xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 2e9d1b36)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 	"Use 'simple mode' rather than 'performant mode'");
81 
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
100 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 	{0,}
102 };
103 
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105 
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111 	{0x3241103C, "Smart Array P212", &SA5_access},
112 	{0x3243103C, "Smart Array P410", &SA5_access},
113 	{0x3245103C, "Smart Array P410i", &SA5_access},
114 	{0x3247103C, "Smart Array P411", &SA5_access},
115 	{0x3249103C, "Smart Array P812", &SA5_access},
116 	{0x324a103C, "Smart Array P712m", &SA5_access},
117 	{0x324b103C, "Smart Array P711m", &SA5_access},
118 	{0x3350103C, "Smart Array", &SA5_access},
119 	{0x3351103C, "Smart Array", &SA5_access},
120 	{0x3352103C, "Smart Array", &SA5_access},
121 	{0x3353103C, "Smart Array", &SA5_access},
122 	{0x3354103C, "Smart Array", &SA5_access},
123 	{0x3355103C, "Smart Array", &SA5_access},
124 	{0x3356103C, "Smart Array", &SA5_access},
125 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127 
128 static int number_of_controllers;
129 
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134 
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138 
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 	int cmd_type);
146 
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 	unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 	int qdepth, int reason);
153 
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157 
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 	struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 	struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 	int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 	u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 	unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 	void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178 
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181 	unsigned long *priv = shost_priv(sdev->host);
182 	return (struct ctlr_info *) *priv;
183 }
184 
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187 	unsigned long *priv = shost_priv(sh);
188 	return (struct ctlr_info *) *priv;
189 }
190 
191 static int check_for_unit_attention(struct ctlr_info *h,
192 	struct CommandList *c)
193 {
194 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 		return 0;
196 
197 	switch (c->err_info->SenseInfo[12]) {
198 	case STATE_CHANGED:
199 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 			"detected, command retried\n", h->ctlr);
201 		break;
202 	case LUN_FAILED:
203 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 			"detected, action required\n", h->ctlr);
205 		break;
206 	case REPORT_LUNS_CHANGED:
207 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 			"changed, action required\n", h->ctlr);
209 	/*
210 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211 	 */
212 		break;
213 	case POWER_OR_RESET:
214 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 			"or device reset detected\n", h->ctlr);
216 		break;
217 	case UNIT_ATTENTION_CLEARED:
218 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 		    "cleared by another initiator\n", h->ctlr);
220 		break;
221 	default:
222 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 			"unit attention detected\n", h->ctlr);
224 		break;
225 	}
226 	return 1;
227 }
228 
229 static ssize_t host_store_rescan(struct device *dev,
230 				 struct device_attribute *attr,
231 				 const char *buf, size_t count)
232 {
233 	struct ctlr_info *h;
234 	struct Scsi_Host *shost = class_to_shost(dev);
235 	h = shost_to_hba(shost);
236 	hpsa_scan_start(h->scsi_host);
237 	return count;
238 }
239 
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 	     struct device_attribute *attr, char *buf)
242 {
243 	struct ctlr_info *h;
244 	struct Scsi_Host *shost = class_to_shost(dev);
245 	unsigned char *fwrev;
246 
247 	h = shost_to_hba(shost);
248 	if (!h->hba_inquiry_data)
249 		return 0;
250 	fwrev = &h->hba_inquiry_data[32];
251 	return snprintf(buf, 20, "%c%c%c%c\n",
252 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254 
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 	     struct device_attribute *attr, char *buf)
257 {
258 	struct Scsi_Host *shost = class_to_shost(dev);
259 	struct ctlr_info *h = shost_to_hba(shost);
260 
261 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263 
264 static ssize_t host_show_transport_mode(struct device *dev,
265 	struct device_attribute *attr, char *buf)
266 {
267 	struct ctlr_info *h;
268 	struct Scsi_Host *shost = class_to_shost(dev);
269 
270 	h = shost_to_hba(shost);
271 	return snprintf(buf, 20, "%s\n",
272 		h->transMethod & CFGTBL_Trans_Performant ?
273 			"performant" : "simple");
274 }
275 
276 /* List of controllers which cannot be reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 	0x324a103C, /* Smart Array P712m */
279 	0x324b103C, /* SmartArray P711m */
280 	0x3223103C, /* Smart Array P800 */
281 	0x3234103C, /* Smart Array P400 */
282 	0x3235103C, /* Smart Array P400i */
283 	0x3211103C, /* Smart Array E200i */
284 	0x3212103C, /* Smart Array E200 */
285 	0x3213103C, /* Smart Array E200i */
286 	0x3214103C, /* Smart Array E200i */
287 	0x3215103C, /* Smart Array E200i */
288 	0x3237103C, /* Smart Array E500 */
289 	0x323D103C, /* Smart Array P700m */
290 	0x409C0E11, /* Smart Array 6400 */
291 	0x409D0E11, /* Smart Array 6400 EM */
292 };
293 
294 static int ctlr_is_resettable(struct ctlr_info *h)
295 {
296 	int i;
297 
298 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
299 		if (unresettable_controller[i] == h->board_id)
300 			return 0;
301 	return 1;
302 }
303 
304 static ssize_t host_show_resettable(struct device *dev,
305 	struct device_attribute *attr, char *buf)
306 {
307 	struct ctlr_info *h;
308 	struct Scsi_Host *shost = class_to_shost(dev);
309 
310 	h = shost_to_hba(shost);
311 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
312 }
313 
314 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
315 {
316 	return (scsi3addr[3] & 0xC0) == 0x40;
317 }
318 
319 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
320 	"UNKNOWN"
321 };
322 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
323 
324 static ssize_t raid_level_show(struct device *dev,
325 	     struct device_attribute *attr, char *buf)
326 {
327 	ssize_t l = 0;
328 	unsigned char rlevel;
329 	struct ctlr_info *h;
330 	struct scsi_device *sdev;
331 	struct hpsa_scsi_dev_t *hdev;
332 	unsigned long flags;
333 
334 	sdev = to_scsi_device(dev);
335 	h = sdev_to_hba(sdev);
336 	spin_lock_irqsave(&h->lock, flags);
337 	hdev = sdev->hostdata;
338 	if (!hdev) {
339 		spin_unlock_irqrestore(&h->lock, flags);
340 		return -ENODEV;
341 	}
342 
343 	/* Is this even a logical drive? */
344 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
345 		spin_unlock_irqrestore(&h->lock, flags);
346 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
347 		return l;
348 	}
349 
350 	rlevel = hdev->raid_level;
351 	spin_unlock_irqrestore(&h->lock, flags);
352 	if (rlevel > RAID_UNKNOWN)
353 		rlevel = RAID_UNKNOWN;
354 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
355 	return l;
356 }
357 
358 static ssize_t lunid_show(struct device *dev,
359 	     struct device_attribute *attr, char *buf)
360 {
361 	struct ctlr_info *h;
362 	struct scsi_device *sdev;
363 	struct hpsa_scsi_dev_t *hdev;
364 	unsigned long flags;
365 	unsigned char lunid[8];
366 
367 	sdev = to_scsi_device(dev);
368 	h = sdev_to_hba(sdev);
369 	spin_lock_irqsave(&h->lock, flags);
370 	hdev = sdev->hostdata;
371 	if (!hdev) {
372 		spin_unlock_irqrestore(&h->lock, flags);
373 		return -ENODEV;
374 	}
375 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
376 	spin_unlock_irqrestore(&h->lock, flags);
377 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
378 		lunid[0], lunid[1], lunid[2], lunid[3],
379 		lunid[4], lunid[5], lunid[6], lunid[7]);
380 }
381 
382 static ssize_t unique_id_show(struct device *dev,
383 	     struct device_attribute *attr, char *buf)
384 {
385 	struct ctlr_info *h;
386 	struct scsi_device *sdev;
387 	struct hpsa_scsi_dev_t *hdev;
388 	unsigned long flags;
389 	unsigned char sn[16];
390 
391 	sdev = to_scsi_device(dev);
392 	h = sdev_to_hba(sdev);
393 	spin_lock_irqsave(&h->lock, flags);
394 	hdev = sdev->hostdata;
395 	if (!hdev) {
396 		spin_unlock_irqrestore(&h->lock, flags);
397 		return -ENODEV;
398 	}
399 	memcpy(sn, hdev->device_id, sizeof(sn));
400 	spin_unlock_irqrestore(&h->lock, flags);
401 	return snprintf(buf, 16 * 2 + 2,
402 			"%02X%02X%02X%02X%02X%02X%02X%02X"
403 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
404 			sn[0], sn[1], sn[2], sn[3],
405 			sn[4], sn[5], sn[6], sn[7],
406 			sn[8], sn[9], sn[10], sn[11],
407 			sn[12], sn[13], sn[14], sn[15]);
408 }
409 
410 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
411 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
412 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
413 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
414 static DEVICE_ATTR(firmware_revision, S_IRUGO,
415 	host_show_firmware_revision, NULL);
416 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
417 	host_show_commands_outstanding, NULL);
418 static DEVICE_ATTR(transport_mode, S_IRUGO,
419 	host_show_transport_mode, NULL);
420 static DEVICE_ATTR(resettable, S_IRUGO,
421 	host_show_resettable, NULL);
422 
423 static struct device_attribute *hpsa_sdev_attrs[] = {
424 	&dev_attr_raid_level,
425 	&dev_attr_lunid,
426 	&dev_attr_unique_id,
427 	NULL,
428 };
429 
430 static struct device_attribute *hpsa_shost_attrs[] = {
431 	&dev_attr_rescan,
432 	&dev_attr_firmware_revision,
433 	&dev_attr_commands_outstanding,
434 	&dev_attr_transport_mode,
435 	&dev_attr_resettable,
436 	NULL,
437 };
438 
439 static struct scsi_host_template hpsa_driver_template = {
440 	.module			= THIS_MODULE,
441 	.name			= "hpsa",
442 	.proc_name		= "hpsa",
443 	.queuecommand		= hpsa_scsi_queue_command,
444 	.scan_start		= hpsa_scan_start,
445 	.scan_finished		= hpsa_scan_finished,
446 	.change_queue_depth	= hpsa_change_queue_depth,
447 	.this_id		= -1,
448 	.use_clustering		= ENABLE_CLUSTERING,
449 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
450 	.ioctl			= hpsa_ioctl,
451 	.slave_alloc		= hpsa_slave_alloc,
452 	.slave_destroy		= hpsa_slave_destroy,
453 #ifdef CONFIG_COMPAT
454 	.compat_ioctl		= hpsa_compat_ioctl,
455 #endif
456 	.sdev_attrs = hpsa_sdev_attrs,
457 	.shost_attrs = hpsa_shost_attrs,
458 };
459 
460 
461 /* Enqueuing and dequeuing functions for cmdlists. */
462 static inline void addQ(struct list_head *list, struct CommandList *c)
463 {
464 	list_add_tail(&c->list, list);
465 }
466 
467 static inline u32 next_command(struct ctlr_info *h)
468 {
469 	u32 a;
470 
471 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
472 		return h->access.command_completed(h);
473 
474 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
475 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
476 		(h->reply_pool_head)++;
477 		h->commands_outstanding--;
478 	} else {
479 		a = FIFO_EMPTY;
480 	}
481 	/* Check for wraparound */
482 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
483 		h->reply_pool_head = h->reply_pool;
484 		h->reply_pool_wraparound ^= 1;
485 	}
486 	return a;
487 }
488 
489 /* set_performant_mode: Modify the tag for cciss performant
490  * set bit 0 for pull model, bits 3-1 for block fetch
491  * register number
492  */
493 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
494 {
495 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
496 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
497 }
498 
499 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
500 	struct CommandList *c)
501 {
502 	unsigned long flags;
503 
504 	set_performant_mode(h, c);
505 	spin_lock_irqsave(&h->lock, flags);
506 	addQ(&h->reqQ, c);
507 	h->Qdepth++;
508 	start_io(h);
509 	spin_unlock_irqrestore(&h->lock, flags);
510 }
511 
512 static inline void removeQ(struct CommandList *c)
513 {
514 	if (WARN_ON(list_empty(&c->list)))
515 		return;
516 	list_del_init(&c->list);
517 }
518 
519 static inline int is_hba_lunid(unsigned char scsi3addr[])
520 {
521 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
522 }
523 
524 static inline int is_scsi_rev_5(struct ctlr_info *h)
525 {
526 	if (!h->hba_inquiry_data)
527 		return 0;
528 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
529 		return 1;
530 	return 0;
531 }
532 
533 static int hpsa_find_target_lun(struct ctlr_info *h,
534 	unsigned char scsi3addr[], int bus, int *target, int *lun)
535 {
536 	/* finds an unused bus, target, lun for a new physical device
537 	 * assumes h->devlock is held
538 	 */
539 	int i, found = 0;
540 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
541 
542 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
543 
544 	for (i = 0; i < h->ndevices; i++) {
545 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
546 			set_bit(h->dev[i]->target, lun_taken);
547 	}
548 
549 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
550 		if (!test_bit(i, lun_taken)) {
551 			/* *bus = 1; */
552 			*target = i;
553 			*lun = 0;
554 			found = 1;
555 			break;
556 		}
557 	}
558 	return !found;
559 }
560 
561 /* Add an entry into h->dev[] array. */
562 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
563 		struct hpsa_scsi_dev_t *device,
564 		struct hpsa_scsi_dev_t *added[], int *nadded)
565 {
566 	/* assumes h->devlock is held */
567 	int n = h->ndevices;
568 	int i;
569 	unsigned char addr1[8], addr2[8];
570 	struct hpsa_scsi_dev_t *sd;
571 
572 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
573 		dev_err(&h->pdev->dev, "too many devices, some will be "
574 			"inaccessible.\n");
575 		return -1;
576 	}
577 
578 	/* physical devices do not have lun or target assigned until now. */
579 	if (device->lun != -1)
580 		/* Logical device, lun is already assigned. */
581 		goto lun_assigned;
582 
583 	/* If this device a non-zero lun of a multi-lun device
584 	 * byte 4 of the 8-byte LUN addr will contain the logical
585 	 * unit no, zero otherise.
586 	 */
587 	if (device->scsi3addr[4] == 0) {
588 		/* This is not a non-zero lun of a multi-lun device */
589 		if (hpsa_find_target_lun(h, device->scsi3addr,
590 			device->bus, &device->target, &device->lun) != 0)
591 			return -1;
592 		goto lun_assigned;
593 	}
594 
595 	/* This is a non-zero lun of a multi-lun device.
596 	 * Search through our list and find the device which
597 	 * has the same 8 byte LUN address, excepting byte 4.
598 	 * Assign the same bus and target for this new LUN.
599 	 * Use the logical unit number from the firmware.
600 	 */
601 	memcpy(addr1, device->scsi3addr, 8);
602 	addr1[4] = 0;
603 	for (i = 0; i < n; i++) {
604 		sd = h->dev[i];
605 		memcpy(addr2, sd->scsi3addr, 8);
606 		addr2[4] = 0;
607 		/* differ only in byte 4? */
608 		if (memcmp(addr1, addr2, 8) == 0) {
609 			device->bus = sd->bus;
610 			device->target = sd->target;
611 			device->lun = device->scsi3addr[4];
612 			break;
613 		}
614 	}
615 	if (device->lun == -1) {
616 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
617 			" suspect firmware bug or unsupported hardware "
618 			"configuration.\n");
619 			return -1;
620 	}
621 
622 lun_assigned:
623 
624 	h->dev[n] = device;
625 	h->ndevices++;
626 	added[*nadded] = device;
627 	(*nadded)++;
628 
629 	/* initially, (before registering with scsi layer) we don't
630 	 * know our hostno and we don't want to print anything first
631 	 * time anyway (the scsi layer's inquiries will show that info)
632 	 */
633 	/* if (hostno != -1) */
634 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
635 			scsi_device_type(device->devtype), hostno,
636 			device->bus, device->target, device->lun);
637 	return 0;
638 }
639 
640 /* Replace an entry from h->dev[] array. */
641 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
642 	int entry, struct hpsa_scsi_dev_t *new_entry,
643 	struct hpsa_scsi_dev_t *added[], int *nadded,
644 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
645 {
646 	/* assumes h->devlock is held */
647 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
648 	removed[*nremoved] = h->dev[entry];
649 	(*nremoved)++;
650 	h->dev[entry] = new_entry;
651 	added[*nadded] = new_entry;
652 	(*nadded)++;
653 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
654 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
655 			new_entry->target, new_entry->lun);
656 }
657 
658 /* Remove an entry from h->dev[] array. */
659 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
660 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
661 {
662 	/* assumes h->devlock is held */
663 	int i;
664 	struct hpsa_scsi_dev_t *sd;
665 
666 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
667 
668 	sd = h->dev[entry];
669 	removed[*nremoved] = h->dev[entry];
670 	(*nremoved)++;
671 
672 	for (i = entry; i < h->ndevices-1; i++)
673 		h->dev[i] = h->dev[i+1];
674 	h->ndevices--;
675 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
676 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
677 		sd->lun);
678 }
679 
680 #define SCSI3ADDR_EQ(a, b) ( \
681 	(a)[7] == (b)[7] && \
682 	(a)[6] == (b)[6] && \
683 	(a)[5] == (b)[5] && \
684 	(a)[4] == (b)[4] && \
685 	(a)[3] == (b)[3] && \
686 	(a)[2] == (b)[2] && \
687 	(a)[1] == (b)[1] && \
688 	(a)[0] == (b)[0])
689 
690 static void fixup_botched_add(struct ctlr_info *h,
691 	struct hpsa_scsi_dev_t *added)
692 {
693 	/* called when scsi_add_device fails in order to re-adjust
694 	 * h->dev[] to match the mid layer's view.
695 	 */
696 	unsigned long flags;
697 	int i, j;
698 
699 	spin_lock_irqsave(&h->lock, flags);
700 	for (i = 0; i < h->ndevices; i++) {
701 		if (h->dev[i] == added) {
702 			for (j = i; j < h->ndevices-1; j++)
703 				h->dev[j] = h->dev[j+1];
704 			h->ndevices--;
705 			break;
706 		}
707 	}
708 	spin_unlock_irqrestore(&h->lock, flags);
709 	kfree(added);
710 }
711 
712 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
713 	struct hpsa_scsi_dev_t *dev2)
714 {
715 	/* we compare everything except lun and target as these
716 	 * are not yet assigned.  Compare parts likely
717 	 * to differ first
718 	 */
719 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
720 		sizeof(dev1->scsi3addr)) != 0)
721 		return 0;
722 	if (memcmp(dev1->device_id, dev2->device_id,
723 		sizeof(dev1->device_id)) != 0)
724 		return 0;
725 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
726 		return 0;
727 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
728 		return 0;
729 	if (dev1->devtype != dev2->devtype)
730 		return 0;
731 	if (dev1->bus != dev2->bus)
732 		return 0;
733 	return 1;
734 }
735 
736 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
737  * and return needle location in *index.  If scsi3addr matches, but not
738  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
739  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
740  */
741 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
742 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
743 	int *index)
744 {
745 	int i;
746 #define DEVICE_NOT_FOUND 0
747 #define DEVICE_CHANGED 1
748 #define DEVICE_SAME 2
749 	for (i = 0; i < haystack_size; i++) {
750 		if (haystack[i] == NULL) /* previously removed. */
751 			continue;
752 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
753 			*index = i;
754 			if (device_is_the_same(needle, haystack[i]))
755 				return DEVICE_SAME;
756 			else
757 				return DEVICE_CHANGED;
758 		}
759 	}
760 	*index = -1;
761 	return DEVICE_NOT_FOUND;
762 }
763 
764 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
765 	struct hpsa_scsi_dev_t *sd[], int nsds)
766 {
767 	/* sd contains scsi3 addresses and devtypes, and inquiry
768 	 * data.  This function takes what's in sd to be the current
769 	 * reality and updates h->dev[] to reflect that reality.
770 	 */
771 	int i, entry, device_change, changes = 0;
772 	struct hpsa_scsi_dev_t *csd;
773 	unsigned long flags;
774 	struct hpsa_scsi_dev_t **added, **removed;
775 	int nadded, nremoved;
776 	struct Scsi_Host *sh = NULL;
777 
778 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
779 		GFP_KERNEL);
780 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
781 		GFP_KERNEL);
782 
783 	if (!added || !removed) {
784 		dev_warn(&h->pdev->dev, "out of memory in "
785 			"adjust_hpsa_scsi_table\n");
786 		goto free_and_out;
787 	}
788 
789 	spin_lock_irqsave(&h->devlock, flags);
790 
791 	/* find any devices in h->dev[] that are not in
792 	 * sd[] and remove them from h->dev[], and for any
793 	 * devices which have changed, remove the old device
794 	 * info and add the new device info.
795 	 */
796 	i = 0;
797 	nremoved = 0;
798 	nadded = 0;
799 	while (i < h->ndevices) {
800 		csd = h->dev[i];
801 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
802 		if (device_change == DEVICE_NOT_FOUND) {
803 			changes++;
804 			hpsa_scsi_remove_entry(h, hostno, i,
805 				removed, &nremoved);
806 			continue; /* remove ^^^, hence i not incremented */
807 		} else if (device_change == DEVICE_CHANGED) {
808 			changes++;
809 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
810 				added, &nadded, removed, &nremoved);
811 			/* Set it to NULL to prevent it from being freed
812 			 * at the bottom of hpsa_update_scsi_devices()
813 			 */
814 			sd[entry] = NULL;
815 		}
816 		i++;
817 	}
818 
819 	/* Now, make sure every device listed in sd[] is also
820 	 * listed in h->dev[], adding them if they aren't found
821 	 */
822 
823 	for (i = 0; i < nsds; i++) {
824 		if (!sd[i]) /* if already added above. */
825 			continue;
826 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
827 					h->ndevices, &entry);
828 		if (device_change == DEVICE_NOT_FOUND) {
829 			changes++;
830 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
831 				added, &nadded) != 0)
832 				break;
833 			sd[i] = NULL; /* prevent from being freed later. */
834 		} else if (device_change == DEVICE_CHANGED) {
835 			/* should never happen... */
836 			changes++;
837 			dev_warn(&h->pdev->dev,
838 				"device unexpectedly changed.\n");
839 			/* but if it does happen, we just ignore that device */
840 		}
841 	}
842 	spin_unlock_irqrestore(&h->devlock, flags);
843 
844 	/* Don't notify scsi mid layer of any changes the first time through
845 	 * (or if there are no changes) scsi_scan_host will do it later the
846 	 * first time through.
847 	 */
848 	if (hostno == -1 || !changes)
849 		goto free_and_out;
850 
851 	sh = h->scsi_host;
852 	/* Notify scsi mid layer of any removed devices */
853 	for (i = 0; i < nremoved; i++) {
854 		struct scsi_device *sdev =
855 			scsi_device_lookup(sh, removed[i]->bus,
856 				removed[i]->target, removed[i]->lun);
857 		if (sdev != NULL) {
858 			scsi_remove_device(sdev);
859 			scsi_device_put(sdev);
860 		} else {
861 			/* We don't expect to get here.
862 			 * future cmds to this device will get selection
863 			 * timeout as if the device was gone.
864 			 */
865 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
866 				" for removal.", hostno, removed[i]->bus,
867 				removed[i]->target, removed[i]->lun);
868 		}
869 		kfree(removed[i]);
870 		removed[i] = NULL;
871 	}
872 
873 	/* Notify scsi mid layer of any added devices */
874 	for (i = 0; i < nadded; i++) {
875 		if (scsi_add_device(sh, added[i]->bus,
876 			added[i]->target, added[i]->lun) == 0)
877 			continue;
878 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
879 			"device not added.\n", hostno, added[i]->bus,
880 			added[i]->target, added[i]->lun);
881 		/* now we have to remove it from h->dev,
882 		 * since it didn't get added to scsi mid layer
883 		 */
884 		fixup_botched_add(h, added[i]);
885 	}
886 
887 free_and_out:
888 	kfree(added);
889 	kfree(removed);
890 }
891 
892 /*
893  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
894  * Assume's h->devlock is held.
895  */
896 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
897 	int bus, int target, int lun)
898 {
899 	int i;
900 	struct hpsa_scsi_dev_t *sd;
901 
902 	for (i = 0; i < h->ndevices; i++) {
903 		sd = h->dev[i];
904 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
905 			return sd;
906 	}
907 	return NULL;
908 }
909 
910 /* link sdev->hostdata to our per-device structure. */
911 static int hpsa_slave_alloc(struct scsi_device *sdev)
912 {
913 	struct hpsa_scsi_dev_t *sd;
914 	unsigned long flags;
915 	struct ctlr_info *h;
916 
917 	h = sdev_to_hba(sdev);
918 	spin_lock_irqsave(&h->devlock, flags);
919 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
920 		sdev_id(sdev), sdev->lun);
921 	if (sd != NULL)
922 		sdev->hostdata = sd;
923 	spin_unlock_irqrestore(&h->devlock, flags);
924 	return 0;
925 }
926 
927 static void hpsa_slave_destroy(struct scsi_device *sdev)
928 {
929 	/* nothing to do. */
930 }
931 
932 static void hpsa_scsi_setup(struct ctlr_info *h)
933 {
934 	h->ndevices = 0;
935 	h->scsi_host = NULL;
936 	spin_lock_init(&h->devlock);
937 }
938 
939 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
940 {
941 	int i;
942 
943 	if (!h->cmd_sg_list)
944 		return;
945 	for (i = 0; i < h->nr_cmds; i++) {
946 		kfree(h->cmd_sg_list[i]);
947 		h->cmd_sg_list[i] = NULL;
948 	}
949 	kfree(h->cmd_sg_list);
950 	h->cmd_sg_list = NULL;
951 }
952 
953 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
954 {
955 	int i;
956 
957 	if (h->chainsize <= 0)
958 		return 0;
959 
960 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
961 				GFP_KERNEL);
962 	if (!h->cmd_sg_list)
963 		return -ENOMEM;
964 	for (i = 0; i < h->nr_cmds; i++) {
965 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
966 						h->chainsize, GFP_KERNEL);
967 		if (!h->cmd_sg_list[i])
968 			goto clean;
969 	}
970 	return 0;
971 
972 clean:
973 	hpsa_free_sg_chain_blocks(h);
974 	return -ENOMEM;
975 }
976 
977 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
978 	struct CommandList *c)
979 {
980 	struct SGDescriptor *chain_sg, *chain_block;
981 	u64 temp64;
982 
983 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
984 	chain_block = h->cmd_sg_list[c->cmdindex];
985 	chain_sg->Ext = HPSA_SG_CHAIN;
986 	chain_sg->Len = sizeof(*chain_sg) *
987 		(c->Header.SGTotal - h->max_cmd_sg_entries);
988 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
989 				PCI_DMA_TODEVICE);
990 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
991 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
992 }
993 
994 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
995 	struct CommandList *c)
996 {
997 	struct SGDescriptor *chain_sg;
998 	union u64bit temp64;
999 
1000 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1001 		return;
1002 
1003 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1004 	temp64.val32.lower = chain_sg->Addr.lower;
1005 	temp64.val32.upper = chain_sg->Addr.upper;
1006 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1007 }
1008 
1009 static void complete_scsi_command(struct CommandList *cp)
1010 {
1011 	struct scsi_cmnd *cmd;
1012 	struct ctlr_info *h;
1013 	struct ErrorInfo *ei;
1014 
1015 	unsigned char sense_key;
1016 	unsigned char asc;      /* additional sense code */
1017 	unsigned char ascq;     /* additional sense code qualifier */
1018 
1019 	ei = cp->err_info;
1020 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1021 	h = cp->h;
1022 
1023 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1024 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1025 		hpsa_unmap_sg_chain_block(h, cp);
1026 
1027 	cmd->result = (DID_OK << 16); 		/* host byte */
1028 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1029 	cmd->result |= ei->ScsiStatus;
1030 
1031 	/* copy the sense data whether we need to or not. */
1032 	memcpy(cmd->sense_buffer, ei->SenseInfo,
1033 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1034 			SCSI_SENSE_BUFFERSIZE :
1035 			ei->SenseLen);
1036 	scsi_set_resid(cmd, ei->ResidualCnt);
1037 
1038 	if (ei->CommandStatus == 0) {
1039 		cmd->scsi_done(cmd);
1040 		cmd_free(h, cp);
1041 		return;
1042 	}
1043 
1044 	/* an error has occurred */
1045 	switch (ei->CommandStatus) {
1046 
1047 	case CMD_TARGET_STATUS:
1048 		if (ei->ScsiStatus) {
1049 			/* Get sense key */
1050 			sense_key = 0xf & ei->SenseInfo[2];
1051 			/* Get additional sense code */
1052 			asc = ei->SenseInfo[12];
1053 			/* Get addition sense code qualifier */
1054 			ascq = ei->SenseInfo[13];
1055 		}
1056 
1057 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1058 			if (check_for_unit_attention(h, cp)) {
1059 				cmd->result = DID_SOFT_ERROR << 16;
1060 				break;
1061 			}
1062 			if (sense_key == ILLEGAL_REQUEST) {
1063 				/*
1064 				 * SCSI REPORT_LUNS is commonly unsupported on
1065 				 * Smart Array.  Suppress noisy complaint.
1066 				 */
1067 				if (cp->Request.CDB[0] == REPORT_LUNS)
1068 					break;
1069 
1070 				/* If ASC/ASCQ indicate Logical Unit
1071 				 * Not Supported condition,
1072 				 */
1073 				if ((asc == 0x25) && (ascq == 0x0)) {
1074 					dev_warn(&h->pdev->dev, "cp %p "
1075 						"has check condition\n", cp);
1076 					break;
1077 				}
1078 			}
1079 
1080 			if (sense_key == NOT_READY) {
1081 				/* If Sense is Not Ready, Logical Unit
1082 				 * Not ready, Manual Intervention
1083 				 * required
1084 				 */
1085 				if ((asc == 0x04) && (ascq == 0x03)) {
1086 					dev_warn(&h->pdev->dev, "cp %p "
1087 						"has check condition: unit "
1088 						"not ready, manual "
1089 						"intervention required\n", cp);
1090 					break;
1091 				}
1092 			}
1093 			if (sense_key == ABORTED_COMMAND) {
1094 				/* Aborted command is retryable */
1095 				dev_warn(&h->pdev->dev, "cp %p "
1096 					"has check condition: aborted command: "
1097 					"ASC: 0x%x, ASCQ: 0x%x\n",
1098 					cp, asc, ascq);
1099 				cmd->result = DID_SOFT_ERROR << 16;
1100 				break;
1101 			}
1102 			/* Must be some other type of check condition */
1103 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1104 					"unknown type: "
1105 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1106 					"Returning result: 0x%x, "
1107 					"cmd=[%02x %02x %02x %02x %02x "
1108 					"%02x %02x %02x %02x %02x %02x "
1109 					"%02x %02x %02x %02x %02x]\n",
1110 					cp, sense_key, asc, ascq,
1111 					cmd->result,
1112 					cmd->cmnd[0], cmd->cmnd[1],
1113 					cmd->cmnd[2], cmd->cmnd[3],
1114 					cmd->cmnd[4], cmd->cmnd[5],
1115 					cmd->cmnd[6], cmd->cmnd[7],
1116 					cmd->cmnd[8], cmd->cmnd[9],
1117 					cmd->cmnd[10], cmd->cmnd[11],
1118 					cmd->cmnd[12], cmd->cmnd[13],
1119 					cmd->cmnd[14], cmd->cmnd[15]);
1120 			break;
1121 		}
1122 
1123 
1124 		/* Problem was not a check condition
1125 		 * Pass it up to the upper layers...
1126 		 */
1127 		if (ei->ScsiStatus) {
1128 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1129 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1130 				"Returning result: 0x%x\n",
1131 				cp, ei->ScsiStatus,
1132 				sense_key, asc, ascq,
1133 				cmd->result);
1134 		} else {  /* scsi status is zero??? How??? */
1135 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1136 				"Returning no connection.\n", cp),
1137 
1138 			/* Ordinarily, this case should never happen,
1139 			 * but there is a bug in some released firmware
1140 			 * revisions that allows it to happen if, for
1141 			 * example, a 4100 backplane loses power and
1142 			 * the tape drive is in it.  We assume that
1143 			 * it's a fatal error of some kind because we
1144 			 * can't show that it wasn't. We will make it
1145 			 * look like selection timeout since that is
1146 			 * the most common reason for this to occur,
1147 			 * and it's severe enough.
1148 			 */
1149 
1150 			cmd->result = DID_NO_CONNECT << 16;
1151 		}
1152 		break;
1153 
1154 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1155 		break;
1156 	case CMD_DATA_OVERRUN:
1157 		dev_warn(&h->pdev->dev, "cp %p has"
1158 			" completed with data overrun "
1159 			"reported\n", cp);
1160 		break;
1161 	case CMD_INVALID: {
1162 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1163 		print_cmd(cp); */
1164 		/* We get CMD_INVALID if you address a non-existent device
1165 		 * instead of a selection timeout (no response).  You will
1166 		 * see this if you yank out a drive, then try to access it.
1167 		 * This is kind of a shame because it means that any other
1168 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1169 		 * missing target. */
1170 		cmd->result = DID_NO_CONNECT << 16;
1171 	}
1172 		break;
1173 	case CMD_PROTOCOL_ERR:
1174 		dev_warn(&h->pdev->dev, "cp %p has "
1175 			"protocol error \n", cp);
1176 		break;
1177 	case CMD_HARDWARE_ERR:
1178 		cmd->result = DID_ERROR << 16;
1179 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1180 		break;
1181 	case CMD_CONNECTION_LOST:
1182 		cmd->result = DID_ERROR << 16;
1183 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1184 		break;
1185 	case CMD_ABORTED:
1186 		cmd->result = DID_ABORT << 16;
1187 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1188 				cp, ei->ScsiStatus);
1189 		break;
1190 	case CMD_ABORT_FAILED:
1191 		cmd->result = DID_ERROR << 16;
1192 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1193 		break;
1194 	case CMD_UNSOLICITED_ABORT:
1195 		cmd->result = DID_RESET << 16;
1196 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1197 			"abort\n", cp);
1198 		break;
1199 	case CMD_TIMEOUT:
1200 		cmd->result = DID_TIME_OUT << 16;
1201 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1202 		break;
1203 	case CMD_UNABORTABLE:
1204 		cmd->result = DID_ERROR << 16;
1205 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1206 		break;
1207 	default:
1208 		cmd->result = DID_ERROR << 16;
1209 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1210 				cp, ei->CommandStatus);
1211 	}
1212 	cmd->scsi_done(cmd);
1213 	cmd_free(h, cp);
1214 }
1215 
1216 static int hpsa_scsi_detect(struct ctlr_info *h)
1217 {
1218 	struct Scsi_Host *sh;
1219 	int error;
1220 
1221 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1222 	if (sh == NULL)
1223 		goto fail;
1224 
1225 	sh->io_port = 0;
1226 	sh->n_io_port = 0;
1227 	sh->this_id = -1;
1228 	sh->max_channel = 3;
1229 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1230 	sh->max_lun = HPSA_MAX_LUN;
1231 	sh->max_id = HPSA_MAX_LUN;
1232 	sh->can_queue = h->nr_cmds;
1233 	sh->cmd_per_lun = h->nr_cmds;
1234 	sh->sg_tablesize = h->maxsgentries;
1235 	h->scsi_host = sh;
1236 	sh->hostdata[0] = (unsigned long) h;
1237 	sh->irq = h->intr[h->intr_mode];
1238 	sh->unique_id = sh->irq;
1239 	error = scsi_add_host(sh, &h->pdev->dev);
1240 	if (error)
1241 		goto fail_host_put;
1242 	scsi_scan_host(sh);
1243 	return 0;
1244 
1245  fail_host_put:
1246 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1247 		" failed for controller %d\n", h->ctlr);
1248 	scsi_host_put(sh);
1249 	return error;
1250  fail:
1251 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1252 		" failed for controller %d\n", h->ctlr);
1253 	return -ENOMEM;
1254 }
1255 
1256 static void hpsa_pci_unmap(struct pci_dev *pdev,
1257 	struct CommandList *c, int sg_used, int data_direction)
1258 {
1259 	int i;
1260 	union u64bit addr64;
1261 
1262 	for (i = 0; i < sg_used; i++) {
1263 		addr64.val32.lower = c->SG[i].Addr.lower;
1264 		addr64.val32.upper = c->SG[i].Addr.upper;
1265 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1266 			data_direction);
1267 	}
1268 }
1269 
1270 static void hpsa_map_one(struct pci_dev *pdev,
1271 		struct CommandList *cp,
1272 		unsigned char *buf,
1273 		size_t buflen,
1274 		int data_direction)
1275 {
1276 	u64 addr64;
1277 
1278 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1279 		cp->Header.SGList = 0;
1280 		cp->Header.SGTotal = 0;
1281 		return;
1282 	}
1283 
1284 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1285 	cp->SG[0].Addr.lower =
1286 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1287 	cp->SG[0].Addr.upper =
1288 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1289 	cp->SG[0].Len = buflen;
1290 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1291 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1292 }
1293 
1294 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1295 	struct CommandList *c)
1296 {
1297 	DECLARE_COMPLETION_ONSTACK(wait);
1298 
1299 	c->waiting = &wait;
1300 	enqueue_cmd_and_start_io(h, c);
1301 	wait_for_completion(&wait);
1302 }
1303 
1304 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1305 	struct CommandList *c, int data_direction)
1306 {
1307 	int retry_count = 0;
1308 
1309 	do {
1310 		memset(c->err_info, 0, sizeof(c->err_info));
1311 		hpsa_scsi_do_simple_cmd_core(h, c);
1312 		retry_count++;
1313 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1314 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1315 }
1316 
1317 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1318 {
1319 	struct ErrorInfo *ei;
1320 	struct device *d = &cp->h->pdev->dev;
1321 
1322 	ei = cp->err_info;
1323 	switch (ei->CommandStatus) {
1324 	case CMD_TARGET_STATUS:
1325 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1326 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1327 				ei->ScsiStatus);
1328 		if (ei->ScsiStatus == 0)
1329 			dev_warn(d, "SCSI status is abnormally zero.  "
1330 			"(probably indicates selection timeout "
1331 			"reported incorrectly due to a known "
1332 			"firmware bug, circa July, 2001.)\n");
1333 		break;
1334 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1335 			dev_info(d, "UNDERRUN\n");
1336 		break;
1337 	case CMD_DATA_OVERRUN:
1338 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1339 		break;
1340 	case CMD_INVALID: {
1341 		/* controller unfortunately reports SCSI passthru's
1342 		 * to non-existent targets as invalid commands.
1343 		 */
1344 		dev_warn(d, "cp %p is reported invalid (probably means "
1345 			"target device no longer present)\n", cp);
1346 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1347 		print_cmd(cp);  */
1348 		}
1349 		break;
1350 	case CMD_PROTOCOL_ERR:
1351 		dev_warn(d, "cp %p has protocol error \n", cp);
1352 		break;
1353 	case CMD_HARDWARE_ERR:
1354 		/* cmd->result = DID_ERROR << 16; */
1355 		dev_warn(d, "cp %p had hardware error\n", cp);
1356 		break;
1357 	case CMD_CONNECTION_LOST:
1358 		dev_warn(d, "cp %p had connection lost\n", cp);
1359 		break;
1360 	case CMD_ABORTED:
1361 		dev_warn(d, "cp %p was aborted\n", cp);
1362 		break;
1363 	case CMD_ABORT_FAILED:
1364 		dev_warn(d, "cp %p reports abort failed\n", cp);
1365 		break;
1366 	case CMD_UNSOLICITED_ABORT:
1367 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1368 		break;
1369 	case CMD_TIMEOUT:
1370 		dev_warn(d, "cp %p timed out\n", cp);
1371 		break;
1372 	case CMD_UNABORTABLE:
1373 		dev_warn(d, "Command unabortable\n");
1374 		break;
1375 	default:
1376 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1377 				ei->CommandStatus);
1378 	}
1379 }
1380 
1381 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1382 			unsigned char page, unsigned char *buf,
1383 			unsigned char bufsize)
1384 {
1385 	int rc = IO_OK;
1386 	struct CommandList *c;
1387 	struct ErrorInfo *ei;
1388 
1389 	c = cmd_special_alloc(h);
1390 
1391 	if (c == NULL) {			/* trouble... */
1392 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1393 		return -ENOMEM;
1394 	}
1395 
1396 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1397 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1398 	ei = c->err_info;
1399 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1400 		hpsa_scsi_interpret_error(c);
1401 		rc = -1;
1402 	}
1403 	cmd_special_free(h, c);
1404 	return rc;
1405 }
1406 
1407 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1408 {
1409 	int rc = IO_OK;
1410 	struct CommandList *c;
1411 	struct ErrorInfo *ei;
1412 
1413 	c = cmd_special_alloc(h);
1414 
1415 	if (c == NULL) {			/* trouble... */
1416 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1417 		return -ENOMEM;
1418 	}
1419 
1420 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1421 	hpsa_scsi_do_simple_cmd_core(h, c);
1422 	/* no unmap needed here because no data xfer. */
1423 
1424 	ei = c->err_info;
1425 	if (ei->CommandStatus != 0) {
1426 		hpsa_scsi_interpret_error(c);
1427 		rc = -1;
1428 	}
1429 	cmd_special_free(h, c);
1430 	return rc;
1431 }
1432 
1433 static void hpsa_get_raid_level(struct ctlr_info *h,
1434 	unsigned char *scsi3addr, unsigned char *raid_level)
1435 {
1436 	int rc;
1437 	unsigned char *buf;
1438 
1439 	*raid_level = RAID_UNKNOWN;
1440 	buf = kzalloc(64, GFP_KERNEL);
1441 	if (!buf)
1442 		return;
1443 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1444 	if (rc == 0)
1445 		*raid_level = buf[8];
1446 	if (*raid_level > RAID_UNKNOWN)
1447 		*raid_level = RAID_UNKNOWN;
1448 	kfree(buf);
1449 	return;
1450 }
1451 
1452 /* Get the device id from inquiry page 0x83 */
1453 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1454 	unsigned char *device_id, int buflen)
1455 {
1456 	int rc;
1457 	unsigned char *buf;
1458 
1459 	if (buflen > 16)
1460 		buflen = 16;
1461 	buf = kzalloc(64, GFP_KERNEL);
1462 	if (!buf)
1463 		return -1;
1464 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1465 	if (rc == 0)
1466 		memcpy(device_id, &buf[8], buflen);
1467 	kfree(buf);
1468 	return rc != 0;
1469 }
1470 
1471 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1472 		struct ReportLUNdata *buf, int bufsize,
1473 		int extended_response)
1474 {
1475 	int rc = IO_OK;
1476 	struct CommandList *c;
1477 	unsigned char scsi3addr[8];
1478 	struct ErrorInfo *ei;
1479 
1480 	c = cmd_special_alloc(h);
1481 	if (c == NULL) {			/* trouble... */
1482 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1483 		return -1;
1484 	}
1485 	/* address the controller */
1486 	memset(scsi3addr, 0, sizeof(scsi3addr));
1487 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1488 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1489 	if (extended_response)
1490 		c->Request.CDB[1] = extended_response;
1491 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1492 	ei = c->err_info;
1493 	if (ei->CommandStatus != 0 &&
1494 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1495 		hpsa_scsi_interpret_error(c);
1496 		rc = -1;
1497 	}
1498 	cmd_special_free(h, c);
1499 	return rc;
1500 }
1501 
1502 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1503 		struct ReportLUNdata *buf,
1504 		int bufsize, int extended_response)
1505 {
1506 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1507 }
1508 
1509 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1510 		struct ReportLUNdata *buf, int bufsize)
1511 {
1512 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1513 }
1514 
1515 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1516 	int bus, int target, int lun)
1517 {
1518 	device->bus = bus;
1519 	device->target = target;
1520 	device->lun = lun;
1521 }
1522 
1523 static int hpsa_update_device_info(struct ctlr_info *h,
1524 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1525 {
1526 #define OBDR_TAPE_INQ_SIZE 49
1527 	unsigned char *inq_buff;
1528 
1529 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1530 	if (!inq_buff)
1531 		goto bail_out;
1532 
1533 	/* Do an inquiry to the device to see what it is. */
1534 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1535 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1536 		/* Inquiry failed (msg printed already) */
1537 		dev_err(&h->pdev->dev,
1538 			"hpsa_update_device_info: inquiry failed\n");
1539 		goto bail_out;
1540 	}
1541 
1542 	this_device->devtype = (inq_buff[0] & 0x1f);
1543 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1544 	memcpy(this_device->vendor, &inq_buff[8],
1545 		sizeof(this_device->vendor));
1546 	memcpy(this_device->model, &inq_buff[16],
1547 		sizeof(this_device->model));
1548 	memset(this_device->device_id, 0,
1549 		sizeof(this_device->device_id));
1550 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1551 		sizeof(this_device->device_id));
1552 
1553 	if (this_device->devtype == TYPE_DISK &&
1554 		is_logical_dev_addr_mode(scsi3addr))
1555 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1556 	else
1557 		this_device->raid_level = RAID_UNKNOWN;
1558 
1559 	kfree(inq_buff);
1560 	return 0;
1561 
1562 bail_out:
1563 	kfree(inq_buff);
1564 	return 1;
1565 }
1566 
1567 static unsigned char *msa2xxx_model[] = {
1568 	"MSA2012",
1569 	"MSA2024",
1570 	"MSA2312",
1571 	"MSA2324",
1572 	NULL,
1573 };
1574 
1575 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1576 {
1577 	int i;
1578 
1579 	for (i = 0; msa2xxx_model[i]; i++)
1580 		if (strncmp(device->model, msa2xxx_model[i],
1581 			strlen(msa2xxx_model[i])) == 0)
1582 			return 1;
1583 	return 0;
1584 }
1585 
1586 /* Helper function to assign bus, target, lun mapping of devices.
1587  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1588  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1589  * Logical drive target and lun are assigned at this time, but
1590  * physical device lun and target assignment are deferred (assigned
1591  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1592  */
1593 static void figure_bus_target_lun(struct ctlr_info *h,
1594 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1595 	struct hpsa_scsi_dev_t *device)
1596 {
1597 	u32 lunid;
1598 
1599 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1600 		/* logical device */
1601 		if (unlikely(is_scsi_rev_5(h))) {
1602 			/* p1210m, logical drives lun assignments
1603 			 * match SCSI REPORT LUNS data.
1604 			 */
1605 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1606 			*bus = 0;
1607 			*target = 0;
1608 			*lun = (lunid & 0x3fff) + 1;
1609 		} else {
1610 			/* not p1210m... */
1611 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1612 			if (is_msa2xxx(h, device)) {
1613 				/* msa2xxx way, put logicals on bus 1
1614 				 * and match target/lun numbers box
1615 				 * reports.
1616 				 */
1617 				*bus = 1;
1618 				*target = (lunid >> 16) & 0x3fff;
1619 				*lun = lunid & 0x00ff;
1620 			} else {
1621 				/* Traditional smart array way. */
1622 				*bus = 0;
1623 				*lun = 0;
1624 				*target = lunid & 0x3fff;
1625 			}
1626 		}
1627 	} else {
1628 		/* physical device */
1629 		if (is_hba_lunid(lunaddrbytes))
1630 			if (unlikely(is_scsi_rev_5(h))) {
1631 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1632 				*target = 0;
1633 				*lun = 0;
1634 				return;
1635 			} else
1636 				*bus = 3; /* traditional smartarray */
1637 		else
1638 			*bus = 2; /* physical disk */
1639 		*target = -1;
1640 		*lun = -1; /* we will fill these in later. */
1641 	}
1642 }
1643 
1644 /*
1645  * If there is no lun 0 on a target, linux won't find any devices.
1646  * For the MSA2xxx boxes, we have to manually detect the enclosure
1647  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1648  * it for some reason.  *tmpdevice is the target we're adding,
1649  * this_device is a pointer into the current element of currentsd[]
1650  * that we're building up in update_scsi_devices(), below.
1651  * lunzerobits is a bitmap that tracks which targets already have a
1652  * lun 0 assigned.
1653  * Returns 1 if an enclosure was added, 0 if not.
1654  */
1655 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1656 	struct hpsa_scsi_dev_t *tmpdevice,
1657 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1658 	int bus, int target, int lun, unsigned long lunzerobits[],
1659 	int *nmsa2xxx_enclosures)
1660 {
1661 	unsigned char scsi3addr[8];
1662 
1663 	if (test_bit(target, lunzerobits))
1664 		return 0; /* There is already a lun 0 on this target. */
1665 
1666 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1667 		return 0; /* It's the logical targets that may lack lun 0. */
1668 
1669 	if (!is_msa2xxx(h, tmpdevice))
1670 		return 0; /* It's only the MSA2xxx that have this problem. */
1671 
1672 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1673 		return 0;
1674 
1675 	memset(scsi3addr, 0, 8);
1676 	scsi3addr[3] = target;
1677 	if (is_hba_lunid(scsi3addr))
1678 		return 0; /* Don't add the RAID controller here. */
1679 
1680 	if (is_scsi_rev_5(h))
1681 		return 0; /* p1210m doesn't need to do this. */
1682 
1683 #define MAX_MSA2XXX_ENCLOSURES 32
1684 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1685 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1686 			"enclosures exceeded.  Check your hardware "
1687 			"configuration.");
1688 		return 0;
1689 	}
1690 
1691 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1692 		return 0;
1693 	(*nmsa2xxx_enclosures)++;
1694 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1695 	set_bit(target, lunzerobits);
1696 	return 1;
1697 }
1698 
1699 /*
1700  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1701  * logdev.  The number of luns in physdev and logdev are returned in
1702  * *nphysicals and *nlogicals, respectively.
1703  * Returns 0 on success, -1 otherwise.
1704  */
1705 static int hpsa_gather_lun_info(struct ctlr_info *h,
1706 	int reportlunsize,
1707 	struct ReportLUNdata *physdev, u32 *nphysicals,
1708 	struct ReportLUNdata *logdev, u32 *nlogicals)
1709 {
1710 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1711 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1712 		return -1;
1713 	}
1714 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1715 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1716 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1717 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1718 			*nphysicals - HPSA_MAX_PHYS_LUN);
1719 		*nphysicals = HPSA_MAX_PHYS_LUN;
1720 	}
1721 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1722 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1723 		return -1;
1724 	}
1725 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1726 	/* Reject Logicals in excess of our max capability. */
1727 	if (*nlogicals > HPSA_MAX_LUN) {
1728 		dev_warn(&h->pdev->dev,
1729 			"maximum logical LUNs (%d) exceeded.  "
1730 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1731 			*nlogicals - HPSA_MAX_LUN);
1732 			*nlogicals = HPSA_MAX_LUN;
1733 	}
1734 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1735 		dev_warn(&h->pdev->dev,
1736 			"maximum logical + physical LUNs (%d) exceeded. "
1737 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1738 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1739 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1740 	}
1741 	return 0;
1742 }
1743 
1744 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1745 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1746 	struct ReportLUNdata *logdev_list)
1747 {
1748 	/* Helper function, figure out where the LUN ID info is coming from
1749 	 * given index i, lists of physical and logical devices, where in
1750 	 * the list the raid controller is supposed to appear (first or last)
1751 	 */
1752 
1753 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1754 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1755 
1756 	if (i == raid_ctlr_position)
1757 		return RAID_CTLR_LUNID;
1758 
1759 	if (i < logicals_start)
1760 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1761 
1762 	if (i < last_device)
1763 		return &logdev_list->LUN[i - nphysicals -
1764 			(raid_ctlr_position == 0)][0];
1765 	BUG();
1766 	return NULL;
1767 }
1768 
1769 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1770 {
1771 	/* the idea here is we could get notified
1772 	 * that some devices have changed, so we do a report
1773 	 * physical luns and report logical luns cmd, and adjust
1774 	 * our list of devices accordingly.
1775 	 *
1776 	 * The scsi3addr's of devices won't change so long as the
1777 	 * adapter is not reset.  That means we can rescan and
1778 	 * tell which devices we already know about, vs. new
1779 	 * devices, vs.  disappearing devices.
1780 	 */
1781 	struct ReportLUNdata *physdev_list = NULL;
1782 	struct ReportLUNdata *logdev_list = NULL;
1783 	unsigned char *inq_buff = NULL;
1784 	u32 nphysicals = 0;
1785 	u32 nlogicals = 0;
1786 	u32 ndev_allocated = 0;
1787 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1788 	int ncurrent = 0;
1789 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1790 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1791 	int bus, target, lun;
1792 	int raid_ctlr_position;
1793 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1794 
1795 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1796 		GFP_KERNEL);
1797 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1798 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1799 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1800 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1801 
1802 	if (!currentsd || !physdev_list || !logdev_list ||
1803 		!inq_buff || !tmpdevice) {
1804 		dev_err(&h->pdev->dev, "out of memory\n");
1805 		goto out;
1806 	}
1807 	memset(lunzerobits, 0, sizeof(lunzerobits));
1808 
1809 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1810 			logdev_list, &nlogicals))
1811 		goto out;
1812 
1813 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1814 	 * but each of them 4 times through different paths.  The plus 1
1815 	 * is for the RAID controller.
1816 	 */
1817 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1818 
1819 	/* Allocate the per device structures */
1820 	for (i = 0; i < ndevs_to_allocate; i++) {
1821 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1822 		if (!currentsd[i]) {
1823 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1824 				__FILE__, __LINE__);
1825 			goto out;
1826 		}
1827 		ndev_allocated++;
1828 	}
1829 
1830 	if (unlikely(is_scsi_rev_5(h)))
1831 		raid_ctlr_position = 0;
1832 	else
1833 		raid_ctlr_position = nphysicals + nlogicals;
1834 
1835 	/* adjust our table of devices */
1836 	nmsa2xxx_enclosures = 0;
1837 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1838 		u8 *lunaddrbytes;
1839 
1840 		/* Figure out where the LUN ID info is coming from */
1841 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1842 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1843 		/* skip masked physical devices. */
1844 		if (lunaddrbytes[3] & 0xC0 &&
1845 			i < nphysicals + (raid_ctlr_position == 0))
1846 			continue;
1847 
1848 		/* Get device type, vendor, model, device id */
1849 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1850 			continue; /* skip it if we can't talk to it. */
1851 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1852 			tmpdevice);
1853 		this_device = currentsd[ncurrent];
1854 
1855 		/*
1856 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1857 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1858 		 * is nonetheless an enclosure device there.  We have to
1859 		 * present that otherwise linux won't find anything if
1860 		 * there is no lun 0.
1861 		 */
1862 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1863 				lunaddrbytes, bus, target, lun, lunzerobits,
1864 				&nmsa2xxx_enclosures)) {
1865 			ncurrent++;
1866 			this_device = currentsd[ncurrent];
1867 		}
1868 
1869 		*this_device = *tmpdevice;
1870 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1871 
1872 		switch (this_device->devtype) {
1873 		case TYPE_ROM: {
1874 			/* We don't *really* support actual CD-ROM devices,
1875 			 * just "One Button Disaster Recovery" tape drive
1876 			 * which temporarily pretends to be a CD-ROM drive.
1877 			 * So we check that the device is really an OBDR tape
1878 			 * device by checking for "$DR-10" in bytes 43-48 of
1879 			 * the inquiry data.
1880 			 */
1881 				char obdr_sig[7];
1882 #define OBDR_TAPE_SIG "$DR-10"
1883 				strncpy(obdr_sig, &inq_buff[43], 6);
1884 				obdr_sig[6] = '\0';
1885 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1886 					/* Not OBDR device, ignore it. */
1887 					break;
1888 			}
1889 			ncurrent++;
1890 			break;
1891 		case TYPE_DISK:
1892 			if (i < nphysicals)
1893 				break;
1894 			ncurrent++;
1895 			break;
1896 		case TYPE_TAPE:
1897 		case TYPE_MEDIUM_CHANGER:
1898 			ncurrent++;
1899 			break;
1900 		case TYPE_RAID:
1901 			/* Only present the Smartarray HBA as a RAID controller.
1902 			 * If it's a RAID controller other than the HBA itself
1903 			 * (an external RAID controller, MSA500 or similar)
1904 			 * don't present it.
1905 			 */
1906 			if (!is_hba_lunid(lunaddrbytes))
1907 				break;
1908 			ncurrent++;
1909 			break;
1910 		default:
1911 			break;
1912 		}
1913 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1914 			break;
1915 	}
1916 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1917 out:
1918 	kfree(tmpdevice);
1919 	for (i = 0; i < ndev_allocated; i++)
1920 		kfree(currentsd[i]);
1921 	kfree(currentsd);
1922 	kfree(inq_buff);
1923 	kfree(physdev_list);
1924 	kfree(logdev_list);
1925 }
1926 
1927 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1928  * dma mapping  and fills in the scatter gather entries of the
1929  * hpsa command, cp.
1930  */
1931 static int hpsa_scatter_gather(struct ctlr_info *h,
1932 		struct CommandList *cp,
1933 		struct scsi_cmnd *cmd)
1934 {
1935 	unsigned int len;
1936 	struct scatterlist *sg;
1937 	u64 addr64;
1938 	int use_sg, i, sg_index, chained;
1939 	struct SGDescriptor *curr_sg;
1940 
1941 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1942 
1943 	use_sg = scsi_dma_map(cmd);
1944 	if (use_sg < 0)
1945 		return use_sg;
1946 
1947 	if (!use_sg)
1948 		goto sglist_finished;
1949 
1950 	curr_sg = cp->SG;
1951 	chained = 0;
1952 	sg_index = 0;
1953 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1954 		if (i == h->max_cmd_sg_entries - 1 &&
1955 			use_sg > h->max_cmd_sg_entries) {
1956 			chained = 1;
1957 			curr_sg = h->cmd_sg_list[cp->cmdindex];
1958 			sg_index = 0;
1959 		}
1960 		addr64 = (u64) sg_dma_address(sg);
1961 		len  = sg_dma_len(sg);
1962 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1963 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1964 		curr_sg->Len = len;
1965 		curr_sg->Ext = 0;  /* we are not chaining */
1966 		curr_sg++;
1967 	}
1968 
1969 	if (use_sg + chained > h->maxSG)
1970 		h->maxSG = use_sg + chained;
1971 
1972 	if (chained) {
1973 		cp->Header.SGList = h->max_cmd_sg_entries;
1974 		cp->Header.SGTotal = (u16) (use_sg + 1);
1975 		hpsa_map_sg_chain_block(h, cp);
1976 		return 0;
1977 	}
1978 
1979 sglist_finished:
1980 
1981 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1982 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1983 	return 0;
1984 }
1985 
1986 
1987 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1988 	void (*done)(struct scsi_cmnd *))
1989 {
1990 	struct ctlr_info *h;
1991 	struct hpsa_scsi_dev_t *dev;
1992 	unsigned char scsi3addr[8];
1993 	struct CommandList *c;
1994 	unsigned long flags;
1995 
1996 	/* Get the ptr to our adapter structure out of cmd->host. */
1997 	h = sdev_to_hba(cmd->device);
1998 	dev = cmd->device->hostdata;
1999 	if (!dev) {
2000 		cmd->result = DID_NO_CONNECT << 16;
2001 		done(cmd);
2002 		return 0;
2003 	}
2004 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2005 
2006 	/* Need a lock as this is being allocated from the pool */
2007 	spin_lock_irqsave(&h->lock, flags);
2008 	c = cmd_alloc(h);
2009 	spin_unlock_irqrestore(&h->lock, flags);
2010 	if (c == NULL) {			/* trouble... */
2011 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2012 		return SCSI_MLQUEUE_HOST_BUSY;
2013 	}
2014 
2015 	/* Fill in the command list header */
2016 
2017 	cmd->scsi_done = done;    /* save this for use by completion code */
2018 
2019 	/* save c in case we have to abort it  */
2020 	cmd->host_scribble = (unsigned char *) c;
2021 
2022 	c->cmd_type = CMD_SCSI;
2023 	c->scsi_cmd = cmd;
2024 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2025 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2026 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2027 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2028 
2029 	/* Fill in the request block... */
2030 
2031 	c->Request.Timeout = 0;
2032 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2033 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2034 	c->Request.CDBLen = cmd->cmd_len;
2035 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2036 	c->Request.Type.Type = TYPE_CMD;
2037 	c->Request.Type.Attribute = ATTR_SIMPLE;
2038 	switch (cmd->sc_data_direction) {
2039 	case DMA_TO_DEVICE:
2040 		c->Request.Type.Direction = XFER_WRITE;
2041 		break;
2042 	case DMA_FROM_DEVICE:
2043 		c->Request.Type.Direction = XFER_READ;
2044 		break;
2045 	case DMA_NONE:
2046 		c->Request.Type.Direction = XFER_NONE;
2047 		break;
2048 	case DMA_BIDIRECTIONAL:
2049 		/* This can happen if a buggy application does a scsi passthru
2050 		 * and sets both inlen and outlen to non-zero. ( see
2051 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2052 		 */
2053 
2054 		c->Request.Type.Direction = XFER_RSVD;
2055 		/* This is technically wrong, and hpsa controllers should
2056 		 * reject it with CMD_INVALID, which is the most correct
2057 		 * response, but non-fibre backends appear to let it
2058 		 * slide by, and give the same results as if this field
2059 		 * were set correctly.  Either way is acceptable for
2060 		 * our purposes here.
2061 		 */
2062 
2063 		break;
2064 
2065 	default:
2066 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2067 			cmd->sc_data_direction);
2068 		BUG();
2069 		break;
2070 	}
2071 
2072 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2073 		cmd_free(h, c);
2074 		return SCSI_MLQUEUE_HOST_BUSY;
2075 	}
2076 	enqueue_cmd_and_start_io(h, c);
2077 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2078 	return 0;
2079 }
2080 
2081 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2082 
2083 static void hpsa_scan_start(struct Scsi_Host *sh)
2084 {
2085 	struct ctlr_info *h = shost_to_hba(sh);
2086 	unsigned long flags;
2087 
2088 	/* wait until any scan already in progress is finished. */
2089 	while (1) {
2090 		spin_lock_irqsave(&h->scan_lock, flags);
2091 		if (h->scan_finished)
2092 			break;
2093 		spin_unlock_irqrestore(&h->scan_lock, flags);
2094 		wait_event(h->scan_wait_queue, h->scan_finished);
2095 		/* Note: We don't need to worry about a race between this
2096 		 * thread and driver unload because the midlayer will
2097 		 * have incremented the reference count, so unload won't
2098 		 * happen if we're in here.
2099 		 */
2100 	}
2101 	h->scan_finished = 0; /* mark scan as in progress */
2102 	spin_unlock_irqrestore(&h->scan_lock, flags);
2103 
2104 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2105 
2106 	spin_lock_irqsave(&h->scan_lock, flags);
2107 	h->scan_finished = 1; /* mark scan as finished. */
2108 	wake_up_all(&h->scan_wait_queue);
2109 	spin_unlock_irqrestore(&h->scan_lock, flags);
2110 }
2111 
2112 static int hpsa_scan_finished(struct Scsi_Host *sh,
2113 	unsigned long elapsed_time)
2114 {
2115 	struct ctlr_info *h = shost_to_hba(sh);
2116 	unsigned long flags;
2117 	int finished;
2118 
2119 	spin_lock_irqsave(&h->scan_lock, flags);
2120 	finished = h->scan_finished;
2121 	spin_unlock_irqrestore(&h->scan_lock, flags);
2122 	return finished;
2123 }
2124 
2125 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2126 	int qdepth, int reason)
2127 {
2128 	struct ctlr_info *h = sdev_to_hba(sdev);
2129 
2130 	if (reason != SCSI_QDEPTH_DEFAULT)
2131 		return -ENOTSUPP;
2132 
2133 	if (qdepth < 1)
2134 		qdepth = 1;
2135 	else
2136 		if (qdepth > h->nr_cmds)
2137 			qdepth = h->nr_cmds;
2138 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2139 	return sdev->queue_depth;
2140 }
2141 
2142 static void hpsa_unregister_scsi(struct ctlr_info *h)
2143 {
2144 	/* we are being forcibly unloaded, and may not refuse. */
2145 	scsi_remove_host(h->scsi_host);
2146 	scsi_host_put(h->scsi_host);
2147 	h->scsi_host = NULL;
2148 }
2149 
2150 static int hpsa_register_scsi(struct ctlr_info *h)
2151 {
2152 	int rc;
2153 
2154 	rc = hpsa_scsi_detect(h);
2155 	if (rc != 0)
2156 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2157 			" hpsa_scsi_detect(), rc is %d\n", rc);
2158 	return rc;
2159 }
2160 
2161 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2162 	unsigned char lunaddr[])
2163 {
2164 	int rc = 0;
2165 	int count = 0;
2166 	int waittime = 1; /* seconds */
2167 	struct CommandList *c;
2168 
2169 	c = cmd_special_alloc(h);
2170 	if (!c) {
2171 		dev_warn(&h->pdev->dev, "out of memory in "
2172 			"wait_for_device_to_become_ready.\n");
2173 		return IO_ERROR;
2174 	}
2175 
2176 	/* Send test unit ready until device ready, or give up. */
2177 	while (count < HPSA_TUR_RETRY_LIMIT) {
2178 
2179 		/* Wait for a bit.  do this first, because if we send
2180 		 * the TUR right away, the reset will just abort it.
2181 		 */
2182 		msleep(1000 * waittime);
2183 		count++;
2184 
2185 		/* Increase wait time with each try, up to a point. */
2186 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2187 			waittime = waittime * 2;
2188 
2189 		/* Send the Test Unit Ready */
2190 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2191 		hpsa_scsi_do_simple_cmd_core(h, c);
2192 		/* no unmap needed here because no data xfer. */
2193 
2194 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2195 			break;
2196 
2197 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2198 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2199 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2200 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2201 			break;
2202 
2203 		dev_warn(&h->pdev->dev, "waiting %d secs "
2204 			"for device to become ready.\n", waittime);
2205 		rc = 1; /* device not ready. */
2206 	}
2207 
2208 	if (rc)
2209 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2210 	else
2211 		dev_warn(&h->pdev->dev, "device is ready.\n");
2212 
2213 	cmd_special_free(h, c);
2214 	return rc;
2215 }
2216 
2217 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2218  * complaining.  Doing a host- or bus-reset can't do anything good here.
2219  */
2220 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2221 {
2222 	int rc;
2223 	struct ctlr_info *h;
2224 	struct hpsa_scsi_dev_t *dev;
2225 
2226 	/* find the controller to which the command to be aborted was sent */
2227 	h = sdev_to_hba(scsicmd->device);
2228 	if (h == NULL) /* paranoia */
2229 		return FAILED;
2230 	dev = scsicmd->device->hostdata;
2231 	if (!dev) {
2232 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2233 			"device lookup failed.\n");
2234 		return FAILED;
2235 	}
2236 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2237 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2238 	/* send a reset to the SCSI LUN which the command was sent to */
2239 	rc = hpsa_send_reset(h, dev->scsi3addr);
2240 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2241 		return SUCCESS;
2242 
2243 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2244 	return FAILED;
2245 }
2246 
2247 /*
2248  * For operations that cannot sleep, a command block is allocated at init,
2249  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2250  * which ones are free or in use.  Lock must be held when calling this.
2251  * cmd_free() is the complement.
2252  */
2253 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2254 {
2255 	struct CommandList *c;
2256 	int i;
2257 	union u64bit temp64;
2258 	dma_addr_t cmd_dma_handle, err_dma_handle;
2259 
2260 	do {
2261 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2262 		if (i == h->nr_cmds)
2263 			return NULL;
2264 	} while (test_and_set_bit
2265 		 (i & (BITS_PER_LONG - 1),
2266 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2267 	c = h->cmd_pool + i;
2268 	memset(c, 0, sizeof(*c));
2269 	cmd_dma_handle = h->cmd_pool_dhandle
2270 	    + i * sizeof(*c);
2271 	c->err_info = h->errinfo_pool + i;
2272 	memset(c->err_info, 0, sizeof(*c->err_info));
2273 	err_dma_handle = h->errinfo_pool_dhandle
2274 	    + i * sizeof(*c->err_info);
2275 	h->nr_allocs++;
2276 
2277 	c->cmdindex = i;
2278 
2279 	INIT_LIST_HEAD(&c->list);
2280 	c->busaddr = (u32) cmd_dma_handle;
2281 	temp64.val = (u64) err_dma_handle;
2282 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2283 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2284 	c->ErrDesc.Len = sizeof(*c->err_info);
2285 
2286 	c->h = h;
2287 	return c;
2288 }
2289 
2290 /* For operations that can wait for kmalloc to possibly sleep,
2291  * this routine can be called. Lock need not be held to call
2292  * cmd_special_alloc. cmd_special_free() is the complement.
2293  */
2294 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2295 {
2296 	struct CommandList *c;
2297 	union u64bit temp64;
2298 	dma_addr_t cmd_dma_handle, err_dma_handle;
2299 
2300 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2301 	if (c == NULL)
2302 		return NULL;
2303 	memset(c, 0, sizeof(*c));
2304 
2305 	c->cmdindex = -1;
2306 
2307 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2308 		    &err_dma_handle);
2309 
2310 	if (c->err_info == NULL) {
2311 		pci_free_consistent(h->pdev,
2312 			sizeof(*c), c, cmd_dma_handle);
2313 		return NULL;
2314 	}
2315 	memset(c->err_info, 0, sizeof(*c->err_info));
2316 
2317 	INIT_LIST_HEAD(&c->list);
2318 	c->busaddr = (u32) cmd_dma_handle;
2319 	temp64.val = (u64) err_dma_handle;
2320 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2321 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2322 	c->ErrDesc.Len = sizeof(*c->err_info);
2323 
2324 	c->h = h;
2325 	return c;
2326 }
2327 
2328 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2329 {
2330 	int i;
2331 
2332 	i = c - h->cmd_pool;
2333 	clear_bit(i & (BITS_PER_LONG - 1),
2334 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2335 	h->nr_frees++;
2336 }
2337 
2338 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2339 {
2340 	union u64bit temp64;
2341 
2342 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2343 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2344 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2345 			    c->err_info, (dma_addr_t) temp64.val);
2346 	pci_free_consistent(h->pdev, sizeof(*c),
2347 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2348 }
2349 
2350 #ifdef CONFIG_COMPAT
2351 
2352 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2353 {
2354 	IOCTL32_Command_struct __user *arg32 =
2355 	    (IOCTL32_Command_struct __user *) arg;
2356 	IOCTL_Command_struct arg64;
2357 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2358 	int err;
2359 	u32 cp;
2360 
2361 	memset(&arg64, 0, sizeof(arg64));
2362 	err = 0;
2363 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2364 			   sizeof(arg64.LUN_info));
2365 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2366 			   sizeof(arg64.Request));
2367 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2368 			   sizeof(arg64.error_info));
2369 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2370 	err |= get_user(cp, &arg32->buf);
2371 	arg64.buf = compat_ptr(cp);
2372 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2373 
2374 	if (err)
2375 		return -EFAULT;
2376 
2377 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2378 	if (err)
2379 		return err;
2380 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2381 			 sizeof(arg32->error_info));
2382 	if (err)
2383 		return -EFAULT;
2384 	return err;
2385 }
2386 
2387 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2388 	int cmd, void *arg)
2389 {
2390 	BIG_IOCTL32_Command_struct __user *arg32 =
2391 	    (BIG_IOCTL32_Command_struct __user *) arg;
2392 	BIG_IOCTL_Command_struct arg64;
2393 	BIG_IOCTL_Command_struct __user *p =
2394 	    compat_alloc_user_space(sizeof(arg64));
2395 	int err;
2396 	u32 cp;
2397 
2398 	memset(&arg64, 0, sizeof(arg64));
2399 	err = 0;
2400 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2401 			   sizeof(arg64.LUN_info));
2402 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2403 			   sizeof(arg64.Request));
2404 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2405 			   sizeof(arg64.error_info));
2406 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2407 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2408 	err |= get_user(cp, &arg32->buf);
2409 	arg64.buf = compat_ptr(cp);
2410 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2411 
2412 	if (err)
2413 		return -EFAULT;
2414 
2415 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2416 	if (err)
2417 		return err;
2418 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2419 			 sizeof(arg32->error_info));
2420 	if (err)
2421 		return -EFAULT;
2422 	return err;
2423 }
2424 
2425 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2426 {
2427 	switch (cmd) {
2428 	case CCISS_GETPCIINFO:
2429 	case CCISS_GETINTINFO:
2430 	case CCISS_SETINTINFO:
2431 	case CCISS_GETNODENAME:
2432 	case CCISS_SETNODENAME:
2433 	case CCISS_GETHEARTBEAT:
2434 	case CCISS_GETBUSTYPES:
2435 	case CCISS_GETFIRMVER:
2436 	case CCISS_GETDRIVVER:
2437 	case CCISS_REVALIDVOLS:
2438 	case CCISS_DEREGDISK:
2439 	case CCISS_REGNEWDISK:
2440 	case CCISS_REGNEWD:
2441 	case CCISS_RESCANDISK:
2442 	case CCISS_GETLUNINFO:
2443 		return hpsa_ioctl(dev, cmd, arg);
2444 
2445 	case CCISS_PASSTHRU32:
2446 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2447 	case CCISS_BIG_PASSTHRU32:
2448 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2449 
2450 	default:
2451 		return -ENOIOCTLCMD;
2452 	}
2453 }
2454 #endif
2455 
2456 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2457 {
2458 	struct hpsa_pci_info pciinfo;
2459 
2460 	if (!argp)
2461 		return -EINVAL;
2462 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2463 	pciinfo.bus = h->pdev->bus->number;
2464 	pciinfo.dev_fn = h->pdev->devfn;
2465 	pciinfo.board_id = h->board_id;
2466 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2467 		return -EFAULT;
2468 	return 0;
2469 }
2470 
2471 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2472 {
2473 	DriverVer_type DriverVer;
2474 	unsigned char vmaj, vmin, vsubmin;
2475 	int rc;
2476 
2477 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2478 		&vmaj, &vmin, &vsubmin);
2479 	if (rc != 3) {
2480 		dev_info(&h->pdev->dev, "driver version string '%s' "
2481 			"unrecognized.", HPSA_DRIVER_VERSION);
2482 		vmaj = 0;
2483 		vmin = 0;
2484 		vsubmin = 0;
2485 	}
2486 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2487 	if (!argp)
2488 		return -EINVAL;
2489 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2490 		return -EFAULT;
2491 	return 0;
2492 }
2493 
2494 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2495 {
2496 	IOCTL_Command_struct iocommand;
2497 	struct CommandList *c;
2498 	char *buff = NULL;
2499 	union u64bit temp64;
2500 
2501 	if (!argp)
2502 		return -EINVAL;
2503 	if (!capable(CAP_SYS_RAWIO))
2504 		return -EPERM;
2505 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2506 		return -EFAULT;
2507 	if ((iocommand.buf_size < 1) &&
2508 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2509 		return -EINVAL;
2510 	}
2511 	if (iocommand.buf_size > 0) {
2512 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2513 		if (buff == NULL)
2514 			return -EFAULT;
2515 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2516 			/* Copy the data into the buffer we created */
2517 			if (copy_from_user(buff, iocommand.buf,
2518 				iocommand.buf_size)) {
2519 				kfree(buff);
2520 				return -EFAULT;
2521 			}
2522 		} else {
2523 			memset(buff, 0, iocommand.buf_size);
2524 		}
2525 	}
2526 	c = cmd_special_alloc(h);
2527 	if (c == NULL) {
2528 		kfree(buff);
2529 		return -ENOMEM;
2530 	}
2531 	/* Fill in the command type */
2532 	c->cmd_type = CMD_IOCTL_PEND;
2533 	/* Fill in Command Header */
2534 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2535 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2536 		c->Header.SGList = 1;
2537 		c->Header.SGTotal = 1;
2538 	} else	{ /* no buffers to fill */
2539 		c->Header.SGList = 0;
2540 		c->Header.SGTotal = 0;
2541 	}
2542 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2543 	/* use the kernel address the cmd block for tag */
2544 	c->Header.Tag.lower = c->busaddr;
2545 
2546 	/* Fill in Request block */
2547 	memcpy(&c->Request, &iocommand.Request,
2548 		sizeof(c->Request));
2549 
2550 	/* Fill in the scatter gather information */
2551 	if (iocommand.buf_size > 0) {
2552 		temp64.val = pci_map_single(h->pdev, buff,
2553 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2554 		c->SG[0].Addr.lower = temp64.val32.lower;
2555 		c->SG[0].Addr.upper = temp64.val32.upper;
2556 		c->SG[0].Len = iocommand.buf_size;
2557 		c->SG[0].Ext = 0; /* we are not chaining*/
2558 	}
2559 	hpsa_scsi_do_simple_cmd_core(h, c);
2560 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2561 	check_ioctl_unit_attention(h, c);
2562 
2563 	/* Copy the error information out */
2564 	memcpy(&iocommand.error_info, c->err_info,
2565 		sizeof(iocommand.error_info));
2566 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2567 		kfree(buff);
2568 		cmd_special_free(h, c);
2569 		return -EFAULT;
2570 	}
2571 	if (iocommand.Request.Type.Direction == XFER_READ &&
2572 		iocommand.buf_size > 0) {
2573 		/* Copy the data out of the buffer we created */
2574 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2575 			kfree(buff);
2576 			cmd_special_free(h, c);
2577 			return -EFAULT;
2578 		}
2579 	}
2580 	kfree(buff);
2581 	cmd_special_free(h, c);
2582 	return 0;
2583 }
2584 
2585 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2586 {
2587 	BIG_IOCTL_Command_struct *ioc;
2588 	struct CommandList *c;
2589 	unsigned char **buff = NULL;
2590 	int *buff_size = NULL;
2591 	union u64bit temp64;
2592 	BYTE sg_used = 0;
2593 	int status = 0;
2594 	int i;
2595 	u32 left;
2596 	u32 sz;
2597 	BYTE __user *data_ptr;
2598 
2599 	if (!argp)
2600 		return -EINVAL;
2601 	if (!capable(CAP_SYS_RAWIO))
2602 		return -EPERM;
2603 	ioc = (BIG_IOCTL_Command_struct *)
2604 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2605 	if (!ioc) {
2606 		status = -ENOMEM;
2607 		goto cleanup1;
2608 	}
2609 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2610 		status = -EFAULT;
2611 		goto cleanup1;
2612 	}
2613 	if ((ioc->buf_size < 1) &&
2614 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2615 		status = -EINVAL;
2616 		goto cleanup1;
2617 	}
2618 	/* Check kmalloc limits  using all SGs */
2619 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2620 		status = -EINVAL;
2621 		goto cleanup1;
2622 	}
2623 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2624 		status = -EINVAL;
2625 		goto cleanup1;
2626 	}
2627 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2628 	if (!buff) {
2629 		status = -ENOMEM;
2630 		goto cleanup1;
2631 	}
2632 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2633 	if (!buff_size) {
2634 		status = -ENOMEM;
2635 		goto cleanup1;
2636 	}
2637 	left = ioc->buf_size;
2638 	data_ptr = ioc->buf;
2639 	while (left) {
2640 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2641 		buff_size[sg_used] = sz;
2642 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2643 		if (buff[sg_used] == NULL) {
2644 			status = -ENOMEM;
2645 			goto cleanup1;
2646 		}
2647 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2648 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2649 				status = -ENOMEM;
2650 				goto cleanup1;
2651 			}
2652 		} else
2653 			memset(buff[sg_used], 0, sz);
2654 		left -= sz;
2655 		data_ptr += sz;
2656 		sg_used++;
2657 	}
2658 	c = cmd_special_alloc(h);
2659 	if (c == NULL) {
2660 		status = -ENOMEM;
2661 		goto cleanup1;
2662 	}
2663 	c->cmd_type = CMD_IOCTL_PEND;
2664 	c->Header.ReplyQueue = 0;
2665 	c->Header.SGList = c->Header.SGTotal = sg_used;
2666 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2667 	c->Header.Tag.lower = c->busaddr;
2668 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2669 	if (ioc->buf_size > 0) {
2670 		int i;
2671 		for (i = 0; i < sg_used; i++) {
2672 			temp64.val = pci_map_single(h->pdev, buff[i],
2673 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2674 			c->SG[i].Addr.lower = temp64.val32.lower;
2675 			c->SG[i].Addr.upper = temp64.val32.upper;
2676 			c->SG[i].Len = buff_size[i];
2677 			/* we are not chaining */
2678 			c->SG[i].Ext = 0;
2679 		}
2680 	}
2681 	hpsa_scsi_do_simple_cmd_core(h, c);
2682 	if (sg_used)
2683 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2684 	check_ioctl_unit_attention(h, c);
2685 	/* Copy the error information out */
2686 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2687 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2688 		cmd_special_free(h, c);
2689 		status = -EFAULT;
2690 		goto cleanup1;
2691 	}
2692 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2693 		/* Copy the data out of the buffer we created */
2694 		BYTE __user *ptr = ioc->buf;
2695 		for (i = 0; i < sg_used; i++) {
2696 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2697 				cmd_special_free(h, c);
2698 				status = -EFAULT;
2699 				goto cleanup1;
2700 			}
2701 			ptr += buff_size[i];
2702 		}
2703 	}
2704 	cmd_special_free(h, c);
2705 	status = 0;
2706 cleanup1:
2707 	if (buff) {
2708 		for (i = 0; i < sg_used; i++)
2709 			kfree(buff[i]);
2710 		kfree(buff);
2711 	}
2712 	kfree(buff_size);
2713 	kfree(ioc);
2714 	return status;
2715 }
2716 
2717 static void check_ioctl_unit_attention(struct ctlr_info *h,
2718 	struct CommandList *c)
2719 {
2720 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2721 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2722 		(void) check_for_unit_attention(h, c);
2723 }
2724 /*
2725  * ioctl
2726  */
2727 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2728 {
2729 	struct ctlr_info *h;
2730 	void __user *argp = (void __user *)arg;
2731 
2732 	h = sdev_to_hba(dev);
2733 
2734 	switch (cmd) {
2735 	case CCISS_DEREGDISK:
2736 	case CCISS_REGNEWDISK:
2737 	case CCISS_REGNEWD:
2738 		hpsa_scan_start(h->scsi_host);
2739 		return 0;
2740 	case CCISS_GETPCIINFO:
2741 		return hpsa_getpciinfo_ioctl(h, argp);
2742 	case CCISS_GETDRIVVER:
2743 		return hpsa_getdrivver_ioctl(h, argp);
2744 	case CCISS_PASSTHRU:
2745 		return hpsa_passthru_ioctl(h, argp);
2746 	case CCISS_BIG_PASSTHRU:
2747 		return hpsa_big_passthru_ioctl(h, argp);
2748 	default:
2749 		return -ENOTTY;
2750 	}
2751 }
2752 
2753 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2754 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2755 	int cmd_type)
2756 {
2757 	int pci_dir = XFER_NONE;
2758 
2759 	c->cmd_type = CMD_IOCTL_PEND;
2760 	c->Header.ReplyQueue = 0;
2761 	if (buff != NULL && size > 0) {
2762 		c->Header.SGList = 1;
2763 		c->Header.SGTotal = 1;
2764 	} else {
2765 		c->Header.SGList = 0;
2766 		c->Header.SGTotal = 0;
2767 	}
2768 	c->Header.Tag.lower = c->busaddr;
2769 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2770 
2771 	c->Request.Type.Type = cmd_type;
2772 	if (cmd_type == TYPE_CMD) {
2773 		switch (cmd) {
2774 		case HPSA_INQUIRY:
2775 			/* are we trying to read a vital product page */
2776 			if (page_code != 0) {
2777 				c->Request.CDB[1] = 0x01;
2778 				c->Request.CDB[2] = page_code;
2779 			}
2780 			c->Request.CDBLen = 6;
2781 			c->Request.Type.Attribute = ATTR_SIMPLE;
2782 			c->Request.Type.Direction = XFER_READ;
2783 			c->Request.Timeout = 0;
2784 			c->Request.CDB[0] = HPSA_INQUIRY;
2785 			c->Request.CDB[4] = size & 0xFF;
2786 			break;
2787 		case HPSA_REPORT_LOG:
2788 		case HPSA_REPORT_PHYS:
2789 			/* Talking to controller so It's a physical command
2790 			   mode = 00 target = 0.  Nothing to write.
2791 			 */
2792 			c->Request.CDBLen = 12;
2793 			c->Request.Type.Attribute = ATTR_SIMPLE;
2794 			c->Request.Type.Direction = XFER_READ;
2795 			c->Request.Timeout = 0;
2796 			c->Request.CDB[0] = cmd;
2797 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2798 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2799 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2800 			c->Request.CDB[9] = size & 0xFF;
2801 			break;
2802 		case HPSA_CACHE_FLUSH:
2803 			c->Request.CDBLen = 12;
2804 			c->Request.Type.Attribute = ATTR_SIMPLE;
2805 			c->Request.Type.Direction = XFER_WRITE;
2806 			c->Request.Timeout = 0;
2807 			c->Request.CDB[0] = BMIC_WRITE;
2808 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2809 			break;
2810 		case TEST_UNIT_READY:
2811 			c->Request.CDBLen = 6;
2812 			c->Request.Type.Attribute = ATTR_SIMPLE;
2813 			c->Request.Type.Direction = XFER_NONE;
2814 			c->Request.Timeout = 0;
2815 			break;
2816 		default:
2817 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2818 			BUG();
2819 			return;
2820 		}
2821 	} else if (cmd_type == TYPE_MSG) {
2822 		switch (cmd) {
2823 
2824 		case  HPSA_DEVICE_RESET_MSG:
2825 			c->Request.CDBLen = 16;
2826 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2827 			c->Request.Type.Attribute = ATTR_SIMPLE;
2828 			c->Request.Type.Direction = XFER_NONE;
2829 			c->Request.Timeout = 0; /* Don't time out */
2830 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2831 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2832 			/* If bytes 4-7 are zero, it means reset the */
2833 			/* LunID device */
2834 			c->Request.CDB[4] = 0x00;
2835 			c->Request.CDB[5] = 0x00;
2836 			c->Request.CDB[6] = 0x00;
2837 			c->Request.CDB[7] = 0x00;
2838 		break;
2839 
2840 		default:
2841 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2842 				cmd);
2843 			BUG();
2844 		}
2845 	} else {
2846 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2847 		BUG();
2848 	}
2849 
2850 	switch (c->Request.Type.Direction) {
2851 	case XFER_READ:
2852 		pci_dir = PCI_DMA_FROMDEVICE;
2853 		break;
2854 	case XFER_WRITE:
2855 		pci_dir = PCI_DMA_TODEVICE;
2856 		break;
2857 	case XFER_NONE:
2858 		pci_dir = PCI_DMA_NONE;
2859 		break;
2860 	default:
2861 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2862 	}
2863 
2864 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2865 
2866 	return;
2867 }
2868 
2869 /*
2870  * Map (physical) PCI mem into (virtual) kernel space
2871  */
2872 static void __iomem *remap_pci_mem(ulong base, ulong size)
2873 {
2874 	ulong page_base = ((ulong) base) & PAGE_MASK;
2875 	ulong page_offs = ((ulong) base) - page_base;
2876 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2877 
2878 	return page_remapped ? (page_remapped + page_offs) : NULL;
2879 }
2880 
2881 /* Takes cmds off the submission queue and sends them to the hardware,
2882  * then puts them on the queue of cmds waiting for completion.
2883  */
2884 static void start_io(struct ctlr_info *h)
2885 {
2886 	struct CommandList *c;
2887 
2888 	while (!list_empty(&h->reqQ)) {
2889 		c = list_entry(h->reqQ.next, struct CommandList, list);
2890 		/* can't do anything if fifo is full */
2891 		if ((h->access.fifo_full(h))) {
2892 			dev_warn(&h->pdev->dev, "fifo full\n");
2893 			break;
2894 		}
2895 
2896 		/* Get the first entry from the Request Q */
2897 		removeQ(c);
2898 		h->Qdepth--;
2899 
2900 		/* Tell the controller execute command */
2901 		h->access.submit_command(h, c);
2902 
2903 		/* Put job onto the completed Q */
2904 		addQ(&h->cmpQ, c);
2905 	}
2906 }
2907 
2908 static inline unsigned long get_next_completion(struct ctlr_info *h)
2909 {
2910 	return h->access.command_completed(h);
2911 }
2912 
2913 static inline bool interrupt_pending(struct ctlr_info *h)
2914 {
2915 	return h->access.intr_pending(h);
2916 }
2917 
2918 static inline long interrupt_not_for_us(struct ctlr_info *h)
2919 {
2920 	return (h->access.intr_pending(h) == 0) ||
2921 		(h->interrupts_enabled == 0);
2922 }
2923 
2924 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2925 	u32 raw_tag)
2926 {
2927 	if (unlikely(tag_index >= h->nr_cmds)) {
2928 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2929 		return 1;
2930 	}
2931 	return 0;
2932 }
2933 
2934 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2935 {
2936 	removeQ(c);
2937 	if (likely(c->cmd_type == CMD_SCSI))
2938 		complete_scsi_command(c);
2939 	else if (c->cmd_type == CMD_IOCTL_PEND)
2940 		complete(c->waiting);
2941 }
2942 
2943 static inline u32 hpsa_tag_contains_index(u32 tag)
2944 {
2945 	return tag & DIRECT_LOOKUP_BIT;
2946 }
2947 
2948 static inline u32 hpsa_tag_to_index(u32 tag)
2949 {
2950 	return tag >> DIRECT_LOOKUP_SHIFT;
2951 }
2952 
2953 
2954 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2955 {
2956 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2957 #define HPSA_SIMPLE_ERROR_BITS 0x03
2958 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2959 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
2960 	return tag & ~HPSA_PERF_ERROR_BITS;
2961 }
2962 
2963 /* process completion of an indexed ("direct lookup") command */
2964 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2965 	u32 raw_tag)
2966 {
2967 	u32 tag_index;
2968 	struct CommandList *c;
2969 
2970 	tag_index = hpsa_tag_to_index(raw_tag);
2971 	if (bad_tag(h, tag_index, raw_tag))
2972 		return next_command(h);
2973 	c = h->cmd_pool + tag_index;
2974 	finish_cmd(c, raw_tag);
2975 	return next_command(h);
2976 }
2977 
2978 /* process completion of a non-indexed command */
2979 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2980 	u32 raw_tag)
2981 {
2982 	u32 tag;
2983 	struct CommandList *c = NULL;
2984 
2985 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
2986 	list_for_each_entry(c, &h->cmpQ, list) {
2987 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2988 			finish_cmd(c, raw_tag);
2989 			return next_command(h);
2990 		}
2991 	}
2992 	bad_tag(h, h->nr_cmds + 1, raw_tag);
2993 	return next_command(h);
2994 }
2995 
2996 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2997 {
2998 	struct ctlr_info *h = dev_id;
2999 	unsigned long flags;
3000 	u32 raw_tag;
3001 
3002 	if (interrupt_not_for_us(h))
3003 		return IRQ_NONE;
3004 	spin_lock_irqsave(&h->lock, flags);
3005 	while (interrupt_pending(h)) {
3006 		raw_tag = get_next_completion(h);
3007 		while (raw_tag != FIFO_EMPTY) {
3008 			if (hpsa_tag_contains_index(raw_tag))
3009 				raw_tag = process_indexed_cmd(h, raw_tag);
3010 			else
3011 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3012 		}
3013 	}
3014 	spin_unlock_irqrestore(&h->lock, flags);
3015 	return IRQ_HANDLED;
3016 }
3017 
3018 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3019 {
3020 	struct ctlr_info *h = dev_id;
3021 	unsigned long flags;
3022 	u32 raw_tag;
3023 
3024 	spin_lock_irqsave(&h->lock, flags);
3025 	raw_tag = get_next_completion(h);
3026 	while (raw_tag != FIFO_EMPTY) {
3027 		if (hpsa_tag_contains_index(raw_tag))
3028 			raw_tag = process_indexed_cmd(h, raw_tag);
3029 		else
3030 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3031 	}
3032 	spin_unlock_irqrestore(&h->lock, flags);
3033 	return IRQ_HANDLED;
3034 }
3035 
3036 /* Send a message CDB to the firmware. Careful, this only works
3037  * in simple mode, not performant mode due to the tag lookup.
3038  * We only ever use this immediately after a controller reset.
3039  */
3040 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3041 						unsigned char type)
3042 {
3043 	struct Command {
3044 		struct CommandListHeader CommandHeader;
3045 		struct RequestBlock Request;
3046 		struct ErrDescriptor ErrorDescriptor;
3047 	};
3048 	struct Command *cmd;
3049 	static const size_t cmd_sz = sizeof(*cmd) +
3050 					sizeof(cmd->ErrorDescriptor);
3051 	dma_addr_t paddr64;
3052 	uint32_t paddr32, tag;
3053 	void __iomem *vaddr;
3054 	int i, err;
3055 
3056 	vaddr = pci_ioremap_bar(pdev, 0);
3057 	if (vaddr == NULL)
3058 		return -ENOMEM;
3059 
3060 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3061 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3062 	 * memory.
3063 	 */
3064 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3065 	if (err) {
3066 		iounmap(vaddr);
3067 		return -ENOMEM;
3068 	}
3069 
3070 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3071 	if (cmd == NULL) {
3072 		iounmap(vaddr);
3073 		return -ENOMEM;
3074 	}
3075 
3076 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3077 	 * although there's no guarantee, we assume that the address is at
3078 	 * least 4-byte aligned (most likely, it's page-aligned).
3079 	 */
3080 	paddr32 = paddr64;
3081 
3082 	cmd->CommandHeader.ReplyQueue = 0;
3083 	cmd->CommandHeader.SGList = 0;
3084 	cmd->CommandHeader.SGTotal = 0;
3085 	cmd->CommandHeader.Tag.lower = paddr32;
3086 	cmd->CommandHeader.Tag.upper = 0;
3087 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3088 
3089 	cmd->Request.CDBLen = 16;
3090 	cmd->Request.Type.Type = TYPE_MSG;
3091 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3092 	cmd->Request.Type.Direction = XFER_NONE;
3093 	cmd->Request.Timeout = 0; /* Don't time out */
3094 	cmd->Request.CDB[0] = opcode;
3095 	cmd->Request.CDB[1] = type;
3096 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3097 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3098 	cmd->ErrorDescriptor.Addr.upper = 0;
3099 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3100 
3101 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3102 
3103 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3104 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3105 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3106 			break;
3107 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3108 	}
3109 
3110 	iounmap(vaddr);
3111 
3112 	/* we leak the DMA buffer here ... no choice since the controller could
3113 	 *  still complete the command.
3114 	 */
3115 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3116 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3117 			opcode, type);
3118 		return -ETIMEDOUT;
3119 	}
3120 
3121 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3122 
3123 	if (tag & HPSA_ERROR_BIT) {
3124 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3125 			opcode, type);
3126 		return -EIO;
3127 	}
3128 
3129 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3130 		opcode, type);
3131 	return 0;
3132 }
3133 
3134 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3135 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3136 
3137 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3138 	void * __iomem vaddr, bool use_doorbell)
3139 {
3140 	u16 pmcsr;
3141 	int pos;
3142 
3143 	if (use_doorbell) {
3144 		/* For everything after the P600, the PCI power state method
3145 		 * of resetting the controller doesn't work, so we have this
3146 		 * other way using the doorbell register.
3147 		 */
3148 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3149 		writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3150 		msleep(1000);
3151 	} else { /* Try to do it the PCI power state way */
3152 
3153 		/* Quoting from the Open CISS Specification: "The Power
3154 		 * Management Control/Status Register (CSR) controls the power
3155 		 * state of the device.  The normal operating state is D0,
3156 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3157 		 * the controller, place the interface device in D3 then to D0,
3158 		 * this causes a secondary PCI reset which will reset the
3159 		 * controller." */
3160 
3161 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3162 		if (pos == 0) {
3163 			dev_err(&pdev->dev,
3164 				"hpsa_reset_controller: "
3165 				"PCI PM not supported\n");
3166 			return -ENODEV;
3167 		}
3168 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3169 		/* enter the D3hot power management state */
3170 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3171 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3172 		pmcsr |= PCI_D3hot;
3173 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3174 
3175 		msleep(500);
3176 
3177 		/* enter the D0 power management state */
3178 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3179 		pmcsr |= PCI_D0;
3180 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3181 
3182 		msleep(500);
3183 	}
3184 	return 0;
3185 }
3186 
3187 static __devinit void init_driver_version(char *driver_version, int len)
3188 {
3189 	memset(driver_version, 0, len);
3190 	strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3191 }
3192 
3193 static __devinit int write_driver_ver_to_cfgtable(
3194 	struct CfgTable __iomem *cfgtable)
3195 {
3196 	char *driver_version;
3197 	int i, size = sizeof(cfgtable->driver_version);
3198 
3199 	driver_version = kmalloc(size, GFP_KERNEL);
3200 	if (!driver_version)
3201 		return -ENOMEM;
3202 
3203 	init_driver_version(driver_version, size);
3204 	for (i = 0; i < size; i++)
3205 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3206 	kfree(driver_version);
3207 	return 0;
3208 }
3209 
3210 static __devinit void read_driver_ver_from_cfgtable(
3211 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3212 {
3213 	int i;
3214 
3215 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3216 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3217 }
3218 
3219 static __devinit int controller_reset_failed(
3220 	struct CfgTable __iomem *cfgtable)
3221 {
3222 
3223 	char *driver_ver, *old_driver_ver;
3224 	int rc, size = sizeof(cfgtable->driver_version);
3225 
3226 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3227 	if (!old_driver_ver)
3228 		return -ENOMEM;
3229 	driver_ver = old_driver_ver + size;
3230 
3231 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3232 	 * should have been changed, otherwise we know the reset failed.
3233 	 */
3234 	init_driver_version(old_driver_ver, size);
3235 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3236 	rc = !memcmp(driver_ver, old_driver_ver, size);
3237 	kfree(old_driver_ver);
3238 	return rc;
3239 }
3240 /* This does a hard reset of the controller using PCI power management
3241  * states or the using the doorbell register.
3242  */
3243 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3244 {
3245 	u64 cfg_offset;
3246 	u32 cfg_base_addr;
3247 	u64 cfg_base_addr_index;
3248 	void __iomem *vaddr;
3249 	unsigned long paddr;
3250 	u32 misc_fw_support;
3251 	int rc;
3252 	struct CfgTable __iomem *cfgtable;
3253 	bool use_doorbell;
3254 	u32 board_id;
3255 	u16 command_register;
3256 
3257 	/* For controllers as old as the P600, this is very nearly
3258 	 * the same thing as
3259 	 *
3260 	 * pci_save_state(pci_dev);
3261 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3262 	 * pci_set_power_state(pci_dev, PCI_D0);
3263 	 * pci_restore_state(pci_dev);
3264 	 *
3265 	 * For controllers newer than the P600, the pci power state
3266 	 * method of resetting doesn't work so we have another way
3267 	 * using the doorbell register.
3268 	 */
3269 
3270 	/* Exclude 640x boards.  These are two pci devices in one slot
3271 	 * which share a battery backed cache module.  One controls the
3272 	 * cache, the other accesses the cache through the one that controls
3273 	 * it.  If we reset the one controlling the cache, the other will
3274 	 * likely not be happy.  Just forbid resetting this conjoined mess.
3275 	 * The 640x isn't really supported by hpsa anyway.
3276 	 */
3277 	rc = hpsa_lookup_board_id(pdev, &board_id);
3278 	if (rc < 0) {
3279 		dev_warn(&pdev->dev, "Not resetting device.\n");
3280 		return -ENODEV;
3281 	}
3282 	if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3283 		return -ENOTSUPP;
3284 
3285 	/* Save the PCI command register */
3286 	pci_read_config_word(pdev, 4, &command_register);
3287 	/* Turn the board off.  This is so that later pci_restore_state()
3288 	 * won't turn the board on before the rest of config space is ready.
3289 	 */
3290 	pci_disable_device(pdev);
3291 	pci_save_state(pdev);
3292 
3293 	/* find the first memory BAR, so we can find the cfg table */
3294 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3295 	if (rc)
3296 		return rc;
3297 	vaddr = remap_pci_mem(paddr, 0x250);
3298 	if (!vaddr)
3299 		return -ENOMEM;
3300 
3301 	/* find cfgtable in order to check if reset via doorbell is supported */
3302 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3303 					&cfg_base_addr_index, &cfg_offset);
3304 	if (rc)
3305 		goto unmap_vaddr;
3306 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3307 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3308 	if (!cfgtable) {
3309 		rc = -ENOMEM;
3310 		goto unmap_vaddr;
3311 	}
3312 	rc = write_driver_ver_to_cfgtable(cfgtable);
3313 	if (rc)
3314 		goto unmap_vaddr;
3315 
3316 	/* If reset via doorbell register is supported, use that. */
3317 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3318 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3319 
3320 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3321 	if (rc)
3322 		goto unmap_cfgtable;
3323 
3324 	pci_restore_state(pdev);
3325 	rc = pci_enable_device(pdev);
3326 	if (rc) {
3327 		dev_warn(&pdev->dev, "failed to enable device.\n");
3328 		goto unmap_cfgtable;
3329 	}
3330 	pci_write_config_word(pdev, 4, command_register);
3331 
3332 	/* Some devices (notably the HP Smart Array 5i Controller)
3333 	   need a little pause here */
3334 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3335 
3336 	/* Wait for board to become not ready, then ready. */
3337 	dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3338 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3339 	if (rc)
3340 		dev_warn(&pdev->dev,
3341 			"failed waiting for board to become not ready\n");
3342 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3343 	if (rc) {
3344 		dev_warn(&pdev->dev,
3345 			"failed waiting for board to become ready\n");
3346 		goto unmap_cfgtable;
3347 	}
3348 
3349 	rc = controller_reset_failed(vaddr);
3350 	if (rc < 0)
3351 		goto unmap_cfgtable;
3352 	if (rc) {
3353 		dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3354 			" Ignoring controller.\n");
3355 		rc = -ENODEV;
3356 	} else {
3357 		dev_info(&pdev->dev, "board ready.\n");
3358 	}
3359 
3360 unmap_cfgtable:
3361 	iounmap(cfgtable);
3362 
3363 unmap_vaddr:
3364 	iounmap(vaddr);
3365 	return rc;
3366 }
3367 
3368 /*
3369  *  We cannot read the structure directly, for portability we must use
3370  *   the io functions.
3371  *   This is for debug only.
3372  */
3373 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3374 {
3375 #ifdef HPSA_DEBUG
3376 	int i;
3377 	char temp_name[17];
3378 
3379 	dev_info(dev, "Controller Configuration information\n");
3380 	dev_info(dev, "------------------------------------\n");
3381 	for (i = 0; i < 4; i++)
3382 		temp_name[i] = readb(&(tb->Signature[i]));
3383 	temp_name[4] = '\0';
3384 	dev_info(dev, "   Signature = %s\n", temp_name);
3385 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3386 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3387 	       readl(&(tb->TransportSupport)));
3388 	dev_info(dev, "   Transport methods active = 0x%x\n",
3389 	       readl(&(tb->TransportActive)));
3390 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3391 	       readl(&(tb->HostWrite.TransportRequest)));
3392 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3393 	       readl(&(tb->HostWrite.CoalIntDelay)));
3394 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3395 	       readl(&(tb->HostWrite.CoalIntCount)));
3396 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3397 	       readl(&(tb->CmdsOutMax)));
3398 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3399 	for (i = 0; i < 16; i++)
3400 		temp_name[i] = readb(&(tb->ServerName[i]));
3401 	temp_name[16] = '\0';
3402 	dev_info(dev, "   Server Name = %s\n", temp_name);
3403 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3404 		readl(&(tb->HeartBeat)));
3405 #endif				/* HPSA_DEBUG */
3406 }
3407 
3408 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3409 {
3410 	int i, offset, mem_type, bar_type;
3411 
3412 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3413 		return 0;
3414 	offset = 0;
3415 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3416 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3417 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3418 			offset += 4;
3419 		else {
3420 			mem_type = pci_resource_flags(pdev, i) &
3421 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3422 			switch (mem_type) {
3423 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3424 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3425 				offset += 4;	/* 32 bit */
3426 				break;
3427 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3428 				offset += 8;
3429 				break;
3430 			default:	/* reserved in PCI 2.2 */
3431 				dev_warn(&pdev->dev,
3432 				       "base address is invalid\n");
3433 				return -1;
3434 				break;
3435 			}
3436 		}
3437 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3438 			return i + 1;
3439 	}
3440 	return -1;
3441 }
3442 
3443 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3444  * controllers that are capable. If not, we use IO-APIC mode.
3445  */
3446 
3447 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3448 {
3449 #ifdef CONFIG_PCI_MSI
3450 	int err;
3451 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3452 	{0, 2}, {0, 3}
3453 	};
3454 
3455 	/* Some boards advertise MSI but don't really support it */
3456 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3457 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3458 		goto default_int_mode;
3459 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3460 		dev_info(&h->pdev->dev, "MSIX\n");
3461 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3462 		if (!err) {
3463 			h->intr[0] = hpsa_msix_entries[0].vector;
3464 			h->intr[1] = hpsa_msix_entries[1].vector;
3465 			h->intr[2] = hpsa_msix_entries[2].vector;
3466 			h->intr[3] = hpsa_msix_entries[3].vector;
3467 			h->msix_vector = 1;
3468 			return;
3469 		}
3470 		if (err > 0) {
3471 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3472 			       "available\n", err);
3473 			goto default_int_mode;
3474 		} else {
3475 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3476 			       err);
3477 			goto default_int_mode;
3478 		}
3479 	}
3480 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3481 		dev_info(&h->pdev->dev, "MSI\n");
3482 		if (!pci_enable_msi(h->pdev))
3483 			h->msi_vector = 1;
3484 		else
3485 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3486 	}
3487 default_int_mode:
3488 #endif				/* CONFIG_PCI_MSI */
3489 	/* if we get here we're going to use the default interrupt mode */
3490 	h->intr[h->intr_mode] = h->pdev->irq;
3491 }
3492 
3493 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3494 {
3495 	int i;
3496 	u32 subsystem_vendor_id, subsystem_device_id;
3497 
3498 	subsystem_vendor_id = pdev->subsystem_vendor;
3499 	subsystem_device_id = pdev->subsystem_device;
3500 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3501 		    subsystem_vendor_id;
3502 
3503 	for (i = 0; i < ARRAY_SIZE(products); i++)
3504 		if (*board_id == products[i].board_id)
3505 			return i;
3506 
3507 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3508 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3509 		!hpsa_allow_any) {
3510 		dev_warn(&pdev->dev, "unrecognized board ID: "
3511 			"0x%08x, ignoring.\n", *board_id);
3512 			return -ENODEV;
3513 	}
3514 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3515 }
3516 
3517 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3518 {
3519 	u16 command;
3520 
3521 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3522 	return ((command & PCI_COMMAND_MEMORY) == 0);
3523 }
3524 
3525 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3526 	unsigned long *memory_bar)
3527 {
3528 	int i;
3529 
3530 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3531 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3532 			/* addressing mode bits already removed */
3533 			*memory_bar = pci_resource_start(pdev, i);
3534 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3535 				*memory_bar);
3536 			return 0;
3537 		}
3538 	dev_warn(&pdev->dev, "no memory BAR found\n");
3539 	return -ENODEV;
3540 }
3541 
3542 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3543 	void __iomem *vaddr, int wait_for_ready)
3544 {
3545 	int i, iterations;
3546 	u32 scratchpad;
3547 	if (wait_for_ready)
3548 		iterations = HPSA_BOARD_READY_ITERATIONS;
3549 	else
3550 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3551 
3552 	for (i = 0; i < iterations; i++) {
3553 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3554 		if (wait_for_ready) {
3555 			if (scratchpad == HPSA_FIRMWARE_READY)
3556 				return 0;
3557 		} else {
3558 			if (scratchpad != HPSA_FIRMWARE_READY)
3559 				return 0;
3560 		}
3561 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3562 	}
3563 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3564 	return -ENODEV;
3565 }
3566 
3567 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3568 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3569 	u64 *cfg_offset)
3570 {
3571 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3572 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3573 	*cfg_base_addr &= (u32) 0x0000ffff;
3574 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3575 	if (*cfg_base_addr_index == -1) {
3576 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3577 		return -ENODEV;
3578 	}
3579 	return 0;
3580 }
3581 
3582 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3583 {
3584 	u64 cfg_offset;
3585 	u32 cfg_base_addr;
3586 	u64 cfg_base_addr_index;
3587 	u32 trans_offset;
3588 	int rc;
3589 
3590 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3591 		&cfg_base_addr_index, &cfg_offset);
3592 	if (rc)
3593 		return rc;
3594 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3595 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3596 	if (!h->cfgtable)
3597 		return -ENOMEM;
3598 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3599 	if (rc)
3600 		return rc;
3601 	/* Find performant mode table. */
3602 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3603 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3604 				cfg_base_addr_index)+cfg_offset+trans_offset,
3605 				sizeof(*h->transtable));
3606 	if (!h->transtable)
3607 		return -ENOMEM;
3608 	return 0;
3609 }
3610 
3611 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3612 {
3613 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3614 
3615 	/* Limit commands in memory limited kdump scenario. */
3616 	if (reset_devices && h->max_commands > 32)
3617 		h->max_commands = 32;
3618 
3619 	if (h->max_commands < 16) {
3620 		dev_warn(&h->pdev->dev, "Controller reports "
3621 			"max supported commands of %d, an obvious lie. "
3622 			"Using 16.  Ensure that firmware is up to date.\n",
3623 			h->max_commands);
3624 		h->max_commands = 16;
3625 	}
3626 }
3627 
3628 /* Interrogate the hardware for some limits:
3629  * max commands, max SG elements without chaining, and with chaining,
3630  * SG chain block size, etc.
3631  */
3632 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3633 {
3634 	hpsa_get_max_perf_mode_cmds(h);
3635 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3636 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3637 	/*
3638 	 * Limit in-command s/g elements to 32 save dma'able memory.
3639 	 * Howvever spec says if 0, use 31
3640 	 */
3641 	h->max_cmd_sg_entries = 31;
3642 	if (h->maxsgentries > 512) {
3643 		h->max_cmd_sg_entries = 32;
3644 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3645 		h->maxsgentries--; /* save one for chain pointer */
3646 	} else {
3647 		h->maxsgentries = 31; /* default to traditional values */
3648 		h->chainsize = 0;
3649 	}
3650 }
3651 
3652 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3653 {
3654 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3655 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3656 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3657 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3658 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3659 		return false;
3660 	}
3661 	return true;
3662 }
3663 
3664 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3665 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3666 {
3667 #ifdef CONFIG_X86
3668 	u32 prefetch;
3669 
3670 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3671 	prefetch |= 0x100;
3672 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3673 #endif
3674 }
3675 
3676 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3677  * in a prefetch beyond physical memory.
3678  */
3679 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3680 {
3681 	u32 dma_prefetch;
3682 
3683 	if (h->board_id != 0x3225103C)
3684 		return;
3685 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3686 	dma_prefetch |= 0x8000;
3687 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3688 }
3689 
3690 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3691 {
3692 	int i;
3693 	u32 doorbell_value;
3694 	unsigned long flags;
3695 
3696 	/* under certain very rare conditions, this can take awhile.
3697 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3698 	 * as we enter this code.)
3699 	 */
3700 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3701 		spin_lock_irqsave(&h->lock, flags);
3702 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3703 		spin_unlock_irqrestore(&h->lock, flags);
3704 		if (!(doorbell_value & CFGTBL_ChangeReq))
3705 			break;
3706 		/* delay and try again */
3707 		usleep_range(10000, 20000);
3708 	}
3709 }
3710 
3711 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3712 {
3713 	u32 trans_support;
3714 
3715 	trans_support = readl(&(h->cfgtable->TransportSupport));
3716 	if (!(trans_support & SIMPLE_MODE))
3717 		return -ENOTSUPP;
3718 
3719 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3720 	/* Update the field, and then ring the doorbell */
3721 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3722 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3723 	hpsa_wait_for_mode_change_ack(h);
3724 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3725 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3726 		dev_warn(&h->pdev->dev,
3727 			"unable to get board into simple mode\n");
3728 		return -ENODEV;
3729 	}
3730 	h->transMethod = CFGTBL_Trans_Simple;
3731 	return 0;
3732 }
3733 
3734 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3735 {
3736 	int prod_index, err;
3737 
3738 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3739 	if (prod_index < 0)
3740 		return -ENODEV;
3741 	h->product_name = products[prod_index].product_name;
3742 	h->access = *(products[prod_index].access);
3743 
3744 	if (hpsa_board_disabled(h->pdev)) {
3745 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3746 		return -ENODEV;
3747 	}
3748 	err = pci_enable_device(h->pdev);
3749 	if (err) {
3750 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3751 		return err;
3752 	}
3753 
3754 	err = pci_request_regions(h->pdev, "hpsa");
3755 	if (err) {
3756 		dev_err(&h->pdev->dev,
3757 			"cannot obtain PCI resources, aborting\n");
3758 		return err;
3759 	}
3760 	hpsa_interrupt_mode(h);
3761 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3762 	if (err)
3763 		goto err_out_free_res;
3764 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3765 	if (!h->vaddr) {
3766 		err = -ENOMEM;
3767 		goto err_out_free_res;
3768 	}
3769 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3770 	if (err)
3771 		goto err_out_free_res;
3772 	err = hpsa_find_cfgtables(h);
3773 	if (err)
3774 		goto err_out_free_res;
3775 	hpsa_find_board_params(h);
3776 
3777 	if (!hpsa_CISS_signature_present(h)) {
3778 		err = -ENODEV;
3779 		goto err_out_free_res;
3780 	}
3781 	hpsa_enable_scsi_prefetch(h);
3782 	hpsa_p600_dma_prefetch_quirk(h);
3783 	err = hpsa_enter_simple_mode(h);
3784 	if (err)
3785 		goto err_out_free_res;
3786 	return 0;
3787 
3788 err_out_free_res:
3789 	if (h->transtable)
3790 		iounmap(h->transtable);
3791 	if (h->cfgtable)
3792 		iounmap(h->cfgtable);
3793 	if (h->vaddr)
3794 		iounmap(h->vaddr);
3795 	/*
3796 	 * Deliberately omit pci_disable_device(): it does something nasty to
3797 	 * Smart Array controllers that pci_enable_device does not undo
3798 	 */
3799 	pci_release_regions(h->pdev);
3800 	return err;
3801 }
3802 
3803 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3804 {
3805 	int rc;
3806 
3807 #define HBA_INQUIRY_BYTE_COUNT 64
3808 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3809 	if (!h->hba_inquiry_data)
3810 		return;
3811 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3812 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3813 	if (rc != 0) {
3814 		kfree(h->hba_inquiry_data);
3815 		h->hba_inquiry_data = NULL;
3816 	}
3817 }
3818 
3819 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3820 {
3821 	int rc, i;
3822 
3823 	if (!reset_devices)
3824 		return 0;
3825 
3826 	/* Reset the controller with a PCI power-cycle or via doorbell */
3827 	rc = hpsa_kdump_hard_reset_controller(pdev);
3828 
3829 	/* -ENOTSUPP here means we cannot reset the controller
3830 	 * but it's already (and still) up and running in
3831 	 * "performant mode".  Or, it might be 640x, which can't reset
3832 	 * due to concerns about shared bbwc between 6402/6404 pair.
3833 	 */
3834 	if (rc == -ENOTSUPP)
3835 		return 0; /* just try to do the kdump anyhow. */
3836 	if (rc)
3837 		return -ENODEV;
3838 
3839 	/* Now try to get the controller to respond to a no-op */
3840 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3841 		if (hpsa_noop(pdev) == 0)
3842 			break;
3843 		else
3844 			dev_warn(&pdev->dev, "no-op failed%s\n",
3845 					(i < 11 ? "; re-trying" : ""));
3846 	}
3847 	return 0;
3848 }
3849 
3850 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3851 {
3852 	h->cmd_pool_bits = kzalloc(
3853 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3854 		sizeof(unsigned long), GFP_KERNEL);
3855 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3856 		    h->nr_cmds * sizeof(*h->cmd_pool),
3857 		    &(h->cmd_pool_dhandle));
3858 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3859 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3860 		    &(h->errinfo_pool_dhandle));
3861 	if ((h->cmd_pool_bits == NULL)
3862 	    || (h->cmd_pool == NULL)
3863 	    || (h->errinfo_pool == NULL)) {
3864 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3865 		return -ENOMEM;
3866 	}
3867 	return 0;
3868 }
3869 
3870 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3871 {
3872 	kfree(h->cmd_pool_bits);
3873 	if (h->cmd_pool)
3874 		pci_free_consistent(h->pdev,
3875 			    h->nr_cmds * sizeof(struct CommandList),
3876 			    h->cmd_pool, h->cmd_pool_dhandle);
3877 	if (h->errinfo_pool)
3878 		pci_free_consistent(h->pdev,
3879 			    h->nr_cmds * sizeof(struct ErrorInfo),
3880 			    h->errinfo_pool,
3881 			    h->errinfo_pool_dhandle);
3882 }
3883 
3884 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3885 				    const struct pci_device_id *ent)
3886 {
3887 	int dac, rc;
3888 	struct ctlr_info *h;
3889 
3890 	if (number_of_controllers == 0)
3891 		printk(KERN_INFO DRIVER_NAME "\n");
3892 
3893 	rc = hpsa_init_reset_devices(pdev);
3894 	if (rc)
3895 		return rc;
3896 
3897 	/* Command structures must be aligned on a 32-byte boundary because
3898 	 * the 5 lower bits of the address are used by the hardware. and by
3899 	 * the driver.  See comments in hpsa.h for more info.
3900 	 */
3901 #define COMMANDLIST_ALIGNMENT 32
3902 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3903 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3904 	if (!h)
3905 		return -ENOMEM;
3906 
3907 	h->pdev = pdev;
3908 	h->busy_initializing = 1;
3909 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3910 	INIT_LIST_HEAD(&h->cmpQ);
3911 	INIT_LIST_HEAD(&h->reqQ);
3912 	spin_lock_init(&h->lock);
3913 	spin_lock_init(&h->scan_lock);
3914 	rc = hpsa_pci_init(h);
3915 	if (rc != 0)
3916 		goto clean1;
3917 
3918 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3919 	h->ctlr = number_of_controllers;
3920 	number_of_controllers++;
3921 
3922 	/* configure PCI DMA stuff */
3923 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3924 	if (rc == 0) {
3925 		dac = 1;
3926 	} else {
3927 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3928 		if (rc == 0) {
3929 			dac = 0;
3930 		} else {
3931 			dev_err(&pdev->dev, "no suitable DMA available\n");
3932 			goto clean1;
3933 		}
3934 	}
3935 
3936 	/* make sure the board interrupts are off */
3937 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3938 
3939 	if (h->msix_vector || h->msi_vector)
3940 		rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi,
3941 				IRQF_DISABLED, h->devname, h);
3942 	else
3943 		rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx,
3944 				IRQF_DISABLED, h->devname, h);
3945 	if (rc) {
3946 		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3947 		       h->intr[h->intr_mode], h->devname);
3948 		goto clean2;
3949 	}
3950 
3951 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3952 	       h->devname, pdev->device,
3953 	       h->intr[h->intr_mode], dac ? "" : " not");
3954 	if (hpsa_allocate_cmd_pool(h))
3955 		goto clean4;
3956 	if (hpsa_allocate_sg_chain_blocks(h))
3957 		goto clean4;
3958 	init_waitqueue_head(&h->scan_wait_queue);
3959 	h->scan_finished = 1; /* no scan currently in progress */
3960 
3961 	pci_set_drvdata(pdev, h);
3962 	hpsa_scsi_setup(h);
3963 
3964 	/* Turn the interrupts on so we can service requests */
3965 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3966 
3967 	hpsa_put_ctlr_into_performant_mode(h);
3968 	hpsa_hba_inquiry(h);
3969 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3970 	h->busy_initializing = 0;
3971 	return 1;
3972 
3973 clean4:
3974 	hpsa_free_sg_chain_blocks(h);
3975 	hpsa_free_cmd_pool(h);
3976 	free_irq(h->intr[h->intr_mode], h);
3977 clean2:
3978 clean1:
3979 	h->busy_initializing = 0;
3980 	kfree(h);
3981 	return rc;
3982 }
3983 
3984 static void hpsa_flush_cache(struct ctlr_info *h)
3985 {
3986 	char *flush_buf;
3987 	struct CommandList *c;
3988 
3989 	flush_buf = kzalloc(4, GFP_KERNEL);
3990 	if (!flush_buf)
3991 		return;
3992 
3993 	c = cmd_special_alloc(h);
3994 	if (!c) {
3995 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3996 		goto out_of_memory;
3997 	}
3998 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3999 		RAID_CTLR_LUNID, TYPE_CMD);
4000 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4001 	if (c->err_info->CommandStatus != 0)
4002 		dev_warn(&h->pdev->dev,
4003 			"error flushing cache on controller\n");
4004 	cmd_special_free(h, c);
4005 out_of_memory:
4006 	kfree(flush_buf);
4007 }
4008 
4009 static void hpsa_shutdown(struct pci_dev *pdev)
4010 {
4011 	struct ctlr_info *h;
4012 
4013 	h = pci_get_drvdata(pdev);
4014 	/* Turn board interrupts off  and send the flush cache command
4015 	 * sendcmd will turn off interrupt, and send the flush...
4016 	 * To write all data in the battery backed cache to disks
4017 	 */
4018 	hpsa_flush_cache(h);
4019 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4020 	free_irq(h->intr[h->intr_mode], h);
4021 #ifdef CONFIG_PCI_MSI
4022 	if (h->msix_vector)
4023 		pci_disable_msix(h->pdev);
4024 	else if (h->msi_vector)
4025 		pci_disable_msi(h->pdev);
4026 #endif				/* CONFIG_PCI_MSI */
4027 }
4028 
4029 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4030 {
4031 	struct ctlr_info *h;
4032 
4033 	if (pci_get_drvdata(pdev) == NULL) {
4034 		dev_err(&pdev->dev, "unable to remove device \n");
4035 		return;
4036 	}
4037 	h = pci_get_drvdata(pdev);
4038 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4039 	hpsa_shutdown(pdev);
4040 	iounmap(h->vaddr);
4041 	iounmap(h->transtable);
4042 	iounmap(h->cfgtable);
4043 	hpsa_free_sg_chain_blocks(h);
4044 	pci_free_consistent(h->pdev,
4045 		h->nr_cmds * sizeof(struct CommandList),
4046 		h->cmd_pool, h->cmd_pool_dhandle);
4047 	pci_free_consistent(h->pdev,
4048 		h->nr_cmds * sizeof(struct ErrorInfo),
4049 		h->errinfo_pool, h->errinfo_pool_dhandle);
4050 	pci_free_consistent(h->pdev, h->reply_pool_size,
4051 		h->reply_pool, h->reply_pool_dhandle);
4052 	kfree(h->cmd_pool_bits);
4053 	kfree(h->blockFetchTable);
4054 	kfree(h->hba_inquiry_data);
4055 	/*
4056 	 * Deliberately omit pci_disable_device(): it does something nasty to
4057 	 * Smart Array controllers that pci_enable_device does not undo
4058 	 */
4059 	pci_release_regions(pdev);
4060 	pci_set_drvdata(pdev, NULL);
4061 	kfree(h);
4062 }
4063 
4064 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4065 	__attribute__((unused)) pm_message_t state)
4066 {
4067 	return -ENOSYS;
4068 }
4069 
4070 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4071 {
4072 	return -ENOSYS;
4073 }
4074 
4075 static struct pci_driver hpsa_pci_driver = {
4076 	.name = "hpsa",
4077 	.probe = hpsa_init_one,
4078 	.remove = __devexit_p(hpsa_remove_one),
4079 	.id_table = hpsa_pci_device_id,	/* id_table */
4080 	.shutdown = hpsa_shutdown,
4081 	.suspend = hpsa_suspend,
4082 	.resume = hpsa_resume,
4083 };
4084 
4085 /* Fill in bucket_map[], given nsgs (the max number of
4086  * scatter gather elements supported) and bucket[],
4087  * which is an array of 8 integers.  The bucket[] array
4088  * contains 8 different DMA transfer sizes (in 16
4089  * byte increments) which the controller uses to fetch
4090  * commands.  This function fills in bucket_map[], which
4091  * maps a given number of scatter gather elements to one of
4092  * the 8 DMA transfer sizes.  The point of it is to allow the
4093  * controller to only do as much DMA as needed to fetch the
4094  * command, with the DMA transfer size encoded in the lower
4095  * bits of the command address.
4096  */
4097 static void  calc_bucket_map(int bucket[], int num_buckets,
4098 	int nsgs, int *bucket_map)
4099 {
4100 	int i, j, b, size;
4101 
4102 	/* even a command with 0 SGs requires 4 blocks */
4103 #define MINIMUM_TRANSFER_BLOCKS 4
4104 #define NUM_BUCKETS 8
4105 	/* Note, bucket_map must have nsgs+1 entries. */
4106 	for (i = 0; i <= nsgs; i++) {
4107 		/* Compute size of a command with i SG entries */
4108 		size = i + MINIMUM_TRANSFER_BLOCKS;
4109 		b = num_buckets; /* Assume the biggest bucket */
4110 		/* Find the bucket that is just big enough */
4111 		for (j = 0; j < 8; j++) {
4112 			if (bucket[j] >= size) {
4113 				b = j;
4114 				break;
4115 			}
4116 		}
4117 		/* for a command with i SG entries, use bucket b. */
4118 		bucket_map[i] = b;
4119 	}
4120 }
4121 
4122 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4123 	u32 use_short_tags)
4124 {
4125 	int i;
4126 	unsigned long register_value;
4127 
4128 	/* This is a bit complicated.  There are 8 registers on
4129 	 * the controller which we write to to tell it 8 different
4130 	 * sizes of commands which there may be.  It's a way of
4131 	 * reducing the DMA done to fetch each command.  Encoded into
4132 	 * each command's tag are 3 bits which communicate to the controller
4133 	 * which of the eight sizes that command fits within.  The size of
4134 	 * each command depends on how many scatter gather entries there are.
4135 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4136 	 * with the number of 16-byte blocks a command of that size requires.
4137 	 * The smallest command possible requires 5 such 16 byte blocks.
4138 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4139 	 * blocks.  Note, this only extends to the SG entries contained
4140 	 * within the command block, and does not extend to chained blocks
4141 	 * of SG elements.   bft[] contains the eight values we write to
4142 	 * the registers.  They are not evenly distributed, but have more
4143 	 * sizes for small commands, and fewer sizes for larger commands.
4144 	 */
4145 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4146 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4147 	/*  5 = 1 s/g entry or 4k
4148 	 *  6 = 2 s/g entry or 8k
4149 	 *  8 = 4 s/g entry or 16k
4150 	 * 10 = 6 s/g entry or 24k
4151 	 */
4152 
4153 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4154 
4155 	/* Controller spec: zero out this buffer. */
4156 	memset(h->reply_pool, 0, h->reply_pool_size);
4157 	h->reply_pool_head = h->reply_pool;
4158 
4159 	bft[7] = h->max_sg_entries + 4;
4160 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4161 	for (i = 0; i < 8; i++)
4162 		writel(bft[i], &h->transtable->BlockFetch[i]);
4163 
4164 	/* size of controller ring buffer */
4165 	writel(h->max_commands, &h->transtable->RepQSize);
4166 	writel(1, &h->transtable->RepQCount);
4167 	writel(0, &h->transtable->RepQCtrAddrLow32);
4168 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4169 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4170 	writel(0, &h->transtable->RepQAddr0High32);
4171 	writel(CFGTBL_Trans_Performant | use_short_tags,
4172 		&(h->cfgtable->HostWrite.TransportRequest));
4173 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4174 	hpsa_wait_for_mode_change_ack(h);
4175 	register_value = readl(&(h->cfgtable->TransportActive));
4176 	if (!(register_value & CFGTBL_Trans_Performant)) {
4177 		dev_warn(&h->pdev->dev, "unable to get board into"
4178 					" performant mode\n");
4179 		return;
4180 	}
4181 	/* Change the access methods to the performant access methods */
4182 	h->access = SA5_performant_access;
4183 	h->transMethod = CFGTBL_Trans_Performant;
4184 }
4185 
4186 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4187 {
4188 	u32 trans_support;
4189 
4190 	if (hpsa_simple_mode)
4191 		return;
4192 
4193 	trans_support = readl(&(h->cfgtable->TransportSupport));
4194 	if (!(trans_support & PERFORMANT_MODE))
4195 		return;
4196 
4197 	hpsa_get_max_perf_mode_cmds(h);
4198 	h->max_sg_entries = 32;
4199 	/* Performant mode ring buffer and supporting data structures */
4200 	h->reply_pool_size = h->max_commands * sizeof(u64);
4201 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4202 				&(h->reply_pool_dhandle));
4203 
4204 	/* Need a block fetch table for performant mode */
4205 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4206 				sizeof(u32)), GFP_KERNEL);
4207 
4208 	if ((h->reply_pool == NULL)
4209 		|| (h->blockFetchTable == NULL))
4210 		goto clean_up;
4211 
4212 	hpsa_enter_performant_mode(h,
4213 		trans_support & CFGTBL_Trans_use_short_tags);
4214 
4215 	return;
4216 
4217 clean_up:
4218 	if (h->reply_pool)
4219 		pci_free_consistent(h->pdev, h->reply_pool_size,
4220 			h->reply_pool, h->reply_pool_dhandle);
4221 	kfree(h->blockFetchTable);
4222 }
4223 
4224 /*
4225  *  This is it.  Register the PCI driver information for the cards we control
4226  *  the OS will call our registered routines when it finds one of our cards.
4227  */
4228 static int __init hpsa_init(void)
4229 {
4230 	return pci_register_driver(&hpsa_pci_driver);
4231 }
4232 
4233 static void __exit hpsa_cleanup(void)
4234 {
4235 	pci_unregister_driver(&hpsa_pci_driver);
4236 }
4237 
4238 module_init(hpsa_init);
4239 module_exit(hpsa_cleanup);
4240