xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255 
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 	void __user *arg);
259 #endif
260 
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 					    struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 	int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272 
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 	unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278 
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283 
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 	struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 	int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 			       u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 				    unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 				bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 					   unsigned char lunaddr[],
304 					   int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 				     int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 	struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 	unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 			       struct hpsa_scsi_dev_t *dev,
327 			       unsigned char *scsi3addr);
328 
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 	unsigned long *priv = shost_priv(sdev->host);
332 	return (struct ctlr_info *) *priv;
333 }
334 
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 	unsigned long *priv = shost_priv(sh);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 	return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345 
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 	return c->reset_pending;
349 }
350 
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 			u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 	struct scsi_sense_hdr sshdr;
356 	bool rc;
357 
358 	*sense_key = -1;
359 	*asc = -1;
360 	*ascq = -1;
361 
362 	if (sense_data_len < 1)
363 		return;
364 
365 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 	if (rc) {
367 		*sense_key = sshdr.sense_key;
368 		*asc = sshdr.asc;
369 		*ascq = sshdr.ascq;
370 	}
371 }
372 
373 static int check_for_unit_attention(struct ctlr_info *h,
374 	struct CommandList *c)
375 {
376 	u8 sense_key, asc, ascq;
377 	int sense_len;
378 
379 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 		sense_len = sizeof(c->err_info->SenseInfo);
381 	else
382 		sense_len = c->err_info->SenseLen;
383 
384 	decode_sense_data(c->err_info->SenseInfo, sense_len,
385 				&sense_key, &asc, &ascq);
386 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 		return 0;
388 
389 	switch (asc) {
390 	case STATE_CHANGED:
391 		dev_warn(&h->pdev->dev,
392 			"%s: a state change detected, command retried\n",
393 			h->devname);
394 		break;
395 	case LUN_FAILED:
396 		dev_warn(&h->pdev->dev,
397 			"%s: LUN failure detected\n", h->devname);
398 		break;
399 	case REPORT_LUNS_CHANGED:
400 		dev_warn(&h->pdev->dev,
401 			"%s: report LUN data changed\n", h->devname);
402 	/*
403 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 	 * target (array) devices.
405 	 */
406 		break;
407 	case POWER_OR_RESET:
408 		dev_warn(&h->pdev->dev,
409 			"%s: a power on or device reset detected\n",
410 			h->devname);
411 		break;
412 	case UNIT_ATTENTION_CLEARED:
413 		dev_warn(&h->pdev->dev,
414 			"%s: unit attention cleared by another initiator\n",
415 			h->devname);
416 		break;
417 	default:
418 		dev_warn(&h->pdev->dev,
419 			"%s: unknown unit attention detected\n",
420 			h->devname);
421 		break;
422 	}
423 	return 1;
424 }
425 
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 		return 0;
432 	dev_warn(&h->pdev->dev, HPSA "device busy");
433 	return 1;
434 }
435 
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 		struct device_attribute *attr, char *buf)
439 {
440 	int ld;
441 	struct ctlr_info *h;
442 	struct Scsi_Host *shost = class_to_shost(dev);
443 
444 	h = shost_to_hba(shost);
445 	ld = lockup_detected(h);
446 
447 	return sprintf(buf, "ld=%d\n", ld);
448 }
449 
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 					 struct device_attribute *attr,
452 					 const char *buf, size_t count)
453 {
454 	int status, len;
455 	struct ctlr_info *h;
456 	struct Scsi_Host *shost = class_to_shost(dev);
457 	char tmpbuf[10];
458 
459 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 		return -EACCES;
461 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 	strncpy(tmpbuf, buf, len);
463 	tmpbuf[len] = '\0';
464 	if (sscanf(tmpbuf, "%d", &status) != 1)
465 		return -EINVAL;
466 	h = shost_to_hba(shost);
467 	h->acciopath_status = !!status;
468 	dev_warn(&h->pdev->dev,
469 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 		h->acciopath_status ? "enabled" : "disabled");
471 	return count;
472 }
473 
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 					 struct device_attribute *attr,
476 					 const char *buf, size_t count)
477 {
478 	int debug_level, len;
479 	struct ctlr_info *h;
480 	struct Scsi_Host *shost = class_to_shost(dev);
481 	char tmpbuf[10];
482 
483 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 		return -EACCES;
485 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 	strncpy(tmpbuf, buf, len);
487 	tmpbuf[len] = '\0';
488 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 		return -EINVAL;
490 	if (debug_level < 0)
491 		debug_level = 0;
492 	h = shost_to_hba(shost);
493 	h->raid_offload_debug = debug_level;
494 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 		h->raid_offload_debug);
496 	return count;
497 }
498 
499 static ssize_t host_store_rescan(struct device *dev,
500 				 struct device_attribute *attr,
501 				 const char *buf, size_t count)
502 {
503 	struct ctlr_info *h;
504 	struct Scsi_Host *shost = class_to_shost(dev);
505 	h = shost_to_hba(shost);
506 	hpsa_scan_start(h->scsi_host);
507 	return count;
508 }
509 
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 	return snprintf(buf, 20, "%d\n", offload_enabled);
791 }
792 
793 #define MAX_PATHS 8
794 static ssize_t path_info_show(struct device *dev,
795 	     struct device_attribute *attr, char *buf)
796 {
797 	struct ctlr_info *h;
798 	struct scsi_device *sdev;
799 	struct hpsa_scsi_dev_t *hdev;
800 	unsigned long flags;
801 	int i;
802 	int output_len = 0;
803 	u8 box;
804 	u8 bay;
805 	u8 path_map_index = 0;
806 	char *active;
807 	unsigned char phys_connector[2];
808 
809 	sdev = to_scsi_device(dev);
810 	h = sdev_to_hba(sdev);
811 	spin_lock_irqsave(&h->devlock, flags);
812 	hdev = sdev->hostdata;
813 	if (!hdev) {
814 		spin_unlock_irqrestore(&h->devlock, flags);
815 		return -ENODEV;
816 	}
817 
818 	bay = hdev->bay;
819 	for (i = 0; i < MAX_PATHS; i++) {
820 		path_map_index = 1<<i;
821 		if (i == hdev->active_path_index)
822 			active = "Active";
823 		else if (hdev->path_map & path_map_index)
824 			active = "Inactive";
825 		else
826 			continue;
827 
828 		output_len += scnprintf(buf + output_len,
829 				PAGE_SIZE - output_len,
830 				"[%d:%d:%d:%d] %20.20s ",
831 				h->scsi_host->host_no,
832 				hdev->bus, hdev->target, hdev->lun,
833 				scsi_device_type(hdev->devtype));
834 
835 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
836 			output_len += scnprintf(buf + output_len,
837 						PAGE_SIZE - output_len,
838 						"%s\n", active);
839 			continue;
840 		}
841 
842 		box = hdev->box[i];
843 		memcpy(&phys_connector, &hdev->phys_connector[i],
844 			sizeof(phys_connector));
845 		if (phys_connector[0] < '0')
846 			phys_connector[0] = '0';
847 		if (phys_connector[1] < '0')
848 			phys_connector[1] = '0';
849 		output_len += scnprintf(buf + output_len,
850 				PAGE_SIZE - output_len,
851 				"PORT: %.2s ",
852 				phys_connector);
853 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
854 			hdev->expose_device) {
855 			if (box == 0 || box == 0xFF) {
856 				output_len += scnprintf(buf + output_len,
857 					PAGE_SIZE - output_len,
858 					"BAY: %hhu %s\n",
859 					bay, active);
860 			} else {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BOX: %hhu BAY: %hhu %s\n",
864 					box, bay, active);
865 			}
866 		} else if (box != 0 && box != 0xFF) {
867 			output_len += scnprintf(buf + output_len,
868 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
869 				box, active);
870 		} else
871 			output_len += scnprintf(buf + output_len,
872 				PAGE_SIZE - output_len, "%s\n", active);
873 	}
874 
875 	spin_unlock_irqrestore(&h->devlock, flags);
876 	return output_len;
877 }
878 
879 static ssize_t host_show_ctlr_num(struct device *dev,
880 	struct device_attribute *attr, char *buf)
881 {
882 	struct ctlr_info *h;
883 	struct Scsi_Host *shost = class_to_shost(dev);
884 
885 	h = shost_to_hba(shost);
886 	return snprintf(buf, 20, "%d\n", h->ctlr);
887 }
888 
889 static ssize_t host_show_legacy_board(struct device *dev,
890 	struct device_attribute *attr, char *buf)
891 {
892 	struct ctlr_info *h;
893 	struct Scsi_Host *shost = class_to_shost(dev);
894 
895 	h = shost_to_hba(shost);
896 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
897 }
898 
899 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
900 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
901 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
902 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
903 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
904 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
905 			host_show_hp_ssd_smart_path_enabled, NULL);
906 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
907 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
908 		host_show_hp_ssd_smart_path_status,
909 		host_store_hp_ssd_smart_path_status);
910 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
911 			host_store_raid_offload_debug);
912 static DEVICE_ATTR(firmware_revision, S_IRUGO,
913 	host_show_firmware_revision, NULL);
914 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
915 	host_show_commands_outstanding, NULL);
916 static DEVICE_ATTR(transport_mode, S_IRUGO,
917 	host_show_transport_mode, NULL);
918 static DEVICE_ATTR(resettable, S_IRUGO,
919 	host_show_resettable, NULL);
920 static DEVICE_ATTR(lockup_detected, S_IRUGO,
921 	host_show_lockup_detected, NULL);
922 static DEVICE_ATTR(ctlr_num, S_IRUGO,
923 	host_show_ctlr_num, NULL);
924 static DEVICE_ATTR(legacy_board, S_IRUGO,
925 	host_show_legacy_board, NULL);
926 
927 static struct device_attribute *hpsa_sdev_attrs[] = {
928 	&dev_attr_raid_level,
929 	&dev_attr_lunid,
930 	&dev_attr_unique_id,
931 	&dev_attr_hp_ssd_smart_path_enabled,
932 	&dev_attr_path_info,
933 	&dev_attr_sas_address,
934 	NULL,
935 };
936 
937 static struct device_attribute *hpsa_shost_attrs[] = {
938 	&dev_attr_rescan,
939 	&dev_attr_firmware_revision,
940 	&dev_attr_commands_outstanding,
941 	&dev_attr_transport_mode,
942 	&dev_attr_resettable,
943 	&dev_attr_hp_ssd_smart_path_status,
944 	&dev_attr_raid_offload_debug,
945 	&dev_attr_lockup_detected,
946 	&dev_attr_ctlr_num,
947 	&dev_attr_legacy_board,
948 	NULL,
949 };
950 
951 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
952 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
953 
954 static struct scsi_host_template hpsa_driver_template = {
955 	.module			= THIS_MODULE,
956 	.name			= HPSA,
957 	.proc_name		= HPSA,
958 	.queuecommand		= hpsa_scsi_queue_command,
959 	.scan_start		= hpsa_scan_start,
960 	.scan_finished		= hpsa_scan_finished,
961 	.change_queue_depth	= hpsa_change_queue_depth,
962 	.this_id		= -1,
963 	.use_clustering		= ENABLE_CLUSTERING,
964 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
965 	.ioctl			= hpsa_ioctl,
966 	.slave_alloc		= hpsa_slave_alloc,
967 	.slave_configure	= hpsa_slave_configure,
968 	.slave_destroy		= hpsa_slave_destroy,
969 #ifdef CONFIG_COMPAT
970 	.compat_ioctl		= hpsa_compat_ioctl,
971 #endif
972 	.sdev_attrs = hpsa_sdev_attrs,
973 	.shost_attrs = hpsa_shost_attrs,
974 	.max_sectors = 1024,
975 	.no_write_same = 1,
976 };
977 
978 static inline u32 next_command(struct ctlr_info *h, u8 q)
979 {
980 	u32 a;
981 	struct reply_queue_buffer *rq = &h->reply_queue[q];
982 
983 	if (h->transMethod & CFGTBL_Trans_io_accel1)
984 		return h->access.command_completed(h, q);
985 
986 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
987 		return h->access.command_completed(h, q);
988 
989 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
990 		a = rq->head[rq->current_entry];
991 		rq->current_entry++;
992 		atomic_dec(&h->commands_outstanding);
993 	} else {
994 		a = FIFO_EMPTY;
995 	}
996 	/* Check for wraparound */
997 	if (rq->current_entry == h->max_commands) {
998 		rq->current_entry = 0;
999 		rq->wraparound ^= 1;
1000 	}
1001 	return a;
1002 }
1003 
1004 /*
1005  * There are some special bits in the bus address of the
1006  * command that we have to set for the controller to know
1007  * how to process the command:
1008  *
1009  * Normal performant mode:
1010  * bit 0: 1 means performant mode, 0 means simple mode.
1011  * bits 1-3 = block fetch table entry
1012  * bits 4-6 = command type (== 0)
1013  *
1014  * ioaccel1 mode:
1015  * bit 0 = "performant mode" bit.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 110)
1018  * (command type is needed because ioaccel1 mode
1019  * commands are submitted through the same register as normal
1020  * mode commands, so this is how the controller knows whether
1021  * the command is normal mode or ioaccel1 mode.)
1022  *
1023  * ioaccel2 mode:
1024  * bit 0 = "performant mode" bit.
1025  * bits 1-4 = block fetch table entry (note extra bit)
1026  * bits 4-6 = not needed, because ioaccel2 mode has
1027  * a separate special register for submitting commands.
1028  */
1029 
1030 /*
1031  * set_performant_mode: Modify the tag for cciss performant
1032  * set bit 0 for pull model, bits 3-1 for block fetch
1033  * register number
1034  */
1035 #define DEFAULT_REPLY_QUEUE (-1)
1036 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1037 					int reply_queue)
1038 {
1039 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1040 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1041 		if (unlikely(!h->msix_vectors))
1042 			return;
1043 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1044 			c->Header.ReplyQueue =
1045 				raw_smp_processor_id() % h->nreply_queues;
1046 		else
1047 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1048 	}
1049 }
1050 
1051 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1052 						struct CommandList *c,
1053 						int reply_queue)
1054 {
1055 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1056 
1057 	/*
1058 	 * Tell the controller to post the reply to the queue for this
1059 	 * processor.  This seems to give the best I/O throughput.
1060 	 */
1061 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1062 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1063 	else
1064 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1065 	/*
1066 	 * Set the bits in the address sent down to include:
1067 	 *  - performant mode bit (bit 0)
1068 	 *  - pull count (bits 1-3)
1069 	 *  - command type (bits 4-6)
1070 	 */
1071 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1072 					IOACCEL1_BUSADDR_CMDTYPE;
1073 }
1074 
1075 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1076 						struct CommandList *c,
1077 						int reply_queue)
1078 {
1079 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1080 		&h->ioaccel2_cmd_pool[c->cmdindex];
1081 
1082 	/* Tell the controller to post the reply to the queue for this
1083 	 * processor.  This seems to give the best I/O throughput.
1084 	 */
1085 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1086 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1087 	else
1088 		cp->reply_queue = reply_queue % h->nreply_queues;
1089 	/* Set the bits in the address sent down to include:
1090 	 *  - performant mode bit not used in ioaccel mode 2
1091 	 *  - pull count (bits 0-3)
1092 	 *  - command type isn't needed for ioaccel2
1093 	 */
1094 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1095 }
1096 
1097 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1098 						struct CommandList *c,
1099 						int reply_queue)
1100 {
1101 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1102 
1103 	/*
1104 	 * Tell the controller to post the reply to the queue for this
1105 	 * processor.  This seems to give the best I/O throughput.
1106 	 */
1107 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1108 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1109 	else
1110 		cp->reply_queue = reply_queue % h->nreply_queues;
1111 	/*
1112 	 * Set the bits in the address sent down to include:
1113 	 *  - performant mode bit not used in ioaccel mode 2
1114 	 *  - pull count (bits 0-3)
1115 	 *  - command type isn't needed for ioaccel2
1116 	 */
1117 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1118 }
1119 
1120 static int is_firmware_flash_cmd(u8 *cdb)
1121 {
1122 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1123 }
1124 
1125 /*
1126  * During firmware flash, the heartbeat register may not update as frequently
1127  * as it should.  So we dial down lockup detection during firmware flash. and
1128  * dial it back up when firmware flash completes.
1129  */
1130 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1131 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1132 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1133 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1134 		struct CommandList *c)
1135 {
1136 	if (!is_firmware_flash_cmd(c->Request.CDB))
1137 		return;
1138 	atomic_inc(&h->firmware_flash_in_progress);
1139 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1140 }
1141 
1142 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1143 		struct CommandList *c)
1144 {
1145 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1146 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1147 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1148 }
1149 
1150 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1151 	struct CommandList *c, int reply_queue)
1152 {
1153 	dial_down_lockup_detection_during_fw_flash(h, c);
1154 	atomic_inc(&h->commands_outstanding);
1155 	switch (c->cmd_type) {
1156 	case CMD_IOACCEL1:
1157 		set_ioaccel1_performant_mode(h, c, reply_queue);
1158 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1159 		break;
1160 	case CMD_IOACCEL2:
1161 		set_ioaccel2_performant_mode(h, c, reply_queue);
1162 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1163 		break;
1164 	case IOACCEL2_TMF:
1165 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1166 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1167 		break;
1168 	default:
1169 		set_performant_mode(h, c, reply_queue);
1170 		h->access.submit_command(h, c);
1171 	}
1172 }
1173 
1174 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1175 {
1176 	if (unlikely(hpsa_is_pending_event(c)))
1177 		return finish_cmd(c);
1178 
1179 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181 
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186 
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189 	if (!h->hba_inquiry_data)
1190 		return 0;
1191 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192 		return 1;
1193 	return 0;
1194 }
1195 
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199 	/* finds an unused bus, target, lun for a new physical device
1200 	 * assumes h->devlock is held
1201 	 */
1202 	int i, found = 0;
1203 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204 
1205 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206 
1207 	for (i = 0; i < h->ndevices; i++) {
1208 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209 			__set_bit(h->dev[i]->target, lun_taken);
1210 	}
1211 
1212 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213 	if (i < HPSA_MAX_DEVICES) {
1214 		/* *bus = 1; */
1215 		*target = i;
1216 		*lun = 0;
1217 		found = 1;
1218 	}
1219 	return !found;
1220 }
1221 
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223 	struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226 	char label[LABEL_SIZE];
1227 
1228 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229 		return;
1230 
1231 	switch (dev->devtype) {
1232 	case TYPE_RAID:
1233 		snprintf(label, LABEL_SIZE, "controller");
1234 		break;
1235 	case TYPE_ENCLOSURE:
1236 		snprintf(label, LABEL_SIZE, "enclosure");
1237 		break;
1238 	case TYPE_DISK:
1239 	case TYPE_ZBC:
1240 		if (dev->external)
1241 			snprintf(label, LABEL_SIZE, "external");
1242 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243 			snprintf(label, LABEL_SIZE, "%s",
1244 				raid_label[PHYSICAL_DRIVE]);
1245 		else
1246 			snprintf(label, LABEL_SIZE, "RAID-%s",
1247 				dev->raid_level > RAID_UNKNOWN ? "?" :
1248 				raid_label[dev->raid_level]);
1249 		break;
1250 	case TYPE_ROM:
1251 		snprintf(label, LABEL_SIZE, "rom");
1252 		break;
1253 	case TYPE_TAPE:
1254 		snprintf(label, LABEL_SIZE, "tape");
1255 		break;
1256 	case TYPE_MEDIUM_CHANGER:
1257 		snprintf(label, LABEL_SIZE, "changer");
1258 		break;
1259 	default:
1260 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1261 		break;
1262 	}
1263 
1264 	dev_printk(level, &h->pdev->dev,
1265 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267 			description,
1268 			scsi_device_type(dev->devtype),
1269 			dev->vendor,
1270 			dev->model,
1271 			label,
1272 			dev->offload_config ? '+' : '-',
1273 			dev->offload_enabled ? '+' : '-',
1274 			dev->expose_device);
1275 }
1276 
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279 		struct hpsa_scsi_dev_t *device,
1280 		struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282 	/* assumes h->devlock is held */
1283 	int n = h->ndevices;
1284 	int i;
1285 	unsigned char addr1[8], addr2[8];
1286 	struct hpsa_scsi_dev_t *sd;
1287 
1288 	if (n >= HPSA_MAX_DEVICES) {
1289 		dev_err(&h->pdev->dev, "too many devices, some will be "
1290 			"inaccessible.\n");
1291 		return -1;
1292 	}
1293 
1294 	/* physical devices do not have lun or target assigned until now. */
1295 	if (device->lun != -1)
1296 		/* Logical device, lun is already assigned. */
1297 		goto lun_assigned;
1298 
1299 	/* If this device a non-zero lun of a multi-lun device
1300 	 * byte 4 of the 8-byte LUN addr will contain the logical
1301 	 * unit no, zero otherwise.
1302 	 */
1303 	if (device->scsi3addr[4] == 0) {
1304 		/* This is not a non-zero lun of a multi-lun device */
1305 		if (hpsa_find_target_lun(h, device->scsi3addr,
1306 			device->bus, &device->target, &device->lun) != 0)
1307 			return -1;
1308 		goto lun_assigned;
1309 	}
1310 
1311 	/* This is a non-zero lun of a multi-lun device.
1312 	 * Search through our list and find the device which
1313 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1314 	 * Assign the same bus and target for this new LUN.
1315 	 * Use the logical unit number from the firmware.
1316 	 */
1317 	memcpy(addr1, device->scsi3addr, 8);
1318 	addr1[4] = 0;
1319 	addr1[5] = 0;
1320 	for (i = 0; i < n; i++) {
1321 		sd = h->dev[i];
1322 		memcpy(addr2, sd->scsi3addr, 8);
1323 		addr2[4] = 0;
1324 		addr2[5] = 0;
1325 		/* differ only in byte 4 and 5? */
1326 		if (memcmp(addr1, addr2, 8) == 0) {
1327 			device->bus = sd->bus;
1328 			device->target = sd->target;
1329 			device->lun = device->scsi3addr[4];
1330 			break;
1331 		}
1332 	}
1333 	if (device->lun == -1) {
1334 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335 			" suspect firmware bug or unsupported hardware "
1336 			"configuration.\n");
1337 			return -1;
1338 	}
1339 
1340 lun_assigned:
1341 
1342 	h->dev[n] = device;
1343 	h->ndevices++;
1344 	added[*nadded] = device;
1345 	(*nadded)++;
1346 	hpsa_show_dev_msg(KERN_INFO, h, device,
1347 		device->expose_device ? "added" : "masked");
1348 	device->offload_to_be_enabled = device->offload_enabled;
1349 	device->offload_enabled = 0;
1350 	return 0;
1351 }
1352 
1353 /* Update an entry in h->dev[] array. */
1354 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1355 	int entry, struct hpsa_scsi_dev_t *new_entry)
1356 {
1357 	int offload_enabled;
1358 	/* assumes h->devlock is held */
1359 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360 
1361 	/* Raid level changed. */
1362 	h->dev[entry]->raid_level = new_entry->raid_level;
1363 
1364 	/* Raid offload parameters changed.  Careful about the ordering. */
1365 	if (new_entry->offload_config && new_entry->offload_enabled) {
1366 		/*
1367 		 * if drive is newly offload_enabled, we want to copy the
1368 		 * raid map data first.  If previously offload_enabled and
1369 		 * offload_config were set, raid map data had better be
1370 		 * the same as it was before.  if raid map data is changed
1371 		 * then it had better be the case that
1372 		 * h->dev[entry]->offload_enabled is currently 0.
1373 		 */
1374 		h->dev[entry]->raid_map = new_entry->raid_map;
1375 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 	}
1377 	if (new_entry->hba_ioaccel_enabled) {
1378 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 	}
1381 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 	h->dev[entry]->offload_config = new_entry->offload_config;
1383 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385 
1386 	/*
1387 	 * We can turn off ioaccel offload now, but need to delay turning
1388 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1389 	 * can't do that until all the devices are updated.
1390 	 */
1391 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1392 	if (!new_entry->offload_enabled)
1393 		h->dev[entry]->offload_enabled = 0;
1394 
1395 	offload_enabled = h->dev[entry]->offload_enabled;
1396 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1397 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1398 	h->dev[entry]->offload_enabled = offload_enabled;
1399 }
1400 
1401 /* Replace an entry from h->dev[] array. */
1402 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1403 	int entry, struct hpsa_scsi_dev_t *new_entry,
1404 	struct hpsa_scsi_dev_t *added[], int *nadded,
1405 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1406 {
1407 	/* assumes h->devlock is held */
1408 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1409 	removed[*nremoved] = h->dev[entry];
1410 	(*nremoved)++;
1411 
1412 	/*
1413 	 * New physical devices won't have target/lun assigned yet
1414 	 * so we need to preserve the values in the slot we are replacing.
1415 	 */
1416 	if (new_entry->target == -1) {
1417 		new_entry->target = h->dev[entry]->target;
1418 		new_entry->lun = h->dev[entry]->lun;
1419 	}
1420 
1421 	h->dev[entry] = new_entry;
1422 	added[*nadded] = new_entry;
1423 	(*nadded)++;
1424 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1425 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1426 	new_entry->offload_enabled = 0;
1427 }
1428 
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 	/* assumes h->devlock is held */
1434 	int i;
1435 	struct hpsa_scsi_dev_t *sd;
1436 
1437 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438 
1439 	sd = h->dev[entry];
1440 	removed[*nremoved] = h->dev[entry];
1441 	(*nremoved)++;
1442 
1443 	for (i = entry; i < h->ndevices-1; i++)
1444 		h->dev[i] = h->dev[i+1];
1445 	h->ndevices--;
1446 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448 
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 	(a)[7] == (b)[7] && \
1451 	(a)[6] == (b)[6] && \
1452 	(a)[5] == (b)[5] && \
1453 	(a)[4] == (b)[4] && \
1454 	(a)[3] == (b)[3] && \
1455 	(a)[2] == (b)[2] && \
1456 	(a)[1] == (b)[1] && \
1457 	(a)[0] == (b)[0])
1458 
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 	struct hpsa_scsi_dev_t *added)
1461 {
1462 	/* called when scsi_add_device fails in order to re-adjust
1463 	 * h->dev[] to match the mid layer's view.
1464 	 */
1465 	unsigned long flags;
1466 	int i, j;
1467 
1468 	spin_lock_irqsave(&h->lock, flags);
1469 	for (i = 0; i < h->ndevices; i++) {
1470 		if (h->dev[i] == added) {
1471 			for (j = i; j < h->ndevices-1; j++)
1472 				h->dev[j] = h->dev[j+1];
1473 			h->ndevices--;
1474 			break;
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&h->lock, flags);
1478 	kfree(added);
1479 }
1480 
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* we compare everything except lun and target as these
1485 	 * are not yet assigned.  Compare parts likely
1486 	 * to differ first
1487 	 */
1488 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 		sizeof(dev1->scsi3addr)) != 0)
1490 		return 0;
1491 	if (memcmp(dev1->device_id, dev2->device_id,
1492 		sizeof(dev1->device_id)) != 0)
1493 		return 0;
1494 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 		return 0;
1498 	if (dev1->devtype != dev2->devtype)
1499 		return 0;
1500 	if (dev1->bus != dev2->bus)
1501 		return 0;
1502 	return 1;
1503 }
1504 
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 	struct hpsa_scsi_dev_t *dev2)
1507 {
1508 	/* Device attributes that can change, but don't mean
1509 	 * that the device is a different device, nor that the OS
1510 	 * needs to be told anything about the change.
1511 	 */
1512 	if (dev1->raid_level != dev2->raid_level)
1513 		return 1;
1514 	if (dev1->offload_config != dev2->offload_config)
1515 		return 1;
1516 	if (dev1->offload_enabled != dev2->offload_enabled)
1517 		return 1;
1518 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 		if (dev1->queue_depth != dev2->queue_depth)
1520 			return 1;
1521 	return 0;
1522 }
1523 
1524 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1525  * and return needle location in *index.  If scsi3addr matches, but not
1526  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1527  * location in *index.
1528  * In the case of a minor device attribute change, such as RAID level, just
1529  * return DEVICE_UPDATED, along with the updated device's location in index.
1530  * If needle not found, return DEVICE_NOT_FOUND.
1531  */
1532 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1533 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1534 	int *index)
1535 {
1536 	int i;
1537 #define DEVICE_NOT_FOUND 0
1538 #define DEVICE_CHANGED 1
1539 #define DEVICE_SAME 2
1540 #define DEVICE_UPDATED 3
1541 	if (needle == NULL)
1542 		return DEVICE_NOT_FOUND;
1543 
1544 	for (i = 0; i < haystack_size; i++) {
1545 		if (haystack[i] == NULL) /* previously removed. */
1546 			continue;
1547 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1548 			*index = i;
1549 			if (device_is_the_same(needle, haystack[i])) {
1550 				if (device_updated(needle, haystack[i]))
1551 					return DEVICE_UPDATED;
1552 				return DEVICE_SAME;
1553 			} else {
1554 				/* Keep offline devices offline */
1555 				if (needle->volume_offline)
1556 					return DEVICE_NOT_FOUND;
1557 				return DEVICE_CHANGED;
1558 			}
1559 		}
1560 	}
1561 	*index = -1;
1562 	return DEVICE_NOT_FOUND;
1563 }
1564 
1565 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1566 					unsigned char scsi3addr[])
1567 {
1568 	struct offline_device_entry *device;
1569 	unsigned long flags;
1570 
1571 	/* Check to see if device is already on the list */
1572 	spin_lock_irqsave(&h->offline_device_lock, flags);
1573 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1574 		if (memcmp(device->scsi3addr, scsi3addr,
1575 			sizeof(device->scsi3addr)) == 0) {
1576 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1577 			return;
1578 		}
1579 	}
1580 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1581 
1582 	/* Device is not on the list, add it. */
1583 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1584 	if (!device)
1585 		return;
1586 
1587 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1588 	spin_lock_irqsave(&h->offline_device_lock, flags);
1589 	list_add_tail(&device->offline_list, &h->offline_device_list);
1590 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1591 }
1592 
1593 /* Print a message explaining various offline volume states */
1594 static void hpsa_show_volume_status(struct ctlr_info *h,
1595 	struct hpsa_scsi_dev_t *sd)
1596 {
1597 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1598 		dev_info(&h->pdev->dev,
1599 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1600 			h->scsi_host->host_no,
1601 			sd->bus, sd->target, sd->lun);
1602 	switch (sd->volume_offline) {
1603 	case HPSA_LV_OK:
1604 		break;
1605 	case HPSA_LV_UNDERGOING_ERASE:
1606 		dev_info(&h->pdev->dev,
1607 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1608 			h->scsi_host->host_no,
1609 			sd->bus, sd->target, sd->lun);
1610 		break;
1611 	case HPSA_LV_NOT_AVAILABLE:
1612 		dev_info(&h->pdev->dev,
1613 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1614 			h->scsi_host->host_no,
1615 			sd->bus, sd->target, sd->lun);
1616 		break;
1617 	case HPSA_LV_UNDERGOING_RPI:
1618 		dev_info(&h->pdev->dev,
1619 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1620 			h->scsi_host->host_no,
1621 			sd->bus, sd->target, sd->lun);
1622 		break;
1623 	case HPSA_LV_PENDING_RPI:
1624 		dev_info(&h->pdev->dev,
1625 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1626 			h->scsi_host->host_no,
1627 			sd->bus, sd->target, sd->lun);
1628 		break;
1629 	case HPSA_LV_ENCRYPTED_NO_KEY:
1630 		dev_info(&h->pdev->dev,
1631 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1632 			h->scsi_host->host_no,
1633 			sd->bus, sd->target, sd->lun);
1634 		break;
1635 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1636 		dev_info(&h->pdev->dev,
1637 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1638 			h->scsi_host->host_no,
1639 			sd->bus, sd->target, sd->lun);
1640 		break;
1641 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1642 		dev_info(&h->pdev->dev,
1643 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1644 			h->scsi_host->host_no,
1645 			sd->bus, sd->target, sd->lun);
1646 		break;
1647 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1648 		dev_info(&h->pdev->dev,
1649 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1650 			h->scsi_host->host_no,
1651 			sd->bus, sd->target, sd->lun);
1652 		break;
1653 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1654 		dev_info(&h->pdev->dev,
1655 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1656 			h->scsi_host->host_no,
1657 			sd->bus, sd->target, sd->lun);
1658 		break;
1659 	case HPSA_LV_PENDING_ENCRYPTION:
1660 		dev_info(&h->pdev->dev,
1661 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1662 			h->scsi_host->host_no,
1663 			sd->bus, sd->target, sd->lun);
1664 		break;
1665 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1666 		dev_info(&h->pdev->dev,
1667 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1668 			h->scsi_host->host_no,
1669 			sd->bus, sd->target, sd->lun);
1670 		break;
1671 	}
1672 }
1673 
1674 /*
1675  * Figure the list of physical drive pointers for a logical drive with
1676  * raid offload configured.
1677  */
1678 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1679 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1680 				struct hpsa_scsi_dev_t *logical_drive)
1681 {
1682 	struct raid_map_data *map = &logical_drive->raid_map;
1683 	struct raid_map_disk_data *dd = &map->data[0];
1684 	int i, j;
1685 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1686 				le16_to_cpu(map->metadata_disks_per_row);
1687 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1688 				le16_to_cpu(map->layout_map_count) *
1689 				total_disks_per_row;
1690 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1691 				total_disks_per_row;
1692 	int qdepth;
1693 
1694 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1695 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1696 
1697 	logical_drive->nphysical_disks = nraid_map_entries;
1698 
1699 	qdepth = 0;
1700 	for (i = 0; i < nraid_map_entries; i++) {
1701 		logical_drive->phys_disk[i] = NULL;
1702 		if (!logical_drive->offload_config)
1703 			continue;
1704 		for (j = 0; j < ndevices; j++) {
1705 			if (dev[j] == NULL)
1706 				continue;
1707 			if (dev[j]->devtype != TYPE_DISK &&
1708 			    dev[j]->devtype != TYPE_ZBC)
1709 				continue;
1710 			if (is_logical_device(dev[j]))
1711 				continue;
1712 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1713 				continue;
1714 
1715 			logical_drive->phys_disk[i] = dev[j];
1716 			if (i < nphys_disk)
1717 				qdepth = min(h->nr_cmds, qdepth +
1718 				    logical_drive->phys_disk[i]->queue_depth);
1719 			break;
1720 		}
1721 
1722 		/*
1723 		 * This can happen if a physical drive is removed and
1724 		 * the logical drive is degraded.  In that case, the RAID
1725 		 * map data will refer to a physical disk which isn't actually
1726 		 * present.  And in that case offload_enabled should already
1727 		 * be 0, but we'll turn it off here just in case
1728 		 */
1729 		if (!logical_drive->phys_disk[i]) {
1730 			logical_drive->offload_enabled = 0;
1731 			logical_drive->offload_to_be_enabled = 0;
1732 			logical_drive->queue_depth = 8;
1733 		}
1734 	}
1735 	if (nraid_map_entries)
1736 		/*
1737 		 * This is correct for reads, too high for full stripe writes,
1738 		 * way too high for partial stripe writes
1739 		 */
1740 		logical_drive->queue_depth = qdepth;
1741 	else
1742 		logical_drive->queue_depth = h->nr_cmds;
1743 }
1744 
1745 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1746 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1747 {
1748 	int i;
1749 
1750 	for (i = 0; i < ndevices; i++) {
1751 		if (dev[i] == NULL)
1752 			continue;
1753 		if (dev[i]->devtype != TYPE_DISK &&
1754 		    dev[i]->devtype != TYPE_ZBC)
1755 			continue;
1756 		if (!is_logical_device(dev[i]))
1757 			continue;
1758 
1759 		/*
1760 		 * If offload is currently enabled, the RAID map and
1761 		 * phys_disk[] assignment *better* not be changing
1762 		 * and since it isn't changing, we do not need to
1763 		 * update it.
1764 		 */
1765 		if (dev[i]->offload_enabled)
1766 			continue;
1767 
1768 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1769 	}
1770 }
1771 
1772 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1773 {
1774 	int rc = 0;
1775 
1776 	if (!h->scsi_host)
1777 		return 1;
1778 
1779 	if (is_logical_device(device)) /* RAID */
1780 		rc = scsi_add_device(h->scsi_host, device->bus,
1781 					device->target, device->lun);
1782 	else /* HBA */
1783 		rc = hpsa_add_sas_device(h->sas_host, device);
1784 
1785 	return rc;
1786 }
1787 
1788 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1789 						struct hpsa_scsi_dev_t *dev)
1790 {
1791 	int i;
1792 	int count = 0;
1793 
1794 	for (i = 0; i < h->nr_cmds; i++) {
1795 		struct CommandList *c = h->cmd_pool + i;
1796 		int refcount = atomic_inc_return(&c->refcount);
1797 
1798 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1799 				dev->scsi3addr)) {
1800 			unsigned long flags;
1801 
1802 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1803 			if (!hpsa_is_cmd_idle(c))
1804 				++count;
1805 			spin_unlock_irqrestore(&h->lock, flags);
1806 		}
1807 
1808 		cmd_free(h, c);
1809 	}
1810 
1811 	return count;
1812 }
1813 
1814 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1815 						struct hpsa_scsi_dev_t *device)
1816 {
1817 	int cmds = 0;
1818 	int waits = 0;
1819 
1820 	while (1) {
1821 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1822 		if (cmds == 0)
1823 			break;
1824 		if (++waits > 20)
1825 			break;
1826 		dev_warn(&h->pdev->dev,
1827 			"%s: removing device with %d outstanding commands!\n",
1828 			__func__, cmds);
1829 		msleep(1000);
1830 	}
1831 }
1832 
1833 static void hpsa_remove_device(struct ctlr_info *h,
1834 			struct hpsa_scsi_dev_t *device)
1835 {
1836 	struct scsi_device *sdev = NULL;
1837 
1838 	if (!h->scsi_host)
1839 		return;
1840 
1841 	if (is_logical_device(device)) { /* RAID */
1842 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1843 						device->target, device->lun);
1844 		if (sdev) {
1845 			scsi_remove_device(sdev);
1846 			scsi_device_put(sdev);
1847 		} else {
1848 			/*
1849 			 * We don't expect to get here.  Future commands
1850 			 * to this device will get a selection timeout as
1851 			 * if the device were gone.
1852 			 */
1853 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1854 					"didn't find device for removal.");
1855 		}
1856 	} else { /* HBA */
1857 
1858 		device->removed = 1;
1859 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1860 
1861 		hpsa_remove_sas_device(device);
1862 	}
1863 }
1864 
1865 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1866 	struct hpsa_scsi_dev_t *sd[], int nsds)
1867 {
1868 	/* sd contains scsi3 addresses and devtypes, and inquiry
1869 	 * data.  This function takes what's in sd to be the current
1870 	 * reality and updates h->dev[] to reflect that reality.
1871 	 */
1872 	int i, entry, device_change, changes = 0;
1873 	struct hpsa_scsi_dev_t *csd;
1874 	unsigned long flags;
1875 	struct hpsa_scsi_dev_t **added, **removed;
1876 	int nadded, nremoved;
1877 
1878 	/*
1879 	 * A reset can cause a device status to change
1880 	 * re-schedule the scan to see what happened.
1881 	 */
1882 	spin_lock_irqsave(&h->reset_lock, flags);
1883 	if (h->reset_in_progress) {
1884 		h->drv_req_rescan = 1;
1885 		spin_unlock_irqrestore(&h->reset_lock, flags);
1886 		return;
1887 	}
1888 	spin_unlock_irqrestore(&h->reset_lock, flags);
1889 
1890 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1891 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1892 
1893 	if (!added || !removed) {
1894 		dev_warn(&h->pdev->dev, "out of memory in "
1895 			"adjust_hpsa_scsi_table\n");
1896 		goto free_and_out;
1897 	}
1898 
1899 	spin_lock_irqsave(&h->devlock, flags);
1900 
1901 	/* find any devices in h->dev[] that are not in
1902 	 * sd[] and remove them from h->dev[], and for any
1903 	 * devices which have changed, remove the old device
1904 	 * info and add the new device info.
1905 	 * If minor device attributes change, just update
1906 	 * the existing device structure.
1907 	 */
1908 	i = 0;
1909 	nremoved = 0;
1910 	nadded = 0;
1911 	while (i < h->ndevices) {
1912 		csd = h->dev[i];
1913 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1914 		if (device_change == DEVICE_NOT_FOUND) {
1915 			changes++;
1916 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1917 			continue; /* remove ^^^, hence i not incremented */
1918 		} else if (device_change == DEVICE_CHANGED) {
1919 			changes++;
1920 			hpsa_scsi_replace_entry(h, i, sd[entry],
1921 				added, &nadded, removed, &nremoved);
1922 			/* Set it to NULL to prevent it from being freed
1923 			 * at the bottom of hpsa_update_scsi_devices()
1924 			 */
1925 			sd[entry] = NULL;
1926 		} else if (device_change == DEVICE_UPDATED) {
1927 			hpsa_scsi_update_entry(h, i, sd[entry]);
1928 		}
1929 		i++;
1930 	}
1931 
1932 	/* Now, make sure every device listed in sd[] is also
1933 	 * listed in h->dev[], adding them if they aren't found
1934 	 */
1935 
1936 	for (i = 0; i < nsds; i++) {
1937 		if (!sd[i]) /* if already added above. */
1938 			continue;
1939 
1940 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1941 		 * as the SCSI mid-layer does not handle such devices well.
1942 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1943 		 * at 160Hz, and prevents the system from coming up.
1944 		 */
1945 		if (sd[i]->volume_offline) {
1946 			hpsa_show_volume_status(h, sd[i]);
1947 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1948 			continue;
1949 		}
1950 
1951 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1952 					h->ndevices, &entry);
1953 		if (device_change == DEVICE_NOT_FOUND) {
1954 			changes++;
1955 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1956 				break;
1957 			sd[i] = NULL; /* prevent from being freed later. */
1958 		} else if (device_change == DEVICE_CHANGED) {
1959 			/* should never happen... */
1960 			changes++;
1961 			dev_warn(&h->pdev->dev,
1962 				"device unexpectedly changed.\n");
1963 			/* but if it does happen, we just ignore that device */
1964 		}
1965 	}
1966 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1967 
1968 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1969 	 * any logical drives that need it enabled.
1970 	 */
1971 	for (i = 0; i < h->ndevices; i++) {
1972 		if (h->dev[i] == NULL)
1973 			continue;
1974 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1975 	}
1976 
1977 	spin_unlock_irqrestore(&h->devlock, flags);
1978 
1979 	/* Monitor devices which are in one of several NOT READY states to be
1980 	 * brought online later. This must be done without holding h->devlock,
1981 	 * so don't touch h->dev[]
1982 	 */
1983 	for (i = 0; i < nsds; i++) {
1984 		if (!sd[i]) /* if already added above. */
1985 			continue;
1986 		if (sd[i]->volume_offline)
1987 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1988 	}
1989 
1990 	/* Don't notify scsi mid layer of any changes the first time through
1991 	 * (or if there are no changes) scsi_scan_host will do it later the
1992 	 * first time through.
1993 	 */
1994 	if (!changes)
1995 		goto free_and_out;
1996 
1997 	/* Notify scsi mid layer of any removed devices */
1998 	for (i = 0; i < nremoved; i++) {
1999 		if (removed[i] == NULL)
2000 			continue;
2001 		if (removed[i]->expose_device)
2002 			hpsa_remove_device(h, removed[i]);
2003 		kfree(removed[i]);
2004 		removed[i] = NULL;
2005 	}
2006 
2007 	/* Notify scsi mid layer of any added devices */
2008 	for (i = 0; i < nadded; i++) {
2009 		int rc = 0;
2010 
2011 		if (added[i] == NULL)
2012 			continue;
2013 		if (!(added[i]->expose_device))
2014 			continue;
2015 		rc = hpsa_add_device(h, added[i]);
2016 		if (!rc)
2017 			continue;
2018 		dev_warn(&h->pdev->dev,
2019 			"addition failed %d, device not added.", rc);
2020 		/* now we have to remove it from h->dev,
2021 		 * since it didn't get added to scsi mid layer
2022 		 */
2023 		fixup_botched_add(h, added[i]);
2024 		h->drv_req_rescan = 1;
2025 	}
2026 
2027 free_and_out:
2028 	kfree(added);
2029 	kfree(removed);
2030 }
2031 
2032 /*
2033  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2034  * Assume's h->devlock is held.
2035  */
2036 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2037 	int bus, int target, int lun)
2038 {
2039 	int i;
2040 	struct hpsa_scsi_dev_t *sd;
2041 
2042 	for (i = 0; i < h->ndevices; i++) {
2043 		sd = h->dev[i];
2044 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2045 			return sd;
2046 	}
2047 	return NULL;
2048 }
2049 
2050 static int hpsa_slave_alloc(struct scsi_device *sdev)
2051 {
2052 	struct hpsa_scsi_dev_t *sd = NULL;
2053 	unsigned long flags;
2054 	struct ctlr_info *h;
2055 
2056 	h = sdev_to_hba(sdev);
2057 	spin_lock_irqsave(&h->devlock, flags);
2058 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2059 		struct scsi_target *starget;
2060 		struct sas_rphy *rphy;
2061 
2062 		starget = scsi_target(sdev);
2063 		rphy = target_to_rphy(starget);
2064 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2065 		if (sd) {
2066 			sd->target = sdev_id(sdev);
2067 			sd->lun = sdev->lun;
2068 		}
2069 	}
2070 	if (!sd)
2071 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2072 					sdev_id(sdev), sdev->lun);
2073 
2074 	if (sd && sd->expose_device) {
2075 		atomic_set(&sd->ioaccel_cmds_out, 0);
2076 		sdev->hostdata = sd;
2077 	} else
2078 		sdev->hostdata = NULL;
2079 	spin_unlock_irqrestore(&h->devlock, flags);
2080 	return 0;
2081 }
2082 
2083 /* configure scsi device based on internal per-device structure */
2084 static int hpsa_slave_configure(struct scsi_device *sdev)
2085 {
2086 	struct hpsa_scsi_dev_t *sd;
2087 	int queue_depth;
2088 
2089 	sd = sdev->hostdata;
2090 	sdev->no_uld_attach = !sd || !sd->expose_device;
2091 
2092 	if (sd) {
2093 		if (sd->external)
2094 			queue_depth = EXTERNAL_QD;
2095 		else
2096 			queue_depth = sd->queue_depth != 0 ?
2097 					sd->queue_depth : sdev->host->can_queue;
2098 	} else
2099 		queue_depth = sdev->host->can_queue;
2100 
2101 	scsi_change_queue_depth(sdev, queue_depth);
2102 
2103 	return 0;
2104 }
2105 
2106 static void hpsa_slave_destroy(struct scsi_device *sdev)
2107 {
2108 	/* nothing to do. */
2109 }
2110 
2111 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2112 {
2113 	int i;
2114 
2115 	if (!h->ioaccel2_cmd_sg_list)
2116 		return;
2117 	for (i = 0; i < h->nr_cmds; i++) {
2118 		kfree(h->ioaccel2_cmd_sg_list[i]);
2119 		h->ioaccel2_cmd_sg_list[i] = NULL;
2120 	}
2121 	kfree(h->ioaccel2_cmd_sg_list);
2122 	h->ioaccel2_cmd_sg_list = NULL;
2123 }
2124 
2125 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2126 {
2127 	int i;
2128 
2129 	if (h->chainsize <= 0)
2130 		return 0;
2131 
2132 	h->ioaccel2_cmd_sg_list =
2133 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2134 					GFP_KERNEL);
2135 	if (!h->ioaccel2_cmd_sg_list)
2136 		return -ENOMEM;
2137 	for (i = 0; i < h->nr_cmds; i++) {
2138 		h->ioaccel2_cmd_sg_list[i] =
2139 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2140 					h->maxsgentries, GFP_KERNEL);
2141 		if (!h->ioaccel2_cmd_sg_list[i])
2142 			goto clean;
2143 	}
2144 	return 0;
2145 
2146 clean:
2147 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2148 	return -ENOMEM;
2149 }
2150 
2151 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2152 {
2153 	int i;
2154 
2155 	if (!h->cmd_sg_list)
2156 		return;
2157 	for (i = 0; i < h->nr_cmds; i++) {
2158 		kfree(h->cmd_sg_list[i]);
2159 		h->cmd_sg_list[i] = NULL;
2160 	}
2161 	kfree(h->cmd_sg_list);
2162 	h->cmd_sg_list = NULL;
2163 }
2164 
2165 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167 	int i;
2168 
2169 	if (h->chainsize <= 0)
2170 		return 0;
2171 
2172 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2173 				GFP_KERNEL);
2174 	if (!h->cmd_sg_list)
2175 		return -ENOMEM;
2176 
2177 	for (i = 0; i < h->nr_cmds; i++) {
2178 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2179 						h->chainsize, GFP_KERNEL);
2180 		if (!h->cmd_sg_list[i])
2181 			goto clean;
2182 
2183 	}
2184 	return 0;
2185 
2186 clean:
2187 	hpsa_free_sg_chain_blocks(h);
2188 	return -ENOMEM;
2189 }
2190 
2191 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2192 	struct io_accel2_cmd *cp, struct CommandList *c)
2193 {
2194 	struct ioaccel2_sg_element *chain_block;
2195 	u64 temp64;
2196 	u32 chain_size;
2197 
2198 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2199 	chain_size = le32_to_cpu(cp->sg[0].length);
2200 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2201 				PCI_DMA_TODEVICE);
2202 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2203 		/* prevent subsequent unmapping */
2204 		cp->sg->address = 0;
2205 		return -1;
2206 	}
2207 	cp->sg->address = cpu_to_le64(temp64);
2208 	return 0;
2209 }
2210 
2211 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2212 	struct io_accel2_cmd *cp)
2213 {
2214 	struct ioaccel2_sg_element *chain_sg;
2215 	u64 temp64;
2216 	u32 chain_size;
2217 
2218 	chain_sg = cp->sg;
2219 	temp64 = le64_to_cpu(chain_sg->address);
2220 	chain_size = le32_to_cpu(cp->sg[0].length);
2221 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2222 }
2223 
2224 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2225 	struct CommandList *c)
2226 {
2227 	struct SGDescriptor *chain_sg, *chain_block;
2228 	u64 temp64;
2229 	u32 chain_len;
2230 
2231 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2232 	chain_block = h->cmd_sg_list[c->cmdindex];
2233 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2234 	chain_len = sizeof(*chain_sg) *
2235 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2236 	chain_sg->Len = cpu_to_le32(chain_len);
2237 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2238 				PCI_DMA_TODEVICE);
2239 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2240 		/* prevent subsequent unmapping */
2241 		chain_sg->Addr = cpu_to_le64(0);
2242 		return -1;
2243 	}
2244 	chain_sg->Addr = cpu_to_le64(temp64);
2245 	return 0;
2246 }
2247 
2248 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2249 	struct CommandList *c)
2250 {
2251 	struct SGDescriptor *chain_sg;
2252 
2253 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2254 		return;
2255 
2256 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2257 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2258 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2259 }
2260 
2261 
2262 /* Decode the various types of errors on ioaccel2 path.
2263  * Return 1 for any error that should generate a RAID path retry.
2264  * Return 0 for errors that don't require a RAID path retry.
2265  */
2266 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2267 					struct CommandList *c,
2268 					struct scsi_cmnd *cmd,
2269 					struct io_accel2_cmd *c2,
2270 					struct hpsa_scsi_dev_t *dev)
2271 {
2272 	int data_len;
2273 	int retry = 0;
2274 	u32 ioaccel2_resid = 0;
2275 
2276 	switch (c2->error_data.serv_response) {
2277 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2278 		switch (c2->error_data.status) {
2279 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2280 			break;
2281 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2282 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2283 			if (c2->error_data.data_present !=
2284 					IOACCEL2_SENSE_DATA_PRESENT) {
2285 				memset(cmd->sense_buffer, 0,
2286 					SCSI_SENSE_BUFFERSIZE);
2287 				break;
2288 			}
2289 			/* copy the sense data */
2290 			data_len = c2->error_data.sense_data_len;
2291 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2292 				data_len = SCSI_SENSE_BUFFERSIZE;
2293 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2294 				data_len =
2295 					sizeof(c2->error_data.sense_data_buff);
2296 			memcpy(cmd->sense_buffer,
2297 				c2->error_data.sense_data_buff, data_len);
2298 			retry = 1;
2299 			break;
2300 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2301 			retry = 1;
2302 			break;
2303 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2304 			retry = 1;
2305 			break;
2306 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2307 			retry = 1;
2308 			break;
2309 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2310 			retry = 1;
2311 			break;
2312 		default:
2313 			retry = 1;
2314 			break;
2315 		}
2316 		break;
2317 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2318 		switch (c2->error_data.status) {
2319 		case IOACCEL2_STATUS_SR_IO_ERROR:
2320 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2321 		case IOACCEL2_STATUS_SR_OVERRUN:
2322 			retry = 1;
2323 			break;
2324 		case IOACCEL2_STATUS_SR_UNDERRUN:
2325 			cmd->result = (DID_OK << 16);		/* host byte */
2326 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2327 			ioaccel2_resid = get_unaligned_le32(
2328 						&c2->error_data.resid_cnt[0]);
2329 			scsi_set_resid(cmd, ioaccel2_resid);
2330 			break;
2331 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2332 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2333 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2334 			/*
2335 			 * Did an HBA disk disappear? We will eventually
2336 			 * get a state change event from the controller but
2337 			 * in the meantime, we need to tell the OS that the
2338 			 * HBA disk is no longer there and stop I/O
2339 			 * from going down. This allows the potential re-insert
2340 			 * of the disk to get the same device node.
2341 			 */
2342 			if (dev->physical_device && dev->expose_device) {
2343 				cmd->result = DID_NO_CONNECT << 16;
2344 				dev->removed = 1;
2345 				h->drv_req_rescan = 1;
2346 				dev_warn(&h->pdev->dev,
2347 					"%s: device is gone!\n", __func__);
2348 			} else
2349 				/*
2350 				 * Retry by sending down the RAID path.
2351 				 * We will get an event from ctlr to
2352 				 * trigger rescan regardless.
2353 				 */
2354 				retry = 1;
2355 			break;
2356 		default:
2357 			retry = 1;
2358 		}
2359 		break;
2360 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2361 		break;
2362 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2363 		break;
2364 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2365 		retry = 1;
2366 		break;
2367 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2368 		break;
2369 	default:
2370 		retry = 1;
2371 		break;
2372 	}
2373 
2374 	return retry;	/* retry on raid path? */
2375 }
2376 
2377 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2378 		struct CommandList *c)
2379 {
2380 	bool do_wake = false;
2381 
2382 	/*
2383 	 * Reset c->scsi_cmd here so that the reset handler will know
2384 	 * this command has completed.  Then, check to see if the handler is
2385 	 * waiting for this command, and, if so, wake it.
2386 	 */
2387 	c->scsi_cmd = SCSI_CMD_IDLE;
2388 	mb();	/* Declare command idle before checking for pending events. */
2389 	if (c->reset_pending) {
2390 		unsigned long flags;
2391 		struct hpsa_scsi_dev_t *dev;
2392 
2393 		/*
2394 		 * There appears to be a reset pending; lock the lock and
2395 		 * reconfirm.  If so, then decrement the count of outstanding
2396 		 * commands and wake the reset command if this is the last one.
2397 		 */
2398 		spin_lock_irqsave(&h->lock, flags);
2399 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2400 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2401 			do_wake = true;
2402 		c->reset_pending = NULL;
2403 		spin_unlock_irqrestore(&h->lock, flags);
2404 	}
2405 
2406 	if (do_wake)
2407 		wake_up_all(&h->event_sync_wait_queue);
2408 }
2409 
2410 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2411 				      struct CommandList *c)
2412 {
2413 	hpsa_cmd_resolve_events(h, c);
2414 	cmd_tagged_free(h, c);
2415 }
2416 
2417 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2418 		struct CommandList *c, struct scsi_cmnd *cmd)
2419 {
2420 	hpsa_cmd_resolve_and_free(h, c);
2421 	if (cmd && cmd->scsi_done)
2422 		cmd->scsi_done(cmd);
2423 }
2424 
2425 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2426 {
2427 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2428 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2429 }
2430 
2431 static void process_ioaccel2_completion(struct ctlr_info *h,
2432 		struct CommandList *c, struct scsi_cmnd *cmd,
2433 		struct hpsa_scsi_dev_t *dev)
2434 {
2435 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2436 
2437 	/* check for good status */
2438 	if (likely(c2->error_data.serv_response == 0 &&
2439 			c2->error_data.status == 0))
2440 		return hpsa_cmd_free_and_done(h, c, cmd);
2441 
2442 	/*
2443 	 * Any RAID offload error results in retry which will use
2444 	 * the normal I/O path so the controller can handle whatever's
2445 	 * wrong.
2446 	 */
2447 	if (is_logical_device(dev) &&
2448 		c2->error_data.serv_response ==
2449 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2450 		if (c2->error_data.status ==
2451 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2452 			dev->offload_enabled = 0;
2453 			dev->offload_to_be_enabled = 0;
2454 		}
2455 
2456 		return hpsa_retry_cmd(h, c);
2457 	}
2458 
2459 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2460 		return hpsa_retry_cmd(h, c);
2461 
2462 	return hpsa_cmd_free_and_done(h, c, cmd);
2463 }
2464 
2465 /* Returns 0 on success, < 0 otherwise. */
2466 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2467 					struct CommandList *cp)
2468 {
2469 	u8 tmf_status = cp->err_info->ScsiStatus;
2470 
2471 	switch (tmf_status) {
2472 	case CISS_TMF_COMPLETE:
2473 		/*
2474 		 * CISS_TMF_COMPLETE never happens, instead,
2475 		 * ei->CommandStatus == 0 for this case.
2476 		 */
2477 	case CISS_TMF_SUCCESS:
2478 		return 0;
2479 	case CISS_TMF_INVALID_FRAME:
2480 	case CISS_TMF_NOT_SUPPORTED:
2481 	case CISS_TMF_FAILED:
2482 	case CISS_TMF_WRONG_LUN:
2483 	case CISS_TMF_OVERLAPPED_TAG:
2484 		break;
2485 	default:
2486 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2487 				tmf_status);
2488 		break;
2489 	}
2490 	return -tmf_status;
2491 }
2492 
2493 static void complete_scsi_command(struct CommandList *cp)
2494 {
2495 	struct scsi_cmnd *cmd;
2496 	struct ctlr_info *h;
2497 	struct ErrorInfo *ei;
2498 	struct hpsa_scsi_dev_t *dev;
2499 	struct io_accel2_cmd *c2;
2500 
2501 	u8 sense_key;
2502 	u8 asc;      /* additional sense code */
2503 	u8 ascq;     /* additional sense code qualifier */
2504 	unsigned long sense_data_size;
2505 
2506 	ei = cp->err_info;
2507 	cmd = cp->scsi_cmd;
2508 	h = cp->h;
2509 
2510 	if (!cmd->device) {
2511 		cmd->result = DID_NO_CONNECT << 16;
2512 		return hpsa_cmd_free_and_done(h, cp, cmd);
2513 	}
2514 
2515 	dev = cmd->device->hostdata;
2516 	if (!dev) {
2517 		cmd->result = DID_NO_CONNECT << 16;
2518 		return hpsa_cmd_free_and_done(h, cp, cmd);
2519 	}
2520 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2521 
2522 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2523 	if ((cp->cmd_type == CMD_SCSI) &&
2524 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2525 		hpsa_unmap_sg_chain_block(h, cp);
2526 
2527 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2528 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2529 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2530 
2531 	cmd->result = (DID_OK << 16); 		/* host byte */
2532 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2533 
2534 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2535 		if (dev->physical_device && dev->expose_device &&
2536 			dev->removed) {
2537 			cmd->result = DID_NO_CONNECT << 16;
2538 			return hpsa_cmd_free_and_done(h, cp, cmd);
2539 		}
2540 		if (likely(cp->phys_disk != NULL))
2541 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2542 	}
2543 
2544 	/*
2545 	 * We check for lockup status here as it may be set for
2546 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2547 	 * fail_all_oustanding_cmds()
2548 	 */
2549 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2550 		/* DID_NO_CONNECT will prevent a retry */
2551 		cmd->result = DID_NO_CONNECT << 16;
2552 		return hpsa_cmd_free_and_done(h, cp, cmd);
2553 	}
2554 
2555 	if ((unlikely(hpsa_is_pending_event(cp))))
2556 		if (cp->reset_pending)
2557 			return hpsa_cmd_free_and_done(h, cp, cmd);
2558 
2559 	if (cp->cmd_type == CMD_IOACCEL2)
2560 		return process_ioaccel2_completion(h, cp, cmd, dev);
2561 
2562 	scsi_set_resid(cmd, ei->ResidualCnt);
2563 	if (ei->CommandStatus == 0)
2564 		return hpsa_cmd_free_and_done(h, cp, cmd);
2565 
2566 	/* For I/O accelerator commands, copy over some fields to the normal
2567 	 * CISS header used below for error handling.
2568 	 */
2569 	if (cp->cmd_type == CMD_IOACCEL1) {
2570 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2571 		cp->Header.SGList = scsi_sg_count(cmd);
2572 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2573 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2574 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2575 		cp->Header.tag = c->tag;
2576 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2577 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2578 
2579 		/* Any RAID offload error results in retry which will use
2580 		 * the normal I/O path so the controller can handle whatever's
2581 		 * wrong.
2582 		 */
2583 		if (is_logical_device(dev)) {
2584 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2585 				dev->offload_enabled = 0;
2586 			return hpsa_retry_cmd(h, cp);
2587 		}
2588 	}
2589 
2590 	/* an error has occurred */
2591 	switch (ei->CommandStatus) {
2592 
2593 	case CMD_TARGET_STATUS:
2594 		cmd->result |= ei->ScsiStatus;
2595 		/* copy the sense data */
2596 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2597 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2598 		else
2599 			sense_data_size = sizeof(ei->SenseInfo);
2600 		if (ei->SenseLen < sense_data_size)
2601 			sense_data_size = ei->SenseLen;
2602 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2603 		if (ei->ScsiStatus)
2604 			decode_sense_data(ei->SenseInfo, sense_data_size,
2605 				&sense_key, &asc, &ascq);
2606 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2607 			if (sense_key == ABORTED_COMMAND) {
2608 				cmd->result |= DID_SOFT_ERROR << 16;
2609 				break;
2610 			}
2611 			break;
2612 		}
2613 		/* Problem was not a check condition
2614 		 * Pass it up to the upper layers...
2615 		 */
2616 		if (ei->ScsiStatus) {
2617 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2618 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2619 				"Returning result: 0x%x\n",
2620 				cp, ei->ScsiStatus,
2621 				sense_key, asc, ascq,
2622 				cmd->result);
2623 		} else {  /* scsi status is zero??? How??? */
2624 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2625 				"Returning no connection.\n", cp),
2626 
2627 			/* Ordinarily, this case should never happen,
2628 			 * but there is a bug in some released firmware
2629 			 * revisions that allows it to happen if, for
2630 			 * example, a 4100 backplane loses power and
2631 			 * the tape drive is in it.  We assume that
2632 			 * it's a fatal error of some kind because we
2633 			 * can't show that it wasn't. We will make it
2634 			 * look like selection timeout since that is
2635 			 * the most common reason for this to occur,
2636 			 * and it's severe enough.
2637 			 */
2638 
2639 			cmd->result = DID_NO_CONNECT << 16;
2640 		}
2641 		break;
2642 
2643 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2644 		break;
2645 	case CMD_DATA_OVERRUN:
2646 		dev_warn(&h->pdev->dev,
2647 			"CDB %16phN data overrun\n", cp->Request.CDB);
2648 		break;
2649 	case CMD_INVALID: {
2650 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2651 		print_cmd(cp); */
2652 		/* We get CMD_INVALID if you address a non-existent device
2653 		 * instead of a selection timeout (no response).  You will
2654 		 * see this if you yank out a drive, then try to access it.
2655 		 * This is kind of a shame because it means that any other
2656 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2657 		 * missing target. */
2658 		cmd->result = DID_NO_CONNECT << 16;
2659 	}
2660 		break;
2661 	case CMD_PROTOCOL_ERR:
2662 		cmd->result = DID_ERROR << 16;
2663 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2664 				cp->Request.CDB);
2665 		break;
2666 	case CMD_HARDWARE_ERR:
2667 		cmd->result = DID_ERROR << 16;
2668 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2669 			cp->Request.CDB);
2670 		break;
2671 	case CMD_CONNECTION_LOST:
2672 		cmd->result = DID_ERROR << 16;
2673 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2674 			cp->Request.CDB);
2675 		break;
2676 	case CMD_ABORTED:
2677 		cmd->result = DID_ABORT << 16;
2678 		break;
2679 	case CMD_ABORT_FAILED:
2680 		cmd->result = DID_ERROR << 16;
2681 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2682 			cp->Request.CDB);
2683 		break;
2684 	case CMD_UNSOLICITED_ABORT:
2685 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2686 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2687 			cp->Request.CDB);
2688 		break;
2689 	case CMD_TIMEOUT:
2690 		cmd->result = DID_TIME_OUT << 16;
2691 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2692 			cp->Request.CDB);
2693 		break;
2694 	case CMD_UNABORTABLE:
2695 		cmd->result = DID_ERROR << 16;
2696 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2697 		break;
2698 	case CMD_TMF_STATUS:
2699 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2700 			cmd->result = DID_ERROR << 16;
2701 		break;
2702 	case CMD_IOACCEL_DISABLED:
2703 		/* This only handles the direct pass-through case since RAID
2704 		 * offload is handled above.  Just attempt a retry.
2705 		 */
2706 		cmd->result = DID_SOFT_ERROR << 16;
2707 		dev_warn(&h->pdev->dev,
2708 				"cp %p had HP SSD Smart Path error\n", cp);
2709 		break;
2710 	default:
2711 		cmd->result = DID_ERROR << 16;
2712 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2713 				cp, ei->CommandStatus);
2714 	}
2715 
2716 	return hpsa_cmd_free_and_done(h, cp, cmd);
2717 }
2718 
2719 static void hpsa_pci_unmap(struct pci_dev *pdev,
2720 	struct CommandList *c, int sg_used, int data_direction)
2721 {
2722 	int i;
2723 
2724 	for (i = 0; i < sg_used; i++)
2725 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2726 				le32_to_cpu(c->SG[i].Len),
2727 				data_direction);
2728 }
2729 
2730 static int hpsa_map_one(struct pci_dev *pdev,
2731 		struct CommandList *cp,
2732 		unsigned char *buf,
2733 		size_t buflen,
2734 		int data_direction)
2735 {
2736 	u64 addr64;
2737 
2738 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2739 		cp->Header.SGList = 0;
2740 		cp->Header.SGTotal = cpu_to_le16(0);
2741 		return 0;
2742 	}
2743 
2744 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2745 	if (dma_mapping_error(&pdev->dev, addr64)) {
2746 		/* Prevent subsequent unmap of something never mapped */
2747 		cp->Header.SGList = 0;
2748 		cp->Header.SGTotal = cpu_to_le16(0);
2749 		return -1;
2750 	}
2751 	cp->SG[0].Addr = cpu_to_le64(addr64);
2752 	cp->SG[0].Len = cpu_to_le32(buflen);
2753 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2754 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2755 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2756 	return 0;
2757 }
2758 
2759 #define NO_TIMEOUT ((unsigned long) -1)
2760 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2761 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2762 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2763 {
2764 	DECLARE_COMPLETION_ONSTACK(wait);
2765 
2766 	c->waiting = &wait;
2767 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2768 	if (timeout_msecs == NO_TIMEOUT) {
2769 		/* TODO: get rid of this no-timeout thing */
2770 		wait_for_completion_io(&wait);
2771 		return IO_OK;
2772 	}
2773 	if (!wait_for_completion_io_timeout(&wait,
2774 					msecs_to_jiffies(timeout_msecs))) {
2775 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2776 		return -ETIMEDOUT;
2777 	}
2778 	return IO_OK;
2779 }
2780 
2781 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2782 				   int reply_queue, unsigned long timeout_msecs)
2783 {
2784 	if (unlikely(lockup_detected(h))) {
2785 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2786 		return IO_OK;
2787 	}
2788 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2789 }
2790 
2791 static u32 lockup_detected(struct ctlr_info *h)
2792 {
2793 	int cpu;
2794 	u32 rc, *lockup_detected;
2795 
2796 	cpu = get_cpu();
2797 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2798 	rc = *lockup_detected;
2799 	put_cpu();
2800 	return rc;
2801 }
2802 
2803 #define MAX_DRIVER_CMD_RETRIES 25
2804 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2805 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2806 {
2807 	int backoff_time = 10, retry_count = 0;
2808 	int rc;
2809 
2810 	do {
2811 		memset(c->err_info, 0, sizeof(*c->err_info));
2812 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2813 						  timeout_msecs);
2814 		if (rc)
2815 			break;
2816 		retry_count++;
2817 		if (retry_count > 3) {
2818 			msleep(backoff_time);
2819 			if (backoff_time < 1000)
2820 				backoff_time *= 2;
2821 		}
2822 	} while ((check_for_unit_attention(h, c) ||
2823 			check_for_busy(h, c)) &&
2824 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2825 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2826 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2827 		rc = -EIO;
2828 	return rc;
2829 }
2830 
2831 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2832 				struct CommandList *c)
2833 {
2834 	const u8 *cdb = c->Request.CDB;
2835 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2836 
2837 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2838 		 txt, lun, cdb);
2839 }
2840 
2841 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2842 			struct CommandList *cp)
2843 {
2844 	const struct ErrorInfo *ei = cp->err_info;
2845 	struct device *d = &cp->h->pdev->dev;
2846 	u8 sense_key, asc, ascq;
2847 	int sense_len;
2848 
2849 	switch (ei->CommandStatus) {
2850 	case CMD_TARGET_STATUS:
2851 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2852 			sense_len = sizeof(ei->SenseInfo);
2853 		else
2854 			sense_len = ei->SenseLen;
2855 		decode_sense_data(ei->SenseInfo, sense_len,
2856 					&sense_key, &asc, &ascq);
2857 		hpsa_print_cmd(h, "SCSI status", cp);
2858 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2859 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2860 				sense_key, asc, ascq);
2861 		else
2862 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2863 		if (ei->ScsiStatus == 0)
2864 			dev_warn(d, "SCSI status is abnormally zero.  "
2865 			"(probably indicates selection timeout "
2866 			"reported incorrectly due to a known "
2867 			"firmware bug, circa July, 2001.)\n");
2868 		break;
2869 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2870 		break;
2871 	case CMD_DATA_OVERRUN:
2872 		hpsa_print_cmd(h, "overrun condition", cp);
2873 		break;
2874 	case CMD_INVALID: {
2875 		/* controller unfortunately reports SCSI passthru's
2876 		 * to non-existent targets as invalid commands.
2877 		 */
2878 		hpsa_print_cmd(h, "invalid command", cp);
2879 		dev_warn(d, "probably means device no longer present\n");
2880 		}
2881 		break;
2882 	case CMD_PROTOCOL_ERR:
2883 		hpsa_print_cmd(h, "protocol error", cp);
2884 		break;
2885 	case CMD_HARDWARE_ERR:
2886 		hpsa_print_cmd(h, "hardware error", cp);
2887 		break;
2888 	case CMD_CONNECTION_LOST:
2889 		hpsa_print_cmd(h, "connection lost", cp);
2890 		break;
2891 	case CMD_ABORTED:
2892 		hpsa_print_cmd(h, "aborted", cp);
2893 		break;
2894 	case CMD_ABORT_FAILED:
2895 		hpsa_print_cmd(h, "abort failed", cp);
2896 		break;
2897 	case CMD_UNSOLICITED_ABORT:
2898 		hpsa_print_cmd(h, "unsolicited abort", cp);
2899 		break;
2900 	case CMD_TIMEOUT:
2901 		hpsa_print_cmd(h, "timed out", cp);
2902 		break;
2903 	case CMD_UNABORTABLE:
2904 		hpsa_print_cmd(h, "unabortable", cp);
2905 		break;
2906 	case CMD_CTLR_LOCKUP:
2907 		hpsa_print_cmd(h, "controller lockup detected", cp);
2908 		break;
2909 	default:
2910 		hpsa_print_cmd(h, "unknown status", cp);
2911 		dev_warn(d, "Unknown command status %x\n",
2912 				ei->CommandStatus);
2913 	}
2914 }
2915 
2916 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2917 			u16 page, unsigned char *buf,
2918 			unsigned char bufsize)
2919 {
2920 	int rc = IO_OK;
2921 	struct CommandList *c;
2922 	struct ErrorInfo *ei;
2923 
2924 	c = cmd_alloc(h);
2925 
2926 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2927 			page, scsi3addr, TYPE_CMD)) {
2928 		rc = -1;
2929 		goto out;
2930 	}
2931 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2932 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2933 	if (rc)
2934 		goto out;
2935 	ei = c->err_info;
2936 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2937 		hpsa_scsi_interpret_error(h, c);
2938 		rc = -1;
2939 	}
2940 out:
2941 	cmd_free(h, c);
2942 	return rc;
2943 }
2944 
2945 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2946 	u8 reset_type, int reply_queue)
2947 {
2948 	int rc = IO_OK;
2949 	struct CommandList *c;
2950 	struct ErrorInfo *ei;
2951 
2952 	c = cmd_alloc(h);
2953 
2954 
2955 	/* fill_cmd can't fail here, no data buffer to map. */
2956 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2957 			scsi3addr, TYPE_MSG);
2958 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2959 	if (rc) {
2960 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2961 		goto out;
2962 	}
2963 	/* no unmap needed here because no data xfer. */
2964 
2965 	ei = c->err_info;
2966 	if (ei->CommandStatus != 0) {
2967 		hpsa_scsi_interpret_error(h, c);
2968 		rc = -1;
2969 	}
2970 out:
2971 	cmd_free(h, c);
2972 	return rc;
2973 }
2974 
2975 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2976 			       struct hpsa_scsi_dev_t *dev,
2977 			       unsigned char *scsi3addr)
2978 {
2979 	int i;
2980 	bool match = false;
2981 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2982 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2983 
2984 	if (hpsa_is_cmd_idle(c))
2985 		return false;
2986 
2987 	switch (c->cmd_type) {
2988 	case CMD_SCSI:
2989 	case CMD_IOCTL_PEND:
2990 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2991 				sizeof(c->Header.LUN.LunAddrBytes));
2992 		break;
2993 
2994 	case CMD_IOACCEL1:
2995 	case CMD_IOACCEL2:
2996 		if (c->phys_disk == dev) {
2997 			/* HBA mode match */
2998 			match = true;
2999 		} else {
3000 			/* Possible RAID mode -- check each phys dev. */
3001 			/* FIXME:  Do we need to take out a lock here?  If
3002 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3003 			 * instead. */
3004 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3005 				/* FIXME: an alternate test might be
3006 				 *
3007 				 * match = dev->phys_disk[i]->ioaccel_handle
3008 				 *              == c2->scsi_nexus;      */
3009 				match = dev->phys_disk[i] == c->phys_disk;
3010 			}
3011 		}
3012 		break;
3013 
3014 	case IOACCEL2_TMF:
3015 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3016 			match = dev->phys_disk[i]->ioaccel_handle ==
3017 					le32_to_cpu(ac->it_nexus);
3018 		}
3019 		break;
3020 
3021 	case 0:		/* The command is in the middle of being initialized. */
3022 		match = false;
3023 		break;
3024 
3025 	default:
3026 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3027 			c->cmd_type);
3028 		BUG();
3029 	}
3030 
3031 	return match;
3032 }
3033 
3034 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3035 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3036 {
3037 	int i;
3038 	int rc = 0;
3039 
3040 	/* We can really only handle one reset at a time */
3041 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3042 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3043 		return -EINTR;
3044 	}
3045 
3046 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3047 
3048 	for (i = 0; i < h->nr_cmds; i++) {
3049 		struct CommandList *c = h->cmd_pool + i;
3050 		int refcount = atomic_inc_return(&c->refcount);
3051 
3052 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3053 			unsigned long flags;
3054 
3055 			/*
3056 			 * Mark the target command as having a reset pending,
3057 			 * then lock a lock so that the command cannot complete
3058 			 * while we're considering it.  If the command is not
3059 			 * idle then count it; otherwise revoke the event.
3060 			 */
3061 			c->reset_pending = dev;
3062 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3063 			if (!hpsa_is_cmd_idle(c))
3064 				atomic_inc(&dev->reset_cmds_out);
3065 			else
3066 				c->reset_pending = NULL;
3067 			spin_unlock_irqrestore(&h->lock, flags);
3068 		}
3069 
3070 		cmd_free(h, c);
3071 	}
3072 
3073 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3074 	if (!rc)
3075 		wait_event(h->event_sync_wait_queue,
3076 			atomic_read(&dev->reset_cmds_out) == 0 ||
3077 			lockup_detected(h));
3078 
3079 	if (unlikely(lockup_detected(h))) {
3080 		dev_warn(&h->pdev->dev,
3081 			 "Controller lockup detected during reset wait\n");
3082 		rc = -ENODEV;
3083 	}
3084 
3085 	if (unlikely(rc))
3086 		atomic_set(&dev->reset_cmds_out, 0);
3087 	else
3088 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3089 
3090 	mutex_unlock(&h->reset_mutex);
3091 	return rc;
3092 }
3093 
3094 static void hpsa_get_raid_level(struct ctlr_info *h,
3095 	unsigned char *scsi3addr, unsigned char *raid_level)
3096 {
3097 	int rc;
3098 	unsigned char *buf;
3099 
3100 	*raid_level = RAID_UNKNOWN;
3101 	buf = kzalloc(64, GFP_KERNEL);
3102 	if (!buf)
3103 		return;
3104 
3105 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3106 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3107 		goto exit;
3108 
3109 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3110 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3111 
3112 	if (rc == 0)
3113 		*raid_level = buf[8];
3114 	if (*raid_level > RAID_UNKNOWN)
3115 		*raid_level = RAID_UNKNOWN;
3116 exit:
3117 	kfree(buf);
3118 	return;
3119 }
3120 
3121 #define HPSA_MAP_DEBUG
3122 #ifdef HPSA_MAP_DEBUG
3123 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3124 				struct raid_map_data *map_buff)
3125 {
3126 	struct raid_map_disk_data *dd = &map_buff->data[0];
3127 	int map, row, col;
3128 	u16 map_cnt, row_cnt, disks_per_row;
3129 
3130 	if (rc != 0)
3131 		return;
3132 
3133 	/* Show details only if debugging has been activated. */
3134 	if (h->raid_offload_debug < 2)
3135 		return;
3136 
3137 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3138 				le32_to_cpu(map_buff->structure_size));
3139 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3140 			le32_to_cpu(map_buff->volume_blk_size));
3141 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3142 			le64_to_cpu(map_buff->volume_blk_cnt));
3143 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3144 			map_buff->phys_blk_shift);
3145 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3146 			map_buff->parity_rotation_shift);
3147 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3148 			le16_to_cpu(map_buff->strip_size));
3149 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3150 			le64_to_cpu(map_buff->disk_starting_blk));
3151 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3152 			le64_to_cpu(map_buff->disk_blk_cnt));
3153 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3154 			le16_to_cpu(map_buff->data_disks_per_row));
3155 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3156 			le16_to_cpu(map_buff->metadata_disks_per_row));
3157 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3158 			le16_to_cpu(map_buff->row_cnt));
3159 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3160 			le16_to_cpu(map_buff->layout_map_count));
3161 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3162 			le16_to_cpu(map_buff->flags));
3163 	dev_info(&h->pdev->dev, "encryption = %s\n",
3164 			le16_to_cpu(map_buff->flags) &
3165 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3166 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3167 			le16_to_cpu(map_buff->dekindex));
3168 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3169 	for (map = 0; map < map_cnt; map++) {
3170 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3171 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3172 		for (row = 0; row < row_cnt; row++) {
3173 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3174 			disks_per_row =
3175 				le16_to_cpu(map_buff->data_disks_per_row);
3176 			for (col = 0; col < disks_per_row; col++, dd++)
3177 				dev_info(&h->pdev->dev,
3178 					"    D%02u: h=0x%04x xor=%u,%u\n",
3179 					col, dd->ioaccel_handle,
3180 					dd->xor_mult[0], dd->xor_mult[1]);
3181 			disks_per_row =
3182 				le16_to_cpu(map_buff->metadata_disks_per_row);
3183 			for (col = 0; col < disks_per_row; col++, dd++)
3184 				dev_info(&h->pdev->dev,
3185 					"    M%02u: h=0x%04x xor=%u,%u\n",
3186 					col, dd->ioaccel_handle,
3187 					dd->xor_mult[0], dd->xor_mult[1]);
3188 		}
3189 	}
3190 }
3191 #else
3192 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3193 			__attribute__((unused)) int rc,
3194 			__attribute__((unused)) struct raid_map_data *map_buff)
3195 {
3196 }
3197 #endif
3198 
3199 static int hpsa_get_raid_map(struct ctlr_info *h,
3200 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3201 {
3202 	int rc = 0;
3203 	struct CommandList *c;
3204 	struct ErrorInfo *ei;
3205 
3206 	c = cmd_alloc(h);
3207 
3208 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3209 			sizeof(this_device->raid_map), 0,
3210 			scsi3addr, TYPE_CMD)) {
3211 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3212 		cmd_free(h, c);
3213 		return -1;
3214 	}
3215 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3216 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3217 	if (rc)
3218 		goto out;
3219 	ei = c->err_info;
3220 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3221 		hpsa_scsi_interpret_error(h, c);
3222 		rc = -1;
3223 		goto out;
3224 	}
3225 	cmd_free(h, c);
3226 
3227 	/* @todo in the future, dynamically allocate RAID map memory */
3228 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3229 				sizeof(this_device->raid_map)) {
3230 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3231 		rc = -1;
3232 	}
3233 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3234 	return rc;
3235 out:
3236 	cmd_free(h, c);
3237 	return rc;
3238 }
3239 
3240 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3241 		unsigned char scsi3addr[], u16 bmic_device_index,
3242 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3243 {
3244 	int rc = IO_OK;
3245 	struct CommandList *c;
3246 	struct ErrorInfo *ei;
3247 
3248 	c = cmd_alloc(h);
3249 
3250 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3251 		0, RAID_CTLR_LUNID, TYPE_CMD);
3252 	if (rc)
3253 		goto out;
3254 
3255 	c->Request.CDB[2] = bmic_device_index & 0xff;
3256 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3257 
3258 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3259 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3260 	if (rc)
3261 		goto out;
3262 	ei = c->err_info;
3263 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3264 		hpsa_scsi_interpret_error(h, c);
3265 		rc = -1;
3266 	}
3267 out:
3268 	cmd_free(h, c);
3269 	return rc;
3270 }
3271 
3272 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3273 	struct bmic_identify_controller *buf, size_t bufsize)
3274 {
3275 	int rc = IO_OK;
3276 	struct CommandList *c;
3277 	struct ErrorInfo *ei;
3278 
3279 	c = cmd_alloc(h);
3280 
3281 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3282 		0, RAID_CTLR_LUNID, TYPE_CMD);
3283 	if (rc)
3284 		goto out;
3285 
3286 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3287 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3288 	if (rc)
3289 		goto out;
3290 	ei = c->err_info;
3291 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3292 		hpsa_scsi_interpret_error(h, c);
3293 		rc = -1;
3294 	}
3295 out:
3296 	cmd_free(h, c);
3297 	return rc;
3298 }
3299 
3300 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3301 		unsigned char scsi3addr[], u16 bmic_device_index,
3302 		struct bmic_identify_physical_device *buf, size_t bufsize)
3303 {
3304 	int rc = IO_OK;
3305 	struct CommandList *c;
3306 	struct ErrorInfo *ei;
3307 
3308 	c = cmd_alloc(h);
3309 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3310 		0, RAID_CTLR_LUNID, TYPE_CMD);
3311 	if (rc)
3312 		goto out;
3313 
3314 	c->Request.CDB[2] = bmic_device_index & 0xff;
3315 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3316 
3317 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3318 						DEFAULT_TIMEOUT);
3319 	ei = c->err_info;
3320 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3321 		hpsa_scsi_interpret_error(h, c);
3322 		rc = -1;
3323 	}
3324 out:
3325 	cmd_free(h, c);
3326 
3327 	return rc;
3328 }
3329 
3330 /*
3331  * get enclosure information
3332  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3333  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3334  * Uses id_physical_device to determine the box_index.
3335  */
3336 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3337 			unsigned char *scsi3addr,
3338 			struct ReportExtendedLUNdata *rlep, int rle_index,
3339 			struct hpsa_scsi_dev_t *encl_dev)
3340 {
3341 	int rc = -1;
3342 	struct CommandList *c = NULL;
3343 	struct ErrorInfo *ei = NULL;
3344 	struct bmic_sense_storage_box_params *bssbp = NULL;
3345 	struct bmic_identify_physical_device *id_phys = NULL;
3346 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3347 	u16 bmic_device_index = 0;
3348 
3349 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3350 
3351 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3352 		rc = IO_OK;
3353 		goto out;
3354 	}
3355 
3356 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3357 		rc = IO_OK;
3358 		goto out;
3359 	}
3360 
3361 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3362 	if (!bssbp)
3363 		goto out;
3364 
3365 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3366 	if (!id_phys)
3367 		goto out;
3368 
3369 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3370 						id_phys, sizeof(*id_phys));
3371 	if (rc) {
3372 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3373 			__func__, encl_dev->external, bmic_device_index);
3374 		goto out;
3375 	}
3376 
3377 	c = cmd_alloc(h);
3378 
3379 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3380 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3381 
3382 	if (rc)
3383 		goto out;
3384 
3385 	if (id_phys->phys_connector[1] == 'E')
3386 		c->Request.CDB[5] = id_phys->box_index;
3387 	else
3388 		c->Request.CDB[5] = 0;
3389 
3390 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3391 						DEFAULT_TIMEOUT);
3392 	if (rc)
3393 		goto out;
3394 
3395 	ei = c->err_info;
3396 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3397 		rc = -1;
3398 		goto out;
3399 	}
3400 
3401 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3402 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3403 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3404 
3405 	rc = IO_OK;
3406 out:
3407 	kfree(bssbp);
3408 	kfree(id_phys);
3409 
3410 	if (c)
3411 		cmd_free(h, c);
3412 
3413 	if (rc != IO_OK)
3414 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3415 			"Error, could not get enclosure information\n");
3416 }
3417 
3418 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3419 						unsigned char *scsi3addr)
3420 {
3421 	struct ReportExtendedLUNdata *physdev;
3422 	u32 nphysicals;
3423 	u64 sa = 0;
3424 	int i;
3425 
3426 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3427 	if (!physdev)
3428 		return 0;
3429 
3430 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3431 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3432 		kfree(physdev);
3433 		return 0;
3434 	}
3435 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3436 
3437 	for (i = 0; i < nphysicals; i++)
3438 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3439 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3440 			break;
3441 		}
3442 
3443 	kfree(physdev);
3444 
3445 	return sa;
3446 }
3447 
3448 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3449 					struct hpsa_scsi_dev_t *dev)
3450 {
3451 	int rc;
3452 	u64 sa = 0;
3453 
3454 	if (is_hba_lunid(scsi3addr)) {
3455 		struct bmic_sense_subsystem_info *ssi;
3456 
3457 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3458 		if (!ssi)
3459 			return;
3460 
3461 		rc = hpsa_bmic_sense_subsystem_information(h,
3462 					scsi3addr, 0, ssi, sizeof(*ssi));
3463 		if (rc == 0) {
3464 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3465 			h->sas_address = sa;
3466 		}
3467 
3468 		kfree(ssi);
3469 	} else
3470 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3471 
3472 	dev->sas_address = sa;
3473 }
3474 
3475 /* Get a device id from inquiry page 0x83 */
3476 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3477 	unsigned char scsi3addr[], u8 page)
3478 {
3479 	int rc;
3480 	int i;
3481 	int pages;
3482 	unsigned char *buf, bufsize;
3483 
3484 	buf = kzalloc(256, GFP_KERNEL);
3485 	if (!buf)
3486 		return false;
3487 
3488 	/* Get the size of the page list first */
3489 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3490 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3491 				buf, HPSA_VPD_HEADER_SZ);
3492 	if (rc != 0)
3493 		goto exit_unsupported;
3494 	pages = buf[3];
3495 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3496 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3497 	else
3498 		bufsize = 255;
3499 
3500 	/* Get the whole VPD page list */
3501 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3502 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3503 				buf, bufsize);
3504 	if (rc != 0)
3505 		goto exit_unsupported;
3506 
3507 	pages = buf[3];
3508 	for (i = 1; i <= pages; i++)
3509 		if (buf[3 + i] == page)
3510 			goto exit_supported;
3511 exit_unsupported:
3512 	kfree(buf);
3513 	return false;
3514 exit_supported:
3515 	kfree(buf);
3516 	return true;
3517 }
3518 
3519 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3520 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3521 {
3522 	int rc;
3523 	unsigned char *buf;
3524 	u8 ioaccel_status;
3525 
3526 	this_device->offload_config = 0;
3527 	this_device->offload_enabled = 0;
3528 	this_device->offload_to_be_enabled = 0;
3529 
3530 	buf = kzalloc(64, GFP_KERNEL);
3531 	if (!buf)
3532 		return;
3533 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3534 		goto out;
3535 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3536 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3537 	if (rc != 0)
3538 		goto out;
3539 
3540 #define IOACCEL_STATUS_BYTE 4
3541 #define OFFLOAD_CONFIGURED_BIT 0x01
3542 #define OFFLOAD_ENABLED_BIT 0x02
3543 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3544 	this_device->offload_config =
3545 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3546 	if (this_device->offload_config) {
3547 		this_device->offload_enabled =
3548 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3549 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3550 			this_device->offload_enabled = 0;
3551 	}
3552 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3553 out:
3554 	kfree(buf);
3555 	return;
3556 }
3557 
3558 /* Get the device id from inquiry page 0x83 */
3559 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3560 	unsigned char *device_id, int index, int buflen)
3561 {
3562 	int rc;
3563 	unsigned char *buf;
3564 
3565 	/* Does controller have VPD for device id? */
3566 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3567 		return 1; /* not supported */
3568 
3569 	buf = kzalloc(64, GFP_KERNEL);
3570 	if (!buf)
3571 		return -ENOMEM;
3572 
3573 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3574 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3575 	if (rc == 0) {
3576 		if (buflen > 16)
3577 			buflen = 16;
3578 		memcpy(device_id, &buf[8], buflen);
3579 	}
3580 
3581 	kfree(buf);
3582 
3583 	return rc; /*0 - got id,  otherwise, didn't */
3584 }
3585 
3586 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3587 		void *buf, int bufsize,
3588 		int extended_response)
3589 {
3590 	int rc = IO_OK;
3591 	struct CommandList *c;
3592 	unsigned char scsi3addr[8];
3593 	struct ErrorInfo *ei;
3594 
3595 	c = cmd_alloc(h);
3596 
3597 	/* address the controller */
3598 	memset(scsi3addr, 0, sizeof(scsi3addr));
3599 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3600 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3601 		rc = -EAGAIN;
3602 		goto out;
3603 	}
3604 	if (extended_response)
3605 		c->Request.CDB[1] = extended_response;
3606 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3607 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3608 	if (rc)
3609 		goto out;
3610 	ei = c->err_info;
3611 	if (ei->CommandStatus != 0 &&
3612 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3613 		hpsa_scsi_interpret_error(h, c);
3614 		rc = -EIO;
3615 	} else {
3616 		struct ReportLUNdata *rld = buf;
3617 
3618 		if (rld->extended_response_flag != extended_response) {
3619 			if (!h->legacy_board) {
3620 				dev_err(&h->pdev->dev,
3621 					"report luns requested format %u, got %u\n",
3622 					extended_response,
3623 					rld->extended_response_flag);
3624 				rc = -EINVAL;
3625 			} else
3626 				rc = -EOPNOTSUPP;
3627 		}
3628 	}
3629 out:
3630 	cmd_free(h, c);
3631 	return rc;
3632 }
3633 
3634 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3635 		struct ReportExtendedLUNdata *buf, int bufsize)
3636 {
3637 	int rc;
3638 	struct ReportLUNdata *lbuf;
3639 
3640 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3641 				      HPSA_REPORT_PHYS_EXTENDED);
3642 	if (!rc || rc != -EOPNOTSUPP)
3643 		return rc;
3644 
3645 	/* REPORT PHYS EXTENDED is not supported */
3646 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3647 	if (!lbuf)
3648 		return -ENOMEM;
3649 
3650 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3651 	if (!rc) {
3652 		int i;
3653 		u32 nphys;
3654 
3655 		/* Copy ReportLUNdata header */
3656 		memcpy(buf, lbuf, 8);
3657 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3658 		for (i = 0; i < nphys; i++)
3659 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3660 	}
3661 	kfree(lbuf);
3662 	return rc;
3663 }
3664 
3665 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3666 		struct ReportLUNdata *buf, int bufsize)
3667 {
3668 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3669 }
3670 
3671 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3672 	int bus, int target, int lun)
3673 {
3674 	device->bus = bus;
3675 	device->target = target;
3676 	device->lun = lun;
3677 }
3678 
3679 /* Use VPD inquiry to get details of volume status */
3680 static int hpsa_get_volume_status(struct ctlr_info *h,
3681 					unsigned char scsi3addr[])
3682 {
3683 	int rc;
3684 	int status;
3685 	int size;
3686 	unsigned char *buf;
3687 
3688 	buf = kzalloc(64, GFP_KERNEL);
3689 	if (!buf)
3690 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3691 
3692 	/* Does controller have VPD for logical volume status? */
3693 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3694 		goto exit_failed;
3695 
3696 	/* Get the size of the VPD return buffer */
3697 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3698 					buf, HPSA_VPD_HEADER_SZ);
3699 	if (rc != 0)
3700 		goto exit_failed;
3701 	size = buf[3];
3702 
3703 	/* Now get the whole VPD buffer */
3704 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3705 					buf, size + HPSA_VPD_HEADER_SZ);
3706 	if (rc != 0)
3707 		goto exit_failed;
3708 	status = buf[4]; /* status byte */
3709 
3710 	kfree(buf);
3711 	return status;
3712 exit_failed:
3713 	kfree(buf);
3714 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3715 }
3716 
3717 /* Determine offline status of a volume.
3718  * Return either:
3719  *  0 (not offline)
3720  *  0xff (offline for unknown reasons)
3721  *  # (integer code indicating one of several NOT READY states
3722  *     describing why a volume is to be kept offline)
3723  */
3724 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3725 					unsigned char scsi3addr[])
3726 {
3727 	struct CommandList *c;
3728 	unsigned char *sense;
3729 	u8 sense_key, asc, ascq;
3730 	int sense_len;
3731 	int rc, ldstat = 0;
3732 	u16 cmd_status;
3733 	u8 scsi_status;
3734 #define ASC_LUN_NOT_READY 0x04
3735 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3736 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3737 
3738 	c = cmd_alloc(h);
3739 
3740 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3741 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3742 					DEFAULT_TIMEOUT);
3743 	if (rc) {
3744 		cmd_free(h, c);
3745 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3746 	}
3747 	sense = c->err_info->SenseInfo;
3748 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3749 		sense_len = sizeof(c->err_info->SenseInfo);
3750 	else
3751 		sense_len = c->err_info->SenseLen;
3752 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3753 	cmd_status = c->err_info->CommandStatus;
3754 	scsi_status = c->err_info->ScsiStatus;
3755 	cmd_free(h, c);
3756 
3757 	/* Determine the reason for not ready state */
3758 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3759 
3760 	/* Keep volume offline in certain cases: */
3761 	switch (ldstat) {
3762 	case HPSA_LV_FAILED:
3763 	case HPSA_LV_UNDERGOING_ERASE:
3764 	case HPSA_LV_NOT_AVAILABLE:
3765 	case HPSA_LV_UNDERGOING_RPI:
3766 	case HPSA_LV_PENDING_RPI:
3767 	case HPSA_LV_ENCRYPTED_NO_KEY:
3768 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3769 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3770 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3771 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3772 		return ldstat;
3773 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3774 		/* If VPD status page isn't available,
3775 		 * use ASC/ASCQ to determine state
3776 		 */
3777 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3778 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3779 			return ldstat;
3780 		break;
3781 	default:
3782 		break;
3783 	}
3784 	return HPSA_LV_OK;
3785 }
3786 
3787 static int hpsa_update_device_info(struct ctlr_info *h,
3788 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3789 	unsigned char *is_OBDR_device)
3790 {
3791 
3792 #define OBDR_SIG_OFFSET 43
3793 #define OBDR_TAPE_SIG "$DR-10"
3794 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3795 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3796 
3797 	unsigned char *inq_buff;
3798 	unsigned char *obdr_sig;
3799 	int rc = 0;
3800 
3801 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3802 	if (!inq_buff) {
3803 		rc = -ENOMEM;
3804 		goto bail_out;
3805 	}
3806 
3807 	/* Do an inquiry to the device to see what it is. */
3808 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3809 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3810 		dev_err(&h->pdev->dev,
3811 			"%s: inquiry failed, device will be skipped.\n",
3812 			__func__);
3813 		rc = HPSA_INQUIRY_FAILED;
3814 		goto bail_out;
3815 	}
3816 
3817 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3818 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3819 
3820 	this_device->devtype = (inq_buff[0] & 0x1f);
3821 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3822 	memcpy(this_device->vendor, &inq_buff[8],
3823 		sizeof(this_device->vendor));
3824 	memcpy(this_device->model, &inq_buff[16],
3825 		sizeof(this_device->model));
3826 	this_device->rev = inq_buff[2];
3827 	memset(this_device->device_id, 0,
3828 		sizeof(this_device->device_id));
3829 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3830 		sizeof(this_device->device_id)) < 0)
3831 		dev_err(&h->pdev->dev,
3832 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3833 			h->ctlr, __func__,
3834 			h->scsi_host->host_no,
3835 			this_device->target, this_device->lun,
3836 			scsi_device_type(this_device->devtype),
3837 			this_device->model);
3838 
3839 	if ((this_device->devtype == TYPE_DISK ||
3840 		this_device->devtype == TYPE_ZBC) &&
3841 		is_logical_dev_addr_mode(scsi3addr)) {
3842 		unsigned char volume_offline;
3843 
3844 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3845 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3846 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3847 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3848 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3849 		    h->legacy_board) {
3850 			/*
3851 			 * Legacy boards might not support volume status
3852 			 */
3853 			dev_info(&h->pdev->dev,
3854 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3855 				 this_device->target, this_device->lun);
3856 			volume_offline = 0;
3857 		}
3858 		this_device->volume_offline = volume_offline;
3859 		if (volume_offline == HPSA_LV_FAILED) {
3860 			rc = HPSA_LV_FAILED;
3861 			dev_err(&h->pdev->dev,
3862 				"%s: LV failed, device will be skipped.\n",
3863 				__func__);
3864 			goto bail_out;
3865 		}
3866 	} else {
3867 		this_device->raid_level = RAID_UNKNOWN;
3868 		this_device->offload_config = 0;
3869 		this_device->offload_enabled = 0;
3870 		this_device->offload_to_be_enabled = 0;
3871 		this_device->hba_ioaccel_enabled = 0;
3872 		this_device->volume_offline = 0;
3873 		this_device->queue_depth = h->nr_cmds;
3874 	}
3875 
3876 	if (this_device->external)
3877 		this_device->queue_depth = EXTERNAL_QD;
3878 
3879 	if (is_OBDR_device) {
3880 		/* See if this is a One-Button-Disaster-Recovery device
3881 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3882 		 */
3883 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3884 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3885 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3886 						OBDR_SIG_LEN) == 0);
3887 	}
3888 	kfree(inq_buff);
3889 	return 0;
3890 
3891 bail_out:
3892 	kfree(inq_buff);
3893 	return rc;
3894 }
3895 
3896 /*
3897  * Helper function to assign bus, target, lun mapping of devices.
3898  * Logical drive target and lun are assigned at this time, but
3899  * physical device lun and target assignment are deferred (assigned
3900  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3901 */
3902 static void figure_bus_target_lun(struct ctlr_info *h,
3903 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3904 {
3905 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3906 
3907 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3908 		/* physical device, target and lun filled in later */
3909 		if (is_hba_lunid(lunaddrbytes)) {
3910 			int bus = HPSA_HBA_BUS;
3911 
3912 			if (!device->rev)
3913 				bus = HPSA_LEGACY_HBA_BUS;
3914 			hpsa_set_bus_target_lun(device,
3915 					bus, 0, lunid & 0x3fff);
3916 		} else
3917 			/* defer target, lun assignment for physical devices */
3918 			hpsa_set_bus_target_lun(device,
3919 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3920 		return;
3921 	}
3922 	/* It's a logical device */
3923 	if (device->external) {
3924 		hpsa_set_bus_target_lun(device,
3925 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3926 			lunid & 0x00ff);
3927 		return;
3928 	}
3929 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3930 				0, lunid & 0x3fff);
3931 }
3932 
3933 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3934 	int i, int nphysicals, int nlocal_logicals)
3935 {
3936 	/* In report logicals, local logicals are listed first,
3937 	* then any externals.
3938 	*/
3939 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3940 
3941 	if (i == raid_ctlr_position)
3942 		return 0;
3943 
3944 	if (i < logicals_start)
3945 		return 0;
3946 
3947 	/* i is in logicals range, but still within local logicals */
3948 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3949 		return 0;
3950 
3951 	return 1; /* it's an external lun */
3952 }
3953 
3954 /*
3955  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3956  * logdev.  The number of luns in physdev and logdev are returned in
3957  * *nphysicals and *nlogicals, respectively.
3958  * Returns 0 on success, -1 otherwise.
3959  */
3960 static int hpsa_gather_lun_info(struct ctlr_info *h,
3961 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3962 	struct ReportLUNdata *logdev, u32 *nlogicals)
3963 {
3964 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3965 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3966 		return -1;
3967 	}
3968 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3969 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3970 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3971 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3972 		*nphysicals = HPSA_MAX_PHYS_LUN;
3973 	}
3974 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3975 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3976 		return -1;
3977 	}
3978 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3979 	/* Reject Logicals in excess of our max capability. */
3980 	if (*nlogicals > HPSA_MAX_LUN) {
3981 		dev_warn(&h->pdev->dev,
3982 			"maximum logical LUNs (%d) exceeded.  "
3983 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3984 			*nlogicals - HPSA_MAX_LUN);
3985 			*nlogicals = HPSA_MAX_LUN;
3986 	}
3987 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3988 		dev_warn(&h->pdev->dev,
3989 			"maximum logical + physical LUNs (%d) exceeded. "
3990 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3991 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3992 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3993 	}
3994 	return 0;
3995 }
3996 
3997 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3998 	int i, int nphysicals, int nlogicals,
3999 	struct ReportExtendedLUNdata *physdev_list,
4000 	struct ReportLUNdata *logdev_list)
4001 {
4002 	/* Helper function, figure out where the LUN ID info is coming from
4003 	 * given index i, lists of physical and logical devices, where in
4004 	 * the list the raid controller is supposed to appear (first or last)
4005 	 */
4006 
4007 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4008 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4009 
4010 	if (i == raid_ctlr_position)
4011 		return RAID_CTLR_LUNID;
4012 
4013 	if (i < logicals_start)
4014 		return &physdev_list->LUN[i -
4015 				(raid_ctlr_position == 0)].lunid[0];
4016 
4017 	if (i < last_device)
4018 		return &logdev_list->LUN[i - nphysicals -
4019 			(raid_ctlr_position == 0)][0];
4020 	BUG();
4021 	return NULL;
4022 }
4023 
4024 /* get physical drive ioaccel handle and queue depth */
4025 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4026 		struct hpsa_scsi_dev_t *dev,
4027 		struct ReportExtendedLUNdata *rlep, int rle_index,
4028 		struct bmic_identify_physical_device *id_phys)
4029 {
4030 	int rc;
4031 	struct ext_report_lun_entry *rle;
4032 
4033 	rle = &rlep->LUN[rle_index];
4034 
4035 	dev->ioaccel_handle = rle->ioaccel_handle;
4036 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4037 		dev->hba_ioaccel_enabled = 1;
4038 	memset(id_phys, 0, sizeof(*id_phys));
4039 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4040 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4041 			sizeof(*id_phys));
4042 	if (!rc)
4043 		/* Reserve space for FW operations */
4044 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4045 #define DRIVE_QUEUE_DEPTH 7
4046 		dev->queue_depth =
4047 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4048 				DRIVE_CMDS_RESERVED_FOR_FW;
4049 	else
4050 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4051 }
4052 
4053 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4054 	struct ReportExtendedLUNdata *rlep, int rle_index,
4055 	struct bmic_identify_physical_device *id_phys)
4056 {
4057 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4058 
4059 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4060 		this_device->hba_ioaccel_enabled = 1;
4061 
4062 	memcpy(&this_device->active_path_index,
4063 		&id_phys->active_path_number,
4064 		sizeof(this_device->active_path_index));
4065 	memcpy(&this_device->path_map,
4066 		&id_phys->redundant_path_present_map,
4067 		sizeof(this_device->path_map));
4068 	memcpy(&this_device->box,
4069 		&id_phys->alternate_paths_phys_box_on_port,
4070 		sizeof(this_device->box));
4071 	memcpy(&this_device->phys_connector,
4072 		&id_phys->alternate_paths_phys_connector,
4073 		sizeof(this_device->phys_connector));
4074 	memcpy(&this_device->bay,
4075 		&id_phys->phys_bay_in_box,
4076 		sizeof(this_device->bay));
4077 }
4078 
4079 /* get number of local logical disks. */
4080 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4081 	struct bmic_identify_controller *id_ctlr,
4082 	u32 *nlocals)
4083 {
4084 	int rc;
4085 
4086 	if (!id_ctlr) {
4087 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4088 			__func__);
4089 		return -ENOMEM;
4090 	}
4091 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4092 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4093 	if (!rc)
4094 		if (id_ctlr->configured_logical_drive_count < 256)
4095 			*nlocals = id_ctlr->configured_logical_drive_count;
4096 		else
4097 			*nlocals = le16_to_cpu(
4098 					id_ctlr->extended_logical_unit_count);
4099 	else
4100 		*nlocals = -1;
4101 	return rc;
4102 }
4103 
4104 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4105 {
4106 	struct bmic_identify_physical_device *id_phys;
4107 	bool is_spare = false;
4108 	int rc;
4109 
4110 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4111 	if (!id_phys)
4112 		return false;
4113 
4114 	rc = hpsa_bmic_id_physical_device(h,
4115 					lunaddrbytes,
4116 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4117 					id_phys, sizeof(*id_phys));
4118 	if (rc == 0)
4119 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4120 
4121 	kfree(id_phys);
4122 	return is_spare;
4123 }
4124 
4125 #define RPL_DEV_FLAG_NON_DISK                           0x1
4126 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4127 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4128 
4129 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4130 
4131 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4132 				struct ext_report_lun_entry *rle)
4133 {
4134 	u8 device_flags;
4135 	u8 device_type;
4136 
4137 	if (!MASKED_DEVICE(lunaddrbytes))
4138 		return false;
4139 
4140 	device_flags = rle->device_flags;
4141 	device_type = rle->device_type;
4142 
4143 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4144 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4145 			return false;
4146 		return true;
4147 	}
4148 
4149 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4150 		return false;
4151 
4152 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4153 		return false;
4154 
4155 	/*
4156 	 * Spares may be spun down, we do not want to
4157 	 * do an Inquiry to a RAID set spare drive as
4158 	 * that would have them spun up, that is a
4159 	 * performance hit because I/O to the RAID device
4160 	 * stops while the spin up occurs which can take
4161 	 * over 50 seconds.
4162 	 */
4163 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4164 		return true;
4165 
4166 	return false;
4167 }
4168 
4169 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4170 {
4171 	/* the idea here is we could get notified
4172 	 * that some devices have changed, so we do a report
4173 	 * physical luns and report logical luns cmd, and adjust
4174 	 * our list of devices accordingly.
4175 	 *
4176 	 * The scsi3addr's of devices won't change so long as the
4177 	 * adapter is not reset.  That means we can rescan and
4178 	 * tell which devices we already know about, vs. new
4179 	 * devices, vs.  disappearing devices.
4180 	 */
4181 	struct ReportExtendedLUNdata *physdev_list = NULL;
4182 	struct ReportLUNdata *logdev_list = NULL;
4183 	struct bmic_identify_physical_device *id_phys = NULL;
4184 	struct bmic_identify_controller *id_ctlr = NULL;
4185 	u32 nphysicals = 0;
4186 	u32 nlogicals = 0;
4187 	u32 nlocal_logicals = 0;
4188 	u32 ndev_allocated = 0;
4189 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4190 	int ncurrent = 0;
4191 	int i, n_ext_target_devs, ndevs_to_allocate;
4192 	int raid_ctlr_position;
4193 	bool physical_device;
4194 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4195 
4196 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4197 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4198 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4199 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4200 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4201 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4202 
4203 	if (!currentsd || !physdev_list || !logdev_list ||
4204 		!tmpdevice || !id_phys || !id_ctlr) {
4205 		dev_err(&h->pdev->dev, "out of memory\n");
4206 		goto out;
4207 	}
4208 	memset(lunzerobits, 0, sizeof(lunzerobits));
4209 
4210 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4211 
4212 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4213 			logdev_list, &nlogicals)) {
4214 		h->drv_req_rescan = 1;
4215 		goto out;
4216 	}
4217 
4218 	/* Set number of local logicals (non PTRAID) */
4219 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4220 		dev_warn(&h->pdev->dev,
4221 			"%s: Can't determine number of local logical devices.\n",
4222 			__func__);
4223 	}
4224 
4225 	/* We might see up to the maximum number of logical and physical disks
4226 	 * plus external target devices, and a device for the local RAID
4227 	 * controller.
4228 	 */
4229 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4230 
4231 	/* Allocate the per device structures */
4232 	for (i = 0; i < ndevs_to_allocate; i++) {
4233 		if (i >= HPSA_MAX_DEVICES) {
4234 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4235 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4236 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4237 			break;
4238 		}
4239 
4240 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4241 		if (!currentsd[i]) {
4242 			h->drv_req_rescan = 1;
4243 			goto out;
4244 		}
4245 		ndev_allocated++;
4246 	}
4247 
4248 	if (is_scsi_rev_5(h))
4249 		raid_ctlr_position = 0;
4250 	else
4251 		raid_ctlr_position = nphysicals + nlogicals;
4252 
4253 	/* adjust our table of devices */
4254 	n_ext_target_devs = 0;
4255 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4256 		u8 *lunaddrbytes, is_OBDR = 0;
4257 		int rc = 0;
4258 		int phys_dev_index = i - (raid_ctlr_position == 0);
4259 		bool skip_device = false;
4260 
4261 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4262 
4263 		/* Figure out where the LUN ID info is coming from */
4264 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4265 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4266 
4267 		/* Determine if this is a lun from an external target array */
4268 		tmpdevice->external =
4269 			figure_external_status(h, raid_ctlr_position, i,
4270 						nphysicals, nlocal_logicals);
4271 
4272 		/*
4273 		 * Skip over some devices such as a spare.
4274 		 */
4275 		if (!tmpdevice->external && physical_device) {
4276 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4277 					&physdev_list->LUN[phys_dev_index]);
4278 			if (skip_device)
4279 				continue;
4280 		}
4281 
4282 		/* Get device type, vendor, model, device id */
4283 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4284 							&is_OBDR);
4285 		if (rc == -ENOMEM) {
4286 			dev_warn(&h->pdev->dev,
4287 				"Out of memory, rescan deferred.\n");
4288 			h->drv_req_rescan = 1;
4289 			goto out;
4290 		}
4291 		if (rc) {
4292 			h->drv_req_rescan = 1;
4293 			continue;
4294 		}
4295 
4296 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4297 		this_device = currentsd[ncurrent];
4298 
4299 		/* Turn on discovery_polling if there are ext target devices.
4300 		 * Event-based change notification is unreliable for those.
4301 		 */
4302 		if (!h->discovery_polling) {
4303 			if (tmpdevice->external) {
4304 				h->discovery_polling = 1;
4305 				dev_info(&h->pdev->dev,
4306 					"External target, activate discovery polling.\n");
4307 			}
4308 		}
4309 
4310 
4311 		*this_device = *tmpdevice;
4312 		this_device->physical_device = physical_device;
4313 
4314 		/*
4315 		 * Expose all devices except for physical devices that
4316 		 * are masked.
4317 		 */
4318 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4319 			this_device->expose_device = 0;
4320 		else
4321 			this_device->expose_device = 1;
4322 
4323 
4324 		/*
4325 		 * Get the SAS address for physical devices that are exposed.
4326 		 */
4327 		if (this_device->physical_device && this_device->expose_device)
4328 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4329 
4330 		switch (this_device->devtype) {
4331 		case TYPE_ROM:
4332 			/* We don't *really* support actual CD-ROM devices,
4333 			 * just "One Button Disaster Recovery" tape drive
4334 			 * which temporarily pretends to be a CD-ROM drive.
4335 			 * So we check that the device is really an OBDR tape
4336 			 * device by checking for "$DR-10" in bytes 43-48 of
4337 			 * the inquiry data.
4338 			 */
4339 			if (is_OBDR)
4340 				ncurrent++;
4341 			break;
4342 		case TYPE_DISK:
4343 		case TYPE_ZBC:
4344 			if (this_device->physical_device) {
4345 				/* The disk is in HBA mode. */
4346 				/* Never use RAID mapper in HBA mode. */
4347 				this_device->offload_enabled = 0;
4348 				hpsa_get_ioaccel_drive_info(h, this_device,
4349 					physdev_list, phys_dev_index, id_phys);
4350 				hpsa_get_path_info(this_device,
4351 					physdev_list, phys_dev_index, id_phys);
4352 			}
4353 			ncurrent++;
4354 			break;
4355 		case TYPE_TAPE:
4356 		case TYPE_MEDIUM_CHANGER:
4357 			ncurrent++;
4358 			break;
4359 		case TYPE_ENCLOSURE:
4360 			if (!this_device->external)
4361 				hpsa_get_enclosure_info(h, lunaddrbytes,
4362 						physdev_list, phys_dev_index,
4363 						this_device);
4364 			ncurrent++;
4365 			break;
4366 		case TYPE_RAID:
4367 			/* Only present the Smartarray HBA as a RAID controller.
4368 			 * If it's a RAID controller other than the HBA itself
4369 			 * (an external RAID controller, MSA500 or similar)
4370 			 * don't present it.
4371 			 */
4372 			if (!is_hba_lunid(lunaddrbytes))
4373 				break;
4374 			ncurrent++;
4375 			break;
4376 		default:
4377 			break;
4378 		}
4379 		if (ncurrent >= HPSA_MAX_DEVICES)
4380 			break;
4381 	}
4382 
4383 	if (h->sas_host == NULL) {
4384 		int rc = 0;
4385 
4386 		rc = hpsa_add_sas_host(h);
4387 		if (rc) {
4388 			dev_warn(&h->pdev->dev,
4389 				"Could not add sas host %d\n", rc);
4390 			goto out;
4391 		}
4392 	}
4393 
4394 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4395 out:
4396 	kfree(tmpdevice);
4397 	for (i = 0; i < ndev_allocated; i++)
4398 		kfree(currentsd[i]);
4399 	kfree(currentsd);
4400 	kfree(physdev_list);
4401 	kfree(logdev_list);
4402 	kfree(id_ctlr);
4403 	kfree(id_phys);
4404 }
4405 
4406 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4407 				   struct scatterlist *sg)
4408 {
4409 	u64 addr64 = (u64) sg_dma_address(sg);
4410 	unsigned int len = sg_dma_len(sg);
4411 
4412 	desc->Addr = cpu_to_le64(addr64);
4413 	desc->Len = cpu_to_le32(len);
4414 	desc->Ext = 0;
4415 }
4416 
4417 /*
4418  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4419  * dma mapping  and fills in the scatter gather entries of the
4420  * hpsa command, cp.
4421  */
4422 static int hpsa_scatter_gather(struct ctlr_info *h,
4423 		struct CommandList *cp,
4424 		struct scsi_cmnd *cmd)
4425 {
4426 	struct scatterlist *sg;
4427 	int use_sg, i, sg_limit, chained, last_sg;
4428 	struct SGDescriptor *curr_sg;
4429 
4430 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4431 
4432 	use_sg = scsi_dma_map(cmd);
4433 	if (use_sg < 0)
4434 		return use_sg;
4435 
4436 	if (!use_sg)
4437 		goto sglist_finished;
4438 
4439 	/*
4440 	 * If the number of entries is greater than the max for a single list,
4441 	 * then we have a chained list; we will set up all but one entry in the
4442 	 * first list (the last entry is saved for link information);
4443 	 * otherwise, we don't have a chained list and we'll set up at each of
4444 	 * the entries in the one list.
4445 	 */
4446 	curr_sg = cp->SG;
4447 	chained = use_sg > h->max_cmd_sg_entries;
4448 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4449 	last_sg = scsi_sg_count(cmd) - 1;
4450 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4451 		hpsa_set_sg_descriptor(curr_sg, sg);
4452 		curr_sg++;
4453 	}
4454 
4455 	if (chained) {
4456 		/*
4457 		 * Continue with the chained list.  Set curr_sg to the chained
4458 		 * list.  Modify the limit to the total count less the entries
4459 		 * we've already set up.  Resume the scan at the list entry
4460 		 * where the previous loop left off.
4461 		 */
4462 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4463 		sg_limit = use_sg - sg_limit;
4464 		for_each_sg(sg, sg, sg_limit, i) {
4465 			hpsa_set_sg_descriptor(curr_sg, sg);
4466 			curr_sg++;
4467 		}
4468 	}
4469 
4470 	/* Back the pointer up to the last entry and mark it as "last". */
4471 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4472 
4473 	if (use_sg + chained > h->maxSG)
4474 		h->maxSG = use_sg + chained;
4475 
4476 	if (chained) {
4477 		cp->Header.SGList = h->max_cmd_sg_entries;
4478 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4479 		if (hpsa_map_sg_chain_block(h, cp)) {
4480 			scsi_dma_unmap(cmd);
4481 			return -1;
4482 		}
4483 		return 0;
4484 	}
4485 
4486 sglist_finished:
4487 
4488 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4489 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4490 	return 0;
4491 }
4492 
4493 #define BUFLEN 128
4494 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4495 						u8 *cdb, int cdb_len,
4496 						const char *func)
4497 {
4498 	char buf[BUFLEN];
4499 	int outlen;
4500 	int i;
4501 
4502 	outlen = scnprintf(buf, BUFLEN,
4503 				"%s: Blocking zero-length request: CDB:", func);
4504 	for (i = 0; i < cdb_len; i++)
4505 		outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4506 					"%02hhx", cdb[i]);
4507 	dev_warn(&h->pdev->dev, "%s\n", buf);
4508 }
4509 
4510 #define IO_ACCEL_INELIGIBLE 1
4511 /* zero-length transfers trigger hardware errors. */
4512 static bool is_zero_length_transfer(u8 *cdb)
4513 {
4514 	u32 block_cnt;
4515 
4516 	/* Block zero-length transfer sizes on certain commands. */
4517 	switch (cdb[0]) {
4518 	case READ_10:
4519 	case WRITE_10:
4520 	case VERIFY:		/* 0x2F */
4521 	case WRITE_VERIFY:	/* 0x2E */
4522 		block_cnt = get_unaligned_be16(&cdb[7]);
4523 		break;
4524 	case READ_12:
4525 	case WRITE_12:
4526 	case VERIFY_12: /* 0xAF */
4527 	case WRITE_VERIFY_12:	/* 0xAE */
4528 		block_cnt = get_unaligned_be32(&cdb[6]);
4529 		break;
4530 	case READ_16:
4531 	case WRITE_16:
4532 	case VERIFY_16:		/* 0x8F */
4533 		block_cnt = get_unaligned_be32(&cdb[10]);
4534 		break;
4535 	default:
4536 		return false;
4537 	}
4538 
4539 	return block_cnt == 0;
4540 }
4541 
4542 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4543 {
4544 	int is_write = 0;
4545 	u32 block;
4546 	u32 block_cnt;
4547 
4548 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4549 	switch (cdb[0]) {
4550 	case WRITE_6:
4551 	case WRITE_12:
4552 		is_write = 1;
4553 	case READ_6:
4554 	case READ_12:
4555 		if (*cdb_len == 6) {
4556 			block = (((cdb[1] & 0x1F) << 16) |
4557 				(cdb[2] << 8) |
4558 				cdb[3]);
4559 			block_cnt = cdb[4];
4560 			if (block_cnt == 0)
4561 				block_cnt = 256;
4562 		} else {
4563 			BUG_ON(*cdb_len != 12);
4564 			block = get_unaligned_be32(&cdb[2]);
4565 			block_cnt = get_unaligned_be32(&cdb[6]);
4566 		}
4567 		if (block_cnt > 0xffff)
4568 			return IO_ACCEL_INELIGIBLE;
4569 
4570 		cdb[0] = is_write ? WRITE_10 : READ_10;
4571 		cdb[1] = 0;
4572 		cdb[2] = (u8) (block >> 24);
4573 		cdb[3] = (u8) (block >> 16);
4574 		cdb[4] = (u8) (block >> 8);
4575 		cdb[5] = (u8) (block);
4576 		cdb[6] = 0;
4577 		cdb[7] = (u8) (block_cnt >> 8);
4578 		cdb[8] = (u8) (block_cnt);
4579 		cdb[9] = 0;
4580 		*cdb_len = 10;
4581 		break;
4582 	}
4583 	return 0;
4584 }
4585 
4586 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4587 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4588 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4589 {
4590 	struct scsi_cmnd *cmd = c->scsi_cmd;
4591 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4592 	unsigned int len;
4593 	unsigned int total_len = 0;
4594 	struct scatterlist *sg;
4595 	u64 addr64;
4596 	int use_sg, i;
4597 	struct SGDescriptor *curr_sg;
4598 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4599 
4600 	/* TODO: implement chaining support */
4601 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4602 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4603 		return IO_ACCEL_INELIGIBLE;
4604 	}
4605 
4606 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4607 
4608 	if (is_zero_length_transfer(cdb)) {
4609 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4610 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4611 		return IO_ACCEL_INELIGIBLE;
4612 	}
4613 
4614 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4615 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4616 		return IO_ACCEL_INELIGIBLE;
4617 	}
4618 
4619 	c->cmd_type = CMD_IOACCEL1;
4620 
4621 	/* Adjust the DMA address to point to the accelerated command buffer */
4622 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4623 				(c->cmdindex * sizeof(*cp));
4624 	BUG_ON(c->busaddr & 0x0000007F);
4625 
4626 	use_sg = scsi_dma_map(cmd);
4627 	if (use_sg < 0) {
4628 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4629 		return use_sg;
4630 	}
4631 
4632 	if (use_sg) {
4633 		curr_sg = cp->SG;
4634 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4635 			addr64 = (u64) sg_dma_address(sg);
4636 			len  = sg_dma_len(sg);
4637 			total_len += len;
4638 			curr_sg->Addr = cpu_to_le64(addr64);
4639 			curr_sg->Len = cpu_to_le32(len);
4640 			curr_sg->Ext = cpu_to_le32(0);
4641 			curr_sg++;
4642 		}
4643 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4644 
4645 		switch (cmd->sc_data_direction) {
4646 		case DMA_TO_DEVICE:
4647 			control |= IOACCEL1_CONTROL_DATA_OUT;
4648 			break;
4649 		case DMA_FROM_DEVICE:
4650 			control |= IOACCEL1_CONTROL_DATA_IN;
4651 			break;
4652 		case DMA_NONE:
4653 			control |= IOACCEL1_CONTROL_NODATAXFER;
4654 			break;
4655 		default:
4656 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4657 			cmd->sc_data_direction);
4658 			BUG();
4659 			break;
4660 		}
4661 	} else {
4662 		control |= IOACCEL1_CONTROL_NODATAXFER;
4663 	}
4664 
4665 	c->Header.SGList = use_sg;
4666 	/* Fill out the command structure to submit */
4667 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4668 	cp->transfer_len = cpu_to_le32(total_len);
4669 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4670 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4671 	cp->control = cpu_to_le32(control);
4672 	memcpy(cp->CDB, cdb, cdb_len);
4673 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4674 	/* Tag was already set at init time. */
4675 	enqueue_cmd_and_start_io(h, c);
4676 	return 0;
4677 }
4678 
4679 /*
4680  * Queue a command directly to a device behind the controller using the
4681  * I/O accelerator path.
4682  */
4683 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4684 	struct CommandList *c)
4685 {
4686 	struct scsi_cmnd *cmd = c->scsi_cmd;
4687 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4688 
4689 	if (!dev)
4690 		return -1;
4691 
4692 	c->phys_disk = dev;
4693 
4694 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4695 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4696 }
4697 
4698 /*
4699  * Set encryption parameters for the ioaccel2 request
4700  */
4701 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4702 	struct CommandList *c, struct io_accel2_cmd *cp)
4703 {
4704 	struct scsi_cmnd *cmd = c->scsi_cmd;
4705 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706 	struct raid_map_data *map = &dev->raid_map;
4707 	u64 first_block;
4708 
4709 	/* Are we doing encryption on this device */
4710 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4711 		return;
4712 	/* Set the data encryption key index. */
4713 	cp->dekindex = map->dekindex;
4714 
4715 	/* Set the encryption enable flag, encoded into direction field. */
4716 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4717 
4718 	/* Set encryption tweak values based on logical block address
4719 	 * If block size is 512, tweak value is LBA.
4720 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4721 	 */
4722 	switch (cmd->cmnd[0]) {
4723 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4724 	case READ_6:
4725 	case WRITE_6:
4726 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4727 				(cmd->cmnd[2] << 8) |
4728 				cmd->cmnd[3]);
4729 		break;
4730 	case WRITE_10:
4731 	case READ_10:
4732 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4733 	case WRITE_12:
4734 	case READ_12:
4735 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4736 		break;
4737 	case WRITE_16:
4738 	case READ_16:
4739 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4740 		break;
4741 	default:
4742 		dev_err(&h->pdev->dev,
4743 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4744 			__func__, cmd->cmnd[0]);
4745 		BUG();
4746 		break;
4747 	}
4748 
4749 	if (le32_to_cpu(map->volume_blk_size) != 512)
4750 		first_block = first_block *
4751 				le32_to_cpu(map->volume_blk_size)/512;
4752 
4753 	cp->tweak_lower = cpu_to_le32(first_block);
4754 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4755 }
4756 
4757 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4758 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4759 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4760 {
4761 	struct scsi_cmnd *cmd = c->scsi_cmd;
4762 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4763 	struct ioaccel2_sg_element *curr_sg;
4764 	int use_sg, i;
4765 	struct scatterlist *sg;
4766 	u64 addr64;
4767 	u32 len;
4768 	u32 total_len = 0;
4769 
4770 	if (!cmd->device)
4771 		return -1;
4772 
4773 	if (!cmd->device->hostdata)
4774 		return -1;
4775 
4776 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4777 
4778 	if (is_zero_length_transfer(cdb)) {
4779 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4780 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4781 		return IO_ACCEL_INELIGIBLE;
4782 	}
4783 
4784 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4785 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4786 		return IO_ACCEL_INELIGIBLE;
4787 	}
4788 
4789 	c->cmd_type = CMD_IOACCEL2;
4790 	/* Adjust the DMA address to point to the accelerated command buffer */
4791 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4792 				(c->cmdindex * sizeof(*cp));
4793 	BUG_ON(c->busaddr & 0x0000007F);
4794 
4795 	memset(cp, 0, sizeof(*cp));
4796 	cp->IU_type = IOACCEL2_IU_TYPE;
4797 
4798 	use_sg = scsi_dma_map(cmd);
4799 	if (use_sg < 0) {
4800 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4801 		return use_sg;
4802 	}
4803 
4804 	if (use_sg) {
4805 		curr_sg = cp->sg;
4806 		if (use_sg > h->ioaccel_maxsg) {
4807 			addr64 = le64_to_cpu(
4808 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4809 			curr_sg->address = cpu_to_le64(addr64);
4810 			curr_sg->length = 0;
4811 			curr_sg->reserved[0] = 0;
4812 			curr_sg->reserved[1] = 0;
4813 			curr_sg->reserved[2] = 0;
4814 			curr_sg->chain_indicator = 0x80;
4815 
4816 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4817 		}
4818 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4819 			addr64 = (u64) sg_dma_address(sg);
4820 			len  = sg_dma_len(sg);
4821 			total_len += len;
4822 			curr_sg->address = cpu_to_le64(addr64);
4823 			curr_sg->length = cpu_to_le32(len);
4824 			curr_sg->reserved[0] = 0;
4825 			curr_sg->reserved[1] = 0;
4826 			curr_sg->reserved[2] = 0;
4827 			curr_sg->chain_indicator = 0;
4828 			curr_sg++;
4829 		}
4830 
4831 		switch (cmd->sc_data_direction) {
4832 		case DMA_TO_DEVICE:
4833 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4834 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4835 			break;
4836 		case DMA_FROM_DEVICE:
4837 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4838 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4839 			break;
4840 		case DMA_NONE:
4841 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4842 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4843 			break;
4844 		default:
4845 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4846 				cmd->sc_data_direction);
4847 			BUG();
4848 			break;
4849 		}
4850 	} else {
4851 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4852 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4853 	}
4854 
4855 	/* Set encryption parameters, if necessary */
4856 	set_encrypt_ioaccel2(h, c, cp);
4857 
4858 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4859 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4860 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4861 
4862 	cp->data_len = cpu_to_le32(total_len);
4863 	cp->err_ptr = cpu_to_le64(c->busaddr +
4864 			offsetof(struct io_accel2_cmd, error_data));
4865 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4866 
4867 	/* fill in sg elements */
4868 	if (use_sg > h->ioaccel_maxsg) {
4869 		cp->sg_count = 1;
4870 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4871 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4872 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4873 			scsi_dma_unmap(cmd);
4874 			return -1;
4875 		}
4876 	} else
4877 		cp->sg_count = (u8) use_sg;
4878 
4879 	enqueue_cmd_and_start_io(h, c);
4880 	return 0;
4881 }
4882 
4883 /*
4884  * Queue a command to the correct I/O accelerator path.
4885  */
4886 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4887 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890 	if (!c->scsi_cmd->device)
4891 		return -1;
4892 
4893 	if (!c->scsi_cmd->device->hostdata)
4894 		return -1;
4895 
4896 	/* Try to honor the device's queue depth */
4897 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4898 					phys_disk->queue_depth) {
4899 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4900 		return IO_ACCEL_INELIGIBLE;
4901 	}
4902 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4903 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4904 						cdb, cdb_len, scsi3addr,
4905 						phys_disk);
4906 	else
4907 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4908 						cdb, cdb_len, scsi3addr,
4909 						phys_disk);
4910 }
4911 
4912 static void raid_map_helper(struct raid_map_data *map,
4913 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4914 {
4915 	if (offload_to_mirror == 0)  {
4916 		/* use physical disk in the first mirrored group. */
4917 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4918 		return;
4919 	}
4920 	do {
4921 		/* determine mirror group that *map_index indicates */
4922 		*current_group = *map_index /
4923 			le16_to_cpu(map->data_disks_per_row);
4924 		if (offload_to_mirror == *current_group)
4925 			continue;
4926 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4927 			/* select map index from next group */
4928 			*map_index += le16_to_cpu(map->data_disks_per_row);
4929 			(*current_group)++;
4930 		} else {
4931 			/* select map index from first group */
4932 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4933 			*current_group = 0;
4934 		}
4935 	} while (offload_to_mirror != *current_group);
4936 }
4937 
4938 /*
4939  * Attempt to perform offload RAID mapping for a logical volume I/O.
4940  */
4941 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4942 	struct CommandList *c)
4943 {
4944 	struct scsi_cmnd *cmd = c->scsi_cmd;
4945 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4946 	struct raid_map_data *map = &dev->raid_map;
4947 	struct raid_map_disk_data *dd = &map->data[0];
4948 	int is_write = 0;
4949 	u32 map_index;
4950 	u64 first_block, last_block;
4951 	u32 block_cnt;
4952 	u32 blocks_per_row;
4953 	u64 first_row, last_row;
4954 	u32 first_row_offset, last_row_offset;
4955 	u32 first_column, last_column;
4956 	u64 r0_first_row, r0_last_row;
4957 	u32 r5or6_blocks_per_row;
4958 	u64 r5or6_first_row, r5or6_last_row;
4959 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4960 	u32 r5or6_first_column, r5or6_last_column;
4961 	u32 total_disks_per_row;
4962 	u32 stripesize;
4963 	u32 first_group, last_group, current_group;
4964 	u32 map_row;
4965 	u32 disk_handle;
4966 	u64 disk_block;
4967 	u32 disk_block_cnt;
4968 	u8 cdb[16];
4969 	u8 cdb_len;
4970 	u16 strip_size;
4971 #if BITS_PER_LONG == 32
4972 	u64 tmpdiv;
4973 #endif
4974 	int offload_to_mirror;
4975 
4976 	if (!dev)
4977 		return -1;
4978 
4979 	/* check for valid opcode, get LBA and block count */
4980 	switch (cmd->cmnd[0]) {
4981 	case WRITE_6:
4982 		is_write = 1;
4983 	case READ_6:
4984 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4985 				(cmd->cmnd[2] << 8) |
4986 				cmd->cmnd[3]);
4987 		block_cnt = cmd->cmnd[4];
4988 		if (block_cnt == 0)
4989 			block_cnt = 256;
4990 		break;
4991 	case WRITE_10:
4992 		is_write = 1;
4993 	case READ_10:
4994 		first_block =
4995 			(((u64) cmd->cmnd[2]) << 24) |
4996 			(((u64) cmd->cmnd[3]) << 16) |
4997 			(((u64) cmd->cmnd[4]) << 8) |
4998 			cmd->cmnd[5];
4999 		block_cnt =
5000 			(((u32) cmd->cmnd[7]) << 8) |
5001 			cmd->cmnd[8];
5002 		break;
5003 	case WRITE_12:
5004 		is_write = 1;
5005 	case READ_12:
5006 		first_block =
5007 			(((u64) cmd->cmnd[2]) << 24) |
5008 			(((u64) cmd->cmnd[3]) << 16) |
5009 			(((u64) cmd->cmnd[4]) << 8) |
5010 			cmd->cmnd[5];
5011 		block_cnt =
5012 			(((u32) cmd->cmnd[6]) << 24) |
5013 			(((u32) cmd->cmnd[7]) << 16) |
5014 			(((u32) cmd->cmnd[8]) << 8) |
5015 		cmd->cmnd[9];
5016 		break;
5017 	case WRITE_16:
5018 		is_write = 1;
5019 	case READ_16:
5020 		first_block =
5021 			(((u64) cmd->cmnd[2]) << 56) |
5022 			(((u64) cmd->cmnd[3]) << 48) |
5023 			(((u64) cmd->cmnd[4]) << 40) |
5024 			(((u64) cmd->cmnd[5]) << 32) |
5025 			(((u64) cmd->cmnd[6]) << 24) |
5026 			(((u64) cmd->cmnd[7]) << 16) |
5027 			(((u64) cmd->cmnd[8]) << 8) |
5028 			cmd->cmnd[9];
5029 		block_cnt =
5030 			(((u32) cmd->cmnd[10]) << 24) |
5031 			(((u32) cmd->cmnd[11]) << 16) |
5032 			(((u32) cmd->cmnd[12]) << 8) |
5033 			cmd->cmnd[13];
5034 		break;
5035 	default:
5036 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5037 	}
5038 	last_block = first_block + block_cnt - 1;
5039 
5040 	/* check for write to non-RAID-0 */
5041 	if (is_write && dev->raid_level != 0)
5042 		return IO_ACCEL_INELIGIBLE;
5043 
5044 	/* check for invalid block or wraparound */
5045 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5046 		last_block < first_block)
5047 		return IO_ACCEL_INELIGIBLE;
5048 
5049 	/* calculate stripe information for the request */
5050 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5051 				le16_to_cpu(map->strip_size);
5052 	strip_size = le16_to_cpu(map->strip_size);
5053 #if BITS_PER_LONG == 32
5054 	tmpdiv = first_block;
5055 	(void) do_div(tmpdiv, blocks_per_row);
5056 	first_row = tmpdiv;
5057 	tmpdiv = last_block;
5058 	(void) do_div(tmpdiv, blocks_per_row);
5059 	last_row = tmpdiv;
5060 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5061 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5062 	tmpdiv = first_row_offset;
5063 	(void) do_div(tmpdiv, strip_size);
5064 	first_column = tmpdiv;
5065 	tmpdiv = last_row_offset;
5066 	(void) do_div(tmpdiv, strip_size);
5067 	last_column = tmpdiv;
5068 #else
5069 	first_row = first_block / blocks_per_row;
5070 	last_row = last_block / blocks_per_row;
5071 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5072 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5073 	first_column = first_row_offset / strip_size;
5074 	last_column = last_row_offset / strip_size;
5075 #endif
5076 
5077 	/* if this isn't a single row/column then give to the controller */
5078 	if ((first_row != last_row) || (first_column != last_column))
5079 		return IO_ACCEL_INELIGIBLE;
5080 
5081 	/* proceeding with driver mapping */
5082 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5083 				le16_to_cpu(map->metadata_disks_per_row);
5084 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5085 				le16_to_cpu(map->row_cnt);
5086 	map_index = (map_row * total_disks_per_row) + first_column;
5087 
5088 	switch (dev->raid_level) {
5089 	case HPSA_RAID_0:
5090 		break; /* nothing special to do */
5091 	case HPSA_RAID_1:
5092 		/* Handles load balance across RAID 1 members.
5093 		 * (2-drive R1 and R10 with even # of drives.)
5094 		 * Appropriate for SSDs, not optimal for HDDs
5095 		 */
5096 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5097 		if (dev->offload_to_mirror)
5098 			map_index += le16_to_cpu(map->data_disks_per_row);
5099 		dev->offload_to_mirror = !dev->offload_to_mirror;
5100 		break;
5101 	case HPSA_RAID_ADM:
5102 		/* Handles N-way mirrors  (R1-ADM)
5103 		 * and R10 with # of drives divisible by 3.)
5104 		 */
5105 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5106 
5107 		offload_to_mirror = dev->offload_to_mirror;
5108 		raid_map_helper(map, offload_to_mirror,
5109 				&map_index, &current_group);
5110 		/* set mirror group to use next time */
5111 		offload_to_mirror =
5112 			(offload_to_mirror >=
5113 			le16_to_cpu(map->layout_map_count) - 1)
5114 			? 0 : offload_to_mirror + 1;
5115 		dev->offload_to_mirror = offload_to_mirror;
5116 		/* Avoid direct use of dev->offload_to_mirror within this
5117 		 * function since multiple threads might simultaneously
5118 		 * increment it beyond the range of dev->layout_map_count -1.
5119 		 */
5120 		break;
5121 	case HPSA_RAID_5:
5122 	case HPSA_RAID_6:
5123 		if (le16_to_cpu(map->layout_map_count) <= 1)
5124 			break;
5125 
5126 		/* Verify first and last block are in same RAID group */
5127 		r5or6_blocks_per_row =
5128 			le16_to_cpu(map->strip_size) *
5129 			le16_to_cpu(map->data_disks_per_row);
5130 		BUG_ON(r5or6_blocks_per_row == 0);
5131 		stripesize = r5or6_blocks_per_row *
5132 			le16_to_cpu(map->layout_map_count);
5133 #if BITS_PER_LONG == 32
5134 		tmpdiv = first_block;
5135 		first_group = do_div(tmpdiv, stripesize);
5136 		tmpdiv = first_group;
5137 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5138 		first_group = tmpdiv;
5139 		tmpdiv = last_block;
5140 		last_group = do_div(tmpdiv, stripesize);
5141 		tmpdiv = last_group;
5142 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5143 		last_group = tmpdiv;
5144 #else
5145 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5146 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5147 #endif
5148 		if (first_group != last_group)
5149 			return IO_ACCEL_INELIGIBLE;
5150 
5151 		/* Verify request is in a single row of RAID 5/6 */
5152 #if BITS_PER_LONG == 32
5153 		tmpdiv = first_block;
5154 		(void) do_div(tmpdiv, stripesize);
5155 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5156 		tmpdiv = last_block;
5157 		(void) do_div(tmpdiv, stripesize);
5158 		r5or6_last_row = r0_last_row = tmpdiv;
5159 #else
5160 		first_row = r5or6_first_row = r0_first_row =
5161 						first_block / stripesize;
5162 		r5or6_last_row = r0_last_row = last_block / stripesize;
5163 #endif
5164 		if (r5or6_first_row != r5or6_last_row)
5165 			return IO_ACCEL_INELIGIBLE;
5166 
5167 
5168 		/* Verify request is in a single column */
5169 #if BITS_PER_LONG == 32
5170 		tmpdiv = first_block;
5171 		first_row_offset = do_div(tmpdiv, stripesize);
5172 		tmpdiv = first_row_offset;
5173 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5174 		r5or6_first_row_offset = first_row_offset;
5175 		tmpdiv = last_block;
5176 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5177 		tmpdiv = r5or6_last_row_offset;
5178 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5179 		tmpdiv = r5or6_first_row_offset;
5180 		(void) do_div(tmpdiv, map->strip_size);
5181 		first_column = r5or6_first_column = tmpdiv;
5182 		tmpdiv = r5or6_last_row_offset;
5183 		(void) do_div(tmpdiv, map->strip_size);
5184 		r5or6_last_column = tmpdiv;
5185 #else
5186 		first_row_offset = r5or6_first_row_offset =
5187 			(u32)((first_block % stripesize) %
5188 						r5or6_blocks_per_row);
5189 
5190 		r5or6_last_row_offset =
5191 			(u32)((last_block % stripesize) %
5192 						r5or6_blocks_per_row);
5193 
5194 		first_column = r5or6_first_column =
5195 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5196 		r5or6_last_column =
5197 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5198 #endif
5199 		if (r5or6_first_column != r5or6_last_column)
5200 			return IO_ACCEL_INELIGIBLE;
5201 
5202 		/* Request is eligible */
5203 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5204 			le16_to_cpu(map->row_cnt);
5205 
5206 		map_index = (first_group *
5207 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5208 			(map_row * total_disks_per_row) + first_column;
5209 		break;
5210 	default:
5211 		return IO_ACCEL_INELIGIBLE;
5212 	}
5213 
5214 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5215 		return IO_ACCEL_INELIGIBLE;
5216 
5217 	c->phys_disk = dev->phys_disk[map_index];
5218 	if (!c->phys_disk)
5219 		return IO_ACCEL_INELIGIBLE;
5220 
5221 	disk_handle = dd[map_index].ioaccel_handle;
5222 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5223 			first_row * le16_to_cpu(map->strip_size) +
5224 			(first_row_offset - first_column *
5225 			le16_to_cpu(map->strip_size));
5226 	disk_block_cnt = block_cnt;
5227 
5228 	/* handle differing logical/physical block sizes */
5229 	if (map->phys_blk_shift) {
5230 		disk_block <<= map->phys_blk_shift;
5231 		disk_block_cnt <<= map->phys_blk_shift;
5232 	}
5233 	BUG_ON(disk_block_cnt > 0xffff);
5234 
5235 	/* build the new CDB for the physical disk I/O */
5236 	if (disk_block > 0xffffffff) {
5237 		cdb[0] = is_write ? WRITE_16 : READ_16;
5238 		cdb[1] = 0;
5239 		cdb[2] = (u8) (disk_block >> 56);
5240 		cdb[3] = (u8) (disk_block >> 48);
5241 		cdb[4] = (u8) (disk_block >> 40);
5242 		cdb[5] = (u8) (disk_block >> 32);
5243 		cdb[6] = (u8) (disk_block >> 24);
5244 		cdb[7] = (u8) (disk_block >> 16);
5245 		cdb[8] = (u8) (disk_block >> 8);
5246 		cdb[9] = (u8) (disk_block);
5247 		cdb[10] = (u8) (disk_block_cnt >> 24);
5248 		cdb[11] = (u8) (disk_block_cnt >> 16);
5249 		cdb[12] = (u8) (disk_block_cnt >> 8);
5250 		cdb[13] = (u8) (disk_block_cnt);
5251 		cdb[14] = 0;
5252 		cdb[15] = 0;
5253 		cdb_len = 16;
5254 	} else {
5255 		cdb[0] = is_write ? WRITE_10 : READ_10;
5256 		cdb[1] = 0;
5257 		cdb[2] = (u8) (disk_block >> 24);
5258 		cdb[3] = (u8) (disk_block >> 16);
5259 		cdb[4] = (u8) (disk_block >> 8);
5260 		cdb[5] = (u8) (disk_block);
5261 		cdb[6] = 0;
5262 		cdb[7] = (u8) (disk_block_cnt >> 8);
5263 		cdb[8] = (u8) (disk_block_cnt);
5264 		cdb[9] = 0;
5265 		cdb_len = 10;
5266 	}
5267 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5268 						dev->scsi3addr,
5269 						dev->phys_disk[map_index]);
5270 }
5271 
5272 /*
5273  * Submit commands down the "normal" RAID stack path
5274  * All callers to hpsa_ciss_submit must check lockup_detected
5275  * beforehand, before (opt.) and after calling cmd_alloc
5276  */
5277 static int hpsa_ciss_submit(struct ctlr_info *h,
5278 	struct CommandList *c, struct scsi_cmnd *cmd,
5279 	unsigned char scsi3addr[])
5280 {
5281 	cmd->host_scribble = (unsigned char *) c;
5282 	c->cmd_type = CMD_SCSI;
5283 	c->scsi_cmd = cmd;
5284 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5285 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5286 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5287 
5288 	/* Fill in the request block... */
5289 
5290 	c->Request.Timeout = 0;
5291 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5292 	c->Request.CDBLen = cmd->cmd_len;
5293 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5294 	switch (cmd->sc_data_direction) {
5295 	case DMA_TO_DEVICE:
5296 		c->Request.type_attr_dir =
5297 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5298 		break;
5299 	case DMA_FROM_DEVICE:
5300 		c->Request.type_attr_dir =
5301 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5302 		break;
5303 	case DMA_NONE:
5304 		c->Request.type_attr_dir =
5305 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5306 		break;
5307 	case DMA_BIDIRECTIONAL:
5308 		/* This can happen if a buggy application does a scsi passthru
5309 		 * and sets both inlen and outlen to non-zero. ( see
5310 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5311 		 */
5312 
5313 		c->Request.type_attr_dir =
5314 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5315 		/* This is technically wrong, and hpsa controllers should
5316 		 * reject it with CMD_INVALID, which is the most correct
5317 		 * response, but non-fibre backends appear to let it
5318 		 * slide by, and give the same results as if this field
5319 		 * were set correctly.  Either way is acceptable for
5320 		 * our purposes here.
5321 		 */
5322 
5323 		break;
5324 
5325 	default:
5326 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5327 			cmd->sc_data_direction);
5328 		BUG();
5329 		break;
5330 	}
5331 
5332 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5333 		hpsa_cmd_resolve_and_free(h, c);
5334 		return SCSI_MLQUEUE_HOST_BUSY;
5335 	}
5336 	enqueue_cmd_and_start_io(h, c);
5337 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5338 	return 0;
5339 }
5340 
5341 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5342 				struct CommandList *c)
5343 {
5344 	dma_addr_t cmd_dma_handle, err_dma_handle;
5345 
5346 	/* Zero out all of commandlist except the last field, refcount */
5347 	memset(c, 0, offsetof(struct CommandList, refcount));
5348 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5349 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5350 	c->err_info = h->errinfo_pool + index;
5351 	memset(c->err_info, 0, sizeof(*c->err_info));
5352 	err_dma_handle = h->errinfo_pool_dhandle
5353 	    + index * sizeof(*c->err_info);
5354 	c->cmdindex = index;
5355 	c->busaddr = (u32) cmd_dma_handle;
5356 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5357 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5358 	c->h = h;
5359 	c->scsi_cmd = SCSI_CMD_IDLE;
5360 }
5361 
5362 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5363 {
5364 	int i;
5365 
5366 	for (i = 0; i < h->nr_cmds; i++) {
5367 		struct CommandList *c = h->cmd_pool + i;
5368 
5369 		hpsa_cmd_init(h, i, c);
5370 		atomic_set(&c->refcount, 0);
5371 	}
5372 }
5373 
5374 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5375 				struct CommandList *c)
5376 {
5377 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5378 
5379 	BUG_ON(c->cmdindex != index);
5380 
5381 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5382 	memset(c->err_info, 0, sizeof(*c->err_info));
5383 	c->busaddr = (u32) cmd_dma_handle;
5384 }
5385 
5386 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5387 		struct CommandList *c, struct scsi_cmnd *cmd,
5388 		unsigned char *scsi3addr)
5389 {
5390 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5391 	int rc = IO_ACCEL_INELIGIBLE;
5392 
5393 	if (!dev)
5394 		return SCSI_MLQUEUE_HOST_BUSY;
5395 
5396 	cmd->host_scribble = (unsigned char *) c;
5397 
5398 	if (dev->offload_enabled) {
5399 		hpsa_cmd_init(h, c->cmdindex, c);
5400 		c->cmd_type = CMD_SCSI;
5401 		c->scsi_cmd = cmd;
5402 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5403 		if (rc < 0)     /* scsi_dma_map failed. */
5404 			rc = SCSI_MLQUEUE_HOST_BUSY;
5405 	} else if (dev->hba_ioaccel_enabled) {
5406 		hpsa_cmd_init(h, c->cmdindex, c);
5407 		c->cmd_type = CMD_SCSI;
5408 		c->scsi_cmd = cmd;
5409 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5410 		if (rc < 0)     /* scsi_dma_map failed. */
5411 			rc = SCSI_MLQUEUE_HOST_BUSY;
5412 	}
5413 	return rc;
5414 }
5415 
5416 static void hpsa_command_resubmit_worker(struct work_struct *work)
5417 {
5418 	struct scsi_cmnd *cmd;
5419 	struct hpsa_scsi_dev_t *dev;
5420 	struct CommandList *c = container_of(work, struct CommandList, work);
5421 
5422 	cmd = c->scsi_cmd;
5423 	dev = cmd->device->hostdata;
5424 	if (!dev) {
5425 		cmd->result = DID_NO_CONNECT << 16;
5426 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5427 	}
5428 	if (c->reset_pending)
5429 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5430 	if (c->cmd_type == CMD_IOACCEL2) {
5431 		struct ctlr_info *h = c->h;
5432 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5433 		int rc;
5434 
5435 		if (c2->error_data.serv_response ==
5436 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5437 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5438 			if (rc == 0)
5439 				return;
5440 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5441 				/*
5442 				 * If we get here, it means dma mapping failed.
5443 				 * Try again via scsi mid layer, which will
5444 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5445 				 */
5446 				cmd->result = DID_IMM_RETRY << 16;
5447 				return hpsa_cmd_free_and_done(h, c, cmd);
5448 			}
5449 			/* else, fall thru and resubmit down CISS path */
5450 		}
5451 	}
5452 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5453 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5454 		/*
5455 		 * If we get here, it means dma mapping failed. Try
5456 		 * again via scsi mid layer, which will then get
5457 		 * SCSI_MLQUEUE_HOST_BUSY.
5458 		 *
5459 		 * hpsa_ciss_submit will have already freed c
5460 		 * if it encountered a dma mapping failure.
5461 		 */
5462 		cmd->result = DID_IMM_RETRY << 16;
5463 		cmd->scsi_done(cmd);
5464 	}
5465 }
5466 
5467 /* Running in struct Scsi_Host->host_lock less mode */
5468 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5469 {
5470 	struct ctlr_info *h;
5471 	struct hpsa_scsi_dev_t *dev;
5472 	unsigned char scsi3addr[8];
5473 	struct CommandList *c;
5474 	int rc = 0;
5475 
5476 	/* Get the ptr to our adapter structure out of cmd->host. */
5477 	h = sdev_to_hba(cmd->device);
5478 
5479 	BUG_ON(cmd->request->tag < 0);
5480 
5481 	dev = cmd->device->hostdata;
5482 	if (!dev) {
5483 		cmd->result = DID_NO_CONNECT << 16;
5484 		cmd->scsi_done(cmd);
5485 		return 0;
5486 	}
5487 
5488 	if (dev->removed) {
5489 		cmd->result = DID_NO_CONNECT << 16;
5490 		cmd->scsi_done(cmd);
5491 		return 0;
5492 	}
5493 
5494 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5495 
5496 	if (unlikely(lockup_detected(h))) {
5497 		cmd->result = DID_NO_CONNECT << 16;
5498 		cmd->scsi_done(cmd);
5499 		return 0;
5500 	}
5501 	c = cmd_tagged_alloc(h, cmd);
5502 
5503 	/*
5504 	 * Call alternate submit routine for I/O accelerated commands.
5505 	 * Retries always go down the normal I/O path.
5506 	 */
5507 	if (likely(cmd->retries == 0 &&
5508 			!blk_rq_is_passthrough(cmd->request) &&
5509 			h->acciopath_status)) {
5510 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5511 		if (rc == 0)
5512 			return 0;
5513 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5514 			hpsa_cmd_resolve_and_free(h, c);
5515 			return SCSI_MLQUEUE_HOST_BUSY;
5516 		}
5517 	}
5518 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5519 }
5520 
5521 static void hpsa_scan_complete(struct ctlr_info *h)
5522 {
5523 	unsigned long flags;
5524 
5525 	spin_lock_irqsave(&h->scan_lock, flags);
5526 	h->scan_finished = 1;
5527 	wake_up(&h->scan_wait_queue);
5528 	spin_unlock_irqrestore(&h->scan_lock, flags);
5529 }
5530 
5531 static void hpsa_scan_start(struct Scsi_Host *sh)
5532 {
5533 	struct ctlr_info *h = shost_to_hba(sh);
5534 	unsigned long flags;
5535 
5536 	/*
5537 	 * Don't let rescans be initiated on a controller known to be locked
5538 	 * up.  If the controller locks up *during* a rescan, that thread is
5539 	 * probably hosed, but at least we can prevent new rescan threads from
5540 	 * piling up on a locked up controller.
5541 	 */
5542 	if (unlikely(lockup_detected(h)))
5543 		return hpsa_scan_complete(h);
5544 
5545 	/*
5546 	 * If a scan is already waiting to run, no need to add another
5547 	 */
5548 	spin_lock_irqsave(&h->scan_lock, flags);
5549 	if (h->scan_waiting) {
5550 		spin_unlock_irqrestore(&h->scan_lock, flags);
5551 		return;
5552 	}
5553 
5554 	spin_unlock_irqrestore(&h->scan_lock, flags);
5555 
5556 	/* wait until any scan already in progress is finished. */
5557 	while (1) {
5558 		spin_lock_irqsave(&h->scan_lock, flags);
5559 		if (h->scan_finished)
5560 			break;
5561 		h->scan_waiting = 1;
5562 		spin_unlock_irqrestore(&h->scan_lock, flags);
5563 		wait_event(h->scan_wait_queue, h->scan_finished);
5564 		/* Note: We don't need to worry about a race between this
5565 		 * thread and driver unload because the midlayer will
5566 		 * have incremented the reference count, so unload won't
5567 		 * happen if we're in here.
5568 		 */
5569 	}
5570 	h->scan_finished = 0; /* mark scan as in progress */
5571 	h->scan_waiting = 0;
5572 	spin_unlock_irqrestore(&h->scan_lock, flags);
5573 
5574 	if (unlikely(lockup_detected(h)))
5575 		return hpsa_scan_complete(h);
5576 
5577 	/*
5578 	 * Do the scan after a reset completion
5579 	 */
5580 	spin_lock_irqsave(&h->reset_lock, flags);
5581 	if (h->reset_in_progress) {
5582 		h->drv_req_rescan = 1;
5583 		spin_unlock_irqrestore(&h->reset_lock, flags);
5584 		hpsa_scan_complete(h);
5585 		return;
5586 	}
5587 	spin_unlock_irqrestore(&h->reset_lock, flags);
5588 
5589 	hpsa_update_scsi_devices(h);
5590 
5591 	hpsa_scan_complete(h);
5592 }
5593 
5594 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5595 {
5596 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5597 
5598 	if (!logical_drive)
5599 		return -ENODEV;
5600 
5601 	if (qdepth < 1)
5602 		qdepth = 1;
5603 	else if (qdepth > logical_drive->queue_depth)
5604 		qdepth = logical_drive->queue_depth;
5605 
5606 	return scsi_change_queue_depth(sdev, qdepth);
5607 }
5608 
5609 static int hpsa_scan_finished(struct Scsi_Host *sh,
5610 	unsigned long elapsed_time)
5611 {
5612 	struct ctlr_info *h = shost_to_hba(sh);
5613 	unsigned long flags;
5614 	int finished;
5615 
5616 	spin_lock_irqsave(&h->scan_lock, flags);
5617 	finished = h->scan_finished;
5618 	spin_unlock_irqrestore(&h->scan_lock, flags);
5619 	return finished;
5620 }
5621 
5622 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5623 {
5624 	struct Scsi_Host *sh;
5625 
5626 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5627 	if (sh == NULL) {
5628 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5629 		return -ENOMEM;
5630 	}
5631 
5632 	sh->io_port = 0;
5633 	sh->n_io_port = 0;
5634 	sh->this_id = -1;
5635 	sh->max_channel = 3;
5636 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5637 	sh->max_lun = HPSA_MAX_LUN;
5638 	sh->max_id = HPSA_MAX_LUN;
5639 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5640 	sh->cmd_per_lun = sh->can_queue;
5641 	sh->sg_tablesize = h->maxsgentries;
5642 	sh->transportt = hpsa_sas_transport_template;
5643 	sh->hostdata[0] = (unsigned long) h;
5644 	sh->irq = pci_irq_vector(h->pdev, 0);
5645 	sh->unique_id = sh->irq;
5646 
5647 	h->scsi_host = sh;
5648 	return 0;
5649 }
5650 
5651 static int hpsa_scsi_add_host(struct ctlr_info *h)
5652 {
5653 	int rv;
5654 
5655 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5656 	if (rv) {
5657 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5658 		return rv;
5659 	}
5660 	scsi_scan_host(h->scsi_host);
5661 	return 0;
5662 }
5663 
5664 /*
5665  * The block layer has already gone to the trouble of picking out a unique,
5666  * small-integer tag for this request.  We use an offset from that value as
5667  * an index to select our command block.  (The offset allows us to reserve the
5668  * low-numbered entries for our own uses.)
5669  */
5670 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5671 {
5672 	int idx = scmd->request->tag;
5673 
5674 	if (idx < 0)
5675 		return idx;
5676 
5677 	/* Offset to leave space for internal cmds. */
5678 	return idx += HPSA_NRESERVED_CMDS;
5679 }
5680 
5681 /*
5682  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5683  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5684  */
5685 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5686 				struct CommandList *c, unsigned char lunaddr[],
5687 				int reply_queue)
5688 {
5689 	int rc;
5690 
5691 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5692 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5693 			NULL, 0, 0, lunaddr, TYPE_CMD);
5694 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5695 	if (rc)
5696 		return rc;
5697 	/* no unmap needed here because no data xfer. */
5698 
5699 	/* Check if the unit is already ready. */
5700 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5701 		return 0;
5702 
5703 	/*
5704 	 * The first command sent after reset will receive "unit attention" to
5705 	 * indicate that the LUN has been reset...this is actually what we're
5706 	 * looking for (but, success is good too).
5707 	 */
5708 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5709 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5710 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5711 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5712 		return 0;
5713 
5714 	return 1;
5715 }
5716 
5717 /*
5718  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5719  * returns zero when the unit is ready, and non-zero when giving up.
5720  */
5721 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5722 				struct CommandList *c,
5723 				unsigned char lunaddr[], int reply_queue)
5724 {
5725 	int rc;
5726 	int count = 0;
5727 	int waittime = 1; /* seconds */
5728 
5729 	/* Send test unit ready until device ready, or give up. */
5730 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5731 
5732 		/*
5733 		 * Wait for a bit.  do this first, because if we send
5734 		 * the TUR right away, the reset will just abort it.
5735 		 */
5736 		msleep(1000 * waittime);
5737 
5738 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5739 		if (!rc)
5740 			break;
5741 
5742 		/* Increase wait time with each try, up to a point. */
5743 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5744 			waittime *= 2;
5745 
5746 		dev_warn(&h->pdev->dev,
5747 			 "waiting %d secs for device to become ready.\n",
5748 			 waittime);
5749 	}
5750 
5751 	return rc;
5752 }
5753 
5754 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5755 					   unsigned char lunaddr[],
5756 					   int reply_queue)
5757 {
5758 	int first_queue;
5759 	int last_queue;
5760 	int rq;
5761 	int rc = 0;
5762 	struct CommandList *c;
5763 
5764 	c = cmd_alloc(h);
5765 
5766 	/*
5767 	 * If no specific reply queue was requested, then send the TUR
5768 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5769 	 * the loop exactly once using only the specified queue.
5770 	 */
5771 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5772 		first_queue = 0;
5773 		last_queue = h->nreply_queues - 1;
5774 	} else {
5775 		first_queue = reply_queue;
5776 		last_queue = reply_queue;
5777 	}
5778 
5779 	for (rq = first_queue; rq <= last_queue; rq++) {
5780 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5781 		if (rc)
5782 			break;
5783 	}
5784 
5785 	if (rc)
5786 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5787 	else
5788 		dev_warn(&h->pdev->dev, "device is ready.\n");
5789 
5790 	cmd_free(h, c);
5791 	return rc;
5792 }
5793 
5794 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5795  * complaining.  Doing a host- or bus-reset can't do anything good here.
5796  */
5797 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5798 {
5799 	int rc = SUCCESS;
5800 	struct ctlr_info *h;
5801 	struct hpsa_scsi_dev_t *dev;
5802 	u8 reset_type;
5803 	char msg[48];
5804 	unsigned long flags;
5805 
5806 	/* find the controller to which the command to be aborted was sent */
5807 	h = sdev_to_hba(scsicmd->device);
5808 	if (h == NULL) /* paranoia */
5809 		return FAILED;
5810 
5811 	spin_lock_irqsave(&h->reset_lock, flags);
5812 	h->reset_in_progress = 1;
5813 	spin_unlock_irqrestore(&h->reset_lock, flags);
5814 
5815 	if (lockup_detected(h)) {
5816 		rc = FAILED;
5817 		goto return_reset_status;
5818 	}
5819 
5820 	dev = scsicmd->device->hostdata;
5821 	if (!dev) {
5822 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5823 		rc = FAILED;
5824 		goto return_reset_status;
5825 	}
5826 
5827 	if (dev->devtype == TYPE_ENCLOSURE) {
5828 		rc = SUCCESS;
5829 		goto return_reset_status;
5830 	}
5831 
5832 	/* if controller locked up, we can guarantee command won't complete */
5833 	if (lockup_detected(h)) {
5834 		snprintf(msg, sizeof(msg),
5835 			 "cmd %d RESET FAILED, lockup detected",
5836 			 hpsa_get_cmd_index(scsicmd));
5837 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5838 		rc = FAILED;
5839 		goto return_reset_status;
5840 	}
5841 
5842 	/* this reset request might be the result of a lockup; check */
5843 	if (detect_controller_lockup(h)) {
5844 		snprintf(msg, sizeof(msg),
5845 			 "cmd %d RESET FAILED, new lockup detected",
5846 			 hpsa_get_cmd_index(scsicmd));
5847 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5848 		rc = FAILED;
5849 		goto return_reset_status;
5850 	}
5851 
5852 	/* Do not attempt on controller */
5853 	if (is_hba_lunid(dev->scsi3addr)) {
5854 		rc = SUCCESS;
5855 		goto return_reset_status;
5856 	}
5857 
5858 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5859 		reset_type = HPSA_DEVICE_RESET_MSG;
5860 	else
5861 		reset_type = HPSA_PHYS_TARGET_RESET;
5862 
5863 	sprintf(msg, "resetting %s",
5864 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5865 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5866 
5867 	/* send a reset to the SCSI LUN which the command was sent to */
5868 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5869 			   DEFAULT_REPLY_QUEUE);
5870 	if (rc == 0)
5871 		rc = SUCCESS;
5872 	else
5873 		rc = FAILED;
5874 
5875 	sprintf(msg, "reset %s %s",
5876 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5877 		rc == SUCCESS ? "completed successfully" : "failed");
5878 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5879 
5880 return_reset_status:
5881 	spin_lock_irqsave(&h->reset_lock, flags);
5882 	h->reset_in_progress = 0;
5883 	spin_unlock_irqrestore(&h->reset_lock, flags);
5884 	return rc;
5885 }
5886 
5887 /*
5888  * For operations with an associated SCSI command, a command block is allocated
5889  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5890  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5891  * the complement, although cmd_free() may be called instead.
5892  */
5893 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5894 					    struct scsi_cmnd *scmd)
5895 {
5896 	int idx = hpsa_get_cmd_index(scmd);
5897 	struct CommandList *c = h->cmd_pool + idx;
5898 
5899 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5900 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5901 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5902 		/* The index value comes from the block layer, so if it's out of
5903 		 * bounds, it's probably not our bug.
5904 		 */
5905 		BUG();
5906 	}
5907 
5908 	atomic_inc(&c->refcount);
5909 	if (unlikely(!hpsa_is_cmd_idle(c))) {
5910 		/*
5911 		 * We expect that the SCSI layer will hand us a unique tag
5912 		 * value.  Thus, there should never be a collision here between
5913 		 * two requests...because if the selected command isn't idle
5914 		 * then someone is going to be very disappointed.
5915 		 */
5916 		dev_err(&h->pdev->dev,
5917 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
5918 			idx);
5919 		if (c->scsi_cmd != NULL)
5920 			scsi_print_command(c->scsi_cmd);
5921 		scsi_print_command(scmd);
5922 	}
5923 
5924 	hpsa_cmd_partial_init(h, idx, c);
5925 	return c;
5926 }
5927 
5928 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5929 {
5930 	/*
5931 	 * Release our reference to the block.  We don't need to do anything
5932 	 * else to free it, because it is accessed by index.
5933 	 */
5934 	(void)atomic_dec(&c->refcount);
5935 }
5936 
5937 /*
5938  * For operations that cannot sleep, a command block is allocated at init,
5939  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5940  * which ones are free or in use.  Lock must be held when calling this.
5941  * cmd_free() is the complement.
5942  * This function never gives up and returns NULL.  If it hangs,
5943  * another thread must call cmd_free() to free some tags.
5944  */
5945 
5946 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5947 {
5948 	struct CommandList *c;
5949 	int refcount, i;
5950 	int offset = 0;
5951 
5952 	/*
5953 	 * There is some *extremely* small but non-zero chance that that
5954 	 * multiple threads could get in here, and one thread could
5955 	 * be scanning through the list of bits looking for a free
5956 	 * one, but the free ones are always behind him, and other
5957 	 * threads sneak in behind him and eat them before he can
5958 	 * get to them, so that while there is always a free one, a
5959 	 * very unlucky thread might be starved anyway, never able to
5960 	 * beat the other threads.  In reality, this happens so
5961 	 * infrequently as to be indistinguishable from never.
5962 	 *
5963 	 * Note that we start allocating commands before the SCSI host structure
5964 	 * is initialized.  Since the search starts at bit zero, this
5965 	 * all works, since we have at least one command structure available;
5966 	 * however, it means that the structures with the low indexes have to be
5967 	 * reserved for driver-initiated requests, while requests from the block
5968 	 * layer will use the higher indexes.
5969 	 */
5970 
5971 	for (;;) {
5972 		i = find_next_zero_bit(h->cmd_pool_bits,
5973 					HPSA_NRESERVED_CMDS,
5974 					offset);
5975 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5976 			offset = 0;
5977 			continue;
5978 		}
5979 		c = h->cmd_pool + i;
5980 		refcount = atomic_inc_return(&c->refcount);
5981 		if (unlikely(refcount > 1)) {
5982 			cmd_free(h, c); /* already in use */
5983 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
5984 			continue;
5985 		}
5986 		set_bit(i & (BITS_PER_LONG - 1),
5987 			h->cmd_pool_bits + (i / BITS_PER_LONG));
5988 		break; /* it's ours now. */
5989 	}
5990 	hpsa_cmd_partial_init(h, i, c);
5991 	return c;
5992 }
5993 
5994 /*
5995  * This is the complementary operation to cmd_alloc().  Note, however, in some
5996  * corner cases it may also be used to free blocks allocated by
5997  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5998  * the clear-bit is harmless.
5999  */
6000 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6001 {
6002 	if (atomic_dec_and_test(&c->refcount)) {
6003 		int i;
6004 
6005 		i = c - h->cmd_pool;
6006 		clear_bit(i & (BITS_PER_LONG - 1),
6007 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6008 	}
6009 }
6010 
6011 #ifdef CONFIG_COMPAT
6012 
6013 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6014 	void __user *arg)
6015 {
6016 	IOCTL32_Command_struct __user *arg32 =
6017 	    (IOCTL32_Command_struct __user *) arg;
6018 	IOCTL_Command_struct arg64;
6019 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6020 	int err;
6021 	u32 cp;
6022 
6023 	memset(&arg64, 0, sizeof(arg64));
6024 	err = 0;
6025 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6026 			   sizeof(arg64.LUN_info));
6027 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6028 			   sizeof(arg64.Request));
6029 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6030 			   sizeof(arg64.error_info));
6031 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6032 	err |= get_user(cp, &arg32->buf);
6033 	arg64.buf = compat_ptr(cp);
6034 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6035 
6036 	if (err)
6037 		return -EFAULT;
6038 
6039 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6040 	if (err)
6041 		return err;
6042 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6043 			 sizeof(arg32->error_info));
6044 	if (err)
6045 		return -EFAULT;
6046 	return err;
6047 }
6048 
6049 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6050 	int cmd, void __user *arg)
6051 {
6052 	BIG_IOCTL32_Command_struct __user *arg32 =
6053 	    (BIG_IOCTL32_Command_struct __user *) arg;
6054 	BIG_IOCTL_Command_struct arg64;
6055 	BIG_IOCTL_Command_struct __user *p =
6056 	    compat_alloc_user_space(sizeof(arg64));
6057 	int err;
6058 	u32 cp;
6059 
6060 	memset(&arg64, 0, sizeof(arg64));
6061 	err = 0;
6062 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6063 			   sizeof(arg64.LUN_info));
6064 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6065 			   sizeof(arg64.Request));
6066 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6067 			   sizeof(arg64.error_info));
6068 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6069 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6070 	err |= get_user(cp, &arg32->buf);
6071 	arg64.buf = compat_ptr(cp);
6072 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6073 
6074 	if (err)
6075 		return -EFAULT;
6076 
6077 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6078 	if (err)
6079 		return err;
6080 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6081 			 sizeof(arg32->error_info));
6082 	if (err)
6083 		return -EFAULT;
6084 	return err;
6085 }
6086 
6087 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6088 {
6089 	switch (cmd) {
6090 	case CCISS_GETPCIINFO:
6091 	case CCISS_GETINTINFO:
6092 	case CCISS_SETINTINFO:
6093 	case CCISS_GETNODENAME:
6094 	case CCISS_SETNODENAME:
6095 	case CCISS_GETHEARTBEAT:
6096 	case CCISS_GETBUSTYPES:
6097 	case CCISS_GETFIRMVER:
6098 	case CCISS_GETDRIVVER:
6099 	case CCISS_REVALIDVOLS:
6100 	case CCISS_DEREGDISK:
6101 	case CCISS_REGNEWDISK:
6102 	case CCISS_REGNEWD:
6103 	case CCISS_RESCANDISK:
6104 	case CCISS_GETLUNINFO:
6105 		return hpsa_ioctl(dev, cmd, arg);
6106 
6107 	case CCISS_PASSTHRU32:
6108 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6109 	case CCISS_BIG_PASSTHRU32:
6110 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6111 
6112 	default:
6113 		return -ENOIOCTLCMD;
6114 	}
6115 }
6116 #endif
6117 
6118 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6119 {
6120 	struct hpsa_pci_info pciinfo;
6121 
6122 	if (!argp)
6123 		return -EINVAL;
6124 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6125 	pciinfo.bus = h->pdev->bus->number;
6126 	pciinfo.dev_fn = h->pdev->devfn;
6127 	pciinfo.board_id = h->board_id;
6128 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6129 		return -EFAULT;
6130 	return 0;
6131 }
6132 
6133 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6134 {
6135 	DriverVer_type DriverVer;
6136 	unsigned char vmaj, vmin, vsubmin;
6137 	int rc;
6138 
6139 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6140 		&vmaj, &vmin, &vsubmin);
6141 	if (rc != 3) {
6142 		dev_info(&h->pdev->dev, "driver version string '%s' "
6143 			"unrecognized.", HPSA_DRIVER_VERSION);
6144 		vmaj = 0;
6145 		vmin = 0;
6146 		vsubmin = 0;
6147 	}
6148 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6149 	if (!argp)
6150 		return -EINVAL;
6151 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6152 		return -EFAULT;
6153 	return 0;
6154 }
6155 
6156 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6157 {
6158 	IOCTL_Command_struct iocommand;
6159 	struct CommandList *c;
6160 	char *buff = NULL;
6161 	u64 temp64;
6162 	int rc = 0;
6163 
6164 	if (!argp)
6165 		return -EINVAL;
6166 	if (!capable(CAP_SYS_RAWIO))
6167 		return -EPERM;
6168 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6169 		return -EFAULT;
6170 	if ((iocommand.buf_size < 1) &&
6171 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6172 		return -EINVAL;
6173 	}
6174 	if (iocommand.buf_size > 0) {
6175 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6176 		if (buff == NULL)
6177 			return -ENOMEM;
6178 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6179 			/* Copy the data into the buffer we created */
6180 			if (copy_from_user(buff, iocommand.buf,
6181 				iocommand.buf_size)) {
6182 				rc = -EFAULT;
6183 				goto out_kfree;
6184 			}
6185 		} else {
6186 			memset(buff, 0, iocommand.buf_size);
6187 		}
6188 	}
6189 	c = cmd_alloc(h);
6190 
6191 	/* Fill in the command type */
6192 	c->cmd_type = CMD_IOCTL_PEND;
6193 	c->scsi_cmd = SCSI_CMD_BUSY;
6194 	/* Fill in Command Header */
6195 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6196 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6197 		c->Header.SGList = 1;
6198 		c->Header.SGTotal = cpu_to_le16(1);
6199 	} else	{ /* no buffers to fill */
6200 		c->Header.SGList = 0;
6201 		c->Header.SGTotal = cpu_to_le16(0);
6202 	}
6203 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6204 
6205 	/* Fill in Request block */
6206 	memcpy(&c->Request, &iocommand.Request,
6207 		sizeof(c->Request));
6208 
6209 	/* Fill in the scatter gather information */
6210 	if (iocommand.buf_size > 0) {
6211 		temp64 = pci_map_single(h->pdev, buff,
6212 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6213 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6214 			c->SG[0].Addr = cpu_to_le64(0);
6215 			c->SG[0].Len = cpu_to_le32(0);
6216 			rc = -ENOMEM;
6217 			goto out;
6218 		}
6219 		c->SG[0].Addr = cpu_to_le64(temp64);
6220 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6221 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6222 	}
6223 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6224 					NO_TIMEOUT);
6225 	if (iocommand.buf_size > 0)
6226 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6227 	check_ioctl_unit_attention(h, c);
6228 	if (rc) {
6229 		rc = -EIO;
6230 		goto out;
6231 	}
6232 
6233 	/* Copy the error information out */
6234 	memcpy(&iocommand.error_info, c->err_info,
6235 		sizeof(iocommand.error_info));
6236 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6237 		rc = -EFAULT;
6238 		goto out;
6239 	}
6240 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6241 		iocommand.buf_size > 0) {
6242 		/* Copy the data out of the buffer we created */
6243 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6244 			rc = -EFAULT;
6245 			goto out;
6246 		}
6247 	}
6248 out:
6249 	cmd_free(h, c);
6250 out_kfree:
6251 	kfree(buff);
6252 	return rc;
6253 }
6254 
6255 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6256 {
6257 	BIG_IOCTL_Command_struct *ioc;
6258 	struct CommandList *c;
6259 	unsigned char **buff = NULL;
6260 	int *buff_size = NULL;
6261 	u64 temp64;
6262 	BYTE sg_used = 0;
6263 	int status = 0;
6264 	u32 left;
6265 	u32 sz;
6266 	BYTE __user *data_ptr;
6267 
6268 	if (!argp)
6269 		return -EINVAL;
6270 	if (!capable(CAP_SYS_RAWIO))
6271 		return -EPERM;
6272 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6273 	if (!ioc) {
6274 		status = -ENOMEM;
6275 		goto cleanup1;
6276 	}
6277 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6278 		status = -EFAULT;
6279 		goto cleanup1;
6280 	}
6281 	if ((ioc->buf_size < 1) &&
6282 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6283 		status = -EINVAL;
6284 		goto cleanup1;
6285 	}
6286 	/* Check kmalloc limits  using all SGs */
6287 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6288 		status = -EINVAL;
6289 		goto cleanup1;
6290 	}
6291 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6292 		status = -EINVAL;
6293 		goto cleanup1;
6294 	}
6295 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6296 	if (!buff) {
6297 		status = -ENOMEM;
6298 		goto cleanup1;
6299 	}
6300 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6301 	if (!buff_size) {
6302 		status = -ENOMEM;
6303 		goto cleanup1;
6304 	}
6305 	left = ioc->buf_size;
6306 	data_ptr = ioc->buf;
6307 	while (left) {
6308 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6309 		buff_size[sg_used] = sz;
6310 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6311 		if (buff[sg_used] == NULL) {
6312 			status = -ENOMEM;
6313 			goto cleanup1;
6314 		}
6315 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6316 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6317 				status = -EFAULT;
6318 				goto cleanup1;
6319 			}
6320 		} else
6321 			memset(buff[sg_used], 0, sz);
6322 		left -= sz;
6323 		data_ptr += sz;
6324 		sg_used++;
6325 	}
6326 	c = cmd_alloc(h);
6327 
6328 	c->cmd_type = CMD_IOCTL_PEND;
6329 	c->scsi_cmd = SCSI_CMD_BUSY;
6330 	c->Header.ReplyQueue = 0;
6331 	c->Header.SGList = (u8) sg_used;
6332 	c->Header.SGTotal = cpu_to_le16(sg_used);
6333 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6334 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6335 	if (ioc->buf_size > 0) {
6336 		int i;
6337 		for (i = 0; i < sg_used; i++) {
6338 			temp64 = pci_map_single(h->pdev, buff[i],
6339 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6340 			if (dma_mapping_error(&h->pdev->dev,
6341 							(dma_addr_t) temp64)) {
6342 				c->SG[i].Addr = cpu_to_le64(0);
6343 				c->SG[i].Len = cpu_to_le32(0);
6344 				hpsa_pci_unmap(h->pdev, c, i,
6345 					PCI_DMA_BIDIRECTIONAL);
6346 				status = -ENOMEM;
6347 				goto cleanup0;
6348 			}
6349 			c->SG[i].Addr = cpu_to_le64(temp64);
6350 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6351 			c->SG[i].Ext = cpu_to_le32(0);
6352 		}
6353 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6354 	}
6355 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6356 						NO_TIMEOUT);
6357 	if (sg_used)
6358 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6359 	check_ioctl_unit_attention(h, c);
6360 	if (status) {
6361 		status = -EIO;
6362 		goto cleanup0;
6363 	}
6364 
6365 	/* Copy the error information out */
6366 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6367 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6368 		status = -EFAULT;
6369 		goto cleanup0;
6370 	}
6371 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6372 		int i;
6373 
6374 		/* Copy the data out of the buffer we created */
6375 		BYTE __user *ptr = ioc->buf;
6376 		for (i = 0; i < sg_used; i++) {
6377 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6378 				status = -EFAULT;
6379 				goto cleanup0;
6380 			}
6381 			ptr += buff_size[i];
6382 		}
6383 	}
6384 	status = 0;
6385 cleanup0:
6386 	cmd_free(h, c);
6387 cleanup1:
6388 	if (buff) {
6389 		int i;
6390 
6391 		for (i = 0; i < sg_used; i++)
6392 			kfree(buff[i]);
6393 		kfree(buff);
6394 	}
6395 	kfree(buff_size);
6396 	kfree(ioc);
6397 	return status;
6398 }
6399 
6400 static void check_ioctl_unit_attention(struct ctlr_info *h,
6401 	struct CommandList *c)
6402 {
6403 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6404 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6405 		(void) check_for_unit_attention(h, c);
6406 }
6407 
6408 /*
6409  * ioctl
6410  */
6411 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6412 {
6413 	struct ctlr_info *h;
6414 	void __user *argp = (void __user *)arg;
6415 	int rc;
6416 
6417 	h = sdev_to_hba(dev);
6418 
6419 	switch (cmd) {
6420 	case CCISS_DEREGDISK:
6421 	case CCISS_REGNEWDISK:
6422 	case CCISS_REGNEWD:
6423 		hpsa_scan_start(h->scsi_host);
6424 		return 0;
6425 	case CCISS_GETPCIINFO:
6426 		return hpsa_getpciinfo_ioctl(h, argp);
6427 	case CCISS_GETDRIVVER:
6428 		return hpsa_getdrivver_ioctl(h, argp);
6429 	case CCISS_PASSTHRU:
6430 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6431 			return -EAGAIN;
6432 		rc = hpsa_passthru_ioctl(h, argp);
6433 		atomic_inc(&h->passthru_cmds_avail);
6434 		return rc;
6435 	case CCISS_BIG_PASSTHRU:
6436 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6437 			return -EAGAIN;
6438 		rc = hpsa_big_passthru_ioctl(h, argp);
6439 		atomic_inc(&h->passthru_cmds_avail);
6440 		return rc;
6441 	default:
6442 		return -ENOTTY;
6443 	}
6444 }
6445 
6446 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6447 				u8 reset_type)
6448 {
6449 	struct CommandList *c;
6450 
6451 	c = cmd_alloc(h);
6452 
6453 	/* fill_cmd can't fail here, no data buffer to map */
6454 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6455 		RAID_CTLR_LUNID, TYPE_MSG);
6456 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6457 	c->waiting = NULL;
6458 	enqueue_cmd_and_start_io(h, c);
6459 	/* Don't wait for completion, the reset won't complete.  Don't free
6460 	 * the command either.  This is the last command we will send before
6461 	 * re-initializing everything, so it doesn't matter and won't leak.
6462 	 */
6463 	return;
6464 }
6465 
6466 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6467 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6468 	int cmd_type)
6469 {
6470 	int pci_dir = XFER_NONE;
6471 
6472 	c->cmd_type = CMD_IOCTL_PEND;
6473 	c->scsi_cmd = SCSI_CMD_BUSY;
6474 	c->Header.ReplyQueue = 0;
6475 	if (buff != NULL && size > 0) {
6476 		c->Header.SGList = 1;
6477 		c->Header.SGTotal = cpu_to_le16(1);
6478 	} else {
6479 		c->Header.SGList = 0;
6480 		c->Header.SGTotal = cpu_to_le16(0);
6481 	}
6482 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6483 
6484 	if (cmd_type == TYPE_CMD) {
6485 		switch (cmd) {
6486 		case HPSA_INQUIRY:
6487 			/* are we trying to read a vital product page */
6488 			if (page_code & VPD_PAGE) {
6489 				c->Request.CDB[1] = 0x01;
6490 				c->Request.CDB[2] = (page_code & 0xff);
6491 			}
6492 			c->Request.CDBLen = 6;
6493 			c->Request.type_attr_dir =
6494 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6495 			c->Request.Timeout = 0;
6496 			c->Request.CDB[0] = HPSA_INQUIRY;
6497 			c->Request.CDB[4] = size & 0xFF;
6498 			break;
6499 		case HPSA_REPORT_LOG:
6500 		case HPSA_REPORT_PHYS:
6501 			/* Talking to controller so It's a physical command
6502 			   mode = 00 target = 0.  Nothing to write.
6503 			 */
6504 			c->Request.CDBLen = 12;
6505 			c->Request.type_attr_dir =
6506 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6507 			c->Request.Timeout = 0;
6508 			c->Request.CDB[0] = cmd;
6509 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6510 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6511 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6512 			c->Request.CDB[9] = size & 0xFF;
6513 			break;
6514 		case BMIC_SENSE_DIAG_OPTIONS:
6515 			c->Request.CDBLen = 16;
6516 			c->Request.type_attr_dir =
6517 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6518 			c->Request.Timeout = 0;
6519 			/* Spec says this should be BMIC_WRITE */
6520 			c->Request.CDB[0] = BMIC_READ;
6521 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6522 			break;
6523 		case BMIC_SET_DIAG_OPTIONS:
6524 			c->Request.CDBLen = 16;
6525 			c->Request.type_attr_dir =
6526 					TYPE_ATTR_DIR(cmd_type,
6527 						ATTR_SIMPLE, XFER_WRITE);
6528 			c->Request.Timeout = 0;
6529 			c->Request.CDB[0] = BMIC_WRITE;
6530 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6531 			break;
6532 		case HPSA_CACHE_FLUSH:
6533 			c->Request.CDBLen = 12;
6534 			c->Request.type_attr_dir =
6535 					TYPE_ATTR_DIR(cmd_type,
6536 						ATTR_SIMPLE, XFER_WRITE);
6537 			c->Request.Timeout = 0;
6538 			c->Request.CDB[0] = BMIC_WRITE;
6539 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6540 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6541 			c->Request.CDB[8] = size & 0xFF;
6542 			break;
6543 		case TEST_UNIT_READY:
6544 			c->Request.CDBLen = 6;
6545 			c->Request.type_attr_dir =
6546 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6547 			c->Request.Timeout = 0;
6548 			break;
6549 		case HPSA_GET_RAID_MAP:
6550 			c->Request.CDBLen = 12;
6551 			c->Request.type_attr_dir =
6552 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6553 			c->Request.Timeout = 0;
6554 			c->Request.CDB[0] = HPSA_CISS_READ;
6555 			c->Request.CDB[1] = cmd;
6556 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6557 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6558 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6559 			c->Request.CDB[9] = size & 0xFF;
6560 			break;
6561 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6562 			c->Request.CDBLen = 10;
6563 			c->Request.type_attr_dir =
6564 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6565 			c->Request.Timeout = 0;
6566 			c->Request.CDB[0] = BMIC_READ;
6567 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6568 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6569 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6570 			break;
6571 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6572 			c->Request.CDBLen = 10;
6573 			c->Request.type_attr_dir =
6574 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6575 			c->Request.Timeout = 0;
6576 			c->Request.CDB[0] = BMIC_READ;
6577 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6578 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6579 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6580 			break;
6581 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6582 			c->Request.CDBLen = 10;
6583 			c->Request.type_attr_dir =
6584 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6585 			c->Request.Timeout = 0;
6586 			c->Request.CDB[0] = BMIC_READ;
6587 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6588 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6589 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6590 			break;
6591 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6592 			c->Request.CDBLen = 10;
6593 			c->Request.type_attr_dir =
6594 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6595 			c->Request.Timeout = 0;
6596 			c->Request.CDB[0] = BMIC_READ;
6597 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6598 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6599 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6600 			break;
6601 		case BMIC_IDENTIFY_CONTROLLER:
6602 			c->Request.CDBLen = 10;
6603 			c->Request.type_attr_dir =
6604 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6605 			c->Request.Timeout = 0;
6606 			c->Request.CDB[0] = BMIC_READ;
6607 			c->Request.CDB[1] = 0;
6608 			c->Request.CDB[2] = 0;
6609 			c->Request.CDB[3] = 0;
6610 			c->Request.CDB[4] = 0;
6611 			c->Request.CDB[5] = 0;
6612 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6613 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6614 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6615 			c->Request.CDB[9] = 0;
6616 			break;
6617 		default:
6618 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6619 			BUG();
6620 		}
6621 	} else if (cmd_type == TYPE_MSG) {
6622 		switch (cmd) {
6623 
6624 		case  HPSA_PHYS_TARGET_RESET:
6625 			c->Request.CDBLen = 16;
6626 			c->Request.type_attr_dir =
6627 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6628 			c->Request.Timeout = 0; /* Don't time out */
6629 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6630 			c->Request.CDB[0] = HPSA_RESET;
6631 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6632 			/* Physical target reset needs no control bytes 4-7*/
6633 			c->Request.CDB[4] = 0x00;
6634 			c->Request.CDB[5] = 0x00;
6635 			c->Request.CDB[6] = 0x00;
6636 			c->Request.CDB[7] = 0x00;
6637 			break;
6638 		case  HPSA_DEVICE_RESET_MSG:
6639 			c->Request.CDBLen = 16;
6640 			c->Request.type_attr_dir =
6641 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6642 			c->Request.Timeout = 0; /* Don't time out */
6643 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6644 			c->Request.CDB[0] =  cmd;
6645 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6646 			/* If bytes 4-7 are zero, it means reset the */
6647 			/* LunID device */
6648 			c->Request.CDB[4] = 0x00;
6649 			c->Request.CDB[5] = 0x00;
6650 			c->Request.CDB[6] = 0x00;
6651 			c->Request.CDB[7] = 0x00;
6652 			break;
6653 		default:
6654 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6655 				cmd);
6656 			BUG();
6657 		}
6658 	} else {
6659 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6660 		BUG();
6661 	}
6662 
6663 	switch (GET_DIR(c->Request.type_attr_dir)) {
6664 	case XFER_READ:
6665 		pci_dir = PCI_DMA_FROMDEVICE;
6666 		break;
6667 	case XFER_WRITE:
6668 		pci_dir = PCI_DMA_TODEVICE;
6669 		break;
6670 	case XFER_NONE:
6671 		pci_dir = PCI_DMA_NONE;
6672 		break;
6673 	default:
6674 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6675 	}
6676 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6677 		return -1;
6678 	return 0;
6679 }
6680 
6681 /*
6682  * Map (physical) PCI mem into (virtual) kernel space
6683  */
6684 static void __iomem *remap_pci_mem(ulong base, ulong size)
6685 {
6686 	ulong page_base = ((ulong) base) & PAGE_MASK;
6687 	ulong page_offs = ((ulong) base) - page_base;
6688 	void __iomem *page_remapped = ioremap_nocache(page_base,
6689 		page_offs + size);
6690 
6691 	return page_remapped ? (page_remapped + page_offs) : NULL;
6692 }
6693 
6694 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6695 {
6696 	return h->access.command_completed(h, q);
6697 }
6698 
6699 static inline bool interrupt_pending(struct ctlr_info *h)
6700 {
6701 	return h->access.intr_pending(h);
6702 }
6703 
6704 static inline long interrupt_not_for_us(struct ctlr_info *h)
6705 {
6706 	return (h->access.intr_pending(h) == 0) ||
6707 		(h->interrupts_enabled == 0);
6708 }
6709 
6710 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6711 	u32 raw_tag)
6712 {
6713 	if (unlikely(tag_index >= h->nr_cmds)) {
6714 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6715 		return 1;
6716 	}
6717 	return 0;
6718 }
6719 
6720 static inline void finish_cmd(struct CommandList *c)
6721 {
6722 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6723 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6724 			|| c->cmd_type == CMD_IOACCEL2))
6725 		complete_scsi_command(c);
6726 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6727 		complete(c->waiting);
6728 }
6729 
6730 /* process completion of an indexed ("direct lookup") command */
6731 static inline void process_indexed_cmd(struct ctlr_info *h,
6732 	u32 raw_tag)
6733 {
6734 	u32 tag_index;
6735 	struct CommandList *c;
6736 
6737 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6738 	if (!bad_tag(h, tag_index, raw_tag)) {
6739 		c = h->cmd_pool + tag_index;
6740 		finish_cmd(c);
6741 	}
6742 }
6743 
6744 /* Some controllers, like p400, will give us one interrupt
6745  * after a soft reset, even if we turned interrupts off.
6746  * Only need to check for this in the hpsa_xxx_discard_completions
6747  * functions.
6748  */
6749 static int ignore_bogus_interrupt(struct ctlr_info *h)
6750 {
6751 	if (likely(!reset_devices))
6752 		return 0;
6753 
6754 	if (likely(h->interrupts_enabled))
6755 		return 0;
6756 
6757 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6758 		"(known firmware bug.)  Ignoring.\n");
6759 
6760 	return 1;
6761 }
6762 
6763 /*
6764  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6765  * Relies on (h-q[x] == x) being true for x such that
6766  * 0 <= x < MAX_REPLY_QUEUES.
6767  */
6768 static struct ctlr_info *queue_to_hba(u8 *queue)
6769 {
6770 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6771 }
6772 
6773 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6774 {
6775 	struct ctlr_info *h = queue_to_hba(queue);
6776 	u8 q = *(u8 *) queue;
6777 	u32 raw_tag;
6778 
6779 	if (ignore_bogus_interrupt(h))
6780 		return IRQ_NONE;
6781 
6782 	if (interrupt_not_for_us(h))
6783 		return IRQ_NONE;
6784 	h->last_intr_timestamp = get_jiffies_64();
6785 	while (interrupt_pending(h)) {
6786 		raw_tag = get_next_completion(h, q);
6787 		while (raw_tag != FIFO_EMPTY)
6788 			raw_tag = next_command(h, q);
6789 	}
6790 	return IRQ_HANDLED;
6791 }
6792 
6793 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6794 {
6795 	struct ctlr_info *h = queue_to_hba(queue);
6796 	u32 raw_tag;
6797 	u8 q = *(u8 *) queue;
6798 
6799 	if (ignore_bogus_interrupt(h))
6800 		return IRQ_NONE;
6801 
6802 	h->last_intr_timestamp = get_jiffies_64();
6803 	raw_tag = get_next_completion(h, q);
6804 	while (raw_tag != FIFO_EMPTY)
6805 		raw_tag = next_command(h, q);
6806 	return IRQ_HANDLED;
6807 }
6808 
6809 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6810 {
6811 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6812 	u32 raw_tag;
6813 	u8 q = *(u8 *) queue;
6814 
6815 	if (interrupt_not_for_us(h))
6816 		return IRQ_NONE;
6817 	h->last_intr_timestamp = get_jiffies_64();
6818 	while (interrupt_pending(h)) {
6819 		raw_tag = get_next_completion(h, q);
6820 		while (raw_tag != FIFO_EMPTY) {
6821 			process_indexed_cmd(h, raw_tag);
6822 			raw_tag = next_command(h, q);
6823 		}
6824 	}
6825 	return IRQ_HANDLED;
6826 }
6827 
6828 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6829 {
6830 	struct ctlr_info *h = queue_to_hba(queue);
6831 	u32 raw_tag;
6832 	u8 q = *(u8 *) queue;
6833 
6834 	h->last_intr_timestamp = get_jiffies_64();
6835 	raw_tag = get_next_completion(h, q);
6836 	while (raw_tag != FIFO_EMPTY) {
6837 		process_indexed_cmd(h, raw_tag);
6838 		raw_tag = next_command(h, q);
6839 	}
6840 	return IRQ_HANDLED;
6841 }
6842 
6843 /* Send a message CDB to the firmware. Careful, this only works
6844  * in simple mode, not performant mode due to the tag lookup.
6845  * We only ever use this immediately after a controller reset.
6846  */
6847 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6848 			unsigned char type)
6849 {
6850 	struct Command {
6851 		struct CommandListHeader CommandHeader;
6852 		struct RequestBlock Request;
6853 		struct ErrDescriptor ErrorDescriptor;
6854 	};
6855 	struct Command *cmd;
6856 	static const size_t cmd_sz = sizeof(*cmd) +
6857 					sizeof(cmd->ErrorDescriptor);
6858 	dma_addr_t paddr64;
6859 	__le32 paddr32;
6860 	u32 tag;
6861 	void __iomem *vaddr;
6862 	int i, err;
6863 
6864 	vaddr = pci_ioremap_bar(pdev, 0);
6865 	if (vaddr == NULL)
6866 		return -ENOMEM;
6867 
6868 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6869 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6870 	 * memory.
6871 	 */
6872 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6873 	if (err) {
6874 		iounmap(vaddr);
6875 		return err;
6876 	}
6877 
6878 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6879 	if (cmd == NULL) {
6880 		iounmap(vaddr);
6881 		return -ENOMEM;
6882 	}
6883 
6884 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
6885 	 * although there's no guarantee, we assume that the address is at
6886 	 * least 4-byte aligned (most likely, it's page-aligned).
6887 	 */
6888 	paddr32 = cpu_to_le32(paddr64);
6889 
6890 	cmd->CommandHeader.ReplyQueue = 0;
6891 	cmd->CommandHeader.SGList = 0;
6892 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6893 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6894 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6895 
6896 	cmd->Request.CDBLen = 16;
6897 	cmd->Request.type_attr_dir =
6898 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6899 	cmd->Request.Timeout = 0; /* Don't time out */
6900 	cmd->Request.CDB[0] = opcode;
6901 	cmd->Request.CDB[1] = type;
6902 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6903 	cmd->ErrorDescriptor.Addr =
6904 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6905 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6906 
6907 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6908 
6909 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6910 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6911 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6912 			break;
6913 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6914 	}
6915 
6916 	iounmap(vaddr);
6917 
6918 	/* we leak the DMA buffer here ... no choice since the controller could
6919 	 *  still complete the command.
6920 	 */
6921 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6922 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6923 			opcode, type);
6924 		return -ETIMEDOUT;
6925 	}
6926 
6927 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6928 
6929 	if (tag & HPSA_ERROR_BIT) {
6930 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6931 			opcode, type);
6932 		return -EIO;
6933 	}
6934 
6935 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6936 		opcode, type);
6937 	return 0;
6938 }
6939 
6940 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6941 
6942 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6943 	void __iomem *vaddr, u32 use_doorbell)
6944 {
6945 
6946 	if (use_doorbell) {
6947 		/* For everything after the P600, the PCI power state method
6948 		 * of resetting the controller doesn't work, so we have this
6949 		 * other way using the doorbell register.
6950 		 */
6951 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6952 		writel(use_doorbell, vaddr + SA5_DOORBELL);
6953 
6954 		/* PMC hardware guys tell us we need a 10 second delay after
6955 		 * doorbell reset and before any attempt to talk to the board
6956 		 * at all to ensure that this actually works and doesn't fall
6957 		 * over in some weird corner cases.
6958 		 */
6959 		msleep(10000);
6960 	} else { /* Try to do it the PCI power state way */
6961 
6962 		/* Quoting from the Open CISS Specification: "The Power
6963 		 * Management Control/Status Register (CSR) controls the power
6964 		 * state of the device.  The normal operating state is D0,
6965 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6966 		 * the controller, place the interface device in D3 then to D0,
6967 		 * this causes a secondary PCI reset which will reset the
6968 		 * controller." */
6969 
6970 		int rc = 0;
6971 
6972 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6973 
6974 		/* enter the D3hot power management state */
6975 		rc = pci_set_power_state(pdev, PCI_D3hot);
6976 		if (rc)
6977 			return rc;
6978 
6979 		msleep(500);
6980 
6981 		/* enter the D0 power management state */
6982 		rc = pci_set_power_state(pdev, PCI_D0);
6983 		if (rc)
6984 			return rc;
6985 
6986 		/*
6987 		 * The P600 requires a small delay when changing states.
6988 		 * Otherwise we may think the board did not reset and we bail.
6989 		 * This for kdump only and is particular to the P600.
6990 		 */
6991 		msleep(500);
6992 	}
6993 	return 0;
6994 }
6995 
6996 static void init_driver_version(char *driver_version, int len)
6997 {
6998 	memset(driver_version, 0, len);
6999 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7000 }
7001 
7002 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7003 {
7004 	char *driver_version;
7005 	int i, size = sizeof(cfgtable->driver_version);
7006 
7007 	driver_version = kmalloc(size, GFP_KERNEL);
7008 	if (!driver_version)
7009 		return -ENOMEM;
7010 
7011 	init_driver_version(driver_version, size);
7012 	for (i = 0; i < size; i++)
7013 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7014 	kfree(driver_version);
7015 	return 0;
7016 }
7017 
7018 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7019 					  unsigned char *driver_ver)
7020 {
7021 	int i;
7022 
7023 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7024 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7025 }
7026 
7027 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7028 {
7029 
7030 	char *driver_ver, *old_driver_ver;
7031 	int rc, size = sizeof(cfgtable->driver_version);
7032 
7033 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7034 	if (!old_driver_ver)
7035 		return -ENOMEM;
7036 	driver_ver = old_driver_ver + size;
7037 
7038 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7039 	 * should have been changed, otherwise we know the reset failed.
7040 	 */
7041 	init_driver_version(old_driver_ver, size);
7042 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7043 	rc = !memcmp(driver_ver, old_driver_ver, size);
7044 	kfree(old_driver_ver);
7045 	return rc;
7046 }
7047 /* This does a hard reset of the controller using PCI power management
7048  * states or the using the doorbell register.
7049  */
7050 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7051 {
7052 	u64 cfg_offset;
7053 	u32 cfg_base_addr;
7054 	u64 cfg_base_addr_index;
7055 	void __iomem *vaddr;
7056 	unsigned long paddr;
7057 	u32 misc_fw_support;
7058 	int rc;
7059 	struct CfgTable __iomem *cfgtable;
7060 	u32 use_doorbell;
7061 	u16 command_register;
7062 
7063 	/* For controllers as old as the P600, this is very nearly
7064 	 * the same thing as
7065 	 *
7066 	 * pci_save_state(pci_dev);
7067 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7068 	 * pci_set_power_state(pci_dev, PCI_D0);
7069 	 * pci_restore_state(pci_dev);
7070 	 *
7071 	 * For controllers newer than the P600, the pci power state
7072 	 * method of resetting doesn't work so we have another way
7073 	 * using the doorbell register.
7074 	 */
7075 
7076 	if (!ctlr_is_resettable(board_id)) {
7077 		dev_warn(&pdev->dev, "Controller not resettable\n");
7078 		return -ENODEV;
7079 	}
7080 
7081 	/* if controller is soft- but not hard resettable... */
7082 	if (!ctlr_is_hard_resettable(board_id))
7083 		return -ENOTSUPP; /* try soft reset later. */
7084 
7085 	/* Save the PCI command register */
7086 	pci_read_config_word(pdev, 4, &command_register);
7087 	pci_save_state(pdev);
7088 
7089 	/* find the first memory BAR, so we can find the cfg table */
7090 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7091 	if (rc)
7092 		return rc;
7093 	vaddr = remap_pci_mem(paddr, 0x250);
7094 	if (!vaddr)
7095 		return -ENOMEM;
7096 
7097 	/* find cfgtable in order to check if reset via doorbell is supported */
7098 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7099 					&cfg_base_addr_index, &cfg_offset);
7100 	if (rc)
7101 		goto unmap_vaddr;
7102 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7103 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7104 	if (!cfgtable) {
7105 		rc = -ENOMEM;
7106 		goto unmap_vaddr;
7107 	}
7108 	rc = write_driver_ver_to_cfgtable(cfgtable);
7109 	if (rc)
7110 		goto unmap_cfgtable;
7111 
7112 	/* If reset via doorbell register is supported, use that.
7113 	 * There are two such methods.  Favor the newest method.
7114 	 */
7115 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7116 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7117 	if (use_doorbell) {
7118 		use_doorbell = DOORBELL_CTLR_RESET2;
7119 	} else {
7120 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7121 		if (use_doorbell) {
7122 			dev_warn(&pdev->dev,
7123 				"Soft reset not supported. Firmware update is required.\n");
7124 			rc = -ENOTSUPP; /* try soft reset */
7125 			goto unmap_cfgtable;
7126 		}
7127 	}
7128 
7129 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7130 	if (rc)
7131 		goto unmap_cfgtable;
7132 
7133 	pci_restore_state(pdev);
7134 	pci_write_config_word(pdev, 4, command_register);
7135 
7136 	/* Some devices (notably the HP Smart Array 5i Controller)
7137 	   need a little pause here */
7138 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7139 
7140 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7141 	if (rc) {
7142 		dev_warn(&pdev->dev,
7143 			"Failed waiting for board to become ready after hard reset\n");
7144 		goto unmap_cfgtable;
7145 	}
7146 
7147 	rc = controller_reset_failed(vaddr);
7148 	if (rc < 0)
7149 		goto unmap_cfgtable;
7150 	if (rc) {
7151 		dev_warn(&pdev->dev, "Unable to successfully reset "
7152 			"controller. Will try soft reset.\n");
7153 		rc = -ENOTSUPP;
7154 	} else {
7155 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7156 	}
7157 
7158 unmap_cfgtable:
7159 	iounmap(cfgtable);
7160 
7161 unmap_vaddr:
7162 	iounmap(vaddr);
7163 	return rc;
7164 }
7165 
7166 /*
7167  *  We cannot read the structure directly, for portability we must use
7168  *   the io functions.
7169  *   This is for debug only.
7170  */
7171 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7172 {
7173 #ifdef HPSA_DEBUG
7174 	int i;
7175 	char temp_name[17];
7176 
7177 	dev_info(dev, "Controller Configuration information\n");
7178 	dev_info(dev, "------------------------------------\n");
7179 	for (i = 0; i < 4; i++)
7180 		temp_name[i] = readb(&(tb->Signature[i]));
7181 	temp_name[4] = '\0';
7182 	dev_info(dev, "   Signature = %s\n", temp_name);
7183 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7184 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7185 	       readl(&(tb->TransportSupport)));
7186 	dev_info(dev, "   Transport methods active = 0x%x\n",
7187 	       readl(&(tb->TransportActive)));
7188 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7189 	       readl(&(tb->HostWrite.TransportRequest)));
7190 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7191 	       readl(&(tb->HostWrite.CoalIntDelay)));
7192 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7193 	       readl(&(tb->HostWrite.CoalIntCount)));
7194 	dev_info(dev, "   Max outstanding commands = %d\n",
7195 	       readl(&(tb->CmdsOutMax)));
7196 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7197 	for (i = 0; i < 16; i++)
7198 		temp_name[i] = readb(&(tb->ServerName[i]));
7199 	temp_name[16] = '\0';
7200 	dev_info(dev, "   Server Name = %s\n", temp_name);
7201 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7202 		readl(&(tb->HeartBeat)));
7203 #endif				/* HPSA_DEBUG */
7204 }
7205 
7206 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7207 {
7208 	int i, offset, mem_type, bar_type;
7209 
7210 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7211 		return 0;
7212 	offset = 0;
7213 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7214 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7215 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7216 			offset += 4;
7217 		else {
7218 			mem_type = pci_resource_flags(pdev, i) &
7219 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7220 			switch (mem_type) {
7221 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7222 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7223 				offset += 4;	/* 32 bit */
7224 				break;
7225 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7226 				offset += 8;
7227 				break;
7228 			default:	/* reserved in PCI 2.2 */
7229 				dev_warn(&pdev->dev,
7230 				       "base address is invalid\n");
7231 				return -1;
7232 				break;
7233 			}
7234 		}
7235 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7236 			return i + 1;
7237 	}
7238 	return -1;
7239 }
7240 
7241 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7242 {
7243 	pci_free_irq_vectors(h->pdev);
7244 	h->msix_vectors = 0;
7245 }
7246 
7247 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7248  * controllers that are capable. If not, we use legacy INTx mode.
7249  */
7250 static int hpsa_interrupt_mode(struct ctlr_info *h)
7251 {
7252 	unsigned int flags = PCI_IRQ_LEGACY;
7253 	int ret;
7254 
7255 	/* Some boards advertise MSI but don't really support it */
7256 	switch (h->board_id) {
7257 	case 0x40700E11:
7258 	case 0x40800E11:
7259 	case 0x40820E11:
7260 	case 0x40830E11:
7261 		break;
7262 	default:
7263 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7264 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7265 		if (ret > 0) {
7266 			h->msix_vectors = ret;
7267 			return 0;
7268 		}
7269 
7270 		flags |= PCI_IRQ_MSI;
7271 		break;
7272 	}
7273 
7274 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7275 	if (ret < 0)
7276 		return ret;
7277 	return 0;
7278 }
7279 
7280 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7281 				bool *legacy_board)
7282 {
7283 	int i;
7284 	u32 subsystem_vendor_id, subsystem_device_id;
7285 
7286 	subsystem_vendor_id = pdev->subsystem_vendor;
7287 	subsystem_device_id = pdev->subsystem_device;
7288 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7289 		    subsystem_vendor_id;
7290 
7291 	if (legacy_board)
7292 		*legacy_board = false;
7293 	for (i = 0; i < ARRAY_SIZE(products); i++)
7294 		if (*board_id == products[i].board_id) {
7295 			if (products[i].access != &SA5A_access &&
7296 			    products[i].access != &SA5B_access)
7297 				return i;
7298 			dev_warn(&pdev->dev,
7299 				 "legacy board ID: 0x%08x\n",
7300 				 *board_id);
7301 			if (legacy_board)
7302 			    *legacy_board = true;
7303 			return i;
7304 		}
7305 
7306 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7307 	if (legacy_board)
7308 		*legacy_board = true;
7309 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7310 }
7311 
7312 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7313 				    unsigned long *memory_bar)
7314 {
7315 	int i;
7316 
7317 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7318 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7319 			/* addressing mode bits already removed */
7320 			*memory_bar = pci_resource_start(pdev, i);
7321 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7322 				*memory_bar);
7323 			return 0;
7324 		}
7325 	dev_warn(&pdev->dev, "no memory BAR found\n");
7326 	return -ENODEV;
7327 }
7328 
7329 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7330 				     int wait_for_ready)
7331 {
7332 	int i, iterations;
7333 	u32 scratchpad;
7334 	if (wait_for_ready)
7335 		iterations = HPSA_BOARD_READY_ITERATIONS;
7336 	else
7337 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7338 
7339 	for (i = 0; i < iterations; i++) {
7340 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7341 		if (wait_for_ready) {
7342 			if (scratchpad == HPSA_FIRMWARE_READY)
7343 				return 0;
7344 		} else {
7345 			if (scratchpad != HPSA_FIRMWARE_READY)
7346 				return 0;
7347 		}
7348 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7349 	}
7350 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7351 	return -ENODEV;
7352 }
7353 
7354 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7355 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7356 			       u64 *cfg_offset)
7357 {
7358 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7359 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7360 	*cfg_base_addr &= (u32) 0x0000ffff;
7361 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7362 	if (*cfg_base_addr_index == -1) {
7363 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7364 		return -ENODEV;
7365 	}
7366 	return 0;
7367 }
7368 
7369 static void hpsa_free_cfgtables(struct ctlr_info *h)
7370 {
7371 	if (h->transtable) {
7372 		iounmap(h->transtable);
7373 		h->transtable = NULL;
7374 	}
7375 	if (h->cfgtable) {
7376 		iounmap(h->cfgtable);
7377 		h->cfgtable = NULL;
7378 	}
7379 }
7380 
7381 /* Find and map CISS config table and transfer table
7382 + * several items must be unmapped (freed) later
7383 + * */
7384 static int hpsa_find_cfgtables(struct ctlr_info *h)
7385 {
7386 	u64 cfg_offset;
7387 	u32 cfg_base_addr;
7388 	u64 cfg_base_addr_index;
7389 	u32 trans_offset;
7390 	int rc;
7391 
7392 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7393 		&cfg_base_addr_index, &cfg_offset);
7394 	if (rc)
7395 		return rc;
7396 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7397 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7398 	if (!h->cfgtable) {
7399 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7400 		return -ENOMEM;
7401 	}
7402 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7403 	if (rc)
7404 		return rc;
7405 	/* Find performant mode table. */
7406 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7407 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7408 				cfg_base_addr_index)+cfg_offset+trans_offset,
7409 				sizeof(*h->transtable));
7410 	if (!h->transtable) {
7411 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7412 		hpsa_free_cfgtables(h);
7413 		return -ENOMEM;
7414 	}
7415 	return 0;
7416 }
7417 
7418 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7419 {
7420 #define MIN_MAX_COMMANDS 16
7421 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7422 
7423 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7424 
7425 	/* Limit commands in memory limited kdump scenario. */
7426 	if (reset_devices && h->max_commands > 32)
7427 		h->max_commands = 32;
7428 
7429 	if (h->max_commands < MIN_MAX_COMMANDS) {
7430 		dev_warn(&h->pdev->dev,
7431 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7432 			h->max_commands,
7433 			MIN_MAX_COMMANDS);
7434 		h->max_commands = MIN_MAX_COMMANDS;
7435 	}
7436 }
7437 
7438 /* If the controller reports that the total max sg entries is greater than 512,
7439  * then we know that chained SG blocks work.  (Original smart arrays did not
7440  * support chained SG blocks and would return zero for max sg entries.)
7441  */
7442 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7443 {
7444 	return h->maxsgentries > 512;
7445 }
7446 
7447 /* Interrogate the hardware for some limits:
7448  * max commands, max SG elements without chaining, and with chaining,
7449  * SG chain block size, etc.
7450  */
7451 static void hpsa_find_board_params(struct ctlr_info *h)
7452 {
7453 	hpsa_get_max_perf_mode_cmds(h);
7454 	h->nr_cmds = h->max_commands;
7455 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7456 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7457 	if (hpsa_supports_chained_sg_blocks(h)) {
7458 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7459 		h->max_cmd_sg_entries = 32;
7460 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7461 		h->maxsgentries--; /* save one for chain pointer */
7462 	} else {
7463 		/*
7464 		 * Original smart arrays supported at most 31 s/g entries
7465 		 * embedded inline in the command (trying to use more
7466 		 * would lock up the controller)
7467 		 */
7468 		h->max_cmd_sg_entries = 31;
7469 		h->maxsgentries = 31; /* default to traditional values */
7470 		h->chainsize = 0;
7471 	}
7472 
7473 	/* Find out what task management functions are supported and cache */
7474 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7475 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7476 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7477 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7478 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7479 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7480 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7481 }
7482 
7483 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7484 {
7485 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7486 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7487 		return false;
7488 	}
7489 	return true;
7490 }
7491 
7492 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7493 {
7494 	u32 driver_support;
7495 
7496 	driver_support = readl(&(h->cfgtable->driver_support));
7497 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7498 #ifdef CONFIG_X86
7499 	driver_support |= ENABLE_SCSI_PREFETCH;
7500 #endif
7501 	driver_support |= ENABLE_UNIT_ATTN;
7502 	writel(driver_support, &(h->cfgtable->driver_support));
7503 }
7504 
7505 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7506  * in a prefetch beyond physical memory.
7507  */
7508 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7509 {
7510 	u32 dma_prefetch;
7511 
7512 	if (h->board_id != 0x3225103C)
7513 		return;
7514 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7515 	dma_prefetch |= 0x8000;
7516 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7517 }
7518 
7519 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7520 {
7521 	int i;
7522 	u32 doorbell_value;
7523 	unsigned long flags;
7524 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7525 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7526 		spin_lock_irqsave(&h->lock, flags);
7527 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7528 		spin_unlock_irqrestore(&h->lock, flags);
7529 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7530 			goto done;
7531 		/* delay and try again */
7532 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7533 	}
7534 	return -ENODEV;
7535 done:
7536 	return 0;
7537 }
7538 
7539 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7540 {
7541 	int i;
7542 	u32 doorbell_value;
7543 	unsigned long flags;
7544 
7545 	/* under certain very rare conditions, this can take awhile.
7546 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7547 	 * as we enter this code.)
7548 	 */
7549 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7550 		if (h->remove_in_progress)
7551 			goto done;
7552 		spin_lock_irqsave(&h->lock, flags);
7553 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7554 		spin_unlock_irqrestore(&h->lock, flags);
7555 		if (!(doorbell_value & CFGTBL_ChangeReq))
7556 			goto done;
7557 		/* delay and try again */
7558 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7559 	}
7560 	return -ENODEV;
7561 done:
7562 	return 0;
7563 }
7564 
7565 /* return -ENODEV or other reason on error, 0 on success */
7566 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7567 {
7568 	u32 trans_support;
7569 
7570 	trans_support = readl(&(h->cfgtable->TransportSupport));
7571 	if (!(trans_support & SIMPLE_MODE))
7572 		return -ENOTSUPP;
7573 
7574 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7575 
7576 	/* Update the field, and then ring the doorbell */
7577 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7578 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7579 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7580 	if (hpsa_wait_for_mode_change_ack(h))
7581 		goto error;
7582 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7583 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7584 		goto error;
7585 	h->transMethod = CFGTBL_Trans_Simple;
7586 	return 0;
7587 error:
7588 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7589 	return -ENODEV;
7590 }
7591 
7592 /* free items allocated or mapped by hpsa_pci_init */
7593 static void hpsa_free_pci_init(struct ctlr_info *h)
7594 {
7595 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7596 	iounmap(h->vaddr);			/* pci_init 3 */
7597 	h->vaddr = NULL;
7598 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7599 	/*
7600 	 * call pci_disable_device before pci_release_regions per
7601 	 * Documentation/PCI/pci.txt
7602 	 */
7603 	pci_disable_device(h->pdev);		/* pci_init 1 */
7604 	pci_release_regions(h->pdev);		/* pci_init 2 */
7605 }
7606 
7607 /* several items must be freed later */
7608 static int hpsa_pci_init(struct ctlr_info *h)
7609 {
7610 	int prod_index, err;
7611 	bool legacy_board;
7612 
7613 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7614 	if (prod_index < 0)
7615 		return prod_index;
7616 	h->product_name = products[prod_index].product_name;
7617 	h->access = *(products[prod_index].access);
7618 	h->legacy_board = legacy_board;
7619 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7620 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7621 
7622 	err = pci_enable_device(h->pdev);
7623 	if (err) {
7624 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7625 		pci_disable_device(h->pdev);
7626 		return err;
7627 	}
7628 
7629 	err = pci_request_regions(h->pdev, HPSA);
7630 	if (err) {
7631 		dev_err(&h->pdev->dev,
7632 			"failed to obtain PCI resources\n");
7633 		pci_disable_device(h->pdev);
7634 		return err;
7635 	}
7636 
7637 	pci_set_master(h->pdev);
7638 
7639 	err = hpsa_interrupt_mode(h);
7640 	if (err)
7641 		goto clean1;
7642 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7643 	if (err)
7644 		goto clean2;	/* intmode+region, pci */
7645 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7646 	if (!h->vaddr) {
7647 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7648 		err = -ENOMEM;
7649 		goto clean2;	/* intmode+region, pci */
7650 	}
7651 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7652 	if (err)
7653 		goto clean3;	/* vaddr, intmode+region, pci */
7654 	err = hpsa_find_cfgtables(h);
7655 	if (err)
7656 		goto clean3;	/* vaddr, intmode+region, pci */
7657 	hpsa_find_board_params(h);
7658 
7659 	if (!hpsa_CISS_signature_present(h)) {
7660 		err = -ENODEV;
7661 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7662 	}
7663 	hpsa_set_driver_support_bits(h);
7664 	hpsa_p600_dma_prefetch_quirk(h);
7665 	err = hpsa_enter_simple_mode(h);
7666 	if (err)
7667 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7668 	return 0;
7669 
7670 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7671 	hpsa_free_cfgtables(h);
7672 clean3:	/* vaddr, intmode+region, pci */
7673 	iounmap(h->vaddr);
7674 	h->vaddr = NULL;
7675 clean2:	/* intmode+region, pci */
7676 	hpsa_disable_interrupt_mode(h);
7677 clean1:
7678 	/*
7679 	 * call pci_disable_device before pci_release_regions per
7680 	 * Documentation/PCI/pci.txt
7681 	 */
7682 	pci_disable_device(h->pdev);
7683 	pci_release_regions(h->pdev);
7684 	return err;
7685 }
7686 
7687 static void hpsa_hba_inquiry(struct ctlr_info *h)
7688 {
7689 	int rc;
7690 
7691 #define HBA_INQUIRY_BYTE_COUNT 64
7692 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7693 	if (!h->hba_inquiry_data)
7694 		return;
7695 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7696 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7697 	if (rc != 0) {
7698 		kfree(h->hba_inquiry_data);
7699 		h->hba_inquiry_data = NULL;
7700 	}
7701 }
7702 
7703 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7704 {
7705 	int rc, i;
7706 	void __iomem *vaddr;
7707 
7708 	if (!reset_devices)
7709 		return 0;
7710 
7711 	/* kdump kernel is loading, we don't know in which state is
7712 	 * the pci interface. The dev->enable_cnt is equal zero
7713 	 * so we call enable+disable, wait a while and switch it on.
7714 	 */
7715 	rc = pci_enable_device(pdev);
7716 	if (rc) {
7717 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7718 		return -ENODEV;
7719 	}
7720 	pci_disable_device(pdev);
7721 	msleep(260);			/* a randomly chosen number */
7722 	rc = pci_enable_device(pdev);
7723 	if (rc) {
7724 		dev_warn(&pdev->dev, "failed to enable device.\n");
7725 		return -ENODEV;
7726 	}
7727 
7728 	pci_set_master(pdev);
7729 
7730 	vaddr = pci_ioremap_bar(pdev, 0);
7731 	if (vaddr == NULL) {
7732 		rc = -ENOMEM;
7733 		goto out_disable;
7734 	}
7735 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7736 	iounmap(vaddr);
7737 
7738 	/* Reset the controller with a PCI power-cycle or via doorbell */
7739 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7740 
7741 	/* -ENOTSUPP here means we cannot reset the controller
7742 	 * but it's already (and still) up and running in
7743 	 * "performant mode".  Or, it might be 640x, which can't reset
7744 	 * due to concerns about shared bbwc between 6402/6404 pair.
7745 	 */
7746 	if (rc)
7747 		goto out_disable;
7748 
7749 	/* Now try to get the controller to respond to a no-op */
7750 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7751 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7752 		if (hpsa_noop(pdev) == 0)
7753 			break;
7754 		else
7755 			dev_warn(&pdev->dev, "no-op failed%s\n",
7756 					(i < 11 ? "; re-trying" : ""));
7757 	}
7758 
7759 out_disable:
7760 
7761 	pci_disable_device(pdev);
7762 	return rc;
7763 }
7764 
7765 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7766 {
7767 	kfree(h->cmd_pool_bits);
7768 	h->cmd_pool_bits = NULL;
7769 	if (h->cmd_pool) {
7770 		pci_free_consistent(h->pdev,
7771 				h->nr_cmds * sizeof(struct CommandList),
7772 				h->cmd_pool,
7773 				h->cmd_pool_dhandle);
7774 		h->cmd_pool = NULL;
7775 		h->cmd_pool_dhandle = 0;
7776 	}
7777 	if (h->errinfo_pool) {
7778 		pci_free_consistent(h->pdev,
7779 				h->nr_cmds * sizeof(struct ErrorInfo),
7780 				h->errinfo_pool,
7781 				h->errinfo_pool_dhandle);
7782 		h->errinfo_pool = NULL;
7783 		h->errinfo_pool_dhandle = 0;
7784 	}
7785 }
7786 
7787 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7788 {
7789 	h->cmd_pool_bits = kzalloc(
7790 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7791 		sizeof(unsigned long), GFP_KERNEL);
7792 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7793 		    h->nr_cmds * sizeof(*h->cmd_pool),
7794 		    &(h->cmd_pool_dhandle));
7795 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7796 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7797 		    &(h->errinfo_pool_dhandle));
7798 	if ((h->cmd_pool_bits == NULL)
7799 	    || (h->cmd_pool == NULL)
7800 	    || (h->errinfo_pool == NULL)) {
7801 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7802 		goto clean_up;
7803 	}
7804 	hpsa_preinitialize_commands(h);
7805 	return 0;
7806 clean_up:
7807 	hpsa_free_cmd_pool(h);
7808 	return -ENOMEM;
7809 }
7810 
7811 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7812 static void hpsa_free_irqs(struct ctlr_info *h)
7813 {
7814 	int i;
7815 
7816 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7817 		/* Single reply queue, only one irq to free */
7818 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7819 		h->q[h->intr_mode] = 0;
7820 		return;
7821 	}
7822 
7823 	for (i = 0; i < h->msix_vectors; i++) {
7824 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7825 		h->q[i] = 0;
7826 	}
7827 	for (; i < MAX_REPLY_QUEUES; i++)
7828 		h->q[i] = 0;
7829 }
7830 
7831 /* returns 0 on success; cleans up and returns -Enn on error */
7832 static int hpsa_request_irqs(struct ctlr_info *h,
7833 	irqreturn_t (*msixhandler)(int, void *),
7834 	irqreturn_t (*intxhandler)(int, void *))
7835 {
7836 	int rc, i;
7837 
7838 	/*
7839 	 * initialize h->q[x] = x so that interrupt handlers know which
7840 	 * queue to process.
7841 	 */
7842 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7843 		h->q[i] = (u8) i;
7844 
7845 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7846 		/* If performant mode and MSI-X, use multiple reply queues */
7847 		for (i = 0; i < h->msix_vectors; i++) {
7848 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7849 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7850 					0, h->intrname[i],
7851 					&h->q[i]);
7852 			if (rc) {
7853 				int j;
7854 
7855 				dev_err(&h->pdev->dev,
7856 					"failed to get irq %d for %s\n",
7857 				       pci_irq_vector(h->pdev, i), h->devname);
7858 				for (j = 0; j < i; j++) {
7859 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7860 					h->q[j] = 0;
7861 				}
7862 				for (; j < MAX_REPLY_QUEUES; j++)
7863 					h->q[j] = 0;
7864 				return rc;
7865 			}
7866 		}
7867 	} else {
7868 		/* Use single reply pool */
7869 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
7870 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
7871 				h->msix_vectors ? "x" : "");
7872 			rc = request_irq(pci_irq_vector(h->pdev, 0),
7873 				msixhandler, 0,
7874 				h->intrname[0],
7875 				&h->q[h->intr_mode]);
7876 		} else {
7877 			sprintf(h->intrname[h->intr_mode],
7878 				"%s-intx", h->devname);
7879 			rc = request_irq(pci_irq_vector(h->pdev, 0),
7880 				intxhandler, IRQF_SHARED,
7881 				h->intrname[0],
7882 				&h->q[h->intr_mode]);
7883 		}
7884 	}
7885 	if (rc) {
7886 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7887 		       pci_irq_vector(h->pdev, 0), h->devname);
7888 		hpsa_free_irqs(h);
7889 		return -ENODEV;
7890 	}
7891 	return 0;
7892 }
7893 
7894 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7895 {
7896 	int rc;
7897 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7898 
7899 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7900 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7901 	if (rc) {
7902 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7903 		return rc;
7904 	}
7905 
7906 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7907 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7908 	if (rc) {
7909 		dev_warn(&h->pdev->dev, "Board failed to become ready "
7910 			"after soft reset.\n");
7911 		return rc;
7912 	}
7913 
7914 	return 0;
7915 }
7916 
7917 static void hpsa_free_reply_queues(struct ctlr_info *h)
7918 {
7919 	int i;
7920 
7921 	for (i = 0; i < h->nreply_queues; i++) {
7922 		if (!h->reply_queue[i].head)
7923 			continue;
7924 		pci_free_consistent(h->pdev,
7925 					h->reply_queue_size,
7926 					h->reply_queue[i].head,
7927 					h->reply_queue[i].busaddr);
7928 		h->reply_queue[i].head = NULL;
7929 		h->reply_queue[i].busaddr = 0;
7930 	}
7931 	h->reply_queue_size = 0;
7932 }
7933 
7934 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7935 {
7936 	hpsa_free_performant_mode(h);		/* init_one 7 */
7937 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
7938 	hpsa_free_cmd_pool(h);			/* init_one 5 */
7939 	hpsa_free_irqs(h);			/* init_one 4 */
7940 	scsi_host_put(h->scsi_host);		/* init_one 3 */
7941 	h->scsi_host = NULL;			/* init_one 3 */
7942 	hpsa_free_pci_init(h);			/* init_one 2_5 */
7943 	free_percpu(h->lockup_detected);	/* init_one 2 */
7944 	h->lockup_detected = NULL;		/* init_one 2 */
7945 	if (h->resubmit_wq) {
7946 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
7947 		h->resubmit_wq = NULL;
7948 	}
7949 	if (h->rescan_ctlr_wq) {
7950 		destroy_workqueue(h->rescan_ctlr_wq);
7951 		h->rescan_ctlr_wq = NULL;
7952 	}
7953 	kfree(h);				/* init_one 1 */
7954 }
7955 
7956 /* Called when controller lockup detected. */
7957 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7958 {
7959 	int i, refcount;
7960 	struct CommandList *c;
7961 	int failcount = 0;
7962 
7963 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7964 	for (i = 0; i < h->nr_cmds; i++) {
7965 		c = h->cmd_pool + i;
7966 		refcount = atomic_inc_return(&c->refcount);
7967 		if (refcount > 1) {
7968 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7969 			finish_cmd(c);
7970 			atomic_dec(&h->commands_outstanding);
7971 			failcount++;
7972 		}
7973 		cmd_free(h, c);
7974 	}
7975 	dev_warn(&h->pdev->dev,
7976 		"failed %d commands in fail_all\n", failcount);
7977 }
7978 
7979 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7980 {
7981 	int cpu;
7982 
7983 	for_each_online_cpu(cpu) {
7984 		u32 *lockup_detected;
7985 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7986 		*lockup_detected = value;
7987 	}
7988 	wmb(); /* be sure the per-cpu variables are out to memory */
7989 }
7990 
7991 static void controller_lockup_detected(struct ctlr_info *h)
7992 {
7993 	unsigned long flags;
7994 	u32 lockup_detected;
7995 
7996 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7997 	spin_lock_irqsave(&h->lock, flags);
7998 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7999 	if (!lockup_detected) {
8000 		/* no heartbeat, but controller gave us a zero. */
8001 		dev_warn(&h->pdev->dev,
8002 			"lockup detected after %d but scratchpad register is zero\n",
8003 			h->heartbeat_sample_interval / HZ);
8004 		lockup_detected = 0xffffffff;
8005 	}
8006 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8007 	spin_unlock_irqrestore(&h->lock, flags);
8008 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8009 			lockup_detected, h->heartbeat_sample_interval / HZ);
8010 	pci_disable_device(h->pdev);
8011 	fail_all_outstanding_cmds(h);
8012 }
8013 
8014 static int detect_controller_lockup(struct ctlr_info *h)
8015 {
8016 	u64 now;
8017 	u32 heartbeat;
8018 	unsigned long flags;
8019 
8020 	now = get_jiffies_64();
8021 	/* If we've received an interrupt recently, we're ok. */
8022 	if (time_after64(h->last_intr_timestamp +
8023 				(h->heartbeat_sample_interval), now))
8024 		return false;
8025 
8026 	/*
8027 	 * If we've already checked the heartbeat recently, we're ok.
8028 	 * This could happen if someone sends us a signal. We
8029 	 * otherwise don't care about signals in this thread.
8030 	 */
8031 	if (time_after64(h->last_heartbeat_timestamp +
8032 				(h->heartbeat_sample_interval), now))
8033 		return false;
8034 
8035 	/* If heartbeat has not changed since we last looked, we're not ok. */
8036 	spin_lock_irqsave(&h->lock, flags);
8037 	heartbeat = readl(&h->cfgtable->HeartBeat);
8038 	spin_unlock_irqrestore(&h->lock, flags);
8039 	if (h->last_heartbeat == heartbeat) {
8040 		controller_lockup_detected(h);
8041 		return true;
8042 	}
8043 
8044 	/* We're ok. */
8045 	h->last_heartbeat = heartbeat;
8046 	h->last_heartbeat_timestamp = now;
8047 	return false;
8048 }
8049 
8050 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8051 {
8052 	int i;
8053 	char *event_type;
8054 
8055 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8056 		return;
8057 
8058 	/* Ask the controller to clear the events we're handling. */
8059 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8060 			| CFGTBL_Trans_io_accel2)) &&
8061 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8062 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8063 
8064 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8065 			event_type = "state change";
8066 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8067 			event_type = "configuration change";
8068 		/* Stop sending new RAID offload reqs via the IO accelerator */
8069 		scsi_block_requests(h->scsi_host);
8070 		for (i = 0; i < h->ndevices; i++) {
8071 			h->dev[i]->offload_enabled = 0;
8072 			h->dev[i]->offload_to_be_enabled = 0;
8073 		}
8074 		hpsa_drain_accel_commands(h);
8075 		/* Set 'accelerator path config change' bit */
8076 		dev_warn(&h->pdev->dev,
8077 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8078 			h->events, event_type);
8079 		writel(h->events, &(h->cfgtable->clear_event_notify));
8080 		/* Set the "clear event notify field update" bit 6 */
8081 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8082 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8083 		hpsa_wait_for_clear_event_notify_ack(h);
8084 		scsi_unblock_requests(h->scsi_host);
8085 	} else {
8086 		/* Acknowledge controller notification events. */
8087 		writel(h->events, &(h->cfgtable->clear_event_notify));
8088 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8089 		hpsa_wait_for_clear_event_notify_ack(h);
8090 #if 0
8091 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8092 		hpsa_wait_for_mode_change_ack(h);
8093 #endif
8094 	}
8095 	return;
8096 }
8097 
8098 /* Check a register on the controller to see if there are configuration
8099  * changes (added/changed/removed logical drives, etc.) which mean that
8100  * we should rescan the controller for devices.
8101  * Also check flag for driver-initiated rescan.
8102  */
8103 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8104 {
8105 	if (h->drv_req_rescan) {
8106 		h->drv_req_rescan = 0;
8107 		return 1;
8108 	}
8109 
8110 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8111 		return 0;
8112 
8113 	h->events = readl(&(h->cfgtable->event_notify));
8114 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8115 }
8116 
8117 /*
8118  * Check if any of the offline devices have become ready
8119  */
8120 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8121 {
8122 	unsigned long flags;
8123 	struct offline_device_entry *d;
8124 	struct list_head *this, *tmp;
8125 
8126 	spin_lock_irqsave(&h->offline_device_lock, flags);
8127 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8128 		d = list_entry(this, struct offline_device_entry,
8129 				offline_list);
8130 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8131 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8132 			spin_lock_irqsave(&h->offline_device_lock, flags);
8133 			list_del(&d->offline_list);
8134 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8135 			return 1;
8136 		}
8137 		spin_lock_irqsave(&h->offline_device_lock, flags);
8138 	}
8139 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8140 	return 0;
8141 }
8142 
8143 static int hpsa_luns_changed(struct ctlr_info *h)
8144 {
8145 	int rc = 1; /* assume there are changes */
8146 	struct ReportLUNdata *logdev = NULL;
8147 
8148 	/* if we can't find out if lun data has changed,
8149 	 * assume that it has.
8150 	 */
8151 
8152 	if (!h->lastlogicals)
8153 		return rc;
8154 
8155 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8156 	if (!logdev)
8157 		return rc;
8158 
8159 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8160 		dev_warn(&h->pdev->dev,
8161 			"report luns failed, can't track lun changes.\n");
8162 		goto out;
8163 	}
8164 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8165 		dev_info(&h->pdev->dev,
8166 			"Lun changes detected.\n");
8167 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8168 		goto out;
8169 	} else
8170 		rc = 0; /* no changes detected. */
8171 out:
8172 	kfree(logdev);
8173 	return rc;
8174 }
8175 
8176 static void hpsa_perform_rescan(struct ctlr_info *h)
8177 {
8178 	struct Scsi_Host *sh = NULL;
8179 	unsigned long flags;
8180 
8181 	/*
8182 	 * Do the scan after the reset
8183 	 */
8184 	spin_lock_irqsave(&h->reset_lock, flags);
8185 	if (h->reset_in_progress) {
8186 		h->drv_req_rescan = 1;
8187 		spin_unlock_irqrestore(&h->reset_lock, flags);
8188 		return;
8189 	}
8190 	spin_unlock_irqrestore(&h->reset_lock, flags);
8191 
8192 	sh = scsi_host_get(h->scsi_host);
8193 	if (sh != NULL) {
8194 		hpsa_scan_start(sh);
8195 		scsi_host_put(sh);
8196 		h->drv_req_rescan = 0;
8197 	}
8198 }
8199 
8200 /*
8201  * watch for controller events
8202  */
8203 static void hpsa_event_monitor_worker(struct work_struct *work)
8204 {
8205 	struct ctlr_info *h = container_of(to_delayed_work(work),
8206 					struct ctlr_info, event_monitor_work);
8207 	unsigned long flags;
8208 
8209 	spin_lock_irqsave(&h->lock, flags);
8210 	if (h->remove_in_progress) {
8211 		spin_unlock_irqrestore(&h->lock, flags);
8212 		return;
8213 	}
8214 	spin_unlock_irqrestore(&h->lock, flags);
8215 
8216 	if (hpsa_ctlr_needs_rescan(h)) {
8217 		hpsa_ack_ctlr_events(h);
8218 		hpsa_perform_rescan(h);
8219 	}
8220 
8221 	spin_lock_irqsave(&h->lock, flags);
8222 	if (!h->remove_in_progress)
8223 		schedule_delayed_work(&h->event_monitor_work,
8224 					HPSA_EVENT_MONITOR_INTERVAL);
8225 	spin_unlock_irqrestore(&h->lock, flags);
8226 }
8227 
8228 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8229 {
8230 	unsigned long flags;
8231 	struct ctlr_info *h = container_of(to_delayed_work(work),
8232 					struct ctlr_info, rescan_ctlr_work);
8233 
8234 	spin_lock_irqsave(&h->lock, flags);
8235 	if (h->remove_in_progress) {
8236 		spin_unlock_irqrestore(&h->lock, flags);
8237 		return;
8238 	}
8239 	spin_unlock_irqrestore(&h->lock, flags);
8240 
8241 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8242 		hpsa_perform_rescan(h);
8243 	} else if (h->discovery_polling) {
8244 		hpsa_disable_rld_caching(h);
8245 		if (hpsa_luns_changed(h)) {
8246 			dev_info(&h->pdev->dev,
8247 				"driver discovery polling rescan.\n");
8248 			hpsa_perform_rescan(h);
8249 		}
8250 	}
8251 	spin_lock_irqsave(&h->lock, flags);
8252 	if (!h->remove_in_progress)
8253 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8254 				h->heartbeat_sample_interval);
8255 	spin_unlock_irqrestore(&h->lock, flags);
8256 }
8257 
8258 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8259 {
8260 	unsigned long flags;
8261 	struct ctlr_info *h = container_of(to_delayed_work(work),
8262 					struct ctlr_info, monitor_ctlr_work);
8263 
8264 	detect_controller_lockup(h);
8265 	if (lockup_detected(h))
8266 		return;
8267 
8268 	spin_lock_irqsave(&h->lock, flags);
8269 	if (!h->remove_in_progress)
8270 		schedule_delayed_work(&h->monitor_ctlr_work,
8271 				h->heartbeat_sample_interval);
8272 	spin_unlock_irqrestore(&h->lock, flags);
8273 }
8274 
8275 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8276 						char *name)
8277 {
8278 	struct workqueue_struct *wq = NULL;
8279 
8280 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8281 	if (!wq)
8282 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8283 
8284 	return wq;
8285 }
8286 
8287 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8288 {
8289 	int dac, rc;
8290 	struct ctlr_info *h;
8291 	int try_soft_reset = 0;
8292 	unsigned long flags;
8293 	u32 board_id;
8294 
8295 	if (number_of_controllers == 0)
8296 		printk(KERN_INFO DRIVER_NAME "\n");
8297 
8298 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8299 	if (rc < 0) {
8300 		dev_warn(&pdev->dev, "Board ID not found\n");
8301 		return rc;
8302 	}
8303 
8304 	rc = hpsa_init_reset_devices(pdev, board_id);
8305 	if (rc) {
8306 		if (rc != -ENOTSUPP)
8307 			return rc;
8308 		/* If the reset fails in a particular way (it has no way to do
8309 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8310 		 * a soft reset once we get the controller configured up to the
8311 		 * point that it can accept a command.
8312 		 */
8313 		try_soft_reset = 1;
8314 		rc = 0;
8315 	}
8316 
8317 reinit_after_soft_reset:
8318 
8319 	/* Command structures must be aligned on a 32-byte boundary because
8320 	 * the 5 lower bits of the address are used by the hardware. and by
8321 	 * the driver.  See comments in hpsa.h for more info.
8322 	 */
8323 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8324 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8325 	if (!h) {
8326 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8327 		return -ENOMEM;
8328 	}
8329 
8330 	h->pdev = pdev;
8331 
8332 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8333 	INIT_LIST_HEAD(&h->offline_device_list);
8334 	spin_lock_init(&h->lock);
8335 	spin_lock_init(&h->offline_device_lock);
8336 	spin_lock_init(&h->scan_lock);
8337 	spin_lock_init(&h->reset_lock);
8338 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8339 
8340 	/* Allocate and clear per-cpu variable lockup_detected */
8341 	h->lockup_detected = alloc_percpu(u32);
8342 	if (!h->lockup_detected) {
8343 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8344 		rc = -ENOMEM;
8345 		goto clean1;	/* aer/h */
8346 	}
8347 	set_lockup_detected_for_all_cpus(h, 0);
8348 
8349 	rc = hpsa_pci_init(h);
8350 	if (rc)
8351 		goto clean2;	/* lu, aer/h */
8352 
8353 	/* relies on h-> settings made by hpsa_pci_init, including
8354 	 * interrupt_mode h->intr */
8355 	rc = hpsa_scsi_host_alloc(h);
8356 	if (rc)
8357 		goto clean2_5;	/* pci, lu, aer/h */
8358 
8359 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8360 	h->ctlr = number_of_controllers;
8361 	number_of_controllers++;
8362 
8363 	/* configure PCI DMA stuff */
8364 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8365 	if (rc == 0) {
8366 		dac = 1;
8367 	} else {
8368 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8369 		if (rc == 0) {
8370 			dac = 0;
8371 		} else {
8372 			dev_err(&pdev->dev, "no suitable DMA available\n");
8373 			goto clean3;	/* shost, pci, lu, aer/h */
8374 		}
8375 	}
8376 
8377 	/* make sure the board interrupts are off */
8378 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8379 
8380 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8381 	if (rc)
8382 		goto clean3;	/* shost, pci, lu, aer/h */
8383 	rc = hpsa_alloc_cmd_pool(h);
8384 	if (rc)
8385 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8386 	rc = hpsa_alloc_sg_chain_blocks(h);
8387 	if (rc)
8388 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8389 	init_waitqueue_head(&h->scan_wait_queue);
8390 	init_waitqueue_head(&h->event_sync_wait_queue);
8391 	mutex_init(&h->reset_mutex);
8392 	h->scan_finished = 1; /* no scan currently in progress */
8393 	h->scan_waiting = 0;
8394 
8395 	pci_set_drvdata(pdev, h);
8396 	h->ndevices = 0;
8397 
8398 	spin_lock_init(&h->devlock);
8399 	rc = hpsa_put_ctlr_into_performant_mode(h);
8400 	if (rc)
8401 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8402 
8403 	/* create the resubmit workqueue */
8404 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8405 	if (!h->rescan_ctlr_wq) {
8406 		rc = -ENOMEM;
8407 		goto clean7;
8408 	}
8409 
8410 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8411 	if (!h->resubmit_wq) {
8412 		rc = -ENOMEM;
8413 		goto clean7;	/* aer/h */
8414 	}
8415 
8416 	/*
8417 	 * At this point, the controller is ready to take commands.
8418 	 * Now, if reset_devices and the hard reset didn't work, try
8419 	 * the soft reset and see if that works.
8420 	 */
8421 	if (try_soft_reset) {
8422 
8423 		/* This is kind of gross.  We may or may not get a completion
8424 		 * from the soft reset command, and if we do, then the value
8425 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8426 		 * after the reset throwing away any completions we get during
8427 		 * that time.  Unregister the interrupt handler and register
8428 		 * fake ones to scoop up any residual completions.
8429 		 */
8430 		spin_lock_irqsave(&h->lock, flags);
8431 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8432 		spin_unlock_irqrestore(&h->lock, flags);
8433 		hpsa_free_irqs(h);
8434 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8435 					hpsa_intx_discard_completions);
8436 		if (rc) {
8437 			dev_warn(&h->pdev->dev,
8438 				"Failed to request_irq after soft reset.\n");
8439 			/*
8440 			 * cannot goto clean7 or free_irqs will be called
8441 			 * again. Instead, do its work
8442 			 */
8443 			hpsa_free_performant_mode(h);	/* clean7 */
8444 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8445 			hpsa_free_cmd_pool(h);		/* clean5 */
8446 			/*
8447 			 * skip hpsa_free_irqs(h) clean4 since that
8448 			 * was just called before request_irqs failed
8449 			 */
8450 			goto clean3;
8451 		}
8452 
8453 		rc = hpsa_kdump_soft_reset(h);
8454 		if (rc)
8455 			/* Neither hard nor soft reset worked, we're hosed. */
8456 			goto clean7;
8457 
8458 		dev_info(&h->pdev->dev, "Board READY.\n");
8459 		dev_info(&h->pdev->dev,
8460 			"Waiting for stale completions to drain.\n");
8461 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8462 		msleep(10000);
8463 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8464 
8465 		rc = controller_reset_failed(h->cfgtable);
8466 		if (rc)
8467 			dev_info(&h->pdev->dev,
8468 				"Soft reset appears to have failed.\n");
8469 
8470 		/* since the controller's reset, we have to go back and re-init
8471 		 * everything.  Easiest to just forget what we've done and do it
8472 		 * all over again.
8473 		 */
8474 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8475 		try_soft_reset = 0;
8476 		if (rc)
8477 			/* don't goto clean, we already unallocated */
8478 			return -ENODEV;
8479 
8480 		goto reinit_after_soft_reset;
8481 	}
8482 
8483 	/* Enable Accelerated IO path at driver layer */
8484 	h->acciopath_status = 1;
8485 	/* Disable discovery polling.*/
8486 	h->discovery_polling = 0;
8487 
8488 
8489 	/* Turn the interrupts on so we can service requests */
8490 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8491 
8492 	hpsa_hba_inquiry(h);
8493 
8494 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8495 	if (!h->lastlogicals)
8496 		dev_info(&h->pdev->dev,
8497 			"Can't track change to report lun data\n");
8498 
8499 	/* hook into SCSI subsystem */
8500 	rc = hpsa_scsi_add_host(h);
8501 	if (rc)
8502 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8503 
8504 	/* Monitor the controller for firmware lockups */
8505 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8506 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8507 	schedule_delayed_work(&h->monitor_ctlr_work,
8508 				h->heartbeat_sample_interval);
8509 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8510 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8511 				h->heartbeat_sample_interval);
8512 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8513 	schedule_delayed_work(&h->event_monitor_work,
8514 				HPSA_EVENT_MONITOR_INTERVAL);
8515 	return 0;
8516 
8517 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8518 	hpsa_free_performant_mode(h);
8519 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8520 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8521 	hpsa_free_sg_chain_blocks(h);
8522 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8523 	hpsa_free_cmd_pool(h);
8524 clean4: /* irq, shost, pci, lu, aer/h */
8525 	hpsa_free_irqs(h);
8526 clean3: /* shost, pci, lu, aer/h */
8527 	scsi_host_put(h->scsi_host);
8528 	h->scsi_host = NULL;
8529 clean2_5: /* pci, lu, aer/h */
8530 	hpsa_free_pci_init(h);
8531 clean2: /* lu, aer/h */
8532 	if (h->lockup_detected) {
8533 		free_percpu(h->lockup_detected);
8534 		h->lockup_detected = NULL;
8535 	}
8536 clean1:	/* wq/aer/h */
8537 	if (h->resubmit_wq) {
8538 		destroy_workqueue(h->resubmit_wq);
8539 		h->resubmit_wq = NULL;
8540 	}
8541 	if (h->rescan_ctlr_wq) {
8542 		destroy_workqueue(h->rescan_ctlr_wq);
8543 		h->rescan_ctlr_wq = NULL;
8544 	}
8545 	kfree(h);
8546 	return rc;
8547 }
8548 
8549 static void hpsa_flush_cache(struct ctlr_info *h)
8550 {
8551 	char *flush_buf;
8552 	struct CommandList *c;
8553 	int rc;
8554 
8555 	if (unlikely(lockup_detected(h)))
8556 		return;
8557 	flush_buf = kzalloc(4, GFP_KERNEL);
8558 	if (!flush_buf)
8559 		return;
8560 
8561 	c = cmd_alloc(h);
8562 
8563 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8564 		RAID_CTLR_LUNID, TYPE_CMD)) {
8565 		goto out;
8566 	}
8567 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8568 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8569 	if (rc)
8570 		goto out;
8571 	if (c->err_info->CommandStatus != 0)
8572 out:
8573 		dev_warn(&h->pdev->dev,
8574 			"error flushing cache on controller\n");
8575 	cmd_free(h, c);
8576 	kfree(flush_buf);
8577 }
8578 
8579 /* Make controller gather fresh report lun data each time we
8580  * send down a report luns request
8581  */
8582 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8583 {
8584 	u32 *options;
8585 	struct CommandList *c;
8586 	int rc;
8587 
8588 	/* Don't bother trying to set diag options if locked up */
8589 	if (unlikely(h->lockup_detected))
8590 		return;
8591 
8592 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8593 	if (!options)
8594 		return;
8595 
8596 	c = cmd_alloc(h);
8597 
8598 	/* first, get the current diag options settings */
8599 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8600 		RAID_CTLR_LUNID, TYPE_CMD))
8601 		goto errout;
8602 
8603 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8604 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8605 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8606 		goto errout;
8607 
8608 	/* Now, set the bit for disabling the RLD caching */
8609 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8610 
8611 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8612 		RAID_CTLR_LUNID, TYPE_CMD))
8613 		goto errout;
8614 
8615 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8616 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8617 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8618 		goto errout;
8619 
8620 	/* Now verify that it got set: */
8621 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8622 		RAID_CTLR_LUNID, TYPE_CMD))
8623 		goto errout;
8624 
8625 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8626 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8627 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8628 		goto errout;
8629 
8630 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8631 		goto out;
8632 
8633 errout:
8634 	dev_err(&h->pdev->dev,
8635 			"Error: failed to disable report lun data caching.\n");
8636 out:
8637 	cmd_free(h, c);
8638 	kfree(options);
8639 }
8640 
8641 static void hpsa_shutdown(struct pci_dev *pdev)
8642 {
8643 	struct ctlr_info *h;
8644 
8645 	h = pci_get_drvdata(pdev);
8646 	/* Turn board interrupts off  and send the flush cache command
8647 	 * sendcmd will turn off interrupt, and send the flush...
8648 	 * To write all data in the battery backed cache to disks
8649 	 */
8650 	hpsa_flush_cache(h);
8651 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8652 	hpsa_free_irqs(h);			/* init_one 4 */
8653 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8654 }
8655 
8656 static void hpsa_free_device_info(struct ctlr_info *h)
8657 {
8658 	int i;
8659 
8660 	for (i = 0; i < h->ndevices; i++) {
8661 		kfree(h->dev[i]);
8662 		h->dev[i] = NULL;
8663 	}
8664 }
8665 
8666 static void hpsa_remove_one(struct pci_dev *pdev)
8667 {
8668 	struct ctlr_info *h;
8669 	unsigned long flags;
8670 
8671 	if (pci_get_drvdata(pdev) == NULL) {
8672 		dev_err(&pdev->dev, "unable to remove device\n");
8673 		return;
8674 	}
8675 	h = pci_get_drvdata(pdev);
8676 
8677 	/* Get rid of any controller monitoring work items */
8678 	spin_lock_irqsave(&h->lock, flags);
8679 	h->remove_in_progress = 1;
8680 	spin_unlock_irqrestore(&h->lock, flags);
8681 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8682 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8683 	cancel_delayed_work_sync(&h->event_monitor_work);
8684 	destroy_workqueue(h->rescan_ctlr_wq);
8685 	destroy_workqueue(h->resubmit_wq);
8686 
8687 	/*
8688 	 * Call before disabling interrupts.
8689 	 * scsi_remove_host can trigger I/O operations especially
8690 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8691 	 * operations which cannot complete and will hang the system.
8692 	 */
8693 	if (h->scsi_host)
8694 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8695 	/* includes hpsa_free_irqs - init_one 4 */
8696 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8697 	hpsa_shutdown(pdev);
8698 
8699 	hpsa_free_device_info(h);		/* scan */
8700 
8701 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8702 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8703 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8704 	hpsa_free_performant_mode(h);			/* init_one 7 */
8705 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8706 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8707 	kfree(h->lastlogicals);
8708 
8709 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8710 
8711 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8712 	h->scsi_host = NULL;				/* init_one 3 */
8713 
8714 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8715 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8716 
8717 	free_percpu(h->lockup_detected);		/* init_one 2 */
8718 	h->lockup_detected = NULL;			/* init_one 2 */
8719 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8720 
8721 	hpsa_delete_sas_host(h);
8722 
8723 	kfree(h);					/* init_one 1 */
8724 }
8725 
8726 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8727 	__attribute__((unused)) pm_message_t state)
8728 {
8729 	return -ENOSYS;
8730 }
8731 
8732 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8733 {
8734 	return -ENOSYS;
8735 }
8736 
8737 static struct pci_driver hpsa_pci_driver = {
8738 	.name = HPSA,
8739 	.probe = hpsa_init_one,
8740 	.remove = hpsa_remove_one,
8741 	.id_table = hpsa_pci_device_id,	/* id_table */
8742 	.shutdown = hpsa_shutdown,
8743 	.suspend = hpsa_suspend,
8744 	.resume = hpsa_resume,
8745 };
8746 
8747 /* Fill in bucket_map[], given nsgs (the max number of
8748  * scatter gather elements supported) and bucket[],
8749  * which is an array of 8 integers.  The bucket[] array
8750  * contains 8 different DMA transfer sizes (in 16
8751  * byte increments) which the controller uses to fetch
8752  * commands.  This function fills in bucket_map[], which
8753  * maps a given number of scatter gather elements to one of
8754  * the 8 DMA transfer sizes.  The point of it is to allow the
8755  * controller to only do as much DMA as needed to fetch the
8756  * command, with the DMA transfer size encoded in the lower
8757  * bits of the command address.
8758  */
8759 static void  calc_bucket_map(int bucket[], int num_buckets,
8760 	int nsgs, int min_blocks, u32 *bucket_map)
8761 {
8762 	int i, j, b, size;
8763 
8764 	/* Note, bucket_map must have nsgs+1 entries. */
8765 	for (i = 0; i <= nsgs; i++) {
8766 		/* Compute size of a command with i SG entries */
8767 		size = i + min_blocks;
8768 		b = num_buckets; /* Assume the biggest bucket */
8769 		/* Find the bucket that is just big enough */
8770 		for (j = 0; j < num_buckets; j++) {
8771 			if (bucket[j] >= size) {
8772 				b = j;
8773 				break;
8774 			}
8775 		}
8776 		/* for a command with i SG entries, use bucket b. */
8777 		bucket_map[i] = b;
8778 	}
8779 }
8780 
8781 /*
8782  * return -ENODEV on err, 0 on success (or no action)
8783  * allocates numerous items that must be freed later
8784  */
8785 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8786 {
8787 	int i;
8788 	unsigned long register_value;
8789 	unsigned long transMethod = CFGTBL_Trans_Performant |
8790 			(trans_support & CFGTBL_Trans_use_short_tags) |
8791 				CFGTBL_Trans_enable_directed_msix |
8792 			(trans_support & (CFGTBL_Trans_io_accel1 |
8793 				CFGTBL_Trans_io_accel2));
8794 	struct access_method access = SA5_performant_access;
8795 
8796 	/* This is a bit complicated.  There are 8 registers on
8797 	 * the controller which we write to to tell it 8 different
8798 	 * sizes of commands which there may be.  It's a way of
8799 	 * reducing the DMA done to fetch each command.  Encoded into
8800 	 * each command's tag are 3 bits which communicate to the controller
8801 	 * which of the eight sizes that command fits within.  The size of
8802 	 * each command depends on how many scatter gather entries there are.
8803 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
8804 	 * with the number of 16-byte blocks a command of that size requires.
8805 	 * The smallest command possible requires 5 such 16 byte blocks.
8806 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8807 	 * blocks.  Note, this only extends to the SG entries contained
8808 	 * within the command block, and does not extend to chained blocks
8809 	 * of SG elements.   bft[] contains the eight values we write to
8810 	 * the registers.  They are not evenly distributed, but have more
8811 	 * sizes for small commands, and fewer sizes for larger commands.
8812 	 */
8813 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8814 #define MIN_IOACCEL2_BFT_ENTRY 5
8815 #define HPSA_IOACCEL2_HEADER_SZ 4
8816 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8817 			13, 14, 15, 16, 17, 18, 19,
8818 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8819 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8820 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8821 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8822 				 16 * MIN_IOACCEL2_BFT_ENTRY);
8823 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8824 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8825 	/*  5 = 1 s/g entry or 4k
8826 	 *  6 = 2 s/g entry or 8k
8827 	 *  8 = 4 s/g entry or 16k
8828 	 * 10 = 6 s/g entry or 24k
8829 	 */
8830 
8831 	/* If the controller supports either ioaccel method then
8832 	 * we can also use the RAID stack submit path that does not
8833 	 * perform the superfluous readl() after each command submission.
8834 	 */
8835 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8836 		access = SA5_performant_access_no_read;
8837 
8838 	/* Controller spec: zero out this buffer. */
8839 	for (i = 0; i < h->nreply_queues; i++)
8840 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8841 
8842 	bft[7] = SG_ENTRIES_IN_CMD + 4;
8843 	calc_bucket_map(bft, ARRAY_SIZE(bft),
8844 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8845 	for (i = 0; i < 8; i++)
8846 		writel(bft[i], &h->transtable->BlockFetch[i]);
8847 
8848 	/* size of controller ring buffer */
8849 	writel(h->max_commands, &h->transtable->RepQSize);
8850 	writel(h->nreply_queues, &h->transtable->RepQCount);
8851 	writel(0, &h->transtable->RepQCtrAddrLow32);
8852 	writel(0, &h->transtable->RepQCtrAddrHigh32);
8853 
8854 	for (i = 0; i < h->nreply_queues; i++) {
8855 		writel(0, &h->transtable->RepQAddr[i].upper);
8856 		writel(h->reply_queue[i].busaddr,
8857 			&h->transtable->RepQAddr[i].lower);
8858 	}
8859 
8860 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8861 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8862 	/*
8863 	 * enable outbound interrupt coalescing in accelerator mode;
8864 	 */
8865 	if (trans_support & CFGTBL_Trans_io_accel1) {
8866 		access = SA5_ioaccel_mode1_access;
8867 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8868 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8869 	} else
8870 		if (trans_support & CFGTBL_Trans_io_accel2)
8871 			access = SA5_ioaccel_mode2_access;
8872 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8873 	if (hpsa_wait_for_mode_change_ack(h)) {
8874 		dev_err(&h->pdev->dev,
8875 			"performant mode problem - doorbell timeout\n");
8876 		return -ENODEV;
8877 	}
8878 	register_value = readl(&(h->cfgtable->TransportActive));
8879 	if (!(register_value & CFGTBL_Trans_Performant)) {
8880 		dev_err(&h->pdev->dev,
8881 			"performant mode problem - transport not active\n");
8882 		return -ENODEV;
8883 	}
8884 	/* Change the access methods to the performant access methods */
8885 	h->access = access;
8886 	h->transMethod = transMethod;
8887 
8888 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8889 		(trans_support & CFGTBL_Trans_io_accel2)))
8890 		return 0;
8891 
8892 	if (trans_support & CFGTBL_Trans_io_accel1) {
8893 		/* Set up I/O accelerator mode */
8894 		for (i = 0; i < h->nreply_queues; i++) {
8895 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8896 			h->reply_queue[i].current_entry =
8897 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8898 		}
8899 		bft[7] = h->ioaccel_maxsg + 8;
8900 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8901 				h->ioaccel1_blockFetchTable);
8902 
8903 		/* initialize all reply queue entries to unused */
8904 		for (i = 0; i < h->nreply_queues; i++)
8905 			memset(h->reply_queue[i].head,
8906 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
8907 				h->reply_queue_size);
8908 
8909 		/* set all the constant fields in the accelerator command
8910 		 * frames once at init time to save CPU cycles later.
8911 		 */
8912 		for (i = 0; i < h->nr_cmds; i++) {
8913 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8914 
8915 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
8916 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
8917 					(i * sizeof(struct ErrorInfo)));
8918 			cp->err_info_len = sizeof(struct ErrorInfo);
8919 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
8920 			cp->host_context_flags =
8921 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8922 			cp->timeout_sec = 0;
8923 			cp->ReplyQueue = 0;
8924 			cp->tag =
8925 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8926 			cp->host_addr =
8927 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8928 					(i * sizeof(struct io_accel1_cmd)));
8929 		}
8930 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8931 		u64 cfg_offset, cfg_base_addr_index;
8932 		u32 bft2_offset, cfg_base_addr;
8933 		int rc;
8934 
8935 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8936 			&cfg_base_addr_index, &cfg_offset);
8937 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8938 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8939 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8940 				4, h->ioaccel2_blockFetchTable);
8941 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8942 		BUILD_BUG_ON(offsetof(struct CfgTable,
8943 				io_accel_request_size_offset) != 0xb8);
8944 		h->ioaccel2_bft2_regs =
8945 			remap_pci_mem(pci_resource_start(h->pdev,
8946 					cfg_base_addr_index) +
8947 					cfg_offset + bft2_offset,
8948 					ARRAY_SIZE(bft2) *
8949 					sizeof(*h->ioaccel2_bft2_regs));
8950 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
8951 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8952 	}
8953 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8954 	if (hpsa_wait_for_mode_change_ack(h)) {
8955 		dev_err(&h->pdev->dev,
8956 			"performant mode problem - enabling ioaccel mode\n");
8957 		return -ENODEV;
8958 	}
8959 	return 0;
8960 }
8961 
8962 /* Free ioaccel1 mode command blocks and block fetch table */
8963 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8964 {
8965 	if (h->ioaccel_cmd_pool) {
8966 		pci_free_consistent(h->pdev,
8967 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8968 			h->ioaccel_cmd_pool,
8969 			h->ioaccel_cmd_pool_dhandle);
8970 		h->ioaccel_cmd_pool = NULL;
8971 		h->ioaccel_cmd_pool_dhandle = 0;
8972 	}
8973 	kfree(h->ioaccel1_blockFetchTable);
8974 	h->ioaccel1_blockFetchTable = NULL;
8975 }
8976 
8977 /* Allocate ioaccel1 mode command blocks and block fetch table */
8978 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8979 {
8980 	h->ioaccel_maxsg =
8981 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8982 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8983 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8984 
8985 	/* Command structures must be aligned on a 128-byte boundary
8986 	 * because the 7 lower bits of the address are used by the
8987 	 * hardware.
8988 	 */
8989 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8990 			IOACCEL1_COMMANDLIST_ALIGNMENT);
8991 	h->ioaccel_cmd_pool =
8992 		pci_alloc_consistent(h->pdev,
8993 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8994 			&(h->ioaccel_cmd_pool_dhandle));
8995 
8996 	h->ioaccel1_blockFetchTable =
8997 		kmalloc(((h->ioaccel_maxsg + 1) *
8998 				sizeof(u32)), GFP_KERNEL);
8999 
9000 	if ((h->ioaccel_cmd_pool == NULL) ||
9001 		(h->ioaccel1_blockFetchTable == NULL))
9002 		goto clean_up;
9003 
9004 	memset(h->ioaccel_cmd_pool, 0,
9005 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9006 	return 0;
9007 
9008 clean_up:
9009 	hpsa_free_ioaccel1_cmd_and_bft(h);
9010 	return -ENOMEM;
9011 }
9012 
9013 /* Free ioaccel2 mode command blocks and block fetch table */
9014 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9015 {
9016 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9017 
9018 	if (h->ioaccel2_cmd_pool) {
9019 		pci_free_consistent(h->pdev,
9020 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9021 			h->ioaccel2_cmd_pool,
9022 			h->ioaccel2_cmd_pool_dhandle);
9023 		h->ioaccel2_cmd_pool = NULL;
9024 		h->ioaccel2_cmd_pool_dhandle = 0;
9025 	}
9026 	kfree(h->ioaccel2_blockFetchTable);
9027 	h->ioaccel2_blockFetchTable = NULL;
9028 }
9029 
9030 /* Allocate ioaccel2 mode command blocks and block fetch table */
9031 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9032 {
9033 	int rc;
9034 
9035 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9036 
9037 	h->ioaccel_maxsg =
9038 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9039 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9040 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9041 
9042 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9043 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9044 	h->ioaccel2_cmd_pool =
9045 		pci_alloc_consistent(h->pdev,
9046 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9047 			&(h->ioaccel2_cmd_pool_dhandle));
9048 
9049 	h->ioaccel2_blockFetchTable =
9050 		kmalloc(((h->ioaccel_maxsg + 1) *
9051 				sizeof(u32)), GFP_KERNEL);
9052 
9053 	if ((h->ioaccel2_cmd_pool == NULL) ||
9054 		(h->ioaccel2_blockFetchTable == NULL)) {
9055 		rc = -ENOMEM;
9056 		goto clean_up;
9057 	}
9058 
9059 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9060 	if (rc)
9061 		goto clean_up;
9062 
9063 	memset(h->ioaccel2_cmd_pool, 0,
9064 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9065 	return 0;
9066 
9067 clean_up:
9068 	hpsa_free_ioaccel2_cmd_and_bft(h);
9069 	return rc;
9070 }
9071 
9072 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9073 static void hpsa_free_performant_mode(struct ctlr_info *h)
9074 {
9075 	kfree(h->blockFetchTable);
9076 	h->blockFetchTable = NULL;
9077 	hpsa_free_reply_queues(h);
9078 	hpsa_free_ioaccel1_cmd_and_bft(h);
9079 	hpsa_free_ioaccel2_cmd_and_bft(h);
9080 }
9081 
9082 /* return -ENODEV on error, 0 on success (or no action)
9083  * allocates numerous items that must be freed later
9084  */
9085 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9086 {
9087 	u32 trans_support;
9088 	unsigned long transMethod = CFGTBL_Trans_Performant |
9089 					CFGTBL_Trans_use_short_tags;
9090 	int i, rc;
9091 
9092 	if (hpsa_simple_mode)
9093 		return 0;
9094 
9095 	trans_support = readl(&(h->cfgtable->TransportSupport));
9096 	if (!(trans_support & PERFORMANT_MODE))
9097 		return 0;
9098 
9099 	/* Check for I/O accelerator mode support */
9100 	if (trans_support & CFGTBL_Trans_io_accel1) {
9101 		transMethod |= CFGTBL_Trans_io_accel1 |
9102 				CFGTBL_Trans_enable_directed_msix;
9103 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9104 		if (rc)
9105 			return rc;
9106 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9107 		transMethod |= CFGTBL_Trans_io_accel2 |
9108 				CFGTBL_Trans_enable_directed_msix;
9109 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9110 		if (rc)
9111 			return rc;
9112 	}
9113 
9114 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9115 	hpsa_get_max_perf_mode_cmds(h);
9116 	/* Performant mode ring buffer and supporting data structures */
9117 	h->reply_queue_size = h->max_commands * sizeof(u64);
9118 
9119 	for (i = 0; i < h->nreply_queues; i++) {
9120 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9121 						h->reply_queue_size,
9122 						&(h->reply_queue[i].busaddr));
9123 		if (!h->reply_queue[i].head) {
9124 			rc = -ENOMEM;
9125 			goto clean1;	/* rq, ioaccel */
9126 		}
9127 		h->reply_queue[i].size = h->max_commands;
9128 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9129 		h->reply_queue[i].current_entry = 0;
9130 	}
9131 
9132 	/* Need a block fetch table for performant mode */
9133 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9134 				sizeof(u32)), GFP_KERNEL);
9135 	if (!h->blockFetchTable) {
9136 		rc = -ENOMEM;
9137 		goto clean1;	/* rq, ioaccel */
9138 	}
9139 
9140 	rc = hpsa_enter_performant_mode(h, trans_support);
9141 	if (rc)
9142 		goto clean2;	/* bft, rq, ioaccel */
9143 	return 0;
9144 
9145 clean2:	/* bft, rq, ioaccel */
9146 	kfree(h->blockFetchTable);
9147 	h->blockFetchTable = NULL;
9148 clean1:	/* rq, ioaccel */
9149 	hpsa_free_reply_queues(h);
9150 	hpsa_free_ioaccel1_cmd_and_bft(h);
9151 	hpsa_free_ioaccel2_cmd_and_bft(h);
9152 	return rc;
9153 }
9154 
9155 static int is_accelerated_cmd(struct CommandList *c)
9156 {
9157 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9158 }
9159 
9160 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9161 {
9162 	struct CommandList *c = NULL;
9163 	int i, accel_cmds_out;
9164 	int refcount;
9165 
9166 	do { /* wait for all outstanding ioaccel commands to drain out */
9167 		accel_cmds_out = 0;
9168 		for (i = 0; i < h->nr_cmds; i++) {
9169 			c = h->cmd_pool + i;
9170 			refcount = atomic_inc_return(&c->refcount);
9171 			if (refcount > 1) /* Command is allocated */
9172 				accel_cmds_out += is_accelerated_cmd(c);
9173 			cmd_free(h, c);
9174 		}
9175 		if (accel_cmds_out <= 0)
9176 			break;
9177 		msleep(100);
9178 	} while (1);
9179 }
9180 
9181 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9182 				struct hpsa_sas_port *hpsa_sas_port)
9183 {
9184 	struct hpsa_sas_phy *hpsa_sas_phy;
9185 	struct sas_phy *phy;
9186 
9187 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9188 	if (!hpsa_sas_phy)
9189 		return NULL;
9190 
9191 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9192 		hpsa_sas_port->next_phy_index);
9193 	if (!phy) {
9194 		kfree(hpsa_sas_phy);
9195 		return NULL;
9196 	}
9197 
9198 	hpsa_sas_port->next_phy_index++;
9199 	hpsa_sas_phy->phy = phy;
9200 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9201 
9202 	return hpsa_sas_phy;
9203 }
9204 
9205 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9206 {
9207 	struct sas_phy *phy = hpsa_sas_phy->phy;
9208 
9209 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9210 	sas_phy_free(phy);
9211 	if (hpsa_sas_phy->added_to_port)
9212 		list_del(&hpsa_sas_phy->phy_list_entry);
9213 	kfree(hpsa_sas_phy);
9214 }
9215 
9216 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9217 {
9218 	int rc;
9219 	struct hpsa_sas_port *hpsa_sas_port;
9220 	struct sas_phy *phy;
9221 	struct sas_identify *identify;
9222 
9223 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9224 	phy = hpsa_sas_phy->phy;
9225 
9226 	identify = &phy->identify;
9227 	memset(identify, 0, sizeof(*identify));
9228 	identify->sas_address = hpsa_sas_port->sas_address;
9229 	identify->device_type = SAS_END_DEVICE;
9230 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9231 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9232 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9233 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9234 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9235 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9236 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9237 
9238 	rc = sas_phy_add(hpsa_sas_phy->phy);
9239 	if (rc)
9240 		return rc;
9241 
9242 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9243 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9244 			&hpsa_sas_port->phy_list_head);
9245 	hpsa_sas_phy->added_to_port = true;
9246 
9247 	return 0;
9248 }
9249 
9250 static int
9251 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9252 				struct sas_rphy *rphy)
9253 {
9254 	struct sas_identify *identify;
9255 
9256 	identify = &rphy->identify;
9257 	identify->sas_address = hpsa_sas_port->sas_address;
9258 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9259 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9260 
9261 	return sas_rphy_add(rphy);
9262 }
9263 
9264 static struct hpsa_sas_port
9265 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9266 				u64 sas_address)
9267 {
9268 	int rc;
9269 	struct hpsa_sas_port *hpsa_sas_port;
9270 	struct sas_port *port;
9271 
9272 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9273 	if (!hpsa_sas_port)
9274 		return NULL;
9275 
9276 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9277 	hpsa_sas_port->parent_node = hpsa_sas_node;
9278 
9279 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9280 	if (!port)
9281 		goto free_hpsa_port;
9282 
9283 	rc = sas_port_add(port);
9284 	if (rc)
9285 		goto free_sas_port;
9286 
9287 	hpsa_sas_port->port = port;
9288 	hpsa_sas_port->sas_address = sas_address;
9289 	list_add_tail(&hpsa_sas_port->port_list_entry,
9290 			&hpsa_sas_node->port_list_head);
9291 
9292 	return hpsa_sas_port;
9293 
9294 free_sas_port:
9295 	sas_port_free(port);
9296 free_hpsa_port:
9297 	kfree(hpsa_sas_port);
9298 
9299 	return NULL;
9300 }
9301 
9302 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9303 {
9304 	struct hpsa_sas_phy *hpsa_sas_phy;
9305 	struct hpsa_sas_phy *next;
9306 
9307 	list_for_each_entry_safe(hpsa_sas_phy, next,
9308 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9309 		hpsa_free_sas_phy(hpsa_sas_phy);
9310 
9311 	sas_port_delete(hpsa_sas_port->port);
9312 	list_del(&hpsa_sas_port->port_list_entry);
9313 	kfree(hpsa_sas_port);
9314 }
9315 
9316 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9317 {
9318 	struct hpsa_sas_node *hpsa_sas_node;
9319 
9320 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9321 	if (hpsa_sas_node) {
9322 		hpsa_sas_node->parent_dev = parent_dev;
9323 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9324 	}
9325 
9326 	return hpsa_sas_node;
9327 }
9328 
9329 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9330 {
9331 	struct hpsa_sas_port *hpsa_sas_port;
9332 	struct hpsa_sas_port *next;
9333 
9334 	if (!hpsa_sas_node)
9335 		return;
9336 
9337 	list_for_each_entry_safe(hpsa_sas_port, next,
9338 			&hpsa_sas_node->port_list_head, port_list_entry)
9339 		hpsa_free_sas_port(hpsa_sas_port);
9340 
9341 	kfree(hpsa_sas_node);
9342 }
9343 
9344 static struct hpsa_scsi_dev_t
9345 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9346 					struct sas_rphy *rphy)
9347 {
9348 	int i;
9349 	struct hpsa_scsi_dev_t *device;
9350 
9351 	for (i = 0; i < h->ndevices; i++) {
9352 		device = h->dev[i];
9353 		if (!device->sas_port)
9354 			continue;
9355 		if (device->sas_port->rphy == rphy)
9356 			return device;
9357 	}
9358 
9359 	return NULL;
9360 }
9361 
9362 static int hpsa_add_sas_host(struct ctlr_info *h)
9363 {
9364 	int rc;
9365 	struct device *parent_dev;
9366 	struct hpsa_sas_node *hpsa_sas_node;
9367 	struct hpsa_sas_port *hpsa_sas_port;
9368 	struct hpsa_sas_phy *hpsa_sas_phy;
9369 
9370 	parent_dev = &h->scsi_host->shost_gendev;
9371 
9372 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9373 	if (!hpsa_sas_node)
9374 		return -ENOMEM;
9375 
9376 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9377 	if (!hpsa_sas_port) {
9378 		rc = -ENODEV;
9379 		goto free_sas_node;
9380 	}
9381 
9382 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9383 	if (!hpsa_sas_phy) {
9384 		rc = -ENODEV;
9385 		goto free_sas_port;
9386 	}
9387 
9388 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9389 	if (rc)
9390 		goto free_sas_phy;
9391 
9392 	h->sas_host = hpsa_sas_node;
9393 
9394 	return 0;
9395 
9396 free_sas_phy:
9397 	hpsa_free_sas_phy(hpsa_sas_phy);
9398 free_sas_port:
9399 	hpsa_free_sas_port(hpsa_sas_port);
9400 free_sas_node:
9401 	hpsa_free_sas_node(hpsa_sas_node);
9402 
9403 	return rc;
9404 }
9405 
9406 static void hpsa_delete_sas_host(struct ctlr_info *h)
9407 {
9408 	hpsa_free_sas_node(h->sas_host);
9409 }
9410 
9411 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9412 				struct hpsa_scsi_dev_t *device)
9413 {
9414 	int rc;
9415 	struct hpsa_sas_port *hpsa_sas_port;
9416 	struct sas_rphy *rphy;
9417 
9418 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9419 	if (!hpsa_sas_port)
9420 		return -ENOMEM;
9421 
9422 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9423 	if (!rphy) {
9424 		rc = -ENODEV;
9425 		goto free_sas_port;
9426 	}
9427 
9428 	hpsa_sas_port->rphy = rphy;
9429 	device->sas_port = hpsa_sas_port;
9430 
9431 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9432 	if (rc)
9433 		goto free_sas_port;
9434 
9435 	return 0;
9436 
9437 free_sas_port:
9438 	hpsa_free_sas_port(hpsa_sas_port);
9439 	device->sas_port = NULL;
9440 
9441 	return rc;
9442 }
9443 
9444 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9445 {
9446 	if (device->sas_port) {
9447 		hpsa_free_sas_port(device->sas_port);
9448 		device->sas_port = NULL;
9449 	}
9450 }
9451 
9452 static int
9453 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9454 {
9455 	return 0;
9456 }
9457 
9458 static int
9459 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9460 {
9461 	*identifier = 0;
9462 	return 0;
9463 }
9464 
9465 static int
9466 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9467 {
9468 	return -ENXIO;
9469 }
9470 
9471 static int
9472 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9473 {
9474 	return 0;
9475 }
9476 
9477 static int
9478 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9479 {
9480 	return 0;
9481 }
9482 
9483 static int
9484 hpsa_sas_phy_setup(struct sas_phy *phy)
9485 {
9486 	return 0;
9487 }
9488 
9489 static void
9490 hpsa_sas_phy_release(struct sas_phy *phy)
9491 {
9492 }
9493 
9494 static int
9495 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9496 {
9497 	return -EINVAL;
9498 }
9499 
9500 static struct sas_function_template hpsa_sas_transport_functions = {
9501 	.get_linkerrors = hpsa_sas_get_linkerrors,
9502 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9503 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9504 	.phy_reset = hpsa_sas_phy_reset,
9505 	.phy_enable = hpsa_sas_phy_enable,
9506 	.phy_setup = hpsa_sas_phy_setup,
9507 	.phy_release = hpsa_sas_phy_release,
9508 	.set_phy_speed = hpsa_sas_phy_speed,
9509 };
9510 
9511 /*
9512  *  This is it.  Register the PCI driver information for the cards we control
9513  *  the OS will call our registered routines when it finds one of our cards.
9514  */
9515 static int __init hpsa_init(void)
9516 {
9517 	int rc;
9518 
9519 	hpsa_sas_transport_template =
9520 		sas_attach_transport(&hpsa_sas_transport_functions);
9521 	if (!hpsa_sas_transport_template)
9522 		return -ENODEV;
9523 
9524 	rc = pci_register_driver(&hpsa_pci_driver);
9525 
9526 	if (rc)
9527 		sas_release_transport(hpsa_sas_transport_template);
9528 
9529 	return rc;
9530 }
9531 
9532 static void __exit hpsa_cleanup(void)
9533 {
9534 	pci_unregister_driver(&hpsa_pci_driver);
9535 	sas_release_transport(hpsa_sas_transport_template);
9536 }
9537 
9538 static void __attribute__((unused)) verify_offsets(void)
9539 {
9540 #define VERIFY_OFFSET(member, offset) \
9541 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9542 
9543 	VERIFY_OFFSET(structure_size, 0);
9544 	VERIFY_OFFSET(volume_blk_size, 4);
9545 	VERIFY_OFFSET(volume_blk_cnt, 8);
9546 	VERIFY_OFFSET(phys_blk_shift, 16);
9547 	VERIFY_OFFSET(parity_rotation_shift, 17);
9548 	VERIFY_OFFSET(strip_size, 18);
9549 	VERIFY_OFFSET(disk_starting_blk, 20);
9550 	VERIFY_OFFSET(disk_blk_cnt, 28);
9551 	VERIFY_OFFSET(data_disks_per_row, 36);
9552 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9553 	VERIFY_OFFSET(row_cnt, 40);
9554 	VERIFY_OFFSET(layout_map_count, 42);
9555 	VERIFY_OFFSET(flags, 44);
9556 	VERIFY_OFFSET(dekindex, 46);
9557 	/* VERIFY_OFFSET(reserved, 48 */
9558 	VERIFY_OFFSET(data, 64);
9559 
9560 #undef VERIFY_OFFSET
9561 
9562 #define VERIFY_OFFSET(member, offset) \
9563 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9564 
9565 	VERIFY_OFFSET(IU_type, 0);
9566 	VERIFY_OFFSET(direction, 1);
9567 	VERIFY_OFFSET(reply_queue, 2);
9568 	/* VERIFY_OFFSET(reserved1, 3);  */
9569 	VERIFY_OFFSET(scsi_nexus, 4);
9570 	VERIFY_OFFSET(Tag, 8);
9571 	VERIFY_OFFSET(cdb, 16);
9572 	VERIFY_OFFSET(cciss_lun, 32);
9573 	VERIFY_OFFSET(data_len, 40);
9574 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9575 	VERIFY_OFFSET(sg_count, 45);
9576 	/* VERIFY_OFFSET(reserved3 */
9577 	VERIFY_OFFSET(err_ptr, 48);
9578 	VERIFY_OFFSET(err_len, 56);
9579 	/* VERIFY_OFFSET(reserved4  */
9580 	VERIFY_OFFSET(sg, 64);
9581 
9582 #undef VERIFY_OFFSET
9583 
9584 #define VERIFY_OFFSET(member, offset) \
9585 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9586 
9587 	VERIFY_OFFSET(dev_handle, 0x00);
9588 	VERIFY_OFFSET(reserved1, 0x02);
9589 	VERIFY_OFFSET(function, 0x03);
9590 	VERIFY_OFFSET(reserved2, 0x04);
9591 	VERIFY_OFFSET(err_info, 0x0C);
9592 	VERIFY_OFFSET(reserved3, 0x10);
9593 	VERIFY_OFFSET(err_info_len, 0x12);
9594 	VERIFY_OFFSET(reserved4, 0x13);
9595 	VERIFY_OFFSET(sgl_offset, 0x14);
9596 	VERIFY_OFFSET(reserved5, 0x15);
9597 	VERIFY_OFFSET(transfer_len, 0x1C);
9598 	VERIFY_OFFSET(reserved6, 0x20);
9599 	VERIFY_OFFSET(io_flags, 0x24);
9600 	VERIFY_OFFSET(reserved7, 0x26);
9601 	VERIFY_OFFSET(LUN, 0x34);
9602 	VERIFY_OFFSET(control, 0x3C);
9603 	VERIFY_OFFSET(CDB, 0x40);
9604 	VERIFY_OFFSET(reserved8, 0x50);
9605 	VERIFY_OFFSET(host_context_flags, 0x60);
9606 	VERIFY_OFFSET(timeout_sec, 0x62);
9607 	VERIFY_OFFSET(ReplyQueue, 0x64);
9608 	VERIFY_OFFSET(reserved9, 0x65);
9609 	VERIFY_OFFSET(tag, 0x68);
9610 	VERIFY_OFFSET(host_addr, 0x70);
9611 	VERIFY_OFFSET(CISS_LUN, 0x78);
9612 	VERIFY_OFFSET(SG, 0x78 + 8);
9613 #undef VERIFY_OFFSET
9614 }
9615 
9616 module_init(hpsa_init);
9617 module_exit(hpsa_cleanup);
9618