xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 2572f00d)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18 
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57 
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65 
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72 
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79 	HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
83 
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87 		"Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 	"Use 'simple mode' rather than 'performant mode'");
92 
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{0,}
149 };
150 
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
152 
153 /*  board_id = Subsystem Device ID & Vendor ID
154  *  product = Marketing Name for the board
155  *  access = Address of the struct of function pointers
156  */
157 static struct board_type products[] = {
158 	{0x3241103C, "Smart Array P212", &SA5_access},
159 	{0x3243103C, "Smart Array P410", &SA5_access},
160 	{0x3245103C, "Smart Array P410i", &SA5_access},
161 	{0x3247103C, "Smart Array P411", &SA5_access},
162 	{0x3249103C, "Smart Array P812", &SA5_access},
163 	{0x324A103C, "Smart Array P712m", &SA5_access},
164 	{0x324B103C, "Smart Array P711m", &SA5_access},
165 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166 	{0x3350103C, "Smart Array P222", &SA5_access},
167 	{0x3351103C, "Smart Array P420", &SA5_access},
168 	{0x3352103C, "Smart Array P421", &SA5_access},
169 	{0x3353103C, "Smart Array P822", &SA5_access},
170 	{0x3354103C, "Smart Array P420i", &SA5_access},
171 	{0x3355103C, "Smart Array P220i", &SA5_access},
172 	{0x3356103C, "Smart Array P721m", &SA5_access},
173 	{0x1921103C, "Smart Array P830i", &SA5_access},
174 	{0x1922103C, "Smart Array P430", &SA5_access},
175 	{0x1923103C, "Smart Array P431", &SA5_access},
176 	{0x1924103C, "Smart Array P830", &SA5_access},
177 	{0x1926103C, "Smart Array P731m", &SA5_access},
178 	{0x1928103C, "Smart Array P230i", &SA5_access},
179 	{0x1929103C, "Smart Array P530", &SA5_access},
180 	{0x21BD103C, "Smart Array P244br", &SA5_access},
181 	{0x21BE103C, "Smart Array P741m", &SA5_access},
182 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
183 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
184 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
185 	{0x21C2103C, "Smart Array P440", &SA5_access},
186 	{0x21C3103C, "Smart Array P441", &SA5_access},
187 	{0x21C4103C, "Smart Array", &SA5_access},
188 	{0x21C5103C, "Smart Array P841", &SA5_access},
189 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
190 	{0x21C7103C, "Smart HBA H240", &SA5_access},
191 	{0x21C8103C, "Smart HBA H241", &SA5_access},
192 	{0x21C9103C, "Smart Array", &SA5_access},
193 	{0x21CA103C, "Smart Array P246br", &SA5_access},
194 	{0x21CB103C, "Smart Array P840", &SA5_access},
195 	{0x21CC103C, "Smart Array", &SA5_access},
196 	{0x21CD103C, "Smart Array", &SA5_access},
197 	{0x21CE103C, "Smart HBA", &SA5_access},
198 	{0x05809005, "SmartHBA-SA", &SA5_access},
199 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
200 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
202 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
203 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
210 };
211 
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216 			struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220 		struct sas_rphy *rphy);
221 
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
227 
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
231 
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234 	void __user *arg);
235 #endif
236 
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241 					    struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244 	int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
248 
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252 	unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
254 
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
260 
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263 	struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265 	struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268 	int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274 			       u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276 				    unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279 				     int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294 	struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
296 
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
298 {
299 	unsigned long *priv = shost_priv(sdev->host);
300 	return (struct ctlr_info *) *priv;
301 }
302 
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
304 {
305 	unsigned long *priv = shost_priv(sh);
306 	return (struct ctlr_info *) *priv;
307 }
308 
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
310 {
311 	return c->scsi_cmd == SCSI_CMD_IDLE;
312 }
313 
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
315 {
316 	return c->abort_pending || c->reset_pending;
317 }
318 
319 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321 			u8 *sense_key, u8 *asc, u8 *ascq)
322 {
323 	struct scsi_sense_hdr sshdr;
324 	bool rc;
325 
326 	*sense_key = -1;
327 	*asc = -1;
328 	*ascq = -1;
329 
330 	if (sense_data_len < 1)
331 		return;
332 
333 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334 	if (rc) {
335 		*sense_key = sshdr.sense_key;
336 		*asc = sshdr.asc;
337 		*ascq = sshdr.ascq;
338 	}
339 }
340 
341 static int check_for_unit_attention(struct ctlr_info *h,
342 	struct CommandList *c)
343 {
344 	u8 sense_key, asc, ascq;
345 	int sense_len;
346 
347 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348 		sense_len = sizeof(c->err_info->SenseInfo);
349 	else
350 		sense_len = c->err_info->SenseLen;
351 
352 	decode_sense_data(c->err_info->SenseInfo, sense_len,
353 				&sense_key, &asc, &ascq);
354 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
355 		return 0;
356 
357 	switch (asc) {
358 	case STATE_CHANGED:
359 		dev_warn(&h->pdev->dev,
360 			"%s: a state change detected, command retried\n",
361 			h->devname);
362 		break;
363 	case LUN_FAILED:
364 		dev_warn(&h->pdev->dev,
365 			"%s: LUN failure detected\n", h->devname);
366 		break;
367 	case REPORT_LUNS_CHANGED:
368 		dev_warn(&h->pdev->dev,
369 			"%s: report LUN data changed\n", h->devname);
370 	/*
371 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372 	 * target (array) devices.
373 	 */
374 		break;
375 	case POWER_OR_RESET:
376 		dev_warn(&h->pdev->dev,
377 			"%s: a power on or device reset detected\n",
378 			h->devname);
379 		break;
380 	case UNIT_ATTENTION_CLEARED:
381 		dev_warn(&h->pdev->dev,
382 			"%s: unit attention cleared by another initiator\n",
383 			h->devname);
384 		break;
385 	default:
386 		dev_warn(&h->pdev->dev,
387 			"%s: unknown unit attention detected\n",
388 			h->devname);
389 		break;
390 	}
391 	return 1;
392 }
393 
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
395 {
396 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399 		return 0;
400 	dev_warn(&h->pdev->dev, HPSA "device busy");
401 	return 1;
402 }
403 
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406 		struct device_attribute *attr, char *buf)
407 {
408 	int ld;
409 	struct ctlr_info *h;
410 	struct Scsi_Host *shost = class_to_shost(dev);
411 
412 	h = shost_to_hba(shost);
413 	ld = lockup_detected(h);
414 
415 	return sprintf(buf, "ld=%d\n", ld);
416 }
417 
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419 					 struct device_attribute *attr,
420 					 const char *buf, size_t count)
421 {
422 	int status, len;
423 	struct ctlr_info *h;
424 	struct Scsi_Host *shost = class_to_shost(dev);
425 	char tmpbuf[10];
426 
427 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428 		return -EACCES;
429 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430 	strncpy(tmpbuf, buf, len);
431 	tmpbuf[len] = '\0';
432 	if (sscanf(tmpbuf, "%d", &status) != 1)
433 		return -EINVAL;
434 	h = shost_to_hba(shost);
435 	h->acciopath_status = !!status;
436 	dev_warn(&h->pdev->dev,
437 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
438 		h->acciopath_status ? "enabled" : "disabled");
439 	return count;
440 }
441 
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443 					 struct device_attribute *attr,
444 					 const char *buf, size_t count)
445 {
446 	int debug_level, len;
447 	struct ctlr_info *h;
448 	struct Scsi_Host *shost = class_to_shost(dev);
449 	char tmpbuf[10];
450 
451 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452 		return -EACCES;
453 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454 	strncpy(tmpbuf, buf, len);
455 	tmpbuf[len] = '\0';
456 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457 		return -EINVAL;
458 	if (debug_level < 0)
459 		debug_level = 0;
460 	h = shost_to_hba(shost);
461 	h->raid_offload_debug = debug_level;
462 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463 		h->raid_offload_debug);
464 	return count;
465 }
466 
467 static ssize_t host_store_rescan(struct device *dev,
468 				 struct device_attribute *attr,
469 				 const char *buf, size_t count)
470 {
471 	struct ctlr_info *h;
472 	struct Scsi_Host *shost = class_to_shost(dev);
473 	h = shost_to_hba(shost);
474 	hpsa_scan_start(h->scsi_host);
475 	return count;
476 }
477 
478 static ssize_t host_show_firmware_revision(struct device *dev,
479 	     struct device_attribute *attr, char *buf)
480 {
481 	struct ctlr_info *h;
482 	struct Scsi_Host *shost = class_to_shost(dev);
483 	unsigned char *fwrev;
484 
485 	h = shost_to_hba(shost);
486 	if (!h->hba_inquiry_data)
487 		return 0;
488 	fwrev = &h->hba_inquiry_data[32];
489 	return snprintf(buf, 20, "%c%c%c%c\n",
490 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
491 }
492 
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494 	     struct device_attribute *attr, char *buf)
495 {
496 	struct Scsi_Host *shost = class_to_shost(dev);
497 	struct ctlr_info *h = shost_to_hba(shost);
498 
499 	return snprintf(buf, 20, "%d\n",
500 			atomic_read(&h->commands_outstanding));
501 }
502 
503 static ssize_t host_show_transport_mode(struct device *dev,
504 	struct device_attribute *attr, char *buf)
505 {
506 	struct ctlr_info *h;
507 	struct Scsi_Host *shost = class_to_shost(dev);
508 
509 	h = shost_to_hba(shost);
510 	return snprintf(buf, 20, "%s\n",
511 		h->transMethod & CFGTBL_Trans_Performant ?
512 			"performant" : "simple");
513 }
514 
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516 	struct device_attribute *attr, char *buf)
517 {
518 	struct ctlr_info *h;
519 	struct Scsi_Host *shost = class_to_shost(dev);
520 
521 	h = shost_to_hba(shost);
522 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
524 }
525 
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528 	0x324a103C, /* Smart Array P712m */
529 	0x324b103C, /* Smart Array P711m */
530 	0x3223103C, /* Smart Array P800 */
531 	0x3234103C, /* Smart Array P400 */
532 	0x3235103C, /* Smart Array P400i */
533 	0x3211103C, /* Smart Array E200i */
534 	0x3212103C, /* Smart Array E200 */
535 	0x3213103C, /* Smart Array E200i */
536 	0x3214103C, /* Smart Array E200i */
537 	0x3215103C, /* Smart Array E200i */
538 	0x3237103C, /* Smart Array E500 */
539 	0x323D103C, /* Smart Array P700m */
540 	0x40800E11, /* Smart Array 5i */
541 	0x409C0E11, /* Smart Array 6400 */
542 	0x409D0E11, /* Smart Array 6400 EM */
543 	0x40700E11, /* Smart Array 5300 */
544 	0x40820E11, /* Smart Array 532 */
545 	0x40830E11, /* Smart Array 5312 */
546 	0x409A0E11, /* Smart Array 641 */
547 	0x409B0E11, /* Smart Array 642 */
548 	0x40910E11, /* Smart Array 6i */
549 };
550 
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553 	0x40800E11, /* Smart Array 5i */
554 	0x40700E11, /* Smart Array 5300 */
555 	0x40820E11, /* Smart Array 532 */
556 	0x40830E11, /* Smart Array 5312 */
557 	0x409A0E11, /* Smart Array 641 */
558 	0x409B0E11, /* Smart Array 642 */
559 	0x40910E11, /* Smart Array 6i */
560 	/* Exclude 640x boards.  These are two pci devices in one slot
561 	 * which share a battery backed cache module.  One controls the
562 	 * cache, the other accesses the cache through the one that controls
563 	 * it.  If we reset the one controlling the cache, the other will
564 	 * likely not be happy.  Just forbid resetting this conjoined mess.
565 	 * The 640x isn't really supported by hpsa anyway.
566 	 */
567 	0x409C0E11, /* Smart Array 6400 */
568 	0x409D0E11, /* Smart Array 6400 EM */
569 };
570 
571 static u32 needs_abort_tags_swizzled[] = {
572 	0x323D103C, /* Smart Array P700m */
573 	0x324a103C, /* Smart Array P712m */
574 	0x324b103C, /* SmartArray P711m */
575 };
576 
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
578 {
579 	int i;
580 
581 	for (i = 0; i < nelems; i++)
582 		if (a[i] == board_id)
583 			return 1;
584 	return 0;
585 }
586 
587 static int ctlr_is_hard_resettable(u32 board_id)
588 {
589 	return !board_id_in_array(unresettable_controller,
590 			ARRAY_SIZE(unresettable_controller), board_id);
591 }
592 
593 static int ctlr_is_soft_resettable(u32 board_id)
594 {
595 	return !board_id_in_array(soft_unresettable_controller,
596 			ARRAY_SIZE(soft_unresettable_controller), board_id);
597 }
598 
599 static int ctlr_is_resettable(u32 board_id)
600 {
601 	return ctlr_is_hard_resettable(board_id) ||
602 		ctlr_is_soft_resettable(board_id);
603 }
604 
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
606 {
607 	return board_id_in_array(needs_abort_tags_swizzled,
608 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
609 }
610 
611 static ssize_t host_show_resettable(struct device *dev,
612 	struct device_attribute *attr, char *buf)
613 {
614 	struct ctlr_info *h;
615 	struct Scsi_Host *shost = class_to_shost(dev);
616 
617 	h = shost_to_hba(shost);
618 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620 
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623 	return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625 
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0	0
630 #define HPSA_RAID_4	1
631 #define HPSA_RAID_1	2	/* also used for RAID 10 */
632 #define HPSA_RAID_5	3	/* also used for RAID 50 */
633 #define HPSA_RAID_51	4
634 #define HPSA_RAID_6	5	/* also used for RAID 60 */
635 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638 
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641 	return !device->physical_device;
642 }
643 
644 static ssize_t raid_level_show(struct device *dev,
645 	     struct device_attribute *attr, char *buf)
646 {
647 	ssize_t l = 0;
648 	unsigned char rlevel;
649 	struct ctlr_info *h;
650 	struct scsi_device *sdev;
651 	struct hpsa_scsi_dev_t *hdev;
652 	unsigned long flags;
653 
654 	sdev = to_scsi_device(dev);
655 	h = sdev_to_hba(sdev);
656 	spin_lock_irqsave(&h->lock, flags);
657 	hdev = sdev->hostdata;
658 	if (!hdev) {
659 		spin_unlock_irqrestore(&h->lock, flags);
660 		return -ENODEV;
661 	}
662 
663 	/* Is this even a logical drive? */
664 	if (!is_logical_device(hdev)) {
665 		spin_unlock_irqrestore(&h->lock, flags);
666 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
667 		return l;
668 	}
669 
670 	rlevel = hdev->raid_level;
671 	spin_unlock_irqrestore(&h->lock, flags);
672 	if (rlevel > RAID_UNKNOWN)
673 		rlevel = RAID_UNKNOWN;
674 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675 	return l;
676 }
677 
678 static ssize_t lunid_show(struct device *dev,
679 	     struct device_attribute *attr, char *buf)
680 {
681 	struct ctlr_info *h;
682 	struct scsi_device *sdev;
683 	struct hpsa_scsi_dev_t *hdev;
684 	unsigned long flags;
685 	unsigned char lunid[8];
686 
687 	sdev = to_scsi_device(dev);
688 	h = sdev_to_hba(sdev);
689 	spin_lock_irqsave(&h->lock, flags);
690 	hdev = sdev->hostdata;
691 	if (!hdev) {
692 		spin_unlock_irqrestore(&h->lock, flags);
693 		return -ENODEV;
694 	}
695 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696 	spin_unlock_irqrestore(&h->lock, flags);
697 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698 		lunid[0], lunid[1], lunid[2], lunid[3],
699 		lunid[4], lunid[5], lunid[6], lunid[7]);
700 }
701 
702 static ssize_t unique_id_show(struct device *dev,
703 	     struct device_attribute *attr, char *buf)
704 {
705 	struct ctlr_info *h;
706 	struct scsi_device *sdev;
707 	struct hpsa_scsi_dev_t *hdev;
708 	unsigned long flags;
709 	unsigned char sn[16];
710 
711 	sdev = to_scsi_device(dev);
712 	h = sdev_to_hba(sdev);
713 	spin_lock_irqsave(&h->lock, flags);
714 	hdev = sdev->hostdata;
715 	if (!hdev) {
716 		spin_unlock_irqrestore(&h->lock, flags);
717 		return -ENODEV;
718 	}
719 	memcpy(sn, hdev->device_id, sizeof(sn));
720 	spin_unlock_irqrestore(&h->lock, flags);
721 	return snprintf(buf, 16 * 2 + 2,
722 			"%02X%02X%02X%02X%02X%02X%02X%02X"
723 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
724 			sn[0], sn[1], sn[2], sn[3],
725 			sn[4], sn[5], sn[6], sn[7],
726 			sn[8], sn[9], sn[10], sn[11],
727 			sn[12], sn[13], sn[14], sn[15]);
728 }
729 
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731 	     struct device_attribute *attr, char *buf)
732 {
733 	struct ctlr_info *h;
734 	struct scsi_device *sdev;
735 	struct hpsa_scsi_dev_t *hdev;
736 	unsigned long flags;
737 	int offload_enabled;
738 
739 	sdev = to_scsi_device(dev);
740 	h = sdev_to_hba(sdev);
741 	spin_lock_irqsave(&h->lock, flags);
742 	hdev = sdev->hostdata;
743 	if (!hdev) {
744 		spin_unlock_irqrestore(&h->lock, flags);
745 		return -ENODEV;
746 	}
747 	offload_enabled = hdev->offload_enabled;
748 	spin_unlock_irqrestore(&h->lock, flags);
749 	return snprintf(buf, 20, "%d\n", offload_enabled);
750 }
751 
752 #define MAX_PATHS 8
753 
754 static ssize_t path_info_show(struct device *dev,
755 	     struct device_attribute *attr, char *buf)
756 {
757 	struct ctlr_info *h;
758 	struct scsi_device *sdev;
759 	struct hpsa_scsi_dev_t *hdev;
760 	unsigned long flags;
761 	int i;
762 	int output_len = 0;
763 	u8 box;
764 	u8 bay;
765 	u8 path_map_index = 0;
766 	char *active;
767 	unsigned char phys_connector[2];
768 
769 	sdev = to_scsi_device(dev);
770 	h = sdev_to_hba(sdev);
771 	spin_lock_irqsave(&h->devlock, flags);
772 	hdev = sdev->hostdata;
773 	if (!hdev) {
774 		spin_unlock_irqrestore(&h->devlock, flags);
775 		return -ENODEV;
776 	}
777 
778 	bay = hdev->bay;
779 	for (i = 0; i < MAX_PATHS; i++) {
780 		path_map_index = 1<<i;
781 		if (i == hdev->active_path_index)
782 			active = "Active";
783 		else if (hdev->path_map & path_map_index)
784 			active = "Inactive";
785 		else
786 			continue;
787 
788 		output_len += scnprintf(buf + output_len,
789 				PAGE_SIZE - output_len,
790 				"[%d:%d:%d:%d] %20.20s ",
791 				h->scsi_host->host_no,
792 				hdev->bus, hdev->target, hdev->lun,
793 				scsi_device_type(hdev->devtype));
794 
795 		if (hdev->external ||
796 			hdev->devtype == TYPE_RAID ||
797 			is_logical_device(hdev)) {
798 			output_len += snprintf(buf + output_len,
799 						PAGE_SIZE - output_len,
800 						"%s\n", active);
801 			continue;
802 		}
803 
804 		box = hdev->box[i];
805 		memcpy(&phys_connector, &hdev->phys_connector[i],
806 			sizeof(phys_connector));
807 		if (phys_connector[0] < '0')
808 			phys_connector[0] = '0';
809 		if (phys_connector[1] < '0')
810 			phys_connector[1] = '0';
811 		if (hdev->phys_connector[i] > 0)
812 			output_len += snprintf(buf + output_len,
813 				PAGE_SIZE - output_len,
814 				"PORT: %.2s ",
815 				phys_connector);
816 		if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
817 			if (box == 0 || box == 0xFF) {
818 				output_len += snprintf(buf + output_len,
819 					PAGE_SIZE - output_len,
820 					"BAY: %hhu %s\n",
821 					bay, active);
822 			} else {
823 				output_len += snprintf(buf + output_len,
824 					PAGE_SIZE - output_len,
825 					"BOX: %hhu BAY: %hhu %s\n",
826 					box, bay, active);
827 			}
828 		} else if (box != 0 && box != 0xFF) {
829 			output_len += snprintf(buf + output_len,
830 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
831 				box, active);
832 		} else
833 			output_len += snprintf(buf + output_len,
834 				PAGE_SIZE - output_len, "%s\n", active);
835 	}
836 
837 	spin_unlock_irqrestore(&h->devlock, flags);
838 	return output_len;
839 }
840 
841 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
842 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
843 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
844 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
845 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
846 			host_show_hp_ssd_smart_path_enabled, NULL);
847 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
848 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
849 		host_show_hp_ssd_smart_path_status,
850 		host_store_hp_ssd_smart_path_status);
851 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
852 			host_store_raid_offload_debug);
853 static DEVICE_ATTR(firmware_revision, S_IRUGO,
854 	host_show_firmware_revision, NULL);
855 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
856 	host_show_commands_outstanding, NULL);
857 static DEVICE_ATTR(transport_mode, S_IRUGO,
858 	host_show_transport_mode, NULL);
859 static DEVICE_ATTR(resettable, S_IRUGO,
860 	host_show_resettable, NULL);
861 static DEVICE_ATTR(lockup_detected, S_IRUGO,
862 	host_show_lockup_detected, NULL);
863 
864 static struct device_attribute *hpsa_sdev_attrs[] = {
865 	&dev_attr_raid_level,
866 	&dev_attr_lunid,
867 	&dev_attr_unique_id,
868 	&dev_attr_hp_ssd_smart_path_enabled,
869 	&dev_attr_path_info,
870 	NULL,
871 };
872 
873 static struct device_attribute *hpsa_shost_attrs[] = {
874 	&dev_attr_rescan,
875 	&dev_attr_firmware_revision,
876 	&dev_attr_commands_outstanding,
877 	&dev_attr_transport_mode,
878 	&dev_attr_resettable,
879 	&dev_attr_hp_ssd_smart_path_status,
880 	&dev_attr_raid_offload_debug,
881 	&dev_attr_lockup_detected,
882 	NULL,
883 };
884 
885 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
886 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
887 
888 static struct scsi_host_template hpsa_driver_template = {
889 	.module			= THIS_MODULE,
890 	.name			= HPSA,
891 	.proc_name		= HPSA,
892 	.queuecommand		= hpsa_scsi_queue_command,
893 	.scan_start		= hpsa_scan_start,
894 	.scan_finished		= hpsa_scan_finished,
895 	.change_queue_depth	= hpsa_change_queue_depth,
896 	.this_id		= -1,
897 	.use_clustering		= ENABLE_CLUSTERING,
898 	.eh_abort_handler	= hpsa_eh_abort_handler,
899 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
900 	.ioctl			= hpsa_ioctl,
901 	.slave_alloc		= hpsa_slave_alloc,
902 	.slave_configure	= hpsa_slave_configure,
903 	.slave_destroy		= hpsa_slave_destroy,
904 #ifdef CONFIG_COMPAT
905 	.compat_ioctl		= hpsa_compat_ioctl,
906 #endif
907 	.sdev_attrs = hpsa_sdev_attrs,
908 	.shost_attrs = hpsa_shost_attrs,
909 	.max_sectors = 8192,
910 	.no_write_same = 1,
911 };
912 
913 static inline u32 next_command(struct ctlr_info *h, u8 q)
914 {
915 	u32 a;
916 	struct reply_queue_buffer *rq = &h->reply_queue[q];
917 
918 	if (h->transMethod & CFGTBL_Trans_io_accel1)
919 		return h->access.command_completed(h, q);
920 
921 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
922 		return h->access.command_completed(h, q);
923 
924 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
925 		a = rq->head[rq->current_entry];
926 		rq->current_entry++;
927 		atomic_dec(&h->commands_outstanding);
928 	} else {
929 		a = FIFO_EMPTY;
930 	}
931 	/* Check for wraparound */
932 	if (rq->current_entry == h->max_commands) {
933 		rq->current_entry = 0;
934 		rq->wraparound ^= 1;
935 	}
936 	return a;
937 }
938 
939 /*
940  * There are some special bits in the bus address of the
941  * command that we have to set for the controller to know
942  * how to process the command:
943  *
944  * Normal performant mode:
945  * bit 0: 1 means performant mode, 0 means simple mode.
946  * bits 1-3 = block fetch table entry
947  * bits 4-6 = command type (== 0)
948  *
949  * ioaccel1 mode:
950  * bit 0 = "performant mode" bit.
951  * bits 1-3 = block fetch table entry
952  * bits 4-6 = command type (== 110)
953  * (command type is needed because ioaccel1 mode
954  * commands are submitted through the same register as normal
955  * mode commands, so this is how the controller knows whether
956  * the command is normal mode or ioaccel1 mode.)
957  *
958  * ioaccel2 mode:
959  * bit 0 = "performant mode" bit.
960  * bits 1-4 = block fetch table entry (note extra bit)
961  * bits 4-6 = not needed, because ioaccel2 mode has
962  * a separate special register for submitting commands.
963  */
964 
965 /*
966  * set_performant_mode: Modify the tag for cciss performant
967  * set bit 0 for pull model, bits 3-1 for block fetch
968  * register number
969  */
970 #define DEFAULT_REPLY_QUEUE (-1)
971 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
972 					int reply_queue)
973 {
974 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
975 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
976 		if (unlikely(!h->msix_vector))
977 			return;
978 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
979 			c->Header.ReplyQueue =
980 				raw_smp_processor_id() % h->nreply_queues;
981 		else
982 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
983 	}
984 }
985 
986 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
987 						struct CommandList *c,
988 						int reply_queue)
989 {
990 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
991 
992 	/*
993 	 * Tell the controller to post the reply to the queue for this
994 	 * processor.  This seems to give the best I/O throughput.
995 	 */
996 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
997 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
998 	else
999 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1000 	/*
1001 	 * Set the bits in the address sent down to include:
1002 	 *  - performant mode bit (bit 0)
1003 	 *  - pull count (bits 1-3)
1004 	 *  - command type (bits 4-6)
1005 	 */
1006 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1007 					IOACCEL1_BUSADDR_CMDTYPE;
1008 }
1009 
1010 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1011 						struct CommandList *c,
1012 						int reply_queue)
1013 {
1014 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1015 		&h->ioaccel2_cmd_pool[c->cmdindex];
1016 
1017 	/* Tell the controller to post the reply to the queue for this
1018 	 * processor.  This seems to give the best I/O throughput.
1019 	 */
1020 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1022 	else
1023 		cp->reply_queue = reply_queue % h->nreply_queues;
1024 	/* Set the bits in the address sent down to include:
1025 	 *  - performant mode bit not used in ioaccel mode 2
1026 	 *  - pull count (bits 0-3)
1027 	 *  - command type isn't needed for ioaccel2
1028 	 */
1029 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1030 }
1031 
1032 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1033 						struct CommandList *c,
1034 						int reply_queue)
1035 {
1036 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1037 
1038 	/*
1039 	 * Tell the controller to post the reply to the queue for this
1040 	 * processor.  This seems to give the best I/O throughput.
1041 	 */
1042 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1044 	else
1045 		cp->reply_queue = reply_queue % h->nreply_queues;
1046 	/*
1047 	 * Set the bits in the address sent down to include:
1048 	 *  - performant mode bit not used in ioaccel mode 2
1049 	 *  - pull count (bits 0-3)
1050 	 *  - command type isn't needed for ioaccel2
1051 	 */
1052 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1053 }
1054 
1055 static int is_firmware_flash_cmd(u8 *cdb)
1056 {
1057 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1058 }
1059 
1060 /*
1061  * During firmware flash, the heartbeat register may not update as frequently
1062  * as it should.  So we dial down lockup detection during firmware flash. and
1063  * dial it back up when firmware flash completes.
1064  */
1065 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1066 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1067 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1068 		struct CommandList *c)
1069 {
1070 	if (!is_firmware_flash_cmd(c->Request.CDB))
1071 		return;
1072 	atomic_inc(&h->firmware_flash_in_progress);
1073 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1074 }
1075 
1076 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1077 		struct CommandList *c)
1078 {
1079 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1080 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1081 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1082 }
1083 
1084 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1085 	struct CommandList *c, int reply_queue)
1086 {
1087 	dial_down_lockup_detection_during_fw_flash(h, c);
1088 	atomic_inc(&h->commands_outstanding);
1089 	switch (c->cmd_type) {
1090 	case CMD_IOACCEL1:
1091 		set_ioaccel1_performant_mode(h, c, reply_queue);
1092 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1093 		break;
1094 	case CMD_IOACCEL2:
1095 		set_ioaccel2_performant_mode(h, c, reply_queue);
1096 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097 		break;
1098 	case IOACCEL2_TMF:
1099 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1100 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1101 		break;
1102 	default:
1103 		set_performant_mode(h, c, reply_queue);
1104 		h->access.submit_command(h, c);
1105 	}
1106 }
1107 
1108 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1109 {
1110 	if (unlikely(hpsa_is_pending_event(c)))
1111 		return finish_cmd(c);
1112 
1113 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1114 }
1115 
1116 static inline int is_hba_lunid(unsigned char scsi3addr[])
1117 {
1118 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1119 }
1120 
1121 static inline int is_scsi_rev_5(struct ctlr_info *h)
1122 {
1123 	if (!h->hba_inquiry_data)
1124 		return 0;
1125 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1126 		return 1;
1127 	return 0;
1128 }
1129 
1130 static int hpsa_find_target_lun(struct ctlr_info *h,
1131 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1132 {
1133 	/* finds an unused bus, target, lun for a new physical device
1134 	 * assumes h->devlock is held
1135 	 */
1136 	int i, found = 0;
1137 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1138 
1139 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1140 
1141 	for (i = 0; i < h->ndevices; i++) {
1142 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1143 			__set_bit(h->dev[i]->target, lun_taken);
1144 	}
1145 
1146 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1147 	if (i < HPSA_MAX_DEVICES) {
1148 		/* *bus = 1; */
1149 		*target = i;
1150 		*lun = 0;
1151 		found = 1;
1152 	}
1153 	return !found;
1154 }
1155 
1156 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1157 	struct hpsa_scsi_dev_t *dev, char *description)
1158 {
1159 #define LABEL_SIZE 25
1160 	char label[LABEL_SIZE];
1161 
1162 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1163 		return;
1164 
1165 	switch (dev->devtype) {
1166 	case TYPE_RAID:
1167 		snprintf(label, LABEL_SIZE, "controller");
1168 		break;
1169 	case TYPE_ENCLOSURE:
1170 		snprintf(label, LABEL_SIZE, "enclosure");
1171 		break;
1172 	case TYPE_DISK:
1173 		if (dev->external)
1174 			snprintf(label, LABEL_SIZE, "external");
1175 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1176 			snprintf(label, LABEL_SIZE, "%s",
1177 				raid_label[PHYSICAL_DRIVE]);
1178 		else
1179 			snprintf(label, LABEL_SIZE, "RAID-%s",
1180 				dev->raid_level > RAID_UNKNOWN ? "?" :
1181 				raid_label[dev->raid_level]);
1182 		break;
1183 	case TYPE_ROM:
1184 		snprintf(label, LABEL_SIZE, "rom");
1185 		break;
1186 	case TYPE_TAPE:
1187 		snprintf(label, LABEL_SIZE, "tape");
1188 		break;
1189 	case TYPE_MEDIUM_CHANGER:
1190 		snprintf(label, LABEL_SIZE, "changer");
1191 		break;
1192 	default:
1193 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1194 		break;
1195 	}
1196 
1197 	dev_printk(level, &h->pdev->dev,
1198 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1199 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1200 			description,
1201 			scsi_device_type(dev->devtype),
1202 			dev->vendor,
1203 			dev->model,
1204 			label,
1205 			dev->offload_config ? '+' : '-',
1206 			dev->offload_enabled ? '+' : '-',
1207 			dev->expose_device);
1208 }
1209 
1210 /* Add an entry into h->dev[] array. */
1211 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1212 		struct hpsa_scsi_dev_t *device,
1213 		struct hpsa_scsi_dev_t *added[], int *nadded)
1214 {
1215 	/* assumes h->devlock is held */
1216 	int n = h->ndevices;
1217 	int i;
1218 	unsigned char addr1[8], addr2[8];
1219 	struct hpsa_scsi_dev_t *sd;
1220 
1221 	if (n >= HPSA_MAX_DEVICES) {
1222 		dev_err(&h->pdev->dev, "too many devices, some will be "
1223 			"inaccessible.\n");
1224 		return -1;
1225 	}
1226 
1227 	/* physical devices do not have lun or target assigned until now. */
1228 	if (device->lun != -1)
1229 		/* Logical device, lun is already assigned. */
1230 		goto lun_assigned;
1231 
1232 	/* If this device a non-zero lun of a multi-lun device
1233 	 * byte 4 of the 8-byte LUN addr will contain the logical
1234 	 * unit no, zero otherwise.
1235 	 */
1236 	if (device->scsi3addr[4] == 0) {
1237 		/* This is not a non-zero lun of a multi-lun device */
1238 		if (hpsa_find_target_lun(h, device->scsi3addr,
1239 			device->bus, &device->target, &device->lun) != 0)
1240 			return -1;
1241 		goto lun_assigned;
1242 	}
1243 
1244 	/* This is a non-zero lun of a multi-lun device.
1245 	 * Search through our list and find the device which
1246 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1247 	 * Assign the same bus and target for this new LUN.
1248 	 * Use the logical unit number from the firmware.
1249 	 */
1250 	memcpy(addr1, device->scsi3addr, 8);
1251 	addr1[4] = 0;
1252 	addr1[5] = 0;
1253 	for (i = 0; i < n; i++) {
1254 		sd = h->dev[i];
1255 		memcpy(addr2, sd->scsi3addr, 8);
1256 		addr2[4] = 0;
1257 		addr2[5] = 0;
1258 		/* differ only in byte 4 and 5? */
1259 		if (memcmp(addr1, addr2, 8) == 0) {
1260 			device->bus = sd->bus;
1261 			device->target = sd->target;
1262 			device->lun = device->scsi3addr[4];
1263 			break;
1264 		}
1265 	}
1266 	if (device->lun == -1) {
1267 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1268 			" suspect firmware bug or unsupported hardware "
1269 			"configuration.\n");
1270 			return -1;
1271 	}
1272 
1273 lun_assigned:
1274 
1275 	h->dev[n] = device;
1276 	h->ndevices++;
1277 	added[*nadded] = device;
1278 	(*nadded)++;
1279 	hpsa_show_dev_msg(KERN_INFO, h, device,
1280 		device->expose_device ? "added" : "masked");
1281 	device->offload_to_be_enabled = device->offload_enabled;
1282 	device->offload_enabled = 0;
1283 	return 0;
1284 }
1285 
1286 /* Update an entry in h->dev[] array. */
1287 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1288 	int entry, struct hpsa_scsi_dev_t *new_entry)
1289 {
1290 	int offload_enabled;
1291 	/* assumes h->devlock is held */
1292 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1293 
1294 	/* Raid level changed. */
1295 	h->dev[entry]->raid_level = new_entry->raid_level;
1296 
1297 	/* Raid offload parameters changed.  Careful about the ordering. */
1298 	if (new_entry->offload_config && new_entry->offload_enabled) {
1299 		/*
1300 		 * if drive is newly offload_enabled, we want to copy the
1301 		 * raid map data first.  If previously offload_enabled and
1302 		 * offload_config were set, raid map data had better be
1303 		 * the same as it was before.  if raid map data is changed
1304 		 * then it had better be the case that
1305 		 * h->dev[entry]->offload_enabled is currently 0.
1306 		 */
1307 		h->dev[entry]->raid_map = new_entry->raid_map;
1308 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1309 	}
1310 	if (new_entry->hba_ioaccel_enabled) {
1311 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1312 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1313 	}
1314 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1315 	h->dev[entry]->offload_config = new_entry->offload_config;
1316 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1317 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1318 
1319 	/*
1320 	 * We can turn off ioaccel offload now, but need to delay turning
1321 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1322 	 * can't do that until all the devices are updated.
1323 	 */
1324 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1325 	if (!new_entry->offload_enabled)
1326 		h->dev[entry]->offload_enabled = 0;
1327 
1328 	offload_enabled = h->dev[entry]->offload_enabled;
1329 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1330 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1331 	h->dev[entry]->offload_enabled = offload_enabled;
1332 }
1333 
1334 /* Replace an entry from h->dev[] array. */
1335 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1336 	int entry, struct hpsa_scsi_dev_t *new_entry,
1337 	struct hpsa_scsi_dev_t *added[], int *nadded,
1338 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1339 {
1340 	/* assumes h->devlock is held */
1341 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1342 	removed[*nremoved] = h->dev[entry];
1343 	(*nremoved)++;
1344 
1345 	/*
1346 	 * New physical devices won't have target/lun assigned yet
1347 	 * so we need to preserve the values in the slot we are replacing.
1348 	 */
1349 	if (new_entry->target == -1) {
1350 		new_entry->target = h->dev[entry]->target;
1351 		new_entry->lun = h->dev[entry]->lun;
1352 	}
1353 
1354 	h->dev[entry] = new_entry;
1355 	added[*nadded] = new_entry;
1356 	(*nadded)++;
1357 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1358 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1359 	new_entry->offload_enabled = 0;
1360 }
1361 
1362 /* Remove an entry from h->dev[] array. */
1363 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1364 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1365 {
1366 	/* assumes h->devlock is held */
1367 	int i;
1368 	struct hpsa_scsi_dev_t *sd;
1369 
1370 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371 
1372 	sd = h->dev[entry];
1373 	removed[*nremoved] = h->dev[entry];
1374 	(*nremoved)++;
1375 
1376 	for (i = entry; i < h->ndevices-1; i++)
1377 		h->dev[i] = h->dev[i+1];
1378 	h->ndevices--;
1379 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1380 }
1381 
1382 #define SCSI3ADDR_EQ(a, b) ( \
1383 	(a)[7] == (b)[7] && \
1384 	(a)[6] == (b)[6] && \
1385 	(a)[5] == (b)[5] && \
1386 	(a)[4] == (b)[4] && \
1387 	(a)[3] == (b)[3] && \
1388 	(a)[2] == (b)[2] && \
1389 	(a)[1] == (b)[1] && \
1390 	(a)[0] == (b)[0])
1391 
1392 static void fixup_botched_add(struct ctlr_info *h,
1393 	struct hpsa_scsi_dev_t *added)
1394 {
1395 	/* called when scsi_add_device fails in order to re-adjust
1396 	 * h->dev[] to match the mid layer's view.
1397 	 */
1398 	unsigned long flags;
1399 	int i, j;
1400 
1401 	spin_lock_irqsave(&h->lock, flags);
1402 	for (i = 0; i < h->ndevices; i++) {
1403 		if (h->dev[i] == added) {
1404 			for (j = i; j < h->ndevices-1; j++)
1405 				h->dev[j] = h->dev[j+1];
1406 			h->ndevices--;
1407 			break;
1408 		}
1409 	}
1410 	spin_unlock_irqrestore(&h->lock, flags);
1411 	kfree(added);
1412 }
1413 
1414 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1415 	struct hpsa_scsi_dev_t *dev2)
1416 {
1417 	/* we compare everything except lun and target as these
1418 	 * are not yet assigned.  Compare parts likely
1419 	 * to differ first
1420 	 */
1421 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1422 		sizeof(dev1->scsi3addr)) != 0)
1423 		return 0;
1424 	if (memcmp(dev1->device_id, dev2->device_id,
1425 		sizeof(dev1->device_id)) != 0)
1426 		return 0;
1427 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1428 		return 0;
1429 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1430 		return 0;
1431 	if (dev1->devtype != dev2->devtype)
1432 		return 0;
1433 	if (dev1->bus != dev2->bus)
1434 		return 0;
1435 	return 1;
1436 }
1437 
1438 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1439 	struct hpsa_scsi_dev_t *dev2)
1440 {
1441 	/* Device attributes that can change, but don't mean
1442 	 * that the device is a different device, nor that the OS
1443 	 * needs to be told anything about the change.
1444 	 */
1445 	if (dev1->raid_level != dev2->raid_level)
1446 		return 1;
1447 	if (dev1->offload_config != dev2->offload_config)
1448 		return 1;
1449 	if (dev1->offload_enabled != dev2->offload_enabled)
1450 		return 1;
1451 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1452 		if (dev1->queue_depth != dev2->queue_depth)
1453 			return 1;
1454 	return 0;
1455 }
1456 
1457 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1458  * and return needle location in *index.  If scsi3addr matches, but not
1459  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1460  * location in *index.
1461  * In the case of a minor device attribute change, such as RAID level, just
1462  * return DEVICE_UPDATED, along with the updated device's location in index.
1463  * If needle not found, return DEVICE_NOT_FOUND.
1464  */
1465 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1466 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1467 	int *index)
1468 {
1469 	int i;
1470 #define DEVICE_NOT_FOUND 0
1471 #define DEVICE_CHANGED 1
1472 #define DEVICE_SAME 2
1473 #define DEVICE_UPDATED 3
1474 	if (needle == NULL)
1475 		return DEVICE_NOT_FOUND;
1476 
1477 	for (i = 0; i < haystack_size; i++) {
1478 		if (haystack[i] == NULL) /* previously removed. */
1479 			continue;
1480 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1481 			*index = i;
1482 			if (device_is_the_same(needle, haystack[i])) {
1483 				if (device_updated(needle, haystack[i]))
1484 					return DEVICE_UPDATED;
1485 				return DEVICE_SAME;
1486 			} else {
1487 				/* Keep offline devices offline */
1488 				if (needle->volume_offline)
1489 					return DEVICE_NOT_FOUND;
1490 				return DEVICE_CHANGED;
1491 			}
1492 		}
1493 	}
1494 	*index = -1;
1495 	return DEVICE_NOT_FOUND;
1496 }
1497 
1498 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1499 					unsigned char scsi3addr[])
1500 {
1501 	struct offline_device_entry *device;
1502 	unsigned long flags;
1503 
1504 	/* Check to see if device is already on the list */
1505 	spin_lock_irqsave(&h->offline_device_lock, flags);
1506 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1507 		if (memcmp(device->scsi3addr, scsi3addr,
1508 			sizeof(device->scsi3addr)) == 0) {
1509 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510 			return;
1511 		}
1512 	}
1513 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1514 
1515 	/* Device is not on the list, add it. */
1516 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1517 	if (!device) {
1518 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1519 		return;
1520 	}
1521 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1522 	spin_lock_irqsave(&h->offline_device_lock, flags);
1523 	list_add_tail(&device->offline_list, &h->offline_device_list);
1524 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1525 }
1526 
1527 /* Print a message explaining various offline volume states */
1528 static void hpsa_show_volume_status(struct ctlr_info *h,
1529 	struct hpsa_scsi_dev_t *sd)
1530 {
1531 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1532 		dev_info(&h->pdev->dev,
1533 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1534 			h->scsi_host->host_no,
1535 			sd->bus, sd->target, sd->lun);
1536 	switch (sd->volume_offline) {
1537 	case HPSA_LV_OK:
1538 		break;
1539 	case HPSA_LV_UNDERGOING_ERASE:
1540 		dev_info(&h->pdev->dev,
1541 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1542 			h->scsi_host->host_no,
1543 			sd->bus, sd->target, sd->lun);
1544 		break;
1545 	case HPSA_LV_NOT_AVAILABLE:
1546 		dev_info(&h->pdev->dev,
1547 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1548 			h->scsi_host->host_no,
1549 			sd->bus, sd->target, sd->lun);
1550 		break;
1551 	case HPSA_LV_UNDERGOING_RPI:
1552 		dev_info(&h->pdev->dev,
1553 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1554 			h->scsi_host->host_no,
1555 			sd->bus, sd->target, sd->lun);
1556 		break;
1557 	case HPSA_LV_PENDING_RPI:
1558 		dev_info(&h->pdev->dev,
1559 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1560 			h->scsi_host->host_no,
1561 			sd->bus, sd->target, sd->lun);
1562 		break;
1563 	case HPSA_LV_ENCRYPTED_NO_KEY:
1564 		dev_info(&h->pdev->dev,
1565 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1566 			h->scsi_host->host_no,
1567 			sd->bus, sd->target, sd->lun);
1568 		break;
1569 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1570 		dev_info(&h->pdev->dev,
1571 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1572 			h->scsi_host->host_no,
1573 			sd->bus, sd->target, sd->lun);
1574 		break;
1575 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1576 		dev_info(&h->pdev->dev,
1577 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1578 			h->scsi_host->host_no,
1579 			sd->bus, sd->target, sd->lun);
1580 		break;
1581 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1582 		dev_info(&h->pdev->dev,
1583 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1584 			h->scsi_host->host_no,
1585 			sd->bus, sd->target, sd->lun);
1586 		break;
1587 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1588 		dev_info(&h->pdev->dev,
1589 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1590 			h->scsi_host->host_no,
1591 			sd->bus, sd->target, sd->lun);
1592 		break;
1593 	case HPSA_LV_PENDING_ENCRYPTION:
1594 		dev_info(&h->pdev->dev,
1595 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1596 			h->scsi_host->host_no,
1597 			sd->bus, sd->target, sd->lun);
1598 		break;
1599 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1600 		dev_info(&h->pdev->dev,
1601 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1602 			h->scsi_host->host_no,
1603 			sd->bus, sd->target, sd->lun);
1604 		break;
1605 	}
1606 }
1607 
1608 /*
1609  * Figure the list of physical drive pointers for a logical drive with
1610  * raid offload configured.
1611  */
1612 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1613 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1614 				struct hpsa_scsi_dev_t *logical_drive)
1615 {
1616 	struct raid_map_data *map = &logical_drive->raid_map;
1617 	struct raid_map_disk_data *dd = &map->data[0];
1618 	int i, j;
1619 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1620 				le16_to_cpu(map->metadata_disks_per_row);
1621 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1622 				le16_to_cpu(map->layout_map_count) *
1623 				total_disks_per_row;
1624 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1625 				total_disks_per_row;
1626 	int qdepth;
1627 
1628 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1629 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1630 
1631 	logical_drive->nphysical_disks = nraid_map_entries;
1632 
1633 	qdepth = 0;
1634 	for (i = 0; i < nraid_map_entries; i++) {
1635 		logical_drive->phys_disk[i] = NULL;
1636 		if (!logical_drive->offload_config)
1637 			continue;
1638 		for (j = 0; j < ndevices; j++) {
1639 			if (dev[j] == NULL)
1640 				continue;
1641 			if (dev[j]->devtype != TYPE_DISK)
1642 				continue;
1643 			if (is_logical_device(dev[j]))
1644 				continue;
1645 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1646 				continue;
1647 
1648 			logical_drive->phys_disk[i] = dev[j];
1649 			if (i < nphys_disk)
1650 				qdepth = min(h->nr_cmds, qdepth +
1651 				    logical_drive->phys_disk[i]->queue_depth);
1652 			break;
1653 		}
1654 
1655 		/*
1656 		 * This can happen if a physical drive is removed and
1657 		 * the logical drive is degraded.  In that case, the RAID
1658 		 * map data will refer to a physical disk which isn't actually
1659 		 * present.  And in that case offload_enabled should already
1660 		 * be 0, but we'll turn it off here just in case
1661 		 */
1662 		if (!logical_drive->phys_disk[i]) {
1663 			logical_drive->offload_enabled = 0;
1664 			logical_drive->offload_to_be_enabled = 0;
1665 			logical_drive->queue_depth = 8;
1666 		}
1667 	}
1668 	if (nraid_map_entries)
1669 		/*
1670 		 * This is correct for reads, too high for full stripe writes,
1671 		 * way too high for partial stripe writes
1672 		 */
1673 		logical_drive->queue_depth = qdepth;
1674 	else
1675 		logical_drive->queue_depth = h->nr_cmds;
1676 }
1677 
1678 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1679 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1680 {
1681 	int i;
1682 
1683 	for (i = 0; i < ndevices; i++) {
1684 		if (dev[i] == NULL)
1685 			continue;
1686 		if (dev[i]->devtype != TYPE_DISK)
1687 			continue;
1688 		if (!is_logical_device(dev[i]))
1689 			continue;
1690 
1691 		/*
1692 		 * If offload is currently enabled, the RAID map and
1693 		 * phys_disk[] assignment *better* not be changing
1694 		 * and since it isn't changing, we do not need to
1695 		 * update it.
1696 		 */
1697 		if (dev[i]->offload_enabled)
1698 			continue;
1699 
1700 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1701 	}
1702 }
1703 
1704 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1705 {
1706 	int rc = 0;
1707 
1708 	if (!h->scsi_host)
1709 		return 1;
1710 
1711 	if (is_logical_device(device)) /* RAID */
1712 		rc = scsi_add_device(h->scsi_host, device->bus,
1713 					device->target, device->lun);
1714 	else /* HBA */
1715 		rc = hpsa_add_sas_device(h->sas_host, device);
1716 
1717 	return rc;
1718 }
1719 
1720 static void hpsa_remove_device(struct ctlr_info *h,
1721 			struct hpsa_scsi_dev_t *device)
1722 {
1723 	struct scsi_device *sdev = NULL;
1724 
1725 	if (!h->scsi_host)
1726 		return;
1727 
1728 	if (is_logical_device(device)) { /* RAID */
1729 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1730 						device->target, device->lun);
1731 		if (sdev) {
1732 			scsi_remove_device(sdev);
1733 			scsi_device_put(sdev);
1734 		} else {
1735 			/*
1736 			 * We don't expect to get here.  Future commands
1737 			 * to this device will get a selection timeout as
1738 			 * if the device were gone.
1739 			 */
1740 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1741 					"didn't find device for removal.");
1742 		}
1743 	} else /* HBA */
1744 		hpsa_remove_sas_device(device);
1745 }
1746 
1747 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1748 	struct hpsa_scsi_dev_t *sd[], int nsds)
1749 {
1750 	/* sd contains scsi3 addresses and devtypes, and inquiry
1751 	 * data.  This function takes what's in sd to be the current
1752 	 * reality and updates h->dev[] to reflect that reality.
1753 	 */
1754 	int i, entry, device_change, changes = 0;
1755 	struct hpsa_scsi_dev_t *csd;
1756 	unsigned long flags;
1757 	struct hpsa_scsi_dev_t **added, **removed;
1758 	int nadded, nremoved;
1759 
1760 	/*
1761 	 * A reset can cause a device status to change
1762 	 * re-schedule the scan to see what happened.
1763 	 */
1764 	if (h->reset_in_progress) {
1765 		h->drv_req_rescan = 1;
1766 		return;
1767 	}
1768 
1769 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1770 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1771 
1772 	if (!added || !removed) {
1773 		dev_warn(&h->pdev->dev, "out of memory in "
1774 			"adjust_hpsa_scsi_table\n");
1775 		goto free_and_out;
1776 	}
1777 
1778 	spin_lock_irqsave(&h->devlock, flags);
1779 
1780 	/* find any devices in h->dev[] that are not in
1781 	 * sd[] and remove them from h->dev[], and for any
1782 	 * devices which have changed, remove the old device
1783 	 * info and add the new device info.
1784 	 * If minor device attributes change, just update
1785 	 * the existing device structure.
1786 	 */
1787 	i = 0;
1788 	nremoved = 0;
1789 	nadded = 0;
1790 	while (i < h->ndevices) {
1791 		csd = h->dev[i];
1792 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1793 		if (device_change == DEVICE_NOT_FOUND) {
1794 			changes++;
1795 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1796 			continue; /* remove ^^^, hence i not incremented */
1797 		} else if (device_change == DEVICE_CHANGED) {
1798 			changes++;
1799 			hpsa_scsi_replace_entry(h, i, sd[entry],
1800 				added, &nadded, removed, &nremoved);
1801 			/* Set it to NULL to prevent it from being freed
1802 			 * at the bottom of hpsa_update_scsi_devices()
1803 			 */
1804 			sd[entry] = NULL;
1805 		} else if (device_change == DEVICE_UPDATED) {
1806 			hpsa_scsi_update_entry(h, i, sd[entry]);
1807 		}
1808 		i++;
1809 	}
1810 
1811 	/* Now, make sure every device listed in sd[] is also
1812 	 * listed in h->dev[], adding them if they aren't found
1813 	 */
1814 
1815 	for (i = 0; i < nsds; i++) {
1816 		if (!sd[i]) /* if already added above. */
1817 			continue;
1818 
1819 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1820 		 * as the SCSI mid-layer does not handle such devices well.
1821 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1822 		 * at 160Hz, and prevents the system from coming up.
1823 		 */
1824 		if (sd[i]->volume_offline) {
1825 			hpsa_show_volume_status(h, sd[i]);
1826 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1827 			continue;
1828 		}
1829 
1830 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1831 					h->ndevices, &entry);
1832 		if (device_change == DEVICE_NOT_FOUND) {
1833 			changes++;
1834 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1835 				break;
1836 			sd[i] = NULL; /* prevent from being freed later. */
1837 		} else if (device_change == DEVICE_CHANGED) {
1838 			/* should never happen... */
1839 			changes++;
1840 			dev_warn(&h->pdev->dev,
1841 				"device unexpectedly changed.\n");
1842 			/* but if it does happen, we just ignore that device */
1843 		}
1844 	}
1845 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1846 
1847 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1848 	 * any logical drives that need it enabled.
1849 	 */
1850 	for (i = 0; i < h->ndevices; i++) {
1851 		if (h->dev[i] == NULL)
1852 			continue;
1853 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1854 	}
1855 
1856 	spin_unlock_irqrestore(&h->devlock, flags);
1857 
1858 	/* Monitor devices which are in one of several NOT READY states to be
1859 	 * brought online later. This must be done without holding h->devlock,
1860 	 * so don't touch h->dev[]
1861 	 */
1862 	for (i = 0; i < nsds; i++) {
1863 		if (!sd[i]) /* if already added above. */
1864 			continue;
1865 		if (sd[i]->volume_offline)
1866 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1867 	}
1868 
1869 	/* Don't notify scsi mid layer of any changes the first time through
1870 	 * (or if there are no changes) scsi_scan_host will do it later the
1871 	 * first time through.
1872 	 */
1873 	if (!changes)
1874 		goto free_and_out;
1875 
1876 	/* Notify scsi mid layer of any removed devices */
1877 	for (i = 0; i < nremoved; i++) {
1878 		if (removed[i] == NULL)
1879 			continue;
1880 		if (removed[i]->expose_device)
1881 			hpsa_remove_device(h, removed[i]);
1882 		kfree(removed[i]);
1883 		removed[i] = NULL;
1884 	}
1885 
1886 	/* Notify scsi mid layer of any added devices */
1887 	for (i = 0; i < nadded; i++) {
1888 		int rc = 0;
1889 
1890 		if (added[i] == NULL)
1891 			continue;
1892 		if (!(added[i]->expose_device))
1893 			continue;
1894 		rc = hpsa_add_device(h, added[i]);
1895 		if (!rc)
1896 			continue;
1897 		dev_warn(&h->pdev->dev,
1898 			"addition failed %d, device not added.", rc);
1899 		/* now we have to remove it from h->dev,
1900 		 * since it didn't get added to scsi mid layer
1901 		 */
1902 		fixup_botched_add(h, added[i]);
1903 		h->drv_req_rescan = 1;
1904 	}
1905 
1906 free_and_out:
1907 	kfree(added);
1908 	kfree(removed);
1909 }
1910 
1911 /*
1912  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1913  * Assume's h->devlock is held.
1914  */
1915 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1916 	int bus, int target, int lun)
1917 {
1918 	int i;
1919 	struct hpsa_scsi_dev_t *sd;
1920 
1921 	for (i = 0; i < h->ndevices; i++) {
1922 		sd = h->dev[i];
1923 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1924 			return sd;
1925 	}
1926 	return NULL;
1927 }
1928 
1929 static int hpsa_slave_alloc(struct scsi_device *sdev)
1930 {
1931 	struct hpsa_scsi_dev_t *sd;
1932 	unsigned long flags;
1933 	struct ctlr_info *h;
1934 
1935 	h = sdev_to_hba(sdev);
1936 	spin_lock_irqsave(&h->devlock, flags);
1937 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1938 		struct scsi_target *starget;
1939 		struct sas_rphy *rphy;
1940 
1941 		starget = scsi_target(sdev);
1942 		rphy = target_to_rphy(starget);
1943 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
1944 		if (sd) {
1945 			sd->target = sdev_id(sdev);
1946 			sd->lun = sdev->lun;
1947 		}
1948 	} else
1949 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1950 					sdev_id(sdev), sdev->lun);
1951 
1952 	if (sd && sd->expose_device) {
1953 		atomic_set(&sd->ioaccel_cmds_out, 0);
1954 		sdev->hostdata = sd;
1955 	} else
1956 		sdev->hostdata = NULL;
1957 	spin_unlock_irqrestore(&h->devlock, flags);
1958 	return 0;
1959 }
1960 
1961 /* configure scsi device based on internal per-device structure */
1962 static int hpsa_slave_configure(struct scsi_device *sdev)
1963 {
1964 	struct hpsa_scsi_dev_t *sd;
1965 	int queue_depth;
1966 
1967 	sd = sdev->hostdata;
1968 	sdev->no_uld_attach = !sd || !sd->expose_device;
1969 
1970 	if (sd)
1971 		queue_depth = sd->queue_depth != 0 ?
1972 			sd->queue_depth : sdev->host->can_queue;
1973 	else
1974 		queue_depth = sdev->host->can_queue;
1975 
1976 	scsi_change_queue_depth(sdev, queue_depth);
1977 
1978 	return 0;
1979 }
1980 
1981 static void hpsa_slave_destroy(struct scsi_device *sdev)
1982 {
1983 	/* nothing to do. */
1984 }
1985 
1986 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1987 {
1988 	int i;
1989 
1990 	if (!h->ioaccel2_cmd_sg_list)
1991 		return;
1992 	for (i = 0; i < h->nr_cmds; i++) {
1993 		kfree(h->ioaccel2_cmd_sg_list[i]);
1994 		h->ioaccel2_cmd_sg_list[i] = NULL;
1995 	}
1996 	kfree(h->ioaccel2_cmd_sg_list);
1997 	h->ioaccel2_cmd_sg_list = NULL;
1998 }
1999 
2000 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2001 {
2002 	int i;
2003 
2004 	if (h->chainsize <= 0)
2005 		return 0;
2006 
2007 	h->ioaccel2_cmd_sg_list =
2008 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2009 					GFP_KERNEL);
2010 	if (!h->ioaccel2_cmd_sg_list)
2011 		return -ENOMEM;
2012 	for (i = 0; i < h->nr_cmds; i++) {
2013 		h->ioaccel2_cmd_sg_list[i] =
2014 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2015 					h->maxsgentries, GFP_KERNEL);
2016 		if (!h->ioaccel2_cmd_sg_list[i])
2017 			goto clean;
2018 	}
2019 	return 0;
2020 
2021 clean:
2022 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2023 	return -ENOMEM;
2024 }
2025 
2026 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2027 {
2028 	int i;
2029 
2030 	if (!h->cmd_sg_list)
2031 		return;
2032 	for (i = 0; i < h->nr_cmds; i++) {
2033 		kfree(h->cmd_sg_list[i]);
2034 		h->cmd_sg_list[i] = NULL;
2035 	}
2036 	kfree(h->cmd_sg_list);
2037 	h->cmd_sg_list = NULL;
2038 }
2039 
2040 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2041 {
2042 	int i;
2043 
2044 	if (h->chainsize <= 0)
2045 		return 0;
2046 
2047 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2048 				GFP_KERNEL);
2049 	if (!h->cmd_sg_list) {
2050 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2051 		return -ENOMEM;
2052 	}
2053 	for (i = 0; i < h->nr_cmds; i++) {
2054 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2055 						h->chainsize, GFP_KERNEL);
2056 		if (!h->cmd_sg_list[i]) {
2057 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2058 			goto clean;
2059 		}
2060 	}
2061 	return 0;
2062 
2063 clean:
2064 	hpsa_free_sg_chain_blocks(h);
2065 	return -ENOMEM;
2066 }
2067 
2068 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2069 	struct io_accel2_cmd *cp, struct CommandList *c)
2070 {
2071 	struct ioaccel2_sg_element *chain_block;
2072 	u64 temp64;
2073 	u32 chain_size;
2074 
2075 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2076 	chain_size = le32_to_cpu(cp->sg[0].length);
2077 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2078 				PCI_DMA_TODEVICE);
2079 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2080 		/* prevent subsequent unmapping */
2081 		cp->sg->address = 0;
2082 		return -1;
2083 	}
2084 	cp->sg->address = cpu_to_le64(temp64);
2085 	return 0;
2086 }
2087 
2088 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2089 	struct io_accel2_cmd *cp)
2090 {
2091 	struct ioaccel2_sg_element *chain_sg;
2092 	u64 temp64;
2093 	u32 chain_size;
2094 
2095 	chain_sg = cp->sg;
2096 	temp64 = le64_to_cpu(chain_sg->address);
2097 	chain_size = le32_to_cpu(cp->sg[0].length);
2098 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2099 }
2100 
2101 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2102 	struct CommandList *c)
2103 {
2104 	struct SGDescriptor *chain_sg, *chain_block;
2105 	u64 temp64;
2106 	u32 chain_len;
2107 
2108 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2109 	chain_block = h->cmd_sg_list[c->cmdindex];
2110 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2111 	chain_len = sizeof(*chain_sg) *
2112 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2113 	chain_sg->Len = cpu_to_le32(chain_len);
2114 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2115 				PCI_DMA_TODEVICE);
2116 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2117 		/* prevent subsequent unmapping */
2118 		chain_sg->Addr = cpu_to_le64(0);
2119 		return -1;
2120 	}
2121 	chain_sg->Addr = cpu_to_le64(temp64);
2122 	return 0;
2123 }
2124 
2125 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2126 	struct CommandList *c)
2127 {
2128 	struct SGDescriptor *chain_sg;
2129 
2130 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2131 		return;
2132 
2133 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2134 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2135 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2136 }
2137 
2138 
2139 /* Decode the various types of errors on ioaccel2 path.
2140  * Return 1 for any error that should generate a RAID path retry.
2141  * Return 0 for errors that don't require a RAID path retry.
2142  */
2143 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2144 					struct CommandList *c,
2145 					struct scsi_cmnd *cmd,
2146 					struct io_accel2_cmd *c2)
2147 {
2148 	int data_len;
2149 	int retry = 0;
2150 	u32 ioaccel2_resid = 0;
2151 
2152 	switch (c2->error_data.serv_response) {
2153 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2154 		switch (c2->error_data.status) {
2155 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2156 			break;
2157 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2158 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2159 			if (c2->error_data.data_present !=
2160 					IOACCEL2_SENSE_DATA_PRESENT) {
2161 				memset(cmd->sense_buffer, 0,
2162 					SCSI_SENSE_BUFFERSIZE);
2163 				break;
2164 			}
2165 			/* copy the sense data */
2166 			data_len = c2->error_data.sense_data_len;
2167 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2168 				data_len = SCSI_SENSE_BUFFERSIZE;
2169 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2170 				data_len =
2171 					sizeof(c2->error_data.sense_data_buff);
2172 			memcpy(cmd->sense_buffer,
2173 				c2->error_data.sense_data_buff, data_len);
2174 			retry = 1;
2175 			break;
2176 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2177 			retry = 1;
2178 			break;
2179 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2180 			retry = 1;
2181 			break;
2182 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2183 			retry = 1;
2184 			break;
2185 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2186 			retry = 1;
2187 			break;
2188 		default:
2189 			retry = 1;
2190 			break;
2191 		}
2192 		break;
2193 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2194 		switch (c2->error_data.status) {
2195 		case IOACCEL2_STATUS_SR_IO_ERROR:
2196 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2197 		case IOACCEL2_STATUS_SR_OVERRUN:
2198 			retry = 1;
2199 			break;
2200 		case IOACCEL2_STATUS_SR_UNDERRUN:
2201 			cmd->result = (DID_OK << 16);		/* host byte */
2202 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2203 			ioaccel2_resid = get_unaligned_le32(
2204 						&c2->error_data.resid_cnt[0]);
2205 			scsi_set_resid(cmd, ioaccel2_resid);
2206 			break;
2207 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2208 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2209 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2210 			/* We will get an event from ctlr to trigger rescan */
2211 			retry = 1;
2212 			break;
2213 		default:
2214 			retry = 1;
2215 		}
2216 		break;
2217 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2218 		break;
2219 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2220 		break;
2221 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2222 		retry = 1;
2223 		break;
2224 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2225 		break;
2226 	default:
2227 		retry = 1;
2228 		break;
2229 	}
2230 
2231 	return retry;	/* retry on raid path? */
2232 }
2233 
2234 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2235 		struct CommandList *c)
2236 {
2237 	bool do_wake = false;
2238 
2239 	/*
2240 	 * Prevent the following race in the abort handler:
2241 	 *
2242 	 * 1. LLD is requested to abort a SCSI command
2243 	 * 2. The SCSI command completes
2244 	 * 3. The struct CommandList associated with step 2 is made available
2245 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2246 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2247 	 *    finds struct CommandList and tries to aborts it
2248 	 * Now we have aborted the wrong command.
2249 	 *
2250 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2251 	 * this command has completed.  Then, check to see if the handler is
2252 	 * waiting for this command, and, if so, wake it.
2253 	 */
2254 	c->scsi_cmd = SCSI_CMD_IDLE;
2255 	mb();	/* Declare command idle before checking for pending events. */
2256 	if (c->abort_pending) {
2257 		do_wake = true;
2258 		c->abort_pending = false;
2259 	}
2260 	if (c->reset_pending) {
2261 		unsigned long flags;
2262 		struct hpsa_scsi_dev_t *dev;
2263 
2264 		/*
2265 		 * There appears to be a reset pending; lock the lock and
2266 		 * reconfirm.  If so, then decrement the count of outstanding
2267 		 * commands and wake the reset command if this is the last one.
2268 		 */
2269 		spin_lock_irqsave(&h->lock, flags);
2270 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2271 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2272 			do_wake = true;
2273 		c->reset_pending = NULL;
2274 		spin_unlock_irqrestore(&h->lock, flags);
2275 	}
2276 
2277 	if (do_wake)
2278 		wake_up_all(&h->event_sync_wait_queue);
2279 }
2280 
2281 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2282 				      struct CommandList *c)
2283 {
2284 	hpsa_cmd_resolve_events(h, c);
2285 	cmd_tagged_free(h, c);
2286 }
2287 
2288 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2289 		struct CommandList *c, struct scsi_cmnd *cmd)
2290 {
2291 	hpsa_cmd_resolve_and_free(h, c);
2292 	cmd->scsi_done(cmd);
2293 }
2294 
2295 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2296 {
2297 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2298 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2299 }
2300 
2301 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2302 {
2303 	cmd->result = DID_ABORT << 16;
2304 }
2305 
2306 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2307 				    struct scsi_cmnd *cmd)
2308 {
2309 	hpsa_set_scsi_cmd_aborted(cmd);
2310 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2311 			 c->Request.CDB, c->err_info->ScsiStatus);
2312 	hpsa_cmd_resolve_and_free(h, c);
2313 }
2314 
2315 static void process_ioaccel2_completion(struct ctlr_info *h,
2316 		struct CommandList *c, struct scsi_cmnd *cmd,
2317 		struct hpsa_scsi_dev_t *dev)
2318 {
2319 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2320 
2321 	/* check for good status */
2322 	if (likely(c2->error_data.serv_response == 0 &&
2323 			c2->error_data.status == 0))
2324 		return hpsa_cmd_free_and_done(h, c, cmd);
2325 
2326 	/*
2327 	 * Any RAID offload error results in retry which will use
2328 	 * the normal I/O path so the controller can handle whatever's
2329 	 * wrong.
2330 	 */
2331 	if (is_logical_device(dev) &&
2332 		c2->error_data.serv_response ==
2333 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2334 		if (c2->error_data.status ==
2335 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2336 			dev->offload_enabled = 0;
2337 
2338 		return hpsa_retry_cmd(h, c);
2339 	}
2340 
2341 	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2342 		return hpsa_retry_cmd(h, c);
2343 
2344 	return hpsa_cmd_free_and_done(h, c, cmd);
2345 }
2346 
2347 /* Returns 0 on success, < 0 otherwise. */
2348 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2349 					struct CommandList *cp)
2350 {
2351 	u8 tmf_status = cp->err_info->ScsiStatus;
2352 
2353 	switch (tmf_status) {
2354 	case CISS_TMF_COMPLETE:
2355 		/*
2356 		 * CISS_TMF_COMPLETE never happens, instead,
2357 		 * ei->CommandStatus == 0 for this case.
2358 		 */
2359 	case CISS_TMF_SUCCESS:
2360 		return 0;
2361 	case CISS_TMF_INVALID_FRAME:
2362 	case CISS_TMF_NOT_SUPPORTED:
2363 	case CISS_TMF_FAILED:
2364 	case CISS_TMF_WRONG_LUN:
2365 	case CISS_TMF_OVERLAPPED_TAG:
2366 		break;
2367 	default:
2368 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2369 				tmf_status);
2370 		break;
2371 	}
2372 	return -tmf_status;
2373 }
2374 
2375 static void complete_scsi_command(struct CommandList *cp)
2376 {
2377 	struct scsi_cmnd *cmd;
2378 	struct ctlr_info *h;
2379 	struct ErrorInfo *ei;
2380 	struct hpsa_scsi_dev_t *dev;
2381 	struct io_accel2_cmd *c2;
2382 
2383 	u8 sense_key;
2384 	u8 asc;      /* additional sense code */
2385 	u8 ascq;     /* additional sense code qualifier */
2386 	unsigned long sense_data_size;
2387 
2388 	ei = cp->err_info;
2389 	cmd = cp->scsi_cmd;
2390 	h = cp->h;
2391 	dev = cmd->device->hostdata;
2392 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2393 
2394 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2395 	if ((cp->cmd_type == CMD_SCSI) &&
2396 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2397 		hpsa_unmap_sg_chain_block(h, cp);
2398 
2399 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2400 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2401 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2402 
2403 	cmd->result = (DID_OK << 16); 		/* host byte */
2404 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2405 
2406 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2407 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2408 
2409 	/*
2410 	 * We check for lockup status here as it may be set for
2411 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2412 	 * fail_all_oustanding_cmds()
2413 	 */
2414 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2415 		/* DID_NO_CONNECT will prevent a retry */
2416 		cmd->result = DID_NO_CONNECT << 16;
2417 		return hpsa_cmd_free_and_done(h, cp, cmd);
2418 	}
2419 
2420 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2421 		if (cp->reset_pending)
2422 			return hpsa_cmd_resolve_and_free(h, cp);
2423 		if (cp->abort_pending)
2424 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2425 	}
2426 
2427 	if (cp->cmd_type == CMD_IOACCEL2)
2428 		return process_ioaccel2_completion(h, cp, cmd, dev);
2429 
2430 	scsi_set_resid(cmd, ei->ResidualCnt);
2431 	if (ei->CommandStatus == 0)
2432 		return hpsa_cmd_free_and_done(h, cp, cmd);
2433 
2434 	/* For I/O accelerator commands, copy over some fields to the normal
2435 	 * CISS header used below for error handling.
2436 	 */
2437 	if (cp->cmd_type == CMD_IOACCEL1) {
2438 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2439 		cp->Header.SGList = scsi_sg_count(cmd);
2440 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2441 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2442 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2443 		cp->Header.tag = c->tag;
2444 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2445 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2446 
2447 		/* Any RAID offload error results in retry which will use
2448 		 * the normal I/O path so the controller can handle whatever's
2449 		 * wrong.
2450 		 */
2451 		if (is_logical_device(dev)) {
2452 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2453 				dev->offload_enabled = 0;
2454 			return hpsa_retry_cmd(h, cp);
2455 		}
2456 	}
2457 
2458 	/* an error has occurred */
2459 	switch (ei->CommandStatus) {
2460 
2461 	case CMD_TARGET_STATUS:
2462 		cmd->result |= ei->ScsiStatus;
2463 		/* copy the sense data */
2464 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2465 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2466 		else
2467 			sense_data_size = sizeof(ei->SenseInfo);
2468 		if (ei->SenseLen < sense_data_size)
2469 			sense_data_size = ei->SenseLen;
2470 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2471 		if (ei->ScsiStatus)
2472 			decode_sense_data(ei->SenseInfo, sense_data_size,
2473 				&sense_key, &asc, &ascq);
2474 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2475 			if (sense_key == ABORTED_COMMAND) {
2476 				cmd->result |= DID_SOFT_ERROR << 16;
2477 				break;
2478 			}
2479 			break;
2480 		}
2481 		/* Problem was not a check condition
2482 		 * Pass it up to the upper layers...
2483 		 */
2484 		if (ei->ScsiStatus) {
2485 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2486 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2487 				"Returning result: 0x%x\n",
2488 				cp, ei->ScsiStatus,
2489 				sense_key, asc, ascq,
2490 				cmd->result);
2491 		} else {  /* scsi status is zero??? How??? */
2492 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2493 				"Returning no connection.\n", cp),
2494 
2495 			/* Ordinarily, this case should never happen,
2496 			 * but there is a bug in some released firmware
2497 			 * revisions that allows it to happen if, for
2498 			 * example, a 4100 backplane loses power and
2499 			 * the tape drive is in it.  We assume that
2500 			 * it's a fatal error of some kind because we
2501 			 * can't show that it wasn't. We will make it
2502 			 * look like selection timeout since that is
2503 			 * the most common reason for this to occur,
2504 			 * and it's severe enough.
2505 			 */
2506 
2507 			cmd->result = DID_NO_CONNECT << 16;
2508 		}
2509 		break;
2510 
2511 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2512 		break;
2513 	case CMD_DATA_OVERRUN:
2514 		dev_warn(&h->pdev->dev,
2515 			"CDB %16phN data overrun\n", cp->Request.CDB);
2516 		break;
2517 	case CMD_INVALID: {
2518 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2519 		print_cmd(cp); */
2520 		/* We get CMD_INVALID if you address a non-existent device
2521 		 * instead of a selection timeout (no response).  You will
2522 		 * see this if you yank out a drive, then try to access it.
2523 		 * This is kind of a shame because it means that any other
2524 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2525 		 * missing target. */
2526 		cmd->result = DID_NO_CONNECT << 16;
2527 	}
2528 		break;
2529 	case CMD_PROTOCOL_ERR:
2530 		cmd->result = DID_ERROR << 16;
2531 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2532 				cp->Request.CDB);
2533 		break;
2534 	case CMD_HARDWARE_ERR:
2535 		cmd->result = DID_ERROR << 16;
2536 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2537 			cp->Request.CDB);
2538 		break;
2539 	case CMD_CONNECTION_LOST:
2540 		cmd->result = DID_ERROR << 16;
2541 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2542 			cp->Request.CDB);
2543 		break;
2544 	case CMD_ABORTED:
2545 		/* Return now to avoid calling scsi_done(). */
2546 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2547 	case CMD_ABORT_FAILED:
2548 		cmd->result = DID_ERROR << 16;
2549 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2550 			cp->Request.CDB);
2551 		break;
2552 	case CMD_UNSOLICITED_ABORT:
2553 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2554 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2555 			cp->Request.CDB);
2556 		break;
2557 	case CMD_TIMEOUT:
2558 		cmd->result = DID_TIME_OUT << 16;
2559 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2560 			cp->Request.CDB);
2561 		break;
2562 	case CMD_UNABORTABLE:
2563 		cmd->result = DID_ERROR << 16;
2564 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2565 		break;
2566 	case CMD_TMF_STATUS:
2567 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2568 			cmd->result = DID_ERROR << 16;
2569 		break;
2570 	case CMD_IOACCEL_DISABLED:
2571 		/* This only handles the direct pass-through case since RAID
2572 		 * offload is handled above.  Just attempt a retry.
2573 		 */
2574 		cmd->result = DID_SOFT_ERROR << 16;
2575 		dev_warn(&h->pdev->dev,
2576 				"cp %p had HP SSD Smart Path error\n", cp);
2577 		break;
2578 	default:
2579 		cmd->result = DID_ERROR << 16;
2580 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2581 				cp, ei->CommandStatus);
2582 	}
2583 
2584 	return hpsa_cmd_free_and_done(h, cp, cmd);
2585 }
2586 
2587 static void hpsa_pci_unmap(struct pci_dev *pdev,
2588 	struct CommandList *c, int sg_used, int data_direction)
2589 {
2590 	int i;
2591 
2592 	for (i = 0; i < sg_used; i++)
2593 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2594 				le32_to_cpu(c->SG[i].Len),
2595 				data_direction);
2596 }
2597 
2598 static int hpsa_map_one(struct pci_dev *pdev,
2599 		struct CommandList *cp,
2600 		unsigned char *buf,
2601 		size_t buflen,
2602 		int data_direction)
2603 {
2604 	u64 addr64;
2605 
2606 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2607 		cp->Header.SGList = 0;
2608 		cp->Header.SGTotal = cpu_to_le16(0);
2609 		return 0;
2610 	}
2611 
2612 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2613 	if (dma_mapping_error(&pdev->dev, addr64)) {
2614 		/* Prevent subsequent unmap of something never mapped */
2615 		cp->Header.SGList = 0;
2616 		cp->Header.SGTotal = cpu_to_le16(0);
2617 		return -1;
2618 	}
2619 	cp->SG[0].Addr = cpu_to_le64(addr64);
2620 	cp->SG[0].Len = cpu_to_le32(buflen);
2621 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2622 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2623 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2624 	return 0;
2625 }
2626 
2627 #define NO_TIMEOUT ((unsigned long) -1)
2628 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2629 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2630 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2631 {
2632 	DECLARE_COMPLETION_ONSTACK(wait);
2633 
2634 	c->waiting = &wait;
2635 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2636 	if (timeout_msecs == NO_TIMEOUT) {
2637 		/* TODO: get rid of this no-timeout thing */
2638 		wait_for_completion_io(&wait);
2639 		return IO_OK;
2640 	}
2641 	if (!wait_for_completion_io_timeout(&wait,
2642 					msecs_to_jiffies(timeout_msecs))) {
2643 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2644 		return -ETIMEDOUT;
2645 	}
2646 	return IO_OK;
2647 }
2648 
2649 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2650 				   int reply_queue, unsigned long timeout_msecs)
2651 {
2652 	if (unlikely(lockup_detected(h))) {
2653 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2654 		return IO_OK;
2655 	}
2656 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2657 }
2658 
2659 static u32 lockup_detected(struct ctlr_info *h)
2660 {
2661 	int cpu;
2662 	u32 rc, *lockup_detected;
2663 
2664 	cpu = get_cpu();
2665 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2666 	rc = *lockup_detected;
2667 	put_cpu();
2668 	return rc;
2669 }
2670 
2671 #define MAX_DRIVER_CMD_RETRIES 25
2672 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2673 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2674 {
2675 	int backoff_time = 10, retry_count = 0;
2676 	int rc;
2677 
2678 	do {
2679 		memset(c->err_info, 0, sizeof(*c->err_info));
2680 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2681 						  timeout_msecs);
2682 		if (rc)
2683 			break;
2684 		retry_count++;
2685 		if (retry_count > 3) {
2686 			msleep(backoff_time);
2687 			if (backoff_time < 1000)
2688 				backoff_time *= 2;
2689 		}
2690 	} while ((check_for_unit_attention(h, c) ||
2691 			check_for_busy(h, c)) &&
2692 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2693 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2694 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2695 		rc = -EIO;
2696 	return rc;
2697 }
2698 
2699 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2700 				struct CommandList *c)
2701 {
2702 	const u8 *cdb = c->Request.CDB;
2703 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2704 
2705 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2706 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2707 		txt, lun[0], lun[1], lun[2], lun[3],
2708 		lun[4], lun[5], lun[6], lun[7],
2709 		cdb[0], cdb[1], cdb[2], cdb[3],
2710 		cdb[4], cdb[5], cdb[6], cdb[7],
2711 		cdb[8], cdb[9], cdb[10], cdb[11],
2712 		cdb[12], cdb[13], cdb[14], cdb[15]);
2713 }
2714 
2715 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2716 			struct CommandList *cp)
2717 {
2718 	const struct ErrorInfo *ei = cp->err_info;
2719 	struct device *d = &cp->h->pdev->dev;
2720 	u8 sense_key, asc, ascq;
2721 	int sense_len;
2722 
2723 	switch (ei->CommandStatus) {
2724 	case CMD_TARGET_STATUS:
2725 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2726 			sense_len = sizeof(ei->SenseInfo);
2727 		else
2728 			sense_len = ei->SenseLen;
2729 		decode_sense_data(ei->SenseInfo, sense_len,
2730 					&sense_key, &asc, &ascq);
2731 		hpsa_print_cmd(h, "SCSI status", cp);
2732 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2733 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2734 				sense_key, asc, ascq);
2735 		else
2736 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2737 		if (ei->ScsiStatus == 0)
2738 			dev_warn(d, "SCSI status is abnormally zero.  "
2739 			"(probably indicates selection timeout "
2740 			"reported incorrectly due to a known "
2741 			"firmware bug, circa July, 2001.)\n");
2742 		break;
2743 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2744 		break;
2745 	case CMD_DATA_OVERRUN:
2746 		hpsa_print_cmd(h, "overrun condition", cp);
2747 		break;
2748 	case CMD_INVALID: {
2749 		/* controller unfortunately reports SCSI passthru's
2750 		 * to non-existent targets as invalid commands.
2751 		 */
2752 		hpsa_print_cmd(h, "invalid command", cp);
2753 		dev_warn(d, "probably means device no longer present\n");
2754 		}
2755 		break;
2756 	case CMD_PROTOCOL_ERR:
2757 		hpsa_print_cmd(h, "protocol error", cp);
2758 		break;
2759 	case CMD_HARDWARE_ERR:
2760 		hpsa_print_cmd(h, "hardware error", cp);
2761 		break;
2762 	case CMD_CONNECTION_LOST:
2763 		hpsa_print_cmd(h, "connection lost", cp);
2764 		break;
2765 	case CMD_ABORTED:
2766 		hpsa_print_cmd(h, "aborted", cp);
2767 		break;
2768 	case CMD_ABORT_FAILED:
2769 		hpsa_print_cmd(h, "abort failed", cp);
2770 		break;
2771 	case CMD_UNSOLICITED_ABORT:
2772 		hpsa_print_cmd(h, "unsolicited abort", cp);
2773 		break;
2774 	case CMD_TIMEOUT:
2775 		hpsa_print_cmd(h, "timed out", cp);
2776 		break;
2777 	case CMD_UNABORTABLE:
2778 		hpsa_print_cmd(h, "unabortable", cp);
2779 		break;
2780 	case CMD_CTLR_LOCKUP:
2781 		hpsa_print_cmd(h, "controller lockup detected", cp);
2782 		break;
2783 	default:
2784 		hpsa_print_cmd(h, "unknown status", cp);
2785 		dev_warn(d, "Unknown command status %x\n",
2786 				ei->CommandStatus);
2787 	}
2788 }
2789 
2790 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2791 			u16 page, unsigned char *buf,
2792 			unsigned char bufsize)
2793 {
2794 	int rc = IO_OK;
2795 	struct CommandList *c;
2796 	struct ErrorInfo *ei;
2797 
2798 	c = cmd_alloc(h);
2799 
2800 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2801 			page, scsi3addr, TYPE_CMD)) {
2802 		rc = -1;
2803 		goto out;
2804 	}
2805 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2806 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2807 	if (rc)
2808 		goto out;
2809 	ei = c->err_info;
2810 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2811 		hpsa_scsi_interpret_error(h, c);
2812 		rc = -1;
2813 	}
2814 out:
2815 	cmd_free(h, c);
2816 	return rc;
2817 }
2818 
2819 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2820 	u8 reset_type, int reply_queue)
2821 {
2822 	int rc = IO_OK;
2823 	struct CommandList *c;
2824 	struct ErrorInfo *ei;
2825 
2826 	c = cmd_alloc(h);
2827 
2828 
2829 	/* fill_cmd can't fail here, no data buffer to map. */
2830 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2831 			scsi3addr, TYPE_MSG);
2832 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2833 	if (rc) {
2834 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2835 		goto out;
2836 	}
2837 	/* no unmap needed here because no data xfer. */
2838 
2839 	ei = c->err_info;
2840 	if (ei->CommandStatus != 0) {
2841 		hpsa_scsi_interpret_error(h, c);
2842 		rc = -1;
2843 	}
2844 out:
2845 	cmd_free(h, c);
2846 	return rc;
2847 }
2848 
2849 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2850 			       struct hpsa_scsi_dev_t *dev,
2851 			       unsigned char *scsi3addr)
2852 {
2853 	int i;
2854 	bool match = false;
2855 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2856 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2857 
2858 	if (hpsa_is_cmd_idle(c))
2859 		return false;
2860 
2861 	switch (c->cmd_type) {
2862 	case CMD_SCSI:
2863 	case CMD_IOCTL_PEND:
2864 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2865 				sizeof(c->Header.LUN.LunAddrBytes));
2866 		break;
2867 
2868 	case CMD_IOACCEL1:
2869 	case CMD_IOACCEL2:
2870 		if (c->phys_disk == dev) {
2871 			/* HBA mode match */
2872 			match = true;
2873 		} else {
2874 			/* Possible RAID mode -- check each phys dev. */
2875 			/* FIXME:  Do we need to take out a lock here?  If
2876 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2877 			 * instead. */
2878 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
2879 				/* FIXME: an alternate test might be
2880 				 *
2881 				 * match = dev->phys_disk[i]->ioaccel_handle
2882 				 *              == c2->scsi_nexus;      */
2883 				match = dev->phys_disk[i] == c->phys_disk;
2884 			}
2885 		}
2886 		break;
2887 
2888 	case IOACCEL2_TMF:
2889 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
2890 			match = dev->phys_disk[i]->ioaccel_handle ==
2891 					le32_to_cpu(ac->it_nexus);
2892 		}
2893 		break;
2894 
2895 	case 0:		/* The command is in the middle of being initialized. */
2896 		match = false;
2897 		break;
2898 
2899 	default:
2900 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2901 			c->cmd_type);
2902 		BUG();
2903 	}
2904 
2905 	return match;
2906 }
2907 
2908 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2909 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2910 {
2911 	int i;
2912 	int rc = 0;
2913 
2914 	/* We can really only handle one reset at a time */
2915 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2916 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2917 		return -EINTR;
2918 	}
2919 
2920 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2921 
2922 	for (i = 0; i < h->nr_cmds; i++) {
2923 		struct CommandList *c = h->cmd_pool + i;
2924 		int refcount = atomic_inc_return(&c->refcount);
2925 
2926 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2927 			unsigned long flags;
2928 
2929 			/*
2930 			 * Mark the target command as having a reset pending,
2931 			 * then lock a lock so that the command cannot complete
2932 			 * while we're considering it.  If the command is not
2933 			 * idle then count it; otherwise revoke the event.
2934 			 */
2935 			c->reset_pending = dev;
2936 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
2937 			if (!hpsa_is_cmd_idle(c))
2938 				atomic_inc(&dev->reset_cmds_out);
2939 			else
2940 				c->reset_pending = NULL;
2941 			spin_unlock_irqrestore(&h->lock, flags);
2942 		}
2943 
2944 		cmd_free(h, c);
2945 	}
2946 
2947 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2948 	if (!rc)
2949 		wait_event(h->event_sync_wait_queue,
2950 			atomic_read(&dev->reset_cmds_out) == 0 ||
2951 			lockup_detected(h));
2952 
2953 	if (unlikely(lockup_detected(h))) {
2954 		dev_warn(&h->pdev->dev,
2955 			 "Controller lockup detected during reset wait\n");
2956 		rc = -ENODEV;
2957 	}
2958 
2959 	if (unlikely(rc))
2960 		atomic_set(&dev->reset_cmds_out, 0);
2961 
2962 	mutex_unlock(&h->reset_mutex);
2963 	return rc;
2964 }
2965 
2966 static void hpsa_get_raid_level(struct ctlr_info *h,
2967 	unsigned char *scsi3addr, unsigned char *raid_level)
2968 {
2969 	int rc;
2970 	unsigned char *buf;
2971 
2972 	*raid_level = RAID_UNKNOWN;
2973 	buf = kzalloc(64, GFP_KERNEL);
2974 	if (!buf)
2975 		return;
2976 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2977 	if (rc == 0)
2978 		*raid_level = buf[8];
2979 	if (*raid_level > RAID_UNKNOWN)
2980 		*raid_level = RAID_UNKNOWN;
2981 	kfree(buf);
2982 	return;
2983 }
2984 
2985 #define HPSA_MAP_DEBUG
2986 #ifdef HPSA_MAP_DEBUG
2987 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2988 				struct raid_map_data *map_buff)
2989 {
2990 	struct raid_map_disk_data *dd = &map_buff->data[0];
2991 	int map, row, col;
2992 	u16 map_cnt, row_cnt, disks_per_row;
2993 
2994 	if (rc != 0)
2995 		return;
2996 
2997 	/* Show details only if debugging has been activated. */
2998 	if (h->raid_offload_debug < 2)
2999 		return;
3000 
3001 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3002 				le32_to_cpu(map_buff->structure_size));
3003 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3004 			le32_to_cpu(map_buff->volume_blk_size));
3005 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3006 			le64_to_cpu(map_buff->volume_blk_cnt));
3007 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3008 			map_buff->phys_blk_shift);
3009 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3010 			map_buff->parity_rotation_shift);
3011 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3012 			le16_to_cpu(map_buff->strip_size));
3013 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3014 			le64_to_cpu(map_buff->disk_starting_blk));
3015 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3016 			le64_to_cpu(map_buff->disk_blk_cnt));
3017 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3018 			le16_to_cpu(map_buff->data_disks_per_row));
3019 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3020 			le16_to_cpu(map_buff->metadata_disks_per_row));
3021 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3022 			le16_to_cpu(map_buff->row_cnt));
3023 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3024 			le16_to_cpu(map_buff->layout_map_count));
3025 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3026 			le16_to_cpu(map_buff->flags));
3027 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3028 			le16_to_cpu(map_buff->flags) &
3029 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3030 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3031 			le16_to_cpu(map_buff->dekindex));
3032 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3033 	for (map = 0; map < map_cnt; map++) {
3034 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3035 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3036 		for (row = 0; row < row_cnt; row++) {
3037 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3038 			disks_per_row =
3039 				le16_to_cpu(map_buff->data_disks_per_row);
3040 			for (col = 0; col < disks_per_row; col++, dd++)
3041 				dev_info(&h->pdev->dev,
3042 					"    D%02u: h=0x%04x xor=%u,%u\n",
3043 					col, dd->ioaccel_handle,
3044 					dd->xor_mult[0], dd->xor_mult[1]);
3045 			disks_per_row =
3046 				le16_to_cpu(map_buff->metadata_disks_per_row);
3047 			for (col = 0; col < disks_per_row; col++, dd++)
3048 				dev_info(&h->pdev->dev,
3049 					"    M%02u: h=0x%04x xor=%u,%u\n",
3050 					col, dd->ioaccel_handle,
3051 					dd->xor_mult[0], dd->xor_mult[1]);
3052 		}
3053 	}
3054 }
3055 #else
3056 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3057 			__attribute__((unused)) int rc,
3058 			__attribute__((unused)) struct raid_map_data *map_buff)
3059 {
3060 }
3061 #endif
3062 
3063 static int hpsa_get_raid_map(struct ctlr_info *h,
3064 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3065 {
3066 	int rc = 0;
3067 	struct CommandList *c;
3068 	struct ErrorInfo *ei;
3069 
3070 	c = cmd_alloc(h);
3071 
3072 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3073 			sizeof(this_device->raid_map), 0,
3074 			scsi3addr, TYPE_CMD)) {
3075 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3076 		cmd_free(h, c);
3077 		return -1;
3078 	}
3079 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3080 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3081 	if (rc)
3082 		goto out;
3083 	ei = c->err_info;
3084 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3085 		hpsa_scsi_interpret_error(h, c);
3086 		rc = -1;
3087 		goto out;
3088 	}
3089 	cmd_free(h, c);
3090 
3091 	/* @todo in the future, dynamically allocate RAID map memory */
3092 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3093 				sizeof(this_device->raid_map)) {
3094 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3095 		rc = -1;
3096 	}
3097 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3098 	return rc;
3099 out:
3100 	cmd_free(h, c);
3101 	return rc;
3102 }
3103 
3104 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3105 		unsigned char scsi3addr[], u16 bmic_device_index,
3106 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3107 {
3108 	int rc = IO_OK;
3109 	struct CommandList *c;
3110 	struct ErrorInfo *ei;
3111 
3112 	c = cmd_alloc(h);
3113 
3114 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3115 		0, RAID_CTLR_LUNID, TYPE_CMD);
3116 	if (rc)
3117 		goto out;
3118 
3119 	c->Request.CDB[2] = bmic_device_index & 0xff;
3120 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3121 
3122 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3123 				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3124 	if (rc)
3125 		goto out;
3126 	ei = c->err_info;
3127 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3128 		hpsa_scsi_interpret_error(h, c);
3129 		rc = -1;
3130 	}
3131 out:
3132 	cmd_free(h, c);
3133 	return rc;
3134 }
3135 
3136 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3137 	struct bmic_identify_controller *buf, size_t bufsize)
3138 {
3139 	int rc = IO_OK;
3140 	struct CommandList *c;
3141 	struct ErrorInfo *ei;
3142 
3143 	c = cmd_alloc(h);
3144 
3145 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3146 		0, RAID_CTLR_LUNID, TYPE_CMD);
3147 	if (rc)
3148 		goto out;
3149 
3150 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3151 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3152 	if (rc)
3153 		goto out;
3154 	ei = c->err_info;
3155 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3156 		hpsa_scsi_interpret_error(h, c);
3157 		rc = -1;
3158 	}
3159 out:
3160 	cmd_free(h, c);
3161 	return rc;
3162 }
3163 
3164 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3165 		unsigned char scsi3addr[], u16 bmic_device_index,
3166 		struct bmic_identify_physical_device *buf, size_t bufsize)
3167 {
3168 	int rc = IO_OK;
3169 	struct CommandList *c;
3170 	struct ErrorInfo *ei;
3171 
3172 	c = cmd_alloc(h);
3173 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3174 		0, RAID_CTLR_LUNID, TYPE_CMD);
3175 	if (rc)
3176 		goto out;
3177 
3178 	c->Request.CDB[2] = bmic_device_index & 0xff;
3179 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3180 
3181 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3182 						NO_TIMEOUT);
3183 	ei = c->err_info;
3184 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3185 		hpsa_scsi_interpret_error(h, c);
3186 		rc = -1;
3187 	}
3188 out:
3189 	cmd_free(h, c);
3190 
3191 	return rc;
3192 }
3193 
3194 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3195 						unsigned char *scsi3addr)
3196 {
3197 	struct ReportExtendedLUNdata *physdev;
3198 	u32 nphysicals;
3199 	u64 sa = 0;
3200 	int i;
3201 
3202 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3203 	if (!physdev)
3204 		return 0;
3205 
3206 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3207 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3208 		kfree(physdev);
3209 		return 0;
3210 	}
3211 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3212 
3213 	for (i = 0; i < nphysicals; i++)
3214 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3215 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3216 			break;
3217 		}
3218 
3219 	kfree(physdev);
3220 
3221 	return sa;
3222 }
3223 
3224 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3225 					struct hpsa_scsi_dev_t *dev)
3226 {
3227 	int rc;
3228 	u64 sa = 0;
3229 
3230 	if (is_hba_lunid(scsi3addr)) {
3231 		struct bmic_sense_subsystem_info *ssi;
3232 
3233 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3234 		if (ssi == NULL) {
3235 			dev_warn(&h->pdev->dev,
3236 				"%s: out of memory\n", __func__);
3237 			return;
3238 		}
3239 
3240 		rc = hpsa_bmic_sense_subsystem_information(h,
3241 					scsi3addr, 0, ssi, sizeof(*ssi));
3242 		if (rc == 0) {
3243 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3244 			h->sas_address = sa;
3245 		}
3246 
3247 		kfree(ssi);
3248 	} else
3249 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3250 
3251 	dev->sas_address = sa;
3252 }
3253 
3254 /* Get a device id from inquiry page 0x83 */
3255 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3256 	unsigned char scsi3addr[], u8 page)
3257 {
3258 	int rc;
3259 	int i;
3260 	int pages;
3261 	unsigned char *buf, bufsize;
3262 
3263 	buf = kzalloc(256, GFP_KERNEL);
3264 	if (!buf)
3265 		return 0;
3266 
3267 	/* Get the size of the page list first */
3268 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3269 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3270 				buf, HPSA_VPD_HEADER_SZ);
3271 	if (rc != 0)
3272 		goto exit_unsupported;
3273 	pages = buf[3];
3274 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3275 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3276 	else
3277 		bufsize = 255;
3278 
3279 	/* Get the whole VPD page list */
3280 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3281 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3282 				buf, bufsize);
3283 	if (rc != 0)
3284 		goto exit_unsupported;
3285 
3286 	pages = buf[3];
3287 	for (i = 1; i <= pages; i++)
3288 		if (buf[3 + i] == page)
3289 			goto exit_supported;
3290 exit_unsupported:
3291 	kfree(buf);
3292 	return 0;
3293 exit_supported:
3294 	kfree(buf);
3295 	return 1;
3296 }
3297 
3298 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3299 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3300 {
3301 	int rc;
3302 	unsigned char *buf;
3303 	u8 ioaccel_status;
3304 
3305 	this_device->offload_config = 0;
3306 	this_device->offload_enabled = 0;
3307 	this_device->offload_to_be_enabled = 0;
3308 
3309 	buf = kzalloc(64, GFP_KERNEL);
3310 	if (!buf)
3311 		return;
3312 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3313 		goto out;
3314 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3315 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3316 	if (rc != 0)
3317 		goto out;
3318 
3319 #define IOACCEL_STATUS_BYTE 4
3320 #define OFFLOAD_CONFIGURED_BIT 0x01
3321 #define OFFLOAD_ENABLED_BIT 0x02
3322 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3323 	this_device->offload_config =
3324 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3325 	if (this_device->offload_config) {
3326 		this_device->offload_enabled =
3327 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3328 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3329 			this_device->offload_enabled = 0;
3330 	}
3331 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3332 out:
3333 	kfree(buf);
3334 	return;
3335 }
3336 
3337 /* Get the device id from inquiry page 0x83 */
3338 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3339 	unsigned char *device_id, int index, int buflen)
3340 {
3341 	int rc;
3342 	unsigned char *buf;
3343 
3344 	if (buflen > 16)
3345 		buflen = 16;
3346 	buf = kzalloc(64, GFP_KERNEL);
3347 	if (!buf)
3348 		return -ENOMEM;
3349 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3350 	if (rc == 0)
3351 		memcpy(device_id, &buf[index], buflen);
3352 
3353 	kfree(buf);
3354 
3355 	return rc != 0;
3356 }
3357 
3358 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3359 		void *buf, int bufsize,
3360 		int extended_response)
3361 {
3362 	int rc = IO_OK;
3363 	struct CommandList *c;
3364 	unsigned char scsi3addr[8];
3365 	struct ErrorInfo *ei;
3366 
3367 	c = cmd_alloc(h);
3368 
3369 	/* address the controller */
3370 	memset(scsi3addr, 0, sizeof(scsi3addr));
3371 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3372 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3373 		rc = -1;
3374 		goto out;
3375 	}
3376 	if (extended_response)
3377 		c->Request.CDB[1] = extended_response;
3378 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380 	if (rc)
3381 		goto out;
3382 	ei = c->err_info;
3383 	if (ei->CommandStatus != 0 &&
3384 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385 		hpsa_scsi_interpret_error(h, c);
3386 		rc = -1;
3387 	} else {
3388 		struct ReportLUNdata *rld = buf;
3389 
3390 		if (rld->extended_response_flag != extended_response) {
3391 			dev_err(&h->pdev->dev,
3392 				"report luns requested format %u, got %u\n",
3393 				extended_response,
3394 				rld->extended_response_flag);
3395 			rc = -1;
3396 		}
3397 	}
3398 out:
3399 	cmd_free(h, c);
3400 	return rc;
3401 }
3402 
3403 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3404 		struct ReportExtendedLUNdata *buf, int bufsize)
3405 {
3406 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3407 						HPSA_REPORT_PHYS_EXTENDED);
3408 }
3409 
3410 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3411 		struct ReportLUNdata *buf, int bufsize)
3412 {
3413 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3414 }
3415 
3416 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3417 	int bus, int target, int lun)
3418 {
3419 	device->bus = bus;
3420 	device->target = target;
3421 	device->lun = lun;
3422 }
3423 
3424 /* Use VPD inquiry to get details of volume status */
3425 static int hpsa_get_volume_status(struct ctlr_info *h,
3426 					unsigned char scsi3addr[])
3427 {
3428 	int rc;
3429 	int status;
3430 	int size;
3431 	unsigned char *buf;
3432 
3433 	buf = kzalloc(64, GFP_KERNEL);
3434 	if (!buf)
3435 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3436 
3437 	/* Does controller have VPD for logical volume status? */
3438 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3439 		goto exit_failed;
3440 
3441 	/* Get the size of the VPD return buffer */
3442 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3443 					buf, HPSA_VPD_HEADER_SZ);
3444 	if (rc != 0)
3445 		goto exit_failed;
3446 	size = buf[3];
3447 
3448 	/* Now get the whole VPD buffer */
3449 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3450 					buf, size + HPSA_VPD_HEADER_SZ);
3451 	if (rc != 0)
3452 		goto exit_failed;
3453 	status = buf[4]; /* status byte */
3454 
3455 	kfree(buf);
3456 	return status;
3457 exit_failed:
3458 	kfree(buf);
3459 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3460 }
3461 
3462 /* Determine offline status of a volume.
3463  * Return either:
3464  *  0 (not offline)
3465  *  0xff (offline for unknown reasons)
3466  *  # (integer code indicating one of several NOT READY states
3467  *     describing why a volume is to be kept offline)
3468  */
3469 static int hpsa_volume_offline(struct ctlr_info *h,
3470 					unsigned char scsi3addr[])
3471 {
3472 	struct CommandList *c;
3473 	unsigned char *sense;
3474 	u8 sense_key, asc, ascq;
3475 	int sense_len;
3476 	int rc, ldstat = 0;
3477 	u16 cmd_status;
3478 	u8 scsi_status;
3479 #define ASC_LUN_NOT_READY 0x04
3480 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3481 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3482 
3483 	c = cmd_alloc(h);
3484 
3485 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3486 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3487 	if (rc) {
3488 		cmd_free(h, c);
3489 		return 0;
3490 	}
3491 	sense = c->err_info->SenseInfo;
3492 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3493 		sense_len = sizeof(c->err_info->SenseInfo);
3494 	else
3495 		sense_len = c->err_info->SenseLen;
3496 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3497 	cmd_status = c->err_info->CommandStatus;
3498 	scsi_status = c->err_info->ScsiStatus;
3499 	cmd_free(h, c);
3500 	/* Is the volume 'not ready'? */
3501 	if (cmd_status != CMD_TARGET_STATUS ||
3502 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3503 		sense_key != NOT_READY ||
3504 		asc != ASC_LUN_NOT_READY)  {
3505 		return 0;
3506 	}
3507 
3508 	/* Determine the reason for not ready state */
3509 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3510 
3511 	/* Keep volume offline in certain cases: */
3512 	switch (ldstat) {
3513 	case HPSA_LV_UNDERGOING_ERASE:
3514 	case HPSA_LV_NOT_AVAILABLE:
3515 	case HPSA_LV_UNDERGOING_RPI:
3516 	case HPSA_LV_PENDING_RPI:
3517 	case HPSA_LV_ENCRYPTED_NO_KEY:
3518 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3519 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3520 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3521 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3522 		return ldstat;
3523 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3524 		/* If VPD status page isn't available,
3525 		 * use ASC/ASCQ to determine state
3526 		 */
3527 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3528 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3529 			return ldstat;
3530 		break;
3531 	default:
3532 		break;
3533 	}
3534 	return 0;
3535 }
3536 
3537 /*
3538  * Find out if a logical device supports aborts by simply trying one.
3539  * Smart Array may claim not to support aborts on logical drives, but
3540  * if a MSA2000 * is connected, the drives on that will be presented
3541  * by the Smart Array as logical drives, and aborts may be sent to
3542  * those devices successfully.  So the simplest way to find out is
3543  * to simply try an abort and see how the device responds.
3544  */
3545 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3546 					unsigned char *scsi3addr)
3547 {
3548 	struct CommandList *c;
3549 	struct ErrorInfo *ei;
3550 	int rc = 0;
3551 
3552 	u64 tag = (u64) -1; /* bogus tag */
3553 
3554 	/* Assume that physical devices support aborts */
3555 	if (!is_logical_dev_addr_mode(scsi3addr))
3556 		return 1;
3557 
3558 	c = cmd_alloc(h);
3559 
3560 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3561 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3562 	/* no unmap needed here because no data xfer. */
3563 	ei = c->err_info;
3564 	switch (ei->CommandStatus) {
3565 	case CMD_INVALID:
3566 		rc = 0;
3567 		break;
3568 	case CMD_UNABORTABLE:
3569 	case CMD_ABORT_FAILED:
3570 		rc = 1;
3571 		break;
3572 	case CMD_TMF_STATUS:
3573 		rc = hpsa_evaluate_tmf_status(h, c);
3574 		break;
3575 	default:
3576 		rc = 0;
3577 		break;
3578 	}
3579 	cmd_free(h, c);
3580 	return rc;
3581 }
3582 
3583 static void sanitize_inquiry_string(unsigned char *s, int len)
3584 {
3585 	bool terminated = false;
3586 
3587 	for (; len > 0; (--len, ++s)) {
3588 		if (*s == 0)
3589 			terminated = true;
3590 		if (terminated || *s < 0x20 || *s > 0x7e)
3591 			*s = ' ';
3592 	}
3593 }
3594 
3595 static int hpsa_update_device_info(struct ctlr_info *h,
3596 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3597 	unsigned char *is_OBDR_device)
3598 {
3599 
3600 #define OBDR_SIG_OFFSET 43
3601 #define OBDR_TAPE_SIG "$DR-10"
3602 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3603 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3604 
3605 	unsigned char *inq_buff;
3606 	unsigned char *obdr_sig;
3607 	int rc = 0;
3608 
3609 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3610 	if (!inq_buff) {
3611 		rc = -ENOMEM;
3612 		goto bail_out;
3613 	}
3614 
3615 	/* Do an inquiry to the device to see what it is. */
3616 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3617 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3618 		/* Inquiry failed (msg printed already) */
3619 		dev_err(&h->pdev->dev,
3620 			"hpsa_update_device_info: inquiry failed\n");
3621 		rc = -EIO;
3622 		goto bail_out;
3623 	}
3624 
3625 	sanitize_inquiry_string(&inq_buff[8], 8);
3626 	sanitize_inquiry_string(&inq_buff[16], 16);
3627 
3628 	this_device->devtype = (inq_buff[0] & 0x1f);
3629 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3630 	memcpy(this_device->vendor, &inq_buff[8],
3631 		sizeof(this_device->vendor));
3632 	memcpy(this_device->model, &inq_buff[16],
3633 		sizeof(this_device->model));
3634 	memset(this_device->device_id, 0,
3635 		sizeof(this_device->device_id));
3636 	hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3637 		sizeof(this_device->device_id));
3638 
3639 	if (this_device->devtype == TYPE_DISK &&
3640 		is_logical_dev_addr_mode(scsi3addr)) {
3641 		int volume_offline;
3642 
3643 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3644 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3645 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3646 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3647 		if (volume_offline < 0 || volume_offline > 0xff)
3648 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3649 		this_device->volume_offline = volume_offline & 0xff;
3650 	} else {
3651 		this_device->raid_level = RAID_UNKNOWN;
3652 		this_device->offload_config = 0;
3653 		this_device->offload_enabled = 0;
3654 		this_device->offload_to_be_enabled = 0;
3655 		this_device->hba_ioaccel_enabled = 0;
3656 		this_device->volume_offline = 0;
3657 		this_device->queue_depth = h->nr_cmds;
3658 	}
3659 
3660 	if (is_OBDR_device) {
3661 		/* See if this is a One-Button-Disaster-Recovery device
3662 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3663 		 */
3664 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3665 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3666 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3667 						OBDR_SIG_LEN) == 0);
3668 	}
3669 	kfree(inq_buff);
3670 	return 0;
3671 
3672 bail_out:
3673 	kfree(inq_buff);
3674 	return rc;
3675 }
3676 
3677 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3678 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3679 {
3680 	unsigned long flags;
3681 	int rc, entry;
3682 	/*
3683 	 * See if this device supports aborts.  If we already know
3684 	 * the device, we already know if it supports aborts, otherwise
3685 	 * we have to find out if it supports aborts by trying one.
3686 	 */
3687 	spin_lock_irqsave(&h->devlock, flags);
3688 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3689 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3690 		entry >= 0 && entry < h->ndevices) {
3691 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3692 		spin_unlock_irqrestore(&h->devlock, flags);
3693 	} else {
3694 		spin_unlock_irqrestore(&h->devlock, flags);
3695 		dev->supports_aborts =
3696 				hpsa_device_supports_aborts(h, scsi3addr);
3697 		if (dev->supports_aborts < 0)
3698 			dev->supports_aborts = 0;
3699 	}
3700 }
3701 
3702 /*
3703  * Helper function to assign bus, target, lun mapping of devices.
3704  * Logical drive target and lun are assigned at this time, but
3705  * physical device lun and target assignment are deferred (assigned
3706  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3707 */
3708 static void figure_bus_target_lun(struct ctlr_info *h,
3709 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3710 {
3711 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3712 
3713 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3714 		/* physical device, target and lun filled in later */
3715 		if (is_hba_lunid(lunaddrbytes))
3716 			hpsa_set_bus_target_lun(device,
3717 					HPSA_HBA_BUS, 0, lunid & 0x3fff);
3718 		else
3719 			/* defer target, lun assignment for physical devices */
3720 			hpsa_set_bus_target_lun(device,
3721 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3722 		return;
3723 	}
3724 	/* It's a logical device */
3725 	if (device->external) {
3726 		hpsa_set_bus_target_lun(device,
3727 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3728 			lunid & 0x00ff);
3729 		return;
3730 	}
3731 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3732 				0, lunid & 0x3fff);
3733 }
3734 
3735 
3736 /*
3737  * Get address of physical disk used for an ioaccel2 mode command:
3738  *	1. Extract ioaccel2 handle from the command.
3739  *	2. Find a matching ioaccel2 handle from list of physical disks.
3740  *	3. Return:
3741  *		1 and set scsi3addr to address of matching physical
3742  *		0 if no matching physical disk was found.
3743  */
3744 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3745 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3746 {
3747 	struct io_accel2_cmd *c2 =
3748 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3749 	unsigned long flags;
3750 	int i;
3751 
3752 	spin_lock_irqsave(&h->devlock, flags);
3753 	for (i = 0; i < h->ndevices; i++)
3754 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3755 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
3756 				sizeof(h->dev[i]->scsi3addr));
3757 			spin_unlock_irqrestore(&h->devlock, flags);
3758 			return 1;
3759 		}
3760 	spin_unlock_irqrestore(&h->devlock, flags);
3761 	return 0;
3762 }
3763 
3764 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3765 	int i, int nphysicals, int nlocal_logicals)
3766 {
3767 	/* In report logicals, local logicals are listed first,
3768 	* then any externals.
3769 	*/
3770 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3771 
3772 	if (i == raid_ctlr_position)
3773 		return 0;
3774 
3775 	if (i < logicals_start)
3776 		return 0;
3777 
3778 	/* i is in logicals range, but still within local logicals */
3779 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3780 		return 0;
3781 
3782 	return 1; /* it's an external lun */
3783 }
3784 
3785 /*
3786  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3787  * logdev.  The number of luns in physdev and logdev are returned in
3788  * *nphysicals and *nlogicals, respectively.
3789  * Returns 0 on success, -1 otherwise.
3790  */
3791 static int hpsa_gather_lun_info(struct ctlr_info *h,
3792 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3793 	struct ReportLUNdata *logdev, u32 *nlogicals)
3794 {
3795 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3796 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3797 		return -1;
3798 	}
3799 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3800 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3801 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3802 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3803 		*nphysicals = HPSA_MAX_PHYS_LUN;
3804 	}
3805 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3806 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3807 		return -1;
3808 	}
3809 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3810 	/* Reject Logicals in excess of our max capability. */
3811 	if (*nlogicals > HPSA_MAX_LUN) {
3812 		dev_warn(&h->pdev->dev,
3813 			"maximum logical LUNs (%d) exceeded.  "
3814 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3815 			*nlogicals - HPSA_MAX_LUN);
3816 			*nlogicals = HPSA_MAX_LUN;
3817 	}
3818 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3819 		dev_warn(&h->pdev->dev,
3820 			"maximum logical + physical LUNs (%d) exceeded. "
3821 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3822 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3823 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3824 	}
3825 	return 0;
3826 }
3827 
3828 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3829 	int i, int nphysicals, int nlogicals,
3830 	struct ReportExtendedLUNdata *physdev_list,
3831 	struct ReportLUNdata *logdev_list)
3832 {
3833 	/* Helper function, figure out where the LUN ID info is coming from
3834 	 * given index i, lists of physical and logical devices, where in
3835 	 * the list the raid controller is supposed to appear (first or last)
3836 	 */
3837 
3838 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3839 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3840 
3841 	if (i == raid_ctlr_position)
3842 		return RAID_CTLR_LUNID;
3843 
3844 	if (i < logicals_start)
3845 		return &physdev_list->LUN[i -
3846 				(raid_ctlr_position == 0)].lunid[0];
3847 
3848 	if (i < last_device)
3849 		return &logdev_list->LUN[i - nphysicals -
3850 			(raid_ctlr_position == 0)][0];
3851 	BUG();
3852 	return NULL;
3853 }
3854 
3855 /* get physical drive ioaccel handle and queue depth */
3856 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3857 		struct hpsa_scsi_dev_t *dev,
3858 		struct ReportExtendedLUNdata *rlep, int rle_index,
3859 		struct bmic_identify_physical_device *id_phys)
3860 {
3861 	int rc;
3862 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3863 
3864 	dev->ioaccel_handle = rle->ioaccel_handle;
3865 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3866 		dev->hba_ioaccel_enabled = 1;
3867 	memset(id_phys, 0, sizeof(*id_phys));
3868 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3869 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3870 			sizeof(*id_phys));
3871 	if (!rc)
3872 		/* Reserve space for FW operations */
3873 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3874 #define DRIVE_QUEUE_DEPTH 7
3875 		dev->queue_depth =
3876 			le16_to_cpu(id_phys->current_queue_depth_limit) -
3877 				DRIVE_CMDS_RESERVED_FOR_FW;
3878 	else
3879 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3880 }
3881 
3882 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3883 	struct ReportExtendedLUNdata *rlep, int rle_index,
3884 	struct bmic_identify_physical_device *id_phys)
3885 {
3886 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3887 
3888 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3889 		this_device->hba_ioaccel_enabled = 1;
3890 
3891 	memcpy(&this_device->active_path_index,
3892 		&id_phys->active_path_number,
3893 		sizeof(this_device->active_path_index));
3894 	memcpy(&this_device->path_map,
3895 		&id_phys->redundant_path_present_map,
3896 		sizeof(this_device->path_map));
3897 	memcpy(&this_device->box,
3898 		&id_phys->alternate_paths_phys_box_on_port,
3899 		sizeof(this_device->box));
3900 	memcpy(&this_device->phys_connector,
3901 		&id_phys->alternate_paths_phys_connector,
3902 		sizeof(this_device->phys_connector));
3903 	memcpy(&this_device->bay,
3904 		&id_phys->phys_bay_in_box,
3905 		sizeof(this_device->bay));
3906 }
3907 
3908 /* get number of local logical disks. */
3909 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3910 	struct bmic_identify_controller *id_ctlr,
3911 	u32 *nlocals)
3912 {
3913 	int rc;
3914 
3915 	if (!id_ctlr) {
3916 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3917 			__func__);
3918 		return -ENOMEM;
3919 	}
3920 	memset(id_ctlr, 0, sizeof(*id_ctlr));
3921 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3922 	if (!rc)
3923 		if (id_ctlr->configured_logical_drive_count < 256)
3924 			*nlocals = id_ctlr->configured_logical_drive_count;
3925 		else
3926 			*nlocals = le16_to_cpu(
3927 					id_ctlr->extended_logical_unit_count);
3928 	else
3929 		*nlocals = -1;
3930 	return rc;
3931 }
3932 
3933 
3934 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3935 {
3936 	/* the idea here is we could get notified
3937 	 * that some devices have changed, so we do a report
3938 	 * physical luns and report logical luns cmd, and adjust
3939 	 * our list of devices accordingly.
3940 	 *
3941 	 * The scsi3addr's of devices won't change so long as the
3942 	 * adapter is not reset.  That means we can rescan and
3943 	 * tell which devices we already know about, vs. new
3944 	 * devices, vs.  disappearing devices.
3945 	 */
3946 	struct ReportExtendedLUNdata *physdev_list = NULL;
3947 	struct ReportLUNdata *logdev_list = NULL;
3948 	struct bmic_identify_physical_device *id_phys = NULL;
3949 	struct bmic_identify_controller *id_ctlr = NULL;
3950 	u32 nphysicals = 0;
3951 	u32 nlogicals = 0;
3952 	u32 nlocal_logicals = 0;
3953 	u32 ndev_allocated = 0;
3954 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3955 	int ncurrent = 0;
3956 	int i, n_ext_target_devs, ndevs_to_allocate;
3957 	int raid_ctlr_position;
3958 	bool physical_device;
3959 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3960 
3961 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3962 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3963 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3964 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3965 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3966 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
3967 
3968 	if (!currentsd || !physdev_list || !logdev_list ||
3969 		!tmpdevice || !id_phys || !id_ctlr) {
3970 		dev_err(&h->pdev->dev, "out of memory\n");
3971 		goto out;
3972 	}
3973 	memset(lunzerobits, 0, sizeof(lunzerobits));
3974 
3975 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3976 
3977 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3978 			logdev_list, &nlogicals)) {
3979 		h->drv_req_rescan = 1;
3980 		goto out;
3981 	}
3982 
3983 	/* Set number of local logicals (non PTRAID) */
3984 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
3985 		dev_warn(&h->pdev->dev,
3986 			"%s: Can't determine number of local logical devices.\n",
3987 			__func__);
3988 	}
3989 
3990 	/* We might see up to the maximum number of logical and physical disks
3991 	 * plus external target devices, and a device for the local RAID
3992 	 * controller.
3993 	 */
3994 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3995 
3996 	/* Allocate the per device structures */
3997 	for (i = 0; i < ndevs_to_allocate; i++) {
3998 		if (i >= HPSA_MAX_DEVICES) {
3999 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4000 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4001 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4002 			break;
4003 		}
4004 
4005 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4006 		if (!currentsd[i]) {
4007 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4008 				__FILE__, __LINE__);
4009 			h->drv_req_rescan = 1;
4010 			goto out;
4011 		}
4012 		ndev_allocated++;
4013 	}
4014 
4015 	if (is_scsi_rev_5(h))
4016 		raid_ctlr_position = 0;
4017 	else
4018 		raid_ctlr_position = nphysicals + nlogicals;
4019 
4020 	/* adjust our table of devices */
4021 	n_ext_target_devs = 0;
4022 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4023 		u8 *lunaddrbytes, is_OBDR = 0;
4024 		int rc = 0;
4025 		int phys_dev_index = i - (raid_ctlr_position == 0);
4026 
4027 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4028 
4029 		/* Figure out where the LUN ID info is coming from */
4030 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4031 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4032 
4033 		/* skip masked non-disk devices */
4034 		if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4035 			(physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4036 			continue;
4037 
4038 		/* Get device type, vendor, model, device id */
4039 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4040 							&is_OBDR);
4041 		if (rc == -ENOMEM) {
4042 			dev_warn(&h->pdev->dev,
4043 				"Out of memory, rescan deferred.\n");
4044 			h->drv_req_rescan = 1;
4045 			goto out;
4046 		}
4047 		if (rc) {
4048 			dev_warn(&h->pdev->dev,
4049 				"Inquiry failed, skipping device.\n");
4050 			continue;
4051 		}
4052 
4053 		/* Determine if this is a lun from an external target array */
4054 		tmpdevice->external =
4055 			figure_external_status(h, raid_ctlr_position, i,
4056 						nphysicals, nlocal_logicals);
4057 
4058 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4059 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4060 		this_device = currentsd[ncurrent];
4061 
4062 		/* Turn on discovery_polling if there are ext target devices.
4063 		 * Event-based change notification is unreliable for those.
4064 		 */
4065 		if (!h->discovery_polling) {
4066 			if (tmpdevice->external) {
4067 				h->discovery_polling = 1;
4068 				dev_info(&h->pdev->dev,
4069 					"External target, activate discovery polling.\n");
4070 			}
4071 		}
4072 
4073 
4074 		*this_device = *tmpdevice;
4075 		this_device->physical_device = physical_device;
4076 
4077 		/*
4078 		 * Expose all devices except for physical devices that
4079 		 * are masked.
4080 		 */
4081 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4082 			this_device->expose_device = 0;
4083 		else
4084 			this_device->expose_device = 1;
4085 
4086 
4087 		/*
4088 		 * Get the SAS address for physical devices that are exposed.
4089 		 */
4090 		if (this_device->physical_device && this_device->expose_device)
4091 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4092 
4093 		switch (this_device->devtype) {
4094 		case TYPE_ROM:
4095 			/* We don't *really* support actual CD-ROM devices,
4096 			 * just "One Button Disaster Recovery" tape drive
4097 			 * which temporarily pretends to be a CD-ROM drive.
4098 			 * So we check that the device is really an OBDR tape
4099 			 * device by checking for "$DR-10" in bytes 43-48 of
4100 			 * the inquiry data.
4101 			 */
4102 			if (is_OBDR)
4103 				ncurrent++;
4104 			break;
4105 		case TYPE_DISK:
4106 			if (this_device->physical_device) {
4107 				/* The disk is in HBA mode. */
4108 				/* Never use RAID mapper in HBA mode. */
4109 				this_device->offload_enabled = 0;
4110 				hpsa_get_ioaccel_drive_info(h, this_device,
4111 					physdev_list, phys_dev_index, id_phys);
4112 				hpsa_get_path_info(this_device,
4113 					physdev_list, phys_dev_index, id_phys);
4114 			}
4115 			ncurrent++;
4116 			break;
4117 		case TYPE_TAPE:
4118 		case TYPE_MEDIUM_CHANGER:
4119 		case TYPE_ENCLOSURE:
4120 			ncurrent++;
4121 			break;
4122 		case TYPE_RAID:
4123 			/* Only present the Smartarray HBA as a RAID controller.
4124 			 * If it's a RAID controller other than the HBA itself
4125 			 * (an external RAID controller, MSA500 or similar)
4126 			 * don't present it.
4127 			 */
4128 			if (!is_hba_lunid(lunaddrbytes))
4129 				break;
4130 			ncurrent++;
4131 			break;
4132 		default:
4133 			break;
4134 		}
4135 		if (ncurrent >= HPSA_MAX_DEVICES)
4136 			break;
4137 	}
4138 
4139 	if (h->sas_host == NULL) {
4140 		int rc = 0;
4141 
4142 		rc = hpsa_add_sas_host(h);
4143 		if (rc) {
4144 			dev_warn(&h->pdev->dev,
4145 				"Could not add sas host %d\n", rc);
4146 			goto out;
4147 		}
4148 	}
4149 
4150 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4151 out:
4152 	kfree(tmpdevice);
4153 	for (i = 0; i < ndev_allocated; i++)
4154 		kfree(currentsd[i]);
4155 	kfree(currentsd);
4156 	kfree(physdev_list);
4157 	kfree(logdev_list);
4158 	kfree(id_ctlr);
4159 	kfree(id_phys);
4160 }
4161 
4162 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4163 				   struct scatterlist *sg)
4164 {
4165 	u64 addr64 = (u64) sg_dma_address(sg);
4166 	unsigned int len = sg_dma_len(sg);
4167 
4168 	desc->Addr = cpu_to_le64(addr64);
4169 	desc->Len = cpu_to_le32(len);
4170 	desc->Ext = 0;
4171 }
4172 
4173 /*
4174  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4175  * dma mapping  and fills in the scatter gather entries of the
4176  * hpsa command, cp.
4177  */
4178 static int hpsa_scatter_gather(struct ctlr_info *h,
4179 		struct CommandList *cp,
4180 		struct scsi_cmnd *cmd)
4181 {
4182 	struct scatterlist *sg;
4183 	int use_sg, i, sg_limit, chained, last_sg;
4184 	struct SGDescriptor *curr_sg;
4185 
4186 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4187 
4188 	use_sg = scsi_dma_map(cmd);
4189 	if (use_sg < 0)
4190 		return use_sg;
4191 
4192 	if (!use_sg)
4193 		goto sglist_finished;
4194 
4195 	/*
4196 	 * If the number of entries is greater than the max for a single list,
4197 	 * then we have a chained list; we will set up all but one entry in the
4198 	 * first list (the last entry is saved for link information);
4199 	 * otherwise, we don't have a chained list and we'll set up at each of
4200 	 * the entries in the one list.
4201 	 */
4202 	curr_sg = cp->SG;
4203 	chained = use_sg > h->max_cmd_sg_entries;
4204 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4205 	last_sg = scsi_sg_count(cmd) - 1;
4206 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4207 		hpsa_set_sg_descriptor(curr_sg, sg);
4208 		curr_sg++;
4209 	}
4210 
4211 	if (chained) {
4212 		/*
4213 		 * Continue with the chained list.  Set curr_sg to the chained
4214 		 * list.  Modify the limit to the total count less the entries
4215 		 * we've already set up.  Resume the scan at the list entry
4216 		 * where the previous loop left off.
4217 		 */
4218 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4219 		sg_limit = use_sg - sg_limit;
4220 		for_each_sg(sg, sg, sg_limit, i) {
4221 			hpsa_set_sg_descriptor(curr_sg, sg);
4222 			curr_sg++;
4223 		}
4224 	}
4225 
4226 	/* Back the pointer up to the last entry and mark it as "last". */
4227 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4228 
4229 	if (use_sg + chained > h->maxSG)
4230 		h->maxSG = use_sg + chained;
4231 
4232 	if (chained) {
4233 		cp->Header.SGList = h->max_cmd_sg_entries;
4234 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4235 		if (hpsa_map_sg_chain_block(h, cp)) {
4236 			scsi_dma_unmap(cmd);
4237 			return -1;
4238 		}
4239 		return 0;
4240 	}
4241 
4242 sglist_finished:
4243 
4244 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4245 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4246 	return 0;
4247 }
4248 
4249 #define IO_ACCEL_INELIGIBLE (1)
4250 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4251 {
4252 	int is_write = 0;
4253 	u32 block;
4254 	u32 block_cnt;
4255 
4256 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4257 	switch (cdb[0]) {
4258 	case WRITE_6:
4259 	case WRITE_12:
4260 		is_write = 1;
4261 	case READ_6:
4262 	case READ_12:
4263 		if (*cdb_len == 6) {
4264 			block = get_unaligned_be16(&cdb[2]);
4265 			block_cnt = cdb[4];
4266 			if (block_cnt == 0)
4267 				block_cnt = 256;
4268 		} else {
4269 			BUG_ON(*cdb_len != 12);
4270 			block = get_unaligned_be32(&cdb[2]);
4271 			block_cnt = get_unaligned_be32(&cdb[6]);
4272 		}
4273 		if (block_cnt > 0xffff)
4274 			return IO_ACCEL_INELIGIBLE;
4275 
4276 		cdb[0] = is_write ? WRITE_10 : READ_10;
4277 		cdb[1] = 0;
4278 		cdb[2] = (u8) (block >> 24);
4279 		cdb[3] = (u8) (block >> 16);
4280 		cdb[4] = (u8) (block >> 8);
4281 		cdb[5] = (u8) (block);
4282 		cdb[6] = 0;
4283 		cdb[7] = (u8) (block_cnt >> 8);
4284 		cdb[8] = (u8) (block_cnt);
4285 		cdb[9] = 0;
4286 		*cdb_len = 10;
4287 		break;
4288 	}
4289 	return 0;
4290 }
4291 
4292 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4293 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4294 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4295 {
4296 	struct scsi_cmnd *cmd = c->scsi_cmd;
4297 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4298 	unsigned int len;
4299 	unsigned int total_len = 0;
4300 	struct scatterlist *sg;
4301 	u64 addr64;
4302 	int use_sg, i;
4303 	struct SGDescriptor *curr_sg;
4304 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4305 
4306 	/* TODO: implement chaining support */
4307 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4308 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4309 		return IO_ACCEL_INELIGIBLE;
4310 	}
4311 
4312 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4313 
4314 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4315 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4316 		return IO_ACCEL_INELIGIBLE;
4317 	}
4318 
4319 	c->cmd_type = CMD_IOACCEL1;
4320 
4321 	/* Adjust the DMA address to point to the accelerated command buffer */
4322 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4323 				(c->cmdindex * sizeof(*cp));
4324 	BUG_ON(c->busaddr & 0x0000007F);
4325 
4326 	use_sg = scsi_dma_map(cmd);
4327 	if (use_sg < 0) {
4328 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4329 		return use_sg;
4330 	}
4331 
4332 	if (use_sg) {
4333 		curr_sg = cp->SG;
4334 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4335 			addr64 = (u64) sg_dma_address(sg);
4336 			len  = sg_dma_len(sg);
4337 			total_len += len;
4338 			curr_sg->Addr = cpu_to_le64(addr64);
4339 			curr_sg->Len = cpu_to_le32(len);
4340 			curr_sg->Ext = cpu_to_le32(0);
4341 			curr_sg++;
4342 		}
4343 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4344 
4345 		switch (cmd->sc_data_direction) {
4346 		case DMA_TO_DEVICE:
4347 			control |= IOACCEL1_CONTROL_DATA_OUT;
4348 			break;
4349 		case DMA_FROM_DEVICE:
4350 			control |= IOACCEL1_CONTROL_DATA_IN;
4351 			break;
4352 		case DMA_NONE:
4353 			control |= IOACCEL1_CONTROL_NODATAXFER;
4354 			break;
4355 		default:
4356 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4357 			cmd->sc_data_direction);
4358 			BUG();
4359 			break;
4360 		}
4361 	} else {
4362 		control |= IOACCEL1_CONTROL_NODATAXFER;
4363 	}
4364 
4365 	c->Header.SGList = use_sg;
4366 	/* Fill out the command structure to submit */
4367 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4368 	cp->transfer_len = cpu_to_le32(total_len);
4369 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4370 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4371 	cp->control = cpu_to_le32(control);
4372 	memcpy(cp->CDB, cdb, cdb_len);
4373 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4374 	/* Tag was already set at init time. */
4375 	enqueue_cmd_and_start_io(h, c);
4376 	return 0;
4377 }
4378 
4379 /*
4380  * Queue a command directly to a device behind the controller using the
4381  * I/O accelerator path.
4382  */
4383 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4384 	struct CommandList *c)
4385 {
4386 	struct scsi_cmnd *cmd = c->scsi_cmd;
4387 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4388 
4389 	c->phys_disk = dev;
4390 
4391 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4392 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4393 }
4394 
4395 /*
4396  * Set encryption parameters for the ioaccel2 request
4397  */
4398 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4399 	struct CommandList *c, struct io_accel2_cmd *cp)
4400 {
4401 	struct scsi_cmnd *cmd = c->scsi_cmd;
4402 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4403 	struct raid_map_data *map = &dev->raid_map;
4404 	u64 first_block;
4405 
4406 	/* Are we doing encryption on this device */
4407 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4408 		return;
4409 	/* Set the data encryption key index. */
4410 	cp->dekindex = map->dekindex;
4411 
4412 	/* Set the encryption enable flag, encoded into direction field. */
4413 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4414 
4415 	/* Set encryption tweak values based on logical block address
4416 	 * If block size is 512, tweak value is LBA.
4417 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4418 	 */
4419 	switch (cmd->cmnd[0]) {
4420 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4421 	case WRITE_6:
4422 	case READ_6:
4423 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4424 		break;
4425 	case WRITE_10:
4426 	case READ_10:
4427 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4428 	case WRITE_12:
4429 	case READ_12:
4430 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4431 		break;
4432 	case WRITE_16:
4433 	case READ_16:
4434 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4435 		break;
4436 	default:
4437 		dev_err(&h->pdev->dev,
4438 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4439 			__func__, cmd->cmnd[0]);
4440 		BUG();
4441 		break;
4442 	}
4443 
4444 	if (le32_to_cpu(map->volume_blk_size) != 512)
4445 		first_block = first_block *
4446 				le32_to_cpu(map->volume_blk_size)/512;
4447 
4448 	cp->tweak_lower = cpu_to_le32(first_block);
4449 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4450 }
4451 
4452 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4453 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4454 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4455 {
4456 	struct scsi_cmnd *cmd = c->scsi_cmd;
4457 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4458 	struct ioaccel2_sg_element *curr_sg;
4459 	int use_sg, i;
4460 	struct scatterlist *sg;
4461 	u64 addr64;
4462 	u32 len;
4463 	u32 total_len = 0;
4464 
4465 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4466 
4467 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4468 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4469 		return IO_ACCEL_INELIGIBLE;
4470 	}
4471 
4472 	c->cmd_type = CMD_IOACCEL2;
4473 	/* Adjust the DMA address to point to the accelerated command buffer */
4474 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4475 				(c->cmdindex * sizeof(*cp));
4476 	BUG_ON(c->busaddr & 0x0000007F);
4477 
4478 	memset(cp, 0, sizeof(*cp));
4479 	cp->IU_type = IOACCEL2_IU_TYPE;
4480 
4481 	use_sg = scsi_dma_map(cmd);
4482 	if (use_sg < 0) {
4483 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4484 		return use_sg;
4485 	}
4486 
4487 	if (use_sg) {
4488 		curr_sg = cp->sg;
4489 		if (use_sg > h->ioaccel_maxsg) {
4490 			addr64 = le64_to_cpu(
4491 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4492 			curr_sg->address = cpu_to_le64(addr64);
4493 			curr_sg->length = 0;
4494 			curr_sg->reserved[0] = 0;
4495 			curr_sg->reserved[1] = 0;
4496 			curr_sg->reserved[2] = 0;
4497 			curr_sg->chain_indicator = 0x80;
4498 
4499 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4500 		}
4501 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4502 			addr64 = (u64) sg_dma_address(sg);
4503 			len  = sg_dma_len(sg);
4504 			total_len += len;
4505 			curr_sg->address = cpu_to_le64(addr64);
4506 			curr_sg->length = cpu_to_le32(len);
4507 			curr_sg->reserved[0] = 0;
4508 			curr_sg->reserved[1] = 0;
4509 			curr_sg->reserved[2] = 0;
4510 			curr_sg->chain_indicator = 0;
4511 			curr_sg++;
4512 		}
4513 
4514 		switch (cmd->sc_data_direction) {
4515 		case DMA_TO_DEVICE:
4516 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4517 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4518 			break;
4519 		case DMA_FROM_DEVICE:
4520 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4521 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4522 			break;
4523 		case DMA_NONE:
4524 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4525 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4526 			break;
4527 		default:
4528 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4529 				cmd->sc_data_direction);
4530 			BUG();
4531 			break;
4532 		}
4533 	} else {
4534 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4535 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4536 	}
4537 
4538 	/* Set encryption parameters, if necessary */
4539 	set_encrypt_ioaccel2(h, c, cp);
4540 
4541 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4542 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4543 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4544 
4545 	cp->data_len = cpu_to_le32(total_len);
4546 	cp->err_ptr = cpu_to_le64(c->busaddr +
4547 			offsetof(struct io_accel2_cmd, error_data));
4548 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4549 
4550 	/* fill in sg elements */
4551 	if (use_sg > h->ioaccel_maxsg) {
4552 		cp->sg_count = 1;
4553 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4554 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4555 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4556 			scsi_dma_unmap(cmd);
4557 			return -1;
4558 		}
4559 	} else
4560 		cp->sg_count = (u8) use_sg;
4561 
4562 	enqueue_cmd_and_start_io(h, c);
4563 	return 0;
4564 }
4565 
4566 /*
4567  * Queue a command to the correct I/O accelerator path.
4568  */
4569 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4570 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4571 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4572 {
4573 	/* Try to honor the device's queue depth */
4574 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4575 					phys_disk->queue_depth) {
4576 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4577 		return IO_ACCEL_INELIGIBLE;
4578 	}
4579 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4580 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4581 						cdb, cdb_len, scsi3addr,
4582 						phys_disk);
4583 	else
4584 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4585 						cdb, cdb_len, scsi3addr,
4586 						phys_disk);
4587 }
4588 
4589 static void raid_map_helper(struct raid_map_data *map,
4590 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4591 {
4592 	if (offload_to_mirror == 0)  {
4593 		/* use physical disk in the first mirrored group. */
4594 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4595 		return;
4596 	}
4597 	do {
4598 		/* determine mirror group that *map_index indicates */
4599 		*current_group = *map_index /
4600 			le16_to_cpu(map->data_disks_per_row);
4601 		if (offload_to_mirror == *current_group)
4602 			continue;
4603 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4604 			/* select map index from next group */
4605 			*map_index += le16_to_cpu(map->data_disks_per_row);
4606 			(*current_group)++;
4607 		} else {
4608 			/* select map index from first group */
4609 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4610 			*current_group = 0;
4611 		}
4612 	} while (offload_to_mirror != *current_group);
4613 }
4614 
4615 /*
4616  * Attempt to perform offload RAID mapping for a logical volume I/O.
4617  */
4618 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4619 	struct CommandList *c)
4620 {
4621 	struct scsi_cmnd *cmd = c->scsi_cmd;
4622 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4623 	struct raid_map_data *map = &dev->raid_map;
4624 	struct raid_map_disk_data *dd = &map->data[0];
4625 	int is_write = 0;
4626 	u32 map_index;
4627 	u64 first_block, last_block;
4628 	u32 block_cnt;
4629 	u32 blocks_per_row;
4630 	u64 first_row, last_row;
4631 	u32 first_row_offset, last_row_offset;
4632 	u32 first_column, last_column;
4633 	u64 r0_first_row, r0_last_row;
4634 	u32 r5or6_blocks_per_row;
4635 	u64 r5or6_first_row, r5or6_last_row;
4636 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4637 	u32 r5or6_first_column, r5or6_last_column;
4638 	u32 total_disks_per_row;
4639 	u32 stripesize;
4640 	u32 first_group, last_group, current_group;
4641 	u32 map_row;
4642 	u32 disk_handle;
4643 	u64 disk_block;
4644 	u32 disk_block_cnt;
4645 	u8 cdb[16];
4646 	u8 cdb_len;
4647 	u16 strip_size;
4648 #if BITS_PER_LONG == 32
4649 	u64 tmpdiv;
4650 #endif
4651 	int offload_to_mirror;
4652 
4653 	/* check for valid opcode, get LBA and block count */
4654 	switch (cmd->cmnd[0]) {
4655 	case WRITE_6:
4656 		is_write = 1;
4657 	case READ_6:
4658 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4659 		block_cnt = cmd->cmnd[4];
4660 		if (block_cnt == 0)
4661 			block_cnt = 256;
4662 		break;
4663 	case WRITE_10:
4664 		is_write = 1;
4665 	case READ_10:
4666 		first_block =
4667 			(((u64) cmd->cmnd[2]) << 24) |
4668 			(((u64) cmd->cmnd[3]) << 16) |
4669 			(((u64) cmd->cmnd[4]) << 8) |
4670 			cmd->cmnd[5];
4671 		block_cnt =
4672 			(((u32) cmd->cmnd[7]) << 8) |
4673 			cmd->cmnd[8];
4674 		break;
4675 	case WRITE_12:
4676 		is_write = 1;
4677 	case READ_12:
4678 		first_block =
4679 			(((u64) cmd->cmnd[2]) << 24) |
4680 			(((u64) cmd->cmnd[3]) << 16) |
4681 			(((u64) cmd->cmnd[4]) << 8) |
4682 			cmd->cmnd[5];
4683 		block_cnt =
4684 			(((u32) cmd->cmnd[6]) << 24) |
4685 			(((u32) cmd->cmnd[7]) << 16) |
4686 			(((u32) cmd->cmnd[8]) << 8) |
4687 		cmd->cmnd[9];
4688 		break;
4689 	case WRITE_16:
4690 		is_write = 1;
4691 	case READ_16:
4692 		first_block =
4693 			(((u64) cmd->cmnd[2]) << 56) |
4694 			(((u64) cmd->cmnd[3]) << 48) |
4695 			(((u64) cmd->cmnd[4]) << 40) |
4696 			(((u64) cmd->cmnd[5]) << 32) |
4697 			(((u64) cmd->cmnd[6]) << 24) |
4698 			(((u64) cmd->cmnd[7]) << 16) |
4699 			(((u64) cmd->cmnd[8]) << 8) |
4700 			cmd->cmnd[9];
4701 		block_cnt =
4702 			(((u32) cmd->cmnd[10]) << 24) |
4703 			(((u32) cmd->cmnd[11]) << 16) |
4704 			(((u32) cmd->cmnd[12]) << 8) |
4705 			cmd->cmnd[13];
4706 		break;
4707 	default:
4708 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4709 	}
4710 	last_block = first_block + block_cnt - 1;
4711 
4712 	/* check for write to non-RAID-0 */
4713 	if (is_write && dev->raid_level != 0)
4714 		return IO_ACCEL_INELIGIBLE;
4715 
4716 	/* check for invalid block or wraparound */
4717 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4718 		last_block < first_block)
4719 		return IO_ACCEL_INELIGIBLE;
4720 
4721 	/* calculate stripe information for the request */
4722 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4723 				le16_to_cpu(map->strip_size);
4724 	strip_size = le16_to_cpu(map->strip_size);
4725 #if BITS_PER_LONG == 32
4726 	tmpdiv = first_block;
4727 	(void) do_div(tmpdiv, blocks_per_row);
4728 	first_row = tmpdiv;
4729 	tmpdiv = last_block;
4730 	(void) do_div(tmpdiv, blocks_per_row);
4731 	last_row = tmpdiv;
4732 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4733 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4734 	tmpdiv = first_row_offset;
4735 	(void) do_div(tmpdiv, strip_size);
4736 	first_column = tmpdiv;
4737 	tmpdiv = last_row_offset;
4738 	(void) do_div(tmpdiv, strip_size);
4739 	last_column = tmpdiv;
4740 #else
4741 	first_row = first_block / blocks_per_row;
4742 	last_row = last_block / blocks_per_row;
4743 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4744 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4745 	first_column = first_row_offset / strip_size;
4746 	last_column = last_row_offset / strip_size;
4747 #endif
4748 
4749 	/* if this isn't a single row/column then give to the controller */
4750 	if ((first_row != last_row) || (first_column != last_column))
4751 		return IO_ACCEL_INELIGIBLE;
4752 
4753 	/* proceeding with driver mapping */
4754 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4755 				le16_to_cpu(map->metadata_disks_per_row);
4756 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4757 				le16_to_cpu(map->row_cnt);
4758 	map_index = (map_row * total_disks_per_row) + first_column;
4759 
4760 	switch (dev->raid_level) {
4761 	case HPSA_RAID_0:
4762 		break; /* nothing special to do */
4763 	case HPSA_RAID_1:
4764 		/* Handles load balance across RAID 1 members.
4765 		 * (2-drive R1 and R10 with even # of drives.)
4766 		 * Appropriate for SSDs, not optimal for HDDs
4767 		 */
4768 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4769 		if (dev->offload_to_mirror)
4770 			map_index += le16_to_cpu(map->data_disks_per_row);
4771 		dev->offload_to_mirror = !dev->offload_to_mirror;
4772 		break;
4773 	case HPSA_RAID_ADM:
4774 		/* Handles N-way mirrors  (R1-ADM)
4775 		 * and R10 with # of drives divisible by 3.)
4776 		 */
4777 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4778 
4779 		offload_to_mirror = dev->offload_to_mirror;
4780 		raid_map_helper(map, offload_to_mirror,
4781 				&map_index, &current_group);
4782 		/* set mirror group to use next time */
4783 		offload_to_mirror =
4784 			(offload_to_mirror >=
4785 			le16_to_cpu(map->layout_map_count) - 1)
4786 			? 0 : offload_to_mirror + 1;
4787 		dev->offload_to_mirror = offload_to_mirror;
4788 		/* Avoid direct use of dev->offload_to_mirror within this
4789 		 * function since multiple threads might simultaneously
4790 		 * increment it beyond the range of dev->layout_map_count -1.
4791 		 */
4792 		break;
4793 	case HPSA_RAID_5:
4794 	case HPSA_RAID_6:
4795 		if (le16_to_cpu(map->layout_map_count) <= 1)
4796 			break;
4797 
4798 		/* Verify first and last block are in same RAID group */
4799 		r5or6_blocks_per_row =
4800 			le16_to_cpu(map->strip_size) *
4801 			le16_to_cpu(map->data_disks_per_row);
4802 		BUG_ON(r5or6_blocks_per_row == 0);
4803 		stripesize = r5or6_blocks_per_row *
4804 			le16_to_cpu(map->layout_map_count);
4805 #if BITS_PER_LONG == 32
4806 		tmpdiv = first_block;
4807 		first_group = do_div(tmpdiv, stripesize);
4808 		tmpdiv = first_group;
4809 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4810 		first_group = tmpdiv;
4811 		tmpdiv = last_block;
4812 		last_group = do_div(tmpdiv, stripesize);
4813 		tmpdiv = last_group;
4814 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4815 		last_group = tmpdiv;
4816 #else
4817 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4818 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4819 #endif
4820 		if (first_group != last_group)
4821 			return IO_ACCEL_INELIGIBLE;
4822 
4823 		/* Verify request is in a single row of RAID 5/6 */
4824 #if BITS_PER_LONG == 32
4825 		tmpdiv = first_block;
4826 		(void) do_div(tmpdiv, stripesize);
4827 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
4828 		tmpdiv = last_block;
4829 		(void) do_div(tmpdiv, stripesize);
4830 		r5or6_last_row = r0_last_row = tmpdiv;
4831 #else
4832 		first_row = r5or6_first_row = r0_first_row =
4833 						first_block / stripesize;
4834 		r5or6_last_row = r0_last_row = last_block / stripesize;
4835 #endif
4836 		if (r5or6_first_row != r5or6_last_row)
4837 			return IO_ACCEL_INELIGIBLE;
4838 
4839 
4840 		/* Verify request is in a single column */
4841 #if BITS_PER_LONG == 32
4842 		tmpdiv = first_block;
4843 		first_row_offset = do_div(tmpdiv, stripesize);
4844 		tmpdiv = first_row_offset;
4845 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4846 		r5or6_first_row_offset = first_row_offset;
4847 		tmpdiv = last_block;
4848 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4849 		tmpdiv = r5or6_last_row_offset;
4850 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4851 		tmpdiv = r5or6_first_row_offset;
4852 		(void) do_div(tmpdiv, map->strip_size);
4853 		first_column = r5or6_first_column = tmpdiv;
4854 		tmpdiv = r5or6_last_row_offset;
4855 		(void) do_div(tmpdiv, map->strip_size);
4856 		r5or6_last_column = tmpdiv;
4857 #else
4858 		first_row_offset = r5or6_first_row_offset =
4859 			(u32)((first_block % stripesize) %
4860 						r5or6_blocks_per_row);
4861 
4862 		r5or6_last_row_offset =
4863 			(u32)((last_block % stripesize) %
4864 						r5or6_blocks_per_row);
4865 
4866 		first_column = r5or6_first_column =
4867 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4868 		r5or6_last_column =
4869 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4870 #endif
4871 		if (r5or6_first_column != r5or6_last_column)
4872 			return IO_ACCEL_INELIGIBLE;
4873 
4874 		/* Request is eligible */
4875 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4876 			le16_to_cpu(map->row_cnt);
4877 
4878 		map_index = (first_group *
4879 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4880 			(map_row * total_disks_per_row) + first_column;
4881 		break;
4882 	default:
4883 		return IO_ACCEL_INELIGIBLE;
4884 	}
4885 
4886 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4887 		return IO_ACCEL_INELIGIBLE;
4888 
4889 	c->phys_disk = dev->phys_disk[map_index];
4890 
4891 	disk_handle = dd[map_index].ioaccel_handle;
4892 	disk_block = le64_to_cpu(map->disk_starting_blk) +
4893 			first_row * le16_to_cpu(map->strip_size) +
4894 			(first_row_offset - first_column *
4895 			le16_to_cpu(map->strip_size));
4896 	disk_block_cnt = block_cnt;
4897 
4898 	/* handle differing logical/physical block sizes */
4899 	if (map->phys_blk_shift) {
4900 		disk_block <<= map->phys_blk_shift;
4901 		disk_block_cnt <<= map->phys_blk_shift;
4902 	}
4903 	BUG_ON(disk_block_cnt > 0xffff);
4904 
4905 	/* build the new CDB for the physical disk I/O */
4906 	if (disk_block > 0xffffffff) {
4907 		cdb[0] = is_write ? WRITE_16 : READ_16;
4908 		cdb[1] = 0;
4909 		cdb[2] = (u8) (disk_block >> 56);
4910 		cdb[3] = (u8) (disk_block >> 48);
4911 		cdb[4] = (u8) (disk_block >> 40);
4912 		cdb[5] = (u8) (disk_block >> 32);
4913 		cdb[6] = (u8) (disk_block >> 24);
4914 		cdb[7] = (u8) (disk_block >> 16);
4915 		cdb[8] = (u8) (disk_block >> 8);
4916 		cdb[9] = (u8) (disk_block);
4917 		cdb[10] = (u8) (disk_block_cnt >> 24);
4918 		cdb[11] = (u8) (disk_block_cnt >> 16);
4919 		cdb[12] = (u8) (disk_block_cnt >> 8);
4920 		cdb[13] = (u8) (disk_block_cnt);
4921 		cdb[14] = 0;
4922 		cdb[15] = 0;
4923 		cdb_len = 16;
4924 	} else {
4925 		cdb[0] = is_write ? WRITE_10 : READ_10;
4926 		cdb[1] = 0;
4927 		cdb[2] = (u8) (disk_block >> 24);
4928 		cdb[3] = (u8) (disk_block >> 16);
4929 		cdb[4] = (u8) (disk_block >> 8);
4930 		cdb[5] = (u8) (disk_block);
4931 		cdb[6] = 0;
4932 		cdb[7] = (u8) (disk_block_cnt >> 8);
4933 		cdb[8] = (u8) (disk_block_cnt);
4934 		cdb[9] = 0;
4935 		cdb_len = 10;
4936 	}
4937 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4938 						dev->scsi3addr,
4939 						dev->phys_disk[map_index]);
4940 }
4941 
4942 /*
4943  * Submit commands down the "normal" RAID stack path
4944  * All callers to hpsa_ciss_submit must check lockup_detected
4945  * beforehand, before (opt.) and after calling cmd_alloc
4946  */
4947 static int hpsa_ciss_submit(struct ctlr_info *h,
4948 	struct CommandList *c, struct scsi_cmnd *cmd,
4949 	unsigned char scsi3addr[])
4950 {
4951 	cmd->host_scribble = (unsigned char *) c;
4952 	c->cmd_type = CMD_SCSI;
4953 	c->scsi_cmd = cmd;
4954 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4955 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4956 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4957 
4958 	/* Fill in the request block... */
4959 
4960 	c->Request.Timeout = 0;
4961 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4962 	c->Request.CDBLen = cmd->cmd_len;
4963 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4964 	switch (cmd->sc_data_direction) {
4965 	case DMA_TO_DEVICE:
4966 		c->Request.type_attr_dir =
4967 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4968 		break;
4969 	case DMA_FROM_DEVICE:
4970 		c->Request.type_attr_dir =
4971 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4972 		break;
4973 	case DMA_NONE:
4974 		c->Request.type_attr_dir =
4975 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4976 		break;
4977 	case DMA_BIDIRECTIONAL:
4978 		/* This can happen if a buggy application does a scsi passthru
4979 		 * and sets both inlen and outlen to non-zero. ( see
4980 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4981 		 */
4982 
4983 		c->Request.type_attr_dir =
4984 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4985 		/* This is technically wrong, and hpsa controllers should
4986 		 * reject it with CMD_INVALID, which is the most correct
4987 		 * response, but non-fibre backends appear to let it
4988 		 * slide by, and give the same results as if this field
4989 		 * were set correctly.  Either way is acceptable for
4990 		 * our purposes here.
4991 		 */
4992 
4993 		break;
4994 
4995 	default:
4996 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997 			cmd->sc_data_direction);
4998 		BUG();
4999 		break;
5000 	}
5001 
5002 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5003 		hpsa_cmd_resolve_and_free(h, c);
5004 		return SCSI_MLQUEUE_HOST_BUSY;
5005 	}
5006 	enqueue_cmd_and_start_io(h, c);
5007 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5008 	return 0;
5009 }
5010 
5011 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5012 				struct CommandList *c)
5013 {
5014 	dma_addr_t cmd_dma_handle, err_dma_handle;
5015 
5016 	/* Zero out all of commandlist except the last field, refcount */
5017 	memset(c, 0, offsetof(struct CommandList, refcount));
5018 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5019 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5020 	c->err_info = h->errinfo_pool + index;
5021 	memset(c->err_info, 0, sizeof(*c->err_info));
5022 	err_dma_handle = h->errinfo_pool_dhandle
5023 	    + index * sizeof(*c->err_info);
5024 	c->cmdindex = index;
5025 	c->busaddr = (u32) cmd_dma_handle;
5026 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5027 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5028 	c->h = h;
5029 	c->scsi_cmd = SCSI_CMD_IDLE;
5030 }
5031 
5032 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5033 {
5034 	int i;
5035 
5036 	for (i = 0; i < h->nr_cmds; i++) {
5037 		struct CommandList *c = h->cmd_pool + i;
5038 
5039 		hpsa_cmd_init(h, i, c);
5040 		atomic_set(&c->refcount, 0);
5041 	}
5042 }
5043 
5044 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5045 				struct CommandList *c)
5046 {
5047 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5048 
5049 	BUG_ON(c->cmdindex != index);
5050 
5051 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5052 	memset(c->err_info, 0, sizeof(*c->err_info));
5053 	c->busaddr = (u32) cmd_dma_handle;
5054 }
5055 
5056 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5057 		struct CommandList *c, struct scsi_cmnd *cmd,
5058 		unsigned char *scsi3addr)
5059 {
5060 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5061 	int rc = IO_ACCEL_INELIGIBLE;
5062 
5063 	cmd->host_scribble = (unsigned char *) c;
5064 
5065 	if (dev->offload_enabled) {
5066 		hpsa_cmd_init(h, c->cmdindex, c);
5067 		c->cmd_type = CMD_SCSI;
5068 		c->scsi_cmd = cmd;
5069 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5070 		if (rc < 0)     /* scsi_dma_map failed. */
5071 			rc = SCSI_MLQUEUE_HOST_BUSY;
5072 	} else if (dev->hba_ioaccel_enabled) {
5073 		hpsa_cmd_init(h, c->cmdindex, c);
5074 		c->cmd_type = CMD_SCSI;
5075 		c->scsi_cmd = cmd;
5076 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5077 		if (rc < 0)     /* scsi_dma_map failed. */
5078 			rc = SCSI_MLQUEUE_HOST_BUSY;
5079 	}
5080 	return rc;
5081 }
5082 
5083 static void hpsa_command_resubmit_worker(struct work_struct *work)
5084 {
5085 	struct scsi_cmnd *cmd;
5086 	struct hpsa_scsi_dev_t *dev;
5087 	struct CommandList *c = container_of(work, struct CommandList, work);
5088 
5089 	cmd = c->scsi_cmd;
5090 	dev = cmd->device->hostdata;
5091 	if (!dev) {
5092 		cmd->result = DID_NO_CONNECT << 16;
5093 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5094 	}
5095 	if (c->reset_pending)
5096 		return hpsa_cmd_resolve_and_free(c->h, c);
5097 	if (c->abort_pending)
5098 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5099 	if (c->cmd_type == CMD_IOACCEL2) {
5100 		struct ctlr_info *h = c->h;
5101 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5102 		int rc;
5103 
5104 		if (c2->error_data.serv_response ==
5105 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5106 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5107 			if (rc == 0)
5108 				return;
5109 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5110 				/*
5111 				 * If we get here, it means dma mapping failed.
5112 				 * Try again via scsi mid layer, which will
5113 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5114 				 */
5115 				cmd->result = DID_IMM_RETRY << 16;
5116 				return hpsa_cmd_free_and_done(h, c, cmd);
5117 			}
5118 			/* else, fall thru and resubmit down CISS path */
5119 		}
5120 	}
5121 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5122 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5123 		/*
5124 		 * If we get here, it means dma mapping failed. Try
5125 		 * again via scsi mid layer, which will then get
5126 		 * SCSI_MLQUEUE_HOST_BUSY.
5127 		 *
5128 		 * hpsa_ciss_submit will have already freed c
5129 		 * if it encountered a dma mapping failure.
5130 		 */
5131 		cmd->result = DID_IMM_RETRY << 16;
5132 		cmd->scsi_done(cmd);
5133 	}
5134 }
5135 
5136 /* Running in struct Scsi_Host->host_lock less mode */
5137 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5138 {
5139 	struct ctlr_info *h;
5140 	struct hpsa_scsi_dev_t *dev;
5141 	unsigned char scsi3addr[8];
5142 	struct CommandList *c;
5143 	int rc = 0;
5144 
5145 	/* Get the ptr to our adapter structure out of cmd->host. */
5146 	h = sdev_to_hba(cmd->device);
5147 
5148 	BUG_ON(cmd->request->tag < 0);
5149 
5150 	dev = cmd->device->hostdata;
5151 	if (!dev) {
5152 		cmd->result = DID_NO_CONNECT << 16;
5153 		cmd->scsi_done(cmd);
5154 		return 0;
5155 	}
5156 
5157 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5158 
5159 	if (unlikely(lockup_detected(h))) {
5160 		cmd->result = DID_NO_CONNECT << 16;
5161 		cmd->scsi_done(cmd);
5162 		return 0;
5163 	}
5164 	c = cmd_tagged_alloc(h, cmd);
5165 
5166 	/*
5167 	 * Call alternate submit routine for I/O accelerated commands.
5168 	 * Retries always go down the normal I/O path.
5169 	 */
5170 	if (likely(cmd->retries == 0 &&
5171 		cmd->request->cmd_type == REQ_TYPE_FS &&
5172 		h->acciopath_status)) {
5173 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5174 		if (rc == 0)
5175 			return 0;
5176 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5177 			hpsa_cmd_resolve_and_free(h, c);
5178 			return SCSI_MLQUEUE_HOST_BUSY;
5179 		}
5180 	}
5181 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5182 }
5183 
5184 static void hpsa_scan_complete(struct ctlr_info *h)
5185 {
5186 	unsigned long flags;
5187 
5188 	spin_lock_irqsave(&h->scan_lock, flags);
5189 	h->scan_finished = 1;
5190 	wake_up_all(&h->scan_wait_queue);
5191 	spin_unlock_irqrestore(&h->scan_lock, flags);
5192 }
5193 
5194 static void hpsa_scan_start(struct Scsi_Host *sh)
5195 {
5196 	struct ctlr_info *h = shost_to_hba(sh);
5197 	unsigned long flags;
5198 
5199 	/*
5200 	 * Don't let rescans be initiated on a controller known to be locked
5201 	 * up.  If the controller locks up *during* a rescan, that thread is
5202 	 * probably hosed, but at least we can prevent new rescan threads from
5203 	 * piling up on a locked up controller.
5204 	 */
5205 	if (unlikely(lockup_detected(h)))
5206 		return hpsa_scan_complete(h);
5207 
5208 	/* wait until any scan already in progress is finished. */
5209 	while (1) {
5210 		spin_lock_irqsave(&h->scan_lock, flags);
5211 		if (h->scan_finished)
5212 			break;
5213 		spin_unlock_irqrestore(&h->scan_lock, flags);
5214 		wait_event(h->scan_wait_queue, h->scan_finished);
5215 		/* Note: We don't need to worry about a race between this
5216 		 * thread and driver unload because the midlayer will
5217 		 * have incremented the reference count, so unload won't
5218 		 * happen if we're in here.
5219 		 */
5220 	}
5221 	h->scan_finished = 0; /* mark scan as in progress */
5222 	spin_unlock_irqrestore(&h->scan_lock, flags);
5223 
5224 	if (unlikely(lockup_detected(h)))
5225 		return hpsa_scan_complete(h);
5226 
5227 	hpsa_update_scsi_devices(h);
5228 
5229 	hpsa_scan_complete(h);
5230 }
5231 
5232 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5233 {
5234 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5235 
5236 	if (!logical_drive)
5237 		return -ENODEV;
5238 
5239 	if (qdepth < 1)
5240 		qdepth = 1;
5241 	else if (qdepth > logical_drive->queue_depth)
5242 		qdepth = logical_drive->queue_depth;
5243 
5244 	return scsi_change_queue_depth(sdev, qdepth);
5245 }
5246 
5247 static int hpsa_scan_finished(struct Scsi_Host *sh,
5248 	unsigned long elapsed_time)
5249 {
5250 	struct ctlr_info *h = shost_to_hba(sh);
5251 	unsigned long flags;
5252 	int finished;
5253 
5254 	spin_lock_irqsave(&h->scan_lock, flags);
5255 	finished = h->scan_finished;
5256 	spin_unlock_irqrestore(&h->scan_lock, flags);
5257 	return finished;
5258 }
5259 
5260 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5261 {
5262 	struct Scsi_Host *sh;
5263 
5264 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5265 	if (sh == NULL) {
5266 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5267 		return -ENOMEM;
5268 	}
5269 
5270 	sh->io_port = 0;
5271 	sh->n_io_port = 0;
5272 	sh->this_id = -1;
5273 	sh->max_channel = 3;
5274 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5275 	sh->max_lun = HPSA_MAX_LUN;
5276 	sh->max_id = HPSA_MAX_LUN;
5277 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5278 	sh->cmd_per_lun = sh->can_queue;
5279 	sh->sg_tablesize = h->maxsgentries;
5280 	sh->transportt = hpsa_sas_transport_template;
5281 	sh->hostdata[0] = (unsigned long) h;
5282 	sh->irq = h->intr[h->intr_mode];
5283 	sh->unique_id = sh->irq;
5284 
5285 	h->scsi_host = sh;
5286 	return 0;
5287 }
5288 
5289 static int hpsa_scsi_add_host(struct ctlr_info *h)
5290 {
5291 	int rv;
5292 
5293 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5294 	if (rv) {
5295 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5296 		return rv;
5297 	}
5298 	scsi_scan_host(h->scsi_host);
5299 	return 0;
5300 }
5301 
5302 /*
5303  * The block layer has already gone to the trouble of picking out a unique,
5304  * small-integer tag for this request.  We use an offset from that value as
5305  * an index to select our command block.  (The offset allows us to reserve the
5306  * low-numbered entries for our own uses.)
5307  */
5308 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5309 {
5310 	int idx = scmd->request->tag;
5311 
5312 	if (idx < 0)
5313 		return idx;
5314 
5315 	/* Offset to leave space for internal cmds. */
5316 	return idx += HPSA_NRESERVED_CMDS;
5317 }
5318 
5319 /*
5320  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5321  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5322  */
5323 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5324 				struct CommandList *c, unsigned char lunaddr[],
5325 				int reply_queue)
5326 {
5327 	int rc;
5328 
5329 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5330 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5331 			NULL, 0, 0, lunaddr, TYPE_CMD);
5332 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5333 	if (rc)
5334 		return rc;
5335 	/* no unmap needed here because no data xfer. */
5336 
5337 	/* Check if the unit is already ready. */
5338 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5339 		return 0;
5340 
5341 	/*
5342 	 * The first command sent after reset will receive "unit attention" to
5343 	 * indicate that the LUN has been reset...this is actually what we're
5344 	 * looking for (but, success is good too).
5345 	 */
5346 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5347 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5348 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5349 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5350 		return 0;
5351 
5352 	return 1;
5353 }
5354 
5355 /*
5356  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5357  * returns zero when the unit is ready, and non-zero when giving up.
5358  */
5359 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5360 				struct CommandList *c,
5361 				unsigned char lunaddr[], int reply_queue)
5362 {
5363 	int rc;
5364 	int count = 0;
5365 	int waittime = 1; /* seconds */
5366 
5367 	/* Send test unit ready until device ready, or give up. */
5368 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5369 
5370 		/*
5371 		 * Wait for a bit.  do this first, because if we send
5372 		 * the TUR right away, the reset will just abort it.
5373 		 */
5374 		msleep(1000 * waittime);
5375 
5376 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5377 		if (!rc)
5378 			break;
5379 
5380 		/* Increase wait time with each try, up to a point. */
5381 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5382 			waittime *= 2;
5383 
5384 		dev_warn(&h->pdev->dev,
5385 			 "waiting %d secs for device to become ready.\n",
5386 			 waittime);
5387 	}
5388 
5389 	return rc;
5390 }
5391 
5392 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5393 					   unsigned char lunaddr[],
5394 					   int reply_queue)
5395 {
5396 	int first_queue;
5397 	int last_queue;
5398 	int rq;
5399 	int rc = 0;
5400 	struct CommandList *c;
5401 
5402 	c = cmd_alloc(h);
5403 
5404 	/*
5405 	 * If no specific reply queue was requested, then send the TUR
5406 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5407 	 * the loop exactly once using only the specified queue.
5408 	 */
5409 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5410 		first_queue = 0;
5411 		last_queue = h->nreply_queues - 1;
5412 	} else {
5413 		first_queue = reply_queue;
5414 		last_queue = reply_queue;
5415 	}
5416 
5417 	for (rq = first_queue; rq <= last_queue; rq++) {
5418 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5419 		if (rc)
5420 			break;
5421 	}
5422 
5423 	if (rc)
5424 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5425 	else
5426 		dev_warn(&h->pdev->dev, "device is ready.\n");
5427 
5428 	cmd_free(h, c);
5429 	return rc;
5430 }
5431 
5432 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5433  * complaining.  Doing a host- or bus-reset can't do anything good here.
5434  */
5435 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5436 {
5437 	int rc;
5438 	struct ctlr_info *h;
5439 	struct hpsa_scsi_dev_t *dev;
5440 	u8 reset_type;
5441 	char msg[48];
5442 
5443 	/* find the controller to which the command to be aborted was sent */
5444 	h = sdev_to_hba(scsicmd->device);
5445 	if (h == NULL) /* paranoia */
5446 		return FAILED;
5447 
5448 	if (lockup_detected(h))
5449 		return FAILED;
5450 
5451 	dev = scsicmd->device->hostdata;
5452 	if (!dev) {
5453 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5454 		return FAILED;
5455 	}
5456 
5457 	/* if controller locked up, we can guarantee command won't complete */
5458 	if (lockup_detected(h)) {
5459 		snprintf(msg, sizeof(msg),
5460 			 "cmd %d RESET FAILED, lockup detected",
5461 			 hpsa_get_cmd_index(scsicmd));
5462 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5463 		return FAILED;
5464 	}
5465 
5466 	/* this reset request might be the result of a lockup; check */
5467 	if (detect_controller_lockup(h)) {
5468 		snprintf(msg, sizeof(msg),
5469 			 "cmd %d RESET FAILED, new lockup detected",
5470 			 hpsa_get_cmd_index(scsicmd));
5471 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5472 		return FAILED;
5473 	}
5474 
5475 	/* Do not attempt on controller */
5476 	if (is_hba_lunid(dev->scsi3addr))
5477 		return SUCCESS;
5478 
5479 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5480 		reset_type = HPSA_DEVICE_RESET_MSG;
5481 	else
5482 		reset_type = HPSA_PHYS_TARGET_RESET;
5483 
5484 	sprintf(msg, "resetting %s",
5485 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5486 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5487 
5488 	h->reset_in_progress = 1;
5489 
5490 	/* send a reset to the SCSI LUN which the command was sent to */
5491 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5492 			   DEFAULT_REPLY_QUEUE);
5493 	sprintf(msg, "reset %s %s",
5494 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5495 		rc == 0 ? "completed successfully" : "failed");
5496 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5497 	h->reset_in_progress = 0;
5498 	return rc == 0 ? SUCCESS : FAILED;
5499 }
5500 
5501 static void swizzle_abort_tag(u8 *tag)
5502 {
5503 	u8 original_tag[8];
5504 
5505 	memcpy(original_tag, tag, 8);
5506 	tag[0] = original_tag[3];
5507 	tag[1] = original_tag[2];
5508 	tag[2] = original_tag[1];
5509 	tag[3] = original_tag[0];
5510 	tag[4] = original_tag[7];
5511 	tag[5] = original_tag[6];
5512 	tag[6] = original_tag[5];
5513 	tag[7] = original_tag[4];
5514 }
5515 
5516 static void hpsa_get_tag(struct ctlr_info *h,
5517 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5518 {
5519 	u64 tag;
5520 	if (c->cmd_type == CMD_IOACCEL1) {
5521 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5522 			&h->ioaccel_cmd_pool[c->cmdindex];
5523 		tag = le64_to_cpu(cm1->tag);
5524 		*tagupper = cpu_to_le32(tag >> 32);
5525 		*taglower = cpu_to_le32(tag);
5526 		return;
5527 	}
5528 	if (c->cmd_type == CMD_IOACCEL2) {
5529 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5530 			&h->ioaccel2_cmd_pool[c->cmdindex];
5531 		/* upper tag not used in ioaccel2 mode */
5532 		memset(tagupper, 0, sizeof(*tagupper));
5533 		*taglower = cm2->Tag;
5534 		return;
5535 	}
5536 	tag = le64_to_cpu(c->Header.tag);
5537 	*tagupper = cpu_to_le32(tag >> 32);
5538 	*taglower = cpu_to_le32(tag);
5539 }
5540 
5541 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5542 	struct CommandList *abort, int reply_queue)
5543 {
5544 	int rc = IO_OK;
5545 	struct CommandList *c;
5546 	struct ErrorInfo *ei;
5547 	__le32 tagupper, taglower;
5548 
5549 	c = cmd_alloc(h);
5550 
5551 	/* fill_cmd can't fail here, no buffer to map */
5552 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5553 		0, 0, scsi3addr, TYPE_MSG);
5554 	if (h->needs_abort_tags_swizzled)
5555 		swizzle_abort_tag(&c->Request.CDB[4]);
5556 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5557 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5558 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5559 		__func__, tagupper, taglower);
5560 	/* no unmap needed here because no data xfer. */
5561 
5562 	ei = c->err_info;
5563 	switch (ei->CommandStatus) {
5564 	case CMD_SUCCESS:
5565 		break;
5566 	case CMD_TMF_STATUS:
5567 		rc = hpsa_evaluate_tmf_status(h, c);
5568 		break;
5569 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5570 		rc = -1;
5571 		break;
5572 	default:
5573 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5574 			__func__, tagupper, taglower);
5575 		hpsa_scsi_interpret_error(h, c);
5576 		rc = -1;
5577 		break;
5578 	}
5579 	cmd_free(h, c);
5580 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5581 		__func__, tagupper, taglower);
5582 	return rc;
5583 }
5584 
5585 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5586 	struct CommandList *command_to_abort, int reply_queue)
5587 {
5588 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5589 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5590 	struct io_accel2_cmd *c2a =
5591 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5592 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5593 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5594 
5595 	/*
5596 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5597 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5598 	 * actually fits, and doesn't overrun the error info space.
5599 	 */
5600 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5601 			sizeof(struct io_accel2_cmd));
5602 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5603 			offsetof(struct hpsa_tmf_struct, error_len) +
5604 				sizeof(ac->error_len));
5605 
5606 	c->cmd_type = IOACCEL2_TMF;
5607 	c->scsi_cmd = SCSI_CMD_BUSY;
5608 
5609 	/* Adjust the DMA address to point to the accelerated command buffer */
5610 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5611 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5612 	BUG_ON(c->busaddr & 0x0000007F);
5613 
5614 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5615 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5616 	ac->reply_queue = reply_queue;
5617 	ac->tmf = IOACCEL2_TMF_ABORT;
5618 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5619 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
5620 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5621 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5622 	ac->error_ptr = cpu_to_le64(c->busaddr +
5623 			offsetof(struct io_accel2_cmd, error_data));
5624 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5625 }
5626 
5627 /* ioaccel2 path firmware cannot handle abort task requests.
5628  * Change abort requests to physical target reset, and send to the
5629  * address of the physical disk used for the ioaccel 2 command.
5630  * Return 0 on success (IO_OK)
5631  *	 -1 on failure
5632  */
5633 
5634 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5635 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5636 {
5637 	int rc = IO_OK;
5638 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5639 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5640 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5641 	unsigned char *psa = &phys_scsi3addr[0];
5642 
5643 	/* Get a pointer to the hpsa logical device. */
5644 	scmd = abort->scsi_cmd;
5645 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5646 	if (dev == NULL) {
5647 		dev_warn(&h->pdev->dev,
5648 			"Cannot abort: no device pointer for command.\n");
5649 			return -1; /* not abortable */
5650 	}
5651 
5652 	if (h->raid_offload_debug > 0)
5653 		dev_info(&h->pdev->dev,
5654 			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5655 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5656 			"Reset as abort",
5657 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5658 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5659 
5660 	if (!dev->offload_enabled) {
5661 		dev_warn(&h->pdev->dev,
5662 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5663 		return -1; /* not abortable */
5664 	}
5665 
5666 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
5667 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5668 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5669 		return -1; /* not abortable */
5670 	}
5671 
5672 	/* send the reset */
5673 	if (h->raid_offload_debug > 0)
5674 		dev_info(&h->pdev->dev,
5675 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5676 			psa[0], psa[1], psa[2], psa[3],
5677 			psa[4], psa[5], psa[6], psa[7]);
5678 	rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5679 	if (rc != 0) {
5680 		dev_warn(&h->pdev->dev,
5681 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5682 			psa[0], psa[1], psa[2], psa[3],
5683 			psa[4], psa[5], psa[6], psa[7]);
5684 		return rc; /* failed to reset */
5685 	}
5686 
5687 	/* wait for device to recover */
5688 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5689 		dev_warn(&h->pdev->dev,
5690 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5691 			psa[0], psa[1], psa[2], psa[3],
5692 			psa[4], psa[5], psa[6], psa[7]);
5693 		return -1;  /* failed to recover */
5694 	}
5695 
5696 	/* device recovered */
5697 	dev_info(&h->pdev->dev,
5698 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5699 		psa[0], psa[1], psa[2], psa[3],
5700 		psa[4], psa[5], psa[6], psa[7]);
5701 
5702 	return rc; /* success */
5703 }
5704 
5705 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5706 	struct CommandList *abort, int reply_queue)
5707 {
5708 	int rc = IO_OK;
5709 	struct CommandList *c;
5710 	__le32 taglower, tagupper;
5711 	struct hpsa_scsi_dev_t *dev;
5712 	struct io_accel2_cmd *c2;
5713 
5714 	dev = abort->scsi_cmd->device->hostdata;
5715 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5716 		return -1;
5717 
5718 	c = cmd_alloc(h);
5719 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5720 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5721 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5722 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5723 	dev_dbg(&h->pdev->dev,
5724 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5725 		__func__, tagupper, taglower);
5726 	/* no unmap needed here because no data xfer. */
5727 
5728 	dev_dbg(&h->pdev->dev,
5729 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5730 		__func__, tagupper, taglower, c2->error_data.serv_response);
5731 	switch (c2->error_data.serv_response) {
5732 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5733 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5734 		rc = 0;
5735 		break;
5736 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5737 	case IOACCEL2_SERV_RESPONSE_FAILURE:
5738 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5739 		rc = -1;
5740 		break;
5741 	default:
5742 		dev_warn(&h->pdev->dev,
5743 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5744 			__func__, tagupper, taglower,
5745 			c2->error_data.serv_response);
5746 		rc = -1;
5747 	}
5748 	cmd_free(h, c);
5749 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5750 		tagupper, taglower);
5751 	return rc;
5752 }
5753 
5754 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5755 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5756 {
5757 	/*
5758 	 * ioccelerator mode 2 commands should be aborted via the
5759 	 * accelerated path, since RAID path is unaware of these commands,
5760 	 * but not all underlying firmware can handle abort TMF.
5761 	 * Change abort to physical device reset when abort TMF is unsupported.
5762 	 */
5763 	if (abort->cmd_type == CMD_IOACCEL2) {
5764 		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5765 			return hpsa_send_abort_ioaccel2(h, abort,
5766 						reply_queue);
5767 		else
5768 			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5769 							abort, reply_queue);
5770 	}
5771 	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5772 }
5773 
5774 /* Find out which reply queue a command was meant to return on */
5775 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5776 					struct CommandList *c)
5777 {
5778 	if (c->cmd_type == CMD_IOACCEL2)
5779 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5780 	return c->Header.ReplyQueue;
5781 }
5782 
5783 /*
5784  * Limit concurrency of abort commands to prevent
5785  * over-subscription of commands
5786  */
5787 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5788 {
5789 #define ABORT_CMD_WAIT_MSECS 5000
5790 	return !wait_event_timeout(h->abort_cmd_wait_queue,
5791 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5792 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5793 }
5794 
5795 /* Send an abort for the specified command.
5796  *	If the device and controller support it,
5797  *		send a task abort request.
5798  */
5799 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5800 {
5801 
5802 	int rc;
5803 	struct ctlr_info *h;
5804 	struct hpsa_scsi_dev_t *dev;
5805 	struct CommandList *abort; /* pointer to command to be aborted */
5806 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
5807 	char msg[256];		/* For debug messaging. */
5808 	int ml = 0;
5809 	__le32 tagupper, taglower;
5810 	int refcount, reply_queue;
5811 
5812 	if (sc == NULL)
5813 		return FAILED;
5814 
5815 	if (sc->device == NULL)
5816 		return FAILED;
5817 
5818 	/* Find the controller of the command to be aborted */
5819 	h = sdev_to_hba(sc->device);
5820 	if (h == NULL)
5821 		return FAILED;
5822 
5823 	/* Find the device of the command to be aborted */
5824 	dev = sc->device->hostdata;
5825 	if (!dev) {
5826 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5827 				msg);
5828 		return FAILED;
5829 	}
5830 
5831 	/* If controller locked up, we can guarantee command won't complete */
5832 	if (lockup_detected(h)) {
5833 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5834 					"ABORT FAILED, lockup detected");
5835 		return FAILED;
5836 	}
5837 
5838 	/* This is a good time to check if controller lockup has occurred */
5839 	if (detect_controller_lockup(h)) {
5840 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5841 					"ABORT FAILED, new lockup detected");
5842 		return FAILED;
5843 	}
5844 
5845 	/* Check that controller supports some kind of task abort */
5846 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5847 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5848 		return FAILED;
5849 
5850 	memset(msg, 0, sizeof(msg));
5851 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5852 		h->scsi_host->host_no, sc->device->channel,
5853 		sc->device->id, sc->device->lun,
5854 		"Aborting command", sc);
5855 
5856 	/* Get SCSI command to be aborted */
5857 	abort = (struct CommandList *) sc->host_scribble;
5858 	if (abort == NULL) {
5859 		/* This can happen if the command already completed. */
5860 		return SUCCESS;
5861 	}
5862 	refcount = atomic_inc_return(&abort->refcount);
5863 	if (refcount == 1) { /* Command is done already. */
5864 		cmd_free(h, abort);
5865 		return SUCCESS;
5866 	}
5867 
5868 	/* Don't bother trying the abort if we know it won't work. */
5869 	if (abort->cmd_type != CMD_IOACCEL2 &&
5870 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5871 		cmd_free(h, abort);
5872 		return FAILED;
5873 	}
5874 
5875 	/*
5876 	 * Check that we're aborting the right command.
5877 	 * It's possible the CommandList already completed and got re-used.
5878 	 */
5879 	if (abort->scsi_cmd != sc) {
5880 		cmd_free(h, abort);
5881 		return SUCCESS;
5882 	}
5883 
5884 	abort->abort_pending = true;
5885 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5886 	reply_queue = hpsa_extract_reply_queue(h, abort);
5887 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5888 	as  = abort->scsi_cmd;
5889 	if (as != NULL)
5890 		ml += sprintf(msg+ml,
5891 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5892 			as->cmd_len, as->cmnd[0], as->cmnd[1],
5893 			as->serial_number);
5894 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5895 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5896 
5897 	/*
5898 	 * Command is in flight, or possibly already completed
5899 	 * by the firmware (but not to the scsi mid layer) but we can't
5900 	 * distinguish which.  Send the abort down.
5901 	 */
5902 	if (wait_for_available_abort_cmd(h)) {
5903 		dev_warn(&h->pdev->dev,
5904 			"%s FAILED, timeout waiting for an abort command to become available.\n",
5905 			msg);
5906 		cmd_free(h, abort);
5907 		return FAILED;
5908 	}
5909 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5910 	atomic_inc(&h->abort_cmds_available);
5911 	wake_up_all(&h->abort_cmd_wait_queue);
5912 	if (rc != 0) {
5913 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5914 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5915 				"FAILED to abort command");
5916 		cmd_free(h, abort);
5917 		return FAILED;
5918 	}
5919 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5920 	wait_event(h->event_sync_wait_queue,
5921 		   abort->scsi_cmd != sc || lockup_detected(h));
5922 	cmd_free(h, abort);
5923 	return !lockup_detected(h) ? SUCCESS : FAILED;
5924 }
5925 
5926 /*
5927  * For operations with an associated SCSI command, a command block is allocated
5928  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5929  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5930  * the complement, although cmd_free() may be called instead.
5931  */
5932 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5933 					    struct scsi_cmnd *scmd)
5934 {
5935 	int idx = hpsa_get_cmd_index(scmd);
5936 	struct CommandList *c = h->cmd_pool + idx;
5937 
5938 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5939 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5940 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5941 		/* The index value comes from the block layer, so if it's out of
5942 		 * bounds, it's probably not our bug.
5943 		 */
5944 		BUG();
5945 	}
5946 
5947 	atomic_inc(&c->refcount);
5948 	if (unlikely(!hpsa_is_cmd_idle(c))) {
5949 		/*
5950 		 * We expect that the SCSI layer will hand us a unique tag
5951 		 * value.  Thus, there should never be a collision here between
5952 		 * two requests...because if the selected command isn't idle
5953 		 * then someone is going to be very disappointed.
5954 		 */
5955 		dev_err(&h->pdev->dev,
5956 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
5957 			idx);
5958 		if (c->scsi_cmd != NULL)
5959 			scsi_print_command(c->scsi_cmd);
5960 		scsi_print_command(scmd);
5961 	}
5962 
5963 	hpsa_cmd_partial_init(h, idx, c);
5964 	return c;
5965 }
5966 
5967 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5968 {
5969 	/*
5970 	 * Release our reference to the block.  We don't need to do anything
5971 	 * else to free it, because it is accessed by index.  (There's no point
5972 	 * in checking the result of the decrement, since we cannot guarantee
5973 	 * that there isn't a concurrent abort which is also accessing it.)
5974 	 */
5975 	(void)atomic_dec(&c->refcount);
5976 }
5977 
5978 /*
5979  * For operations that cannot sleep, a command block is allocated at init,
5980  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5981  * which ones are free or in use.  Lock must be held when calling this.
5982  * cmd_free() is the complement.
5983  * This function never gives up and returns NULL.  If it hangs,
5984  * another thread must call cmd_free() to free some tags.
5985  */
5986 
5987 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5988 {
5989 	struct CommandList *c;
5990 	int refcount, i;
5991 	int offset = 0;
5992 
5993 	/*
5994 	 * There is some *extremely* small but non-zero chance that that
5995 	 * multiple threads could get in here, and one thread could
5996 	 * be scanning through the list of bits looking for a free
5997 	 * one, but the free ones are always behind him, and other
5998 	 * threads sneak in behind him and eat them before he can
5999 	 * get to them, so that while there is always a free one, a
6000 	 * very unlucky thread might be starved anyway, never able to
6001 	 * beat the other threads.  In reality, this happens so
6002 	 * infrequently as to be indistinguishable from never.
6003 	 *
6004 	 * Note that we start allocating commands before the SCSI host structure
6005 	 * is initialized.  Since the search starts at bit zero, this
6006 	 * all works, since we have at least one command structure available;
6007 	 * however, it means that the structures with the low indexes have to be
6008 	 * reserved for driver-initiated requests, while requests from the block
6009 	 * layer will use the higher indexes.
6010 	 */
6011 
6012 	for (;;) {
6013 		i = find_next_zero_bit(h->cmd_pool_bits,
6014 					HPSA_NRESERVED_CMDS,
6015 					offset);
6016 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6017 			offset = 0;
6018 			continue;
6019 		}
6020 		c = h->cmd_pool + i;
6021 		refcount = atomic_inc_return(&c->refcount);
6022 		if (unlikely(refcount > 1)) {
6023 			cmd_free(h, c); /* already in use */
6024 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6025 			continue;
6026 		}
6027 		set_bit(i & (BITS_PER_LONG - 1),
6028 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6029 		break; /* it's ours now. */
6030 	}
6031 	hpsa_cmd_partial_init(h, i, c);
6032 	return c;
6033 }
6034 
6035 /*
6036  * This is the complementary operation to cmd_alloc().  Note, however, in some
6037  * corner cases it may also be used to free blocks allocated by
6038  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6039  * the clear-bit is harmless.
6040  */
6041 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6042 {
6043 	if (atomic_dec_and_test(&c->refcount)) {
6044 		int i;
6045 
6046 		i = c - h->cmd_pool;
6047 		clear_bit(i & (BITS_PER_LONG - 1),
6048 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6049 	}
6050 }
6051 
6052 #ifdef CONFIG_COMPAT
6053 
6054 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6055 	void __user *arg)
6056 {
6057 	IOCTL32_Command_struct __user *arg32 =
6058 	    (IOCTL32_Command_struct __user *) arg;
6059 	IOCTL_Command_struct arg64;
6060 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6061 	int err;
6062 	u32 cp;
6063 
6064 	memset(&arg64, 0, sizeof(arg64));
6065 	err = 0;
6066 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6067 			   sizeof(arg64.LUN_info));
6068 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6069 			   sizeof(arg64.Request));
6070 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6071 			   sizeof(arg64.error_info));
6072 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6073 	err |= get_user(cp, &arg32->buf);
6074 	arg64.buf = compat_ptr(cp);
6075 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6076 
6077 	if (err)
6078 		return -EFAULT;
6079 
6080 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6081 	if (err)
6082 		return err;
6083 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6084 			 sizeof(arg32->error_info));
6085 	if (err)
6086 		return -EFAULT;
6087 	return err;
6088 }
6089 
6090 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6091 	int cmd, void __user *arg)
6092 {
6093 	BIG_IOCTL32_Command_struct __user *arg32 =
6094 	    (BIG_IOCTL32_Command_struct __user *) arg;
6095 	BIG_IOCTL_Command_struct arg64;
6096 	BIG_IOCTL_Command_struct __user *p =
6097 	    compat_alloc_user_space(sizeof(arg64));
6098 	int err;
6099 	u32 cp;
6100 
6101 	memset(&arg64, 0, sizeof(arg64));
6102 	err = 0;
6103 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6104 			   sizeof(arg64.LUN_info));
6105 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6106 			   sizeof(arg64.Request));
6107 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6108 			   sizeof(arg64.error_info));
6109 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6110 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6111 	err |= get_user(cp, &arg32->buf);
6112 	arg64.buf = compat_ptr(cp);
6113 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6114 
6115 	if (err)
6116 		return -EFAULT;
6117 
6118 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6119 	if (err)
6120 		return err;
6121 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6122 			 sizeof(arg32->error_info));
6123 	if (err)
6124 		return -EFAULT;
6125 	return err;
6126 }
6127 
6128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6129 {
6130 	switch (cmd) {
6131 	case CCISS_GETPCIINFO:
6132 	case CCISS_GETINTINFO:
6133 	case CCISS_SETINTINFO:
6134 	case CCISS_GETNODENAME:
6135 	case CCISS_SETNODENAME:
6136 	case CCISS_GETHEARTBEAT:
6137 	case CCISS_GETBUSTYPES:
6138 	case CCISS_GETFIRMVER:
6139 	case CCISS_GETDRIVVER:
6140 	case CCISS_REVALIDVOLS:
6141 	case CCISS_DEREGDISK:
6142 	case CCISS_REGNEWDISK:
6143 	case CCISS_REGNEWD:
6144 	case CCISS_RESCANDISK:
6145 	case CCISS_GETLUNINFO:
6146 		return hpsa_ioctl(dev, cmd, arg);
6147 
6148 	case CCISS_PASSTHRU32:
6149 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6150 	case CCISS_BIG_PASSTHRU32:
6151 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6152 
6153 	default:
6154 		return -ENOIOCTLCMD;
6155 	}
6156 }
6157 #endif
6158 
6159 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6160 {
6161 	struct hpsa_pci_info pciinfo;
6162 
6163 	if (!argp)
6164 		return -EINVAL;
6165 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6166 	pciinfo.bus = h->pdev->bus->number;
6167 	pciinfo.dev_fn = h->pdev->devfn;
6168 	pciinfo.board_id = h->board_id;
6169 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6170 		return -EFAULT;
6171 	return 0;
6172 }
6173 
6174 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6175 {
6176 	DriverVer_type DriverVer;
6177 	unsigned char vmaj, vmin, vsubmin;
6178 	int rc;
6179 
6180 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6181 		&vmaj, &vmin, &vsubmin);
6182 	if (rc != 3) {
6183 		dev_info(&h->pdev->dev, "driver version string '%s' "
6184 			"unrecognized.", HPSA_DRIVER_VERSION);
6185 		vmaj = 0;
6186 		vmin = 0;
6187 		vsubmin = 0;
6188 	}
6189 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6190 	if (!argp)
6191 		return -EINVAL;
6192 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6193 		return -EFAULT;
6194 	return 0;
6195 }
6196 
6197 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6198 {
6199 	IOCTL_Command_struct iocommand;
6200 	struct CommandList *c;
6201 	char *buff = NULL;
6202 	u64 temp64;
6203 	int rc = 0;
6204 
6205 	if (!argp)
6206 		return -EINVAL;
6207 	if (!capable(CAP_SYS_RAWIO))
6208 		return -EPERM;
6209 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6210 		return -EFAULT;
6211 	if ((iocommand.buf_size < 1) &&
6212 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6213 		return -EINVAL;
6214 	}
6215 	if (iocommand.buf_size > 0) {
6216 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6217 		if (buff == NULL)
6218 			return -ENOMEM;
6219 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6220 			/* Copy the data into the buffer we created */
6221 			if (copy_from_user(buff, iocommand.buf,
6222 				iocommand.buf_size)) {
6223 				rc = -EFAULT;
6224 				goto out_kfree;
6225 			}
6226 		} else {
6227 			memset(buff, 0, iocommand.buf_size);
6228 		}
6229 	}
6230 	c = cmd_alloc(h);
6231 
6232 	/* Fill in the command type */
6233 	c->cmd_type = CMD_IOCTL_PEND;
6234 	c->scsi_cmd = SCSI_CMD_BUSY;
6235 	/* Fill in Command Header */
6236 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6237 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6238 		c->Header.SGList = 1;
6239 		c->Header.SGTotal = cpu_to_le16(1);
6240 	} else	{ /* no buffers to fill */
6241 		c->Header.SGList = 0;
6242 		c->Header.SGTotal = cpu_to_le16(0);
6243 	}
6244 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6245 
6246 	/* Fill in Request block */
6247 	memcpy(&c->Request, &iocommand.Request,
6248 		sizeof(c->Request));
6249 
6250 	/* Fill in the scatter gather information */
6251 	if (iocommand.buf_size > 0) {
6252 		temp64 = pci_map_single(h->pdev, buff,
6253 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6254 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6255 			c->SG[0].Addr = cpu_to_le64(0);
6256 			c->SG[0].Len = cpu_to_le32(0);
6257 			rc = -ENOMEM;
6258 			goto out;
6259 		}
6260 		c->SG[0].Addr = cpu_to_le64(temp64);
6261 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6262 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6263 	}
6264 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6265 	if (iocommand.buf_size > 0)
6266 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6267 	check_ioctl_unit_attention(h, c);
6268 	if (rc) {
6269 		rc = -EIO;
6270 		goto out;
6271 	}
6272 
6273 	/* Copy the error information out */
6274 	memcpy(&iocommand.error_info, c->err_info,
6275 		sizeof(iocommand.error_info));
6276 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6277 		rc = -EFAULT;
6278 		goto out;
6279 	}
6280 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6281 		iocommand.buf_size > 0) {
6282 		/* Copy the data out of the buffer we created */
6283 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6284 			rc = -EFAULT;
6285 			goto out;
6286 		}
6287 	}
6288 out:
6289 	cmd_free(h, c);
6290 out_kfree:
6291 	kfree(buff);
6292 	return rc;
6293 }
6294 
6295 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6296 {
6297 	BIG_IOCTL_Command_struct *ioc;
6298 	struct CommandList *c;
6299 	unsigned char **buff = NULL;
6300 	int *buff_size = NULL;
6301 	u64 temp64;
6302 	BYTE sg_used = 0;
6303 	int status = 0;
6304 	u32 left;
6305 	u32 sz;
6306 	BYTE __user *data_ptr;
6307 
6308 	if (!argp)
6309 		return -EINVAL;
6310 	if (!capable(CAP_SYS_RAWIO))
6311 		return -EPERM;
6312 	ioc = (BIG_IOCTL_Command_struct *)
6313 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
6314 	if (!ioc) {
6315 		status = -ENOMEM;
6316 		goto cleanup1;
6317 	}
6318 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6319 		status = -EFAULT;
6320 		goto cleanup1;
6321 	}
6322 	if ((ioc->buf_size < 1) &&
6323 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6324 		status = -EINVAL;
6325 		goto cleanup1;
6326 	}
6327 	/* Check kmalloc limits  using all SGs */
6328 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6329 		status = -EINVAL;
6330 		goto cleanup1;
6331 	}
6332 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6333 		status = -EINVAL;
6334 		goto cleanup1;
6335 	}
6336 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6337 	if (!buff) {
6338 		status = -ENOMEM;
6339 		goto cleanup1;
6340 	}
6341 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6342 	if (!buff_size) {
6343 		status = -ENOMEM;
6344 		goto cleanup1;
6345 	}
6346 	left = ioc->buf_size;
6347 	data_ptr = ioc->buf;
6348 	while (left) {
6349 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6350 		buff_size[sg_used] = sz;
6351 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6352 		if (buff[sg_used] == NULL) {
6353 			status = -ENOMEM;
6354 			goto cleanup1;
6355 		}
6356 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6357 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6358 				status = -EFAULT;
6359 				goto cleanup1;
6360 			}
6361 		} else
6362 			memset(buff[sg_used], 0, sz);
6363 		left -= sz;
6364 		data_ptr += sz;
6365 		sg_used++;
6366 	}
6367 	c = cmd_alloc(h);
6368 
6369 	c->cmd_type = CMD_IOCTL_PEND;
6370 	c->scsi_cmd = SCSI_CMD_BUSY;
6371 	c->Header.ReplyQueue = 0;
6372 	c->Header.SGList = (u8) sg_used;
6373 	c->Header.SGTotal = cpu_to_le16(sg_used);
6374 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6375 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6376 	if (ioc->buf_size > 0) {
6377 		int i;
6378 		for (i = 0; i < sg_used; i++) {
6379 			temp64 = pci_map_single(h->pdev, buff[i],
6380 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6381 			if (dma_mapping_error(&h->pdev->dev,
6382 							(dma_addr_t) temp64)) {
6383 				c->SG[i].Addr = cpu_to_le64(0);
6384 				c->SG[i].Len = cpu_to_le32(0);
6385 				hpsa_pci_unmap(h->pdev, c, i,
6386 					PCI_DMA_BIDIRECTIONAL);
6387 				status = -ENOMEM;
6388 				goto cleanup0;
6389 			}
6390 			c->SG[i].Addr = cpu_to_le64(temp64);
6391 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6392 			c->SG[i].Ext = cpu_to_le32(0);
6393 		}
6394 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6395 	}
6396 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6397 	if (sg_used)
6398 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6399 	check_ioctl_unit_attention(h, c);
6400 	if (status) {
6401 		status = -EIO;
6402 		goto cleanup0;
6403 	}
6404 
6405 	/* Copy the error information out */
6406 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6407 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6408 		status = -EFAULT;
6409 		goto cleanup0;
6410 	}
6411 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6412 		int i;
6413 
6414 		/* Copy the data out of the buffer we created */
6415 		BYTE __user *ptr = ioc->buf;
6416 		for (i = 0; i < sg_used; i++) {
6417 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6418 				status = -EFAULT;
6419 				goto cleanup0;
6420 			}
6421 			ptr += buff_size[i];
6422 		}
6423 	}
6424 	status = 0;
6425 cleanup0:
6426 	cmd_free(h, c);
6427 cleanup1:
6428 	if (buff) {
6429 		int i;
6430 
6431 		for (i = 0; i < sg_used; i++)
6432 			kfree(buff[i]);
6433 		kfree(buff);
6434 	}
6435 	kfree(buff_size);
6436 	kfree(ioc);
6437 	return status;
6438 }
6439 
6440 static void check_ioctl_unit_attention(struct ctlr_info *h,
6441 	struct CommandList *c)
6442 {
6443 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6444 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6445 		(void) check_for_unit_attention(h, c);
6446 }
6447 
6448 /*
6449  * ioctl
6450  */
6451 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6452 {
6453 	struct ctlr_info *h;
6454 	void __user *argp = (void __user *)arg;
6455 	int rc;
6456 
6457 	h = sdev_to_hba(dev);
6458 
6459 	switch (cmd) {
6460 	case CCISS_DEREGDISK:
6461 	case CCISS_REGNEWDISK:
6462 	case CCISS_REGNEWD:
6463 		hpsa_scan_start(h->scsi_host);
6464 		return 0;
6465 	case CCISS_GETPCIINFO:
6466 		return hpsa_getpciinfo_ioctl(h, argp);
6467 	case CCISS_GETDRIVVER:
6468 		return hpsa_getdrivver_ioctl(h, argp);
6469 	case CCISS_PASSTHRU:
6470 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6471 			return -EAGAIN;
6472 		rc = hpsa_passthru_ioctl(h, argp);
6473 		atomic_inc(&h->passthru_cmds_avail);
6474 		return rc;
6475 	case CCISS_BIG_PASSTHRU:
6476 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6477 			return -EAGAIN;
6478 		rc = hpsa_big_passthru_ioctl(h, argp);
6479 		atomic_inc(&h->passthru_cmds_avail);
6480 		return rc;
6481 	default:
6482 		return -ENOTTY;
6483 	}
6484 }
6485 
6486 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6487 				u8 reset_type)
6488 {
6489 	struct CommandList *c;
6490 
6491 	c = cmd_alloc(h);
6492 
6493 	/* fill_cmd can't fail here, no data buffer to map */
6494 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6495 		RAID_CTLR_LUNID, TYPE_MSG);
6496 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6497 	c->waiting = NULL;
6498 	enqueue_cmd_and_start_io(h, c);
6499 	/* Don't wait for completion, the reset won't complete.  Don't free
6500 	 * the command either.  This is the last command we will send before
6501 	 * re-initializing everything, so it doesn't matter and won't leak.
6502 	 */
6503 	return;
6504 }
6505 
6506 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6507 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6508 	int cmd_type)
6509 {
6510 	int pci_dir = XFER_NONE;
6511 	u64 tag; /* for commands to be aborted */
6512 
6513 	c->cmd_type = CMD_IOCTL_PEND;
6514 	c->scsi_cmd = SCSI_CMD_BUSY;
6515 	c->Header.ReplyQueue = 0;
6516 	if (buff != NULL && size > 0) {
6517 		c->Header.SGList = 1;
6518 		c->Header.SGTotal = cpu_to_le16(1);
6519 	} else {
6520 		c->Header.SGList = 0;
6521 		c->Header.SGTotal = cpu_to_le16(0);
6522 	}
6523 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6524 
6525 	if (cmd_type == TYPE_CMD) {
6526 		switch (cmd) {
6527 		case HPSA_INQUIRY:
6528 			/* are we trying to read a vital product page */
6529 			if (page_code & VPD_PAGE) {
6530 				c->Request.CDB[1] = 0x01;
6531 				c->Request.CDB[2] = (page_code & 0xff);
6532 			}
6533 			c->Request.CDBLen = 6;
6534 			c->Request.type_attr_dir =
6535 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6536 			c->Request.Timeout = 0;
6537 			c->Request.CDB[0] = HPSA_INQUIRY;
6538 			c->Request.CDB[4] = size & 0xFF;
6539 			break;
6540 		case HPSA_REPORT_LOG:
6541 		case HPSA_REPORT_PHYS:
6542 			/* Talking to controller so It's a physical command
6543 			   mode = 00 target = 0.  Nothing to write.
6544 			 */
6545 			c->Request.CDBLen = 12;
6546 			c->Request.type_attr_dir =
6547 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6548 			c->Request.Timeout = 0;
6549 			c->Request.CDB[0] = cmd;
6550 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6551 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6552 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6553 			c->Request.CDB[9] = size & 0xFF;
6554 			break;
6555 		case BMIC_SENSE_DIAG_OPTIONS:
6556 			c->Request.CDBLen = 16;
6557 			c->Request.type_attr_dir =
6558 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6559 			c->Request.Timeout = 0;
6560 			/* Spec says this should be BMIC_WRITE */
6561 			c->Request.CDB[0] = BMIC_READ;
6562 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6563 			break;
6564 		case BMIC_SET_DIAG_OPTIONS:
6565 			c->Request.CDBLen = 16;
6566 			c->Request.type_attr_dir =
6567 					TYPE_ATTR_DIR(cmd_type,
6568 						ATTR_SIMPLE, XFER_WRITE);
6569 			c->Request.Timeout = 0;
6570 			c->Request.CDB[0] = BMIC_WRITE;
6571 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6572 			break;
6573 		case HPSA_CACHE_FLUSH:
6574 			c->Request.CDBLen = 12;
6575 			c->Request.type_attr_dir =
6576 					TYPE_ATTR_DIR(cmd_type,
6577 						ATTR_SIMPLE, XFER_WRITE);
6578 			c->Request.Timeout = 0;
6579 			c->Request.CDB[0] = BMIC_WRITE;
6580 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6581 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6582 			c->Request.CDB[8] = size & 0xFF;
6583 			break;
6584 		case TEST_UNIT_READY:
6585 			c->Request.CDBLen = 6;
6586 			c->Request.type_attr_dir =
6587 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6588 			c->Request.Timeout = 0;
6589 			break;
6590 		case HPSA_GET_RAID_MAP:
6591 			c->Request.CDBLen = 12;
6592 			c->Request.type_attr_dir =
6593 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6594 			c->Request.Timeout = 0;
6595 			c->Request.CDB[0] = HPSA_CISS_READ;
6596 			c->Request.CDB[1] = cmd;
6597 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6598 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6599 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6600 			c->Request.CDB[9] = size & 0xFF;
6601 			break;
6602 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6603 			c->Request.CDBLen = 10;
6604 			c->Request.type_attr_dir =
6605 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6606 			c->Request.Timeout = 0;
6607 			c->Request.CDB[0] = BMIC_READ;
6608 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6609 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6610 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6611 			break;
6612 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6613 			c->Request.CDBLen = 10;
6614 			c->Request.type_attr_dir =
6615 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6616 			c->Request.Timeout = 0;
6617 			c->Request.CDB[0] = BMIC_READ;
6618 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6619 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6620 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6621 			break;
6622 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6623 			c->Request.CDBLen = 10;
6624 			c->Request.type_attr_dir =
6625 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6626 			c->Request.Timeout = 0;
6627 			c->Request.CDB[0] = BMIC_READ;
6628 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6629 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6630 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6631 			break;
6632 		case BMIC_IDENTIFY_CONTROLLER:
6633 			c->Request.CDBLen = 10;
6634 			c->Request.type_attr_dir =
6635 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6636 			c->Request.Timeout = 0;
6637 			c->Request.CDB[0] = BMIC_READ;
6638 			c->Request.CDB[1] = 0;
6639 			c->Request.CDB[2] = 0;
6640 			c->Request.CDB[3] = 0;
6641 			c->Request.CDB[4] = 0;
6642 			c->Request.CDB[5] = 0;
6643 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6644 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6645 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6646 			c->Request.CDB[9] = 0;
6647 			break;
6648 		default:
6649 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6650 			BUG();
6651 			return -1;
6652 		}
6653 	} else if (cmd_type == TYPE_MSG) {
6654 		switch (cmd) {
6655 
6656 		case  HPSA_PHYS_TARGET_RESET:
6657 			c->Request.CDBLen = 16;
6658 			c->Request.type_attr_dir =
6659 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6660 			c->Request.Timeout = 0; /* Don't time out */
6661 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6662 			c->Request.CDB[0] = HPSA_RESET;
6663 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6664 			/* Physical target reset needs no control bytes 4-7*/
6665 			c->Request.CDB[4] = 0x00;
6666 			c->Request.CDB[5] = 0x00;
6667 			c->Request.CDB[6] = 0x00;
6668 			c->Request.CDB[7] = 0x00;
6669 			break;
6670 		case  HPSA_DEVICE_RESET_MSG:
6671 			c->Request.CDBLen = 16;
6672 			c->Request.type_attr_dir =
6673 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6674 			c->Request.Timeout = 0; /* Don't time out */
6675 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6676 			c->Request.CDB[0] =  cmd;
6677 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6678 			/* If bytes 4-7 are zero, it means reset the */
6679 			/* LunID device */
6680 			c->Request.CDB[4] = 0x00;
6681 			c->Request.CDB[5] = 0x00;
6682 			c->Request.CDB[6] = 0x00;
6683 			c->Request.CDB[7] = 0x00;
6684 			break;
6685 		case  HPSA_ABORT_MSG:
6686 			memcpy(&tag, buff, sizeof(tag));
6687 			dev_dbg(&h->pdev->dev,
6688 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6689 				tag, c->Header.tag);
6690 			c->Request.CDBLen = 16;
6691 			c->Request.type_attr_dir =
6692 					TYPE_ATTR_DIR(cmd_type,
6693 						ATTR_SIMPLE, XFER_WRITE);
6694 			c->Request.Timeout = 0; /* Don't time out */
6695 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6696 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6697 			c->Request.CDB[2] = 0x00; /* reserved */
6698 			c->Request.CDB[3] = 0x00; /* reserved */
6699 			/* Tag to abort goes in CDB[4]-CDB[11] */
6700 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6701 			c->Request.CDB[12] = 0x00; /* reserved */
6702 			c->Request.CDB[13] = 0x00; /* reserved */
6703 			c->Request.CDB[14] = 0x00; /* reserved */
6704 			c->Request.CDB[15] = 0x00; /* reserved */
6705 		break;
6706 		default:
6707 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6708 				cmd);
6709 			BUG();
6710 		}
6711 	} else {
6712 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6713 		BUG();
6714 	}
6715 
6716 	switch (GET_DIR(c->Request.type_attr_dir)) {
6717 	case XFER_READ:
6718 		pci_dir = PCI_DMA_FROMDEVICE;
6719 		break;
6720 	case XFER_WRITE:
6721 		pci_dir = PCI_DMA_TODEVICE;
6722 		break;
6723 	case XFER_NONE:
6724 		pci_dir = PCI_DMA_NONE;
6725 		break;
6726 	default:
6727 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6728 	}
6729 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6730 		return -1;
6731 	return 0;
6732 }
6733 
6734 /*
6735  * Map (physical) PCI mem into (virtual) kernel space
6736  */
6737 static void __iomem *remap_pci_mem(ulong base, ulong size)
6738 {
6739 	ulong page_base = ((ulong) base) & PAGE_MASK;
6740 	ulong page_offs = ((ulong) base) - page_base;
6741 	void __iomem *page_remapped = ioremap_nocache(page_base,
6742 		page_offs + size);
6743 
6744 	return page_remapped ? (page_remapped + page_offs) : NULL;
6745 }
6746 
6747 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6748 {
6749 	return h->access.command_completed(h, q);
6750 }
6751 
6752 static inline bool interrupt_pending(struct ctlr_info *h)
6753 {
6754 	return h->access.intr_pending(h);
6755 }
6756 
6757 static inline long interrupt_not_for_us(struct ctlr_info *h)
6758 {
6759 	return (h->access.intr_pending(h) == 0) ||
6760 		(h->interrupts_enabled == 0);
6761 }
6762 
6763 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6764 	u32 raw_tag)
6765 {
6766 	if (unlikely(tag_index >= h->nr_cmds)) {
6767 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6768 		return 1;
6769 	}
6770 	return 0;
6771 }
6772 
6773 static inline void finish_cmd(struct CommandList *c)
6774 {
6775 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6776 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6777 			|| c->cmd_type == CMD_IOACCEL2))
6778 		complete_scsi_command(c);
6779 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6780 		complete(c->waiting);
6781 }
6782 
6783 /* process completion of an indexed ("direct lookup") command */
6784 static inline void process_indexed_cmd(struct ctlr_info *h,
6785 	u32 raw_tag)
6786 {
6787 	u32 tag_index;
6788 	struct CommandList *c;
6789 
6790 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6791 	if (!bad_tag(h, tag_index, raw_tag)) {
6792 		c = h->cmd_pool + tag_index;
6793 		finish_cmd(c);
6794 	}
6795 }
6796 
6797 /* Some controllers, like p400, will give us one interrupt
6798  * after a soft reset, even if we turned interrupts off.
6799  * Only need to check for this in the hpsa_xxx_discard_completions
6800  * functions.
6801  */
6802 static int ignore_bogus_interrupt(struct ctlr_info *h)
6803 {
6804 	if (likely(!reset_devices))
6805 		return 0;
6806 
6807 	if (likely(h->interrupts_enabled))
6808 		return 0;
6809 
6810 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6811 		"(known firmware bug.)  Ignoring.\n");
6812 
6813 	return 1;
6814 }
6815 
6816 /*
6817  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6818  * Relies on (h-q[x] == x) being true for x such that
6819  * 0 <= x < MAX_REPLY_QUEUES.
6820  */
6821 static struct ctlr_info *queue_to_hba(u8 *queue)
6822 {
6823 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6824 }
6825 
6826 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6827 {
6828 	struct ctlr_info *h = queue_to_hba(queue);
6829 	u8 q = *(u8 *) queue;
6830 	u32 raw_tag;
6831 
6832 	if (ignore_bogus_interrupt(h))
6833 		return IRQ_NONE;
6834 
6835 	if (interrupt_not_for_us(h))
6836 		return IRQ_NONE;
6837 	h->last_intr_timestamp = get_jiffies_64();
6838 	while (interrupt_pending(h)) {
6839 		raw_tag = get_next_completion(h, q);
6840 		while (raw_tag != FIFO_EMPTY)
6841 			raw_tag = next_command(h, q);
6842 	}
6843 	return IRQ_HANDLED;
6844 }
6845 
6846 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6847 {
6848 	struct ctlr_info *h = queue_to_hba(queue);
6849 	u32 raw_tag;
6850 	u8 q = *(u8 *) queue;
6851 
6852 	if (ignore_bogus_interrupt(h))
6853 		return IRQ_NONE;
6854 
6855 	h->last_intr_timestamp = get_jiffies_64();
6856 	raw_tag = get_next_completion(h, q);
6857 	while (raw_tag != FIFO_EMPTY)
6858 		raw_tag = next_command(h, q);
6859 	return IRQ_HANDLED;
6860 }
6861 
6862 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6863 {
6864 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6865 	u32 raw_tag;
6866 	u8 q = *(u8 *) queue;
6867 
6868 	if (interrupt_not_for_us(h))
6869 		return IRQ_NONE;
6870 	h->last_intr_timestamp = get_jiffies_64();
6871 	while (interrupt_pending(h)) {
6872 		raw_tag = get_next_completion(h, q);
6873 		while (raw_tag != FIFO_EMPTY) {
6874 			process_indexed_cmd(h, raw_tag);
6875 			raw_tag = next_command(h, q);
6876 		}
6877 	}
6878 	return IRQ_HANDLED;
6879 }
6880 
6881 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6882 {
6883 	struct ctlr_info *h = queue_to_hba(queue);
6884 	u32 raw_tag;
6885 	u8 q = *(u8 *) queue;
6886 
6887 	h->last_intr_timestamp = get_jiffies_64();
6888 	raw_tag = get_next_completion(h, q);
6889 	while (raw_tag != FIFO_EMPTY) {
6890 		process_indexed_cmd(h, raw_tag);
6891 		raw_tag = next_command(h, q);
6892 	}
6893 	return IRQ_HANDLED;
6894 }
6895 
6896 /* Send a message CDB to the firmware. Careful, this only works
6897  * in simple mode, not performant mode due to the tag lookup.
6898  * We only ever use this immediately after a controller reset.
6899  */
6900 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6901 			unsigned char type)
6902 {
6903 	struct Command {
6904 		struct CommandListHeader CommandHeader;
6905 		struct RequestBlock Request;
6906 		struct ErrDescriptor ErrorDescriptor;
6907 	};
6908 	struct Command *cmd;
6909 	static const size_t cmd_sz = sizeof(*cmd) +
6910 					sizeof(cmd->ErrorDescriptor);
6911 	dma_addr_t paddr64;
6912 	__le32 paddr32;
6913 	u32 tag;
6914 	void __iomem *vaddr;
6915 	int i, err;
6916 
6917 	vaddr = pci_ioremap_bar(pdev, 0);
6918 	if (vaddr == NULL)
6919 		return -ENOMEM;
6920 
6921 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6922 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6923 	 * memory.
6924 	 */
6925 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6926 	if (err) {
6927 		iounmap(vaddr);
6928 		return err;
6929 	}
6930 
6931 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6932 	if (cmd == NULL) {
6933 		iounmap(vaddr);
6934 		return -ENOMEM;
6935 	}
6936 
6937 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
6938 	 * although there's no guarantee, we assume that the address is at
6939 	 * least 4-byte aligned (most likely, it's page-aligned).
6940 	 */
6941 	paddr32 = cpu_to_le32(paddr64);
6942 
6943 	cmd->CommandHeader.ReplyQueue = 0;
6944 	cmd->CommandHeader.SGList = 0;
6945 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6946 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6947 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6948 
6949 	cmd->Request.CDBLen = 16;
6950 	cmd->Request.type_attr_dir =
6951 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6952 	cmd->Request.Timeout = 0; /* Don't time out */
6953 	cmd->Request.CDB[0] = opcode;
6954 	cmd->Request.CDB[1] = type;
6955 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6956 	cmd->ErrorDescriptor.Addr =
6957 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6958 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6959 
6960 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6961 
6962 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6963 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6964 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6965 			break;
6966 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6967 	}
6968 
6969 	iounmap(vaddr);
6970 
6971 	/* we leak the DMA buffer here ... no choice since the controller could
6972 	 *  still complete the command.
6973 	 */
6974 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6975 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6976 			opcode, type);
6977 		return -ETIMEDOUT;
6978 	}
6979 
6980 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6981 
6982 	if (tag & HPSA_ERROR_BIT) {
6983 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6984 			opcode, type);
6985 		return -EIO;
6986 	}
6987 
6988 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6989 		opcode, type);
6990 	return 0;
6991 }
6992 
6993 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6994 
6995 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6996 	void __iomem *vaddr, u32 use_doorbell)
6997 {
6998 
6999 	if (use_doorbell) {
7000 		/* For everything after the P600, the PCI power state method
7001 		 * of resetting the controller doesn't work, so we have this
7002 		 * other way using the doorbell register.
7003 		 */
7004 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7005 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7006 
7007 		/* PMC hardware guys tell us we need a 10 second delay after
7008 		 * doorbell reset and before any attempt to talk to the board
7009 		 * at all to ensure that this actually works and doesn't fall
7010 		 * over in some weird corner cases.
7011 		 */
7012 		msleep(10000);
7013 	} else { /* Try to do it the PCI power state way */
7014 
7015 		/* Quoting from the Open CISS Specification: "The Power
7016 		 * Management Control/Status Register (CSR) controls the power
7017 		 * state of the device.  The normal operating state is D0,
7018 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7019 		 * the controller, place the interface device in D3 then to D0,
7020 		 * this causes a secondary PCI reset which will reset the
7021 		 * controller." */
7022 
7023 		int rc = 0;
7024 
7025 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7026 
7027 		/* enter the D3hot power management state */
7028 		rc = pci_set_power_state(pdev, PCI_D3hot);
7029 		if (rc)
7030 			return rc;
7031 
7032 		msleep(500);
7033 
7034 		/* enter the D0 power management state */
7035 		rc = pci_set_power_state(pdev, PCI_D0);
7036 		if (rc)
7037 			return rc;
7038 
7039 		/*
7040 		 * The P600 requires a small delay when changing states.
7041 		 * Otherwise we may think the board did not reset and we bail.
7042 		 * This for kdump only and is particular to the P600.
7043 		 */
7044 		msleep(500);
7045 	}
7046 	return 0;
7047 }
7048 
7049 static void init_driver_version(char *driver_version, int len)
7050 {
7051 	memset(driver_version, 0, len);
7052 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7053 }
7054 
7055 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7056 {
7057 	char *driver_version;
7058 	int i, size = sizeof(cfgtable->driver_version);
7059 
7060 	driver_version = kmalloc(size, GFP_KERNEL);
7061 	if (!driver_version)
7062 		return -ENOMEM;
7063 
7064 	init_driver_version(driver_version, size);
7065 	for (i = 0; i < size; i++)
7066 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7067 	kfree(driver_version);
7068 	return 0;
7069 }
7070 
7071 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7072 					  unsigned char *driver_ver)
7073 {
7074 	int i;
7075 
7076 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7077 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7078 }
7079 
7080 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7081 {
7082 
7083 	char *driver_ver, *old_driver_ver;
7084 	int rc, size = sizeof(cfgtable->driver_version);
7085 
7086 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7087 	if (!old_driver_ver)
7088 		return -ENOMEM;
7089 	driver_ver = old_driver_ver + size;
7090 
7091 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7092 	 * should have been changed, otherwise we know the reset failed.
7093 	 */
7094 	init_driver_version(old_driver_ver, size);
7095 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7096 	rc = !memcmp(driver_ver, old_driver_ver, size);
7097 	kfree(old_driver_ver);
7098 	return rc;
7099 }
7100 /* This does a hard reset of the controller using PCI power management
7101  * states or the using the doorbell register.
7102  */
7103 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7104 {
7105 	u64 cfg_offset;
7106 	u32 cfg_base_addr;
7107 	u64 cfg_base_addr_index;
7108 	void __iomem *vaddr;
7109 	unsigned long paddr;
7110 	u32 misc_fw_support;
7111 	int rc;
7112 	struct CfgTable __iomem *cfgtable;
7113 	u32 use_doorbell;
7114 	u16 command_register;
7115 
7116 	/* For controllers as old as the P600, this is very nearly
7117 	 * the same thing as
7118 	 *
7119 	 * pci_save_state(pci_dev);
7120 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7121 	 * pci_set_power_state(pci_dev, PCI_D0);
7122 	 * pci_restore_state(pci_dev);
7123 	 *
7124 	 * For controllers newer than the P600, the pci power state
7125 	 * method of resetting doesn't work so we have another way
7126 	 * using the doorbell register.
7127 	 */
7128 
7129 	if (!ctlr_is_resettable(board_id)) {
7130 		dev_warn(&pdev->dev, "Controller not resettable\n");
7131 		return -ENODEV;
7132 	}
7133 
7134 	/* if controller is soft- but not hard resettable... */
7135 	if (!ctlr_is_hard_resettable(board_id))
7136 		return -ENOTSUPP; /* try soft reset later. */
7137 
7138 	/* Save the PCI command register */
7139 	pci_read_config_word(pdev, 4, &command_register);
7140 	pci_save_state(pdev);
7141 
7142 	/* find the first memory BAR, so we can find the cfg table */
7143 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7144 	if (rc)
7145 		return rc;
7146 	vaddr = remap_pci_mem(paddr, 0x250);
7147 	if (!vaddr)
7148 		return -ENOMEM;
7149 
7150 	/* find cfgtable in order to check if reset via doorbell is supported */
7151 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7152 					&cfg_base_addr_index, &cfg_offset);
7153 	if (rc)
7154 		goto unmap_vaddr;
7155 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7156 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7157 	if (!cfgtable) {
7158 		rc = -ENOMEM;
7159 		goto unmap_vaddr;
7160 	}
7161 	rc = write_driver_ver_to_cfgtable(cfgtable);
7162 	if (rc)
7163 		goto unmap_cfgtable;
7164 
7165 	/* If reset via doorbell register is supported, use that.
7166 	 * There are two such methods.  Favor the newest method.
7167 	 */
7168 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7169 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7170 	if (use_doorbell) {
7171 		use_doorbell = DOORBELL_CTLR_RESET2;
7172 	} else {
7173 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7174 		if (use_doorbell) {
7175 			dev_warn(&pdev->dev,
7176 				"Soft reset not supported. Firmware update is required.\n");
7177 			rc = -ENOTSUPP; /* try soft reset */
7178 			goto unmap_cfgtable;
7179 		}
7180 	}
7181 
7182 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7183 	if (rc)
7184 		goto unmap_cfgtable;
7185 
7186 	pci_restore_state(pdev);
7187 	pci_write_config_word(pdev, 4, command_register);
7188 
7189 	/* Some devices (notably the HP Smart Array 5i Controller)
7190 	   need a little pause here */
7191 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7192 
7193 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7194 	if (rc) {
7195 		dev_warn(&pdev->dev,
7196 			"Failed waiting for board to become ready after hard reset\n");
7197 		goto unmap_cfgtable;
7198 	}
7199 
7200 	rc = controller_reset_failed(vaddr);
7201 	if (rc < 0)
7202 		goto unmap_cfgtable;
7203 	if (rc) {
7204 		dev_warn(&pdev->dev, "Unable to successfully reset "
7205 			"controller. Will try soft reset.\n");
7206 		rc = -ENOTSUPP;
7207 	} else {
7208 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7209 	}
7210 
7211 unmap_cfgtable:
7212 	iounmap(cfgtable);
7213 
7214 unmap_vaddr:
7215 	iounmap(vaddr);
7216 	return rc;
7217 }
7218 
7219 /*
7220  *  We cannot read the structure directly, for portability we must use
7221  *   the io functions.
7222  *   This is for debug only.
7223  */
7224 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7225 {
7226 #ifdef HPSA_DEBUG
7227 	int i;
7228 	char temp_name[17];
7229 
7230 	dev_info(dev, "Controller Configuration information\n");
7231 	dev_info(dev, "------------------------------------\n");
7232 	for (i = 0; i < 4; i++)
7233 		temp_name[i] = readb(&(tb->Signature[i]));
7234 	temp_name[4] = '\0';
7235 	dev_info(dev, "   Signature = %s\n", temp_name);
7236 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7237 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7238 	       readl(&(tb->TransportSupport)));
7239 	dev_info(dev, "   Transport methods active = 0x%x\n",
7240 	       readl(&(tb->TransportActive)));
7241 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7242 	       readl(&(tb->HostWrite.TransportRequest)));
7243 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7244 	       readl(&(tb->HostWrite.CoalIntDelay)));
7245 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7246 	       readl(&(tb->HostWrite.CoalIntCount)));
7247 	dev_info(dev, "   Max outstanding commands = %d\n",
7248 	       readl(&(tb->CmdsOutMax)));
7249 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7250 	for (i = 0; i < 16; i++)
7251 		temp_name[i] = readb(&(tb->ServerName[i]));
7252 	temp_name[16] = '\0';
7253 	dev_info(dev, "   Server Name = %s\n", temp_name);
7254 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7255 		readl(&(tb->HeartBeat)));
7256 #endif				/* HPSA_DEBUG */
7257 }
7258 
7259 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7260 {
7261 	int i, offset, mem_type, bar_type;
7262 
7263 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7264 		return 0;
7265 	offset = 0;
7266 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7267 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7268 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7269 			offset += 4;
7270 		else {
7271 			mem_type = pci_resource_flags(pdev, i) &
7272 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7273 			switch (mem_type) {
7274 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7275 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7276 				offset += 4;	/* 32 bit */
7277 				break;
7278 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7279 				offset += 8;
7280 				break;
7281 			default:	/* reserved in PCI 2.2 */
7282 				dev_warn(&pdev->dev,
7283 				       "base address is invalid\n");
7284 				return -1;
7285 				break;
7286 			}
7287 		}
7288 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7289 			return i + 1;
7290 	}
7291 	return -1;
7292 }
7293 
7294 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7295 {
7296 	if (h->msix_vector) {
7297 		if (h->pdev->msix_enabled)
7298 			pci_disable_msix(h->pdev);
7299 		h->msix_vector = 0;
7300 	} else if (h->msi_vector) {
7301 		if (h->pdev->msi_enabled)
7302 			pci_disable_msi(h->pdev);
7303 		h->msi_vector = 0;
7304 	}
7305 }
7306 
7307 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7308  * controllers that are capable. If not, we use legacy INTx mode.
7309  */
7310 static void hpsa_interrupt_mode(struct ctlr_info *h)
7311 {
7312 #ifdef CONFIG_PCI_MSI
7313 	int err, i;
7314 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7315 
7316 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7317 		hpsa_msix_entries[i].vector = 0;
7318 		hpsa_msix_entries[i].entry = i;
7319 	}
7320 
7321 	/* Some boards advertise MSI but don't really support it */
7322 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7323 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7324 		goto default_int_mode;
7325 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7326 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7327 		h->msix_vector = MAX_REPLY_QUEUES;
7328 		if (h->msix_vector > num_online_cpus())
7329 			h->msix_vector = num_online_cpus();
7330 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7331 					    1, h->msix_vector);
7332 		if (err < 0) {
7333 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7334 			h->msix_vector = 0;
7335 			goto single_msi_mode;
7336 		} else if (err < h->msix_vector) {
7337 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7338 			       "available\n", err);
7339 		}
7340 		h->msix_vector = err;
7341 		for (i = 0; i < h->msix_vector; i++)
7342 			h->intr[i] = hpsa_msix_entries[i].vector;
7343 		return;
7344 	}
7345 single_msi_mode:
7346 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7347 		dev_info(&h->pdev->dev, "MSI capable controller\n");
7348 		if (!pci_enable_msi(h->pdev))
7349 			h->msi_vector = 1;
7350 		else
7351 			dev_warn(&h->pdev->dev, "MSI init failed\n");
7352 	}
7353 default_int_mode:
7354 #endif				/* CONFIG_PCI_MSI */
7355 	/* if we get here we're going to use the default interrupt mode */
7356 	h->intr[h->intr_mode] = h->pdev->irq;
7357 }
7358 
7359 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7360 {
7361 	int i;
7362 	u32 subsystem_vendor_id, subsystem_device_id;
7363 
7364 	subsystem_vendor_id = pdev->subsystem_vendor;
7365 	subsystem_device_id = pdev->subsystem_device;
7366 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7367 		    subsystem_vendor_id;
7368 
7369 	for (i = 0; i < ARRAY_SIZE(products); i++)
7370 		if (*board_id == products[i].board_id)
7371 			return i;
7372 
7373 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7374 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7375 		!hpsa_allow_any) {
7376 		dev_warn(&pdev->dev, "unrecognized board ID: "
7377 			"0x%08x, ignoring.\n", *board_id);
7378 			return -ENODEV;
7379 	}
7380 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7381 }
7382 
7383 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7384 				    unsigned long *memory_bar)
7385 {
7386 	int i;
7387 
7388 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7389 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7390 			/* addressing mode bits already removed */
7391 			*memory_bar = pci_resource_start(pdev, i);
7392 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7393 				*memory_bar);
7394 			return 0;
7395 		}
7396 	dev_warn(&pdev->dev, "no memory BAR found\n");
7397 	return -ENODEV;
7398 }
7399 
7400 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7401 				     int wait_for_ready)
7402 {
7403 	int i, iterations;
7404 	u32 scratchpad;
7405 	if (wait_for_ready)
7406 		iterations = HPSA_BOARD_READY_ITERATIONS;
7407 	else
7408 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7409 
7410 	for (i = 0; i < iterations; i++) {
7411 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7412 		if (wait_for_ready) {
7413 			if (scratchpad == HPSA_FIRMWARE_READY)
7414 				return 0;
7415 		} else {
7416 			if (scratchpad != HPSA_FIRMWARE_READY)
7417 				return 0;
7418 		}
7419 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7420 	}
7421 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7422 	return -ENODEV;
7423 }
7424 
7425 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7426 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7427 			       u64 *cfg_offset)
7428 {
7429 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7430 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7431 	*cfg_base_addr &= (u32) 0x0000ffff;
7432 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7433 	if (*cfg_base_addr_index == -1) {
7434 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7435 		return -ENODEV;
7436 	}
7437 	return 0;
7438 }
7439 
7440 static void hpsa_free_cfgtables(struct ctlr_info *h)
7441 {
7442 	if (h->transtable) {
7443 		iounmap(h->transtable);
7444 		h->transtable = NULL;
7445 	}
7446 	if (h->cfgtable) {
7447 		iounmap(h->cfgtable);
7448 		h->cfgtable = NULL;
7449 	}
7450 }
7451 
7452 /* Find and map CISS config table and transfer table
7453 + * several items must be unmapped (freed) later
7454 + * */
7455 static int hpsa_find_cfgtables(struct ctlr_info *h)
7456 {
7457 	u64 cfg_offset;
7458 	u32 cfg_base_addr;
7459 	u64 cfg_base_addr_index;
7460 	u32 trans_offset;
7461 	int rc;
7462 
7463 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7464 		&cfg_base_addr_index, &cfg_offset);
7465 	if (rc)
7466 		return rc;
7467 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7468 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7469 	if (!h->cfgtable) {
7470 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7471 		return -ENOMEM;
7472 	}
7473 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7474 	if (rc)
7475 		return rc;
7476 	/* Find performant mode table. */
7477 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7478 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7479 				cfg_base_addr_index)+cfg_offset+trans_offset,
7480 				sizeof(*h->transtable));
7481 	if (!h->transtable) {
7482 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7483 		hpsa_free_cfgtables(h);
7484 		return -ENOMEM;
7485 	}
7486 	return 0;
7487 }
7488 
7489 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7490 {
7491 #define MIN_MAX_COMMANDS 16
7492 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7493 
7494 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7495 
7496 	/* Limit commands in memory limited kdump scenario. */
7497 	if (reset_devices && h->max_commands > 32)
7498 		h->max_commands = 32;
7499 
7500 	if (h->max_commands < MIN_MAX_COMMANDS) {
7501 		dev_warn(&h->pdev->dev,
7502 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7503 			h->max_commands,
7504 			MIN_MAX_COMMANDS);
7505 		h->max_commands = MIN_MAX_COMMANDS;
7506 	}
7507 }
7508 
7509 /* If the controller reports that the total max sg entries is greater than 512,
7510  * then we know that chained SG blocks work.  (Original smart arrays did not
7511  * support chained SG blocks and would return zero for max sg entries.)
7512  */
7513 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7514 {
7515 	return h->maxsgentries > 512;
7516 }
7517 
7518 /* Interrogate the hardware for some limits:
7519  * max commands, max SG elements without chaining, and with chaining,
7520  * SG chain block size, etc.
7521  */
7522 static void hpsa_find_board_params(struct ctlr_info *h)
7523 {
7524 	hpsa_get_max_perf_mode_cmds(h);
7525 	h->nr_cmds = h->max_commands;
7526 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7527 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7528 	if (hpsa_supports_chained_sg_blocks(h)) {
7529 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7530 		h->max_cmd_sg_entries = 32;
7531 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7532 		h->maxsgentries--; /* save one for chain pointer */
7533 	} else {
7534 		/*
7535 		 * Original smart arrays supported at most 31 s/g entries
7536 		 * embedded inline in the command (trying to use more
7537 		 * would lock up the controller)
7538 		 */
7539 		h->max_cmd_sg_entries = 31;
7540 		h->maxsgentries = 31; /* default to traditional values */
7541 		h->chainsize = 0;
7542 	}
7543 
7544 	/* Find out what task management functions are supported and cache */
7545 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7546 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7547 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7548 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7549 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7550 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7551 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7552 }
7553 
7554 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7555 {
7556 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7557 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7558 		return false;
7559 	}
7560 	return true;
7561 }
7562 
7563 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7564 {
7565 	u32 driver_support;
7566 
7567 	driver_support = readl(&(h->cfgtable->driver_support));
7568 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7569 #ifdef CONFIG_X86
7570 	driver_support |= ENABLE_SCSI_PREFETCH;
7571 #endif
7572 	driver_support |= ENABLE_UNIT_ATTN;
7573 	writel(driver_support, &(h->cfgtable->driver_support));
7574 }
7575 
7576 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7577  * in a prefetch beyond physical memory.
7578  */
7579 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7580 {
7581 	u32 dma_prefetch;
7582 
7583 	if (h->board_id != 0x3225103C)
7584 		return;
7585 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7586 	dma_prefetch |= 0x8000;
7587 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7588 }
7589 
7590 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7591 {
7592 	int i;
7593 	u32 doorbell_value;
7594 	unsigned long flags;
7595 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7596 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7597 		spin_lock_irqsave(&h->lock, flags);
7598 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7599 		spin_unlock_irqrestore(&h->lock, flags);
7600 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7601 			goto done;
7602 		/* delay and try again */
7603 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7604 	}
7605 	return -ENODEV;
7606 done:
7607 	return 0;
7608 }
7609 
7610 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7611 {
7612 	int i;
7613 	u32 doorbell_value;
7614 	unsigned long flags;
7615 
7616 	/* under certain very rare conditions, this can take awhile.
7617 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7618 	 * as we enter this code.)
7619 	 */
7620 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7621 		if (h->remove_in_progress)
7622 			goto done;
7623 		spin_lock_irqsave(&h->lock, flags);
7624 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7625 		spin_unlock_irqrestore(&h->lock, flags);
7626 		if (!(doorbell_value & CFGTBL_ChangeReq))
7627 			goto done;
7628 		/* delay and try again */
7629 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7630 	}
7631 	return -ENODEV;
7632 done:
7633 	return 0;
7634 }
7635 
7636 /* return -ENODEV or other reason on error, 0 on success */
7637 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7638 {
7639 	u32 trans_support;
7640 
7641 	trans_support = readl(&(h->cfgtable->TransportSupport));
7642 	if (!(trans_support & SIMPLE_MODE))
7643 		return -ENOTSUPP;
7644 
7645 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7646 
7647 	/* Update the field, and then ring the doorbell */
7648 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7649 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7650 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7651 	if (hpsa_wait_for_mode_change_ack(h))
7652 		goto error;
7653 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7654 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7655 		goto error;
7656 	h->transMethod = CFGTBL_Trans_Simple;
7657 	return 0;
7658 error:
7659 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7660 	return -ENODEV;
7661 }
7662 
7663 /* free items allocated or mapped by hpsa_pci_init */
7664 static void hpsa_free_pci_init(struct ctlr_info *h)
7665 {
7666 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7667 	iounmap(h->vaddr);			/* pci_init 3 */
7668 	h->vaddr = NULL;
7669 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7670 	/*
7671 	 * call pci_disable_device before pci_release_regions per
7672 	 * Documentation/PCI/pci.txt
7673 	 */
7674 	pci_disable_device(h->pdev);		/* pci_init 1 */
7675 	pci_release_regions(h->pdev);		/* pci_init 2 */
7676 }
7677 
7678 /* several items must be freed later */
7679 static int hpsa_pci_init(struct ctlr_info *h)
7680 {
7681 	int prod_index, err;
7682 
7683 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7684 	if (prod_index < 0)
7685 		return prod_index;
7686 	h->product_name = products[prod_index].product_name;
7687 	h->access = *(products[prod_index].access);
7688 
7689 	h->needs_abort_tags_swizzled =
7690 		ctlr_needs_abort_tags_swizzled(h->board_id);
7691 
7692 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7693 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7694 
7695 	err = pci_enable_device(h->pdev);
7696 	if (err) {
7697 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7698 		pci_disable_device(h->pdev);
7699 		return err;
7700 	}
7701 
7702 	err = pci_request_regions(h->pdev, HPSA);
7703 	if (err) {
7704 		dev_err(&h->pdev->dev,
7705 			"failed to obtain PCI resources\n");
7706 		pci_disable_device(h->pdev);
7707 		return err;
7708 	}
7709 
7710 	pci_set_master(h->pdev);
7711 
7712 	hpsa_interrupt_mode(h);
7713 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7714 	if (err)
7715 		goto clean2;	/* intmode+region, pci */
7716 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7717 	if (!h->vaddr) {
7718 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7719 		err = -ENOMEM;
7720 		goto clean2;	/* intmode+region, pci */
7721 	}
7722 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7723 	if (err)
7724 		goto clean3;	/* vaddr, intmode+region, pci */
7725 	err = hpsa_find_cfgtables(h);
7726 	if (err)
7727 		goto clean3;	/* vaddr, intmode+region, pci */
7728 	hpsa_find_board_params(h);
7729 
7730 	if (!hpsa_CISS_signature_present(h)) {
7731 		err = -ENODEV;
7732 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7733 	}
7734 	hpsa_set_driver_support_bits(h);
7735 	hpsa_p600_dma_prefetch_quirk(h);
7736 	err = hpsa_enter_simple_mode(h);
7737 	if (err)
7738 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7739 	return 0;
7740 
7741 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7742 	hpsa_free_cfgtables(h);
7743 clean3:	/* vaddr, intmode+region, pci */
7744 	iounmap(h->vaddr);
7745 	h->vaddr = NULL;
7746 clean2:	/* intmode+region, pci */
7747 	hpsa_disable_interrupt_mode(h);
7748 	/*
7749 	 * call pci_disable_device before pci_release_regions per
7750 	 * Documentation/PCI/pci.txt
7751 	 */
7752 	pci_disable_device(h->pdev);
7753 	pci_release_regions(h->pdev);
7754 	return err;
7755 }
7756 
7757 static void hpsa_hba_inquiry(struct ctlr_info *h)
7758 {
7759 	int rc;
7760 
7761 #define HBA_INQUIRY_BYTE_COUNT 64
7762 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7763 	if (!h->hba_inquiry_data)
7764 		return;
7765 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7766 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7767 	if (rc != 0) {
7768 		kfree(h->hba_inquiry_data);
7769 		h->hba_inquiry_data = NULL;
7770 	}
7771 }
7772 
7773 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7774 {
7775 	int rc, i;
7776 	void __iomem *vaddr;
7777 
7778 	if (!reset_devices)
7779 		return 0;
7780 
7781 	/* kdump kernel is loading, we don't know in which state is
7782 	 * the pci interface. The dev->enable_cnt is equal zero
7783 	 * so we call enable+disable, wait a while and switch it on.
7784 	 */
7785 	rc = pci_enable_device(pdev);
7786 	if (rc) {
7787 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7788 		return -ENODEV;
7789 	}
7790 	pci_disable_device(pdev);
7791 	msleep(260);			/* a randomly chosen number */
7792 	rc = pci_enable_device(pdev);
7793 	if (rc) {
7794 		dev_warn(&pdev->dev, "failed to enable device.\n");
7795 		return -ENODEV;
7796 	}
7797 
7798 	pci_set_master(pdev);
7799 
7800 	vaddr = pci_ioremap_bar(pdev, 0);
7801 	if (vaddr == NULL) {
7802 		rc = -ENOMEM;
7803 		goto out_disable;
7804 	}
7805 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7806 	iounmap(vaddr);
7807 
7808 	/* Reset the controller with a PCI power-cycle or via doorbell */
7809 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7810 
7811 	/* -ENOTSUPP here means we cannot reset the controller
7812 	 * but it's already (and still) up and running in
7813 	 * "performant mode".  Or, it might be 640x, which can't reset
7814 	 * due to concerns about shared bbwc between 6402/6404 pair.
7815 	 */
7816 	if (rc)
7817 		goto out_disable;
7818 
7819 	/* Now try to get the controller to respond to a no-op */
7820 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7821 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7822 		if (hpsa_noop(pdev) == 0)
7823 			break;
7824 		else
7825 			dev_warn(&pdev->dev, "no-op failed%s\n",
7826 					(i < 11 ? "; re-trying" : ""));
7827 	}
7828 
7829 out_disable:
7830 
7831 	pci_disable_device(pdev);
7832 	return rc;
7833 }
7834 
7835 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7836 {
7837 	kfree(h->cmd_pool_bits);
7838 	h->cmd_pool_bits = NULL;
7839 	if (h->cmd_pool) {
7840 		pci_free_consistent(h->pdev,
7841 				h->nr_cmds * sizeof(struct CommandList),
7842 				h->cmd_pool,
7843 				h->cmd_pool_dhandle);
7844 		h->cmd_pool = NULL;
7845 		h->cmd_pool_dhandle = 0;
7846 	}
7847 	if (h->errinfo_pool) {
7848 		pci_free_consistent(h->pdev,
7849 				h->nr_cmds * sizeof(struct ErrorInfo),
7850 				h->errinfo_pool,
7851 				h->errinfo_pool_dhandle);
7852 		h->errinfo_pool = NULL;
7853 		h->errinfo_pool_dhandle = 0;
7854 	}
7855 }
7856 
7857 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7858 {
7859 	h->cmd_pool_bits = kzalloc(
7860 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7861 		sizeof(unsigned long), GFP_KERNEL);
7862 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7863 		    h->nr_cmds * sizeof(*h->cmd_pool),
7864 		    &(h->cmd_pool_dhandle));
7865 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7866 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7867 		    &(h->errinfo_pool_dhandle));
7868 	if ((h->cmd_pool_bits == NULL)
7869 	    || (h->cmd_pool == NULL)
7870 	    || (h->errinfo_pool == NULL)) {
7871 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7872 		goto clean_up;
7873 	}
7874 	hpsa_preinitialize_commands(h);
7875 	return 0;
7876 clean_up:
7877 	hpsa_free_cmd_pool(h);
7878 	return -ENOMEM;
7879 }
7880 
7881 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7882 {
7883 	int i, cpu;
7884 
7885 	cpu = cpumask_first(cpu_online_mask);
7886 	for (i = 0; i < h->msix_vector; i++) {
7887 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7888 		cpu = cpumask_next(cpu, cpu_online_mask);
7889 	}
7890 }
7891 
7892 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7893 static void hpsa_free_irqs(struct ctlr_info *h)
7894 {
7895 	int i;
7896 
7897 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7898 		/* Single reply queue, only one irq to free */
7899 		i = h->intr_mode;
7900 		irq_set_affinity_hint(h->intr[i], NULL);
7901 		free_irq(h->intr[i], &h->q[i]);
7902 		h->q[i] = 0;
7903 		return;
7904 	}
7905 
7906 	for (i = 0; i < h->msix_vector; i++) {
7907 		irq_set_affinity_hint(h->intr[i], NULL);
7908 		free_irq(h->intr[i], &h->q[i]);
7909 		h->q[i] = 0;
7910 	}
7911 	for (; i < MAX_REPLY_QUEUES; i++)
7912 		h->q[i] = 0;
7913 }
7914 
7915 /* returns 0 on success; cleans up and returns -Enn on error */
7916 static int hpsa_request_irqs(struct ctlr_info *h,
7917 	irqreturn_t (*msixhandler)(int, void *),
7918 	irqreturn_t (*intxhandler)(int, void *))
7919 {
7920 	int rc, i;
7921 
7922 	/*
7923 	 * initialize h->q[x] = x so that interrupt handlers know which
7924 	 * queue to process.
7925 	 */
7926 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7927 		h->q[i] = (u8) i;
7928 
7929 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7930 		/* If performant mode and MSI-X, use multiple reply queues */
7931 		for (i = 0; i < h->msix_vector; i++) {
7932 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7933 			rc = request_irq(h->intr[i], msixhandler,
7934 					0, h->intrname[i],
7935 					&h->q[i]);
7936 			if (rc) {
7937 				int j;
7938 
7939 				dev_err(&h->pdev->dev,
7940 					"failed to get irq %d for %s\n",
7941 				       h->intr[i], h->devname);
7942 				for (j = 0; j < i; j++) {
7943 					free_irq(h->intr[j], &h->q[j]);
7944 					h->q[j] = 0;
7945 				}
7946 				for (; j < MAX_REPLY_QUEUES; j++)
7947 					h->q[j] = 0;
7948 				return rc;
7949 			}
7950 		}
7951 		hpsa_irq_affinity_hints(h);
7952 	} else {
7953 		/* Use single reply pool */
7954 		if (h->msix_vector > 0 || h->msi_vector) {
7955 			if (h->msix_vector)
7956 				sprintf(h->intrname[h->intr_mode],
7957 					"%s-msix", h->devname);
7958 			else
7959 				sprintf(h->intrname[h->intr_mode],
7960 					"%s-msi", h->devname);
7961 			rc = request_irq(h->intr[h->intr_mode],
7962 				msixhandler, 0,
7963 				h->intrname[h->intr_mode],
7964 				&h->q[h->intr_mode]);
7965 		} else {
7966 			sprintf(h->intrname[h->intr_mode],
7967 				"%s-intx", h->devname);
7968 			rc = request_irq(h->intr[h->intr_mode],
7969 				intxhandler, IRQF_SHARED,
7970 				h->intrname[h->intr_mode],
7971 				&h->q[h->intr_mode]);
7972 		}
7973 		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7974 	}
7975 	if (rc) {
7976 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7977 		       h->intr[h->intr_mode], h->devname);
7978 		hpsa_free_irqs(h);
7979 		return -ENODEV;
7980 	}
7981 	return 0;
7982 }
7983 
7984 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7985 {
7986 	int rc;
7987 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7988 
7989 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7990 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7991 	if (rc) {
7992 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7993 		return rc;
7994 	}
7995 
7996 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7997 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7998 	if (rc) {
7999 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8000 			"after soft reset.\n");
8001 		return rc;
8002 	}
8003 
8004 	return 0;
8005 }
8006 
8007 static void hpsa_free_reply_queues(struct ctlr_info *h)
8008 {
8009 	int i;
8010 
8011 	for (i = 0; i < h->nreply_queues; i++) {
8012 		if (!h->reply_queue[i].head)
8013 			continue;
8014 		pci_free_consistent(h->pdev,
8015 					h->reply_queue_size,
8016 					h->reply_queue[i].head,
8017 					h->reply_queue[i].busaddr);
8018 		h->reply_queue[i].head = NULL;
8019 		h->reply_queue[i].busaddr = 0;
8020 	}
8021 	h->reply_queue_size = 0;
8022 }
8023 
8024 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8025 {
8026 	hpsa_free_performant_mode(h);		/* init_one 7 */
8027 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8028 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8029 	hpsa_free_irqs(h);			/* init_one 4 */
8030 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8031 	h->scsi_host = NULL;			/* init_one 3 */
8032 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8033 	free_percpu(h->lockup_detected);	/* init_one 2 */
8034 	h->lockup_detected = NULL;		/* init_one 2 */
8035 	if (h->resubmit_wq) {
8036 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8037 		h->resubmit_wq = NULL;
8038 	}
8039 	if (h->rescan_ctlr_wq) {
8040 		destroy_workqueue(h->rescan_ctlr_wq);
8041 		h->rescan_ctlr_wq = NULL;
8042 	}
8043 	kfree(h);				/* init_one 1 */
8044 }
8045 
8046 /* Called when controller lockup detected. */
8047 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8048 {
8049 	int i, refcount;
8050 	struct CommandList *c;
8051 	int failcount = 0;
8052 
8053 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8054 	for (i = 0; i < h->nr_cmds; i++) {
8055 		c = h->cmd_pool + i;
8056 		refcount = atomic_inc_return(&c->refcount);
8057 		if (refcount > 1) {
8058 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8059 			finish_cmd(c);
8060 			atomic_dec(&h->commands_outstanding);
8061 			failcount++;
8062 		}
8063 		cmd_free(h, c);
8064 	}
8065 	dev_warn(&h->pdev->dev,
8066 		"failed %d commands in fail_all\n", failcount);
8067 }
8068 
8069 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8070 {
8071 	int cpu;
8072 
8073 	for_each_online_cpu(cpu) {
8074 		u32 *lockup_detected;
8075 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8076 		*lockup_detected = value;
8077 	}
8078 	wmb(); /* be sure the per-cpu variables are out to memory */
8079 }
8080 
8081 static void controller_lockup_detected(struct ctlr_info *h)
8082 {
8083 	unsigned long flags;
8084 	u32 lockup_detected;
8085 
8086 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8087 	spin_lock_irqsave(&h->lock, flags);
8088 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8089 	if (!lockup_detected) {
8090 		/* no heartbeat, but controller gave us a zero. */
8091 		dev_warn(&h->pdev->dev,
8092 			"lockup detected after %d but scratchpad register is zero\n",
8093 			h->heartbeat_sample_interval / HZ);
8094 		lockup_detected = 0xffffffff;
8095 	}
8096 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8097 	spin_unlock_irqrestore(&h->lock, flags);
8098 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8099 			lockup_detected, h->heartbeat_sample_interval / HZ);
8100 	pci_disable_device(h->pdev);
8101 	fail_all_outstanding_cmds(h);
8102 }
8103 
8104 static int detect_controller_lockup(struct ctlr_info *h)
8105 {
8106 	u64 now;
8107 	u32 heartbeat;
8108 	unsigned long flags;
8109 
8110 	now = get_jiffies_64();
8111 	/* If we've received an interrupt recently, we're ok. */
8112 	if (time_after64(h->last_intr_timestamp +
8113 				(h->heartbeat_sample_interval), now))
8114 		return false;
8115 
8116 	/*
8117 	 * If we've already checked the heartbeat recently, we're ok.
8118 	 * This could happen if someone sends us a signal. We
8119 	 * otherwise don't care about signals in this thread.
8120 	 */
8121 	if (time_after64(h->last_heartbeat_timestamp +
8122 				(h->heartbeat_sample_interval), now))
8123 		return false;
8124 
8125 	/* If heartbeat has not changed since we last looked, we're not ok. */
8126 	spin_lock_irqsave(&h->lock, flags);
8127 	heartbeat = readl(&h->cfgtable->HeartBeat);
8128 	spin_unlock_irqrestore(&h->lock, flags);
8129 	if (h->last_heartbeat == heartbeat) {
8130 		controller_lockup_detected(h);
8131 		return true;
8132 	}
8133 
8134 	/* We're ok. */
8135 	h->last_heartbeat = heartbeat;
8136 	h->last_heartbeat_timestamp = now;
8137 	return false;
8138 }
8139 
8140 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8141 {
8142 	int i;
8143 	char *event_type;
8144 
8145 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8146 		return;
8147 
8148 	/* Ask the controller to clear the events we're handling. */
8149 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8150 			| CFGTBL_Trans_io_accel2)) &&
8151 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8152 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8153 
8154 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8155 			event_type = "state change";
8156 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8157 			event_type = "configuration change";
8158 		/* Stop sending new RAID offload reqs via the IO accelerator */
8159 		scsi_block_requests(h->scsi_host);
8160 		for (i = 0; i < h->ndevices; i++)
8161 			h->dev[i]->offload_enabled = 0;
8162 		hpsa_drain_accel_commands(h);
8163 		/* Set 'accelerator path config change' bit */
8164 		dev_warn(&h->pdev->dev,
8165 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8166 			h->events, event_type);
8167 		writel(h->events, &(h->cfgtable->clear_event_notify));
8168 		/* Set the "clear event notify field update" bit 6 */
8169 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8170 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8171 		hpsa_wait_for_clear_event_notify_ack(h);
8172 		scsi_unblock_requests(h->scsi_host);
8173 	} else {
8174 		/* Acknowledge controller notification events. */
8175 		writel(h->events, &(h->cfgtable->clear_event_notify));
8176 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8177 		hpsa_wait_for_clear_event_notify_ack(h);
8178 #if 0
8179 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8180 		hpsa_wait_for_mode_change_ack(h);
8181 #endif
8182 	}
8183 	return;
8184 }
8185 
8186 /* Check a register on the controller to see if there are configuration
8187  * changes (added/changed/removed logical drives, etc.) which mean that
8188  * we should rescan the controller for devices.
8189  * Also check flag for driver-initiated rescan.
8190  */
8191 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8192 {
8193 	if (h->drv_req_rescan) {
8194 		h->drv_req_rescan = 0;
8195 		return 1;
8196 	}
8197 
8198 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8199 		return 0;
8200 
8201 	h->events = readl(&(h->cfgtable->event_notify));
8202 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8203 }
8204 
8205 /*
8206  * Check if any of the offline devices have become ready
8207  */
8208 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8209 {
8210 	unsigned long flags;
8211 	struct offline_device_entry *d;
8212 	struct list_head *this, *tmp;
8213 
8214 	spin_lock_irqsave(&h->offline_device_lock, flags);
8215 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8216 		d = list_entry(this, struct offline_device_entry,
8217 				offline_list);
8218 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8219 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8220 			spin_lock_irqsave(&h->offline_device_lock, flags);
8221 			list_del(&d->offline_list);
8222 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8223 			return 1;
8224 		}
8225 		spin_lock_irqsave(&h->offline_device_lock, flags);
8226 	}
8227 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8228 	return 0;
8229 }
8230 
8231 static int hpsa_luns_changed(struct ctlr_info *h)
8232 {
8233 	int rc = 1; /* assume there are changes */
8234 	struct ReportLUNdata *logdev = NULL;
8235 
8236 	/* if we can't find out if lun data has changed,
8237 	 * assume that it has.
8238 	 */
8239 
8240 	if (!h->lastlogicals)
8241 		goto out;
8242 
8243 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8244 	if (!logdev) {
8245 		dev_warn(&h->pdev->dev,
8246 			"Out of memory, can't track lun changes.\n");
8247 		goto out;
8248 	}
8249 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8250 		dev_warn(&h->pdev->dev,
8251 			"report luns failed, can't track lun changes.\n");
8252 		goto out;
8253 	}
8254 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8255 		dev_info(&h->pdev->dev,
8256 			"Lun changes detected.\n");
8257 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8258 		goto out;
8259 	} else
8260 		rc = 0; /* no changes detected. */
8261 out:
8262 	kfree(logdev);
8263 	return rc;
8264 }
8265 
8266 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8267 {
8268 	unsigned long flags;
8269 	struct ctlr_info *h = container_of(to_delayed_work(work),
8270 					struct ctlr_info, rescan_ctlr_work);
8271 
8272 
8273 	if (h->remove_in_progress)
8274 		return;
8275 
8276 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8277 		scsi_host_get(h->scsi_host);
8278 		hpsa_ack_ctlr_events(h);
8279 		hpsa_scan_start(h->scsi_host);
8280 		scsi_host_put(h->scsi_host);
8281 	} else if (h->discovery_polling) {
8282 		hpsa_disable_rld_caching(h);
8283 		if (hpsa_luns_changed(h)) {
8284 			struct Scsi_Host *sh = NULL;
8285 
8286 			dev_info(&h->pdev->dev,
8287 				"driver discovery polling rescan.\n");
8288 			sh = scsi_host_get(h->scsi_host);
8289 			if (sh != NULL) {
8290 				hpsa_scan_start(sh);
8291 				scsi_host_put(sh);
8292 			}
8293 		}
8294 	}
8295 	spin_lock_irqsave(&h->lock, flags);
8296 	if (!h->remove_in_progress)
8297 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8298 				h->heartbeat_sample_interval);
8299 	spin_unlock_irqrestore(&h->lock, flags);
8300 }
8301 
8302 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8303 {
8304 	unsigned long flags;
8305 	struct ctlr_info *h = container_of(to_delayed_work(work),
8306 					struct ctlr_info, monitor_ctlr_work);
8307 
8308 	detect_controller_lockup(h);
8309 	if (lockup_detected(h))
8310 		return;
8311 
8312 	spin_lock_irqsave(&h->lock, flags);
8313 	if (!h->remove_in_progress)
8314 		schedule_delayed_work(&h->monitor_ctlr_work,
8315 				h->heartbeat_sample_interval);
8316 	spin_unlock_irqrestore(&h->lock, flags);
8317 }
8318 
8319 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8320 						char *name)
8321 {
8322 	struct workqueue_struct *wq = NULL;
8323 
8324 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8325 	if (!wq)
8326 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8327 
8328 	return wq;
8329 }
8330 
8331 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8332 {
8333 	int dac, rc;
8334 	struct ctlr_info *h;
8335 	int try_soft_reset = 0;
8336 	unsigned long flags;
8337 	u32 board_id;
8338 
8339 	if (number_of_controllers == 0)
8340 		printk(KERN_INFO DRIVER_NAME "\n");
8341 
8342 	rc = hpsa_lookup_board_id(pdev, &board_id);
8343 	if (rc < 0) {
8344 		dev_warn(&pdev->dev, "Board ID not found\n");
8345 		return rc;
8346 	}
8347 
8348 	rc = hpsa_init_reset_devices(pdev, board_id);
8349 	if (rc) {
8350 		if (rc != -ENOTSUPP)
8351 			return rc;
8352 		/* If the reset fails in a particular way (it has no way to do
8353 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8354 		 * a soft reset once we get the controller configured up to the
8355 		 * point that it can accept a command.
8356 		 */
8357 		try_soft_reset = 1;
8358 		rc = 0;
8359 	}
8360 
8361 reinit_after_soft_reset:
8362 
8363 	/* Command structures must be aligned on a 32-byte boundary because
8364 	 * the 5 lower bits of the address are used by the hardware. and by
8365 	 * the driver.  See comments in hpsa.h for more info.
8366 	 */
8367 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8368 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8369 	if (!h) {
8370 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8371 		return -ENOMEM;
8372 	}
8373 
8374 	h->pdev = pdev;
8375 
8376 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8377 	INIT_LIST_HEAD(&h->offline_device_list);
8378 	spin_lock_init(&h->lock);
8379 	spin_lock_init(&h->offline_device_lock);
8380 	spin_lock_init(&h->scan_lock);
8381 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8382 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8383 
8384 	/* Allocate and clear per-cpu variable lockup_detected */
8385 	h->lockup_detected = alloc_percpu(u32);
8386 	if (!h->lockup_detected) {
8387 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8388 		rc = -ENOMEM;
8389 		goto clean1;	/* aer/h */
8390 	}
8391 	set_lockup_detected_for_all_cpus(h, 0);
8392 
8393 	rc = hpsa_pci_init(h);
8394 	if (rc)
8395 		goto clean2;	/* lu, aer/h */
8396 
8397 	/* relies on h-> settings made by hpsa_pci_init, including
8398 	 * interrupt_mode h->intr */
8399 	rc = hpsa_scsi_host_alloc(h);
8400 	if (rc)
8401 		goto clean2_5;	/* pci, lu, aer/h */
8402 
8403 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8404 	h->ctlr = number_of_controllers;
8405 	number_of_controllers++;
8406 
8407 	/* configure PCI DMA stuff */
8408 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8409 	if (rc == 0) {
8410 		dac = 1;
8411 	} else {
8412 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8413 		if (rc == 0) {
8414 			dac = 0;
8415 		} else {
8416 			dev_err(&pdev->dev, "no suitable DMA available\n");
8417 			goto clean3;	/* shost, pci, lu, aer/h */
8418 		}
8419 	}
8420 
8421 	/* make sure the board interrupts are off */
8422 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8423 
8424 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8425 	if (rc)
8426 		goto clean3;	/* shost, pci, lu, aer/h */
8427 	rc = hpsa_alloc_cmd_pool(h);
8428 	if (rc)
8429 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8430 	rc = hpsa_alloc_sg_chain_blocks(h);
8431 	if (rc)
8432 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8433 	init_waitqueue_head(&h->scan_wait_queue);
8434 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8435 	init_waitqueue_head(&h->event_sync_wait_queue);
8436 	mutex_init(&h->reset_mutex);
8437 	h->scan_finished = 1; /* no scan currently in progress */
8438 
8439 	pci_set_drvdata(pdev, h);
8440 	h->ndevices = 0;
8441 
8442 	spin_lock_init(&h->devlock);
8443 	rc = hpsa_put_ctlr_into_performant_mode(h);
8444 	if (rc)
8445 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8446 
8447 	/* hook into SCSI subsystem */
8448 	rc = hpsa_scsi_add_host(h);
8449 	if (rc)
8450 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8451 
8452 	/* create the resubmit workqueue */
8453 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8454 	if (!h->rescan_ctlr_wq) {
8455 		rc = -ENOMEM;
8456 		goto clean7;
8457 	}
8458 
8459 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8460 	if (!h->resubmit_wq) {
8461 		rc = -ENOMEM;
8462 		goto clean7;	/* aer/h */
8463 	}
8464 
8465 	/*
8466 	 * At this point, the controller is ready to take commands.
8467 	 * Now, if reset_devices and the hard reset didn't work, try
8468 	 * the soft reset and see if that works.
8469 	 */
8470 	if (try_soft_reset) {
8471 
8472 		/* This is kind of gross.  We may or may not get a completion
8473 		 * from the soft reset command, and if we do, then the value
8474 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8475 		 * after the reset throwing away any completions we get during
8476 		 * that time.  Unregister the interrupt handler and register
8477 		 * fake ones to scoop up any residual completions.
8478 		 */
8479 		spin_lock_irqsave(&h->lock, flags);
8480 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8481 		spin_unlock_irqrestore(&h->lock, flags);
8482 		hpsa_free_irqs(h);
8483 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8484 					hpsa_intx_discard_completions);
8485 		if (rc) {
8486 			dev_warn(&h->pdev->dev,
8487 				"Failed to request_irq after soft reset.\n");
8488 			/*
8489 			 * cannot goto clean7 or free_irqs will be called
8490 			 * again. Instead, do its work
8491 			 */
8492 			hpsa_free_performant_mode(h);	/* clean7 */
8493 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8494 			hpsa_free_cmd_pool(h);		/* clean5 */
8495 			/*
8496 			 * skip hpsa_free_irqs(h) clean4 since that
8497 			 * was just called before request_irqs failed
8498 			 */
8499 			goto clean3;
8500 		}
8501 
8502 		rc = hpsa_kdump_soft_reset(h);
8503 		if (rc)
8504 			/* Neither hard nor soft reset worked, we're hosed. */
8505 			goto clean7;
8506 
8507 		dev_info(&h->pdev->dev, "Board READY.\n");
8508 		dev_info(&h->pdev->dev,
8509 			"Waiting for stale completions to drain.\n");
8510 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8511 		msleep(10000);
8512 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8513 
8514 		rc = controller_reset_failed(h->cfgtable);
8515 		if (rc)
8516 			dev_info(&h->pdev->dev,
8517 				"Soft reset appears to have failed.\n");
8518 
8519 		/* since the controller's reset, we have to go back and re-init
8520 		 * everything.  Easiest to just forget what we've done and do it
8521 		 * all over again.
8522 		 */
8523 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8524 		try_soft_reset = 0;
8525 		if (rc)
8526 			/* don't goto clean, we already unallocated */
8527 			return -ENODEV;
8528 
8529 		goto reinit_after_soft_reset;
8530 	}
8531 
8532 	/* Enable Accelerated IO path at driver layer */
8533 	h->acciopath_status = 1;
8534 	/* Disable discovery polling.*/
8535 	h->discovery_polling = 0;
8536 
8537 
8538 	/* Turn the interrupts on so we can service requests */
8539 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8540 
8541 	hpsa_hba_inquiry(h);
8542 
8543 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8544 	if (!h->lastlogicals)
8545 		dev_info(&h->pdev->dev,
8546 			"Can't track change to report lun data\n");
8547 
8548 	/* Monitor the controller for firmware lockups */
8549 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8550 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8551 	schedule_delayed_work(&h->monitor_ctlr_work,
8552 				h->heartbeat_sample_interval);
8553 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8554 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8555 				h->heartbeat_sample_interval);
8556 	return 0;
8557 
8558 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8559 	hpsa_free_performant_mode(h);
8560 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8561 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8562 	hpsa_free_sg_chain_blocks(h);
8563 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8564 	hpsa_free_cmd_pool(h);
8565 clean4: /* irq, shost, pci, lu, aer/h */
8566 	hpsa_free_irqs(h);
8567 clean3: /* shost, pci, lu, aer/h */
8568 	scsi_host_put(h->scsi_host);
8569 	h->scsi_host = NULL;
8570 clean2_5: /* pci, lu, aer/h */
8571 	hpsa_free_pci_init(h);
8572 clean2: /* lu, aer/h */
8573 	if (h->lockup_detected) {
8574 		free_percpu(h->lockup_detected);
8575 		h->lockup_detected = NULL;
8576 	}
8577 clean1:	/* wq/aer/h */
8578 	if (h->resubmit_wq) {
8579 		destroy_workqueue(h->resubmit_wq);
8580 		h->resubmit_wq = NULL;
8581 	}
8582 	if (h->rescan_ctlr_wq) {
8583 		destroy_workqueue(h->rescan_ctlr_wq);
8584 		h->rescan_ctlr_wq = NULL;
8585 	}
8586 	kfree(h);
8587 	return rc;
8588 }
8589 
8590 static void hpsa_flush_cache(struct ctlr_info *h)
8591 {
8592 	char *flush_buf;
8593 	struct CommandList *c;
8594 	int rc;
8595 
8596 	if (unlikely(lockup_detected(h)))
8597 		return;
8598 	flush_buf = kzalloc(4, GFP_KERNEL);
8599 	if (!flush_buf)
8600 		return;
8601 
8602 	c = cmd_alloc(h);
8603 
8604 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8605 		RAID_CTLR_LUNID, TYPE_CMD)) {
8606 		goto out;
8607 	}
8608 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8609 					PCI_DMA_TODEVICE, NO_TIMEOUT);
8610 	if (rc)
8611 		goto out;
8612 	if (c->err_info->CommandStatus != 0)
8613 out:
8614 		dev_warn(&h->pdev->dev,
8615 			"error flushing cache on controller\n");
8616 	cmd_free(h, c);
8617 	kfree(flush_buf);
8618 }
8619 
8620 /* Make controller gather fresh report lun data each time we
8621  * send down a report luns request
8622  */
8623 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8624 {
8625 	u32 *options;
8626 	struct CommandList *c;
8627 	int rc;
8628 
8629 	/* Don't bother trying to set diag options if locked up */
8630 	if (unlikely(h->lockup_detected))
8631 		return;
8632 
8633 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8634 	if (!options) {
8635 		dev_err(&h->pdev->dev,
8636 			"Error: failed to disable rld caching, during alloc.\n");
8637 		return;
8638 	}
8639 
8640 	c = cmd_alloc(h);
8641 
8642 	/* first, get the current diag options settings */
8643 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8644 		RAID_CTLR_LUNID, TYPE_CMD))
8645 		goto errout;
8646 
8647 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8648 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8649 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8650 		goto errout;
8651 
8652 	/* Now, set the bit for disabling the RLD caching */
8653 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8654 
8655 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8656 		RAID_CTLR_LUNID, TYPE_CMD))
8657 		goto errout;
8658 
8659 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8660 		PCI_DMA_TODEVICE, NO_TIMEOUT);
8661 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8662 		goto errout;
8663 
8664 	/* Now verify that it got set: */
8665 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8666 		RAID_CTLR_LUNID, TYPE_CMD))
8667 		goto errout;
8668 
8669 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8670 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8671 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8672 		goto errout;
8673 
8674 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8675 		goto out;
8676 
8677 errout:
8678 	dev_err(&h->pdev->dev,
8679 			"Error: failed to disable report lun data caching.\n");
8680 out:
8681 	cmd_free(h, c);
8682 	kfree(options);
8683 }
8684 
8685 static void hpsa_shutdown(struct pci_dev *pdev)
8686 {
8687 	struct ctlr_info *h;
8688 
8689 	h = pci_get_drvdata(pdev);
8690 	/* Turn board interrupts off  and send the flush cache command
8691 	 * sendcmd will turn off interrupt, and send the flush...
8692 	 * To write all data in the battery backed cache to disks
8693 	 */
8694 	hpsa_flush_cache(h);
8695 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8696 	hpsa_free_irqs(h);			/* init_one 4 */
8697 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8698 }
8699 
8700 static void hpsa_free_device_info(struct ctlr_info *h)
8701 {
8702 	int i;
8703 
8704 	for (i = 0; i < h->ndevices; i++) {
8705 		kfree(h->dev[i]);
8706 		h->dev[i] = NULL;
8707 	}
8708 }
8709 
8710 static void hpsa_remove_one(struct pci_dev *pdev)
8711 {
8712 	struct ctlr_info *h;
8713 	unsigned long flags;
8714 
8715 	if (pci_get_drvdata(pdev) == NULL) {
8716 		dev_err(&pdev->dev, "unable to remove device\n");
8717 		return;
8718 	}
8719 	h = pci_get_drvdata(pdev);
8720 
8721 	/* Get rid of any controller monitoring work items */
8722 	spin_lock_irqsave(&h->lock, flags);
8723 	h->remove_in_progress = 1;
8724 	spin_unlock_irqrestore(&h->lock, flags);
8725 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8726 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8727 	destroy_workqueue(h->rescan_ctlr_wq);
8728 	destroy_workqueue(h->resubmit_wq);
8729 
8730 	/*
8731 	 * Call before disabling interrupts.
8732 	 * scsi_remove_host can trigger I/O operations especially
8733 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8734 	 * operations which cannot complete and will hang the system.
8735 	 */
8736 	if (h->scsi_host)
8737 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8738 	/* includes hpsa_free_irqs - init_one 4 */
8739 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8740 	hpsa_shutdown(pdev);
8741 
8742 	hpsa_free_device_info(h);		/* scan */
8743 
8744 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8745 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8746 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8747 	hpsa_free_performant_mode(h);			/* init_one 7 */
8748 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8749 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8750 	kfree(h->lastlogicals);
8751 
8752 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8753 
8754 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8755 	h->scsi_host = NULL;				/* init_one 3 */
8756 
8757 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8758 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8759 
8760 	free_percpu(h->lockup_detected);		/* init_one 2 */
8761 	h->lockup_detected = NULL;			/* init_one 2 */
8762 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8763 
8764 	hpsa_delete_sas_host(h);
8765 
8766 	kfree(h);					/* init_one 1 */
8767 }
8768 
8769 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8770 	__attribute__((unused)) pm_message_t state)
8771 {
8772 	return -ENOSYS;
8773 }
8774 
8775 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8776 {
8777 	return -ENOSYS;
8778 }
8779 
8780 static struct pci_driver hpsa_pci_driver = {
8781 	.name = HPSA,
8782 	.probe = hpsa_init_one,
8783 	.remove = hpsa_remove_one,
8784 	.id_table = hpsa_pci_device_id,	/* id_table */
8785 	.shutdown = hpsa_shutdown,
8786 	.suspend = hpsa_suspend,
8787 	.resume = hpsa_resume,
8788 };
8789 
8790 /* Fill in bucket_map[], given nsgs (the max number of
8791  * scatter gather elements supported) and bucket[],
8792  * which is an array of 8 integers.  The bucket[] array
8793  * contains 8 different DMA transfer sizes (in 16
8794  * byte increments) which the controller uses to fetch
8795  * commands.  This function fills in bucket_map[], which
8796  * maps a given number of scatter gather elements to one of
8797  * the 8 DMA transfer sizes.  The point of it is to allow the
8798  * controller to only do as much DMA as needed to fetch the
8799  * command, with the DMA transfer size encoded in the lower
8800  * bits of the command address.
8801  */
8802 static void  calc_bucket_map(int bucket[], int num_buckets,
8803 	int nsgs, int min_blocks, u32 *bucket_map)
8804 {
8805 	int i, j, b, size;
8806 
8807 	/* Note, bucket_map must have nsgs+1 entries. */
8808 	for (i = 0; i <= nsgs; i++) {
8809 		/* Compute size of a command with i SG entries */
8810 		size = i + min_blocks;
8811 		b = num_buckets; /* Assume the biggest bucket */
8812 		/* Find the bucket that is just big enough */
8813 		for (j = 0; j < num_buckets; j++) {
8814 			if (bucket[j] >= size) {
8815 				b = j;
8816 				break;
8817 			}
8818 		}
8819 		/* for a command with i SG entries, use bucket b. */
8820 		bucket_map[i] = b;
8821 	}
8822 }
8823 
8824 /*
8825  * return -ENODEV on err, 0 on success (or no action)
8826  * allocates numerous items that must be freed later
8827  */
8828 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8829 {
8830 	int i;
8831 	unsigned long register_value;
8832 	unsigned long transMethod = CFGTBL_Trans_Performant |
8833 			(trans_support & CFGTBL_Trans_use_short_tags) |
8834 				CFGTBL_Trans_enable_directed_msix |
8835 			(trans_support & (CFGTBL_Trans_io_accel1 |
8836 				CFGTBL_Trans_io_accel2));
8837 	struct access_method access = SA5_performant_access;
8838 
8839 	/* This is a bit complicated.  There are 8 registers on
8840 	 * the controller which we write to to tell it 8 different
8841 	 * sizes of commands which there may be.  It's a way of
8842 	 * reducing the DMA done to fetch each command.  Encoded into
8843 	 * each command's tag are 3 bits which communicate to the controller
8844 	 * which of the eight sizes that command fits within.  The size of
8845 	 * each command depends on how many scatter gather entries there are.
8846 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
8847 	 * with the number of 16-byte blocks a command of that size requires.
8848 	 * The smallest command possible requires 5 such 16 byte blocks.
8849 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8850 	 * blocks.  Note, this only extends to the SG entries contained
8851 	 * within the command block, and does not extend to chained blocks
8852 	 * of SG elements.   bft[] contains the eight values we write to
8853 	 * the registers.  They are not evenly distributed, but have more
8854 	 * sizes for small commands, and fewer sizes for larger commands.
8855 	 */
8856 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8857 #define MIN_IOACCEL2_BFT_ENTRY 5
8858 #define HPSA_IOACCEL2_HEADER_SZ 4
8859 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8860 			13, 14, 15, 16, 17, 18, 19,
8861 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8862 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8863 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8864 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8865 				 16 * MIN_IOACCEL2_BFT_ENTRY);
8866 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8867 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8868 	/*  5 = 1 s/g entry or 4k
8869 	 *  6 = 2 s/g entry or 8k
8870 	 *  8 = 4 s/g entry or 16k
8871 	 * 10 = 6 s/g entry or 24k
8872 	 */
8873 
8874 	/* If the controller supports either ioaccel method then
8875 	 * we can also use the RAID stack submit path that does not
8876 	 * perform the superfluous readl() after each command submission.
8877 	 */
8878 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8879 		access = SA5_performant_access_no_read;
8880 
8881 	/* Controller spec: zero out this buffer. */
8882 	for (i = 0; i < h->nreply_queues; i++)
8883 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8884 
8885 	bft[7] = SG_ENTRIES_IN_CMD + 4;
8886 	calc_bucket_map(bft, ARRAY_SIZE(bft),
8887 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8888 	for (i = 0; i < 8; i++)
8889 		writel(bft[i], &h->transtable->BlockFetch[i]);
8890 
8891 	/* size of controller ring buffer */
8892 	writel(h->max_commands, &h->transtable->RepQSize);
8893 	writel(h->nreply_queues, &h->transtable->RepQCount);
8894 	writel(0, &h->transtable->RepQCtrAddrLow32);
8895 	writel(0, &h->transtable->RepQCtrAddrHigh32);
8896 
8897 	for (i = 0; i < h->nreply_queues; i++) {
8898 		writel(0, &h->transtable->RepQAddr[i].upper);
8899 		writel(h->reply_queue[i].busaddr,
8900 			&h->transtable->RepQAddr[i].lower);
8901 	}
8902 
8903 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8904 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8905 	/*
8906 	 * enable outbound interrupt coalescing in accelerator mode;
8907 	 */
8908 	if (trans_support & CFGTBL_Trans_io_accel1) {
8909 		access = SA5_ioaccel_mode1_access;
8910 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8911 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8912 	} else {
8913 		if (trans_support & CFGTBL_Trans_io_accel2) {
8914 			access = SA5_ioaccel_mode2_access;
8915 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8916 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8917 		}
8918 	}
8919 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8920 	if (hpsa_wait_for_mode_change_ack(h)) {
8921 		dev_err(&h->pdev->dev,
8922 			"performant mode problem - doorbell timeout\n");
8923 		return -ENODEV;
8924 	}
8925 	register_value = readl(&(h->cfgtable->TransportActive));
8926 	if (!(register_value & CFGTBL_Trans_Performant)) {
8927 		dev_err(&h->pdev->dev,
8928 			"performant mode problem - transport not active\n");
8929 		return -ENODEV;
8930 	}
8931 	/* Change the access methods to the performant access methods */
8932 	h->access = access;
8933 	h->transMethod = transMethod;
8934 
8935 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8936 		(trans_support & CFGTBL_Trans_io_accel2)))
8937 		return 0;
8938 
8939 	if (trans_support & CFGTBL_Trans_io_accel1) {
8940 		/* Set up I/O accelerator mode */
8941 		for (i = 0; i < h->nreply_queues; i++) {
8942 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8943 			h->reply_queue[i].current_entry =
8944 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8945 		}
8946 		bft[7] = h->ioaccel_maxsg + 8;
8947 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8948 				h->ioaccel1_blockFetchTable);
8949 
8950 		/* initialize all reply queue entries to unused */
8951 		for (i = 0; i < h->nreply_queues; i++)
8952 			memset(h->reply_queue[i].head,
8953 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
8954 				h->reply_queue_size);
8955 
8956 		/* set all the constant fields in the accelerator command
8957 		 * frames once at init time to save CPU cycles later.
8958 		 */
8959 		for (i = 0; i < h->nr_cmds; i++) {
8960 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8961 
8962 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
8963 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
8964 					(i * sizeof(struct ErrorInfo)));
8965 			cp->err_info_len = sizeof(struct ErrorInfo);
8966 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
8967 			cp->host_context_flags =
8968 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8969 			cp->timeout_sec = 0;
8970 			cp->ReplyQueue = 0;
8971 			cp->tag =
8972 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8973 			cp->host_addr =
8974 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8975 					(i * sizeof(struct io_accel1_cmd)));
8976 		}
8977 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8978 		u64 cfg_offset, cfg_base_addr_index;
8979 		u32 bft2_offset, cfg_base_addr;
8980 		int rc;
8981 
8982 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8983 			&cfg_base_addr_index, &cfg_offset);
8984 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8985 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8986 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8987 				4, h->ioaccel2_blockFetchTable);
8988 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8989 		BUILD_BUG_ON(offsetof(struct CfgTable,
8990 				io_accel_request_size_offset) != 0xb8);
8991 		h->ioaccel2_bft2_regs =
8992 			remap_pci_mem(pci_resource_start(h->pdev,
8993 					cfg_base_addr_index) +
8994 					cfg_offset + bft2_offset,
8995 					ARRAY_SIZE(bft2) *
8996 					sizeof(*h->ioaccel2_bft2_regs));
8997 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
8998 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8999 	}
9000 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9001 	if (hpsa_wait_for_mode_change_ack(h)) {
9002 		dev_err(&h->pdev->dev,
9003 			"performant mode problem - enabling ioaccel mode\n");
9004 		return -ENODEV;
9005 	}
9006 	return 0;
9007 }
9008 
9009 /* Free ioaccel1 mode command blocks and block fetch table */
9010 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9011 {
9012 	if (h->ioaccel_cmd_pool) {
9013 		pci_free_consistent(h->pdev,
9014 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9015 			h->ioaccel_cmd_pool,
9016 			h->ioaccel_cmd_pool_dhandle);
9017 		h->ioaccel_cmd_pool = NULL;
9018 		h->ioaccel_cmd_pool_dhandle = 0;
9019 	}
9020 	kfree(h->ioaccel1_blockFetchTable);
9021 	h->ioaccel1_blockFetchTable = NULL;
9022 }
9023 
9024 /* Allocate ioaccel1 mode command blocks and block fetch table */
9025 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9026 {
9027 	h->ioaccel_maxsg =
9028 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9029 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9030 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9031 
9032 	/* Command structures must be aligned on a 128-byte boundary
9033 	 * because the 7 lower bits of the address are used by the
9034 	 * hardware.
9035 	 */
9036 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9037 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9038 	h->ioaccel_cmd_pool =
9039 		pci_alloc_consistent(h->pdev,
9040 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9041 			&(h->ioaccel_cmd_pool_dhandle));
9042 
9043 	h->ioaccel1_blockFetchTable =
9044 		kmalloc(((h->ioaccel_maxsg + 1) *
9045 				sizeof(u32)), GFP_KERNEL);
9046 
9047 	if ((h->ioaccel_cmd_pool == NULL) ||
9048 		(h->ioaccel1_blockFetchTable == NULL))
9049 		goto clean_up;
9050 
9051 	memset(h->ioaccel_cmd_pool, 0,
9052 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9053 	return 0;
9054 
9055 clean_up:
9056 	hpsa_free_ioaccel1_cmd_and_bft(h);
9057 	return -ENOMEM;
9058 }
9059 
9060 /* Free ioaccel2 mode command blocks and block fetch table */
9061 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9062 {
9063 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9064 
9065 	if (h->ioaccel2_cmd_pool) {
9066 		pci_free_consistent(h->pdev,
9067 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9068 			h->ioaccel2_cmd_pool,
9069 			h->ioaccel2_cmd_pool_dhandle);
9070 		h->ioaccel2_cmd_pool = NULL;
9071 		h->ioaccel2_cmd_pool_dhandle = 0;
9072 	}
9073 	kfree(h->ioaccel2_blockFetchTable);
9074 	h->ioaccel2_blockFetchTable = NULL;
9075 }
9076 
9077 /* Allocate ioaccel2 mode command blocks and block fetch table */
9078 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9079 {
9080 	int rc;
9081 
9082 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9083 
9084 	h->ioaccel_maxsg =
9085 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9086 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9087 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9088 
9089 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9090 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9091 	h->ioaccel2_cmd_pool =
9092 		pci_alloc_consistent(h->pdev,
9093 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9094 			&(h->ioaccel2_cmd_pool_dhandle));
9095 
9096 	h->ioaccel2_blockFetchTable =
9097 		kmalloc(((h->ioaccel_maxsg + 1) *
9098 				sizeof(u32)), GFP_KERNEL);
9099 
9100 	if ((h->ioaccel2_cmd_pool == NULL) ||
9101 		(h->ioaccel2_blockFetchTable == NULL)) {
9102 		rc = -ENOMEM;
9103 		goto clean_up;
9104 	}
9105 
9106 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9107 	if (rc)
9108 		goto clean_up;
9109 
9110 	memset(h->ioaccel2_cmd_pool, 0,
9111 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9112 	return 0;
9113 
9114 clean_up:
9115 	hpsa_free_ioaccel2_cmd_and_bft(h);
9116 	return rc;
9117 }
9118 
9119 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9120 static void hpsa_free_performant_mode(struct ctlr_info *h)
9121 {
9122 	kfree(h->blockFetchTable);
9123 	h->blockFetchTable = NULL;
9124 	hpsa_free_reply_queues(h);
9125 	hpsa_free_ioaccel1_cmd_and_bft(h);
9126 	hpsa_free_ioaccel2_cmd_and_bft(h);
9127 }
9128 
9129 /* return -ENODEV on error, 0 on success (or no action)
9130  * allocates numerous items that must be freed later
9131  */
9132 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9133 {
9134 	u32 trans_support;
9135 	unsigned long transMethod = CFGTBL_Trans_Performant |
9136 					CFGTBL_Trans_use_short_tags;
9137 	int i, rc;
9138 
9139 	if (hpsa_simple_mode)
9140 		return 0;
9141 
9142 	trans_support = readl(&(h->cfgtable->TransportSupport));
9143 	if (!(trans_support & PERFORMANT_MODE))
9144 		return 0;
9145 
9146 	/* Check for I/O accelerator mode support */
9147 	if (trans_support & CFGTBL_Trans_io_accel1) {
9148 		transMethod |= CFGTBL_Trans_io_accel1 |
9149 				CFGTBL_Trans_enable_directed_msix;
9150 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9151 		if (rc)
9152 			return rc;
9153 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9154 		transMethod |= CFGTBL_Trans_io_accel2 |
9155 				CFGTBL_Trans_enable_directed_msix;
9156 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9157 		if (rc)
9158 			return rc;
9159 	}
9160 
9161 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9162 	hpsa_get_max_perf_mode_cmds(h);
9163 	/* Performant mode ring buffer and supporting data structures */
9164 	h->reply_queue_size = h->max_commands * sizeof(u64);
9165 
9166 	for (i = 0; i < h->nreply_queues; i++) {
9167 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9168 						h->reply_queue_size,
9169 						&(h->reply_queue[i].busaddr));
9170 		if (!h->reply_queue[i].head) {
9171 			rc = -ENOMEM;
9172 			goto clean1;	/* rq, ioaccel */
9173 		}
9174 		h->reply_queue[i].size = h->max_commands;
9175 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9176 		h->reply_queue[i].current_entry = 0;
9177 	}
9178 
9179 	/* Need a block fetch table for performant mode */
9180 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9181 				sizeof(u32)), GFP_KERNEL);
9182 	if (!h->blockFetchTable) {
9183 		rc = -ENOMEM;
9184 		goto clean1;	/* rq, ioaccel */
9185 	}
9186 
9187 	rc = hpsa_enter_performant_mode(h, trans_support);
9188 	if (rc)
9189 		goto clean2;	/* bft, rq, ioaccel */
9190 	return 0;
9191 
9192 clean2:	/* bft, rq, ioaccel */
9193 	kfree(h->blockFetchTable);
9194 	h->blockFetchTable = NULL;
9195 clean1:	/* rq, ioaccel */
9196 	hpsa_free_reply_queues(h);
9197 	hpsa_free_ioaccel1_cmd_and_bft(h);
9198 	hpsa_free_ioaccel2_cmd_and_bft(h);
9199 	return rc;
9200 }
9201 
9202 static int is_accelerated_cmd(struct CommandList *c)
9203 {
9204 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9205 }
9206 
9207 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9208 {
9209 	struct CommandList *c = NULL;
9210 	int i, accel_cmds_out;
9211 	int refcount;
9212 
9213 	do { /* wait for all outstanding ioaccel commands to drain out */
9214 		accel_cmds_out = 0;
9215 		for (i = 0; i < h->nr_cmds; i++) {
9216 			c = h->cmd_pool + i;
9217 			refcount = atomic_inc_return(&c->refcount);
9218 			if (refcount > 1) /* Command is allocated */
9219 				accel_cmds_out += is_accelerated_cmd(c);
9220 			cmd_free(h, c);
9221 		}
9222 		if (accel_cmds_out <= 0)
9223 			break;
9224 		msleep(100);
9225 	} while (1);
9226 }
9227 
9228 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9229 				struct hpsa_sas_port *hpsa_sas_port)
9230 {
9231 	struct hpsa_sas_phy *hpsa_sas_phy;
9232 	struct sas_phy *phy;
9233 
9234 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9235 	if (!hpsa_sas_phy)
9236 		return NULL;
9237 
9238 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9239 		hpsa_sas_port->next_phy_index);
9240 	if (!phy) {
9241 		kfree(hpsa_sas_phy);
9242 		return NULL;
9243 	}
9244 
9245 	hpsa_sas_port->next_phy_index++;
9246 	hpsa_sas_phy->phy = phy;
9247 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9248 
9249 	return hpsa_sas_phy;
9250 }
9251 
9252 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9253 {
9254 	struct sas_phy *phy = hpsa_sas_phy->phy;
9255 
9256 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9257 	sas_phy_free(phy);
9258 	if (hpsa_sas_phy->added_to_port)
9259 		list_del(&hpsa_sas_phy->phy_list_entry);
9260 	kfree(hpsa_sas_phy);
9261 }
9262 
9263 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9264 {
9265 	int rc;
9266 	struct hpsa_sas_port *hpsa_sas_port;
9267 	struct sas_phy *phy;
9268 	struct sas_identify *identify;
9269 
9270 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9271 	phy = hpsa_sas_phy->phy;
9272 
9273 	identify = &phy->identify;
9274 	memset(identify, 0, sizeof(*identify));
9275 	identify->sas_address = hpsa_sas_port->sas_address;
9276 	identify->device_type = SAS_END_DEVICE;
9277 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9278 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9279 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9280 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9281 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9282 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9283 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9284 
9285 	rc = sas_phy_add(hpsa_sas_phy->phy);
9286 	if (rc)
9287 		return rc;
9288 
9289 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9290 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9291 			&hpsa_sas_port->phy_list_head);
9292 	hpsa_sas_phy->added_to_port = true;
9293 
9294 	return 0;
9295 }
9296 
9297 static int
9298 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9299 				struct sas_rphy *rphy)
9300 {
9301 	struct sas_identify *identify;
9302 
9303 	identify = &rphy->identify;
9304 	identify->sas_address = hpsa_sas_port->sas_address;
9305 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9306 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9307 
9308 	return sas_rphy_add(rphy);
9309 }
9310 
9311 static struct hpsa_sas_port
9312 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9313 				u64 sas_address)
9314 {
9315 	int rc;
9316 	struct hpsa_sas_port *hpsa_sas_port;
9317 	struct sas_port *port;
9318 
9319 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9320 	if (!hpsa_sas_port)
9321 		return NULL;
9322 
9323 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9324 	hpsa_sas_port->parent_node = hpsa_sas_node;
9325 
9326 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9327 	if (!port)
9328 		goto free_hpsa_port;
9329 
9330 	rc = sas_port_add(port);
9331 	if (rc)
9332 		goto free_sas_port;
9333 
9334 	hpsa_sas_port->port = port;
9335 	hpsa_sas_port->sas_address = sas_address;
9336 	list_add_tail(&hpsa_sas_port->port_list_entry,
9337 			&hpsa_sas_node->port_list_head);
9338 
9339 	return hpsa_sas_port;
9340 
9341 free_sas_port:
9342 	sas_port_free(port);
9343 free_hpsa_port:
9344 	kfree(hpsa_sas_port);
9345 
9346 	return NULL;
9347 }
9348 
9349 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9350 {
9351 	struct hpsa_sas_phy *hpsa_sas_phy;
9352 	struct hpsa_sas_phy *next;
9353 
9354 	list_for_each_entry_safe(hpsa_sas_phy, next,
9355 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9356 		hpsa_free_sas_phy(hpsa_sas_phy);
9357 
9358 	sas_port_delete(hpsa_sas_port->port);
9359 	list_del(&hpsa_sas_port->port_list_entry);
9360 	kfree(hpsa_sas_port);
9361 }
9362 
9363 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9364 {
9365 	struct hpsa_sas_node *hpsa_sas_node;
9366 
9367 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9368 	if (hpsa_sas_node) {
9369 		hpsa_sas_node->parent_dev = parent_dev;
9370 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9371 	}
9372 
9373 	return hpsa_sas_node;
9374 }
9375 
9376 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9377 {
9378 	struct hpsa_sas_port *hpsa_sas_port;
9379 	struct hpsa_sas_port *next;
9380 
9381 	if (!hpsa_sas_node)
9382 		return;
9383 
9384 	list_for_each_entry_safe(hpsa_sas_port, next,
9385 			&hpsa_sas_node->port_list_head, port_list_entry)
9386 		hpsa_free_sas_port(hpsa_sas_port);
9387 
9388 	kfree(hpsa_sas_node);
9389 }
9390 
9391 static struct hpsa_scsi_dev_t
9392 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9393 					struct sas_rphy *rphy)
9394 {
9395 	int i;
9396 	struct hpsa_scsi_dev_t *device;
9397 
9398 	for (i = 0; i < h->ndevices; i++) {
9399 		device = h->dev[i];
9400 		if (!device->sas_port)
9401 			continue;
9402 		if (device->sas_port->rphy == rphy)
9403 			return device;
9404 	}
9405 
9406 	return NULL;
9407 }
9408 
9409 static int hpsa_add_sas_host(struct ctlr_info *h)
9410 {
9411 	int rc;
9412 	struct device *parent_dev;
9413 	struct hpsa_sas_node *hpsa_sas_node;
9414 	struct hpsa_sas_port *hpsa_sas_port;
9415 	struct hpsa_sas_phy *hpsa_sas_phy;
9416 
9417 	parent_dev = &h->scsi_host->shost_gendev;
9418 
9419 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9420 	if (!hpsa_sas_node)
9421 		return -ENOMEM;
9422 
9423 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9424 	if (!hpsa_sas_port) {
9425 		rc = -ENODEV;
9426 		goto free_sas_node;
9427 	}
9428 
9429 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9430 	if (!hpsa_sas_phy) {
9431 		rc = -ENODEV;
9432 		goto free_sas_port;
9433 	}
9434 
9435 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9436 	if (rc)
9437 		goto free_sas_phy;
9438 
9439 	h->sas_host = hpsa_sas_node;
9440 
9441 	return 0;
9442 
9443 free_sas_phy:
9444 	hpsa_free_sas_phy(hpsa_sas_phy);
9445 free_sas_port:
9446 	hpsa_free_sas_port(hpsa_sas_port);
9447 free_sas_node:
9448 	hpsa_free_sas_node(hpsa_sas_node);
9449 
9450 	return rc;
9451 }
9452 
9453 static void hpsa_delete_sas_host(struct ctlr_info *h)
9454 {
9455 	hpsa_free_sas_node(h->sas_host);
9456 }
9457 
9458 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9459 				struct hpsa_scsi_dev_t *device)
9460 {
9461 	int rc;
9462 	struct hpsa_sas_port *hpsa_sas_port;
9463 	struct sas_rphy *rphy;
9464 
9465 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9466 	if (!hpsa_sas_port)
9467 		return -ENOMEM;
9468 
9469 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9470 	if (!rphy) {
9471 		rc = -ENODEV;
9472 		goto free_sas_port;
9473 	}
9474 
9475 	hpsa_sas_port->rphy = rphy;
9476 	device->sas_port = hpsa_sas_port;
9477 
9478 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9479 	if (rc)
9480 		goto free_sas_port;
9481 
9482 	return 0;
9483 
9484 free_sas_port:
9485 	hpsa_free_sas_port(hpsa_sas_port);
9486 	device->sas_port = NULL;
9487 
9488 	return rc;
9489 }
9490 
9491 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9492 {
9493 	if (device->sas_port) {
9494 		hpsa_free_sas_port(device->sas_port);
9495 		device->sas_port = NULL;
9496 	}
9497 }
9498 
9499 static int
9500 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9501 {
9502 	return 0;
9503 }
9504 
9505 static int
9506 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9507 {
9508 	return 0;
9509 }
9510 
9511 static int
9512 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9513 {
9514 	return -ENXIO;
9515 }
9516 
9517 static int
9518 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9519 {
9520 	return 0;
9521 }
9522 
9523 static int
9524 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9525 {
9526 	return 0;
9527 }
9528 
9529 static int
9530 hpsa_sas_phy_setup(struct sas_phy *phy)
9531 {
9532 	return 0;
9533 }
9534 
9535 static void
9536 hpsa_sas_phy_release(struct sas_phy *phy)
9537 {
9538 }
9539 
9540 static int
9541 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9542 {
9543 	return -EINVAL;
9544 }
9545 
9546 /* SMP = Serial Management Protocol */
9547 static int
9548 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9549 struct request *req)
9550 {
9551 	return -EINVAL;
9552 }
9553 
9554 static struct sas_function_template hpsa_sas_transport_functions = {
9555 	.get_linkerrors = hpsa_sas_get_linkerrors,
9556 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9557 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9558 	.phy_reset = hpsa_sas_phy_reset,
9559 	.phy_enable = hpsa_sas_phy_enable,
9560 	.phy_setup = hpsa_sas_phy_setup,
9561 	.phy_release = hpsa_sas_phy_release,
9562 	.set_phy_speed = hpsa_sas_phy_speed,
9563 	.smp_handler = hpsa_sas_smp_handler,
9564 };
9565 
9566 /*
9567  *  This is it.  Register the PCI driver information for the cards we control
9568  *  the OS will call our registered routines when it finds one of our cards.
9569  */
9570 static int __init hpsa_init(void)
9571 {
9572 	int rc;
9573 
9574 	hpsa_sas_transport_template =
9575 		sas_attach_transport(&hpsa_sas_transport_functions);
9576 	if (!hpsa_sas_transport_template)
9577 		return -ENODEV;
9578 
9579 	rc = pci_register_driver(&hpsa_pci_driver);
9580 
9581 	if (rc)
9582 		sas_release_transport(hpsa_sas_transport_template);
9583 
9584 	return rc;
9585 }
9586 
9587 static void __exit hpsa_cleanup(void)
9588 {
9589 	pci_unregister_driver(&hpsa_pci_driver);
9590 	sas_release_transport(hpsa_sas_transport_template);
9591 }
9592 
9593 static void __attribute__((unused)) verify_offsets(void)
9594 {
9595 #define VERIFY_OFFSET(member, offset) \
9596 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9597 
9598 	VERIFY_OFFSET(structure_size, 0);
9599 	VERIFY_OFFSET(volume_blk_size, 4);
9600 	VERIFY_OFFSET(volume_blk_cnt, 8);
9601 	VERIFY_OFFSET(phys_blk_shift, 16);
9602 	VERIFY_OFFSET(parity_rotation_shift, 17);
9603 	VERIFY_OFFSET(strip_size, 18);
9604 	VERIFY_OFFSET(disk_starting_blk, 20);
9605 	VERIFY_OFFSET(disk_blk_cnt, 28);
9606 	VERIFY_OFFSET(data_disks_per_row, 36);
9607 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9608 	VERIFY_OFFSET(row_cnt, 40);
9609 	VERIFY_OFFSET(layout_map_count, 42);
9610 	VERIFY_OFFSET(flags, 44);
9611 	VERIFY_OFFSET(dekindex, 46);
9612 	/* VERIFY_OFFSET(reserved, 48 */
9613 	VERIFY_OFFSET(data, 64);
9614 
9615 #undef VERIFY_OFFSET
9616 
9617 #define VERIFY_OFFSET(member, offset) \
9618 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9619 
9620 	VERIFY_OFFSET(IU_type, 0);
9621 	VERIFY_OFFSET(direction, 1);
9622 	VERIFY_OFFSET(reply_queue, 2);
9623 	/* VERIFY_OFFSET(reserved1, 3);  */
9624 	VERIFY_OFFSET(scsi_nexus, 4);
9625 	VERIFY_OFFSET(Tag, 8);
9626 	VERIFY_OFFSET(cdb, 16);
9627 	VERIFY_OFFSET(cciss_lun, 32);
9628 	VERIFY_OFFSET(data_len, 40);
9629 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9630 	VERIFY_OFFSET(sg_count, 45);
9631 	/* VERIFY_OFFSET(reserved3 */
9632 	VERIFY_OFFSET(err_ptr, 48);
9633 	VERIFY_OFFSET(err_len, 56);
9634 	/* VERIFY_OFFSET(reserved4  */
9635 	VERIFY_OFFSET(sg, 64);
9636 
9637 #undef VERIFY_OFFSET
9638 
9639 #define VERIFY_OFFSET(member, offset) \
9640 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9641 
9642 	VERIFY_OFFSET(dev_handle, 0x00);
9643 	VERIFY_OFFSET(reserved1, 0x02);
9644 	VERIFY_OFFSET(function, 0x03);
9645 	VERIFY_OFFSET(reserved2, 0x04);
9646 	VERIFY_OFFSET(err_info, 0x0C);
9647 	VERIFY_OFFSET(reserved3, 0x10);
9648 	VERIFY_OFFSET(err_info_len, 0x12);
9649 	VERIFY_OFFSET(reserved4, 0x13);
9650 	VERIFY_OFFSET(sgl_offset, 0x14);
9651 	VERIFY_OFFSET(reserved5, 0x15);
9652 	VERIFY_OFFSET(transfer_len, 0x1C);
9653 	VERIFY_OFFSET(reserved6, 0x20);
9654 	VERIFY_OFFSET(io_flags, 0x24);
9655 	VERIFY_OFFSET(reserved7, 0x26);
9656 	VERIFY_OFFSET(LUN, 0x34);
9657 	VERIFY_OFFSET(control, 0x3C);
9658 	VERIFY_OFFSET(CDB, 0x40);
9659 	VERIFY_OFFSET(reserved8, 0x50);
9660 	VERIFY_OFFSET(host_context_flags, 0x60);
9661 	VERIFY_OFFSET(timeout_sec, 0x62);
9662 	VERIFY_OFFSET(ReplyQueue, 0x64);
9663 	VERIFY_OFFSET(reserved9, 0x65);
9664 	VERIFY_OFFSET(tag, 0x68);
9665 	VERIFY_OFFSET(host_addr, 0x70);
9666 	VERIFY_OFFSET(CISS_LUN, 0x78);
9667 	VERIFY_OFFSET(SG, 0x78 + 8);
9668 #undef VERIFY_OFFSET
9669 }
9670 
9671 module_init(hpsa_init);
9672 module_exit(hpsa_cleanup);
9673