLen < sense_data_size)
1802 		sense_data_size = ei->SenseLen;
1803 
1804 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1805 
1806 	/* For I/O accelerator commands, copy over some fields to the normal
1807 	 * CISS header used below for error handling.
1808 	 */
1809 	if (cp->cmd_type == CMD_IOACCEL1) {
1810 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1811 		cp->Header.SGList = scsi_sg_count(cmd);
1812 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1813 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1814 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
1815 		cp->Header.tag = c->tag;
1816 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1817 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1818 
1819 		/* Any RAID offload error results in retry which will use
1820 		 * the normal I/O path so the controller can handle whatever's
1821 		 * wrong.
1822 		 */
1823 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1824 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1825 				dev->offload_enabled = 0;
1826 			INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
1827 			queue_work_on(raw_smp_processor_id(),
1828 					h->resubmit_wq, &cp->work);
1829 			return;
1830 		}
1831 	}
1832 
1833 	/* an error has occurred */
1834 	switch (ei->CommandStatus) {
1835 
1836 	case CMD_TARGET_STATUS:
1837 		if (ei->ScsiStatus) {
1838 			/* Get sense key */
1839 			sense_key = 0xf & ei->SenseInfo[2];
1840 			/* Get additional sense code */
1841 			asc = ei->SenseInfo[12];
1842 			/* Get addition sense code qualifier */
1843 			ascq = ei->SenseInfo[13];
1844 		}
1845 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1846 			if (sense_key == ABORTED_COMMAND) {
1847 				cmd->result |= DID_SOFT_ERROR << 16;
1848 				break;
1849 			}
1850 			break;
1851 		}
1852 		/* Problem was not a check condition
1853 		 * Pass it up to the upper layers...
1854 		 */
1855 		if (ei->ScsiStatus) {
1856 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1857 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1858 				"Returning result: 0x%x\n",
1859 				cp, ei->ScsiStatus,
1860 				sense_key, asc, ascq,
1861 				cmd->result);
1862 		} else {  /* scsi status is zero??? How??? */
1863 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1864 				"Returning no connection.\n", cp),
1865 
1866 			/* Ordinarily, this case should never happen,
1867 			 * but there is a bug in some released firmware
1868 			 * revisions that allows it to happen if, for
1869 			 * example, a 4100 backplane loses power and
1870 			 * the tape drive is in it.  We assume that
1871 			 * it's a fatal error of some kind because we
1872 			 * can't show that it wasn't. We will make it
1873 			 * look like selection timeout since that is
1874 			 * the most common reason for this to occur,
1875 			 * and it's severe enough.
1876 			 */
1877 
1878 			cmd->result = DID_NO_CONNECT << 16;
1879 		}
1880 		break;
1881 
1882 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1883 		break;
1884 	case CMD_DATA_OVERRUN:
1885 		dev_warn(&h->pdev->dev, "cp %p has"
1886 			" completed with data overrun "
1887 			"reported\n", cp);
1888 		break;
1889 	case CMD_INVALID: {
1890 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1891 		print_cmd(cp); */
1892 		/* We get CMD_INVALID if you address a non-existent device
1893 		 * instead of a selection timeout (no response).  You will
1894 		 * see this if you yank out a drive, then try to access it.
1895 		 * This is kind of a shame because it means that any other
1896 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1897 		 * missing target. */
1898 		cmd->result = DID_NO_CONNECT << 16;
1899 	}
1900 		break;
1901 	case CMD_PROTOCOL_ERR:
1902 		cmd->result = DID_ERROR << 16;
1903 		dev_warn(&h->pdev->dev, "cp %p has "
1904 			"protocol error\n", cp);
1905 		break;
1906 	case CMD_HARDWARE_ERR:
1907 		cmd->result = DID_ERROR << 16;
1908 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1909 		break;
1910 	case CMD_CONNECTION_LOST:
1911 		cmd->result = DID_ERROR << 16;
1912 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1913 		break;
1914 	case CMD_ABORTED:
1915 		cmd->result = DID_ABORT << 16;
1916 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1917 				cp, ei->ScsiStatus);
1918 		break;
1919 	case CMD_ABORT_FAILED:
1920 		cmd->result = DID_ERROR << 16;
1921 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1922 		break;
1923 	case CMD_UNSOLICITED_ABORT:
1924 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1925 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1926 			"abort\n", cp);
1927 		break;
1928 	case CMD_TIMEOUT:
1929 		cmd->result = DID_TIME_OUT << 16;
1930 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1931 		break;
1932 	case CMD_UNABORTABLE:
1933 		cmd->result = DID_ERROR << 16;
1934 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1935 		break;
1936 	case CMD_IOACCEL_DISABLED:
1937 		/* This only handles the direct pass-through case since RAID
1938 		 * offload is handled above.  Just attempt a retry.
1939 		 */
1940 		cmd->result = DID_SOFT_ERROR << 16;
1941 		dev_warn(&h->pdev->dev,
1942 				"cp %p had HP SSD Smart Path error\n", cp);
1943 		break;
1944 	default:
1945 		cmd->result = DID_ERROR << 16;
1946 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1947 				cp, ei->CommandStatus);
1948 	}
1949 	cmd_free(h, cp);
1950 	cmd->scsi_done(cmd);
1951 }
1952 
1953 static void hpsa_pci_unmap(struct pci_dev *pdev,
1954 	struct CommandList *c, int sg_used, int data_direction)
1955 {
1956 	int i;
1957 
1958 	for (i = 0; i < sg_used; i++)
1959 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1960 				le32_to_cpu(c->SG[i].Len),
1961 				data_direction);
1962 }
1963 
1964 static int hpsa_map_one(struct pci_dev *pdev,
1965 		struct CommandList *cp,
1966 		unsigned char *buf,
1967 		size_t buflen,
1968 		int data_direction)
1969 {
1970 	u64 addr64;
1971 
1972 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1973 		cp->Header.SGList = 0;
1974 		cp->Header.SGTotal = cpu_to_le16(0);
1975 		return 0;
1976 	}
1977 
1978 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1979 	if (dma_mapping_error(&pdev->dev, addr64)) {
1980 		/* Prevent subsequent unmap of something never mapped */
1981 		cp->Header.SGList = 0;
1982 		cp->Header.SGTotal = cpu_to_le16(0);
1983 		return -1;
1984 	}
1985 	cp->SG[0].Addr = cpu_to_le64(addr64);
1986 	cp->SG[0].Len = cpu_to_le32(buflen);
1987 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1988 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
1989 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1990 	return 0;
1991 }
1992 
1993 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1994 	struct CommandList *c)
1995 {
1996 	DECLARE_COMPLETION_ONSTACK(wait);
1997 
1998 	c->waiting = &wait;
1999 	enqueue_cmd_and_start_io(h, c);
2000 	wait_for_completion(&wait);
2001 }
2002 
2003 static u32 lockup_detected(struct ctlr_info *h)
2004 {
2005 	int cpu;
2006 	u32 rc, *lockup_detected;
2007 
2008 	cpu = get_cpu();
2009 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2010 	rc = *lockup_detected;
2011 	put_cpu();
2012 	return rc;
2013 }
2014 
2015 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
2016 	struct CommandList *c)
2017 {
2018 	/* If controller lockup detected, fake a hardware error. */
2019 	if (unlikely(lockup_detected(h)))
2020 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2021 	else
2022 		hpsa_scsi_do_simple_cmd_core(h, c);
2023 }
2024 
2025 #define MAX_DRIVER_CMD_RETRIES 25
2026 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2027 	struct CommandList *c, int data_direction)
2028 {
2029 	int backoff_time = 10, retry_count = 0;
2030 
2031 	do {
2032 		memset(c->err_info, 0, sizeof(*c->err_info));
2033 		hpsa_scsi_do_simple_cmd_core(h, c);
2034 		retry_count++;
2035 		if (retry_count > 3) {
2036 			msleep(backoff_time);
2037 			if (backoff_time < 1000)
2038 				backoff_time *= 2;
2039 		}
2040 	} while ((check_for_unit_attention(h, c) ||
2041 			check_for_busy(h, c)) &&
2042 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2043 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2044 }
2045 
2046 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2047 				struct CommandList *c)
2048 {
2049 	const u8 *cdb = c->Request.CDB;
2050 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2051 
2052 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2053 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2054 		txt, lun[0], lun[1], lun[2], lun[3],
2055 		lun[4], lun[5], lun[6], lun[7],
2056 		cdb[0], cdb[1], cdb[2], cdb[3],
2057 		cdb[4], cdb[5], cdb[6], cdb[7],
2058 		cdb[8], cdb[9], cdb[10], cdb[11],
2059 		cdb[12], cdb[13], cdb[14], cdb[15]);
2060 }
2061 
2062 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2063 			struct CommandList *cp)
2064 {
2065 	const struct ErrorInfo *ei = cp->err_info;
2066 	struct device *d = &cp->h->pdev->dev;
2067 	const u8 *sd = ei->SenseInfo;
2068 
2069 	switch (ei->CommandStatus) {
2070 	case CMD_TARGET_STATUS:
2071 		hpsa_print_cmd(h, "SCSI status", cp);
2072 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2073 			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2074 				sd[2] & 0x0f, sd[12], sd[13]);
2075 		else
2076 			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2077 		if (ei->ScsiStatus == 0)
2078 			dev_warn(d, "SCSI status is abnormally zero.  "
2079 			"(probably indicates selection timeout "
2080 			"reported incorrectly due to a known "
2081 			"firmware bug, circa July, 2001.)\n");
2082 		break;
2083 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2084 		break;
2085 	case CMD_DATA_OVERRUN:
2086 		hpsa_print_cmd(h, "overrun condition", cp);
2087 		break;
2088 	case CMD_INVALID: {
2089 		/* controller unfortunately reports SCSI passthru's
2090 		 * to non-existent targets as invalid commands.
2091 		 */
2092 		hpsa_print_cmd(h, "invalid command", cp);
2093 		dev_warn(d, "probably means device no longer present\n");
2094 		}
2095 		break;
2096 	case CMD_PROTOCOL_ERR:
2097 		hpsa_print_cmd(h, "protocol error", cp);
2098 		break;
2099 	case CMD_HARDWARE_ERR:
2100 		hpsa_print_cmd(h, "hardware error", cp);
2101 		break;
2102 	case CMD_CONNECTION_LOST:
2103 		hpsa_print_cmd(h, "connection lost", cp);
2104 		break;
2105 	case CMD_ABORTED:
2106 		hpsa_print_cmd(h, "aborted", cp);
2107 		break;
2108 	case CMD_ABORT_FAILED:
2109 		hpsa_print_cmd(h, "abort failed", cp);
2110 		break;
2111 	case CMD_UNSOLICITED_ABORT:
2112 		hpsa_print_cmd(h, "unsolicited abort", cp);
2113 		break;
2114 	case CMD_TIMEOUT:
2115 		hpsa_print_cmd(h, "timed out", cp);
2116 		break;
2117 	case CMD_UNABORTABLE:
2118 		hpsa_print_cmd(h, "unabortable", cp);
2119 		break;
2120 	default:
2121 		hpsa_print_cmd(h, "unknown status", cp);
2122 		dev_warn(d, "Unknown command status %x\n",
2123 				ei->CommandStatus);
2124 	}
2125 }
2126 
2127 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2128 			u16 page, unsigned char *buf,
2129 			unsigned char bufsize)
2130 {
2131 	int rc = IO_OK;
2132 	struct CommandList *c;
2133 	struct ErrorInfo *ei;
2134 
2135 	c = cmd_alloc(h);
2136 
2137 	if (c == NULL) {
2138 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2139 		return -ENOMEM;
2140 	}
2141 
2142 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2143 			page, scsi3addr, TYPE_CMD)) {
2144 		rc = -1;
2145 		goto out;
2146 	}
2147 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2148 	ei = c->err_info;
2149 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2150 		hpsa_scsi_interpret_error(h, c);
2151 		rc = -1;
2152 	}
2153 out:
2154 	cmd_free(h, c);
2155 	return rc;
2156 }
2157 
2158 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2159 		unsigned char *scsi3addr, unsigned char page,
2160 		struct bmic_controller_parameters *buf, size_t bufsize)
2161 {
2162 	int rc = IO_OK;
2163 	struct CommandList *c;
2164 	struct ErrorInfo *ei;
2165 
2166 	c = cmd_alloc(h);
2167 	if (c == NULL) {			/* trouble... */
2168 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2169 		return -ENOMEM;
2170 	}
2171 
2172 	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2173 			page, scsi3addr, TYPE_CMD)) {
2174 		rc = -1;
2175 		goto out;
2176 	}
2177 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2178 	ei = c->err_info;
2179 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2180 		hpsa_scsi_interpret_error(h, c);
2181 		rc = -1;
2182 	}
2183 out:
2184 	cmd_free(h, c);
2185 	return rc;
2186 	}
2187 
2188 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2189 	u8 reset_type)
2190 {
2191 	int rc = IO_OK;
2192 	struct CommandList *c;
2193 	struct ErrorInfo *ei;
2194 
2195 	c = cmd_alloc(h);
2196 
2197 	if (c == NULL) {			/* trouble... */
2198 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2199 		return -ENOMEM;
2200 	}
2201 
2202 	/* fill_cmd can't fail here, no data buffer to map. */
2203 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2204 			scsi3addr, TYPE_MSG);
2205 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2206 	hpsa_scsi_do_simple_cmd_core(h, c);
2207 	/* no unmap needed here because no data xfer. */
2208 
2209 	ei = c->err_info;
2210 	if (ei->CommandStatus != 0) {
2211 		hpsa_scsi_interpret_error(h, c);
2212 		rc = -1;
2213 	}
2214 	cmd_free(h, c);
2215 	return rc;
2216 }
2217 
2218 static void hpsa_get_raid_level(struct ctlr_info *h,
2219 	unsigned char *scsi3addr, unsigned char *raid_level)
2220 {
2221 	int rc;
2222 	unsigned char *buf;
2223 
2224 	*raid_level = RAID_UNKNOWN;
2225 	buf = kzalloc(64, GFP_KERNEL);
2226 	if (!buf)
2227 		return;
2228 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2229 	if (rc == 0)
2230 		*raid_level = buf[8];
2231 	if (*raid_level > RAID_UNKNOWN)
2232 		*raid_level = RAID_UNKNOWN;
2233 	kfree(buf);
2234 	return;
2235 }
2236 
2237 #define HPSA_MAP_DEBUG
2238 #ifdef HPSA_MAP_DEBUG
2239 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2240 				struct raid_map_data *map_buff)
2241 {
2242 	struct raid_map_disk_data *dd = &map_buff->data[0];
2243 	int map, row, col;
2244 	u16 map_cnt, row_cnt, disks_per_row;
2245 
2246 	if (rc != 0)
2247 		return;
2248 
2249 	/* Show details only if debugging has been activated. */
2250 	if (h->raid_offload_debug < 2)
2251 		return;
2252 
2253 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2254 				le32_to_cpu(map_buff->structure_size));
2255 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2256 			le32_to_cpu(map_buff->volume_blk_size));
2257 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2258 			le64_to_cpu(map_buff->volume_blk_cnt));
2259 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2260 			map_buff->phys_blk_shift);
2261 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2262 			map_buff->parity_rotation_shift);
2263 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2264 			le16_to_cpu(map_buff->strip_size));
2265 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2266 			le64_to_cpu(map_buff->disk_starting_blk));
2267 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2268 			le64_to_cpu(map_buff->disk_blk_cnt));
2269 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2270 			le16_to_cpu(map_buff->data_disks_per_row));
2271 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2272 			le16_to_cpu(map_buff->metadata_disks_per_row));
2273 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2274 			le16_to_cpu(map_buff->row_cnt));
2275 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2276 			le16_to_cpu(map_buff->layout_map_count));
2277 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2278 			le16_to_cpu(map_buff->flags));
2279 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
2280 			le16_to_cpu(map_buff->flags) &
2281 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2282 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2283 			le16_to_cpu(map_buff->dekindex));
2284 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2285 	for (map = 0; map < map_cnt; map++) {
2286 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2287 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2288 		for (row = 0; row < row_cnt; row++) {
2289 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2290 			disks_per_row =
2291 				le16_to_cpu(map_buff->data_disks_per_row);
2292 			for (col = 0; col < disks_per_row; col++, dd++)
2293 				dev_info(&h->pdev->dev,
2294 					"    D%02u: h=0x%04x xor=%u,%u\n",
2295 					col, dd->ioaccel_handle,
2296 					dd->xor_mult[0], dd->xor_mult[1]);
2297 			disks_per_row =
2298 				le16_to_cpu(map_buff->metadata_disks_per_row);
2299 			for (col = 0; col < disks_per_row; col++, dd++)
2300 				dev_info(&h->pdev->dev,
2301 					"    M%02u: h=0x%04x xor=%u,%u\n",
2302 					col, dd->ioaccel_handle,
2303 					dd->xor_mult[0], dd->xor_mult[1]);
2304 		}
2305 	}
2306 }
2307 #else
2308 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2309 			__attribute__((unused)) int rc,
2310 			__attribute__((unused)) struct raid_map_data *map_buff)
2311 {
2312 }
2313 #endif
2314 
2315 static int hpsa_get_raid_map(struct ctlr_info *h,
2316 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2317 {
2318 	int rc = 0;
2319 	struct CommandList *c;
2320 	struct ErrorInfo *ei;
2321 
2322 	c = cmd_alloc(h);
2323 	if (c == NULL) {
2324 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2325 		return -ENOMEM;
2326 	}
2327 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2328 			sizeof(this_device->raid_map), 0,
2329 			scsi3addr, TYPE_CMD)) {
2330 		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2331 		cmd_free(h, c);
2332 		return -ENOMEM;
2333 	}
2334 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2335 	ei = c->err_info;
2336 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2337 		hpsa_scsi_interpret_error(h, c);
2338 		cmd_free(h, c);
2339 		return -1;
2340 	}
2341 	cmd_free(h, c);
2342 
2343 	/* @todo in the future, dynamically allocate RAID map memory */
2344 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2345 				sizeof(this_device->raid_map)) {
2346 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2347 		rc = -1;
2348 	}
2349 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2350 	return rc;
2351 }
2352 
2353 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2354 		unsigned char scsi3addr[], u16 bmic_device_index,
2355 		struct bmic_identify_physical_device *buf, size_t bufsize)
2356 {
2357 	int rc = IO_OK;
2358 	struct CommandList *c;
2359 	struct ErrorInfo *ei;
2360 
2361 	c = cmd_alloc(h);
2362 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2363 		0, RAID_CTLR_LUNID, TYPE_CMD);
2364 	if (rc)
2365 		goto out;
2366 
2367 	c->Request.CDB[2] = bmic_device_index & 0xff;
2368 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2369 
2370 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2371 	ei = c->err_info;
2372 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2373 		hpsa_scsi_interpret_error(h, c);
2374 		rc = -1;
2375 	}
2376 out:
2377 	cmd_free(h, c);
2378 	return rc;
2379 }
2380 
2381 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2382 	unsigned char scsi3addr[], u8 page)
2383 {
2384 	int rc;
2385 	int i;
2386 	int pages;
2387 	unsigned char *buf, bufsize;
2388 
2389 	buf = kzalloc(256, GFP_KERNEL);
2390 	if (!buf)
2391 		return 0;
2392 
2393 	/* Get the size of the page list first */
2394 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2395 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2396 				buf, HPSA_VPD_HEADER_SZ);
2397 	if (rc != 0)
2398 		goto exit_unsupported;
2399 	pages = buf[3];
2400 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2401 		bufsize = pages + HPSA_VPD_HEADER_SZ;
2402 	else
2403 		bufsize = 255;
2404 
2405 	/* Get the whole VPD page list */
2406 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2407 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2408 				buf, bufsize);
2409 	if (rc != 0)
2410 		goto exit_unsupported;
2411 
2412 	pages = buf[3];
2413 	for (i = 1; i <= pages; i++)
2414 		if (buf[3 + i] == page)
2415 			goto exit_supported;
2416 exit_unsupported:
2417 	kfree(buf);
2418 	return 0;
2419 exit_supported:
2420 	kfree(buf);
2421 	return 1;
2422 }
2423 
2424 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2425 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2426 {
2427 	int rc;
2428 	unsigned char *buf;
2429 	u8 ioaccel_status;
2430 
2431 	this_device->offload_config = 0;
2432 	this_device->offload_enabled = 0;
2433 
2434 	buf = kzalloc(64, GFP_KERNEL);
2435 	if (!buf)
2436 		return;
2437 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2438 		goto out;
2439 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2440 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2441 	if (rc != 0)
2442 		goto out;
2443 
2444 #define IOACCEL_STATUS_BYTE 4
2445 #define OFFLOAD_CONFIGURED_BIT 0x01
2446 #define OFFLOAD_ENABLED_BIT 0x02
2447 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2448 	this_device->offload_config =
2449 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2450 	if (this_device->offload_config) {
2451 		this_device->offload_enabled =
2452 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2453 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
2454 			this_device->offload_enabled = 0;
2455 	}
2456 out:
2457 	kfree(buf);
2458 	return;
2459 }
2460 
2461 /* Get the device id from inquiry page 0x83 */
2462 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2463 	unsigned char *device_id, int buflen)
2464 {
2465 	int rc;
2466 	unsigned char *buf;
2467 
2468 	if (buflen > 16)
2469 		buflen = 16;
2470 	buf = kzalloc(64, GFP_KERNEL);
2471 	if (!buf)
2472 		return -ENOMEM;
2473 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2474 	if (rc == 0)
2475 		memcpy(device_id, &buf[8], buflen);
2476 	kfree(buf);
2477 	return rc != 0;
2478 }
2479 
2480 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2481 		void *buf, int bufsize,
2482 		int extended_response)
2483 {
2484 	int rc = IO_OK;
2485 	struct CommandList *c;
2486 	unsigned char scsi3addr[8];
2487 	struct ErrorInfo *ei;
2488 
2489 	c = cmd_alloc(h);
2490 	if (c == NULL) {			/* trouble... */
2491 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2492 		return -1;
2493 	}
2494 	/* address the controller */
2495 	memset(scsi3addr, 0, sizeof(scsi3addr));
2496 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2497 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2498 		rc = -1;
2499 		goto out;
2500 	}
2501 	if (extended_response)
2502 		c->Request.CDB[1] = extended_response;
2503 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2504 	ei = c->err_info;
2505 	if (ei->CommandStatus != 0 &&
2506 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2507 		hpsa_scsi_interpret_error(h, c);
2508 		rc = -1;
2509 	} else {
2510 		struct ReportLUNdata *rld = buf;
2511 
2512 		if (rld->extended_response_flag != extended_response) {
2513 			dev_err(&h->pdev->dev,
2514 				"report luns requested format %u, got %u\n",
2515 				extended_response,
2516 				rld->extended_response_flag);
2517 			rc = -1;
2518 		}
2519 	}
2520 out:
2521 	cmd_free(h, c);
2522 	return rc;
2523 }
2524 
2525 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2526 		struct ReportExtendedLUNdata *buf, int bufsize)
2527 {
2528 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
2529 						HPSA_REPORT_PHYS_EXTENDED);
2530 }
2531 
2532 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2533 		struct ReportLUNdata *buf, int bufsize)
2534 {
2535 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2536 }
2537 
2538 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2539 	int bus, int target, int lun)
2540 {
2541 	device->bus = bus;
2542 	device->target = target;
2543 	device->lun = lun;
2544 }
2545 
2546 /* Use VPD inquiry to get details of volume status */
2547 static int hpsa_get_volume_status(struct ctlr_info *h,
2548 					unsigned char scsi3addr[])
2549 {
2550 	int rc;
2551 	int status;
2552 	int size;
2553 	unsigned char *buf;
2554 
2555 	buf = kzalloc(64, GFP_KERNEL);
2556 	if (!buf)
2557 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2558 
2559 	/* Does controller have VPD for logical volume status? */
2560 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2561 		goto exit_failed;
2562 
2563 	/* Get the size of the VPD return buffer */
2564 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2565 					buf, HPSA_VPD_HEADER_SZ);
2566 	if (rc != 0)
2567 		goto exit_failed;
2568 	size = buf[3];
2569 
2570 	/* Now get the whole VPD buffer */
2571 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2572 					buf, size + HPSA_VPD_HEADER_SZ);
2573 	if (rc != 0)
2574 		goto exit_failed;
2575 	status = buf[4]; /* status byte */
2576 
2577 	kfree(buf);
2578 	return status;
2579 exit_failed:
2580 	kfree(buf);
2581 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2582 }
2583 
2584 /* Determine offline status of a volume.
2585  * Return either:
2586  *  0 (not offline)
2587  *  0xff (offline for unknown reasons)
2588  *  # (integer code indicating one of several NOT READY states
2589  *     describing why a volume is to be kept offline)
2590  */
2591 static int hpsa_volume_offline(struct ctlr_info *h,
2592 					unsigned char scsi3addr[])
2593 {
2594 	struct CommandList *c;
2595 	unsigned char *sense, sense_key, asc, ascq;
2596 	int ldstat = 0;
2597 	u16 cmd_status;
2598 	u8 scsi_status;
2599 #define ASC_LUN_NOT_READY 0x04
2600 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2601 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2602 
2603 	c = cmd_alloc(h);
2604 	if (!c)
2605 		return 0;
2606 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2607 	hpsa_scsi_do_simple_cmd_core(h, c);
2608 	sense = c->err_info->SenseInfo;
2609 	sense_key = sense[2];
2610 	asc = sense[12];
2611 	ascq = sense[13];
2612 	cmd_status = c->err_info->CommandStatus;
2613 	scsi_status = c->err_info->ScsiStatus;
2614 	cmd_free(h, c);
2615 	/* Is the volume 'not ready'? */
2616 	if (cmd_status != CMD_TARGET_STATUS ||
2617 		scsi_status != SAM_STAT_CHECK_CONDITION ||
2618 		sense_key != NOT_READY ||
2619 		asc != ASC_LUN_NOT_READY)  {
2620 		return 0;
2621 	}
2622 
2623 	/* Determine the reason for not ready state */
2624 	ldstat = hpsa_get_volume_status(h, scsi3addr);
2625 
2626 	/* Keep volume offline in certain cases: */
2627 	switch (ldstat) {
2628 	case HPSA_LV_UNDERGOING_ERASE:
2629 	case HPSA_LV_UNDERGOING_RPI:
2630 	case HPSA_LV_PENDING_RPI:
2631 	case HPSA_LV_ENCRYPTED_NO_KEY:
2632 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2633 	case HPSA_LV_UNDERGOING_ENCRYPTION:
2634 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2635 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2636 		return ldstat;
2637 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2638 		/* If VPD status page isn't available,
2639 		 * use ASC/ASCQ to determine state
2640 		 */
2641 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2642 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2643 			return ldstat;
2644 		break;
2645 	default:
2646 		break;
2647 	}
2648 	return 0;
2649 }
2650 
2651 static int hpsa_update_device_info(struct ctlr_info *h,
2652 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2653 	unsigned char *is_OBDR_device)
2654 {
2655 
2656 #define OBDR_SIG_OFFSET 43
2657 #define OBDR_TAPE_SIG "$DR-10"
2658 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2659 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2660 
2661 	unsigned char *inq_buff;
2662 	unsigned char *obdr_sig;
2663 
2664 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2665 	if (!inq_buff)
2666 		goto bail_out;
2667 
2668 	/* Do an inquiry to the device to see what it is. */
2669 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2670 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2671 		/* Inquiry failed (msg printed already) */
2672 		dev_err(&h->pdev->dev,
2673 			"hpsa_update_device_info: inquiry failed\n");
2674 		goto bail_out;
2675 	}
2676 
2677 	this_device->devtype = (inq_buff[0] & 0x1f);
2678 	memcpy(this_device->scsi3addr, scsi3addr, 8);
2679 	memcpy(this_device->vendor, &inq_buff[8],
2680 		sizeof(this_device->vendor));
2681 	memcpy(this_device->model, &inq_buff[16],
2682 		sizeof(this_device->model));
2683 	memset(this_device->device_id, 0,
2684 		sizeof(this_device->device_id));
2685 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2686 		sizeof(this_device->device_id));
2687 
2688 	if (this_device->devtype == TYPE_DISK &&
2689 		is_logical_dev_addr_mode(scsi3addr)) {
2690 		int volume_offline;
2691 
2692 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2693 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2694 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2695 		volume_offline = hpsa_volume_offline(h, scsi3addr);
2696 		if (volume_offline < 0 || volume_offline > 0xff)
2697 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2698 		this_device->volume_offline = volume_offline & 0xff;
2699 	} else {
2700 		this_device->raid_level = RAID_UNKNOWN;
2701 		this_device->offload_config = 0;
2702 		this_device->offload_enabled = 0;
2703 		this_device->volume_offline = 0;
2704 		this_device->queue_depth = h->nr_cmds;
2705 	}
2706 
2707 	if (is_OBDR_device) {
2708 		/* See if this is a One-Button-Disaster-Recovery device
2709 		 * by looking for "$DR-10" at offset 43 in inquiry data.
2710 		 */
2711 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2712 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2713 					strncmp(obdr_sig, OBDR_TAPE_SIG,
2714 						OBDR_SIG_LEN) == 0);
2715 	}
2716 
2717 	kfree(inq_buff);
2718 	return 0;
2719 
2720 bail_out:
2721 	kfree(inq_buff);
2722 	return 1;
2723 }
2724 
2725 static unsigned char *ext_target_model[] = {
2726 	"MSA2012",
2727 	"MSA2024",
2728 	"MSA2312",
2729 	"MSA2324",
2730 	"P2000 G3 SAS",
2731 	"MSA 2040 SAS",
2732 	NULL,
2733 };
2734 
2735 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2736 {
2737 	int i;
2738 
2739 	for (i = 0; ext_target_model[i]; i++)
2740 		if (strncmp(device->model, ext_target_model[i],
2741 			strlen(ext_target_model[i])) == 0)
2742 			return 1;
2743 	return 0;
2744 }
2745 
2746 /* Helper function to assign bus, target, lun mapping of devices.
2747  * Puts non-external target logical volumes on bus 0, external target logical
2748  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2749  * Logical drive target and lun are assigned at this time, but
2750  * physical device lun and target assignment are deferred (assigned
2751  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2752  */
2753 static void figure_bus_target_lun(struct ctlr_info *h,
2754 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2755 {
2756 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2757 
2758 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2759 		/* physical device, target and lun filled in later */
2760 		if (is_hba_lunid(lunaddrbytes))
2761 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2762 		else
2763 			/* defer target, lun assignment for physical devices */
2764 			hpsa_set_bus_target_lun(device, 2, -1, -1);
2765 		return;
2766 	}
2767 	/* It's a logical device */
2768 	if (is_ext_target(h, device)) {
2769 		/* external target way, put logicals on bus 1
2770 		 * and match target/lun numbers box
2771 		 * reports, other smart array, bus 0, target 0, match lunid
2772 		 */
2773 		hpsa_set_bus_target_lun(device,
2774 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2775 		return;
2776 	}
2777 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2778 }
2779 
2780 /*
2781  * If there is no lun 0 on a target, linux won't find any devices.
2782  * For the external targets (arrays), we have to manually detect the enclosure
2783  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2784  * it for some reason.  *tmpdevice is the target we're adding,
2785  * this_device is a pointer into the current element of currentsd[]
2786  * that we're building up in update_scsi_devices(), below.
2787  * lunzerobits is a bitmap that tracks which targets already have a
2788  * lun 0 assigned.
2789  * Returns 1 if an enclosure was added, 0 if not.
2790  */
2791 static int add_ext_target_dev(struct ctlr_info *h,
2792 	struct hpsa_scsi_dev_t *tmpdevice,
2793 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2794 	unsigned long lunzerobits[], int *n_ext_target_devs)
2795 {
2796 	unsigned char scsi3addr[8];
2797 
2798 	if (test_bit(tmpdevice->target, lunzerobits))
2799 		return 0; /* There is already a lun 0 on this target. */
2800 
2801 	if (!is_logical_dev_addr_mode(lunaddrbytes))
2802 		return 0; /* It's the logical targets that may lack lun 0. */
2803 
2804 	if (!is_ext_target(h, tmpdevice))
2805 		return 0; /* Only external target devices have this problem. */
2806 
2807 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2808 		return 0;
2809 
2810 	memset(scsi3addr, 0, 8);
2811 	scsi3addr[3] = tmpdevice->target;
2812 	if (is_hba_lunid(scsi3addr))
2813 		return 0; /* Don't add the RAID controller here. */
2814 
2815 	if (is_scsi_rev_5(h))
2816 		return 0; /* p1210m doesn't need to do this. */
2817 
2818 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2819 		dev_warn(&h->pdev->dev, "Maximum number of external "
2820 			"target devices exceeded.  Check your hardware "
2821 			"configuration.");
2822 		return 0;
2823 	}
2824 
2825 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2826 		return 0;
2827 	(*n_ext_target_devs)++;
2828 	hpsa_set_bus_target_lun(this_device,
2829 				tmpdevice->bus, tmpdevice->target, 0);
2830 	set_bit(tmpdevice->target, lunzerobits);
2831 	return 1;
2832 }
2833 
2834 /*
2835  * Get address of physical disk used for an ioaccel2 mode command:
2836  *	1. Extract ioaccel2 handle from the command.
2837  *	2. Find a matching ioaccel2 handle from list of physical disks.
2838  *	3. Return:
2839  *		1 and set scsi3addr to address of matching physical
2840  *		0 if no matching physical disk was found.
2841  */
2842 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2843 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2844 {
2845 	struct ReportExtendedLUNdata *physicals = NULL;
2846 	int responsesize = 24;	/* size of physical extended response */
2847 	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2848 	u32 nphysicals = 0;	/* number of reported physical devs */
2849 	int found = 0;		/* found match (1) or not (0) */
2850 	u32 find;		/* handle we need to match */
2851 	int i;
2852 	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
2853 	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2854 	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2855 	__le32 it_nexus;	/* 4 byte device handle for the ioaccel2 cmd */
2856 	__le32 scsi_nexus;	/* 4 byte device handle for the ioaccel2 cmd */
2857 
2858 	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2859 		return 0; /* no match */
2860 
2861 	/* point to the ioaccel2 device handle */
2862 	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2863 	if (c2a == NULL)
2864 		return 0; /* no match */
2865 
2866 	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2867 	if (scmd == NULL)
2868 		return 0; /* no match */
2869 
2870 	d = scmd->device->hostdata;
2871 	if (d == NULL)
2872 		return 0; /* no match */
2873 
2874 	it_nexus = cpu_to_le32(d->ioaccel_handle);
2875 	scsi_nexus = c2a->scsi_nexus;
2876 	find = le32_to_cpu(c2a->scsi_nexus);
2877 
2878 	if (h->raid_offload_debug > 0)
2879 		dev_info(&h->pdev->dev,
2880 			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2881 			__func__, scsi_nexus,
2882 			d->device_id[0], d->device_id[1], d->device_id[2],
2883 			d->device_id[3], d->device_id[4], d->device_id[5],
2884 			d->device_id[6], d->device_id[7], d->device_id[8],
2885 			d->device_id[9], d->device_id[10], d->device_id[11],
2886 			d->device_id[12], d->device_id[13], d->device_id[14],
2887 			d->device_id[15]);
2888 
2889 	/* Get the list of physical devices */
2890 	physicals = kzalloc(reportsize, GFP_KERNEL);
2891 	if (physicals == NULL)
2892 		return 0;
2893 	if (hpsa_scsi_do_report_phys_luns(h, physicals, reportsize)) {
2894 		dev_err(&h->pdev->dev,
2895 			"Can't lookup %s device handle: report physical LUNs failed.\n",
2896 			"HP SSD Smart Path");
2897 		kfree(physicals);
2898 		return 0;
2899 	}
2900 	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2901 							responsesize;
2902 
2903 	/* find ioaccel2 handle in list of physicals: */
2904 	for (i = 0; i < nphysicals; i++) {
2905 		struct ext_report_lun_entry *entry = &physicals->LUN[i];
2906 
2907 		/* handle is in bytes 28-31 of each lun */
2908 		if (entry->ioaccel_handle != find)
2909 			continue; /* didn't match */
2910 		found = 1;
2911 		memcpy(scsi3addr, entry->lunid, 8);
2912 		if (h->raid_offload_debug > 0)
2913 			dev_info(&h->pdev->dev,
2914 				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2915 				__func__, find,
2916 				entry->ioaccel_handle, scsi3addr);
2917 		break; /* found it */
2918 	}
2919 
2920 	kfree(physicals);
2921 	if (found)
2922 		return 1;
2923 	else
2924 		return 0;
2925 
2926 }
2927 /*
2928  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2929  * logdev.  The number of luns in physdev and logdev are returned in
2930  * *nphysicals and *nlogicals, respectively.
2931  * Returns 0 on success, -1 otherwise.
2932  */
2933 static int hpsa_gather_lun_info(struct ctlr_info *h,
2934 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
2935 	struct ReportLUNdata *logdev, u32 *nlogicals)
2936 {
2937 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
2938 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2939 		return -1;
2940 	}
2941 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
2942 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2943 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
2944 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
2945 		*nphysicals = HPSA_MAX_PHYS_LUN;
2946 	}
2947 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
2948 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2949 		return -1;
2950 	}
2951 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2952 	/* Reject Logicals in excess of our max capability. */
2953 	if (*nlogicals > HPSA_MAX_LUN) {
2954 		dev_warn(&h->pdev->dev,
2955 			"maximum logical LUNs (%d) exceeded.  "
2956 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
2957 			*nlogicals - HPSA_MAX_LUN);
2958 			*nlogicals = HPSA_MAX_LUN;
2959 	}
2960 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2961 		dev_warn(&h->pdev->dev,
2962 			"maximum logical + physical LUNs (%d) exceeded. "
2963 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2964 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2965 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2966 	}
2967 	return 0;
2968 }
2969 
2970 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2971 	int i, int nphysicals, int nlogicals,
2972 	struct ReportExtendedLUNdata *physdev_list,
2973 	struct ReportLUNdata *logdev_list)
2974 {
2975 	/* Helper function, figure out where the LUN ID info is coming from
2976 	 * given index i, lists of physical and logical devices, where in
2977 	 * the list the raid controller is supposed to appear (first or last)
2978 	 */
2979 
2980 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
2981 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2982 
2983 	if (i == raid_ctlr_position)
2984 		return RAID_CTLR_LUNID;
2985 
2986 	if (i < logicals_start)
2987 		return &physdev_list->LUN[i -
2988 				(raid_ctlr_position == 0)].lunid[0];
2989 
2990 	if (i < last_device)
2991 		return &logdev_list->LUN[i - nphysicals -
2992 			(raid_ctlr_position == 0)][0];
2993 	BUG();
2994 	return NULL;
2995 }
2996 
2997 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2998 {
2999 	int rc;
3000 	int hba_mode_enabled;
3001 	struct bmic_controller_parameters *ctlr_params;
3002 	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3003 		GFP_KERNEL);
3004 
3005 	if (!ctlr_params)
3006 		return -ENOMEM;
3007 	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3008 		sizeof(struct bmic_controller_parameters));
3009 	if (rc) {
3010 		kfree(ctlr_params);
3011 		return rc;
3012 	}
3013 
3014 	hba_mode_enabled =
3015 		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3016 	kfree(ctlr_params);
3017 	return hba_mode_enabled;
3018 }
3019 
3020 /* get physical drive ioaccel handle and queue depth */
3021 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3022 		struct hpsa_scsi_dev_t *dev,
3023 		u8 *lunaddrbytes,
3024 		struct bmic_identify_physical_device *id_phys)
3025 {
3026 	int rc;
3027 	struct ext_report_lun_entry *rle =
3028 		(struct ext_report_lun_entry *) lunaddrbytes;
3029 
3030 	dev->ioaccel_handle = rle->ioaccel_handle;
3031 	memset(id_phys, 0, sizeof(*id_phys));
3032 	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3033 			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3034 			sizeof(*id_phys));
3035 	if (!rc)
3036 		/* Reserve space for FW operations */
3037 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3038 #define DRIVE_QUEUE_DEPTH 7
3039 		dev->queue_depth =
3040 			le16_to_cpu(id_phys->current_queue_depth_limit) -
3041 				DRIVE_CMDS_RESERVED_FOR_FW;
3042 	else
3043 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3044 	atomic_set(&dev->ioaccel_cmds_out, 0);
3045 }
3046 
3047 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3048 {
3049 	/* the idea here is we could get notified
3050 	 * that some devices have changed, so we do a report
3051 	 * physical luns and report logical luns cmd, and adjust
3052 	 * our list of devices accordingly.
3053 	 *
3054 	 * The scsi3addr's of devices won't change so long as the
3055 	 * adapter is not reset.  That means we can rescan and
3056 	 * tell which devices we already know about, vs. new
3057 	 * devices, vs.  disappearing devices.
3058 	 */
3059 	struct ReportExtendedLUNdata *physdev_list = NULL;
3060 	struct ReportLUNdata *logdev_list = NULL;
3061 	struct bmic_identify_physical_device *id_phys = NULL;
3062 	u32 nphysicals = 0;
3063 	u32 nlogicals = 0;
3064 	u32 ndev_allocated = 0;
3065 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3066 	int ncurrent = 0;
3067 	int i, n_ext_target_devs, ndevs_to_allocate;
3068 	int raid_ctlr_position;
3069 	int rescan_hba_mode;
3070 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3071 
3072 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3073 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3074 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3075 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3076 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3077 
3078 	if (!currentsd || !physdev_list || !logdev_list ||
3079 		!tmpdevice || !id_phys) {
3080 		dev_err(&h->pdev->dev, "out of memory\n");
3081 		goto out;
3082 	}
3083 	memset(lunzerobits, 0, sizeof(lunzerobits));
3084 
3085 	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3086 	if (rescan_hba_mode < 0)
3087 		goto out;
3088 
3089 	if (!h->hba_mode_enabled && rescan_hba_mode)
3090 		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3091 	else if (h->hba_mode_enabled && !rescan_hba_mode)
3092 		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3093 
3094 	h->hba_mode_enabled = rescan_hba_mode;
3095 
3096 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3097 			logdev_list, &nlogicals))
3098 		goto out;
3099 
3100 	/* We might see up to the maximum number of logical and physical disks
3101 	 * plus external target devices, and a device for the local RAID
3102 	 * controller.
3103 	 */
3104 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3105 
3106 	/* Allocate the per device structures */
3107 	for (i = 0; i < ndevs_to_allocate; i++) {
3108 		if (i >= HPSA_MAX_DEVICES) {
3109 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3110 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3111 				ndevs_to_allocate - HPSA_MAX_DEVICES);
3112 			break;
3113 		}
3114 
3115 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3116 		if (!currentsd[i]) {
3117 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3118 				__FILE__, __LINE__);
3119 			goto out;
3120 		}
3121 		ndev_allocated++;
3122 	}
3123 
3124 	if (is_scsi_rev_5(h))
3125 		raid_ctlr_position = 0;
3126 	else
3127 		raid_ctlr_position = nphysicals + nlogicals;
3128 
3129 	/* adjust our table of devices */
3130 	n_ext_target_devs = 0;
3131 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3132 		u8 *lunaddrbytes, is_OBDR = 0;
3133 
3134 		/* Figure out where the LUN ID info is coming from */
3135 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3136 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3137 		/* skip masked physical devices. */
3138 		if (lunaddrbytes[3] & 0xC0 &&
3139 			i < nphysicals + (raid_ctlr_position == 0))
3140 			continue;
3141 
3142 		/* Get device type, vendor, model, device id */
3143 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3144 							&is_OBDR))
3145 			continue; /* skip it if we can't talk to it. */
3146 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3147 		this_device = currentsd[ncurrent];
3148 
3149 		/*
3150 		 * For external target devices, we have to insert a LUN 0 which
3151 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3152 		 * is nonetheless an enclosure device there.  We have to
3153 		 * present that otherwise linux won't find anything if
3154 		 * there is no lun 0.
3155 		 */
3156 		if (add_ext_target_dev(h, tmpdevice, this_device,
3157 				lunaddrbytes, lunzerobits,
3158 				&n_ext_target_devs)) {
3159 			ncurrent++;
3160 			this_device = currentsd[ncurrent];
3161 		}
3162 
3163 		*this_device = *tmpdevice;
3164 
3165 		switch (this_device->devtype) {
3166 		case TYPE_ROM:
3167 			/* We don't *really* support actual CD-ROM devices,
3168 			 * just "One Button Disaster Recovery" tape drive
3169 			 * which temporarily pretends to be a CD-ROM drive.
3170 			 * So we check that the device is really an OBDR tape
3171 			 * device by checking for "$DR-10" in bytes 43-48 of
3172 			 * the inquiry data.
3173 			 */
3174 			if (is_OBDR)
3175 				ncurrent++;
3176 			break;
3177 		case TYPE_DISK:
3178 			if (h->hba_mode_enabled) {
3179 				/* never use raid mapper in HBA mode */
3180 				this_device->offload_enabled = 0;
3181 				ncurrent++;
3182 				break;
3183 			} else if (h->acciopath_status) {
3184 				if (i >= nphysicals) {
3185 					ncurrent++;
3186 					break;
3187 				}
3188 			} else {
3189 				if (i < nphysicals)
3190 					break;
3191 				ncurrent++;
3192 				break;
3193 			}
3194 			if (h->transMethod & CFGTBL_Trans_io_accel1 ||
3195 				h->transMethod & CFGTBL_Trans_io_accel2) {
3196 				hpsa_get_ioaccel_drive_info(h, this_device,
3197 							lunaddrbytes, id_phys);
3198 				atomic_set(&this_device->ioaccel_cmds_out, 0);
3199 				ncurrent++;
3200 			}
3201 			break;
3202 		case TYPE_TAPE:
3203 		case TYPE_MEDIUM_CHANGER:
3204 			ncurrent++;
3205 			break;
3206 		case TYPE_RAID:
3207 			/* Only present the Smartarray HBA as a RAID controller.
3208 			 * If it's a RAID controller other than the HBA itself
3209 			 * (an external RAID controller, MSA500 or similar)
3210 			 * don't present it.
3211 			 */
3212 			if (!is_hba_lunid(lunaddrbytes))
3213 				break;
3214 			ncurrent++;
3215 			break;
3216 		default:
3217 			break;
3218 		}
3219 		if (ncurrent >= HPSA_MAX_DEVICES)
3220 			break;
3221 	}
3222 	hpsa_update_log_drive_phys_drive_ptrs(h, currentsd, ncurrent);
3223 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3224 out:
3225 	kfree(tmpdevice);
3226 	for (i = 0; i < ndev_allocated; i++)
3227 		kfree(currentsd[i]);
3228 	kfree(currentsd);
3229 	kfree(physdev_list);
3230 	kfree(logdev_list);
3231 	kfree(id_phys);
3232 }
3233 
3234 /*
3235  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3236  * dma mapping  and fills in the scatter gather entries of the
3237  * hpsa command, cp.
3238  */
3239 static int hpsa_scatter_gather(struct ctlr_info *h,
3240 		struct CommandList *cp,
3241 		struct scsi_cmnd *cmd)
3242 {
3243 	unsigned int len;
3244 	struct scatterlist *sg;
3245 	u64 addr64;
3246 	int use_sg, i, sg_index, chained;
3247 	struct SGDescriptor *curr_sg;
3248 
3249 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3250 
3251 	use_sg = scsi_dma_map(cmd);
3252 	if (use_sg < 0)
3253 		return use_sg;
3254 
3255 	if (!use_sg)
3256 		goto sglist_finished;
3257 
3258 	curr_sg = cp->SG;
3259 	chained = 0;
3260 	sg_index = 0;
3261 	scsi_for_each_sg(cmd, sg, use_sg, i) {
3262 		if (i == h->max_cmd_sg_entries - 1 &&
3263 			use_sg > h->max_cmd_sg_entries) {
3264 			chained = 1;
3265 			curr_sg = h->cmd_sg_list[cp->cmdindex];
3266 			sg_index = 0;
3267 		}
3268 		addr64 = (u64) sg_dma_address(sg);
3269 		len  = sg_dma_len(sg);
3270 		curr_sg->Addr = cpu_to_le64(addr64);
3271 		curr_sg->Len = cpu_to_le32(len);
3272 		curr_sg->Ext = cpu_to_le32(0);
3273 		curr_sg++;
3274 	}
3275 	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3276 
3277 	if (use_sg + chained > h->maxSG)
3278 		h->maxSG = use_sg + chained;
3279 
3280 	if (chained) {
3281 		cp->Header.SGList = h->max_cmd_sg_entries;
3282 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3283 		if (hpsa_map_sg_chain_block(h, cp)) {
3284 			scsi_dma_unmap(cmd);
3285 			return -1;
3286 		}
3287 		return 0;
3288 	}
3289 
3290 sglist_finished:
3291 
3292 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3293 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3294 	return 0;
3295 }
3296 
3297 #define IO_ACCEL_INELIGIBLE (1)
3298 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3299 {
3300 	int is_write = 0;
3301 	u32 block;
3302 	u32 block_cnt;
3303 
3304 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3305 	switch (cdb[0]) {
3306 	case WRITE_6:
3307 	case WRITE_12:
3308 		is_write = 1;
3309 	case READ_6:
3310 	case READ_12:
3311 		if (*cdb_len == 6) {
3312 			block = (((u32) cdb[2]) << 8) | cdb[3];
3313 			block_cnt = cdb[4];
3314 		} else {
3315 			BUG_ON(*cdb_len != 12);
3316 			block = (((u32) cdb[2]) << 24) |
3317 				(((u32) cdb[3]) << 16) |
3318 				(((u32) cdb[4]) << 8) |
3319 				cdb[5];
3320 			block_cnt =
3321 				(((u32) cdb[6]) << 24) |
3322 				(((u32) cdb[7]) << 16) |
3323 				(((u32) cdb[8]) << 8) |
3324 				cdb[9];
3325 		}
3326 		if (block_cnt > 0xffff)
3327 			return IO_ACCEL_INELIGIBLE;
3328 
3329 		cdb[0] = is_write ? WRITE_10 : READ_10;
3330 		cdb[1] = 0;
3331 		cdb[2] = (u8) (block >> 24);
3332 		cdb[3] = (u8) (block >> 16);
3333 		cdb[4] = (u8) (block >> 8);
3334 		cdb[5] = (u8) (block);
3335 		cdb[6] = 0;
3336 		cdb[7] = (u8) (block_cnt >> 8);
3337 		cdb[8] = (u8) (block_cnt);
3338 		cdb[9] = 0;
3339 		*cdb_len = 10;
3340 		break;
3341 	}
3342 	return 0;
3343 }
3344 
3345 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3346 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3347 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3348 {
3349 	struct scsi_cmnd *cmd = c->scsi_cmd;
3350 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3351 	unsigned int len;
3352 	unsigned int total_len = 0;
3353 	struct scatterlist *sg;
3354 	u64 addr64;
3355 	int use_sg, i;
3356 	struct SGDescriptor *curr_sg;
3357 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3358 
3359 	/* TODO: implement chaining support */
3360 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3361 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3362 		return IO_ACCEL_INELIGIBLE;
3363 	}
3364 
3365 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3366 
3367 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3368 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3369 		return IO_ACCEL_INELIGIBLE;
3370 	}
3371 
3372 	c->cmd_type = CMD_IOACCEL1;
3373 
3374 	/* Adjust the DMA address to point to the accelerated command buffer */
3375 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3376 				(c->cmdindex * sizeof(*cp));
3377 	BUG_ON(c->busaddr & 0x0000007F);
3378 
3379 	use_sg = scsi_dma_map(cmd);
3380 	if (use_sg < 0) {
3381 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3382 		return use_sg;
3383 	}
3384 
3385 	if (use_sg) {
3386 		curr_sg = cp->SG;
3387 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3388 			addr64 = (u64) sg_dma_address(sg);
3389 			len  = sg_dma_len(sg);
3390 			total_len += len;
3391 			curr_sg->Addr = cpu_to_le64(addr64);
3392 			curr_sg->Len = cpu_to_le32(len);
3393 			curr_sg->Ext = cpu_to_le32(0);
3394 			curr_sg++;
3395 		}
3396 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3397 
3398 		switch (cmd->sc_data_direction) {
3399 		case DMA_TO_DEVICE:
3400 			control |= IOACCEL1_CONTROL_DATA_OUT;
3401 			break;
3402 		case DMA_FROM_DEVICE:
3403 			control |= IOACCEL1_CONTROL_DATA_IN;
3404 			break;
3405 		case DMA_NONE:
3406 			control |= IOACCEL1_CONTROL_NODATAXFER;
3407 			break;
3408 		default:
3409 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3410 			cmd->sc_data_direction);
3411 			BUG();
3412 			break;
3413 		}
3414 	} else {
3415 		control |= IOACCEL1_CONTROL_NODATAXFER;
3416 	}
3417 
3418 	c->Header.SGList = use_sg;
3419 	/* Fill out the command structure to submit */
3420 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3421 	cp->transfer_len = cpu_to_le32(total_len);
3422 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3423 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3424 	cp->control = cpu_to_le32(control);
3425 	memcpy(cp->CDB, cdb, cdb_len);
3426 	memcpy(cp->CISS_LUN, scsi3addr, 8);
3427 	/* Tag was already set at init time. */
3428 	enqueue_cmd_and_start_io(h, c);
3429 	return 0;
3430 }
3431 
3432 /*
3433  * Queue a command directly to a device behind the controller using the
3434  * I/O accelerator path.
3435  */
3436 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3437 	struct CommandList *c)
3438 {
3439 	struct scsi_cmnd *cmd = c->scsi_cmd;
3440 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3441 
3442 	c->phys_disk = dev;
3443 
3444 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3445 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3446 }
3447 
3448 /*
3449  * Set encryption parameters for the ioaccel2 request
3450  */
3451 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3452 	struct CommandList *c, struct io_accel2_cmd *cp)
3453 {
3454 	struct scsi_cmnd *cmd = c->scsi_cmd;
3455 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3456 	struct raid_map_data *map = &dev->raid_map;
3457 	u64 first_block;
3458 
3459 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3460 
3461 	/* Are we doing encryption on this device */
3462 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3463 		return;
3464 	/* Set the data encryption key index. */
3465 	cp->dekindex = map->dekindex;
3466 
3467 	/* Set the encryption enable flag, encoded into direction field. */
3468 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3469 
3470 	/* Set encryption tweak values based on logical block address
3471 	 * If block size is 512, tweak value is LBA.
3472 	 * For other block sizes, tweak is (LBA * block size)/ 512)
3473 	 */
3474 	switch (cmd->cmnd[0]) {
3475 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3476 	case WRITE_6:
3477 	case READ_6:
3478 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3479 		break;
3480 	case WRITE_10:
3481 	case READ_10:
3482 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3483 	case WRITE_12:
3484 	case READ_12:
3485 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3486 		break;
3487 	case WRITE_16:
3488 	case READ_16:
3489 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3490 		break;
3491 	default:
3492 		dev_err(&h->pdev->dev,
3493 			"ERROR: %s: size (0x%x) not supported for encryption\n",
3494 			__func__, cmd->cmnd[0]);
3495 		BUG();
3496 		break;
3497 	}
3498 
3499 	if (le32_to_cpu(map->volume_blk_size) != 512)
3500 		first_block = first_block *
3501 				le32_to_cpu(map->volume_blk_size)/512;
3502 
3503 	cp->tweak_lower = cpu_to_le32(first_block);
3504 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3505 }
3506 
3507 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3508 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3509 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3510 {
3511 	struct scsi_cmnd *cmd = c->scsi_cmd;
3512 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3513 	struct ioaccel2_sg_element *curr_sg;
3514 	int use_sg, i;
3515 	struct scatterlist *sg;
3516 	u64 addr64;
3517 	u32 len;
3518 	u32 total_len = 0;
3519 
3520 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3521 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3522 		return IO_ACCEL_INELIGIBLE;
3523 	}
3524 
3525 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3526 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3527 		return IO_ACCEL_INELIGIBLE;
3528 	}
3529 
3530 	c->cmd_type = CMD_IOACCEL2;
3531 	/* Adjust the DMA address to point to the accelerated command buffer */
3532 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3533 				(c->cmdindex * sizeof(*cp));
3534 	BUG_ON(c->busaddr & 0x0000007F);
3535 
3536 	memset(cp, 0, sizeof(*cp));
3537 	cp->IU_type = IOACCEL2_IU_TYPE;
3538 
3539 	use_sg = scsi_dma_map(cmd);
3540 	if (use_sg < 0) {
3541 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3542 		return use_sg;
3543 	}
3544 
3545 	if (use_sg) {
3546 		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3547 		curr_sg = cp->sg;
3548 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3549 			addr64 = (u64) sg_dma_address(sg);
3550 			len  = sg_dma_len(sg);
3551 			total_len += len;
3552 			curr_sg->address = cpu_to_le64(addr64);
3553 			curr_sg->length = cpu_to_le32(len);
3554 			curr_sg->reserved[0] = 0;
3555 			curr_sg->reserved[1] = 0;
3556 			curr_sg->reserved[2] = 0;
3557 			curr_sg->chain_indicator = 0;
3558 			curr_sg++;
3559 		}
3560 
3561 		switch (cmd->sc_data_direction) {
3562 		case DMA_TO_DEVICE:
3563 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3564 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3565 			break;
3566 		case DMA_FROM_DEVICE:
3567 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3568 			cp->direction |= IOACCEL2_DIR_DATA_IN;
3569 			break;
3570 		case DMA_NONE:
3571 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3572 			cp->direction |= IOACCEL2_DIR_NO_DATA;
3573 			break;
3574 		default:
3575 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3576 				cmd->sc_data_direction);
3577 			BUG();
3578 			break;
3579 		}
3580 	} else {
3581 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3582 		cp->direction |= IOACCEL2_DIR_NO_DATA;
3583 	}
3584 
3585 	/* Set encryption parameters, if necessary */
3586 	set_encrypt_ioaccel2(h, c, cp);
3587 
3588 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3589 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3590 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3591 
3592 	/* fill in sg elements */
3593 	cp->sg_count = (u8) use_sg;
3594 
3595 	cp->data_len = cpu_to_le32(total_len);
3596 	cp->err_ptr = cpu_to_le64(c->busaddr +
3597 			offsetof(struct io_accel2_cmd, error_data));
3598 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3599 
3600 	enqueue_cmd_and_start_io(h, c);
3601 	return 0;
3602 }
3603 
3604 /*
3605  * Queue a command to the correct I/O accelerator path.
3606  */
3607 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3608 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3609 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3610 {
3611 	/* Try to honor the device's queue depth */
3612 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
3613 					phys_disk->queue_depth) {
3614 		atomic_dec(&phys_disk->ioaccel_cmds_out);
3615 		return IO_ACCEL_INELIGIBLE;
3616 	}
3617 	if (h->transMethod & CFGTBL_Trans_io_accel1)
3618 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3619 						cdb, cdb_len, scsi3addr,
3620 						phys_disk);
3621 	else
3622 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3623 						cdb, cdb_len, scsi3addr,
3624 						phys_disk);
3625 }
3626 
3627 static void raid_map_helper(struct raid_map_data *map,
3628 		int offload_to_mirror, u32 *map_index, u32 *current_group)
3629 {
3630 	if (offload_to_mirror == 0)  {
3631 		/* use physical disk in the first mirrored group. */
3632 		*map_index %= le16_to_cpu(map->data_disks_per_row);
3633 		return;
3634 	}
3635 	do {
3636 		/* determine mirror group that *map_index indicates */
3637 		*current_group = *map_index /
3638 			le16_to_cpu(map->data_disks_per_row);
3639 		if (offload_to_mirror == *current_group)
3640 			continue;
3641 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3642 			/* select map index from next group */
3643 			*map_index += le16_to_cpu(map->data_disks_per_row);
3644 			(*current_group)++;
3645 		} else {
3646 			/* select map index from first group */
3647 			*map_index %= le16_to_cpu(map->data_disks_per_row);
3648 			*current_group = 0;
3649 		}
3650 	} while (offload_to_mirror != *current_group);
3651 }
3652 
3653 /*
3654  * Attempt to perform offload RAID mapping for a logical volume I/O.
3655  */
3656 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3657 	struct CommandList *c)
3658 {
3659 	struct scsi_cmnd *cmd = c->scsi_cmd;
3660 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3661 	struct raid_map_data *map = &dev->raid_map;
3662 	struct raid_map_disk_data *dd = &map->data[0];
3663 	int is_write = 0;
3664 	u32 map_index;
3665 	u64 first_block, last_block;
3666 	u32 block_cnt;
3667 	u32 blocks_per_row;
3668 	u64 first_row, last_row;
3669 	u32 first_row_offset, last_row_offset;
3670 	u32 first_column, last_column;
3671 	u64 r0_first_row, r0_last_row;
3672 	u32 r5or6_blocks_per_row;
3673 	u64 r5or6_first_row, r5or6_last_row;
3674 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
3675 	u32 r5or6_first_column, r5or6_last_column;
3676 	u32 total_disks_per_row;
3677 	u32 stripesize;
3678 	u32 first_group, last_group, current_group;
3679 	u32 map_row;
3680 	u32 disk_handle;
3681 	u64 disk_block;
3682 	u32 disk_block_cnt;
3683 	u8 cdb[16];
3684 	u8 cdb_len;
3685 	u16 strip_size;
3686 #if BITS_PER_LONG == 32
3687 	u64 tmpdiv;
3688 #endif
3689 	int offload_to_mirror;
3690 
3691 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3692 
3693 	/* check for valid opcode, get LBA and block count */
3694 	switch (cmd->cmnd[0]) {
3695 	case WRITE_6:
3696 		is_write = 1;
3697 	case READ_6:
3698 		first_block =
3699 			(((u64) cmd->cmnd[2]) << 8) |
3700 			cmd->cmnd[3];
3701 		block_cnt = cmd->cmnd[4];
3702 		if (block_cnt == 0)
3703 			block_cnt = 256;
3704 		break;
3705 	case WRITE_10:
3706 		is_write = 1;
3707 	case READ_10:
3708 		first_block =
3709 			(((u64) cmd->cmnd[2]) << 24) |
3710 			(((u64) cmd->cmnd[3]) << 16) |
3711 			(((u64) cmd->cmnd[4]) << 8) |
3712 			cmd->cmnd[5];
3713 		block_cnt =
3714 			(((u32) cmd->cmnd[7]) << 8) |
3715 			cmd->cmnd[8];
3716 		break;
3717 	case WRITE_12:
3718 		is_write = 1;
3719 	case READ_12:
3720 		first_block =
3721 			(((u64) cmd->cmnd[2]) << 24) |
3722 			(((u64) cmd->cmnd[3]) << 16) |
3723 			(((u64) cmd->cmnd[4]) << 8) |
3724 			cmd->cmnd[5];
3725 		block_cnt =
3726 			(((u32) cmd->cmnd[6]) << 24) |
3727 			(((u32) cmd->cmnd[7]) << 16) |
3728 			(((u32) cmd->cmnd[8]) << 8) |
3729 		cmd->cmnd[9];
3730 		break;
3731 	case WRITE_16:
3732 		is_write = 1;
3733 	case READ_16:
3734 		first_block =
3735 			(((u64) cmd->cmnd[2]) << 56) |
3736 			(((u64) cmd->cmnd[3]) << 48) |
3737 			(((u64) cmd->cmnd[4]) << 40) |
3738 			(((u64) cmd->cmnd[5]) << 32) |
3739 			(((u64) cmd->cmnd[6]) << 24) |
3740 			(((u64) cmd->cmnd[7]) << 16) |
3741 			(((u64) cmd->cmnd[8]) << 8) |
3742 			cmd->cmnd[9];
3743 		block_cnt =
3744 			(((u32) cmd->cmnd[10]) << 24) |
3745 			(((u32) cmd->cmnd[11]) << 16) |
3746 			(((u32) cmd->cmnd[12]) << 8) |
3747 			cmd->cmnd[13];
3748 		break;
3749 	default:
3750 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3751 	}
3752 	last_block = first_block + block_cnt - 1;
3753 
3754 	/* check for write to non-RAID-0 */
3755 	if (is_write && dev->raid_level != 0)
3756 		return IO_ACCEL_INELIGIBLE;
3757 
3758 	/* check for invalid block or wraparound */
3759 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3760 		last_block < first_block)
3761 		return IO_ACCEL_INELIGIBLE;
3762 
3763 	/* calculate stripe information for the request */
3764 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3765 				le16_to_cpu(map->strip_size);
3766 	strip_size = le16_to_cpu(map->strip_size);
3767 #if BITS_PER_LONG == 32
3768 	tmpdiv = first_block;
3769 	(void) do_div(tmpdiv, blocks_per_row);
3770 	first_row = tmpdiv;
3771 	tmpdiv = last_block;
3772 	(void) do_div(tmpdiv, blocks_per_row);
3773 	last_row = tmpdiv;
3774 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3775 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3776 	tmpdiv = first_row_offset;
3777 	(void) do_div(tmpdiv, strip_size);
3778 	first_column = tmpdiv;
3779 	tmpdiv = last_row_offset;
3780 	(void) do_div(tmpdiv, strip_size);
3781 	last_column = tmpdiv;
3782 #else
3783 	first_row = first_block / blocks_per_row;
3784 	last_row = last_block / blocks_per_row;
3785 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3786 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3787 	first_column = first_row_offset / strip_size;
3788 	last_column = last_row_offset / strip_size;
3789 #endif
3790 
3791 	/* if this isn't a single row/column then give to the controller */
3792 	if ((first_row != last_row) || (first_column != last_column))
3793 		return IO_ACCEL_INELIGIBLE;
3794 
3795 	/* proceeding with driver mapping */
3796 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3797 				le16_to_cpu(map->metadata_disks_per_row);
3798 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3799 				le16_to_cpu(map->row_cnt);
3800 	map_index = (map_row * total_disks_per_row) + first_column;
3801 
3802 	switch (dev->raid_level) {
3803 	case HPSA_RAID_0:
3804 		break; /* nothing special to do */
3805 	case HPSA_RAID_1:
3806 		/* Handles load balance across RAID 1 members.
3807 		 * (2-drive R1 and R10 with even # of drives.)
3808 		 * Appropriate for SSDs, not optimal for HDDs
3809 		 */
3810 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3811 		if (dev->offload_to_mirror)
3812 			map_index += le16_to_cpu(map->data_disks_per_row);
3813 		dev->offload_to_mirror = !dev->offload_to_mirror;
3814 		break;
3815 	case HPSA_RAID_ADM:
3816 		/* Handles N-way mirrors  (R1-ADM)
3817 		 * and R10 with # of drives divisible by 3.)
3818 		 */
3819 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3820 
3821 		offload_to_mirror = dev->offload_to_mirror;
3822 		raid_map_helper(map, offload_to_mirror,
3823 				&map_index, &current_group);
3824 		/* set mirror group to use next time */
3825 		offload_to_mirror =
3826 			(offload_to_mirror >=
3827 			le16_to_cpu(map->layout_map_count) - 1)
3828 			? 0 : offload_to_mirror + 1;
3829 		dev->offload_to_mirror = offload_to_mirror;
3830 		/* Avoid direct use of dev->offload_to_mirror within this
3831 		 * function since multiple threads might simultaneously
3832 		 * increment it beyond the range of dev->layout_map_count -1.
3833 		 */
3834 		break;
3835 	case HPSA_RAID_5:
3836 	case HPSA_RAID_6:
3837 		if (le16_to_cpu(map->layout_map_count) <= 1)
3838 			break;
3839 
3840 		/* Verify first and last block are in same RAID group */
3841 		r5or6_blocks_per_row =
3842 			le16_to_cpu(map->strip_size) *
3843 			le16_to_cpu(map->data_disks_per_row);
3844 		BUG_ON(r5or6_blocks_per_row == 0);
3845 		stripesize = r5or6_blocks_per_row *
3846 			le16_to_cpu(map->layout_map_count);
3847 #if BITS_PER_LONG == 32
3848 		tmpdiv = first_block;
3849 		first_group = do_div(tmpdiv, stripesize);
3850 		tmpdiv = first_group;
3851 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3852 		first_group = tmpdiv;
3853 		tmpdiv = last_block;
3854 		last_group = do_div(tmpdiv, stripesize);
3855 		tmpdiv = last_group;
3856 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3857 		last_group = tmpdiv;
3858 #else
3859 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3860 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3861 #endif
3862 		if (first_group != last_group)
3863 			return IO_ACCEL_INELIGIBLE;
3864 
3865 		/* Verify request is in a single row of RAID 5/6 */
3866 #if BITS_PER_LONG == 32
3867 		tmpdiv = first_block;
3868 		(void) do_div(tmpdiv, stripesize);
3869 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
3870 		tmpdiv = last_block;
3871 		(void) do_div(tmpdiv, stripesize);
3872 		r5or6_last_row = r0_last_row = tmpdiv;
3873 #else
3874 		first_row = r5or6_first_row = r0_first_row =
3875 						first_block / stripesize;
3876 		r5or6_last_row = r0_last_row = last_block / stripesize;
3877 #endif
3878 		if (r5or6_first_row != r5or6_last_row)
3879 			return IO_ACCEL_INELIGIBLE;
3880 
3881 
3882 		/* Verify request is in a single column */
3883 #if BITS_PER_LONG == 32
3884 		tmpdiv = first_block;
3885 		first_row_offset = do_div(tmpdiv, stripesize);
3886 		tmpdiv = first_row_offset;
3887 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3888 		r5or6_first_row_offset = first_row_offset;
3889 		tmpdiv = last_block;
3890 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3891 		tmpdiv = r5or6_last_row_offset;
3892 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3893 		tmpdiv = r5or6_first_row_offset;
3894 		(void) do_div(tmpdiv, map->strip_size);
3895 		first_column = r5or6_first_column = tmpdiv;
3896 		tmpdiv = r5or6_last_row_offset;
3897 		(void) do_div(tmpdiv, map->strip_size);
3898 		r5or6_last_column = tmpdiv;
3899 #else
3900 		first_row_offset = r5or6_first_row_offset =
3901 			(u32)((first_block % stripesize) %
3902 						r5or6_blocks_per_row);
3903 
3904 		r5or6_last_row_offset =
3905 			(u32)((last_block % stripesize) %
3906 						r5or6_blocks_per_row);
3907 
3908 		first_column = r5or6_first_column =
3909 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3910 		r5or6_last_column =
3911 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3912 #endif
3913 		if (r5or6_first_column != r5or6_last_column)
3914 			return IO_ACCEL_INELIGIBLE;
3915 
3916 		/* Request is eligible */
3917 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3918 			le16_to_cpu(map->row_cnt);
3919 
3920 		map_index = (first_group *
3921 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3922 			(map_row * total_disks_per_row) + first_column;
3923 		break;
3924 	default:
3925 		return IO_ACCEL_INELIGIBLE;
3926 	}
3927 
3928 	c->phys_disk = dev->phys_disk[map_index];
3929 
3930 	disk_handle = dd[map_index].ioaccel_handle;
3931 	disk_block = le64_to_cpu(map->disk_starting_blk) +
3932 			first_row * le16_to_cpu(map->strip_size) +
3933 			(first_row_offset - first_column *
3934 			le16_to_cpu(map->strip_size));
3935 	disk_block_cnt = block_cnt;
3936 
3937 	/* handle differing logical/physical block sizes */
3938 	if (map->phys_blk_shift) {
3939 		disk_block <<= map->phys_blk_shift;
3940 		disk_block_cnt <<= map->phys_blk_shift;
3941 	}
3942 	BUG_ON(disk_block_cnt > 0xffff);
3943 
3944 	/* build the new CDB for the physical disk I/O */
3945 	if (disk_block > 0xffffffff) {
3946 		cdb[0] = is_write ? WRITE_16 : READ_16;
3947 		cdb[1] = 0;
3948 		cdb[2] = (u8) (disk_block >> 56);
3949 		cdb[3] = (u8) (disk_block >> 48);
3950 		cdb[4] = (u8) (disk_block >> 40);
3951 		cdb[5] = (u8) (disk_block >> 32);
3952 		cdb[6] = (u8) (disk_block >> 24);
3953 		cdb[7] = (u8) (disk_block >> 16);
3954 		cdb[8] = (u8) (disk_block >> 8);
3955 		cdb[9] = (u8) (disk_block);
3956 		cdb[10] = (u8) (disk_block_cnt >> 24);
3957 		cdb[11] = (u8) (disk_block_cnt >> 16);
3958 		cdb[12] = (u8) (disk_block_cnt >> 8);
3959 		cdb[13] = (u8) (disk_block_cnt);
3960 		cdb[14] = 0;
3961 		cdb[15] = 0;
3962 		cdb_len = 16;
3963 	} else {
3964 		cdb[0] = is_write ? WRITE_10 : READ_10;
3965 		cdb[1] = 0;
3966 		cdb[2] = (u8) (disk_block >> 24);
3967 		cdb[3] = (u8) (disk_block >> 16);
3968 		cdb[4] = (u8) (disk_block >> 8);
3969 		cdb[5] = (u8) (disk_block);
3970 		cdb[6] = 0;
3971 		cdb[7] = (u8) (disk_block_cnt >> 8);
3972 		cdb[8] = (u8) (disk_block_cnt);
3973 		cdb[9] = 0;
3974 		cdb_len = 10;
3975 	}
3976 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3977 						dev->scsi3addr,
3978 						dev->phys_disk[map_index]);
3979 }
3980 
3981 /* Submit commands down the "normal" RAID stack path */
3982 static int hpsa_ciss_submit(struct ctlr_info *h,
3983 	struct CommandList *c, struct scsi_cmnd *cmd,
3984 	unsigned char scsi3addr[])
3985 {
3986 	cmd->host_scribble = (unsigned char *) c;
3987 	c->cmd_type = CMD_SCSI;
3988 	c->scsi_cmd = cmd;
3989 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
3990 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3991 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
3992 
3993 	/* Fill in the request block... */
3994 
3995 	c->Request.Timeout = 0;
3996 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3997 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3998 	c->Request.CDBLen = cmd->cmd_len;
3999 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4000 	switch (cmd->sc_data_direction) {
4001 	case DMA_TO_DEVICE:
4002 		c->Request.type_attr_dir =
4003 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4004 		break;
4005 	case DMA_FROM_DEVICE:
4006 		c->Request.type_attr_dir =
4007 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4008 		break;
4009 	case DMA_NONE:
4010 		c->Request.type_attr_dir =
4011 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4012 		break;
4013 	case DMA_BIDIRECTIONAL:
4014 		/* This can happen if a buggy application does a scsi passthru
4015 		 * and sets both inlen and outlen to non-zero. ( see
4016 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4017 		 */
4018 
4019 		c->Request.type_attr_dir =
4020 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4021 		/* This is technically wrong, and hpsa controllers should
4022 		 * reject it with CMD_INVALID, which is the most correct
4023 		 * response, but non-fibre backends appear to let it
4024 		 * slide by, and give the same results as if this field
4025 		 * were set correctly.  Either way is acceptable for
4026 		 * our purposes here.
4027 		 */
4028 
4029 		break;
4030 
4031 	default:
4032 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4033 			cmd->sc_data_direction);
4034 		BUG();
4035 		break;
4036 	}
4037 
4038 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4039 		cmd_free(h, c);
4040 		return SCSI_MLQUEUE_HOST_BUSY;
4041 	}
4042 	enqueue_cmd_and_start_io(h, c);
4043 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4044 	return 0;
4045 }
4046 
4047 static void hpsa_command_resubmit_worker(struct work_struct *work)
4048 {
4049 	struct scsi_cmnd *cmd;
4050 	struct hpsa_scsi_dev_t *dev;
4051 	struct CommandList *c =
4052 			container_of(work, struct CommandList, work);
4053 
4054 	cmd = c->scsi_cmd;
4055 	dev = cmd->device->hostdata;
4056 	if (!dev) {
4057 		cmd->result = DID_NO_CONNECT << 16;
4058 		cmd->scsi_done(cmd);
4059 		return;
4060 	}
4061 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4062 		/*
4063 		 * If we get here, it means dma mapping failed. Try
4064 		 * again via scsi mid layer, which will then get
4065 		 * SCSI_MLQUEUE_HOST_BUSY.
4066 		 */
4067 		cmd->result = DID_IMM_RETRY << 16;
4068 		cmd->scsi_done(cmd);
4069 	}
4070 }
4071 
4072 /* Running in struct Scsi_Host->host_lock less mode */
4073 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4074 {
4075 	struct ctlr_info *h;
4076 	struct hpsa_scsi_dev_t *dev;
4077 	unsigned char scsi3addr[8];
4078 	struct CommandList *c;
4079 	int rc = 0;
4080 
4081 	/* Get the ptr to our adapter structure out of cmd->host. */
4082 	h = sdev_to_hba(cmd->device);
4083 	dev = cmd->device->hostdata;
4084 	if (!dev) {
4085 		cmd->result = DID_NO_CONNECT << 16;
4086 		cmd->scsi_done(cmd);
4087 		return 0;
4088 	}
4089 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4090 
4091 	if (unlikely(lockup_detected(h))) {
4092 		cmd->result = DID_ERROR << 16;
4093 		cmd->scsi_done(cmd);
4094 		return 0;
4095 	}
4096 	c = cmd_alloc(h);
4097 	if (c == NULL) {			/* trouble... */
4098 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4099 		return SCSI_MLQUEUE_HOST_BUSY;
4100 	}
4101 
4102 	/* Call alternate submit routine for I/O accelerated commands.
4103 	 * Retries always go down the normal I/O path.
4104 	 */
4105 	if (likely(cmd->retries == 0 &&
4106 		cmd->request->cmd_type == REQ_TYPE_FS &&
4107 		h->acciopath_status)) {
4108 
4109 		cmd->host_scribble = (unsigned char *) c;
4110 		c->cmd_type = CMD_SCSI;
4111 		c->scsi_cmd = cmd;
4112 
4113 		if (dev->offload_enabled) {
4114 			rc = hpsa_scsi_ioaccel_raid_map(h, c);
4115 			if (rc == 0)
4116 				return 0; /* Sent on ioaccel path */
4117 			if (rc < 0) {   /* scsi_dma_map failed. */
4118 				cmd_free(h, c);
4119 				return SCSI_MLQUEUE_HOST_BUSY;
4120 			}
4121 		} else if (dev->ioaccel_handle) {
4122 			rc = hpsa_scsi_ioaccel_direct_map(h, c);
4123 			if (rc == 0)
4124 				return 0; /* Sent on direct map path */
4125 			if (rc < 0) {   /* scsi_dma_map failed. */
4126 				cmd_free(h, c);
4127 				return SCSI_MLQUEUE_HOST_BUSY;
4128 			}
4129 		}
4130 	}
4131 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4132 }
4133 
4134 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4135 {
4136 	unsigned long flags;
4137 
4138 	/*
4139 	 * Don't let rescans be initiated on a controller known
4140 	 * to be locked up.  If the controller locks up *during*
4141 	 * a rescan, that thread is probably hosed, but at least
4142 	 * we can prevent new rescan threads from piling up on a
4143 	 * locked up controller.
4144 	 */
4145 	if (unlikely(lockup_detected(h))) {
4146 		spin_lock_irqsave(&h->scan_lock, flags);
4147 		h->scan_finished = 1;
4148 		wake_up_all(&h->scan_wait_queue);
4149 		spin_unlock_irqrestore(&h->scan_lock, flags);
4150 		return 1;
4151 	}
4152 	return 0;
4153 }
4154 
4155 static void hpsa_scan_start(struct Scsi_Host *sh)
4156 {
4157 	struct ctlr_info *h = shost_to_hba(sh);
4158 	unsigned long flags;
4159 
4160 	if (do_not_scan_if_controller_locked_up(h))
4161 		return;
4162 
4163 	/* wait until any scan already in progress is finished. */
4164 	while (1) {
4165 		spin_lock_irqsave(&h->scan_lock, flags);
4166 		if (h->scan_finished)
4167 			break;
4168 		spin_unlock_irqrestore(&h->scan_lock, flags);
4169 		wait_event(h->scan_wait_queue, h->scan_finished);
4170 		/* Note: We don't need to worry about a race between this
4171 		 * thread and driver unload because the midlayer will
4172 		 * have incremented the reference count, so unload won't
4173 		 * happen if we're in here.
4174 		 */
4175 	}
4176 	h->scan_finished = 0; /* mark scan as in progress */
4177 	spin_unlock_irqrestore(&h->scan_lock, flags);
4178 
4179 	if (do_not_scan_if_controller_locked_up(h))
4180 		return;
4181 
4182 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4183 
4184 	spin_lock_irqsave(&h->scan_lock, flags);
4185 	h->scan_finished = 1; /* mark scan as finished. */
4186 	wake_up_all(&h->scan_wait_queue);
4187 	spin_unlock_irqrestore(&h->scan_lock, flags);
4188 }
4189 
4190 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4191 {
4192 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4193 
4194 	if (!logical_drive)
4195 		return -ENODEV;
4196 
4197 	if (qdepth < 1)
4198 		qdepth = 1;
4199 	else if (qdepth > logical_drive->queue_depth)
4200 		qdepth = logical_drive->queue_depth;
4201 
4202 	return scsi_change_queue_depth(sdev, qdepth);
4203 }
4204 
4205 static int hpsa_scan_finished(struct Scsi_Host *sh,
4206 	unsigned long elapsed_time)
4207 {
4208 	struct ctlr_info *h = shost_to_hba(sh);
4209 	unsigned long flags;
4210 	int finished;
4211 
4212 	spin_lock_irqsave(&h->scan_lock, flags);
4213 	finished = h->scan_finished;
4214 	spin_unlock_irqrestore(&h->scan_lock, flags);
4215 	return finished;
4216 }
4217 
4218 static void hpsa_unregister_scsi(struct ctlr_info *h)
4219 {
4220 	/* we are being forcibly unloaded, and may not refuse. */
4221 	scsi_remove_host(h->scsi_host);
4222 	scsi_host_put(h->scsi_host);
4223 	h->scsi_host = NULL;
4224 }
4225 
4226 static int hpsa_register_scsi(struct ctlr_info *h)
4227 {
4228 	struct Scsi_Host *sh;
4229 	int error;
4230 
4231 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4232 	if (sh == NULL)
4233 		goto fail;
4234 
4235 	sh->io_port = 0;
4236 	sh->n_io_port = 0;
4237 	sh->this_id = -1;
4238 	sh->max_channel = 3;
4239 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4240 	sh->max_lun = HPSA_MAX_LUN;
4241 	sh->max_id = HPSA_MAX_LUN;
4242 	sh->can_queue = h->nr_cmds -
4243 			HPSA_CMDS_RESERVED_FOR_ABORTS -
4244 			HPSA_CMDS_RESERVED_FOR_DRIVER -
4245 			HPSA_MAX_CONCURRENT_PASSTHRUS;
4246 	sh->cmd_per_lun = sh->can_queue;
4247 	sh->sg_tablesize = h->maxsgentries;
4248 	h->scsi_host = sh;
4249 	sh->hostdata[0] = (unsigned long) h;
4250 	sh->irq = h->intr[h->intr_mode];
4251 	sh->unique_id = sh->irq;
4252 	error = scsi_add_host(sh, &h->pdev->dev);
4253 	if (error)
4254 		goto fail_host_put;
4255 	scsi_scan_host(sh);
4256 	return 0;
4257 
4258  fail_host_put:
4259 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
4260 		" failed for controller %d\n", __func__, h->ctlr);
4261 	scsi_host_put(sh);
4262 	return error;
4263  fail:
4264 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4265 		" failed for controller %d\n", __func__, h->ctlr);
4266 	return -ENOMEM;
4267 }
4268 
4269 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4270 	unsigned char lunaddr[])
4271 {
4272 	int rc;
4273 	int count = 0;
4274 	int waittime = 1; /* seconds */
4275 	struct CommandList *c;
4276 
4277 	c = cmd_alloc(h);
4278 	if (!c) {
4279 		dev_warn(&h->pdev->dev, "out of memory in "
4280 			"wait_for_device_to_become_ready.\n");
4281 		return IO_ERROR;
4282 	}
4283 
4284 	/* Send test unit ready until device ready, or give up. */
4285 	while (count < HPSA_TUR_RETRY_LIMIT) {
4286 
4287 		/* Wait for a bit.  do this first, because if we send
4288 		 * the TUR right away, the reset will just abort it.
4289 		 */
4290 		msleep(1000 * waittime);
4291 		count++;
4292 		rc = 0; /* Device ready. */
4293 
4294 		/* Increase wait time with each try, up to a point. */
4295 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4296 			waittime = waittime * 2;
4297 
4298 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4299 		(void) fill_cmd(c, TEST_UNIT_READY, h,
4300 				NULL, 0, 0, lunaddr, TYPE_CMD);
4301 		hpsa_scsi_do_simple_cmd_core(h, c);
4302 		/* no unmap needed here because no data xfer. */
4303 
4304 		if (c->err_info->CommandStatus == CMD_SUCCESS)
4305 			break;
4306 
4307 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4308 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4309 			(c->err_info->SenseInfo[2] == NO_SENSE ||
4310 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4311 			break;
4312 
4313 		dev_warn(&h->pdev->dev, "waiting %d secs "
4314 			"for device to become ready.\n", waittime);
4315 		rc = 1; /* device not ready. */
4316 	}
4317 
4318 	if (rc)
4319 		dev_warn(&h->pdev->dev, "giving up on device.\n");
4320 	else
4321 		dev_warn(&h->pdev->dev, "device is ready.\n");
4322 
4323 	cmd_free(h, c);
4324 	return rc;
4325 }
4326 
4327 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4328  * complaining.  Doing a host- or bus-reset can't do anything good here.
4329  */
4330 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4331 {
4332 	int rc;
4333 	struct ctlr_info *h;
4334 	struct hpsa_scsi_dev_t *dev;
4335 
4336 	/* find the controller to which the command to be aborted was sent */
4337 	h = sdev_to_hba(scsicmd->device);
4338 	if (h == NULL) /* paranoia */
4339 		return FAILED;
4340 	dev = scsicmd->device->hostdata;
4341 	if (!dev) {
4342 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4343 			"device lookup failed.\n");
4344 		return FAILED;
4345 	}
4346 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4347 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4348 	/* send a reset to the SCSI LUN which the command was sent to */
4349 	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4350 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4351 		return SUCCESS;
4352 
4353 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
4354 	return FAILED;
4355 }
4356 
4357 static void swizzle_abort_tag(u8 *tag)
4358 {
4359 	u8 original_tag[8];
4360 
4361 	memcpy(original_tag, tag, 8);
4362 	tag[0] = original_tag[3];
4363 	tag[1] = original_tag[2];
4364 	tag[2] = original_tag[1];
4365 	tag[3] = original_tag[0];
4366 	tag[4] = original_tag[7];
4367 	tag[5] = original_tag[6];
4368 	tag[6] = original_tag[5];
4369 	tag[7] = original_tag[4];
4370 }
4371 
4372 static void hpsa_get_tag(struct ctlr_info *h,
4373 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4374 {
4375 	u64 tag;
4376 	if (c->cmd_type == CMD_IOACCEL1) {
4377 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4378 			&h->ioaccel_cmd_pool[c->cmdindex];
4379 		tag = le64_to_cpu(cm1->tag);
4380 		*tagupper = cpu_to_le32(tag >> 32);
4381 		*taglower = cpu_to_le32(tag);
4382 		return;
4383 	}
4384 	if (c->cmd_type == CMD_IOACCEL2) {
4385 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4386 			&h->ioaccel2_cmd_pool[c->cmdindex];
4387 		/* upper tag not used in ioaccel2 mode */
4388 		memset(tagupper, 0, sizeof(*tagupper));
4389 		*taglower = cm2->Tag;
4390 		return;
4391 	}
4392 	tag = le64_to_cpu(c->Header.tag);
4393 	*tagupper = cpu_to_le32(tag >> 32);
4394 	*taglower = cpu_to_le32(tag);
4395 }
4396 
4397 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4398 	struct CommandList *abort, int swizzle)
4399 {
4400 	int rc = IO_OK;
4401 	struct CommandList *c;
4402 	struct ErrorInfo *ei;
4403 	__le32 tagupper, taglower;
4404 
4405 	c = cmd_alloc(h);
4406 	if (c == NULL) {	/* trouble... */
4407 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4408 		return -ENOMEM;
4409 	}
4410 
4411 	/* fill_cmd can't fail here, no buffer to map */
4412 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4413 		0, 0, scsi3addr, TYPE_MSG);
4414 	if (swizzle)
4415 		swizzle_abort_tag(&c->Request.CDB[4]);
4416 	hpsa_scsi_do_simple_cmd_core(h, c);
4417 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4418 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4419 		__func__, tagupper, taglower);
4420 	/* no unmap needed here because no data xfer. */
4421 
4422 	ei = c->err_info;
4423 	switch (ei->CommandStatus) {
4424 	case CMD_SUCCESS:
4425 		break;
4426 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
4427 		rc = -1;
4428 		break;
4429 	default:
4430 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4431 			__func__, tagupper, taglower);
4432 		hpsa_scsi_interpret_error(h, c);
4433 		rc = -1;
4434 		break;
4435 	}
4436 	cmd_free(h, c);
4437 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4438 		__func__, tagupper, taglower);
4439 	return rc;
4440 }
4441 
4442 /* ioaccel2 path firmware cannot handle abort task requests.
4443  * Change abort requests to physical target reset, and send to the
4444  * address of the physical disk used for the ioaccel 2 command.
4445  * Return 0 on success (IO_OK)
4446  *	 -1 on failure
4447  */
4448 
4449 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4450 	unsigned char *scsi3addr, struct CommandList *abort)
4451 {
4452 	int rc = IO_OK;
4453 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4454 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4455 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4456 	unsigned char *psa = &phys_scsi3addr[0];
4457 
4458 	/* Get a pointer to the hpsa logical device. */
4459 	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4460 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4461 	if (dev == NULL) {
4462 		dev_warn(&h->pdev->dev,
4463 			"Cannot abort: no device pointer for command.\n");
4464 			return -1; /* not abortable */
4465 	}
4466 
4467 	if (h->raid_offload_debug > 0)
4468 		dev_info(&h->pdev->dev,
4469 			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4470 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4471 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4472 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4473 
4474 	if (!dev->offload_enabled) {
4475 		dev_warn(&h->pdev->dev,
4476 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4477 		return -1; /* not abortable */
4478 	}
4479 
4480 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
4481 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4482 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4483 		return -1; /* not abortable */
4484 	}
4485 
4486 	/* send the reset */
4487 	if (h->raid_offload_debug > 0)
4488 		dev_info(&h->pdev->dev,
4489 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4490 			psa[0], psa[1], psa[2], psa[3],
4491 			psa[4], psa[5], psa[6], psa[7]);
4492 	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4493 	if (rc != 0) {
4494 		dev_warn(&h->pdev->dev,
4495 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4496 			psa[0], psa[1], psa[2], psa[3],
4497 			psa[4], psa[5], psa[6], psa[7]);
4498 		return rc; /* failed to reset */
4499 	}
4500 
4501 	/* wait for device to recover */
4502 	if (wait_for_device_to_become_ready(h, psa) != 0) {
4503 		dev_warn(&h->pdev->dev,
4504 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4505 			psa[0], psa[1], psa[2], psa[3],
4506 			psa[4], psa[5], psa[6], psa[7]);
4507 		return -1;  /* failed to recover */
4508 	}
4509 
4510 	/* device recovered */
4511 	dev_info(&h->pdev->dev,
4512 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4513 		psa[0], psa[1], psa[2], psa[3],
4514 		psa[4], psa[5], psa[6], psa[7]);
4515 
4516 	return rc; /* success */
4517 }
4518 
4519 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4520  * tell which kind we're dealing with, so we send the abort both ways.  There
4521  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4522  * way we construct our tags but we check anyway in case the assumptions which
4523  * make this true someday become false.
4524  */
4525 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4526 	unsigned char *scsi3addr, struct CommandList *abort)
4527 {
4528 	/* ioccelerator mode 2 commands should be aborted via the
4529 	 * accelerated path, since RAID path is unaware of these commands,
4530 	 * but underlying firmware can't handle abort TMF.
4531 	 * Change abort to physical device reset.
4532 	 */
4533 	if (abort->cmd_type == CMD_IOACCEL2)
4534 		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4535 
4536 	return hpsa_send_abort(h, scsi3addr, abort, 0) &&
4537 			hpsa_send_abort(h, scsi3addr, abort, 1);
4538 }
4539 
4540 /* Send an abort for the specified command.
4541  *	If the device and controller support it,
4542  *		send a task abort request.
4543  */
4544 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4545 {
4546 
4547 	int i, rc;
4548 	struct ctlr_info *h;
4549 	struct hpsa_scsi_dev_t *dev;
4550 	struct CommandList *abort; /* pointer to command to be aborted */
4551 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
4552 	char msg[256];		/* For debug messaging. */
4553 	int ml = 0;
4554 	__le32 tagupper, taglower;
4555 	int refcount;
4556 
4557 	/* Find the controller of the command to be aborted */
4558 	h = sdev_to_hba(sc->device);
4559 	if (WARN(h == NULL,
4560 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
4561 		return FAILED;
4562 
4563 	/* Check that controller supports some kind of task abort */
4564 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4565 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4566 		return FAILED;
4567 
4568 	memset(msg, 0, sizeof(msg));
4569 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4570 		h->scsi_host->host_no, sc->device->channel,
4571 		sc->device->id, sc->device->lun);
4572 
4573 	/* Find the device of the command to be aborted */
4574 	dev = sc->device->hostdata;
4575 	if (!dev) {
4576 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4577 				msg);
4578 		return FAILED;
4579 	}
4580 
4581 	/* Get SCSI command to be aborted */
4582 	abort = (struct CommandList *) sc->host_scribble;
4583 	if (abort == NULL) {
4584 		/* This can happen if the command already completed. */
4585 		return SUCCESS;
4586 	}
4587 	refcount = atomic_inc_return(&abort->refcount);
4588 	if (refcount == 1) { /* Command is done already. */
4589 		cmd_free(h, abort);
4590 		return SUCCESS;
4591 	}
4592 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4593 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4594 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
4595 	if (as != NULL)
4596 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4597 			as->cmnd[0], as->serial_number);
4598 	dev_dbg(&h->pdev->dev, "%s\n", msg);
4599 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4600 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4601 	/*
4602 	 * Command is in flight, or possibly already completed
4603 	 * by the firmware (but not to the scsi mid layer) but we can't
4604 	 * distinguish which.  Send the abort down.
4605 	 */
4606 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4607 	if (rc != 0) {
4608 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4609 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4610 			h->scsi_host->host_no,
4611 			dev->bus, dev->target, dev->lun);
4612 		cmd_free(h, abort);
4613 		return FAILED;
4614 	}
4615 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4616 
4617 	/* If the abort(s) above completed and actually aborted the
4618 	 * command, then the command to be aborted should already be
4619 	 * completed.  If not, wait around a bit more to see if they
4620 	 * manage to complete normally.
4621 	 */
4622 #define ABORT_COMPLETE_WAIT_SECS 30
4623 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4624 		refcount = atomic_read(&abort->refcount);
4625 		if (refcount < 2) {
4626 			cmd_free(h, abort);
4627 			return SUCCESS;
4628 		} else {
4629 			msleep(100);
4630 		}
4631 	}
4632 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4633 		msg, ABORT_COMPLETE_WAIT_SECS);
4634 	cmd_free(h, abort);
4635 	return FAILED;
4636 }
4637 
4638 /*
4639  * For operations that cannot sleep, a command block is allocated at init,
4640  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4641  * which ones are free or in use.  Lock must be held when calling this.
4642  * cmd_free() is the complement.
4643  */
4644 
4645 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4646 {
4647 	struct CommandList *c;
4648 	int i;
4649 	union u64bit temp64;
4650 	dma_addr_t cmd_dma_handle, err_dma_handle;
4651 	int refcount;
4652 	unsigned long offset;
4653 
4654 	/*
4655 	 * There is some *extremely* small but non-zero chance that that
4656 	 * multiple threads could get in here, and one thread could
4657 	 * be scanning through the list of bits looking for a free
4658 	 * one, but the free ones are always behind him, and other
4659 	 * threads sneak in behind him and eat them before he can
4660 	 * get to them, so that while there is always a free one, a
4661 	 * very unlucky thread might be starved anyway, never able to
4662 	 * beat the other threads.  In reality, this happens so
4663 	 * infrequently as to be indistinguishable from never.
4664 	 */
4665 
4666 	offset = h->last_allocation; /* benignly racy */
4667 	for (;;) {
4668 		i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
4669 		if (unlikely(i == h->nr_cmds)) {
4670 			offset = 0;
4671 			continue;
4672 		}
4673 		c = h->cmd_pool + i;
4674 		refcount = atomic_inc_return(&c->refcount);
4675 		if (unlikely(refcount > 1)) {
4676 			cmd_free(h, c); /* already in use */
4677 			offset = (i + 1) % h->nr_cmds;
4678 			continue;
4679 		}
4680 		set_bit(i & (BITS_PER_LONG - 1),
4681 			h->cmd_pool_bits + (i / BITS_PER_LONG));
4682 		break; /* it's ours now. */
4683 	}
4684 	h->last_allocation = i; /* benignly racy */
4685 
4686 	/* Zero out all of commandlist except the last field, refcount */
4687 	memset(c, 0, offsetof(struct CommandList, refcount));
4688 	c->Header.tag = cpu_to_le64((u64) (i << DIRECT_LOOKUP_SHIFT));
4689 	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
4690 	c->err_info = h->errinfo_pool + i;
4691 	memset(c->err_info, 0, sizeof(*c->err_info));
4692 	err_dma_handle = h->errinfo_pool_dhandle
4693 	    + i * sizeof(*c->err_info);
4694 
4695 	c->cmdindex = i;
4696 
4697 	c->busaddr = (u32) cmd_dma_handle;
4698 	temp64.val = (u64) err_dma_handle;
4699 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4700 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4701 
4702 	c->h = h;
4703 	return c;
4704 }
4705 
4706 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4707 {
4708 	if (atomic_dec_and_test(&c->refcount)) {
4709 		int i;
4710 
4711 		i = c - h->cmd_pool;
4712 		clear_bit(i & (BITS_PER_LONG - 1),
4713 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
4714 	}
4715 }
4716 
4717 #ifdef CONFIG_COMPAT
4718 
4719 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4720 	void __user *arg)
4721 {
4722 	IOCTL32_Command_struct __user *arg32 =
4723 	    (IOCTL32_Command_struct __user *) arg;
4724 	IOCTL_Command_struct arg64;
4725 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4726 	int err;
4727 	u32 cp;
4728 
4729 	memset(&arg64, 0, sizeof(arg64));
4730 	err = 0;
4731 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4732 			   sizeof(arg64.LUN_info));
4733 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4734 			   sizeof(arg64.Request));
4735 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4736 			   sizeof(arg64.error_info));
4737 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4738 	err |= get_user(cp, &arg32->buf);
4739 	arg64.buf = compat_ptr(cp);
4740 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4741 
4742 	if (err)
4743 		return -EFAULT;
4744 
4745 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4746 	if (err)
4747 		return err;
4748 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4749 			 sizeof(arg32->error_info));
4750 	if (err)
4751 		return -EFAULT;
4752 	return err;
4753 }
4754 
4755 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4756 	int cmd, void __user *arg)
4757 {
4758 	BIG_IOCTL32_Command_struct __user *arg32 =
4759 	    (BIG_IOCTL32_Command_struct __user *) arg;
4760 	BIG_IOCTL_Command_struct arg64;
4761 	BIG_IOCTL_Command_struct __user *p =
4762 	    compat_alloc_user_space(sizeof(arg64));
4763 	int err;
4764 	u32 cp;
4765 
4766 	memset(&arg64, 0, sizeof(arg64));
4767 	err = 0;
4768 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4769 			   sizeof(arg64.LUN_info));
4770 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4771 			   sizeof(arg64.Request));
4772 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4773 			   sizeof(arg64.error_info));
4774 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4775 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4776 	err |= get_user(cp, &arg32->buf);
4777 	arg64.buf = compat_ptr(cp);
4778 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4779 
4780 	if (err)
4781 		return -EFAULT;
4782 
4783 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4784 	if (err)
4785 		return err;
4786 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4787 			 sizeof(arg32->error_info));
4788 	if (err)
4789 		return -EFAULT;
4790 	return err;
4791 }
4792 
4793 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4794 {
4795 	switch (cmd) {
4796 	case CCISS_GETPCIINFO:
4797 	case CCISS_GETINTINFO:
4798 	case CCISS_SETINTINFO:
4799 	case CCISS_GETNODENAME:
4800 	case CCISS_SETNODENAME:
4801 	case CCISS_GETHEARTBEAT:
4802 	case CCISS_GETBUSTYPES:
4803 	case CCISS_GETFIRMVER:
4804 	case CCISS_GETDRIVVER:
4805 	case CCISS_REVALIDVOLS:
4806 	case CCISS_DEREGDISK:
4807 	case CCISS_REGNEWDISK:
4808 	case CCISS_REGNEWD:
4809 	case CCISS_RESCANDISK:
4810 	case CCISS_GETLUNINFO:
4811 		return hpsa_ioctl(dev, cmd, arg);
4812 
4813 	case CCISS_PASSTHRU32:
4814 		return hpsa_ioctl32_passthru(dev, cmd, arg);
4815 	case CCISS_BIG_PASSTHRU32:
4816 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4817 
4818 	default:
4819 		return -ENOIOCTLCMD;
4820 	}
4821 }
4822 #endif
4823 
4824 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4825 {
4826 	struct hpsa_pci_info pciinfo;
4827 
4828 	if (!argp)
4829 		return -EINVAL;
4830 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
4831 	pciinfo.bus = h->pdev->bus->number;
4832 	pciinfo.dev_fn = h->pdev->devfn;
4833 	pciinfo.board_id = h->board_id;
4834 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4835 		return -EFAULT;
4836 	return 0;
4837 }
4838 
4839 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4840 {
4841 	DriverVer_type DriverVer;
4842 	unsigned char vmaj, vmin, vsubmin;
4843 	int rc;
4844 
4845 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4846 		&vmaj, &vmin, &vsubmin);
4847 	if (rc != 3) {
4848 		dev_info(&h->pdev->dev, "driver version string '%s' "
4849 			"unrecognized.", HPSA_DRIVER_VERSION);
4850 		vmaj = 0;
4851 		vmin = 0;
4852 		vsubmin = 0;
4853 	}
4854 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4855 	if (!argp)
4856 		return -EINVAL;
4857 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4858 		return -EFAULT;
4859 	return 0;
4860 }
4861 
4862 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4863 {
4864 	IOCTL_Command_struct iocommand;
4865 	struct CommandList *c;
4866 	char *buff = NULL;
4867 	u64 temp64;
4868 	int rc = 0;
4869 
4870 	if (!argp)
4871 		return -EINVAL;
4872 	if (!capable(CAP_SYS_RAWIO))
4873 		return -EPERM;
4874 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4875 		return -EFAULT;
4876 	if ((iocommand.buf_size < 1) &&
4877 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
4878 		return -EINVAL;
4879 	}
4880 	if (iocommand.buf_size > 0) {
4881 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4882 		if (buff == NULL)
4883 			return -EFAULT;
4884 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4885 			/* Copy the data into the buffer we created */
4886 			if (copy_from_user(buff, iocommand.buf,
4887 				iocommand.buf_size)) {
4888 				rc = -EFAULT;
4889 				goto out_kfree;
4890 			}
4891 		} else {
4892 			memset(buff, 0, iocommand.buf_size);
4893 		}
4894 	}
4895 	c = cmd_alloc(h);
4896 	if (c == NULL) {
4897 		rc = -ENOMEM;
4898 		goto out_kfree;
4899 	}
4900 	/* Fill in the command type */
4901 	c->cmd_type = CMD_IOCTL_PEND;
4902 	/* Fill in Command Header */
4903 	c->Header.ReplyQueue = 0; /* unused in simple mode */
4904 	if (iocommand.buf_size > 0) {	/* buffer to fill */
4905 		c->Header.SGList = 1;
4906 		c->Header.SGTotal = cpu_to_le16(1);
4907 	} else	{ /* no buffers to fill */
4908 		c->Header.SGList = 0;
4909 		c->Header.SGTotal = cpu_to_le16(0);
4910 	}
4911 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4912 
4913 	/* Fill in Request block */
4914 	memcpy(&c->Request, &iocommand.Request,
4915 		sizeof(c->Request));
4916 
4917 	/* Fill in the scatter gather information */
4918 	if (iocommand.buf_size > 0) {
4919 		temp64 = pci_map_single(h->pdev, buff,
4920 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4921 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4922 			c->SG[0].Addr = cpu_to_le64(0);
4923 			c->SG[0].Len = cpu_to_le32(0);
4924 			rc = -ENOMEM;
4925 			goto out;
4926 		}
4927 		c->SG[0].Addr = cpu_to_le64(temp64);
4928 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4929 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4930 	}
4931 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4932 	if (iocommand.buf_size > 0)
4933 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4934 	check_ioctl_unit_attention(h, c);
4935 
4936 	/* Copy the error information out */
4937 	memcpy(&iocommand.error_info, c->err_info,
4938 		sizeof(iocommand.error_info));
4939 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4940 		rc = -EFAULT;
4941 		goto out;
4942 	}
4943 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
4944 		iocommand.buf_size > 0) {
4945 		/* Copy the data out of the buffer we created */
4946 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4947 			rc = -EFAULT;
4948 			goto out;
4949 		}
4950 	}
4951 out:
4952 	cmd_free(h, c);
4953 out_kfree:
4954 	kfree(buff);
4955 	return rc;
4956 }
4957 
4958 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4959 {
4960 	BIG_IOCTL_Command_struct *ioc;
4961 	struct CommandList *c;
4962 	unsigned char **buff = NULL;
4963 	int *buff_size = NULL;
4964 	u64 temp64;
4965 	BYTE sg_used = 0;
4966 	int status = 0;
4967 	u32 left;
4968 	u32 sz;
4969 	BYTE __user *data_ptr;
4970 
4971 	if (!argp)
4972 		return -EINVAL;
4973 	if (!capable(CAP_SYS_RAWIO))
4974 		return -EPERM;
4975 	ioc = (BIG_IOCTL_Command_struct *)
4976 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
4977 	if (!ioc) {
4978 		status = -ENOMEM;
4979 		goto cleanup1;
4980 	}
4981 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4982 		status = -EFAULT;
4983 		goto cleanup1;
4984 	}
4985 	if ((ioc->buf_size < 1) &&
4986 	    (ioc->Request.Type.Direction != XFER_NONE)) {
4987 		status = -EINVAL;
4988 		goto cleanup1;
4989 	}
4990 	/* Check kmalloc limits  using all SGs */
4991 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4992 		status = -EINVAL;
4993 		goto cleanup1;
4994 	}
4995 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4996 		status = -EINVAL;
4997 		goto cleanup1;
4998 	}
4999 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5000 	if (!buff) {
5001 		status = -ENOMEM;
5002 		goto cleanup1;
5003 	}
5004 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5005 	if (!buff_size) {
5006 		status = -ENOMEM;
5007 		goto cleanup1;
5008 	}
5009 	left = ioc->buf_size;
5010 	data_ptr = ioc->buf;
5011 	while (left) {
5012 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5013 		buff_size[sg_used] = sz;
5014 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5015 		if (buff[sg_used] == NULL) {
5016 			status = -ENOMEM;
5017 			goto cleanup1;
5018 		}
5019 		if (ioc->Request.Type.Direction & XFER_WRITE) {
5020 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5021 				status = -EFAULT;
5022 				goto cleanup1;
5023 			}
5024 		} else
5025 			memset(buff[sg_used], 0, sz);
5026 		left -= sz;
5027 		data_ptr += sz;
5028 		sg_used++;
5029 	}
5030 	c = cmd_alloc(h);
5031 	if (c == NULL) {
5032 		status = -ENOMEM;
5033 		goto cleanup1;
5034 	}
5035 	c->cmd_type = CMD_IOCTL_PEND;
5036 	c->Header.ReplyQueue = 0;
5037 	c->Header.SGList = (u8) sg_used;
5038 	c->Header.SGTotal = cpu_to_le16(sg_used);
5039 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5040 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5041 	if (ioc->buf_size > 0) {
5042 		int i;
5043 		for (i = 0; i < sg_used; i++) {
5044 			temp64 = pci_map_single(h->pdev, buff[i],
5045 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5046 			if (dma_mapping_error(&h->pdev->dev,
5047 							(dma_addr_t) temp64)) {
5048 				c->SG[i].Addr = cpu_to_le64(0);
5049 				c->SG[i].Len = cpu_to_le32(0);
5050 				hpsa_pci_unmap(h->pdev, c, i,
5051 					PCI_DMA_BIDIRECTIONAL);
5052 				status = -ENOMEM;
5053 				goto cleanup0;
5054 			}
5055 			c->SG[i].Addr = cpu_to_le64(temp64);
5056 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
5057 			c->SG[i].Ext = cpu_to_le32(0);
5058 		}
5059 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5060 	}
5061 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5062 	if (sg_used)
5063 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5064 	check_ioctl_unit_attention(h, c);
5065 	/* Copy the error information out */
5066 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5067 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5068 		status = -EFAULT;
5069 		goto cleanup0;
5070 	}
5071 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5072 		int i;
5073 
5074 		/* Copy the data out of the buffer we created */
5075 		BYTE __user *ptr = ioc->buf;
5076 		for (i = 0; i < sg_used; i++) {
5077 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
5078 				status = -EFAULT;
5079 				goto cleanup0;
5080 			}
5081 			ptr += buff_size[i];
5082 		}
5083 	}
5084 	status = 0;
5085 cleanup0:
5086 	cmd_free(h, c);
5087 cleanup1:
5088 	if (buff) {
5089 		int i;
5090 
5091 		for (i = 0; i < sg_used; i++)
5092 			kfree(buff[i]);
5093 		kfree(buff);
5094 	}
5095 	kfree(buff_size);
5096 	kfree(ioc);
5097 	return status;
5098 }
5099 
5100 static void check_ioctl_unit_attention(struct ctlr_info *h,
5101 	struct CommandList *c)
5102 {
5103 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5104 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5105 		(void) check_for_unit_attention(h, c);
5106 }
5107 
5108 static int increment_passthru_count(struct ctlr_info *h)
5109 {
5110 	unsigned long flags;
5111 
5112 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5113 	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5114 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5115 		return -1;
5116 	}
5117 	h->passthru_count++;
5118 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5119 	return 0;
5120 }
5121 
5122 static void decrement_passthru_count(struct ctlr_info *h)
5123 {
5124 	unsigned long flags;
5125 
5126 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5127 	if (h->passthru_count <= 0) {
5128 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5129 		/* not expecting to get here. */
5130 		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5131 		return;
5132 	}
5133 	h->passthru_count--;
5134 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5135 }
5136 
5137 /*
5138  * ioctl
5139  */
5140 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5141 {
5142 	struct ctlr_info *h;
5143 	void __user *argp = (void __user *)arg;
5144 	int rc;
5145 
5146 	h = sdev_to_hba(dev);
5147 
5148 	switch (cmd) {
5149 	case CCISS_DEREGDISK:
5150 	case CCISS_REGNEWDISK:
5151 	case CCISS_REGNEWD:
5152 		hpsa_scan_start(h->scsi_host);
5153 		return 0;
5154 	case CCISS_GETPCIINFO:
5155 		return hpsa_getpciinfo_ioctl(h, argp);
5156 	case CCISS_GETDRIVVER:
5157 		return hpsa_getdrivver_ioctl(h, argp);
5158 	case CCISS_PASSTHRU:
5159 		if (increment_passthru_count(h))
5160 			return -EAGAIN;
5161 		rc = hpsa_passthru_ioctl(h, argp);
5162 		decrement_passthru_count(h);
5163 		return rc;
5164 	case CCISS_BIG_PASSTHRU:
5165 		if (increment_passthru_count(h))
5166 			return -EAGAIN;
5167 		rc = hpsa_big_passthru_ioctl(h, argp);
5168 		decrement_passthru_count(h);
5169 		return rc;
5170 	default:
5171 		return -ENOTTY;
5172 	}
5173 }
5174 
5175 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5176 				u8 reset_type)
5177 {
5178 	struct CommandList *c;
5179 
5180 	c = cmd_alloc(h);
5181 	if (!c)
5182 		return -ENOMEM;
5183 	/* fill_cmd can't fail here, no data buffer to map */
5184 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5185 		RAID_CTLR_LUNID, TYPE_MSG);
5186 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5187 	c->waiting = NULL;
5188 	enqueue_cmd_and_start_io(h, c);
5189 	/* Don't wait for completion, the reset won't complete.  Don't free
5190 	 * the command either.  This is the last command we will send before
5191 	 * re-initializing everything, so it doesn't matter and won't leak.
5192 	 */
5193 	return 0;
5194 }
5195 
5196 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5197 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5198 	int cmd_type)
5199 {
5200 	int pci_dir = XFER_NONE;
5201 	struct CommandList *a; /* for commands to be aborted */
5202 
5203 	c->cmd_type = CMD_IOCTL_PEND;
5204 	c->Header.ReplyQueue = 0;
5205 	if (buff != NULL && size > 0) {
5206 		c->Header.SGList = 1;
5207 		c->Header.SGTotal = cpu_to_le16(1);
5208 	} else {
5209 		c->Header.SGList = 0;
5210 		c->Header.SGTotal = cpu_to_le16(0);
5211 	}
5212 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5213 
5214 	if (cmd_type == TYPE_CMD) {
5215 		switch (cmd) {
5216 		case HPSA_INQUIRY:
5217 			/* are we trying to read a vital product page */
5218 			if (page_code & VPD_PAGE) {
5219 				c->Request.CDB[1] = 0x01;
5220 				c->Request.CDB[2] = (page_code & 0xff);
5221 			}
5222 			c->Request.CDBLen = 6;
5223 			c->Request.type_attr_dir =
5224 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5225 			c->Request.Timeout = 0;
5226 			c->Request.CDB[0] = HPSA_INQUIRY;
5227 			c->Request.CDB[4] = size & 0xFF;
5228 			break;
5229 		case HPSA_REPORT_LOG:
5230 		case HPSA_REPORT_PHYS:
5231 			/* Talking to controller so It's a physical command
5232 			   mode = 00 target = 0.  Nothing to write.
5233 			 */
5234 			c->Request.CDBLen = 12;
5235 			c->Request.type_attr_dir =
5236 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5237 			c->Request.Timeout = 0;
5238 			c->Request.CDB[0] = cmd;
5239 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5240 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5241 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5242 			c->Request.CDB[9] = size & 0xFF;
5243 			break;
5244 		case HPSA_CACHE_FLUSH:
5245 			c->Request.CDBLen = 12;
5246 			c->Request.type_attr_dir =
5247 					TYPE_ATTR_DIR(cmd_type,
5248 						ATTR_SIMPLE, XFER_WRITE);
5249 			c->Request.Timeout = 0;
5250 			c->Request.CDB[0] = BMIC_WRITE;
5251 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5252 			c->Request.CDB[7] = (size >> 8) & 0xFF;
5253 			c->Request.CDB[8] = size & 0xFF;
5254 			break;
5255 		case TEST_UNIT_READY:
5256 			c->Request.CDBLen = 6;
5257 			c->Request.type_attr_dir =
5258 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5259 			c->Request.Timeout = 0;
5260 			break;
5261 		case HPSA_GET_RAID_MAP:
5262 			c->Request.CDBLen = 12;
5263 			c->Request.type_attr_dir =
5264 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5265 			c->Request.Timeout = 0;
5266 			c->Request.CDB[0] = HPSA_CISS_READ;
5267 			c->Request.CDB[1] = cmd;
5268 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5269 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5270 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5271 			c->Request.CDB[9] = size & 0xFF;
5272 			break;
5273 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
5274 			c->Request.CDBLen = 10;
5275 			c->Request.type_attr_dir =
5276 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5277 			c->Request.Timeout = 0;
5278 			c->Request.CDB[0] = BMIC_READ;
5279 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5280 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5281 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5282 			break;
5283 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
5284 			c->Request.CDBLen = 10;
5285 			c->Request.type_attr_dir =
5286 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5287 			c->Request.Timeout = 0;
5288 			c->Request.CDB[0] = BMIC_READ;
5289 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
5290 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5291 			c->Request.CDB[8] = (size >> 8) & 0XFF;
5292 			break;
5293 		default:
5294 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5295 			BUG();
5296 			return -1;
5297 		}
5298 	} else if (cmd_type == TYPE_MSG) {
5299 		switch (cmd) {
5300 
5301 		case  HPSA_DEVICE_RESET_MSG:
5302 			c->Request.CDBLen = 16;
5303 			c->Request.type_attr_dir =
5304 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5305 			c->Request.Timeout = 0; /* Don't time out */
5306 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5307 			c->Request.CDB[0] =  cmd;
5308 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5309 			/* If bytes 4-7 are zero, it means reset the */
5310 			/* LunID device */
5311 			c->Request.CDB[4] = 0x00;
5312 			c->Request.CDB[5] = 0x00;
5313 			c->Request.CDB[6] = 0x00;
5314 			c->Request.CDB[7] = 0x00;
5315 			break;
5316 		case  HPSA_ABORT_MSG:
5317 			a = buff;       /* point to command to be aborted */
5318 			dev_dbg(&h->pdev->dev,
5319 				"Abort Tag:0x%016llx request Tag:0x%016llx",
5320 				a->Header.tag, c->Header.tag);
5321 			c->Request.CDBLen = 16;
5322 			c->Request.type_attr_dir =
5323 					TYPE_ATTR_DIR(cmd_type,
5324 						ATTR_SIMPLE, XFER_WRITE);
5325 			c->Request.Timeout = 0; /* Don't time out */
5326 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5327 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5328 			c->Request.CDB[2] = 0x00; /* reserved */
5329 			c->Request.CDB[3] = 0x00; /* reserved */
5330 			/* Tag to abort goes in CDB[4]-CDB[11] */
5331 			memcpy(&c->Request.CDB[4], &a->Header.tag,
5332 				sizeof(a->Header.tag));
5333 			c->Request.CDB[12] = 0x00; /* reserved */
5334 			c->Request.CDB[13] = 0x00; /* reserved */
5335 			c->Request.CDB[14] = 0x00; /* reserved */
5336 			c->Request.CDB[15] = 0x00; /* reserved */
5337 		break;
5338 		default:
5339 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
5340 				cmd);
5341 			BUG();
5342 		}
5343 	} else {
5344 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5345 		BUG();
5346 	}
5347 
5348 	switch (GET_DIR(c->Request.type_attr_dir)) {
5349 	case XFER_READ:
5350 		pci_dir = PCI_DMA_FROMDEVICE;
5351 		break;
5352 	case XFER_WRITE:
5353 		pci_dir = PCI_DMA_TODEVICE;
5354 		break;
5355 	case XFER_NONE:
5356 		pci_dir = PCI_DMA_NONE;
5357 		break;
5358 	default:
5359 		pci_dir = PCI_DMA_BIDIRECTIONAL;
5360 	}
5361 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5362 		return -1;
5363 	return 0;
5364 }
5365 
5366 /*
5367  * Map (physical) PCI mem into (virtual) kernel space
5368  */
5369 static void __iomem *remap_pci_mem(ulong base, ulong size)
5370 {
5371 	ulong page_base = ((ulong) base) & PAGE_MASK;
5372 	ulong page_offs = ((ulong) base) - page_base;
5373 	void __iomem *page_remapped = ioremap_nocache(page_base,
5374 		page_offs + size);
5375 
5376 	return page_remapped ? (page_remapped + page_offs) : NULL;
5377 }
5378 
5379 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5380 {
5381 	return h->access.command_completed(h, q);
5382 }
5383 
5384 static inline bool interrupt_pending(struct ctlr_info *h)
5385 {
5386 	return h->access.intr_pending(h);
5387 }
5388 
5389 static inline long interrupt_not_for_us(struct ctlr_info *h)
5390 {
5391 	return (h->access.intr_pending(h) == 0) ||
5392 		(h->interrupts_enabled == 0);
5393 }
5394 
5395 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5396 	u32 raw_tag)
5397 {
5398 	if (unlikely(tag_index >= h->nr_cmds)) {
5399 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5400 		return 1;
5401 	}
5402 	return 0;
5403 }
5404 
5405 static inline void finish_cmd(struct CommandList *c)
5406 {
5407 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5408 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5409 			|| c->cmd_type == CMD_IOACCEL2))
5410 		complete_scsi_command(c);
5411 	else if (c->cmd_type == CMD_IOCTL_PEND)
5412 		complete(c->waiting);
5413 }
5414 
5415 
5416 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5417 {
5418 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5419 #define HPSA_SIMPLE_ERROR_BITS 0x03
5420 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5421 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
5422 	return tag & ~HPSA_PERF_ERROR_BITS;
5423 }
5424 
5425 /* process completion of an indexed ("direct lookup") command */
5426 static inline void process_indexed_cmd(struct ctlr_info *h,
5427 	u32 raw_tag)
5428 {
5429 	u32 tag_index;
5430 	struct CommandList *c;
5431 
5432 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5433 	if (!bad_tag(h, tag_index, raw_tag)) {
5434 		c = h->cmd_pool + tag_index;
5435 		finish_cmd(c);
5436 	}
5437 }
5438 
5439 /* Some controllers, like p400, will give us one interrupt
5440  * after a soft reset, even if we turned interrupts off.
5441  * Only need to check for this in the hpsa_xxx_discard_completions
5442  * functions.
5443  */
5444 static int ignore_bogus_interrupt(struct ctlr_info *h)
5445 {
5446 	if (likely(!reset_devices))
5447 		return 0;
5448 
5449 	if (likely(h->interrupts_enabled))
5450 		return 0;
5451 
5452 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5453 		"(known firmware bug.)  Ignoring.\n");
5454 
5455 	return 1;
5456 }
5457 
5458 /*
5459  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5460  * Relies on (h-q[x] == x) being true for x such that
5461  * 0 <= x < MAX_REPLY_QUEUES.
5462  */
5463 static struct ctlr_info *queue_to_hba(u8 *queue)
5464 {
5465 	return container_of((queue - *queue), struct ctlr_info, q[0]);
5466 }
5467 
5468 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5469 {
5470 	struct ctlr_info *h = queue_to_hba(queue);
5471 	u8 q = *(u8 *) queue;
5472 	u32 raw_tag;
5473 
5474 	if (ignore_bogus_interrupt(h))
5475 		return IRQ_NONE;
5476 
5477 	if (interrupt_not_for_us(h))
5478 		return IRQ_NONE;
5479 	h->last_intr_timestamp = get_jiffies_64();
5480 	while (interrupt_pending(h)) {
5481 		raw_tag = get_next_completion(h, q);
5482 		while (raw_tag != FIFO_EMPTY)
5483 			raw_tag = next_command(h, q);
5484 	}
5485 	return IRQ_HANDLED;
5486 }
5487 
5488 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5489 {
5490 	struct ctlr_info *h = queue_to_hba(queue);
5491 	u32 raw_tag;
5492 	u8 q = *(u8 *) queue;
5493 
5494 	if (ignore_bogus_interrupt(h))
5495 		return IRQ_NONE;
5496 
5497 	h->last_intr_timestamp = get_jiffies_64();
5498 	raw_tag = get_next_completion(h, q);
5499 	while (raw_tag != FIFO_EMPTY)
5500 		raw_tag = next_command(h, q);
5501 	return IRQ_HANDLED;
5502 }
5503 
5504 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5505 {
5506 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5507 	u32 raw_tag;
5508 	u8 q = *(u8 *) queue;
5509 
5510 	if (interrupt_not_for_us(h))
5511 		return IRQ_NONE;
5512 	h->last_intr_timestamp = get_jiffies_64();
5513 	while (interrupt_pending(h)) {
5514 		raw_tag = get_next_completion(h, q);
5515 		while (raw_tag != FIFO_EMPTY) {
5516 			process_indexed_cmd(h, raw_tag);
5517 			raw_tag = next_command(h, q);
5518 		}
5519 	}
5520 	return IRQ_HANDLED;
5521 }
5522 
5523 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5524 {
5525 	struct ctlr_info *h = queue_to_hba(queue);
5526 	u32 raw_tag;
5527 	u8 q = *(u8 *) queue;
5528 
5529 	h->last_intr_timestamp = get_jiffies_64();
5530 	raw_tag = get_next_completion(h, q);
5531 	while (raw_tag != FIFO_EMPTY) {
5532 		process_indexed_cmd(h, raw_tag);
5533 		raw_tag = next_command(h, q);
5534 	}
5535 	return IRQ_HANDLED;
5536 }
5537 
5538 /* Send a message CDB to the firmware. Careful, this only works
5539  * in simple mode, not performant mode due to the tag lookup.
5540  * We only ever use this immediately after a controller reset.
5541  */
5542 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5543 			unsigned char type)
5544 {
5545 	struct Command {
5546 		struct CommandListHeader CommandHeader;
5547 		struct RequestBlock Request;
5548 		struct ErrDescriptor ErrorDescriptor;
5549 	};
5550 	struct Command *cmd;
5551 	static const size_t cmd_sz = sizeof(*cmd) +
5552 					sizeof(cmd->ErrorDescriptor);
5553 	dma_addr_t paddr64;
5554 	__le32 paddr32;
5555 	u32 tag;
5556 	void __iomem *vaddr;
5557 	int i, err;
5558 
5559 	vaddr = pci_ioremap_bar(pdev, 0);
5560 	if (vaddr == NULL)
5561 		return -ENOMEM;
5562 
5563 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
5564 	 * CCISS commands, so they must be allocated from the lower 4GiB of
5565 	 * memory.
5566 	 */
5567 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5568 	if (err) {
5569 		iounmap(vaddr);
5570 		return err;
5571 	}
5572 
5573 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5574 	if (cmd == NULL) {
5575 		iounmap(vaddr);
5576 		return -ENOMEM;
5577 	}
5578 
5579 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
5580 	 * although there's no guarantee, we assume that the address is at
5581 	 * least 4-byte aligned (most likely, it's page-aligned).
5582 	 */
5583 	paddr32 = cpu_to_le32(paddr64);
5584 
5585 	cmd->CommandHeader.ReplyQueue = 0;
5586 	cmd->CommandHeader.SGList = 0;
5587 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5588 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5589 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5590 
5591 	cmd->Request.CDBLen = 16;
5592 	cmd->Request.type_attr_dir =
5593 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5594 	cmd->Request.Timeout = 0; /* Don't time out */
5595 	cmd->Request.CDB[0] = opcode;
5596 	cmd->Request.CDB[1] = type;
5597 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5598 	cmd->ErrorDescriptor.Addr =
5599 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5600 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5601 
5602 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5603 
5604 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5605 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5606 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5607 			break;
5608 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5609 	}
5610 
5611 	iounmap(vaddr);
5612 
5613 	/* we leak the DMA buffer here ... no choice since the controller could
5614 	 *  still complete the command.
5615 	 */
5616 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5617 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5618 			opcode, type);
5619 		return -ETIMEDOUT;
5620 	}
5621 
5622 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5623 
5624 	if (tag & HPSA_ERROR_BIT) {
5625 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5626 			opcode, type);
5627 		return -EIO;
5628 	}
5629 
5630 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5631 		opcode, type);
5632 	return 0;
5633 }
5634 
5635 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5636 
5637 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5638 	void __iomem *vaddr, u32 use_doorbell)
5639 {
5640 
5641 	if (use_doorbell) {
5642 		/* For everything after the P600, the PCI power state method
5643 		 * of resetting the controller doesn't work, so we have this
5644 		 * other way using the doorbell register.
5645 		 */
5646 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5647 		writel(use_doorbell, vaddr + SA5_DOORBELL);
5648 
5649 		/* PMC hardware guys tell us we need a 10 second delay after
5650 		 * doorbell reset and before any attempt to talk to the board
5651 		 * at all to ensure that this actually works and doesn't fall
5652 		 * over in some weird corner cases.
5653 		 */
5654 		msleep(10000);
5655 	} else { /* Try to do it the PCI power state way */
5656 
5657 		/* Quoting from the Open CISS Specification: "The Power
5658 		 * Management Control/Status Register (CSR) controls the power
5659 		 * state of the device.  The normal operating state is D0,
5660 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5661 		 * the controller, place the interface device in D3 then to D0,
5662 		 * this causes a secondary PCI reset which will reset the
5663 		 * controller." */
5664 
5665 		int rc = 0;
5666 
5667 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5668 
5669 		/* enter the D3hot power management state */
5670 		rc = pci_set_power_state(pdev, PCI_D3hot);
5671 		if (rc)
5672 			return rc;
5673 
5674 		msleep(500);
5675 
5676 		/* enter the D0 power management state */
5677 		rc = pci_set_power_state(pdev, PCI_D0);
5678 		if (rc)
5679 			return rc;
5680 
5681 		/*
5682 		 * The P600 requires a small delay when changing states.
5683 		 * Otherwise we may think the board did not reset and we bail.
5684 		 * This for kdump only and is particular to the P600.
5685 		 */
5686 		msleep(500);
5687 	}
5688 	return 0;
5689 }
5690 
5691 static void init_driver_version(char *driver_version, int len)
5692 {
5693 	memset(driver_version, 0, len);
5694 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5695 }
5696 
5697 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5698 {
5699 	char *driver_version;
5700 	int i, size = sizeof(cfgtable->driver_version);
5701 
5702 	driver_version = kmalloc(size, GFP_KERNEL);
5703 	if (!driver_version)
5704 		return -ENOMEM;
5705 
5706 	init_driver_version(driver_version, size);
5707 	for (i = 0; i < size; i++)
5708 		writeb(driver_version[i], &cfgtable->driver_version[i]);
5709 	kfree(driver_version);
5710 	return 0;
5711 }
5712 
5713 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5714 					  unsigned char *driver_ver)
5715 {
5716 	int i;
5717 
5718 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5719 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
5720 }
5721 
5722 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5723 {
5724 
5725 	char *driver_ver, *old_driver_ver;
5726 	int rc, size = sizeof(cfgtable->driver_version);
5727 
5728 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5729 	if (!old_driver_ver)
5730 		return -ENOMEM;
5731 	driver_ver = old_driver_ver + size;
5732 
5733 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
5734 	 * should have been changed, otherwise we know the reset failed.
5735 	 */
5736 	init_driver_version(old_driver_ver, size);
5737 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5738 	rc = !memcmp(driver_ver, old_driver_ver, size);
5739 	kfree(old_driver_ver);
5740 	return rc;
5741 }
5742 /* This does a hard reset of the controller using PCI power management
5743  * states or the using the doorbell register.
5744  */
5745 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5746 {
5747 	u64 cfg_offset;
5748 	u32 cfg_base_addr;
5749 	u64 cfg_base_addr_index;
5750 	void __iomem *vaddr;
5751 	unsigned long paddr;
5752 	u32 misc_fw_support;
5753 	int rc;
5754 	struct CfgTable __iomem *cfgtable;
5755 	u32 use_doorbell;
5756 	u32 board_id;
5757 	u16 command_register;
5758 
5759 	/* For controllers as old as the P600, this is very nearly
5760 	 * the same thing as
5761 	 *
5762 	 * pci_save_state(pci_dev);
5763 	 * pci_set_power_state(pci_dev, PCI_D3hot);
5764 	 * pci_set_power_state(pci_dev, PCI_D0);
5765 	 * pci_restore_state(pci_dev);
5766 	 *
5767 	 * For controllers newer than the P600, the pci power state
5768 	 * method of resetting doesn't work so we have another way
5769 	 * using the doorbell register.
5770 	 */
5771 
5772 	rc = hpsa_lookup_board_id(pdev, &board_id);
5773 	if (rc < 0) {
5774 		dev_warn(&pdev->dev, "Board ID not found\n");
5775 		return rc;
5776 	}
5777 	if (!ctlr_is_resettable(board_id)) {
5778 		dev_warn(&pdev->dev, "Controller not resettable\n");
5779 		return -ENODEV;
5780 	}
5781 
5782 	/* if controller is soft- but not hard resettable... */
5783 	if (!ctlr_is_hard_resettable(board_id))
5784 		return -ENOTSUPP; /* try soft reset later. */
5785 
5786 	/* Save the PCI command register */
5787 	pci_read_config_word(pdev, 4, &command_register);
5788 	pci_save_state(pdev);
5789 
5790 	/* find the first memory BAR, so we can find the cfg table */
5791 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5792 	if (rc)
5793 		return rc;
5794 	vaddr = remap_pci_mem(paddr, 0x250);
5795 	if (!vaddr)
5796 		return -ENOMEM;
5797 
5798 	/* find cfgtable in order to check if reset via doorbell is supported */
5799 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5800 					&cfg_base_addr_index, &cfg_offset);
5801 	if (rc)
5802 		goto unmap_vaddr;
5803 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
5804 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5805 	if (!cfgtable) {
5806 		rc = -ENOMEM;
5807 		goto unmap_vaddr;
5808 	}
5809 	rc = write_driver_ver_to_cfgtable(cfgtable);
5810 	if (rc)
5811 		goto unmap_cfgtable;
5812 
5813 	/* If reset via doorbell register is supported, use that.
5814 	 * There are two such methods.  Favor the newest method.
5815 	 */
5816 	misc_fw_support = readl(&cfgtable->misc_fw_support);
5817 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5818 	if (use_doorbell) {
5819 		use_doorbell = DOORBELL_CTLR_RESET2;
5820 	} else {
5821 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5822 		if (use_doorbell) {
5823 			dev_warn(&pdev->dev,
5824 				"Soft reset not supported. Firmware update is required.\n");
5825 			rc = -ENOTSUPP; /* try soft reset */
5826 			goto unmap_cfgtable;
5827 		}
5828 	}
5829 
5830 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5831 	if (rc)
5832 		goto unmap_cfgtable;
5833 
5834 	pci_restore_state(pdev);
5835 	pci_write_config_word(pdev, 4, command_register);
5836 
5837 	/* Some devices (notably the HP Smart Array 5i Controller)
5838 	   need a little pause here */
5839 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
5840 
5841 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5842 	if (rc) {
5843 		dev_warn(&pdev->dev,
5844 			"Failed waiting for board to become ready after hard reset\n");
5845 		goto unmap_cfgtable;
5846 	}
5847 
5848 	rc = controller_reset_failed(vaddr);
5849 	if (rc < 0)
5850 		goto unmap_cfgtable;
5851 	if (rc) {
5852 		dev_warn(&pdev->dev, "Unable to successfully reset "
5853 			"controller. Will try soft reset.\n");
5854 		rc = -ENOTSUPP;
5855 	} else {
5856 		dev_info(&pdev->dev, "board ready after hard reset.\n");
5857 	}
5858 
5859 unmap_cfgtable:
5860 	iounmap(cfgtable);
5861 
5862 unmap_vaddr:
5863 	iounmap(vaddr);
5864 	return rc;
5865 }
5866 
5867 /*
5868  *  We cannot read the structure directly, for portability we must use
5869  *   the io functions.
5870  *   This is for debug only.
5871  */
5872 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5873 {
5874 #ifdef HPSA_DEBUG
5875 	int i;
5876 	char temp_name[17];
5877 
5878 	dev_info(dev, "Controller Configuration information\n");
5879 	dev_info(dev, "------------------------------------\n");
5880 	for (i = 0; i < 4; i++)
5881 		temp_name[i] = readb(&(tb->Signature[i]));
5882 	temp_name[4] = '\0';
5883 	dev_info(dev, "   Signature = %s\n", temp_name);
5884 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
5885 	dev_info(dev, "   Transport methods supported = 0x%x\n",
5886 	       readl(&(tb->TransportSupport)));
5887 	dev_info(dev, "   Transport methods active = 0x%x\n",
5888 	       readl(&(tb->TransportActive)));
5889 	dev_info(dev, "   Requested transport Method = 0x%x\n",
5890 	       readl(&(tb->HostWrite.TransportRequest)));
5891 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
5892 	       readl(&(tb->HostWrite.CoalIntDelay)));
5893 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
5894 	       readl(&(tb->HostWrite.CoalIntCount)));
5895 	dev_info(dev, "   Max outstanding commands = %d\n",
5896 	       readl(&(tb->CmdsOutMax)));
5897 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5898 	for (i = 0; i < 16; i++)
5899 		temp_name[i] = readb(&(tb->ServerName[i]));
5900 	temp_name[16] = '\0';
5901 	dev_info(dev, "   Server Name = %s\n", temp_name);
5902 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
5903 		readl(&(tb->HeartBeat)));
5904 #endif				/* HPSA_DEBUG */
5905 }
5906 
5907 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5908 {
5909 	int i, offset, mem_type, bar_type;
5910 
5911 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
5912 		return 0;
5913 	offset = 0;
5914 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5915 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5916 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5917 			offset += 4;
5918 		else {
5919 			mem_type = pci_resource_flags(pdev, i) &
5920 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5921 			switch (mem_type) {
5922 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
5923 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5924 				offset += 4;	/* 32 bit */
5925 				break;
5926 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
5927 				offset += 8;
5928 				break;
5929 			default:	/* reserved in PCI 2.2 */
5930 				dev_warn(&pdev->dev,
5931 				       "base address is invalid\n");
5932 				return -1;
5933 				break;
5934 			}
5935 		}
5936 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5937 			return i + 1;
5938 	}
5939 	return -1;
5940 }
5941 
5942 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5943  * controllers that are capable. If not, we use legacy INTx mode.
5944  */
5945 
5946 static void hpsa_interrupt_mode(struct ctlr_info *h)
5947 {
5948 #ifdef CONFIG_PCI_MSI
5949 	int err, i;
5950 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5951 
5952 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5953 		hpsa_msix_entries[i].vector = 0;
5954 		hpsa_msix_entries[i].entry = i;
5955 	}
5956 
5957 	/* Some boards advertise MSI but don't really support it */
5958 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
5959 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5960 		goto default_int_mode;
5961 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
5962 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
5963 		h->msix_vector = MAX_REPLY_QUEUES;
5964 		if (h->msix_vector > num_online_cpus())
5965 			h->msix_vector = num_online_cpus();
5966 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
5967 					    1, h->msix_vector);
5968 		if (err < 0) {
5969 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
5970 			h->msix_vector = 0;
5971 			goto single_msi_mode;
5972 		} else if (err < h->msix_vector) {
5973 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5974 			       "available\n", err);
5975 		}
5976 		h->msix_vector = err;
5977 		for (i = 0; i < h->msix_vector; i++)
5978 			h->intr[i] = hpsa_msix_entries[i].vector;
5979 		return;
5980 	}
5981 single_msi_mode:
5982 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
5983 		dev_info(&h->pdev->dev, "MSI capable controller\n");
5984 		if (!pci_enable_msi(h->pdev))
5985 			h->msi_vector = 1;
5986 		else
5987 			dev_warn(&h->pdev->dev, "MSI init failed\n");
5988 	}
5989 default_int_mode:
5990 #endif				/* CONFIG_PCI_MSI */
5991 	/* if we get here we're going to use the default interrupt mode */
5992 	h->intr[h->intr_mode] = h->pdev->irq;
5993 }
5994 
5995 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
5996 {
5997 	int i;
5998 	u32 subsystem_vendor_id, subsystem_device_id;
5999 
6000 	subsystem_vendor_id = pdev->subsystem_vendor;
6001 	subsystem_device_id = pdev->subsystem_device;
6002 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6003 		    subsystem_vendor_id;
6004 
6005 	for (i = 0; i < ARRAY_SIZE(products); i++)
6006 		if (*board_id == products[i].board_id)
6007 			return i;
6008 
6009 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6010 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6011 		!hpsa_allow_any) {
6012 		dev_warn(&pdev->dev, "unrecognized board ID: "
6013 			"0x%08x, ignoring.\n", *board_id);
6014 			return -ENODEV;
6015 	}
6016 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6017 }
6018 
6019 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6020 				    unsigned long *memory_bar)
6021 {
6022 	int i;
6023 
6024 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6025 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6026 			/* addressing mode bits already removed */
6027 			*memory_bar = pci_resource_start(pdev, i);
6028 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6029 				*memory_bar);
6030 			return 0;
6031 		}
6032 	dev_warn(&pdev->dev, "no memory BAR found\n");
6033 	return -ENODEV;
6034 }
6035 
6036 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6037 				     int wait_for_ready)
6038 {
6039 	int i, iterations;
6040 	u32 scratchpad;
6041 	if (wait_for_ready)
6042 		iterations = HPSA_BOARD_READY_ITERATIONS;
6043 	else
6044 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6045 
6046 	for (i = 0; i < iterations; i++) {
6047 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6048 		if (wait_for_ready) {
6049 			if (scratchpad == HPSA_FIRMWARE_READY)
6050 				return 0;
6051 		} else {
6052 			if (scratchpad != HPSA_FIRMWARE_READY)
6053 				return 0;
6054 		}
6055 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6056 	}
6057 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6058 	return -ENODEV;
6059 }
6060 
6061 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6062 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6063 			       u64 *cfg_offset)
6064 {
6065 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6066 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6067 	*cfg_base_addr &= (u32) 0x0000ffff;
6068 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6069 	if (*cfg_base_addr_index == -1) {
6070 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6071 		return -ENODEV;
6072 	}
6073 	return 0;
6074 }
6075 
6076 static int hpsa_find_cfgtables(struct ctlr_info *h)
6077 {
6078 	u64 cfg_offset;
6079 	u32 cfg_base_addr;
6080 	u64 cfg_base_addr_index;
6081 	u32 trans_offset;
6082 	int rc;
6083 
6084 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6085 		&cfg_base_addr_index, &cfg_offset);
6086 	if (rc)
6087 		return rc;
6088 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6089 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6090 	if (!h->cfgtable) {
6091 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6092 		return -ENOMEM;
6093 	}
6094 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
6095 	if (rc)
6096 		return rc;
6097 	/* Find performant mode table. */
6098 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6099 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6100 				cfg_base_addr_index)+cfg_offset+trans_offset,
6101 				sizeof(*h->transtable));
6102 	if (!h->transtable)
6103 		return -ENOMEM;
6104 	return 0;
6105 }
6106 
6107 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6108 {
6109 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6110 
6111 	/* Limit commands in memory limited kdump scenario. */
6112 	if (reset_devices && h->max_commands > 32)
6113 		h->max_commands = 32;
6114 
6115 	if (h->max_commands < 16) {
6116 		dev_warn(&h->pdev->dev, "Controller reports "
6117 			"max supported commands of %d, an obvious lie. "
6118 			"Using 16.  Ensure that firmware is up to date.\n",
6119 			h->max_commands);
6120 		h->max_commands = 16;
6121 	}
6122 }
6123 
6124 /* If the controller reports that the total max sg entries is greater than 512,
6125  * then we know that chained SG blocks work.  (Original smart arrays did not
6126  * support chained SG blocks and would return zero for max sg entries.)
6127  */
6128 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6129 {
6130 	return h->maxsgentries > 512;
6131 }
6132 
6133 /* Interrogate the hardware for some limits:
6134  * max commands, max SG elements without chaining, and with chaining,
6135  * SG chain block size, etc.
6136  */
6137 static void hpsa_find_board_params(struct ctlr_info *h)
6138 {
6139 	hpsa_get_max_perf_mode_cmds(h);
6140 	h->nr_cmds = h->max_commands;
6141 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6142 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6143 	if (hpsa_supports_chained_sg_blocks(h)) {
6144 		/* Limit in-command s/g elements to 32 save dma'able memory. */
6145 		h->max_cmd_sg_entries = 32;
6146 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6147 		h->maxsgentries--; /* save one for chain pointer */
6148 	} else {
6149 		/*
6150 		 * Original smart arrays supported at most 31 s/g entries
6151 		 * embedded inline in the command (trying to use more
6152 		 * would lock up the controller)
6153 		 */
6154 		h->max_cmd_sg_entries = 31;
6155 		h->maxsgentries = 31; /* default to traditional values */
6156 		h->chainsize = 0;
6157 	}
6158 
6159 	/* Find out what task management functions are supported and cache */
6160 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6161 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6162 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6163 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6164 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6165 }
6166 
6167 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6168 {
6169 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6170 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6171 		return false;
6172 	}
6173 	return true;
6174 }
6175 
6176 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6177 {
6178 	u32 driver_support;
6179 
6180 	driver_support = readl(&(h->cfgtable->driver_support));
6181 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
6182 #ifdef CONFIG_X86
6183 	driver_support |= ENABLE_SCSI_PREFETCH;
6184 #endif
6185 	driver_support |= ENABLE_UNIT_ATTN;
6186 	writel(driver_support, &(h->cfgtable->driver_support));
6187 }
6188 
6189 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6190  * in a prefetch beyond physical memory.
6191  */
6192 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6193 {
6194 	u32 dma_prefetch;
6195 
6196 	if (h->board_id != 0x3225103C)
6197 		return;
6198 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6199 	dma_prefetch |= 0x8000;
6200 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6201 }
6202 
6203 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6204 {
6205 	int i;
6206 	u32 doorbell_value;
6207 	unsigned long flags;
6208 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6209 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6210 		spin_lock_irqsave(&h->lock, flags);
6211 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6212 		spin_unlock_irqrestore(&h->lock, flags);
6213 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6214 			break;
6215 		/* delay and try again */
6216 		msleep(20);
6217 	}
6218 }
6219 
6220 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6221 {
6222 	int i;
6223 	u32 doorbell_value;
6224 	unsigned long flags;
6225 
6226 	/* under certain very rare conditions, this can take awhile.
6227 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6228 	 * as we enter this code.)
6229 	 */
6230 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6231 		spin_lock_irqsave(&h->lock, flags);
6232 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6233 		spin_unlock_irqrestore(&h->lock, flags);
6234 		if (!(doorbell_value & CFGTBL_ChangeReq))
6235 			break;
6236 		/* delay and try again */
6237 		usleep_range(10000, 20000);
6238 	}
6239 }
6240 
6241 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6242 {
6243 	u32 trans_support;
6244 
6245 	trans_support = readl(&(h->cfgtable->TransportSupport));
6246 	if (!(trans_support & SIMPLE_MODE))
6247 		return -ENOTSUPP;
6248 
6249 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6250 
6251 	/* Update the field, and then ring the doorbell */
6252 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6253 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6254 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6255 	hpsa_wait_for_mode_change_ack(h);
6256 	print_cfg_table(&h->pdev->dev, h->cfgtable);
6257 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6258 		goto error;
6259 	h->transMethod = CFGTBL_Trans_Simple;
6260 	return 0;
6261 error:
6262 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6263 	return -ENODEV;
6264 }
6265 
6266 static int hpsa_pci_init(struct ctlr_info *h)
6267 {
6268 	int prod_index, err;
6269 
6270 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6271 	if (prod_index < 0)
6272 		return prod_index;
6273 	h->product_name = products[prod_index].product_name;
6274 	h->access = *(products[prod_index].access);
6275 
6276 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6277 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6278 
6279 	err = pci_enable_device(h->pdev);
6280 	if (err) {
6281 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6282 		return err;
6283 	}
6284 
6285 	err = pci_request_regions(h->pdev, HPSA);
6286 	if (err) {
6287 		dev_err(&h->pdev->dev,
6288 			"cannot obtain PCI resources, aborting\n");
6289 		return err;
6290 	}
6291 
6292 	pci_set_master(h->pdev);
6293 
6294 	hpsa_interrupt_mode(h);
6295 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6296 	if (err)
6297 		goto err_out_free_res;
6298 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6299 	if (!h->vaddr) {
6300 		err = -ENOMEM;
6301 		goto err_out_free_res;
6302 	}
6303 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6304 	if (err)
6305 		goto err_out_free_res;
6306 	err = hpsa_find_cfgtables(h);
6307 	if (err)
6308 		goto err_out_free_res;
6309 	hpsa_find_board_params(h);
6310 
6311 	if (!hpsa_CISS_signature_present(h)) {
6312 		err = -ENODEV;
6313 		goto err_out_free_res;
6314 	}
6315 	hpsa_set_driver_support_bits(h);
6316 	hpsa_p600_dma_prefetch_quirk(h);
6317 	err = hpsa_enter_simple_mode(h);
6318 	if (err)
6319 		goto err_out_free_res;
6320 	return 0;
6321 
6322 err_out_free_res:
6323 	if (h->transtable)
6324 		iounmap(h->transtable);
6325 	if (h->cfgtable)
6326 		iounmap(h->cfgtable);
6327 	if (h->vaddr)
6328 		iounmap(h->vaddr);
6329 	pci_disable_device(h->pdev);
6330 	pci_release_regions(h->pdev);
6331 	return err;
6332 }
6333 
6334 static void hpsa_hba_inquiry(struct ctlr_info *h)
6335 {
6336 	int rc;
6337 
6338 #define HBA_INQUIRY_BYTE_COUNT 64
6339 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6340 	if (!h->hba_inquiry_data)
6341 		return;
6342 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6343 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6344 	if (rc != 0) {
6345 		kfree(h->hba_inquiry_data);
6346 		h->hba_inquiry_data = NULL;
6347 	}
6348 }
6349 
6350 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6351 {
6352 	int rc, i;
6353 	void __iomem *vaddr;
6354 
6355 	if (!reset_devices)
6356 		return 0;
6357 
6358 	/* kdump kernel is loading, we don't know in which state is
6359 	 * the pci interface. The dev->enable_cnt is equal zero
6360 	 * so we call enable+disable, wait a while and switch it on.
6361 	 */
6362 	rc = pci_enable_device(pdev);
6363 	if (rc) {
6364 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6365 		return -ENODEV;
6366 	}
6367 	pci_disable_device(pdev);
6368 	msleep(260);			/* a randomly chosen number */
6369 	rc = pci_enable_device(pdev);
6370 	if (rc) {
6371 		dev_warn(&pdev->dev, "failed to enable device.\n");
6372 		return -ENODEV;
6373 	}
6374 
6375 	pci_set_master(pdev);
6376 
6377 	vaddr = pci_ioremap_bar(pdev, 0);
6378 	if (vaddr == NULL) {
6379 		rc = -ENOMEM;
6380 		goto out_disable;
6381 	}
6382 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6383 	iounmap(vaddr);
6384 
6385 	/* Reset the controller with a PCI power-cycle or via doorbell */
6386 	rc = hpsa_kdump_hard_reset_controller(pdev);
6387 
6388 	/* -ENOTSUPP here means we cannot reset the controller
6389 	 * but it's already (and still) up and running in
6390 	 * "performant mode".  Or, it might be 640x, which can't reset
6391 	 * due to concerns about shared bbwc between 6402/6404 pair.
6392 	 */
6393 	if (rc)
6394 		goto out_disable;
6395 
6396 	/* Now try to get the controller to respond to a no-op */
6397 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6398 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6399 		if (hpsa_noop(pdev) == 0)
6400 			break;
6401 		else
6402 			dev_warn(&pdev->dev, "no-op failed%s\n",
6403 					(i < 11 ? "; re-trying" : ""));
6404 	}
6405 
6406 out_disable:
6407 
6408 	pci_disable_device(pdev);
6409 	return rc;
6410 }
6411 
6412 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6413 {
6414 	h->cmd_pool_bits = kzalloc(
6415 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6416 		sizeof(unsigned long), GFP_KERNEL);
6417 	h->cmd_pool = pci_alloc_consistent(h->pdev,
6418 		    h->nr_cmds * sizeof(*h->cmd_pool),
6419 		    &(h->cmd_pool_dhandle));
6420 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
6421 		    h->nr_cmds * sizeof(*h->errinfo_pool),
6422 		    &(h->errinfo_pool_dhandle));
6423 	if ((h->cmd_pool_bits == NULL)
6424 	    || (h->cmd_pool == NULL)
6425 	    || (h->errinfo_pool == NULL)) {
6426 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6427 		goto clean_up;
6428 	}
6429 	return 0;
6430 clean_up:
6431 	hpsa_free_cmd_pool(h);
6432 	return -ENOMEM;
6433 }
6434 
6435 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6436 {
6437 	kfree(h->cmd_pool_bits);
6438 	if (h->cmd_pool)
6439 		pci_free_consistent(h->pdev,
6440 			    h->nr_cmds * sizeof(struct CommandList),
6441 			    h->cmd_pool, h->cmd_pool_dhandle);
6442 	if (h->ioaccel2_cmd_pool)
6443 		pci_free_consistent(h->pdev,
6444 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6445 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6446 	if (h->errinfo_pool)
6447 		pci_free_consistent(h->pdev,
6448 			    h->nr_cmds * sizeof(struct ErrorInfo),
6449 			    h->errinfo_pool,
6450 			    h->errinfo_pool_dhandle);
6451 	if (h->ioaccel_cmd_pool)
6452 		pci_free_consistent(h->pdev,
6453 			h->nr_cmds * sizeof(struct io_accel1_cmd),
6454 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6455 }
6456 
6457 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6458 {
6459 	int i, cpu;
6460 
6461 	cpu = cpumask_first(cpu_online_mask);
6462 	for (i = 0; i < h->msix_vector; i++) {
6463 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6464 		cpu = cpumask_next(cpu, cpu_online_mask);
6465 	}
6466 }
6467 
6468 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6469 static void hpsa_free_irqs(struct ctlr_info *h)
6470 {
6471 	int i;
6472 
6473 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6474 		/* Single reply queue, only one irq to free */
6475 		i = h->intr_mode;
6476 		irq_set_affinity_hint(h->intr[i], NULL);
6477 		free_irq(h->intr[i], &h->q[i]);
6478 		return;
6479 	}
6480 
6481 	for (i = 0; i < h->msix_vector; i++) {
6482 		irq_set_affinity_hint(h->intr[i], NULL);
6483 		free_irq(h->intr[i], &h->q[i]);
6484 	}
6485 	for (; i < MAX_REPLY_QUEUES; i++)
6486 		h->q[i] = 0;
6487 }
6488 
6489 /* returns 0 on success; cleans up and returns -Enn on error */
6490 static int hpsa_request_irqs(struct ctlr_info *h,
6491 	irqreturn_t (*msixhandler)(int, void *),
6492 	irqreturn_t (*intxhandler)(int, void *))
6493 {
6494 	int rc, i;
6495 
6496 	/*
6497 	 * initialize h->q[x] = x so that interrupt handlers know which
6498 	 * queue to process.
6499 	 */
6500 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
6501 		h->q[i] = (u8) i;
6502 
6503 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6504 		/* If performant mode and MSI-X, use multiple reply queues */
6505 		for (i = 0; i < h->msix_vector; i++) {
6506 			rc = request_irq(h->intr[i], msixhandler,
6507 					0, h->devname,
6508 					&h->q[i]);
6509 			if (rc) {
6510 				int j;
6511 
6512 				dev_err(&h->pdev->dev,
6513 					"failed to get irq %d for %s\n",
6514 				       h->intr[i], h->devname);
6515 				for (j = 0; j < i; j++) {
6516 					free_irq(h->intr[j], &h->q[j]);
6517 					h->q[j] = 0;
6518 				}
6519 				for (; j < MAX_REPLY_QUEUES; j++)
6520 					h->q[j] = 0;
6521 				return rc;
6522 			}
6523 		}
6524 		hpsa_irq_affinity_hints(h);
6525 	} else {
6526 		/* Use single reply pool */
6527 		if (h->msix_vector > 0 || h->msi_vector) {
6528 			rc = request_irq(h->intr[h->intr_mode],
6529 				msixhandler, 0, h->devname,
6530 				&h->q[h->intr_mode]);
6531 		} else {
6532 			rc = request_irq(h->intr[h->intr_mode],
6533 				intxhandler, IRQF_SHARED, h->devname,
6534 				&h->q[h->intr_mode]);
6535 		}
6536 	}
6537 	if (rc) {
6538 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6539 		       h->intr[h->intr_mode], h->devname);
6540 		return -ENODEV;
6541 	}
6542 	return 0;
6543 }
6544 
6545 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6546 {
6547 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6548 		HPSA_RESET_TYPE_CONTROLLER)) {
6549 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6550 		return -EIO;
6551 	}
6552 
6553 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6554 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6555 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6556 		return -1;
6557 	}
6558 
6559 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6560 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6561 		dev_warn(&h->pdev->dev, "Board failed to become ready "
6562 			"after soft reset.\n");
6563 		return -1;
6564 	}
6565 
6566 	return 0;
6567 }
6568 
6569 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6570 {
6571 	hpsa_free_irqs(h);
6572 #ifdef CONFIG_PCI_MSI
6573 	if (h->msix_vector) {
6574 		if (h->pdev->msix_enabled)
6575 			pci_disable_msix(h->pdev);
6576 	} else if (h->msi_vector) {
6577 		if (h->pdev->msi_enabled)
6578 			pci_disable_msi(h->pdev);
6579 	}
6580 #endif /* CONFIG_PCI_MSI */
6581 }
6582 
6583 static void hpsa_free_reply_queues(struct ctlr_info *h)
6584 {
6585 	int i;
6586 
6587 	for (i = 0; i < h->nreply_queues; i++) {
6588 		if (!h->reply_queue[i].head)
6589 			continue;
6590 		pci_free_consistent(h->pdev, h->reply_queue_size,
6591 			h->reply_queue[i].head, h->reply_queue[i].busaddr);
6592 		h->reply_queue[i].head = NULL;
6593 		h->reply_queue[i].busaddr = 0;
6594 	}
6595 }
6596 
6597 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6598 {
6599 	hpsa_free_irqs_and_disable_msix(h);
6600 	hpsa_free_sg_chain_blocks(h);
6601 	hpsa_free_cmd_pool(h);
6602 	kfree(h->ioaccel1_blockFetchTable);
6603 	kfree(h->blockFetchTable);
6604 	hpsa_free_reply_queues(h);
6605 	if (h->vaddr)
6606 		iounmap(h->vaddr);
6607 	if (h->transtable)
6608 		iounmap(h->transtable);
6609 	if (h->cfgtable)
6610 		iounmap(h->cfgtable);
6611 	pci_disable_device(h->pdev);
6612 	pci_release_regions(h->pdev);
6613 	kfree(h);
6614 }
6615 
6616 /* Called when controller lockup detected. */
6617 static void fail_all_outstanding_cmds(struct ctlr_info *h)
6618 {
6619 	int i, refcount;
6620 	struct CommandList *c;
6621 
6622 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
6623 	for (i = 0; i < h->nr_cmds; i++) {
6624 		c = h->cmd_pool + i;
6625 		refcount = atomic_inc_return(&c->refcount);
6626 		if (refcount > 1) {
6627 			c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6628 			finish_cmd(c);
6629 		}
6630 		cmd_free(h, c);
6631 	}
6632 }
6633 
6634 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6635 {
6636 	int i, cpu;
6637 
6638 	cpu = cpumask_first(cpu_online_mask);
6639 	for (i = 0; i < num_online_cpus(); i++) {
6640 		u32 *lockup_detected;
6641 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6642 		*lockup_detected = value;
6643 		cpu = cpumask_next(cpu, cpu_online_mask);
6644 	}
6645 	wmb(); /* be sure the per-cpu variables are out to memory */
6646 }
6647 
6648 static void controller_lockup_detected(struct ctlr_info *h)
6649 {
6650 	unsigned long flags;
6651 	u32 lockup_detected;
6652 
6653 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6654 	spin_lock_irqsave(&h->lock, flags);
6655 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6656 	if (!lockup_detected) {
6657 		/* no heartbeat, but controller gave us a zero. */
6658 		dev_warn(&h->pdev->dev,
6659 			"lockup detected but scratchpad register is zero\n");
6660 		lockup_detected = 0xffffffff;
6661 	}
6662 	set_lockup_detected_for_all_cpus(h, lockup_detected);
6663 	spin_unlock_irqrestore(&h->lock, flags);
6664 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6665 			lockup_detected);
6666 	pci_disable_device(h->pdev);
6667 	fail_all_outstanding_cmds(h);
6668 }
6669 
6670 static void detect_controller_lockup(struct ctlr_info *h)
6671 {
6672 	u64 now;
6673 	u32 heartbeat;
6674 	unsigned long flags;
6675 
6676 	now = get_jiffies_64();
6677 	/* If we've received an interrupt recently, we're ok. */
6678 	if (time_after64(h->last_intr_timestamp +
6679 				(h->heartbeat_sample_interval), now))
6680 		return;
6681 
6682 	/*
6683 	 * If we've already checked the heartbeat recently, we're ok.
6684 	 * This could happen if someone sends us a signal. We
6685 	 * otherwise don't care about signals in this thread.
6686 	 */
6687 	if (time_after64(h->last_heartbeat_timestamp +
6688 				(h->heartbeat_sample_interval), now))
6689 		return;
6690 
6691 	/* If heartbeat has not changed since we last looked, we're not ok. */
6692 	spin_lock_irqsave(&h->lock, flags);
6693 	heartbeat = readl(&h->cfgtable->HeartBeat);
6694 	spin_unlock_irqrestore(&h->lock, flags);
6695 	if (h->last_heartbeat == heartbeat) {
6696 		controller_lockup_detected(h);
6697 		return;
6698 	}
6699 
6700 	/* We're ok. */
6701 	h->last_heartbeat = heartbeat;
6702 	h->last_heartbeat_timestamp = now;
6703 }
6704 
6705 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6706 {
6707 	int i;
6708 	char *event_type;
6709 
6710 	/* Ask the controller to clear the events we're handling. */
6711 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
6712 			| CFGTBL_Trans_io_accel2)) &&
6713 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6714 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6715 
6716 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6717 			event_type = "state change";
6718 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6719 			event_type = "configuration change";
6720 		/* Stop sending new RAID offload reqs via the IO accelerator */
6721 		scsi_block_requests(h->scsi_host);
6722 		for (i = 0; i < h->ndevices; i++)
6723 			h->dev[i]->offload_enabled = 0;
6724 		hpsa_drain_accel_commands(h);
6725 		/* Set 'accelerator path config change' bit */
6726 		dev_warn(&h->pdev->dev,
6727 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6728 			h->events, event_type);
6729 		writel(h->events, &(h->cfgtable->clear_event_notify));
6730 		/* Set the "clear event notify field update" bit 6 */
6731 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6732 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
6733 		hpsa_wait_for_clear_event_notify_ack(h);
6734 		scsi_unblock_requests(h->scsi_host);
6735 	} else {
6736 		/* Acknowledge controller notification events. */
6737 		writel(h->events, &(h->cfgtable->clear_event_notify));
6738 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6739 		hpsa_wait_for_clear_event_notify_ack(h);
6740 #if 0
6741 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6742 		hpsa_wait_for_mode_change_ack(h);
6743 #endif
6744 	}
6745 	return;
6746 }
6747 
6748 /* Check a register on the controller to see if there are configuration
6749  * changes (added/changed/removed logical drives, etc.) which mean that
6750  * we should rescan the controller for devices.
6751  * Also check flag for driver-initiated rescan.
6752  */
6753 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6754 {
6755 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6756 		return 0;
6757 
6758 	h->events = readl(&(h->cfgtable->event_notify));
6759 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
6760 }
6761 
6762 /*
6763  * Check if any of the offline devices have become ready
6764  */
6765 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6766 {
6767 	unsigned long flags;
6768 	struct offline_device_entry *d;
6769 	struct list_head *this, *tmp;
6770 
6771 	spin_lock_irqsave(&h->offline_device_lock, flags);
6772 	list_for_each_safe(this, tmp, &h->offline_device_list) {
6773 		d = list_entry(this, struct offline_device_entry,
6774 				offline_list);
6775 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6776 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
6777 			spin_lock_irqsave(&h->offline_device_lock, flags);
6778 			list_del(&d->offline_list);
6779 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
6780 			return 1;
6781 		}
6782 		spin_lock_irqsave(&h->offline_device_lock, flags);
6783 	}
6784 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
6785 	return 0;
6786 }
6787 
6788 
6789 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6790 {
6791 	unsigned long flags;
6792 	struct ctlr_info *h = container_of(to_delayed_work(work),
6793 					struct ctlr_info, monitor_ctlr_work);
6794 	detect_controller_lockup(h);
6795 	if (lockup_detected(h))
6796 		return;
6797 
6798 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6799 		scsi_host_get(h->scsi_host);
6800 		hpsa_ack_ctlr_events(h);
6801 		hpsa_scan_start(h->scsi_host);
6802 		scsi_host_put(h->scsi_host);
6803 	}
6804 
6805 	spin_lock_irqsave(&h->lock, flags);
6806 	if (h->remove_in_progress) {
6807 		spin_unlock_irqrestore(&h->lock, flags);
6808 		return;
6809 	}
6810 	schedule_delayed_work(&h->monitor_ctlr_work,
6811 				h->heartbeat_sample_interval);
6812 	spin_unlock_irqrestore(&h->lock, flags);
6813 }
6814 
6815 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6816 {
6817 	int dac, rc;
6818 	struct ctlr_info *h;
6819 	int try_soft_reset = 0;
6820 	unsigned long flags;
6821 
6822 	if (number_of_controllers == 0)
6823 		printk(KERN_INFO DRIVER_NAME "\n");
6824 
6825 	rc = hpsa_init_reset_devices(pdev);
6826 	if (rc) {
6827 		if (rc != -ENOTSUPP)
6828 			return rc;
6829 		/* If the reset fails in a particular way (it has no way to do
6830 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6831 		 * a soft reset once we get the controller configured up to the
6832 		 * point that it can accept a command.
6833 		 */
6834 		try_soft_reset = 1;
6835 		rc = 0;
6836 	}
6837 
6838 reinit_after_soft_reset:
6839 
6840 	/* Command structures must be aligned on a 32-byte boundary because
6841 	 * the 5 lower bits of the address are used by the hardware. and by
6842 	 * the driver.  See comments in hpsa.h for more info.
6843 	 */
6844 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6845 	h = kzalloc(sizeof(*h), GFP_KERNEL);
6846 	if (!h)
6847 		return -ENOMEM;
6848 
6849 	h->pdev = pdev;
6850 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6851 	INIT_LIST_HEAD(&h->offline_device_list);
6852 	spin_lock_init(&h->lock);
6853 	spin_lock_init(&h->offline_device_lock);
6854 	spin_lock_init(&h->scan_lock);
6855 	spin_lock_init(&h->passthru_count_lock);
6856 
6857 	h->resubmit_wq = alloc_workqueue("hpsa", WQ_MEM_RECLAIM, 0);
6858 	if (!h->resubmit_wq) {
6859 		dev_err(&h->pdev->dev, "Failed to allocate work queue\n");
6860 		rc = -ENOMEM;
6861 		goto clean1;
6862 	}
6863 	/* Allocate and clear per-cpu variable lockup_detected */
6864 	h->lockup_detected = alloc_percpu(u32);
6865 	if (!h->lockup_detected) {
6866 		rc = -ENOMEM;
6867 		goto clean1;
6868 	}
6869 	set_lockup_detected_for_all_cpus(h, 0);
6870 
6871 	rc = hpsa_pci_init(h);
6872 	if (rc != 0)
6873 		goto clean1;
6874 
6875 	sprintf(h->devname, HPSA "%d", number_of_controllers);
6876 	h->ctlr = number_of_controllers;
6877 	number_of_controllers++;
6878 
6879 	/* configure PCI DMA stuff */
6880 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6881 	if (rc == 0) {
6882 		dac = 1;
6883 	} else {
6884 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6885 		if (rc == 0) {
6886 			dac = 0;
6887 		} else {
6888 			dev_err(&pdev->dev, "no suitable DMA available\n");
6889 			goto clean1;
6890 		}
6891 	}
6892 
6893 	/* make sure the board interrupts are off */
6894 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6895 
6896 	if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6897 		goto clean2;
6898 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6899 	       h->devname, pdev->device,
6900 	       h->intr[h->intr_mode], dac ? "" : " not");
6901 	rc = hpsa_allocate_cmd_pool(h);
6902 	if (rc)
6903 		goto clean2_and_free_irqs;
6904 	if (hpsa_allocate_sg_chain_blocks(h))
6905 		goto clean4;
6906 	init_waitqueue_head(&h->scan_wait_queue);
6907 	h->scan_finished = 1; /* no scan currently in progress */
6908 
6909 	pci_set_drvdata(pdev, h);
6910 	h->ndevices = 0;
6911 	h->hba_mode_enabled = 0;
6912 	h->scsi_host = NULL;
6913 	spin_lock_init(&h->devlock);
6914 	hpsa_put_ctlr_into_performant_mode(h);
6915 
6916 	/* At this point, the controller is ready to take commands.
6917 	 * Now, if reset_devices and the hard reset didn't work, try
6918 	 * the soft reset and see if that works.
6919 	 */
6920 	if (try_soft_reset) {
6921 
6922 		/* This is kind of gross.  We may or may not get a completion
6923 		 * from the soft reset command, and if we do, then the value
6924 		 * from the fifo may or may not be valid.  So, we wait 10 secs
6925 		 * after the reset throwing away any completions we get during
6926 		 * that time.  Unregister the interrupt handler and register
6927 		 * fake ones to scoop up any residual completions.
6928 		 */
6929 		spin_lock_irqsave(&h->lock, flags);
6930 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6931 		spin_unlock_irqrestore(&h->lock, flags);
6932 		hpsa_free_irqs(h);
6933 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
6934 					hpsa_intx_discard_completions);
6935 		if (rc) {
6936 			dev_warn(&h->pdev->dev,
6937 				"Failed to request_irq after soft reset.\n");
6938 			goto clean4;
6939 		}
6940 
6941 		rc = hpsa_kdump_soft_reset(h);
6942 		if (rc)
6943 			/* Neither hard nor soft reset worked, we're hosed. */
6944 			goto clean4;
6945 
6946 		dev_info(&h->pdev->dev, "Board READY.\n");
6947 		dev_info(&h->pdev->dev,
6948 			"Waiting for stale completions to drain.\n");
6949 		h->access.set_intr_mask(h, HPSA_INTR_ON);
6950 		msleep(10000);
6951 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
6952 
6953 		rc = controller_reset_failed(h->cfgtable);
6954 		if (rc)
6955 			dev_info(&h->pdev->dev,
6956 				"Soft reset appears to have failed.\n");
6957 
6958 		/* since the controller's reset, we have to go back and re-init
6959 		 * everything.  Easiest to just forget what we've done and do it
6960 		 * all over again.
6961 		 */
6962 		hpsa_undo_allocations_after_kdump_soft_reset(h);
6963 		try_soft_reset = 0;
6964 		if (rc)
6965 			/* don't go to clean4, we already unallocated */
6966 			return -ENODEV;
6967 
6968 		goto reinit_after_soft_reset;
6969 	}
6970 
6971 		/* Enable Accelerated IO path at driver layer */
6972 		h->acciopath_status = 1;
6973 
6974 
6975 	/* Turn the interrupts on so we can service requests */
6976 	h->access.set_intr_mask(h, HPSA_INTR_ON);
6977 
6978 	hpsa_hba_inquiry(h);
6979 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
6980 
6981 	/* Monitor the controller for firmware lockups */
6982 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
6983 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
6984 	schedule_delayed_work(&h->monitor_ctlr_work,
6985 				h->heartbeat_sample_interval);
6986 	return 0;
6987 
6988 clean4:
6989 	hpsa_free_sg_chain_blocks(h);
6990 	hpsa_free_cmd_pool(h);
6991 clean2_and_free_irqs:
6992 	hpsa_free_irqs(h);
6993 clean2:
6994 clean1:
6995 	if (h->resubmit_wq)
6996 		destroy_workqueue(h->resubmit_wq);
6997 	if (h->lockup_detected)
6998 		free_percpu(h->lockup_detected);
6999 	kfree(h);
7000 	return rc;
7001 }
7002 
7003 static void hpsa_flush_cache(struct ctlr_info *h)
7004 {
7005 	char *flush_buf;
7006 	struct CommandList *c;
7007 
7008 	/* Don't bother trying to flush the cache if locked up */
7009 	if (unlikely(lockup_detected(h)))
7010 		return;
7011 	flush_buf = kzalloc(4, GFP_KERNEL);
7012 	if (!flush_buf)
7013 		return;
7014 
7015 	c = cmd_alloc(h);
7016 	if (!c) {
7017 		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
7018 		goto out_of_memory;
7019 	}
7020 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7021 		RAID_CTLR_LUNID, TYPE_CMD)) {
7022 		goto out;
7023 	}
7024 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7025 	if (c->err_info->CommandStatus != 0)
7026 out:
7027 		dev_warn(&h->pdev->dev,
7028 			"error flushing cache on controller\n");
7029 	cmd_free(h, c);
7030 out_of_memory:
7031 	kfree(flush_buf);
7032 }
7033 
7034 static void hpsa_shutdown(struct pci_dev *pdev)
7035 {
7036 	struct ctlr_info *h;
7037 
7038 	h = pci_get_drvdata(pdev);
7039 	/* Turn board interrupts off  and send the flush cache command
7040 	 * sendcmd will turn off interrupt, and send the flush...
7041 	 * To write all data in the battery backed cache to disks
7042 	 */
7043 	hpsa_flush_cache(h);
7044 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7045 	hpsa_free_irqs_and_disable_msix(h);
7046 }
7047 
7048 static void hpsa_free_device_info(struct ctlr_info *h)
7049 {
7050 	int i;
7051 
7052 	for (i = 0; i < h->ndevices; i++)
7053 		kfree(h->dev[i]);
7054 }
7055 
7056 static void hpsa_remove_one(struct pci_dev *pdev)
7057 {
7058 	struct ctlr_info *h;
7059 	unsigned long flags;
7060 
7061 	if (pci_get_drvdata(pdev) == NULL) {
7062 		dev_err(&pdev->dev, "unable to remove device\n");
7063 		return;
7064 	}
7065 	h = pci_get_drvdata(pdev);
7066 
7067 	/* Get rid of any controller monitoring work items */
7068 	spin_lock_irqsave(&h->lock, flags);
7069 	h->remove_in_progress = 1;
7070 	cancel_delayed_work(&h->monitor_ctlr_work);
7071 	spin_unlock_irqrestore(&h->lock, flags);
7072 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
7073 	hpsa_shutdown(pdev);
7074 	destroy_workqueue(h->resubmit_wq);
7075 	iounmap(h->vaddr);
7076 	iounmap(h->transtable);
7077 	iounmap(h->cfgtable);
7078 	hpsa_free_device_info(h);
7079 	hpsa_free_sg_chain_blocks(h);
7080 	pci_free_consistent(h->pdev,
7081 		h->nr_cmds * sizeof(struct CommandList),
7082 		h->cmd_pool, h->cmd_pool_dhandle);
7083 	pci_free_consistent(h->pdev,
7084 		h->nr_cmds * sizeof(struct ErrorInfo),
7085 		h->errinfo_pool, h->errinfo_pool_dhandle);
7086 	hpsa_free_reply_queues(h);
7087 	kfree(h->cmd_pool_bits);
7088 	kfree(h->blockFetchTable);
7089 	kfree(h->ioaccel1_blockFetchTable);
7090 	kfree(h->ioaccel2_blockFetchTable);
7091 	kfree(h->hba_inquiry_data);
7092 	pci_disable_device(pdev);
7093 	pci_release_regions(pdev);
7094 	free_percpu(h->lockup_detected);
7095 	kfree(h);
7096 }
7097 
7098 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7099 	__attribute__((unused)) pm_message_t state)
7100 {
7101 	return -ENOSYS;
7102 }
7103 
7104 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7105 {
7106 	return -ENOSYS;
7107 }
7108 
7109 static struct pci_driver hpsa_pci_driver = {
7110 	.name = HPSA,
7111 	.probe = hpsa_init_one,
7112 	.remove = hpsa_remove_one,
7113 	.id_table = hpsa_pci_device_id,	/* id_table */
7114 	.shutdown = hpsa_shutdown,
7115 	.suspend = hpsa_suspend,
7116 	.resume = hpsa_resume,
7117 };
7118 
7119 /* Fill in bucket_map[], given nsgs (the max number of
7120  * scatter gather elements supported) and bucket[],
7121  * which is an array of 8 integers.  The bucket[] array
7122  * contains 8 different DMA transfer sizes (in 16
7123  * byte increments) which the controller uses to fetch
7124  * commands.  This function fills in bucket_map[], which
7125  * maps a given number of scatter gather elements to one of
7126  * the 8 DMA transfer sizes.  The point of it is to allow the
7127  * controller to only do as much DMA as needed to fetch the
7128  * command, with the DMA transfer size encoded in the lower
7129  * bits of the command address.
7130  */
7131 static void  calc_bucket_map(int bucket[], int num_buckets,
7132 	int nsgs, int min_blocks, u32 *bucket_map)
7133 {
7134 	int i, j, b, size;
7135 
7136 	/* Note, bucket_map must have nsgs+1 entries. */
7137 	for (i = 0; i <= nsgs; i++) {
7138 		/* Compute size of a command with i SG entries */
7139 		size = i + min_blocks;
7140 		b = num_buckets; /* Assume the biggest bucket */
7141 		/* Find the bucket that is just big enough */
7142 		for (j = 0; j < num_buckets; j++) {
7143 			if (bucket[j] >= size) {
7144 				b = j;
7145 				break;
7146 			}
7147 		}
7148 		/* for a command with i SG entries, use bucket b. */
7149 		bucket_map[i] = b;
7150 	}
7151 }
7152 
7153 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7154 {
7155 	int i;
7156 	unsigned long register_value;
7157 	unsigned long transMethod = CFGTBL_Trans_Performant |
7158 			(trans_support & CFGTBL_Trans_use_short_tags) |
7159 				CFGTBL_Trans_enable_directed_msix |
7160 			(trans_support & (CFGTBL_Trans_io_accel1 |
7161 				CFGTBL_Trans_io_accel2));
7162 	struct access_method access = SA5_performant_access;
7163 
7164 	/* This is a bit complicated.  There are 8 registers on
7165 	 * the controller which we write to to tell it 8 different
7166 	 * sizes of commands which there may be.  It's a way of
7167 	 * reducing the DMA done to fetch each command.  Encoded into
7168 	 * each command's tag are 3 bits which communicate to the controller
7169 	 * which of the eight sizes that command fits within.  The size of
7170 	 * each command depends on how many scatter gather entries there are.
7171 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
7172 	 * with the number of 16-byte blocks a command of that size requires.
7173 	 * The smallest command possible requires 5 such 16 byte blocks.
7174 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7175 	 * blocks.  Note, this only extends to the SG entries contained
7176 	 * within the command block, and does not extend to chained blocks
7177 	 * of SG elements.   bft[] contains the eight values we write to
7178 	 * the registers.  They are not evenly distributed, but have more
7179 	 * sizes for small commands, and fewer sizes for larger commands.
7180 	 */
7181 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7182 #define MIN_IOACCEL2_BFT_ENTRY 5
7183 #define HPSA_IOACCEL2_HEADER_SZ 4
7184 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7185 			13, 14, 15, 16, 17, 18, 19,
7186 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7187 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7188 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7189 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7190 				 16 * MIN_IOACCEL2_BFT_ENTRY);
7191 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7192 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7193 	/*  5 = 1 s/g entry or 4k
7194 	 *  6 = 2 s/g entry or 8k
7195 	 *  8 = 4 s/g entry or 16k
7196 	 * 10 = 6 s/g entry or 24k
7197 	 */
7198 
7199 	/* If the controller supports either ioaccel method then
7200 	 * we can also use the RAID stack submit path that does not
7201 	 * perform the superfluous readl() after each command submission.
7202 	 */
7203 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7204 		access = SA5_performant_access_no_read;
7205 
7206 	/* Controller spec: zero out this buffer. */
7207 	for (i = 0; i < h->nreply_queues; i++)
7208 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7209 
7210 	bft[7] = SG_ENTRIES_IN_CMD + 4;
7211 	calc_bucket_map(bft, ARRAY_SIZE(bft),
7212 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7213 	for (i = 0; i < 8; i++)
7214 		writel(bft[i], &h->transtable->BlockFetch[i]);
7215 
7216 	/* size of controller ring buffer */
7217 	writel(h->max_commands, &h->transtable->RepQSize);
7218 	writel(h->nreply_queues, &h->transtable->RepQCount);
7219 	writel(0, &h->transtable->RepQCtrAddrLow32);
7220 	writel(0, &h->transtable->RepQCtrAddrHigh32);
7221 
7222 	for (i = 0; i < h->nreply_queues; i++) {
7223 		writel(0, &h->transtable->RepQAddr[i].upper);
7224 		writel(h->reply_queue[i].busaddr,
7225 			&h->transtable->RepQAddr[i].lower);
7226 	}
7227 
7228 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7229 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7230 	/*
7231 	 * enable outbound interrupt coalescing in accelerator mode;
7232 	 */
7233 	if (trans_support & CFGTBL_Trans_io_accel1) {
7234 		access = SA5_ioaccel_mode1_access;
7235 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7236 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7237 	} else {
7238 		if (trans_support & CFGTBL_Trans_io_accel2) {
7239 			access = SA5_ioaccel_mode2_access;
7240 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7241 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7242 		}
7243 	}
7244 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7245 	hpsa_wait_for_mode_change_ack(h);
7246 	register_value = readl(&(h->cfgtable->TransportActive));
7247 	if (!(register_value & CFGTBL_Trans_Performant)) {
7248 		dev_err(&h->pdev->dev,
7249 			"performant mode problem - transport not active\n");
7250 		return;
7251 	}
7252 	/* Change the access methods to the performant access methods */
7253 	h->access = access;
7254 	h->transMethod = transMethod;
7255 
7256 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7257 		(trans_support & CFGTBL_Trans_io_accel2)))
7258 		return;
7259 
7260 	if (trans_support & CFGTBL_Trans_io_accel1) {
7261 		/* Set up I/O accelerator mode */
7262 		for (i = 0; i < h->nreply_queues; i++) {
7263 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7264 			h->reply_queue[i].current_entry =
7265 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7266 		}
7267 		bft[7] = h->ioaccel_maxsg + 8;
7268 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7269 				h->ioaccel1_blockFetchTable);
7270 
7271 		/* initialize all reply queue entries to unused */
7272 		for (i = 0; i < h->nreply_queues; i++)
7273 			memset(h->reply_queue[i].head,
7274 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
7275 				h->reply_queue_size);
7276 
7277 		/* set all the constant fields in the accelerator command
7278 		 * frames once at init time to save CPU cycles later.
7279 		 */
7280 		for (i = 0; i < h->nr_cmds; i++) {
7281 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7282 
7283 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
7284 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
7285 					(i * sizeof(struct ErrorInfo)));
7286 			cp->err_info_len = sizeof(struct ErrorInfo);
7287 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
7288 			cp->host_context_flags =
7289 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7290 			cp->timeout_sec = 0;
7291 			cp->ReplyQueue = 0;
7292 			cp->tag =
7293 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7294 			cp->host_addr =
7295 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7296 					(i * sizeof(struct io_accel1_cmd)));
7297 		}
7298 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
7299 		u64 cfg_offset, cfg_base_addr_index;
7300 		u32 bft2_offset, cfg_base_addr;
7301 		int rc;
7302 
7303 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7304 			&cfg_base_addr_index, &cfg_offset);
7305 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7306 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7307 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7308 				4, h->ioaccel2_blockFetchTable);
7309 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7310 		BUILD_BUG_ON(offsetof(struct CfgTable,
7311 				io_accel_request_size_offset) != 0xb8);
7312 		h->ioaccel2_bft2_regs =
7313 			remap_pci_mem(pci_resource_start(h->pdev,
7314 					cfg_base_addr_index) +
7315 					cfg_offset + bft2_offset,
7316 					ARRAY_SIZE(bft2) *
7317 					sizeof(*h->ioaccel2_bft2_regs));
7318 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
7319 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7320 	}
7321 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7322 	hpsa_wait_for_mode_change_ack(h);
7323 }
7324 
7325 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7326 {
7327 	h->ioaccel_maxsg =
7328 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7329 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7330 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7331 
7332 	/* Command structures must be aligned on a 128-byte boundary
7333 	 * because the 7 lower bits of the address are used by the
7334 	 * hardware.
7335 	 */
7336 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7337 			IOACCEL1_COMMANDLIST_ALIGNMENT);
7338 	h->ioaccel_cmd_pool =
7339 		pci_alloc_consistent(h->pdev,
7340 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7341 			&(h->ioaccel_cmd_pool_dhandle));
7342 
7343 	h->ioaccel1_blockFetchTable =
7344 		kmalloc(((h->ioaccel_maxsg + 1) *
7345 				sizeof(u32)), GFP_KERNEL);
7346 
7347 	if ((h->ioaccel_cmd_pool == NULL) ||
7348 		(h->ioaccel1_blockFetchTable == NULL))
7349 		goto clean_up;
7350 
7351 	memset(h->ioaccel_cmd_pool, 0,
7352 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7353 	return 0;
7354 
7355 clean_up:
7356 	if (h->ioaccel_cmd_pool)
7357 		pci_free_consistent(h->pdev,
7358 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7359 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7360 	kfree(h->ioaccel1_blockFetchTable);
7361 	return 1;
7362 }
7363 
7364 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7365 {
7366 	/* Allocate ioaccel2 mode command blocks and block fetch table */
7367 
7368 	h->ioaccel_maxsg =
7369 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7370 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7371 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7372 
7373 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7374 			IOACCEL2_COMMANDLIST_ALIGNMENT);
7375 	h->ioaccel2_cmd_pool =
7376 		pci_alloc_consistent(h->pdev,
7377 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7378 			&(h->ioaccel2_cmd_pool_dhandle));
7379 
7380 	h->ioaccel2_blockFetchTable =
7381 		kmalloc(((h->ioaccel_maxsg + 1) *
7382 				sizeof(u32)), GFP_KERNEL);
7383 
7384 	if ((h->ioaccel2_cmd_pool == NULL) ||
7385 		(h->ioaccel2_blockFetchTable == NULL))
7386 		goto clean_up;
7387 
7388 	memset(h->ioaccel2_cmd_pool, 0,
7389 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7390 	return 0;
7391 
7392 clean_up:
7393 	if (h->ioaccel2_cmd_pool)
7394 		pci_free_consistent(h->pdev,
7395 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7396 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7397 	kfree(h->ioaccel2_blockFetchTable);
7398 	return 1;
7399 }
7400 
7401 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7402 {
7403 	u32 trans_support;
7404 	unsigned long transMethod = CFGTBL_Trans_Performant |
7405 					CFGTBL_Trans_use_short_tags;
7406 	int i;
7407 
7408 	if (hpsa_simple_mode)
7409 		return;
7410 
7411 	trans_support = readl(&(h->cfgtable->TransportSupport));
7412 	if (!(trans_support & PERFORMANT_MODE))
7413 		return;
7414 
7415 	/* Check for I/O accelerator mode support */
7416 	if (trans_support & CFGTBL_Trans_io_accel1) {
7417 		transMethod |= CFGTBL_Trans_io_accel1 |
7418 				CFGTBL_Trans_enable_directed_msix;
7419 		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7420 			goto clean_up;
7421 	} else {
7422 		if (trans_support & CFGTBL_Trans_io_accel2) {
7423 				transMethod |= CFGTBL_Trans_io_accel2 |
7424 				CFGTBL_Trans_enable_directed_msix;
7425 		if (ioaccel2_alloc_cmds_and_bft(h))
7426 			goto clean_up;
7427 		}
7428 	}
7429 
7430 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7431 	hpsa_get_max_perf_mode_cmds(h);
7432 	/* Performant mode ring buffer and supporting data structures */
7433 	h->reply_queue_size = h->max_commands * sizeof(u64);
7434 
7435 	for (i = 0; i < h->nreply_queues; i++) {
7436 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7437 						h->reply_queue_size,
7438 						&(h->reply_queue[i].busaddr));
7439 		if (!h->reply_queue[i].head)
7440 			goto clean_up;
7441 		h->reply_queue[i].size = h->max_commands;
7442 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7443 		h->reply_queue[i].current_entry = 0;
7444 	}
7445 
7446 	/* Need a block fetch table for performant mode */
7447 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7448 				sizeof(u32)), GFP_KERNEL);
7449 	if (!h->blockFetchTable)
7450 		goto clean_up;
7451 
7452 	hpsa_enter_performant_mode(h, trans_support);
7453 	return;
7454 
7455 clean_up:
7456 	hpsa_free_reply_queues(h);
7457 	kfree(h->blockFetchTable);
7458 }
7459 
7460 static int is_accelerated_cmd(struct CommandList *c)
7461 {
7462 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7463 }
7464 
7465 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7466 {
7467 	struct CommandList *c = NULL;
7468 	int i, accel_cmds_out;
7469 	int refcount;
7470 
7471 	do { /* wait for all outstanding ioaccel commands to drain out */
7472 		accel_cmds_out = 0;
7473 		for (i = 0; i < h->nr_cmds; i++) {
7474 			c = h->cmd_pool + i;
7475 			refcount = atomic_inc_return(&c->refcount);
7476 			if (refcount > 1) /* Command is allocated */
7477 				accel_cmds_out += is_accelerated_cmd(c);
7478 			cmd_free(h, c);
7479 		}
7480 		if (accel_cmds_out <= 0)
7481 			break;
7482 		msleep(100);
7483 	} while (1);
7484 }
7485 
7486 /*
7487  *  This is it.  Register the PCI driver information for the cards we control
7488  *  the OS will call our registered routines when it finds one of our cards.
7489  */
7490 static int __init hpsa_init(void)
7491 {
7492 	return pci_register_driver(&hpsa_pci_driver);
7493 }
7494 
7495 static void __exit hpsa_cleanup(void)
7496 {
7497 	pci_unregister_driver(&hpsa_pci_driver);
7498 }
7499 
7500 static void __attribute__((unused)) verify_offsets(void)
7501 {
7502 #define VERIFY_OFFSET(member, offset) \
7503 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7504 
7505 	VERIFY_OFFSET(structure_size, 0);
7506 	VERIFY_OFFSET(volume_blk_size, 4);
7507 	VERIFY_OFFSET(volume_blk_cnt, 8);
7508 	VERIFY_OFFSET(phys_blk_shift, 16);
7509 	VERIFY_OFFSET(parity_rotation_shift, 17);
7510 	VERIFY_OFFSET(strip_size, 18);
7511 	VERIFY_OFFSET(disk_starting_blk, 20);
7512 	VERIFY_OFFSET(disk_blk_cnt, 28);
7513 	VERIFY_OFFSET(data_disks_per_row, 36);
7514 	VERIFY_OFFSET(metadata_disks_per_row, 38);
7515 	VERIFY_OFFSET(row_cnt, 40);
7516 	VERIFY_OFFSET(layout_map_count, 42);
7517 	VERIFY_OFFSET(flags, 44);
7518 	VERIFY_OFFSET(dekindex, 46);
7519 	/* VERIFY_OFFSET(reserved, 48 */
7520 	VERIFY_OFFSET(data, 64);
7521 
7522 #undef VERIFY_OFFSET
7523 
7524 #define VERIFY_OFFSET(member, offset) \
7525 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7526 
7527 	VERIFY_OFFSET(IU_type, 0);
7528 	VERIFY_OFFSET(direction, 1);
7529 	VERIFY_OFFSET(reply_queue, 2);
7530 	/* VERIFY_OFFSET(reserved1, 3);  */
7531 	VERIFY_OFFSET(scsi_nexus, 4);
7532 	VERIFY_OFFSET(Tag, 8);
7533 	VERIFY_OFFSET(cdb, 16);
7534 	VERIFY_OFFSET(cciss_lun, 32);
7535 	VERIFY_OFFSET(data_len, 40);
7536 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
7537 	VERIFY_OFFSET(sg_count, 45);
7538 	/* VERIFY_OFFSET(reserved3 */
7539 	VERIFY_OFFSET(err_ptr, 48);
7540 	VERIFY_OFFSET(err_len, 56);
7541 	/* VERIFY_OFFSET(reserved4  */
7542 	VERIFY_OFFSET(sg, 64);
7543 
7544 #undef VERIFY_OFFSET
7545 
7546 #define VERIFY_OFFSET(member, offset) \
7547 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7548 
7549 	VERIFY_OFFSET(dev_handle, 0x00);
7550 	VERIFY_OFFSET(reserved1, 0x02);
7551 	VERIFY_OFFSET(function, 0x03);
7552 	VERIFY_OFFSET(reserved2, 0x04);
7553 	VERIFY_OFFSET(err_info, 0x0C);
7554 	VERIFY_OFFSET(reserved3, 0x10);
7555 	VERIFY_OFFSET(err_info_len, 0x12);
7556 	VERIFY_OFFSET(reserved4, 0x13);
7557 	VERIFY_OFFSET(sgl_offset, 0x14);
7558 	VERIFY_OFFSET(reserved5, 0x15);
7559 	VERIFY_OFFSET(transfer_len, 0x1C);
7560 	VERIFY_OFFSET(reserved6, 0x20);
7561 	VERIFY_OFFSET(io_flags, 0x24);
7562 	VERIFY_OFFSET(reserved7, 0x26);
7563 	VERIFY_OFFSET(LUN, 0x34);
7564 	VERIFY_OFFSET(control, 0x3C);
7565 	VERIFY_OFFSET(CDB, 0x40);
7566 	VERIFY_OFFSET(reserved8, 0x50);
7567 	VERIFY_OFFSET(host_context_flags, 0x60);
7568 	VERIFY_OFFSET(timeout_sec, 0x62);
7569 	VERIFY_OFFSET(ReplyQueue, 0x64);
7570 	VERIFY_OFFSET(reserved9, 0x65);
7571 	VERIFY_OFFSET(tag, 0x68);
7572 	VERIFY_OFFSET(host_addr, 0x70);
7573 	VERIFY_OFFSET(CISS_LUN, 0x78);
7574 	VERIFY_OFFSET(SG, 0x78 + 8);
7575 #undef VERIFY_OFFSET
7576 }
7577 
7578 module_init(hpsa_init);
7579 module_exit(hpsa_cleanup);
7580