xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 23c2b932)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{0,}
150 };
151 
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153 
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159 	{0x3241103C, "Smart Array P212", &SA5_access},
160 	{0x3243103C, "Smart Array P410", &SA5_access},
161 	{0x3245103C, "Smart Array P410i", &SA5_access},
162 	{0x3247103C, "Smart Array P411", &SA5_access},
163 	{0x3249103C, "Smart Array P812", &SA5_access},
164 	{0x324A103C, "Smart Array P712m", &SA5_access},
165 	{0x324B103C, "Smart Array P711m", &SA5_access},
166 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 	{0x3350103C, "Smart Array P222", &SA5_access},
168 	{0x3351103C, "Smart Array P420", &SA5_access},
169 	{0x3352103C, "Smart Array P421", &SA5_access},
170 	{0x3353103C, "Smart Array P822", &SA5_access},
171 	{0x3354103C, "Smart Array P420i", &SA5_access},
172 	{0x3355103C, "Smart Array P220i", &SA5_access},
173 	{0x3356103C, "Smart Array P721m", &SA5_access},
174 	{0x1921103C, "Smart Array P830i", &SA5_access},
175 	{0x1922103C, "Smart Array P430", &SA5_access},
176 	{0x1923103C, "Smart Array P431", &SA5_access},
177 	{0x1924103C, "Smart Array P830", &SA5_access},
178 	{0x1926103C, "Smart Array P731m", &SA5_access},
179 	{0x1928103C, "Smart Array P230i", &SA5_access},
180 	{0x1929103C, "Smart Array P530", &SA5_access},
181 	{0x21BD103C, "Smart Array P244br", &SA5_access},
182 	{0x21BE103C, "Smart Array P741m", &SA5_access},
183 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
185 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
186 	{0x21C2103C, "Smart Array P440", &SA5_access},
187 	{0x21C3103C, "Smart Array P441", &SA5_access},
188 	{0x21C4103C, "Smart Array", &SA5_access},
189 	{0x21C5103C, "Smart Array P841", &SA5_access},
190 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
191 	{0x21C7103C, "Smart HBA H240", &SA5_access},
192 	{0x21C8103C, "Smart HBA H241", &SA5_access},
193 	{0x21C9103C, "Smart Array", &SA5_access},
194 	{0x21CA103C, "Smart Array P246br", &SA5_access},
195 	{0x21CB103C, "Smart Array P840", &SA5_access},
196 	{0x21CC103C, "Smart Array", &SA5_access},
197 	{0x21CD103C, "Smart Array", &SA5_access},
198 	{0x21CE103C, "Smart HBA", &SA5_access},
199 	{0x05809005, "SmartHBA-SA", &SA5_access},
200 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212 
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 			struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 		struct sas_rphy *rphy);
222 
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228 
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232 
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 	void __user *arg);
236 #endif
237 
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 					    struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 	int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249 
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 	unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255 
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261 
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 	struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 	struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 	int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 			       u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 				    unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280 				     int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295 	struct ReportExtendedLUNdata *buf, int bufsize);
296 static int hpsa_luns_changed(struct ctlr_info *h);
297 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
298 			       struct hpsa_scsi_dev_t *dev,
299 			       unsigned char *scsi3addr);
300 
301 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
302 {
303 	unsigned long *priv = shost_priv(sdev->host);
304 	return (struct ctlr_info *) *priv;
305 }
306 
307 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
308 {
309 	unsigned long *priv = shost_priv(sh);
310 	return (struct ctlr_info *) *priv;
311 }
312 
313 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
314 {
315 	return c->scsi_cmd == SCSI_CMD_IDLE;
316 }
317 
318 static inline bool hpsa_is_pending_event(struct CommandList *c)
319 {
320 	return c->abort_pending || c->reset_pending;
321 }
322 
323 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
324 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
325 			u8 *sense_key, u8 *asc, u8 *ascq)
326 {
327 	struct scsi_sense_hdr sshdr;
328 	bool rc;
329 
330 	*sense_key = -1;
331 	*asc = -1;
332 	*ascq = -1;
333 
334 	if (sense_data_len < 1)
335 		return;
336 
337 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
338 	if (rc) {
339 		*sense_key = sshdr.sense_key;
340 		*asc = sshdr.asc;
341 		*ascq = sshdr.ascq;
342 	}
343 }
344 
345 static int check_for_unit_attention(struct ctlr_info *h,
346 	struct CommandList *c)
347 {
348 	u8 sense_key, asc, ascq;
349 	int sense_len;
350 
351 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
352 		sense_len = sizeof(c->err_info->SenseInfo);
353 	else
354 		sense_len = c->err_info->SenseLen;
355 
356 	decode_sense_data(c->err_info->SenseInfo, sense_len,
357 				&sense_key, &asc, &ascq);
358 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
359 		return 0;
360 
361 	switch (asc) {
362 	case STATE_CHANGED:
363 		dev_warn(&h->pdev->dev,
364 			"%s: a state change detected, command retried\n",
365 			h->devname);
366 		break;
367 	case LUN_FAILED:
368 		dev_warn(&h->pdev->dev,
369 			"%s: LUN failure detected\n", h->devname);
370 		break;
371 	case REPORT_LUNS_CHANGED:
372 		dev_warn(&h->pdev->dev,
373 			"%s: report LUN data changed\n", h->devname);
374 	/*
375 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
376 	 * target (array) devices.
377 	 */
378 		break;
379 	case POWER_OR_RESET:
380 		dev_warn(&h->pdev->dev,
381 			"%s: a power on or device reset detected\n",
382 			h->devname);
383 		break;
384 	case UNIT_ATTENTION_CLEARED:
385 		dev_warn(&h->pdev->dev,
386 			"%s: unit attention cleared by another initiator\n",
387 			h->devname);
388 		break;
389 	default:
390 		dev_warn(&h->pdev->dev,
391 			"%s: unknown unit attention detected\n",
392 			h->devname);
393 		break;
394 	}
395 	return 1;
396 }
397 
398 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
399 {
400 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
401 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
402 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
403 		return 0;
404 	dev_warn(&h->pdev->dev, HPSA "device busy");
405 	return 1;
406 }
407 
408 static u32 lockup_detected(struct ctlr_info *h);
409 static ssize_t host_show_lockup_detected(struct device *dev,
410 		struct device_attribute *attr, char *buf)
411 {
412 	int ld;
413 	struct ctlr_info *h;
414 	struct Scsi_Host *shost = class_to_shost(dev);
415 
416 	h = shost_to_hba(shost);
417 	ld = lockup_detected(h);
418 
419 	return sprintf(buf, "ld=%d\n", ld);
420 }
421 
422 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
423 					 struct device_attribute *attr,
424 					 const char *buf, size_t count)
425 {
426 	int status, len;
427 	struct ctlr_info *h;
428 	struct Scsi_Host *shost = class_to_shost(dev);
429 	char tmpbuf[10];
430 
431 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
432 		return -EACCES;
433 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
434 	strncpy(tmpbuf, buf, len);
435 	tmpbuf[len] = '\0';
436 	if (sscanf(tmpbuf, "%d", &status) != 1)
437 		return -EINVAL;
438 	h = shost_to_hba(shost);
439 	h->acciopath_status = !!status;
440 	dev_warn(&h->pdev->dev,
441 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
442 		h->acciopath_status ? "enabled" : "disabled");
443 	return count;
444 }
445 
446 static ssize_t host_store_raid_offload_debug(struct device *dev,
447 					 struct device_attribute *attr,
448 					 const char *buf, size_t count)
449 {
450 	int debug_level, len;
451 	struct ctlr_info *h;
452 	struct Scsi_Host *shost = class_to_shost(dev);
453 	char tmpbuf[10];
454 
455 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
456 		return -EACCES;
457 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
458 	strncpy(tmpbuf, buf, len);
459 	tmpbuf[len] = '\0';
460 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
461 		return -EINVAL;
462 	if (debug_level < 0)
463 		debug_level = 0;
464 	h = shost_to_hba(shost);
465 	h->raid_offload_debug = debug_level;
466 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
467 		h->raid_offload_debug);
468 	return count;
469 }
470 
471 static ssize_t host_store_rescan(struct device *dev,
472 				 struct device_attribute *attr,
473 				 const char *buf, size_t count)
474 {
475 	struct ctlr_info *h;
476 	struct Scsi_Host *shost = class_to_shost(dev);
477 	h = shost_to_hba(shost);
478 	hpsa_scan_start(h->scsi_host);
479 	return count;
480 }
481 
482 static ssize_t host_show_firmware_revision(struct device *dev,
483 	     struct device_attribute *attr, char *buf)
484 {
485 	struct ctlr_info *h;
486 	struct Scsi_Host *shost = class_to_shost(dev);
487 	unsigned char *fwrev;
488 
489 	h = shost_to_hba(shost);
490 	if (!h->hba_inquiry_data)
491 		return 0;
492 	fwrev = &h->hba_inquiry_data[32];
493 	return snprintf(buf, 20, "%c%c%c%c\n",
494 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
495 }
496 
497 static ssize_t host_show_commands_outstanding(struct device *dev,
498 	     struct device_attribute *attr, char *buf)
499 {
500 	struct Scsi_Host *shost = class_to_shost(dev);
501 	struct ctlr_info *h = shost_to_hba(shost);
502 
503 	return snprintf(buf, 20, "%d\n",
504 			atomic_read(&h->commands_outstanding));
505 }
506 
507 static ssize_t host_show_transport_mode(struct device *dev,
508 	struct device_attribute *attr, char *buf)
509 {
510 	struct ctlr_info *h;
511 	struct Scsi_Host *shost = class_to_shost(dev);
512 
513 	h = shost_to_hba(shost);
514 	return snprintf(buf, 20, "%s\n",
515 		h->transMethod & CFGTBL_Trans_Performant ?
516 			"performant" : "simple");
517 }
518 
519 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
520 	struct device_attribute *attr, char *buf)
521 {
522 	struct ctlr_info *h;
523 	struct Scsi_Host *shost = class_to_shost(dev);
524 
525 	h = shost_to_hba(shost);
526 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
527 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
528 }
529 
530 /* List of controllers which cannot be hard reset on kexec with reset_devices */
531 static u32 unresettable_controller[] = {
532 	0x324a103C, /* Smart Array P712m */
533 	0x324b103C, /* Smart Array P711m */
534 	0x3223103C, /* Smart Array P800 */
535 	0x3234103C, /* Smart Array P400 */
536 	0x3235103C, /* Smart Array P400i */
537 	0x3211103C, /* Smart Array E200i */
538 	0x3212103C, /* Smart Array E200 */
539 	0x3213103C, /* Smart Array E200i */
540 	0x3214103C, /* Smart Array E200i */
541 	0x3215103C, /* Smart Array E200i */
542 	0x3237103C, /* Smart Array E500 */
543 	0x323D103C, /* Smart Array P700m */
544 	0x40800E11, /* Smart Array 5i */
545 	0x409C0E11, /* Smart Array 6400 */
546 	0x409D0E11, /* Smart Array 6400 EM */
547 	0x40700E11, /* Smart Array 5300 */
548 	0x40820E11, /* Smart Array 532 */
549 	0x40830E11, /* Smart Array 5312 */
550 	0x409A0E11, /* Smart Array 641 */
551 	0x409B0E11, /* Smart Array 642 */
552 	0x40910E11, /* Smart Array 6i */
553 };
554 
555 /* List of controllers which cannot even be soft reset */
556 static u32 soft_unresettable_controller[] = {
557 	0x40800E11, /* Smart Array 5i */
558 	0x40700E11, /* Smart Array 5300 */
559 	0x40820E11, /* Smart Array 532 */
560 	0x40830E11, /* Smart Array 5312 */
561 	0x409A0E11, /* Smart Array 641 */
562 	0x409B0E11, /* Smart Array 642 */
563 	0x40910E11, /* Smart Array 6i */
564 	/* Exclude 640x boards.  These are two pci devices in one slot
565 	 * which share a battery backed cache module.  One controls the
566 	 * cache, the other accesses the cache through the one that controls
567 	 * it.  If we reset the one controlling the cache, the other will
568 	 * likely not be happy.  Just forbid resetting this conjoined mess.
569 	 * The 640x isn't really supported by hpsa anyway.
570 	 */
571 	0x409C0E11, /* Smart Array 6400 */
572 	0x409D0E11, /* Smart Array 6400 EM */
573 };
574 
575 static u32 needs_abort_tags_swizzled[] = {
576 	0x323D103C, /* Smart Array P700m */
577 	0x324a103C, /* Smart Array P712m */
578 	0x324b103C, /* SmartArray P711m */
579 };
580 
581 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
582 {
583 	int i;
584 
585 	for (i = 0; i < nelems; i++)
586 		if (a[i] == board_id)
587 			return 1;
588 	return 0;
589 }
590 
591 static int ctlr_is_hard_resettable(u32 board_id)
592 {
593 	return !board_id_in_array(unresettable_controller,
594 			ARRAY_SIZE(unresettable_controller), board_id);
595 }
596 
597 static int ctlr_is_soft_resettable(u32 board_id)
598 {
599 	return !board_id_in_array(soft_unresettable_controller,
600 			ARRAY_SIZE(soft_unresettable_controller), board_id);
601 }
602 
603 static int ctlr_is_resettable(u32 board_id)
604 {
605 	return ctlr_is_hard_resettable(board_id) ||
606 		ctlr_is_soft_resettable(board_id);
607 }
608 
609 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
610 {
611 	return board_id_in_array(needs_abort_tags_swizzled,
612 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
613 }
614 
615 static ssize_t host_show_resettable(struct device *dev,
616 	struct device_attribute *attr, char *buf)
617 {
618 	struct ctlr_info *h;
619 	struct Scsi_Host *shost = class_to_shost(dev);
620 
621 	h = shost_to_hba(shost);
622 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
623 }
624 
625 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
626 {
627 	return (scsi3addr[3] & 0xC0) == 0x40;
628 }
629 
630 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
631 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
632 };
633 #define HPSA_RAID_0	0
634 #define HPSA_RAID_4	1
635 #define HPSA_RAID_1	2	/* also used for RAID 10 */
636 #define HPSA_RAID_5	3	/* also used for RAID 50 */
637 #define HPSA_RAID_51	4
638 #define HPSA_RAID_6	5	/* also used for RAID 60 */
639 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
640 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
641 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
642 
643 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
644 {
645 	return !device->physical_device;
646 }
647 
648 static ssize_t raid_level_show(struct device *dev,
649 	     struct device_attribute *attr, char *buf)
650 {
651 	ssize_t l = 0;
652 	unsigned char rlevel;
653 	struct ctlr_info *h;
654 	struct scsi_device *sdev;
655 	struct hpsa_scsi_dev_t *hdev;
656 	unsigned long flags;
657 
658 	sdev = to_scsi_device(dev);
659 	h = sdev_to_hba(sdev);
660 	spin_lock_irqsave(&h->lock, flags);
661 	hdev = sdev->hostdata;
662 	if (!hdev) {
663 		spin_unlock_irqrestore(&h->lock, flags);
664 		return -ENODEV;
665 	}
666 
667 	/* Is this even a logical drive? */
668 	if (!is_logical_device(hdev)) {
669 		spin_unlock_irqrestore(&h->lock, flags);
670 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
671 		return l;
672 	}
673 
674 	rlevel = hdev->raid_level;
675 	spin_unlock_irqrestore(&h->lock, flags);
676 	if (rlevel > RAID_UNKNOWN)
677 		rlevel = RAID_UNKNOWN;
678 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
679 	return l;
680 }
681 
682 static ssize_t lunid_show(struct device *dev,
683 	     struct device_attribute *attr, char *buf)
684 {
685 	struct ctlr_info *h;
686 	struct scsi_device *sdev;
687 	struct hpsa_scsi_dev_t *hdev;
688 	unsigned long flags;
689 	unsigned char lunid[8];
690 
691 	sdev = to_scsi_device(dev);
692 	h = sdev_to_hba(sdev);
693 	spin_lock_irqsave(&h->lock, flags);
694 	hdev = sdev->hostdata;
695 	if (!hdev) {
696 		spin_unlock_irqrestore(&h->lock, flags);
697 		return -ENODEV;
698 	}
699 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
700 	spin_unlock_irqrestore(&h->lock, flags);
701 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
702 		lunid[0], lunid[1], lunid[2], lunid[3],
703 		lunid[4], lunid[5], lunid[6], lunid[7]);
704 }
705 
706 static ssize_t unique_id_show(struct device *dev,
707 	     struct device_attribute *attr, char *buf)
708 {
709 	struct ctlr_info *h;
710 	struct scsi_device *sdev;
711 	struct hpsa_scsi_dev_t *hdev;
712 	unsigned long flags;
713 	unsigned char sn[16];
714 
715 	sdev = to_scsi_device(dev);
716 	h = sdev_to_hba(sdev);
717 	spin_lock_irqsave(&h->lock, flags);
718 	hdev = sdev->hostdata;
719 	if (!hdev) {
720 		spin_unlock_irqrestore(&h->lock, flags);
721 		return -ENODEV;
722 	}
723 	memcpy(sn, hdev->device_id, sizeof(sn));
724 	spin_unlock_irqrestore(&h->lock, flags);
725 	return snprintf(buf, 16 * 2 + 2,
726 			"%02X%02X%02X%02X%02X%02X%02X%02X"
727 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
728 			sn[0], sn[1], sn[2], sn[3],
729 			sn[4], sn[5], sn[6], sn[7],
730 			sn[8], sn[9], sn[10], sn[11],
731 			sn[12], sn[13], sn[14], sn[15]);
732 }
733 
734 static ssize_t sas_address_show(struct device *dev,
735 	      struct device_attribute *attr, char *buf)
736 {
737 	struct ctlr_info *h;
738 	struct scsi_device *sdev;
739 	struct hpsa_scsi_dev_t *hdev;
740 	unsigned long flags;
741 	u64 sas_address;
742 
743 	sdev = to_scsi_device(dev);
744 	h = sdev_to_hba(sdev);
745 	spin_lock_irqsave(&h->lock, flags);
746 	hdev = sdev->hostdata;
747 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
748 		spin_unlock_irqrestore(&h->lock, flags);
749 		return -ENODEV;
750 	}
751 	sas_address = hdev->sas_address;
752 	spin_unlock_irqrestore(&h->lock, flags);
753 
754 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
755 }
756 
757 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
758 	     struct device_attribute *attr, char *buf)
759 {
760 	struct ctlr_info *h;
761 	struct scsi_device *sdev;
762 	struct hpsa_scsi_dev_t *hdev;
763 	unsigned long flags;
764 	int offload_enabled;
765 
766 	sdev = to_scsi_device(dev);
767 	h = sdev_to_hba(sdev);
768 	spin_lock_irqsave(&h->lock, flags);
769 	hdev = sdev->hostdata;
770 	if (!hdev) {
771 		spin_unlock_irqrestore(&h->lock, flags);
772 		return -ENODEV;
773 	}
774 	offload_enabled = hdev->offload_enabled;
775 	spin_unlock_irqrestore(&h->lock, flags);
776 	return snprintf(buf, 20, "%d\n", offload_enabled);
777 }
778 
779 #define MAX_PATHS 8
780 static ssize_t path_info_show(struct device *dev,
781 	     struct device_attribute *attr, char *buf)
782 {
783 	struct ctlr_info *h;
784 	struct scsi_device *sdev;
785 	struct hpsa_scsi_dev_t *hdev;
786 	unsigned long flags;
787 	int i;
788 	int output_len = 0;
789 	u8 box;
790 	u8 bay;
791 	u8 path_map_index = 0;
792 	char *active;
793 	unsigned char phys_connector[2];
794 
795 	sdev = to_scsi_device(dev);
796 	h = sdev_to_hba(sdev);
797 	spin_lock_irqsave(&h->devlock, flags);
798 	hdev = sdev->hostdata;
799 	if (!hdev) {
800 		spin_unlock_irqrestore(&h->devlock, flags);
801 		return -ENODEV;
802 	}
803 
804 	bay = hdev->bay;
805 	for (i = 0; i < MAX_PATHS; i++) {
806 		path_map_index = 1<<i;
807 		if (i == hdev->active_path_index)
808 			active = "Active";
809 		else if (hdev->path_map & path_map_index)
810 			active = "Inactive";
811 		else
812 			continue;
813 
814 		output_len += scnprintf(buf + output_len,
815 				PAGE_SIZE - output_len,
816 				"[%d:%d:%d:%d] %20.20s ",
817 				h->scsi_host->host_no,
818 				hdev->bus, hdev->target, hdev->lun,
819 				scsi_device_type(hdev->devtype));
820 
821 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
822 			output_len += scnprintf(buf + output_len,
823 						PAGE_SIZE - output_len,
824 						"%s\n", active);
825 			continue;
826 		}
827 
828 		box = hdev->box[i];
829 		memcpy(&phys_connector, &hdev->phys_connector[i],
830 			sizeof(phys_connector));
831 		if (phys_connector[0] < '0')
832 			phys_connector[0] = '0';
833 		if (phys_connector[1] < '0')
834 			phys_connector[1] = '0';
835 		output_len += scnprintf(buf + output_len,
836 				PAGE_SIZE - output_len,
837 				"PORT: %.2s ",
838 				phys_connector);
839 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
840 			hdev->expose_device) {
841 			if (box == 0 || box == 0xFF) {
842 				output_len += scnprintf(buf + output_len,
843 					PAGE_SIZE - output_len,
844 					"BAY: %hhu %s\n",
845 					bay, active);
846 			} else {
847 				output_len += scnprintf(buf + output_len,
848 					PAGE_SIZE - output_len,
849 					"BOX: %hhu BAY: %hhu %s\n",
850 					box, bay, active);
851 			}
852 		} else if (box != 0 && box != 0xFF) {
853 			output_len += scnprintf(buf + output_len,
854 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
855 				box, active);
856 		} else
857 			output_len += scnprintf(buf + output_len,
858 				PAGE_SIZE - output_len, "%s\n", active);
859 	}
860 
861 	spin_unlock_irqrestore(&h->devlock, flags);
862 	return output_len;
863 }
864 
865 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
866 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
867 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
868 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
869 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
870 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
871 			host_show_hp_ssd_smart_path_enabled, NULL);
872 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
873 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
874 		host_show_hp_ssd_smart_path_status,
875 		host_store_hp_ssd_smart_path_status);
876 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
877 			host_store_raid_offload_debug);
878 static DEVICE_ATTR(firmware_revision, S_IRUGO,
879 	host_show_firmware_revision, NULL);
880 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
881 	host_show_commands_outstanding, NULL);
882 static DEVICE_ATTR(transport_mode, S_IRUGO,
883 	host_show_transport_mode, NULL);
884 static DEVICE_ATTR(resettable, S_IRUGO,
885 	host_show_resettable, NULL);
886 static DEVICE_ATTR(lockup_detected, S_IRUGO,
887 	host_show_lockup_detected, NULL);
888 
889 static struct device_attribute *hpsa_sdev_attrs[] = {
890 	&dev_attr_raid_level,
891 	&dev_attr_lunid,
892 	&dev_attr_unique_id,
893 	&dev_attr_hp_ssd_smart_path_enabled,
894 	&dev_attr_path_info,
895 	&dev_attr_sas_address,
896 	NULL,
897 };
898 
899 static struct device_attribute *hpsa_shost_attrs[] = {
900 	&dev_attr_rescan,
901 	&dev_attr_firmware_revision,
902 	&dev_attr_commands_outstanding,
903 	&dev_attr_transport_mode,
904 	&dev_attr_resettable,
905 	&dev_attr_hp_ssd_smart_path_status,
906 	&dev_attr_raid_offload_debug,
907 	&dev_attr_lockup_detected,
908 	NULL,
909 };
910 
911 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
912 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
913 
914 static struct scsi_host_template hpsa_driver_template = {
915 	.module			= THIS_MODULE,
916 	.name			= HPSA,
917 	.proc_name		= HPSA,
918 	.queuecommand		= hpsa_scsi_queue_command,
919 	.scan_start		= hpsa_scan_start,
920 	.scan_finished		= hpsa_scan_finished,
921 	.change_queue_depth	= hpsa_change_queue_depth,
922 	.this_id		= -1,
923 	.use_clustering		= ENABLE_CLUSTERING,
924 	.eh_abort_handler	= hpsa_eh_abort_handler,
925 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
926 	.ioctl			= hpsa_ioctl,
927 	.slave_alloc		= hpsa_slave_alloc,
928 	.slave_configure	= hpsa_slave_configure,
929 	.slave_destroy		= hpsa_slave_destroy,
930 #ifdef CONFIG_COMPAT
931 	.compat_ioctl		= hpsa_compat_ioctl,
932 #endif
933 	.sdev_attrs = hpsa_sdev_attrs,
934 	.shost_attrs = hpsa_shost_attrs,
935 	.max_sectors = 8192,
936 	.no_write_same = 1,
937 };
938 
939 static inline u32 next_command(struct ctlr_info *h, u8 q)
940 {
941 	u32 a;
942 	struct reply_queue_buffer *rq = &h->reply_queue[q];
943 
944 	if (h->transMethod & CFGTBL_Trans_io_accel1)
945 		return h->access.command_completed(h, q);
946 
947 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
948 		return h->access.command_completed(h, q);
949 
950 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
951 		a = rq->head[rq->current_entry];
952 		rq->current_entry++;
953 		atomic_dec(&h->commands_outstanding);
954 	} else {
955 		a = FIFO_EMPTY;
956 	}
957 	/* Check for wraparound */
958 	if (rq->current_entry == h->max_commands) {
959 		rq->current_entry = 0;
960 		rq->wraparound ^= 1;
961 	}
962 	return a;
963 }
964 
965 /*
966  * There are some special bits in the bus address of the
967  * command that we have to set for the controller to know
968  * how to process the command:
969  *
970  * Normal performant mode:
971  * bit 0: 1 means performant mode, 0 means simple mode.
972  * bits 1-3 = block fetch table entry
973  * bits 4-6 = command type (== 0)
974  *
975  * ioaccel1 mode:
976  * bit 0 = "performant mode" bit.
977  * bits 1-3 = block fetch table entry
978  * bits 4-6 = command type (== 110)
979  * (command type is needed because ioaccel1 mode
980  * commands are submitted through the same register as normal
981  * mode commands, so this is how the controller knows whether
982  * the command is normal mode or ioaccel1 mode.)
983  *
984  * ioaccel2 mode:
985  * bit 0 = "performant mode" bit.
986  * bits 1-4 = block fetch table entry (note extra bit)
987  * bits 4-6 = not needed, because ioaccel2 mode has
988  * a separate special register for submitting commands.
989  */
990 
991 /*
992  * set_performant_mode: Modify the tag for cciss performant
993  * set bit 0 for pull model, bits 3-1 for block fetch
994  * register number
995  */
996 #define DEFAULT_REPLY_QUEUE (-1)
997 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
998 					int reply_queue)
999 {
1000 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1001 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1002 		if (unlikely(!h->msix_vector))
1003 			return;
1004 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1005 			c->Header.ReplyQueue =
1006 				raw_smp_processor_id() % h->nreply_queues;
1007 		else
1008 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1009 	}
1010 }
1011 
1012 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1013 						struct CommandList *c,
1014 						int reply_queue)
1015 {
1016 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1017 
1018 	/*
1019 	 * Tell the controller to post the reply to the queue for this
1020 	 * processor.  This seems to give the best I/O throughput.
1021 	 */
1022 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1023 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1024 	else
1025 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1026 	/*
1027 	 * Set the bits in the address sent down to include:
1028 	 *  - performant mode bit (bit 0)
1029 	 *  - pull count (bits 1-3)
1030 	 *  - command type (bits 4-6)
1031 	 */
1032 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1033 					IOACCEL1_BUSADDR_CMDTYPE;
1034 }
1035 
1036 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1037 						struct CommandList *c,
1038 						int reply_queue)
1039 {
1040 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1041 		&h->ioaccel2_cmd_pool[c->cmdindex];
1042 
1043 	/* Tell the controller to post the reply to the queue for this
1044 	 * processor.  This seems to give the best I/O throughput.
1045 	 */
1046 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1047 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1048 	else
1049 		cp->reply_queue = reply_queue % h->nreply_queues;
1050 	/* Set the bits in the address sent down to include:
1051 	 *  - performant mode bit not used in ioaccel mode 2
1052 	 *  - pull count (bits 0-3)
1053 	 *  - command type isn't needed for ioaccel2
1054 	 */
1055 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1056 }
1057 
1058 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1059 						struct CommandList *c,
1060 						int reply_queue)
1061 {
1062 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1063 
1064 	/*
1065 	 * Tell the controller to post the reply to the queue for this
1066 	 * processor.  This seems to give the best I/O throughput.
1067 	 */
1068 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1069 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1070 	else
1071 		cp->reply_queue = reply_queue % h->nreply_queues;
1072 	/*
1073 	 * Set the bits in the address sent down to include:
1074 	 *  - performant mode bit not used in ioaccel mode 2
1075 	 *  - pull count (bits 0-3)
1076 	 *  - command type isn't needed for ioaccel2
1077 	 */
1078 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1079 }
1080 
1081 static int is_firmware_flash_cmd(u8 *cdb)
1082 {
1083 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1084 }
1085 
1086 /*
1087  * During firmware flash, the heartbeat register may not update as frequently
1088  * as it should.  So we dial down lockup detection during firmware flash. and
1089  * dial it back up when firmware flash completes.
1090  */
1091 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1092 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1093 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1094 		struct CommandList *c)
1095 {
1096 	if (!is_firmware_flash_cmd(c->Request.CDB))
1097 		return;
1098 	atomic_inc(&h->firmware_flash_in_progress);
1099 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1100 }
1101 
1102 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1103 		struct CommandList *c)
1104 {
1105 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1106 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1107 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1108 }
1109 
1110 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1111 	struct CommandList *c, int reply_queue)
1112 {
1113 	dial_down_lockup_detection_during_fw_flash(h, c);
1114 	atomic_inc(&h->commands_outstanding);
1115 	switch (c->cmd_type) {
1116 	case CMD_IOACCEL1:
1117 		set_ioaccel1_performant_mode(h, c, reply_queue);
1118 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1119 		break;
1120 	case CMD_IOACCEL2:
1121 		set_ioaccel2_performant_mode(h, c, reply_queue);
1122 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1123 		break;
1124 	case IOACCEL2_TMF:
1125 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1126 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1127 		break;
1128 	default:
1129 		set_performant_mode(h, c, reply_queue);
1130 		h->access.submit_command(h, c);
1131 	}
1132 }
1133 
1134 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1135 {
1136 	if (unlikely(hpsa_is_pending_event(c)))
1137 		return finish_cmd(c);
1138 
1139 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1140 }
1141 
1142 static inline int is_hba_lunid(unsigned char scsi3addr[])
1143 {
1144 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1145 }
1146 
1147 static inline int is_scsi_rev_5(struct ctlr_info *h)
1148 {
1149 	if (!h->hba_inquiry_data)
1150 		return 0;
1151 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1152 		return 1;
1153 	return 0;
1154 }
1155 
1156 static int hpsa_find_target_lun(struct ctlr_info *h,
1157 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1158 {
1159 	/* finds an unused bus, target, lun for a new physical device
1160 	 * assumes h->devlock is held
1161 	 */
1162 	int i, found = 0;
1163 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1164 
1165 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1166 
1167 	for (i = 0; i < h->ndevices; i++) {
1168 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1169 			__set_bit(h->dev[i]->target, lun_taken);
1170 	}
1171 
1172 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1173 	if (i < HPSA_MAX_DEVICES) {
1174 		/* *bus = 1; */
1175 		*target = i;
1176 		*lun = 0;
1177 		found = 1;
1178 	}
1179 	return !found;
1180 }
1181 
1182 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1183 	struct hpsa_scsi_dev_t *dev, char *description)
1184 {
1185 #define LABEL_SIZE 25
1186 	char label[LABEL_SIZE];
1187 
1188 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1189 		return;
1190 
1191 	switch (dev->devtype) {
1192 	case TYPE_RAID:
1193 		snprintf(label, LABEL_SIZE, "controller");
1194 		break;
1195 	case TYPE_ENCLOSURE:
1196 		snprintf(label, LABEL_SIZE, "enclosure");
1197 		break;
1198 	case TYPE_DISK:
1199 	case TYPE_ZBC:
1200 		if (dev->external)
1201 			snprintf(label, LABEL_SIZE, "external");
1202 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1203 			snprintf(label, LABEL_SIZE, "%s",
1204 				raid_label[PHYSICAL_DRIVE]);
1205 		else
1206 			snprintf(label, LABEL_SIZE, "RAID-%s",
1207 				dev->raid_level > RAID_UNKNOWN ? "?" :
1208 				raid_label[dev->raid_level]);
1209 		break;
1210 	case TYPE_ROM:
1211 		snprintf(label, LABEL_SIZE, "rom");
1212 		break;
1213 	case TYPE_TAPE:
1214 		snprintf(label, LABEL_SIZE, "tape");
1215 		break;
1216 	case TYPE_MEDIUM_CHANGER:
1217 		snprintf(label, LABEL_SIZE, "changer");
1218 		break;
1219 	default:
1220 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1221 		break;
1222 	}
1223 
1224 	dev_printk(level, &h->pdev->dev,
1225 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1226 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1227 			description,
1228 			scsi_device_type(dev->devtype),
1229 			dev->vendor,
1230 			dev->model,
1231 			label,
1232 			dev->offload_config ? '+' : '-',
1233 			dev->offload_enabled ? '+' : '-',
1234 			dev->expose_device);
1235 }
1236 
1237 /* Add an entry into h->dev[] array. */
1238 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1239 		struct hpsa_scsi_dev_t *device,
1240 		struct hpsa_scsi_dev_t *added[], int *nadded)
1241 {
1242 	/* assumes h->devlock is held */
1243 	int n = h->ndevices;
1244 	int i;
1245 	unsigned char addr1[8], addr2[8];
1246 	struct hpsa_scsi_dev_t *sd;
1247 
1248 	if (n >= HPSA_MAX_DEVICES) {
1249 		dev_err(&h->pdev->dev, "too many devices, some will be "
1250 			"inaccessible.\n");
1251 		return -1;
1252 	}
1253 
1254 	/* physical devices do not have lun or target assigned until now. */
1255 	if (device->lun != -1)
1256 		/* Logical device, lun is already assigned. */
1257 		goto lun_assigned;
1258 
1259 	/* If this device a non-zero lun of a multi-lun device
1260 	 * byte 4 of the 8-byte LUN addr will contain the logical
1261 	 * unit no, zero otherwise.
1262 	 */
1263 	if (device->scsi3addr[4] == 0) {
1264 		/* This is not a non-zero lun of a multi-lun device */
1265 		if (hpsa_find_target_lun(h, device->scsi3addr,
1266 			device->bus, &device->target, &device->lun) != 0)
1267 			return -1;
1268 		goto lun_assigned;
1269 	}
1270 
1271 	/* This is a non-zero lun of a multi-lun device.
1272 	 * Search through our list and find the device which
1273 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1274 	 * Assign the same bus and target for this new LUN.
1275 	 * Use the logical unit number from the firmware.
1276 	 */
1277 	memcpy(addr1, device->scsi3addr, 8);
1278 	addr1[4] = 0;
1279 	addr1[5] = 0;
1280 	for (i = 0; i < n; i++) {
1281 		sd = h->dev[i];
1282 		memcpy(addr2, sd->scsi3addr, 8);
1283 		addr2[4] = 0;
1284 		addr2[5] = 0;
1285 		/* differ only in byte 4 and 5? */
1286 		if (memcmp(addr1, addr2, 8) == 0) {
1287 			device->bus = sd->bus;
1288 			device->target = sd->target;
1289 			device->lun = device->scsi3addr[4];
1290 			break;
1291 		}
1292 	}
1293 	if (device->lun == -1) {
1294 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1295 			" suspect firmware bug or unsupported hardware "
1296 			"configuration.\n");
1297 			return -1;
1298 	}
1299 
1300 lun_assigned:
1301 
1302 	h->dev[n] = device;
1303 	h->ndevices++;
1304 	added[*nadded] = device;
1305 	(*nadded)++;
1306 	hpsa_show_dev_msg(KERN_INFO, h, device,
1307 		device->expose_device ? "added" : "masked");
1308 	device->offload_to_be_enabled = device->offload_enabled;
1309 	device->offload_enabled = 0;
1310 	return 0;
1311 }
1312 
1313 /* Update an entry in h->dev[] array. */
1314 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1315 	int entry, struct hpsa_scsi_dev_t *new_entry)
1316 {
1317 	int offload_enabled;
1318 	/* assumes h->devlock is held */
1319 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1320 
1321 	/* Raid level changed. */
1322 	h->dev[entry]->raid_level = new_entry->raid_level;
1323 
1324 	/* Raid offload parameters changed.  Careful about the ordering. */
1325 	if (new_entry->offload_config && new_entry->offload_enabled) {
1326 		/*
1327 		 * if drive is newly offload_enabled, we want to copy the
1328 		 * raid map data first.  If previously offload_enabled and
1329 		 * offload_config were set, raid map data had better be
1330 		 * the same as it was before.  if raid map data is changed
1331 		 * then it had better be the case that
1332 		 * h->dev[entry]->offload_enabled is currently 0.
1333 		 */
1334 		h->dev[entry]->raid_map = new_entry->raid_map;
1335 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1336 	}
1337 	if (new_entry->hba_ioaccel_enabled) {
1338 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1339 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1340 	}
1341 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1342 	h->dev[entry]->offload_config = new_entry->offload_config;
1343 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1344 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1345 
1346 	/*
1347 	 * We can turn off ioaccel offload now, but need to delay turning
1348 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1349 	 * can't do that until all the devices are updated.
1350 	 */
1351 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1352 	if (!new_entry->offload_enabled)
1353 		h->dev[entry]->offload_enabled = 0;
1354 
1355 	offload_enabled = h->dev[entry]->offload_enabled;
1356 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1357 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1358 	h->dev[entry]->offload_enabled = offload_enabled;
1359 }
1360 
1361 /* Replace an entry from h->dev[] array. */
1362 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1363 	int entry, struct hpsa_scsi_dev_t *new_entry,
1364 	struct hpsa_scsi_dev_t *added[], int *nadded,
1365 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1366 {
1367 	/* assumes h->devlock is held */
1368 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1369 	removed[*nremoved] = h->dev[entry];
1370 	(*nremoved)++;
1371 
1372 	/*
1373 	 * New physical devices won't have target/lun assigned yet
1374 	 * so we need to preserve the values in the slot we are replacing.
1375 	 */
1376 	if (new_entry->target == -1) {
1377 		new_entry->target = h->dev[entry]->target;
1378 		new_entry->lun = h->dev[entry]->lun;
1379 	}
1380 
1381 	h->dev[entry] = new_entry;
1382 	added[*nadded] = new_entry;
1383 	(*nadded)++;
1384 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1385 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1386 	new_entry->offload_enabled = 0;
1387 }
1388 
1389 /* Remove an entry from h->dev[] array. */
1390 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1391 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1392 {
1393 	/* assumes h->devlock is held */
1394 	int i;
1395 	struct hpsa_scsi_dev_t *sd;
1396 
1397 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1398 
1399 	sd = h->dev[entry];
1400 	removed[*nremoved] = h->dev[entry];
1401 	(*nremoved)++;
1402 
1403 	for (i = entry; i < h->ndevices-1; i++)
1404 		h->dev[i] = h->dev[i+1];
1405 	h->ndevices--;
1406 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1407 }
1408 
1409 #define SCSI3ADDR_EQ(a, b) ( \
1410 	(a)[7] == (b)[7] && \
1411 	(a)[6] == (b)[6] && \
1412 	(a)[5] == (b)[5] && \
1413 	(a)[4] == (b)[4] && \
1414 	(a)[3] == (b)[3] && \
1415 	(a)[2] == (b)[2] && \
1416 	(a)[1] == (b)[1] && \
1417 	(a)[0] == (b)[0])
1418 
1419 static void fixup_botched_add(struct ctlr_info *h,
1420 	struct hpsa_scsi_dev_t *added)
1421 {
1422 	/* called when scsi_add_device fails in order to re-adjust
1423 	 * h->dev[] to match the mid layer's view.
1424 	 */
1425 	unsigned long flags;
1426 	int i, j;
1427 
1428 	spin_lock_irqsave(&h->lock, flags);
1429 	for (i = 0; i < h->ndevices; i++) {
1430 		if (h->dev[i] == added) {
1431 			for (j = i; j < h->ndevices-1; j++)
1432 				h->dev[j] = h->dev[j+1];
1433 			h->ndevices--;
1434 			break;
1435 		}
1436 	}
1437 	spin_unlock_irqrestore(&h->lock, flags);
1438 	kfree(added);
1439 }
1440 
1441 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1442 	struct hpsa_scsi_dev_t *dev2)
1443 {
1444 	/* we compare everything except lun and target as these
1445 	 * are not yet assigned.  Compare parts likely
1446 	 * to differ first
1447 	 */
1448 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1449 		sizeof(dev1->scsi3addr)) != 0)
1450 		return 0;
1451 	if (memcmp(dev1->device_id, dev2->device_id,
1452 		sizeof(dev1->device_id)) != 0)
1453 		return 0;
1454 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1455 		return 0;
1456 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1457 		return 0;
1458 	if (dev1->devtype != dev2->devtype)
1459 		return 0;
1460 	if (dev1->bus != dev2->bus)
1461 		return 0;
1462 	return 1;
1463 }
1464 
1465 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1466 	struct hpsa_scsi_dev_t *dev2)
1467 {
1468 	/* Device attributes that can change, but don't mean
1469 	 * that the device is a different device, nor that the OS
1470 	 * needs to be told anything about the change.
1471 	 */
1472 	if (dev1->raid_level != dev2->raid_level)
1473 		return 1;
1474 	if (dev1->offload_config != dev2->offload_config)
1475 		return 1;
1476 	if (dev1->offload_enabled != dev2->offload_enabled)
1477 		return 1;
1478 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1479 		if (dev1->queue_depth != dev2->queue_depth)
1480 			return 1;
1481 	return 0;
1482 }
1483 
1484 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1485  * and return needle location in *index.  If scsi3addr matches, but not
1486  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1487  * location in *index.
1488  * In the case of a minor device attribute change, such as RAID level, just
1489  * return DEVICE_UPDATED, along with the updated device's location in index.
1490  * If needle not found, return DEVICE_NOT_FOUND.
1491  */
1492 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1493 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1494 	int *index)
1495 {
1496 	int i;
1497 #define DEVICE_NOT_FOUND 0
1498 #define DEVICE_CHANGED 1
1499 #define DEVICE_SAME 2
1500 #define DEVICE_UPDATED 3
1501 	if (needle == NULL)
1502 		return DEVICE_NOT_FOUND;
1503 
1504 	for (i = 0; i < haystack_size; i++) {
1505 		if (haystack[i] == NULL) /* previously removed. */
1506 			continue;
1507 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1508 			*index = i;
1509 			if (device_is_the_same(needle, haystack[i])) {
1510 				if (device_updated(needle, haystack[i]))
1511 					return DEVICE_UPDATED;
1512 				return DEVICE_SAME;
1513 			} else {
1514 				/* Keep offline devices offline */
1515 				if (needle->volume_offline)
1516 					return DEVICE_NOT_FOUND;
1517 				return DEVICE_CHANGED;
1518 			}
1519 		}
1520 	}
1521 	*index = -1;
1522 	return DEVICE_NOT_FOUND;
1523 }
1524 
1525 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1526 					unsigned char scsi3addr[])
1527 {
1528 	struct offline_device_entry *device;
1529 	unsigned long flags;
1530 
1531 	/* Check to see if device is already on the list */
1532 	spin_lock_irqsave(&h->offline_device_lock, flags);
1533 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1534 		if (memcmp(device->scsi3addr, scsi3addr,
1535 			sizeof(device->scsi3addr)) == 0) {
1536 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1537 			return;
1538 		}
1539 	}
1540 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1541 
1542 	/* Device is not on the list, add it. */
1543 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1544 	if (!device) {
1545 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1546 		return;
1547 	}
1548 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1549 	spin_lock_irqsave(&h->offline_device_lock, flags);
1550 	list_add_tail(&device->offline_list, &h->offline_device_list);
1551 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1552 }
1553 
1554 /* Print a message explaining various offline volume states */
1555 static void hpsa_show_volume_status(struct ctlr_info *h,
1556 	struct hpsa_scsi_dev_t *sd)
1557 {
1558 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1559 		dev_info(&h->pdev->dev,
1560 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1561 			h->scsi_host->host_no,
1562 			sd->bus, sd->target, sd->lun);
1563 	switch (sd->volume_offline) {
1564 	case HPSA_LV_OK:
1565 		break;
1566 	case HPSA_LV_UNDERGOING_ERASE:
1567 		dev_info(&h->pdev->dev,
1568 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1569 			h->scsi_host->host_no,
1570 			sd->bus, sd->target, sd->lun);
1571 		break;
1572 	case HPSA_LV_NOT_AVAILABLE:
1573 		dev_info(&h->pdev->dev,
1574 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1575 			h->scsi_host->host_no,
1576 			sd->bus, sd->target, sd->lun);
1577 		break;
1578 	case HPSA_LV_UNDERGOING_RPI:
1579 		dev_info(&h->pdev->dev,
1580 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1581 			h->scsi_host->host_no,
1582 			sd->bus, sd->target, sd->lun);
1583 		break;
1584 	case HPSA_LV_PENDING_RPI:
1585 		dev_info(&h->pdev->dev,
1586 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1587 			h->scsi_host->host_no,
1588 			sd->bus, sd->target, sd->lun);
1589 		break;
1590 	case HPSA_LV_ENCRYPTED_NO_KEY:
1591 		dev_info(&h->pdev->dev,
1592 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1593 			h->scsi_host->host_no,
1594 			sd->bus, sd->target, sd->lun);
1595 		break;
1596 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1597 		dev_info(&h->pdev->dev,
1598 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1599 			h->scsi_host->host_no,
1600 			sd->bus, sd->target, sd->lun);
1601 		break;
1602 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1603 		dev_info(&h->pdev->dev,
1604 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1605 			h->scsi_host->host_no,
1606 			sd->bus, sd->target, sd->lun);
1607 		break;
1608 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1609 		dev_info(&h->pdev->dev,
1610 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1611 			h->scsi_host->host_no,
1612 			sd->bus, sd->target, sd->lun);
1613 		break;
1614 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1615 		dev_info(&h->pdev->dev,
1616 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1617 			h->scsi_host->host_no,
1618 			sd->bus, sd->target, sd->lun);
1619 		break;
1620 	case HPSA_LV_PENDING_ENCRYPTION:
1621 		dev_info(&h->pdev->dev,
1622 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1623 			h->scsi_host->host_no,
1624 			sd->bus, sd->target, sd->lun);
1625 		break;
1626 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1627 		dev_info(&h->pdev->dev,
1628 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1629 			h->scsi_host->host_no,
1630 			sd->bus, sd->target, sd->lun);
1631 		break;
1632 	}
1633 }
1634 
1635 /*
1636  * Figure the list of physical drive pointers for a logical drive with
1637  * raid offload configured.
1638  */
1639 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1640 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1641 				struct hpsa_scsi_dev_t *logical_drive)
1642 {
1643 	struct raid_map_data *map = &logical_drive->raid_map;
1644 	struct raid_map_disk_data *dd = &map->data[0];
1645 	int i, j;
1646 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1647 				le16_to_cpu(map->metadata_disks_per_row);
1648 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1649 				le16_to_cpu(map->layout_map_count) *
1650 				total_disks_per_row;
1651 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1652 				total_disks_per_row;
1653 	int qdepth;
1654 
1655 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1656 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1657 
1658 	logical_drive->nphysical_disks = nraid_map_entries;
1659 
1660 	qdepth = 0;
1661 	for (i = 0; i < nraid_map_entries; i++) {
1662 		logical_drive->phys_disk[i] = NULL;
1663 		if (!logical_drive->offload_config)
1664 			continue;
1665 		for (j = 0; j < ndevices; j++) {
1666 			if (dev[j] == NULL)
1667 				continue;
1668 			if (dev[j]->devtype != TYPE_DISK &&
1669 			    dev[j]->devtype != TYPE_ZBC)
1670 				continue;
1671 			if (is_logical_device(dev[j]))
1672 				continue;
1673 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1674 				continue;
1675 
1676 			logical_drive->phys_disk[i] = dev[j];
1677 			if (i < nphys_disk)
1678 				qdepth = min(h->nr_cmds, qdepth +
1679 				    logical_drive->phys_disk[i]->queue_depth);
1680 			break;
1681 		}
1682 
1683 		/*
1684 		 * This can happen if a physical drive is removed and
1685 		 * the logical drive is degraded.  In that case, the RAID
1686 		 * map data will refer to a physical disk which isn't actually
1687 		 * present.  And in that case offload_enabled should already
1688 		 * be 0, but we'll turn it off here just in case
1689 		 */
1690 		if (!logical_drive->phys_disk[i]) {
1691 			logical_drive->offload_enabled = 0;
1692 			logical_drive->offload_to_be_enabled = 0;
1693 			logical_drive->queue_depth = 8;
1694 		}
1695 	}
1696 	if (nraid_map_entries)
1697 		/*
1698 		 * This is correct for reads, too high for full stripe writes,
1699 		 * way too high for partial stripe writes
1700 		 */
1701 		logical_drive->queue_depth = qdepth;
1702 	else
1703 		logical_drive->queue_depth = h->nr_cmds;
1704 }
1705 
1706 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1707 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1708 {
1709 	int i;
1710 
1711 	for (i = 0; i < ndevices; i++) {
1712 		if (dev[i] == NULL)
1713 			continue;
1714 		if (dev[i]->devtype != TYPE_DISK &&
1715 		    dev[i]->devtype != TYPE_ZBC)
1716 			continue;
1717 		if (!is_logical_device(dev[i]))
1718 			continue;
1719 
1720 		/*
1721 		 * If offload is currently enabled, the RAID map and
1722 		 * phys_disk[] assignment *better* not be changing
1723 		 * and since it isn't changing, we do not need to
1724 		 * update it.
1725 		 */
1726 		if (dev[i]->offload_enabled)
1727 			continue;
1728 
1729 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1730 	}
1731 }
1732 
1733 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1734 {
1735 	int rc = 0;
1736 
1737 	if (!h->scsi_host)
1738 		return 1;
1739 
1740 	if (is_logical_device(device)) /* RAID */
1741 		rc = scsi_add_device(h->scsi_host, device->bus,
1742 					device->target, device->lun);
1743 	else /* HBA */
1744 		rc = hpsa_add_sas_device(h->sas_host, device);
1745 
1746 	return rc;
1747 }
1748 
1749 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1750 						struct hpsa_scsi_dev_t *dev)
1751 {
1752 	int i;
1753 	int count = 0;
1754 
1755 	for (i = 0; i < h->nr_cmds; i++) {
1756 		struct CommandList *c = h->cmd_pool + i;
1757 		int refcount = atomic_inc_return(&c->refcount);
1758 
1759 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1760 				dev->scsi3addr)) {
1761 			unsigned long flags;
1762 
1763 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1764 			if (!hpsa_is_cmd_idle(c))
1765 				++count;
1766 			spin_unlock_irqrestore(&h->lock, flags);
1767 		}
1768 
1769 		cmd_free(h, c);
1770 	}
1771 
1772 	return count;
1773 }
1774 
1775 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1776 						struct hpsa_scsi_dev_t *device)
1777 {
1778 	int cmds = 0;
1779 	int waits = 0;
1780 
1781 	while (1) {
1782 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1783 		if (cmds == 0)
1784 			break;
1785 		if (++waits > 20)
1786 			break;
1787 		dev_warn(&h->pdev->dev,
1788 			"%s: removing device with %d outstanding commands!\n",
1789 			__func__, cmds);
1790 		msleep(1000);
1791 	}
1792 }
1793 
1794 static void hpsa_remove_device(struct ctlr_info *h,
1795 			struct hpsa_scsi_dev_t *device)
1796 {
1797 	struct scsi_device *sdev = NULL;
1798 
1799 	if (!h->scsi_host)
1800 		return;
1801 
1802 	if (is_logical_device(device)) { /* RAID */
1803 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1804 						device->target, device->lun);
1805 		if (sdev) {
1806 			scsi_remove_device(sdev);
1807 			scsi_device_put(sdev);
1808 		} else {
1809 			/*
1810 			 * We don't expect to get here.  Future commands
1811 			 * to this device will get a selection timeout as
1812 			 * if the device were gone.
1813 			 */
1814 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1815 					"didn't find device for removal.");
1816 		}
1817 	} else { /* HBA */
1818 
1819 		device->removed = 1;
1820 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1821 
1822 		hpsa_remove_sas_device(device);
1823 	}
1824 }
1825 
1826 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1827 	struct hpsa_scsi_dev_t *sd[], int nsds)
1828 {
1829 	/* sd contains scsi3 addresses and devtypes, and inquiry
1830 	 * data.  This function takes what's in sd to be the current
1831 	 * reality and updates h->dev[] to reflect that reality.
1832 	 */
1833 	int i, entry, device_change, changes = 0;
1834 	struct hpsa_scsi_dev_t *csd;
1835 	unsigned long flags;
1836 	struct hpsa_scsi_dev_t **added, **removed;
1837 	int nadded, nremoved;
1838 
1839 	/*
1840 	 * A reset can cause a device status to change
1841 	 * re-schedule the scan to see what happened.
1842 	 */
1843 	if (h->reset_in_progress) {
1844 		h->drv_req_rescan = 1;
1845 		return;
1846 	}
1847 
1848 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1849 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1850 
1851 	if (!added || !removed) {
1852 		dev_warn(&h->pdev->dev, "out of memory in "
1853 			"adjust_hpsa_scsi_table\n");
1854 		goto free_and_out;
1855 	}
1856 
1857 	spin_lock_irqsave(&h->devlock, flags);
1858 
1859 	/* find any devices in h->dev[] that are not in
1860 	 * sd[] and remove them from h->dev[], and for any
1861 	 * devices which have changed, remove the old device
1862 	 * info and add the new device info.
1863 	 * If minor device attributes change, just update
1864 	 * the existing device structure.
1865 	 */
1866 	i = 0;
1867 	nremoved = 0;
1868 	nadded = 0;
1869 	while (i < h->ndevices) {
1870 		csd = h->dev[i];
1871 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1872 		if (device_change == DEVICE_NOT_FOUND) {
1873 			changes++;
1874 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1875 			continue; /* remove ^^^, hence i not incremented */
1876 		} else if (device_change == DEVICE_CHANGED) {
1877 			changes++;
1878 			hpsa_scsi_replace_entry(h, i, sd[entry],
1879 				added, &nadded, removed, &nremoved);
1880 			/* Set it to NULL to prevent it from being freed
1881 			 * at the bottom of hpsa_update_scsi_devices()
1882 			 */
1883 			sd[entry] = NULL;
1884 		} else if (device_change == DEVICE_UPDATED) {
1885 			hpsa_scsi_update_entry(h, i, sd[entry]);
1886 		}
1887 		i++;
1888 	}
1889 
1890 	/* Now, make sure every device listed in sd[] is also
1891 	 * listed in h->dev[], adding them if they aren't found
1892 	 */
1893 
1894 	for (i = 0; i < nsds; i++) {
1895 		if (!sd[i]) /* if already added above. */
1896 			continue;
1897 
1898 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1899 		 * as the SCSI mid-layer does not handle such devices well.
1900 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1901 		 * at 160Hz, and prevents the system from coming up.
1902 		 */
1903 		if (sd[i]->volume_offline) {
1904 			hpsa_show_volume_status(h, sd[i]);
1905 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1906 			continue;
1907 		}
1908 
1909 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1910 					h->ndevices, &entry);
1911 		if (device_change == DEVICE_NOT_FOUND) {
1912 			changes++;
1913 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1914 				break;
1915 			sd[i] = NULL; /* prevent from being freed later. */
1916 		} else if (device_change == DEVICE_CHANGED) {
1917 			/* should never happen... */
1918 			changes++;
1919 			dev_warn(&h->pdev->dev,
1920 				"device unexpectedly changed.\n");
1921 			/* but if it does happen, we just ignore that device */
1922 		}
1923 	}
1924 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1925 
1926 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1927 	 * any logical drives that need it enabled.
1928 	 */
1929 	for (i = 0; i < h->ndevices; i++) {
1930 		if (h->dev[i] == NULL)
1931 			continue;
1932 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1933 	}
1934 
1935 	spin_unlock_irqrestore(&h->devlock, flags);
1936 
1937 	/* Monitor devices which are in one of several NOT READY states to be
1938 	 * brought online later. This must be done without holding h->devlock,
1939 	 * so don't touch h->dev[]
1940 	 */
1941 	for (i = 0; i < nsds; i++) {
1942 		if (!sd[i]) /* if already added above. */
1943 			continue;
1944 		if (sd[i]->volume_offline)
1945 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1946 	}
1947 
1948 	/* Don't notify scsi mid layer of any changes the first time through
1949 	 * (or if there are no changes) scsi_scan_host will do it later the
1950 	 * first time through.
1951 	 */
1952 	if (!changes)
1953 		goto free_and_out;
1954 
1955 	/* Notify scsi mid layer of any removed devices */
1956 	for (i = 0; i < nremoved; i++) {
1957 		if (removed[i] == NULL)
1958 			continue;
1959 		if (removed[i]->expose_device)
1960 			hpsa_remove_device(h, removed[i]);
1961 		kfree(removed[i]);
1962 		removed[i] = NULL;
1963 	}
1964 
1965 	/* Notify scsi mid layer of any added devices */
1966 	for (i = 0; i < nadded; i++) {
1967 		int rc = 0;
1968 
1969 		if (added[i] == NULL)
1970 			continue;
1971 		if (!(added[i]->expose_device))
1972 			continue;
1973 		rc = hpsa_add_device(h, added[i]);
1974 		if (!rc)
1975 			continue;
1976 		dev_warn(&h->pdev->dev,
1977 			"addition failed %d, device not added.", rc);
1978 		/* now we have to remove it from h->dev,
1979 		 * since it didn't get added to scsi mid layer
1980 		 */
1981 		fixup_botched_add(h, added[i]);
1982 		h->drv_req_rescan = 1;
1983 	}
1984 
1985 free_and_out:
1986 	kfree(added);
1987 	kfree(removed);
1988 }
1989 
1990 /*
1991  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1992  * Assume's h->devlock is held.
1993  */
1994 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1995 	int bus, int target, int lun)
1996 {
1997 	int i;
1998 	struct hpsa_scsi_dev_t *sd;
1999 
2000 	for (i = 0; i < h->ndevices; i++) {
2001 		sd = h->dev[i];
2002 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2003 			return sd;
2004 	}
2005 	return NULL;
2006 }
2007 
2008 static int hpsa_slave_alloc(struct scsi_device *sdev)
2009 {
2010 	struct hpsa_scsi_dev_t *sd;
2011 	unsigned long flags;
2012 	struct ctlr_info *h;
2013 
2014 	h = sdev_to_hba(sdev);
2015 	spin_lock_irqsave(&h->devlock, flags);
2016 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2017 		struct scsi_target *starget;
2018 		struct sas_rphy *rphy;
2019 
2020 		starget = scsi_target(sdev);
2021 		rphy = target_to_rphy(starget);
2022 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2023 		if (sd) {
2024 			sd->target = sdev_id(sdev);
2025 			sd->lun = sdev->lun;
2026 		}
2027 	} else
2028 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2029 					sdev_id(sdev), sdev->lun);
2030 
2031 	if (sd && sd->expose_device) {
2032 		atomic_set(&sd->ioaccel_cmds_out, 0);
2033 		sdev->hostdata = sd;
2034 	} else
2035 		sdev->hostdata = NULL;
2036 	spin_unlock_irqrestore(&h->devlock, flags);
2037 	return 0;
2038 }
2039 
2040 /* configure scsi device based on internal per-device structure */
2041 static int hpsa_slave_configure(struct scsi_device *sdev)
2042 {
2043 	struct hpsa_scsi_dev_t *sd;
2044 	int queue_depth;
2045 
2046 	sd = sdev->hostdata;
2047 	sdev->no_uld_attach = !sd || !sd->expose_device;
2048 
2049 	if (sd)
2050 		queue_depth = sd->queue_depth != 0 ?
2051 			sd->queue_depth : sdev->host->can_queue;
2052 	else
2053 		queue_depth = sdev->host->can_queue;
2054 
2055 	scsi_change_queue_depth(sdev, queue_depth);
2056 
2057 	return 0;
2058 }
2059 
2060 static void hpsa_slave_destroy(struct scsi_device *sdev)
2061 {
2062 	/* nothing to do. */
2063 }
2064 
2065 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2066 {
2067 	int i;
2068 
2069 	if (!h->ioaccel2_cmd_sg_list)
2070 		return;
2071 	for (i = 0; i < h->nr_cmds; i++) {
2072 		kfree(h->ioaccel2_cmd_sg_list[i]);
2073 		h->ioaccel2_cmd_sg_list[i] = NULL;
2074 	}
2075 	kfree(h->ioaccel2_cmd_sg_list);
2076 	h->ioaccel2_cmd_sg_list = NULL;
2077 }
2078 
2079 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2080 {
2081 	int i;
2082 
2083 	if (h->chainsize <= 0)
2084 		return 0;
2085 
2086 	h->ioaccel2_cmd_sg_list =
2087 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2088 					GFP_KERNEL);
2089 	if (!h->ioaccel2_cmd_sg_list)
2090 		return -ENOMEM;
2091 	for (i = 0; i < h->nr_cmds; i++) {
2092 		h->ioaccel2_cmd_sg_list[i] =
2093 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2094 					h->maxsgentries, GFP_KERNEL);
2095 		if (!h->ioaccel2_cmd_sg_list[i])
2096 			goto clean;
2097 	}
2098 	return 0;
2099 
2100 clean:
2101 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2102 	return -ENOMEM;
2103 }
2104 
2105 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2106 {
2107 	int i;
2108 
2109 	if (!h->cmd_sg_list)
2110 		return;
2111 	for (i = 0; i < h->nr_cmds; i++) {
2112 		kfree(h->cmd_sg_list[i]);
2113 		h->cmd_sg_list[i] = NULL;
2114 	}
2115 	kfree(h->cmd_sg_list);
2116 	h->cmd_sg_list = NULL;
2117 }
2118 
2119 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2120 {
2121 	int i;
2122 
2123 	if (h->chainsize <= 0)
2124 		return 0;
2125 
2126 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2127 				GFP_KERNEL);
2128 	if (!h->cmd_sg_list) {
2129 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2130 		return -ENOMEM;
2131 	}
2132 	for (i = 0; i < h->nr_cmds; i++) {
2133 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2134 						h->chainsize, GFP_KERNEL);
2135 		if (!h->cmd_sg_list[i]) {
2136 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2137 			goto clean;
2138 		}
2139 	}
2140 	return 0;
2141 
2142 clean:
2143 	hpsa_free_sg_chain_blocks(h);
2144 	return -ENOMEM;
2145 }
2146 
2147 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2148 	struct io_accel2_cmd *cp, struct CommandList *c)
2149 {
2150 	struct ioaccel2_sg_element *chain_block;
2151 	u64 temp64;
2152 	u32 chain_size;
2153 
2154 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2155 	chain_size = le32_to_cpu(cp->sg[0].length);
2156 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2157 				PCI_DMA_TODEVICE);
2158 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2159 		/* prevent subsequent unmapping */
2160 		cp->sg->address = 0;
2161 		return -1;
2162 	}
2163 	cp->sg->address = cpu_to_le64(temp64);
2164 	return 0;
2165 }
2166 
2167 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2168 	struct io_accel2_cmd *cp)
2169 {
2170 	struct ioaccel2_sg_element *chain_sg;
2171 	u64 temp64;
2172 	u32 chain_size;
2173 
2174 	chain_sg = cp->sg;
2175 	temp64 = le64_to_cpu(chain_sg->address);
2176 	chain_size = le32_to_cpu(cp->sg[0].length);
2177 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2178 }
2179 
2180 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2181 	struct CommandList *c)
2182 {
2183 	struct SGDescriptor *chain_sg, *chain_block;
2184 	u64 temp64;
2185 	u32 chain_len;
2186 
2187 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2188 	chain_block = h->cmd_sg_list[c->cmdindex];
2189 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2190 	chain_len = sizeof(*chain_sg) *
2191 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2192 	chain_sg->Len = cpu_to_le32(chain_len);
2193 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2194 				PCI_DMA_TODEVICE);
2195 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2196 		/* prevent subsequent unmapping */
2197 		chain_sg->Addr = cpu_to_le64(0);
2198 		return -1;
2199 	}
2200 	chain_sg->Addr = cpu_to_le64(temp64);
2201 	return 0;
2202 }
2203 
2204 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2205 	struct CommandList *c)
2206 {
2207 	struct SGDescriptor *chain_sg;
2208 
2209 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2210 		return;
2211 
2212 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2213 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2214 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2215 }
2216 
2217 
2218 /* Decode the various types of errors on ioaccel2 path.
2219  * Return 1 for any error that should generate a RAID path retry.
2220  * Return 0 for errors that don't require a RAID path retry.
2221  */
2222 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2223 					struct CommandList *c,
2224 					struct scsi_cmnd *cmd,
2225 					struct io_accel2_cmd *c2,
2226 					struct hpsa_scsi_dev_t *dev)
2227 {
2228 	int data_len;
2229 	int retry = 0;
2230 	u32 ioaccel2_resid = 0;
2231 
2232 	switch (c2->error_data.serv_response) {
2233 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2234 		switch (c2->error_data.status) {
2235 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2236 			break;
2237 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2238 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2239 			if (c2->error_data.data_present !=
2240 					IOACCEL2_SENSE_DATA_PRESENT) {
2241 				memset(cmd->sense_buffer, 0,
2242 					SCSI_SENSE_BUFFERSIZE);
2243 				break;
2244 			}
2245 			/* copy the sense data */
2246 			data_len = c2->error_data.sense_data_len;
2247 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2248 				data_len = SCSI_SENSE_BUFFERSIZE;
2249 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2250 				data_len =
2251 					sizeof(c2->error_data.sense_data_buff);
2252 			memcpy(cmd->sense_buffer,
2253 				c2->error_data.sense_data_buff, data_len);
2254 			retry = 1;
2255 			break;
2256 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2257 			retry = 1;
2258 			break;
2259 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2260 			retry = 1;
2261 			break;
2262 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2263 			retry = 1;
2264 			break;
2265 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2266 			retry = 1;
2267 			break;
2268 		default:
2269 			retry = 1;
2270 			break;
2271 		}
2272 		break;
2273 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2274 		switch (c2->error_data.status) {
2275 		case IOACCEL2_STATUS_SR_IO_ERROR:
2276 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2277 		case IOACCEL2_STATUS_SR_OVERRUN:
2278 			retry = 1;
2279 			break;
2280 		case IOACCEL2_STATUS_SR_UNDERRUN:
2281 			cmd->result = (DID_OK << 16);		/* host byte */
2282 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2283 			ioaccel2_resid = get_unaligned_le32(
2284 						&c2->error_data.resid_cnt[0]);
2285 			scsi_set_resid(cmd, ioaccel2_resid);
2286 			break;
2287 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2288 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2289 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2290 			/*
2291 			 * Did an HBA disk disappear? We will eventually
2292 			 * get a state change event from the controller but
2293 			 * in the meantime, we need to tell the OS that the
2294 			 * HBA disk is no longer there and stop I/O
2295 			 * from going down. This allows the potential re-insert
2296 			 * of the disk to get the same device node.
2297 			 */
2298 			if (dev->physical_device && dev->expose_device) {
2299 				cmd->result = DID_NO_CONNECT << 16;
2300 				dev->removed = 1;
2301 				h->drv_req_rescan = 1;
2302 				dev_warn(&h->pdev->dev,
2303 					"%s: device is gone!\n", __func__);
2304 			} else
2305 				/*
2306 				 * Retry by sending down the RAID path.
2307 				 * We will get an event from ctlr to
2308 				 * trigger rescan regardless.
2309 				 */
2310 				retry = 1;
2311 			break;
2312 		default:
2313 			retry = 1;
2314 		}
2315 		break;
2316 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2317 		break;
2318 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2319 		break;
2320 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2321 		retry = 1;
2322 		break;
2323 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2324 		break;
2325 	default:
2326 		retry = 1;
2327 		break;
2328 	}
2329 
2330 	return retry;	/* retry on raid path? */
2331 }
2332 
2333 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2334 		struct CommandList *c)
2335 {
2336 	bool do_wake = false;
2337 
2338 	/*
2339 	 * Prevent the following race in the abort handler:
2340 	 *
2341 	 * 1. LLD is requested to abort a SCSI command
2342 	 * 2. The SCSI command completes
2343 	 * 3. The struct CommandList associated with step 2 is made available
2344 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2345 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2346 	 *    finds struct CommandList and tries to aborts it
2347 	 * Now we have aborted the wrong command.
2348 	 *
2349 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2350 	 * this command has completed.  Then, check to see if the handler is
2351 	 * waiting for this command, and, if so, wake it.
2352 	 */
2353 	c->scsi_cmd = SCSI_CMD_IDLE;
2354 	mb();	/* Declare command idle before checking for pending events. */
2355 	if (c->abort_pending) {
2356 		do_wake = true;
2357 		c->abort_pending = false;
2358 	}
2359 	if (c->reset_pending) {
2360 		unsigned long flags;
2361 		struct hpsa_scsi_dev_t *dev;
2362 
2363 		/*
2364 		 * There appears to be a reset pending; lock the lock and
2365 		 * reconfirm.  If so, then decrement the count of outstanding
2366 		 * commands and wake the reset command if this is the last one.
2367 		 */
2368 		spin_lock_irqsave(&h->lock, flags);
2369 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2370 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2371 			do_wake = true;
2372 		c->reset_pending = NULL;
2373 		spin_unlock_irqrestore(&h->lock, flags);
2374 	}
2375 
2376 	if (do_wake)
2377 		wake_up_all(&h->event_sync_wait_queue);
2378 }
2379 
2380 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2381 				      struct CommandList *c)
2382 {
2383 	hpsa_cmd_resolve_events(h, c);
2384 	cmd_tagged_free(h, c);
2385 }
2386 
2387 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2388 		struct CommandList *c, struct scsi_cmnd *cmd)
2389 {
2390 	hpsa_cmd_resolve_and_free(h, c);
2391 	cmd->scsi_done(cmd);
2392 }
2393 
2394 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2395 {
2396 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2397 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2398 }
2399 
2400 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2401 {
2402 	cmd->result = DID_ABORT << 16;
2403 }
2404 
2405 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2406 				    struct scsi_cmnd *cmd)
2407 {
2408 	hpsa_set_scsi_cmd_aborted(cmd);
2409 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2410 			 c->Request.CDB, c->err_info->ScsiStatus);
2411 	hpsa_cmd_resolve_and_free(h, c);
2412 }
2413 
2414 static void process_ioaccel2_completion(struct ctlr_info *h,
2415 		struct CommandList *c, struct scsi_cmnd *cmd,
2416 		struct hpsa_scsi_dev_t *dev)
2417 {
2418 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2419 
2420 	/* check for good status */
2421 	if (likely(c2->error_data.serv_response == 0 &&
2422 			c2->error_data.status == 0))
2423 		return hpsa_cmd_free_and_done(h, c, cmd);
2424 
2425 	/*
2426 	 * Any RAID offload error results in retry which will use
2427 	 * the normal I/O path so the controller can handle whatever's
2428 	 * wrong.
2429 	 */
2430 	if (is_logical_device(dev) &&
2431 		c2->error_data.serv_response ==
2432 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2433 		if (c2->error_data.status ==
2434 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2435 			dev->offload_enabled = 0;
2436 			dev->offload_to_be_enabled = 0;
2437 		}
2438 
2439 		return hpsa_retry_cmd(h, c);
2440 	}
2441 
2442 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2443 		return hpsa_retry_cmd(h, c);
2444 
2445 	return hpsa_cmd_free_and_done(h, c, cmd);
2446 }
2447 
2448 /* Returns 0 on success, < 0 otherwise. */
2449 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2450 					struct CommandList *cp)
2451 {
2452 	u8 tmf_status = cp->err_info->ScsiStatus;
2453 
2454 	switch (tmf_status) {
2455 	case CISS_TMF_COMPLETE:
2456 		/*
2457 		 * CISS_TMF_COMPLETE never happens, instead,
2458 		 * ei->CommandStatus == 0 for this case.
2459 		 */
2460 	case CISS_TMF_SUCCESS:
2461 		return 0;
2462 	case CISS_TMF_INVALID_FRAME:
2463 	case CISS_TMF_NOT_SUPPORTED:
2464 	case CISS_TMF_FAILED:
2465 	case CISS_TMF_WRONG_LUN:
2466 	case CISS_TMF_OVERLAPPED_TAG:
2467 		break;
2468 	default:
2469 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2470 				tmf_status);
2471 		break;
2472 	}
2473 	return -tmf_status;
2474 }
2475 
2476 static void complete_scsi_command(struct CommandList *cp)
2477 {
2478 	struct scsi_cmnd *cmd;
2479 	struct ctlr_info *h;
2480 	struct ErrorInfo *ei;
2481 	struct hpsa_scsi_dev_t *dev;
2482 	struct io_accel2_cmd *c2;
2483 
2484 	u8 sense_key;
2485 	u8 asc;      /* additional sense code */
2486 	u8 ascq;     /* additional sense code qualifier */
2487 	unsigned long sense_data_size;
2488 
2489 	ei = cp->err_info;
2490 	cmd = cp->scsi_cmd;
2491 	h = cp->h;
2492 	dev = cmd->device->hostdata;
2493 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2494 
2495 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2496 	if ((cp->cmd_type == CMD_SCSI) &&
2497 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2498 		hpsa_unmap_sg_chain_block(h, cp);
2499 
2500 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2501 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2502 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2503 
2504 	cmd->result = (DID_OK << 16); 		/* host byte */
2505 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2506 
2507 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2508 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2509 
2510 	/*
2511 	 * We check for lockup status here as it may be set for
2512 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2513 	 * fail_all_oustanding_cmds()
2514 	 */
2515 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2516 		/* DID_NO_CONNECT will prevent a retry */
2517 		cmd->result = DID_NO_CONNECT << 16;
2518 		return hpsa_cmd_free_and_done(h, cp, cmd);
2519 	}
2520 
2521 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2522 		if (cp->reset_pending)
2523 			return hpsa_cmd_resolve_and_free(h, cp);
2524 		if (cp->abort_pending)
2525 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2526 	}
2527 
2528 	if (cp->cmd_type == CMD_IOACCEL2)
2529 		return process_ioaccel2_completion(h, cp, cmd, dev);
2530 
2531 	scsi_set_resid(cmd, ei->ResidualCnt);
2532 	if (ei->CommandStatus == 0)
2533 		return hpsa_cmd_free_and_done(h, cp, cmd);
2534 
2535 	/* For I/O accelerator commands, copy over some fields to the normal
2536 	 * CISS header used below for error handling.
2537 	 */
2538 	if (cp->cmd_type == CMD_IOACCEL1) {
2539 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2540 		cp->Header.SGList = scsi_sg_count(cmd);
2541 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2542 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2543 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2544 		cp->Header.tag = c->tag;
2545 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2546 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2547 
2548 		/* Any RAID offload error results in retry which will use
2549 		 * the normal I/O path so the controller can handle whatever's
2550 		 * wrong.
2551 		 */
2552 		if (is_logical_device(dev)) {
2553 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2554 				dev->offload_enabled = 0;
2555 			return hpsa_retry_cmd(h, cp);
2556 		}
2557 	}
2558 
2559 	/* an error has occurred */
2560 	switch (ei->CommandStatus) {
2561 
2562 	case CMD_TARGET_STATUS:
2563 		cmd->result |= ei->ScsiStatus;
2564 		/* copy the sense data */
2565 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2566 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2567 		else
2568 			sense_data_size = sizeof(ei->SenseInfo);
2569 		if (ei->SenseLen < sense_data_size)
2570 			sense_data_size = ei->SenseLen;
2571 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2572 		if (ei->ScsiStatus)
2573 			decode_sense_data(ei->SenseInfo, sense_data_size,
2574 				&sense_key, &asc, &ascq);
2575 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2576 			if (sense_key == ABORTED_COMMAND) {
2577 				cmd->result |= DID_SOFT_ERROR << 16;
2578 				break;
2579 			}
2580 			break;
2581 		}
2582 		/* Problem was not a check condition
2583 		 * Pass it up to the upper layers...
2584 		 */
2585 		if (ei->ScsiStatus) {
2586 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2587 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2588 				"Returning result: 0x%x\n",
2589 				cp, ei->ScsiStatus,
2590 				sense_key, asc, ascq,
2591 				cmd->result);
2592 		} else {  /* scsi status is zero??? How??? */
2593 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2594 				"Returning no connection.\n", cp),
2595 
2596 			/* Ordinarily, this case should never happen,
2597 			 * but there is a bug in some released firmware
2598 			 * revisions that allows it to happen if, for
2599 			 * example, a 4100 backplane loses power and
2600 			 * the tape drive is in it.  We assume that
2601 			 * it's a fatal error of some kind because we
2602 			 * can't show that it wasn't. We will make it
2603 			 * look like selection timeout since that is
2604 			 * the most common reason for this to occur,
2605 			 * and it's severe enough.
2606 			 */
2607 
2608 			cmd->result = DID_NO_CONNECT << 16;
2609 		}
2610 		break;
2611 
2612 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2613 		break;
2614 	case CMD_DATA_OVERRUN:
2615 		dev_warn(&h->pdev->dev,
2616 			"CDB %16phN data overrun\n", cp->Request.CDB);
2617 		break;
2618 	case CMD_INVALID: {
2619 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2620 		print_cmd(cp); */
2621 		/* We get CMD_INVALID if you address a non-existent device
2622 		 * instead of a selection timeout (no response).  You will
2623 		 * see this if you yank out a drive, then try to access it.
2624 		 * This is kind of a shame because it means that any other
2625 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2626 		 * missing target. */
2627 		cmd->result = DID_NO_CONNECT << 16;
2628 	}
2629 		break;
2630 	case CMD_PROTOCOL_ERR:
2631 		cmd->result = DID_ERROR << 16;
2632 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2633 				cp->Request.CDB);
2634 		break;
2635 	case CMD_HARDWARE_ERR:
2636 		cmd->result = DID_ERROR << 16;
2637 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2638 			cp->Request.CDB);
2639 		break;
2640 	case CMD_CONNECTION_LOST:
2641 		cmd->result = DID_ERROR << 16;
2642 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2643 			cp->Request.CDB);
2644 		break;
2645 	case CMD_ABORTED:
2646 		/* Return now to avoid calling scsi_done(). */
2647 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2648 	case CMD_ABORT_FAILED:
2649 		cmd->result = DID_ERROR << 16;
2650 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2651 			cp->Request.CDB);
2652 		break;
2653 	case CMD_UNSOLICITED_ABORT:
2654 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2655 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2656 			cp->Request.CDB);
2657 		break;
2658 	case CMD_TIMEOUT:
2659 		cmd->result = DID_TIME_OUT << 16;
2660 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2661 			cp->Request.CDB);
2662 		break;
2663 	case CMD_UNABORTABLE:
2664 		cmd->result = DID_ERROR << 16;
2665 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2666 		break;
2667 	case CMD_TMF_STATUS:
2668 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2669 			cmd->result = DID_ERROR << 16;
2670 		break;
2671 	case CMD_IOACCEL_DISABLED:
2672 		/* This only handles the direct pass-through case since RAID
2673 		 * offload is handled above.  Just attempt a retry.
2674 		 */
2675 		cmd->result = DID_SOFT_ERROR << 16;
2676 		dev_warn(&h->pdev->dev,
2677 				"cp %p had HP SSD Smart Path error\n", cp);
2678 		break;
2679 	default:
2680 		cmd->result = DID_ERROR << 16;
2681 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2682 				cp, ei->CommandStatus);
2683 	}
2684 
2685 	return hpsa_cmd_free_and_done(h, cp, cmd);
2686 }
2687 
2688 static void hpsa_pci_unmap(struct pci_dev *pdev,
2689 	struct CommandList *c, int sg_used, int data_direction)
2690 {
2691 	int i;
2692 
2693 	for (i = 0; i < sg_used; i++)
2694 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2695 				le32_to_cpu(c->SG[i].Len),
2696 				data_direction);
2697 }
2698 
2699 static int hpsa_map_one(struct pci_dev *pdev,
2700 		struct CommandList *cp,
2701 		unsigned char *buf,
2702 		size_t buflen,
2703 		int data_direction)
2704 {
2705 	u64 addr64;
2706 
2707 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2708 		cp->Header.SGList = 0;
2709 		cp->Header.SGTotal = cpu_to_le16(0);
2710 		return 0;
2711 	}
2712 
2713 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2714 	if (dma_mapping_error(&pdev->dev, addr64)) {
2715 		/* Prevent subsequent unmap of something never mapped */
2716 		cp->Header.SGList = 0;
2717 		cp->Header.SGTotal = cpu_to_le16(0);
2718 		return -1;
2719 	}
2720 	cp->SG[0].Addr = cpu_to_le64(addr64);
2721 	cp->SG[0].Len = cpu_to_le32(buflen);
2722 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2723 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2724 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2725 	return 0;
2726 }
2727 
2728 #define NO_TIMEOUT ((unsigned long) -1)
2729 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2730 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2731 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2732 {
2733 	DECLARE_COMPLETION_ONSTACK(wait);
2734 
2735 	c->waiting = &wait;
2736 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2737 	if (timeout_msecs == NO_TIMEOUT) {
2738 		/* TODO: get rid of this no-timeout thing */
2739 		wait_for_completion_io(&wait);
2740 		return IO_OK;
2741 	}
2742 	if (!wait_for_completion_io_timeout(&wait,
2743 					msecs_to_jiffies(timeout_msecs))) {
2744 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2745 		return -ETIMEDOUT;
2746 	}
2747 	return IO_OK;
2748 }
2749 
2750 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2751 				   int reply_queue, unsigned long timeout_msecs)
2752 {
2753 	if (unlikely(lockup_detected(h))) {
2754 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2755 		return IO_OK;
2756 	}
2757 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2758 }
2759 
2760 static u32 lockup_detected(struct ctlr_info *h)
2761 {
2762 	int cpu;
2763 	u32 rc, *lockup_detected;
2764 
2765 	cpu = get_cpu();
2766 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2767 	rc = *lockup_detected;
2768 	put_cpu();
2769 	return rc;
2770 }
2771 
2772 #define MAX_DRIVER_CMD_RETRIES 25
2773 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2774 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2775 {
2776 	int backoff_time = 10, retry_count = 0;
2777 	int rc;
2778 
2779 	do {
2780 		memset(c->err_info, 0, sizeof(*c->err_info));
2781 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2782 						  timeout_msecs);
2783 		if (rc)
2784 			break;
2785 		retry_count++;
2786 		if (retry_count > 3) {
2787 			msleep(backoff_time);
2788 			if (backoff_time < 1000)
2789 				backoff_time *= 2;
2790 		}
2791 	} while ((check_for_unit_attention(h, c) ||
2792 			check_for_busy(h, c)) &&
2793 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2794 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2795 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2796 		rc = -EIO;
2797 	return rc;
2798 }
2799 
2800 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2801 				struct CommandList *c)
2802 {
2803 	const u8 *cdb = c->Request.CDB;
2804 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2805 
2806 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2807 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2808 		txt, lun[0], lun[1], lun[2], lun[3],
2809 		lun[4], lun[5], lun[6], lun[7],
2810 		cdb[0], cdb[1], cdb[2], cdb[3],
2811 		cdb[4], cdb[5], cdb[6], cdb[7],
2812 		cdb[8], cdb[9], cdb[10], cdb[11],
2813 		cdb[12], cdb[13], cdb[14], cdb[15]);
2814 }
2815 
2816 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2817 			struct CommandList *cp)
2818 {
2819 	const struct ErrorInfo *ei = cp->err_info;
2820 	struct device *d = &cp->h->pdev->dev;
2821 	u8 sense_key, asc, ascq;
2822 	int sense_len;
2823 
2824 	switch (ei->CommandStatus) {
2825 	case CMD_TARGET_STATUS:
2826 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2827 			sense_len = sizeof(ei->SenseInfo);
2828 		else
2829 			sense_len = ei->SenseLen;
2830 		decode_sense_data(ei->SenseInfo, sense_len,
2831 					&sense_key, &asc, &ascq);
2832 		hpsa_print_cmd(h, "SCSI status", cp);
2833 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2834 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2835 				sense_key, asc, ascq);
2836 		else
2837 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2838 		if (ei->ScsiStatus == 0)
2839 			dev_warn(d, "SCSI status is abnormally zero.  "
2840 			"(probably indicates selection timeout "
2841 			"reported incorrectly due to a known "
2842 			"firmware bug, circa July, 2001.)\n");
2843 		break;
2844 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2845 		break;
2846 	case CMD_DATA_OVERRUN:
2847 		hpsa_print_cmd(h, "overrun condition", cp);
2848 		break;
2849 	case CMD_INVALID: {
2850 		/* controller unfortunately reports SCSI passthru's
2851 		 * to non-existent targets as invalid commands.
2852 		 */
2853 		hpsa_print_cmd(h, "invalid command", cp);
2854 		dev_warn(d, "probably means device no longer present\n");
2855 		}
2856 		break;
2857 	case CMD_PROTOCOL_ERR:
2858 		hpsa_print_cmd(h, "protocol error", cp);
2859 		break;
2860 	case CMD_HARDWARE_ERR:
2861 		hpsa_print_cmd(h, "hardware error", cp);
2862 		break;
2863 	case CMD_CONNECTION_LOST:
2864 		hpsa_print_cmd(h, "connection lost", cp);
2865 		break;
2866 	case CMD_ABORTED:
2867 		hpsa_print_cmd(h, "aborted", cp);
2868 		break;
2869 	case CMD_ABORT_FAILED:
2870 		hpsa_print_cmd(h, "abort failed", cp);
2871 		break;
2872 	case CMD_UNSOLICITED_ABORT:
2873 		hpsa_print_cmd(h, "unsolicited abort", cp);
2874 		break;
2875 	case CMD_TIMEOUT:
2876 		hpsa_print_cmd(h, "timed out", cp);
2877 		break;
2878 	case CMD_UNABORTABLE:
2879 		hpsa_print_cmd(h, "unabortable", cp);
2880 		break;
2881 	case CMD_CTLR_LOCKUP:
2882 		hpsa_print_cmd(h, "controller lockup detected", cp);
2883 		break;
2884 	default:
2885 		hpsa_print_cmd(h, "unknown status", cp);
2886 		dev_warn(d, "Unknown command status %x\n",
2887 				ei->CommandStatus);
2888 	}
2889 }
2890 
2891 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2892 			u16 page, unsigned char *buf,
2893 			unsigned char bufsize)
2894 {
2895 	int rc = IO_OK;
2896 	struct CommandList *c;
2897 	struct ErrorInfo *ei;
2898 
2899 	c = cmd_alloc(h);
2900 
2901 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2902 			page, scsi3addr, TYPE_CMD)) {
2903 		rc = -1;
2904 		goto out;
2905 	}
2906 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2907 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2908 	if (rc)
2909 		goto out;
2910 	ei = c->err_info;
2911 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2912 		hpsa_scsi_interpret_error(h, c);
2913 		rc = -1;
2914 	}
2915 out:
2916 	cmd_free(h, c);
2917 	return rc;
2918 }
2919 
2920 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2921 	u8 reset_type, int reply_queue)
2922 {
2923 	int rc = IO_OK;
2924 	struct CommandList *c;
2925 	struct ErrorInfo *ei;
2926 
2927 	c = cmd_alloc(h);
2928 
2929 
2930 	/* fill_cmd can't fail here, no data buffer to map. */
2931 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2932 			scsi3addr, TYPE_MSG);
2933 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2934 	if (rc) {
2935 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2936 		goto out;
2937 	}
2938 	/* no unmap needed here because no data xfer. */
2939 
2940 	ei = c->err_info;
2941 	if (ei->CommandStatus != 0) {
2942 		hpsa_scsi_interpret_error(h, c);
2943 		rc = -1;
2944 	}
2945 out:
2946 	cmd_free(h, c);
2947 	return rc;
2948 }
2949 
2950 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2951 			       struct hpsa_scsi_dev_t *dev,
2952 			       unsigned char *scsi3addr)
2953 {
2954 	int i;
2955 	bool match = false;
2956 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2957 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2958 
2959 	if (hpsa_is_cmd_idle(c))
2960 		return false;
2961 
2962 	switch (c->cmd_type) {
2963 	case CMD_SCSI:
2964 	case CMD_IOCTL_PEND:
2965 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2966 				sizeof(c->Header.LUN.LunAddrBytes));
2967 		break;
2968 
2969 	case CMD_IOACCEL1:
2970 	case CMD_IOACCEL2:
2971 		if (c->phys_disk == dev) {
2972 			/* HBA mode match */
2973 			match = true;
2974 		} else {
2975 			/* Possible RAID mode -- check each phys dev. */
2976 			/* FIXME:  Do we need to take out a lock here?  If
2977 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2978 			 * instead. */
2979 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
2980 				/* FIXME: an alternate test might be
2981 				 *
2982 				 * match = dev->phys_disk[i]->ioaccel_handle
2983 				 *              == c2->scsi_nexus;      */
2984 				match = dev->phys_disk[i] == c->phys_disk;
2985 			}
2986 		}
2987 		break;
2988 
2989 	case IOACCEL2_TMF:
2990 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
2991 			match = dev->phys_disk[i]->ioaccel_handle ==
2992 					le32_to_cpu(ac->it_nexus);
2993 		}
2994 		break;
2995 
2996 	case 0:		/* The command is in the middle of being initialized. */
2997 		match = false;
2998 		break;
2999 
3000 	default:
3001 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3002 			c->cmd_type);
3003 		BUG();
3004 	}
3005 
3006 	return match;
3007 }
3008 
3009 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3010 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3011 {
3012 	int i;
3013 	int rc = 0;
3014 
3015 	/* We can really only handle one reset at a time */
3016 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3017 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3018 		return -EINTR;
3019 	}
3020 
3021 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3022 
3023 	for (i = 0; i < h->nr_cmds; i++) {
3024 		struct CommandList *c = h->cmd_pool + i;
3025 		int refcount = atomic_inc_return(&c->refcount);
3026 
3027 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3028 			unsigned long flags;
3029 
3030 			/*
3031 			 * Mark the target command as having a reset pending,
3032 			 * then lock a lock so that the command cannot complete
3033 			 * while we're considering it.  If the command is not
3034 			 * idle then count it; otherwise revoke the event.
3035 			 */
3036 			c->reset_pending = dev;
3037 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3038 			if (!hpsa_is_cmd_idle(c))
3039 				atomic_inc(&dev->reset_cmds_out);
3040 			else
3041 				c->reset_pending = NULL;
3042 			spin_unlock_irqrestore(&h->lock, flags);
3043 		}
3044 
3045 		cmd_free(h, c);
3046 	}
3047 
3048 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3049 	if (!rc)
3050 		wait_event(h->event_sync_wait_queue,
3051 			atomic_read(&dev->reset_cmds_out) == 0 ||
3052 			lockup_detected(h));
3053 
3054 	if (unlikely(lockup_detected(h))) {
3055 		dev_warn(&h->pdev->dev,
3056 			 "Controller lockup detected during reset wait\n");
3057 		rc = -ENODEV;
3058 	}
3059 
3060 	if (unlikely(rc))
3061 		atomic_set(&dev->reset_cmds_out, 0);
3062 
3063 	mutex_unlock(&h->reset_mutex);
3064 	return rc;
3065 }
3066 
3067 static void hpsa_get_raid_level(struct ctlr_info *h,
3068 	unsigned char *scsi3addr, unsigned char *raid_level)
3069 {
3070 	int rc;
3071 	unsigned char *buf;
3072 
3073 	*raid_level = RAID_UNKNOWN;
3074 	buf = kzalloc(64, GFP_KERNEL);
3075 	if (!buf)
3076 		return;
3077 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
3078 	if (rc == 0)
3079 		*raid_level = buf[8];
3080 	if (*raid_level > RAID_UNKNOWN)
3081 		*raid_level = RAID_UNKNOWN;
3082 	kfree(buf);
3083 	return;
3084 }
3085 
3086 #define HPSA_MAP_DEBUG
3087 #ifdef HPSA_MAP_DEBUG
3088 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3089 				struct raid_map_data *map_buff)
3090 {
3091 	struct raid_map_disk_data *dd = &map_buff->data[0];
3092 	int map, row, col;
3093 	u16 map_cnt, row_cnt, disks_per_row;
3094 
3095 	if (rc != 0)
3096 		return;
3097 
3098 	/* Show details only if debugging has been activated. */
3099 	if (h->raid_offload_debug < 2)
3100 		return;
3101 
3102 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3103 				le32_to_cpu(map_buff->structure_size));
3104 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3105 			le32_to_cpu(map_buff->volume_blk_size));
3106 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3107 			le64_to_cpu(map_buff->volume_blk_cnt));
3108 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3109 			map_buff->phys_blk_shift);
3110 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3111 			map_buff->parity_rotation_shift);
3112 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3113 			le16_to_cpu(map_buff->strip_size));
3114 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3115 			le64_to_cpu(map_buff->disk_starting_blk));
3116 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3117 			le64_to_cpu(map_buff->disk_blk_cnt));
3118 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3119 			le16_to_cpu(map_buff->data_disks_per_row));
3120 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3121 			le16_to_cpu(map_buff->metadata_disks_per_row));
3122 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3123 			le16_to_cpu(map_buff->row_cnt));
3124 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3125 			le16_to_cpu(map_buff->layout_map_count));
3126 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3127 			le16_to_cpu(map_buff->flags));
3128 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3129 			le16_to_cpu(map_buff->flags) &
3130 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3131 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3132 			le16_to_cpu(map_buff->dekindex));
3133 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3134 	for (map = 0; map < map_cnt; map++) {
3135 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3136 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3137 		for (row = 0; row < row_cnt; row++) {
3138 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3139 			disks_per_row =
3140 				le16_to_cpu(map_buff->data_disks_per_row);
3141 			for (col = 0; col < disks_per_row; col++, dd++)
3142 				dev_info(&h->pdev->dev,
3143 					"    D%02u: h=0x%04x xor=%u,%u\n",
3144 					col, dd->ioaccel_handle,
3145 					dd->xor_mult[0], dd->xor_mult[1]);
3146 			disks_per_row =
3147 				le16_to_cpu(map_buff->metadata_disks_per_row);
3148 			for (col = 0; col < disks_per_row; col++, dd++)
3149 				dev_info(&h->pdev->dev,
3150 					"    M%02u: h=0x%04x xor=%u,%u\n",
3151 					col, dd->ioaccel_handle,
3152 					dd->xor_mult[0], dd->xor_mult[1]);
3153 		}
3154 	}
3155 }
3156 #else
3157 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3158 			__attribute__((unused)) int rc,
3159 			__attribute__((unused)) struct raid_map_data *map_buff)
3160 {
3161 }
3162 #endif
3163 
3164 static int hpsa_get_raid_map(struct ctlr_info *h,
3165 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3166 {
3167 	int rc = 0;
3168 	struct CommandList *c;
3169 	struct ErrorInfo *ei;
3170 
3171 	c = cmd_alloc(h);
3172 
3173 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3174 			sizeof(this_device->raid_map), 0,
3175 			scsi3addr, TYPE_CMD)) {
3176 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3177 		cmd_free(h, c);
3178 		return -1;
3179 	}
3180 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3181 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3182 	if (rc)
3183 		goto out;
3184 	ei = c->err_info;
3185 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3186 		hpsa_scsi_interpret_error(h, c);
3187 		rc = -1;
3188 		goto out;
3189 	}
3190 	cmd_free(h, c);
3191 
3192 	/* @todo in the future, dynamically allocate RAID map memory */
3193 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3194 				sizeof(this_device->raid_map)) {
3195 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3196 		rc = -1;
3197 	}
3198 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3199 	return rc;
3200 out:
3201 	cmd_free(h, c);
3202 	return rc;
3203 }
3204 
3205 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3206 		unsigned char scsi3addr[], u16 bmic_device_index,
3207 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3208 {
3209 	int rc = IO_OK;
3210 	struct CommandList *c;
3211 	struct ErrorInfo *ei;
3212 
3213 	c = cmd_alloc(h);
3214 
3215 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3216 		0, RAID_CTLR_LUNID, TYPE_CMD);
3217 	if (rc)
3218 		goto out;
3219 
3220 	c->Request.CDB[2] = bmic_device_index & 0xff;
3221 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3222 
3223 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3224 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3225 	if (rc)
3226 		goto out;
3227 	ei = c->err_info;
3228 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3229 		hpsa_scsi_interpret_error(h, c);
3230 		rc = -1;
3231 	}
3232 out:
3233 	cmd_free(h, c);
3234 	return rc;
3235 }
3236 
3237 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3238 	struct bmic_identify_controller *buf, size_t bufsize)
3239 {
3240 	int rc = IO_OK;
3241 	struct CommandList *c;
3242 	struct ErrorInfo *ei;
3243 
3244 	c = cmd_alloc(h);
3245 
3246 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3247 		0, RAID_CTLR_LUNID, TYPE_CMD);
3248 	if (rc)
3249 		goto out;
3250 
3251 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3252 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3253 	if (rc)
3254 		goto out;
3255 	ei = c->err_info;
3256 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3257 		hpsa_scsi_interpret_error(h, c);
3258 		rc = -1;
3259 	}
3260 out:
3261 	cmd_free(h, c);
3262 	return rc;
3263 }
3264 
3265 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3266 		unsigned char scsi3addr[], u16 bmic_device_index,
3267 		struct bmic_identify_physical_device *buf, size_t bufsize)
3268 {
3269 	int rc = IO_OK;
3270 	struct CommandList *c;
3271 	struct ErrorInfo *ei;
3272 
3273 	c = cmd_alloc(h);
3274 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3275 		0, RAID_CTLR_LUNID, TYPE_CMD);
3276 	if (rc)
3277 		goto out;
3278 
3279 	c->Request.CDB[2] = bmic_device_index & 0xff;
3280 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3281 
3282 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3283 						DEFAULT_TIMEOUT);
3284 	ei = c->err_info;
3285 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3286 		hpsa_scsi_interpret_error(h, c);
3287 		rc = -1;
3288 	}
3289 out:
3290 	cmd_free(h, c);
3291 
3292 	return rc;
3293 }
3294 
3295 /*
3296  * get enclosure information
3297  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3298  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3299  * Uses id_physical_device to determine the box_index.
3300  */
3301 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3302 			unsigned char *scsi3addr,
3303 			struct ReportExtendedLUNdata *rlep, int rle_index,
3304 			struct hpsa_scsi_dev_t *encl_dev)
3305 {
3306 	int rc = -1;
3307 	struct CommandList *c = NULL;
3308 	struct ErrorInfo *ei = NULL;
3309 	struct bmic_sense_storage_box_params *bssbp = NULL;
3310 	struct bmic_identify_physical_device *id_phys = NULL;
3311 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3312 	u16 bmic_device_index = 0;
3313 
3314 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3315 
3316 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3317 		rc = IO_OK;
3318 		goto out;
3319 	}
3320 
3321 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3322 	if (!bssbp)
3323 		goto out;
3324 
3325 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3326 	if (!id_phys)
3327 		goto out;
3328 
3329 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3330 						id_phys, sizeof(*id_phys));
3331 	if (rc) {
3332 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3333 			__func__, encl_dev->external, bmic_device_index);
3334 		goto out;
3335 	}
3336 
3337 	c = cmd_alloc(h);
3338 
3339 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3340 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3341 
3342 	if (rc)
3343 		goto out;
3344 
3345 	if (id_phys->phys_connector[1] == 'E')
3346 		c->Request.CDB[5] = id_phys->box_index;
3347 	else
3348 		c->Request.CDB[5] = 0;
3349 
3350 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3351 						DEFAULT_TIMEOUT);
3352 	if (rc)
3353 		goto out;
3354 
3355 	ei = c->err_info;
3356 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3357 		rc = -1;
3358 		goto out;
3359 	}
3360 
3361 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3362 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3363 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3364 
3365 	rc = IO_OK;
3366 out:
3367 	kfree(bssbp);
3368 	kfree(id_phys);
3369 
3370 	if (c)
3371 		cmd_free(h, c);
3372 
3373 	if (rc != IO_OK)
3374 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3375 			"Error, could not get enclosure information\n");
3376 }
3377 
3378 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3379 						unsigned char *scsi3addr)
3380 {
3381 	struct ReportExtendedLUNdata *physdev;
3382 	u32 nphysicals;
3383 	u64 sa = 0;
3384 	int i;
3385 
3386 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3387 	if (!physdev)
3388 		return 0;
3389 
3390 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3391 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3392 		kfree(physdev);
3393 		return 0;
3394 	}
3395 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3396 
3397 	for (i = 0; i < nphysicals; i++)
3398 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3399 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3400 			break;
3401 		}
3402 
3403 	kfree(physdev);
3404 
3405 	return sa;
3406 }
3407 
3408 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3409 					struct hpsa_scsi_dev_t *dev)
3410 {
3411 	int rc;
3412 	u64 sa = 0;
3413 
3414 	if (is_hba_lunid(scsi3addr)) {
3415 		struct bmic_sense_subsystem_info *ssi;
3416 
3417 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3418 		if (ssi == NULL) {
3419 			dev_warn(&h->pdev->dev,
3420 				"%s: out of memory\n", __func__);
3421 			return;
3422 		}
3423 
3424 		rc = hpsa_bmic_sense_subsystem_information(h,
3425 					scsi3addr, 0, ssi, sizeof(*ssi));
3426 		if (rc == 0) {
3427 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3428 			h->sas_address = sa;
3429 		}
3430 
3431 		kfree(ssi);
3432 	} else
3433 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3434 
3435 	dev->sas_address = sa;
3436 }
3437 
3438 /* Get a device id from inquiry page 0x83 */
3439 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3440 	unsigned char scsi3addr[], u8 page)
3441 {
3442 	int rc;
3443 	int i;
3444 	int pages;
3445 	unsigned char *buf, bufsize;
3446 
3447 	buf = kzalloc(256, GFP_KERNEL);
3448 	if (!buf)
3449 		return 0;
3450 
3451 	/* Get the size of the page list first */
3452 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3453 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3454 				buf, HPSA_VPD_HEADER_SZ);
3455 	if (rc != 0)
3456 		goto exit_unsupported;
3457 	pages = buf[3];
3458 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3459 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3460 	else
3461 		bufsize = 255;
3462 
3463 	/* Get the whole VPD page list */
3464 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3465 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3466 				buf, bufsize);
3467 	if (rc != 0)
3468 		goto exit_unsupported;
3469 
3470 	pages = buf[3];
3471 	for (i = 1; i <= pages; i++)
3472 		if (buf[3 + i] == page)
3473 			goto exit_supported;
3474 exit_unsupported:
3475 	kfree(buf);
3476 	return 0;
3477 exit_supported:
3478 	kfree(buf);
3479 	return 1;
3480 }
3481 
3482 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3483 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3484 {
3485 	int rc;
3486 	unsigned char *buf;
3487 	u8 ioaccel_status;
3488 
3489 	this_device->offload_config = 0;
3490 	this_device->offload_enabled = 0;
3491 	this_device->offload_to_be_enabled = 0;
3492 
3493 	buf = kzalloc(64, GFP_KERNEL);
3494 	if (!buf)
3495 		return;
3496 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3497 		goto out;
3498 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3499 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3500 	if (rc != 0)
3501 		goto out;
3502 
3503 #define IOACCEL_STATUS_BYTE 4
3504 #define OFFLOAD_CONFIGURED_BIT 0x01
3505 #define OFFLOAD_ENABLED_BIT 0x02
3506 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3507 	this_device->offload_config =
3508 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3509 	if (this_device->offload_config) {
3510 		this_device->offload_enabled =
3511 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3512 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3513 			this_device->offload_enabled = 0;
3514 	}
3515 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3516 out:
3517 	kfree(buf);
3518 	return;
3519 }
3520 
3521 /* Get the device id from inquiry page 0x83 */
3522 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3523 	unsigned char *device_id, int index, int buflen)
3524 {
3525 	int rc;
3526 	unsigned char *buf;
3527 
3528 	if (buflen > 16)
3529 		buflen = 16;
3530 	buf = kzalloc(64, GFP_KERNEL);
3531 	if (!buf)
3532 		return -ENOMEM;
3533 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3534 	if (rc == 0)
3535 		memcpy(device_id, &buf[index], buflen);
3536 
3537 	kfree(buf);
3538 
3539 	return rc != 0;
3540 }
3541 
3542 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3543 		void *buf, int bufsize,
3544 		int extended_response)
3545 {
3546 	int rc = IO_OK;
3547 	struct CommandList *c;
3548 	unsigned char scsi3addr[8];
3549 	struct ErrorInfo *ei;
3550 
3551 	c = cmd_alloc(h);
3552 
3553 	/* address the controller */
3554 	memset(scsi3addr, 0, sizeof(scsi3addr));
3555 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3556 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3557 		rc = -1;
3558 		goto out;
3559 	}
3560 	if (extended_response)
3561 		c->Request.CDB[1] = extended_response;
3562 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3563 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3564 	if (rc)
3565 		goto out;
3566 	ei = c->err_info;
3567 	if (ei->CommandStatus != 0 &&
3568 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3569 		hpsa_scsi_interpret_error(h, c);
3570 		rc = -1;
3571 	} else {
3572 		struct ReportLUNdata *rld = buf;
3573 
3574 		if (rld->extended_response_flag != extended_response) {
3575 			dev_err(&h->pdev->dev,
3576 				"report luns requested format %u, got %u\n",
3577 				extended_response,
3578 				rld->extended_response_flag);
3579 			rc = -1;
3580 		}
3581 	}
3582 out:
3583 	cmd_free(h, c);
3584 	return rc;
3585 }
3586 
3587 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3588 		struct ReportExtendedLUNdata *buf, int bufsize)
3589 {
3590 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3591 						HPSA_REPORT_PHYS_EXTENDED);
3592 }
3593 
3594 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3595 		struct ReportLUNdata *buf, int bufsize)
3596 {
3597 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3598 }
3599 
3600 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3601 	int bus, int target, int lun)
3602 {
3603 	device->bus = bus;
3604 	device->target = target;
3605 	device->lun = lun;
3606 }
3607 
3608 /* Use VPD inquiry to get details of volume status */
3609 static int hpsa_get_volume_status(struct ctlr_info *h,
3610 					unsigned char scsi3addr[])
3611 {
3612 	int rc;
3613 	int status;
3614 	int size;
3615 	unsigned char *buf;
3616 
3617 	buf = kzalloc(64, GFP_KERNEL);
3618 	if (!buf)
3619 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3620 
3621 	/* Does controller have VPD for logical volume status? */
3622 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3623 		goto exit_failed;
3624 
3625 	/* Get the size of the VPD return buffer */
3626 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3627 					buf, HPSA_VPD_HEADER_SZ);
3628 	if (rc != 0)
3629 		goto exit_failed;
3630 	size = buf[3];
3631 
3632 	/* Now get the whole VPD buffer */
3633 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3634 					buf, size + HPSA_VPD_HEADER_SZ);
3635 	if (rc != 0)
3636 		goto exit_failed;
3637 	status = buf[4]; /* status byte */
3638 
3639 	kfree(buf);
3640 	return status;
3641 exit_failed:
3642 	kfree(buf);
3643 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3644 }
3645 
3646 /* Determine offline status of a volume.
3647  * Return either:
3648  *  0 (not offline)
3649  *  0xff (offline for unknown reasons)
3650  *  # (integer code indicating one of several NOT READY states
3651  *     describing why a volume is to be kept offline)
3652  */
3653 static int hpsa_volume_offline(struct ctlr_info *h,
3654 					unsigned char scsi3addr[])
3655 {
3656 	struct CommandList *c;
3657 	unsigned char *sense;
3658 	u8 sense_key, asc, ascq;
3659 	int sense_len;
3660 	int rc, ldstat = 0;
3661 	u16 cmd_status;
3662 	u8 scsi_status;
3663 #define ASC_LUN_NOT_READY 0x04
3664 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3665 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3666 
3667 	c = cmd_alloc(h);
3668 
3669 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3670 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3671 					DEFAULT_TIMEOUT);
3672 	if (rc) {
3673 		cmd_free(h, c);
3674 		return 0;
3675 	}
3676 	sense = c->err_info->SenseInfo;
3677 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3678 		sense_len = sizeof(c->err_info->SenseInfo);
3679 	else
3680 		sense_len = c->err_info->SenseLen;
3681 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3682 	cmd_status = c->err_info->CommandStatus;
3683 	scsi_status = c->err_info->ScsiStatus;
3684 	cmd_free(h, c);
3685 	/* Is the volume 'not ready'? */
3686 	if (cmd_status != CMD_TARGET_STATUS ||
3687 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3688 		sense_key != NOT_READY ||
3689 		asc != ASC_LUN_NOT_READY)  {
3690 		return 0;
3691 	}
3692 
3693 	/* Determine the reason for not ready state */
3694 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3695 
3696 	/* Keep volume offline in certain cases: */
3697 	switch (ldstat) {
3698 	case HPSA_LV_UNDERGOING_ERASE:
3699 	case HPSA_LV_NOT_AVAILABLE:
3700 	case HPSA_LV_UNDERGOING_RPI:
3701 	case HPSA_LV_PENDING_RPI:
3702 	case HPSA_LV_ENCRYPTED_NO_KEY:
3703 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3704 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3705 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3706 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3707 		return ldstat;
3708 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3709 		/* If VPD status page isn't available,
3710 		 * use ASC/ASCQ to determine state
3711 		 */
3712 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3713 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3714 			return ldstat;
3715 		break;
3716 	default:
3717 		break;
3718 	}
3719 	return 0;
3720 }
3721 
3722 /*
3723  * Find out if a logical device supports aborts by simply trying one.
3724  * Smart Array may claim not to support aborts on logical drives, but
3725  * if a MSA2000 * is connected, the drives on that will be presented
3726  * by the Smart Array as logical drives, and aborts may be sent to
3727  * those devices successfully.  So the simplest way to find out is
3728  * to simply try an abort and see how the device responds.
3729  */
3730 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3731 					unsigned char *scsi3addr)
3732 {
3733 	struct CommandList *c;
3734 	struct ErrorInfo *ei;
3735 	int rc = 0;
3736 
3737 	u64 tag = (u64) -1; /* bogus tag */
3738 
3739 	/* Assume that physical devices support aborts */
3740 	if (!is_logical_dev_addr_mode(scsi3addr))
3741 		return 1;
3742 
3743 	c = cmd_alloc(h);
3744 
3745 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3746 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3747 					DEFAULT_TIMEOUT);
3748 	/* no unmap needed here because no data xfer. */
3749 	ei = c->err_info;
3750 	switch (ei->CommandStatus) {
3751 	case CMD_INVALID:
3752 		rc = 0;
3753 		break;
3754 	case CMD_UNABORTABLE:
3755 	case CMD_ABORT_FAILED:
3756 		rc = 1;
3757 		break;
3758 	case CMD_TMF_STATUS:
3759 		rc = hpsa_evaluate_tmf_status(h, c);
3760 		break;
3761 	default:
3762 		rc = 0;
3763 		break;
3764 	}
3765 	cmd_free(h, c);
3766 	return rc;
3767 }
3768 
3769 static int hpsa_update_device_info(struct ctlr_info *h,
3770 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3771 	unsigned char *is_OBDR_device)
3772 {
3773 
3774 #define OBDR_SIG_OFFSET 43
3775 #define OBDR_TAPE_SIG "$DR-10"
3776 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3777 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3778 
3779 	unsigned char *inq_buff;
3780 	unsigned char *obdr_sig;
3781 	int rc = 0;
3782 
3783 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3784 	if (!inq_buff) {
3785 		rc = -ENOMEM;
3786 		goto bail_out;
3787 	}
3788 
3789 	/* Do an inquiry to the device to see what it is. */
3790 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3791 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3792 		/* Inquiry failed (msg printed already) */
3793 		dev_err(&h->pdev->dev,
3794 			"hpsa_update_device_info: inquiry failed\n");
3795 		rc = -EIO;
3796 		goto bail_out;
3797 	}
3798 
3799 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3800 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3801 
3802 	this_device->devtype = (inq_buff[0] & 0x1f);
3803 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3804 	memcpy(this_device->vendor, &inq_buff[8],
3805 		sizeof(this_device->vendor));
3806 	memcpy(this_device->model, &inq_buff[16],
3807 		sizeof(this_device->model));
3808 	memset(this_device->device_id, 0,
3809 		sizeof(this_device->device_id));
3810 	hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3811 		sizeof(this_device->device_id));
3812 
3813 	if ((this_device->devtype == TYPE_DISK ||
3814 		this_device->devtype == TYPE_ZBC) &&
3815 		is_logical_dev_addr_mode(scsi3addr)) {
3816 		int volume_offline;
3817 
3818 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3819 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3820 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3821 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3822 		if (volume_offline < 0 || volume_offline > 0xff)
3823 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3824 		this_device->volume_offline = volume_offline & 0xff;
3825 	} else {
3826 		this_device->raid_level = RAID_UNKNOWN;
3827 		this_device->offload_config = 0;
3828 		this_device->offload_enabled = 0;
3829 		this_device->offload_to_be_enabled = 0;
3830 		this_device->hba_ioaccel_enabled = 0;
3831 		this_device->volume_offline = 0;
3832 		this_device->queue_depth = h->nr_cmds;
3833 	}
3834 
3835 	if (is_OBDR_device) {
3836 		/* See if this is a One-Button-Disaster-Recovery device
3837 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3838 		 */
3839 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3840 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3841 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3842 						OBDR_SIG_LEN) == 0);
3843 	}
3844 	kfree(inq_buff);
3845 	return 0;
3846 
3847 bail_out:
3848 	kfree(inq_buff);
3849 	return rc;
3850 }
3851 
3852 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3853 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3854 {
3855 	unsigned long flags;
3856 	int rc, entry;
3857 	/*
3858 	 * See if this device supports aborts.  If we already know
3859 	 * the device, we already know if it supports aborts, otherwise
3860 	 * we have to find out if it supports aborts by trying one.
3861 	 */
3862 	spin_lock_irqsave(&h->devlock, flags);
3863 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3864 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3865 		entry >= 0 && entry < h->ndevices) {
3866 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3867 		spin_unlock_irqrestore(&h->devlock, flags);
3868 	} else {
3869 		spin_unlock_irqrestore(&h->devlock, flags);
3870 		dev->supports_aborts =
3871 				hpsa_device_supports_aborts(h, scsi3addr);
3872 		if (dev->supports_aborts < 0)
3873 			dev->supports_aborts = 0;
3874 	}
3875 }
3876 
3877 /*
3878  * Helper function to assign bus, target, lun mapping of devices.
3879  * Logical drive target and lun are assigned at this time, but
3880  * physical device lun and target assignment are deferred (assigned
3881  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3882 */
3883 static void figure_bus_target_lun(struct ctlr_info *h,
3884 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3885 {
3886 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3887 
3888 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3889 		/* physical device, target and lun filled in later */
3890 		if (is_hba_lunid(lunaddrbytes))
3891 			hpsa_set_bus_target_lun(device,
3892 					HPSA_HBA_BUS, 0, lunid & 0x3fff);
3893 		else
3894 			/* defer target, lun assignment for physical devices */
3895 			hpsa_set_bus_target_lun(device,
3896 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3897 		return;
3898 	}
3899 	/* It's a logical device */
3900 	if (device->external) {
3901 		hpsa_set_bus_target_lun(device,
3902 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3903 			lunid & 0x00ff);
3904 		return;
3905 	}
3906 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3907 				0, lunid & 0x3fff);
3908 }
3909 
3910 
3911 /*
3912  * Get address of physical disk used for an ioaccel2 mode command:
3913  *	1. Extract ioaccel2 handle from the command.
3914  *	2. Find a matching ioaccel2 handle from list of physical disks.
3915  *	3. Return:
3916  *		1 and set scsi3addr to address of matching physical
3917  *		0 if no matching physical disk was found.
3918  */
3919 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3920 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3921 {
3922 	struct io_accel2_cmd *c2 =
3923 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3924 	unsigned long flags;
3925 	int i;
3926 
3927 	spin_lock_irqsave(&h->devlock, flags);
3928 	for (i = 0; i < h->ndevices; i++)
3929 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3930 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
3931 				sizeof(h->dev[i]->scsi3addr));
3932 			spin_unlock_irqrestore(&h->devlock, flags);
3933 			return 1;
3934 		}
3935 	spin_unlock_irqrestore(&h->devlock, flags);
3936 	return 0;
3937 }
3938 
3939 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3940 	int i, int nphysicals, int nlocal_logicals)
3941 {
3942 	/* In report logicals, local logicals are listed first,
3943 	* then any externals.
3944 	*/
3945 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3946 
3947 	if (i == raid_ctlr_position)
3948 		return 0;
3949 
3950 	if (i < logicals_start)
3951 		return 0;
3952 
3953 	/* i is in logicals range, but still within local logicals */
3954 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3955 		return 0;
3956 
3957 	return 1; /* it's an external lun */
3958 }
3959 
3960 /*
3961  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3962  * logdev.  The number of luns in physdev and logdev are returned in
3963  * *nphysicals and *nlogicals, respectively.
3964  * Returns 0 on success, -1 otherwise.
3965  */
3966 static int hpsa_gather_lun_info(struct ctlr_info *h,
3967 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3968 	struct ReportLUNdata *logdev, u32 *nlogicals)
3969 {
3970 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3971 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3972 		return -1;
3973 	}
3974 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3975 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3976 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3977 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3978 		*nphysicals = HPSA_MAX_PHYS_LUN;
3979 	}
3980 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3981 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3982 		return -1;
3983 	}
3984 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3985 	/* Reject Logicals in excess of our max capability. */
3986 	if (*nlogicals > HPSA_MAX_LUN) {
3987 		dev_warn(&h->pdev->dev,
3988 			"maximum logical LUNs (%d) exceeded.  "
3989 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3990 			*nlogicals - HPSA_MAX_LUN);
3991 			*nlogicals = HPSA_MAX_LUN;
3992 	}
3993 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3994 		dev_warn(&h->pdev->dev,
3995 			"maximum logical + physical LUNs (%d) exceeded. "
3996 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3997 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3998 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3999 	}
4000 	return 0;
4001 }
4002 
4003 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4004 	int i, int nphysicals, int nlogicals,
4005 	struct ReportExtendedLUNdata *physdev_list,
4006 	struct ReportLUNdata *logdev_list)
4007 {
4008 	/* Helper function, figure out where the LUN ID info is coming from
4009 	 * given index i, lists of physical and logical devices, where in
4010 	 * the list the raid controller is supposed to appear (first or last)
4011 	 */
4012 
4013 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4014 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4015 
4016 	if (i == raid_ctlr_position)
4017 		return RAID_CTLR_LUNID;
4018 
4019 	if (i < logicals_start)
4020 		return &physdev_list->LUN[i -
4021 				(raid_ctlr_position == 0)].lunid[0];
4022 
4023 	if (i < last_device)
4024 		return &logdev_list->LUN[i - nphysicals -
4025 			(raid_ctlr_position == 0)][0];
4026 	BUG();
4027 	return NULL;
4028 }
4029 
4030 /* get physical drive ioaccel handle and queue depth */
4031 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4032 		struct hpsa_scsi_dev_t *dev,
4033 		struct ReportExtendedLUNdata *rlep, int rle_index,
4034 		struct bmic_identify_physical_device *id_phys)
4035 {
4036 	int rc;
4037 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4038 
4039 	dev->ioaccel_handle = rle->ioaccel_handle;
4040 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4041 		dev->hba_ioaccel_enabled = 1;
4042 	memset(id_phys, 0, sizeof(*id_phys));
4043 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4044 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4045 			sizeof(*id_phys));
4046 	if (!rc)
4047 		/* Reserve space for FW operations */
4048 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4049 #define DRIVE_QUEUE_DEPTH 7
4050 		dev->queue_depth =
4051 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4052 				DRIVE_CMDS_RESERVED_FOR_FW;
4053 	else
4054 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4055 }
4056 
4057 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4058 	struct ReportExtendedLUNdata *rlep, int rle_index,
4059 	struct bmic_identify_physical_device *id_phys)
4060 {
4061 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4062 
4063 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4064 		this_device->hba_ioaccel_enabled = 1;
4065 
4066 	memcpy(&this_device->active_path_index,
4067 		&id_phys->active_path_number,
4068 		sizeof(this_device->active_path_index));
4069 	memcpy(&this_device->path_map,
4070 		&id_phys->redundant_path_present_map,
4071 		sizeof(this_device->path_map));
4072 	memcpy(&this_device->box,
4073 		&id_phys->alternate_paths_phys_box_on_port,
4074 		sizeof(this_device->box));
4075 	memcpy(&this_device->phys_connector,
4076 		&id_phys->alternate_paths_phys_connector,
4077 		sizeof(this_device->phys_connector));
4078 	memcpy(&this_device->bay,
4079 		&id_phys->phys_bay_in_box,
4080 		sizeof(this_device->bay));
4081 }
4082 
4083 /* get number of local logical disks. */
4084 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4085 	struct bmic_identify_controller *id_ctlr,
4086 	u32 *nlocals)
4087 {
4088 	int rc;
4089 
4090 	if (!id_ctlr) {
4091 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4092 			__func__);
4093 		return -ENOMEM;
4094 	}
4095 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4096 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4097 	if (!rc)
4098 		if (id_ctlr->configured_logical_drive_count < 256)
4099 			*nlocals = id_ctlr->configured_logical_drive_count;
4100 		else
4101 			*nlocals = le16_to_cpu(
4102 					id_ctlr->extended_logical_unit_count);
4103 	else
4104 		*nlocals = -1;
4105 	return rc;
4106 }
4107 
4108 
4109 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4110 {
4111 	/* the idea here is we could get notified
4112 	 * that some devices have changed, so we do a report
4113 	 * physical luns and report logical luns cmd, and adjust
4114 	 * our list of devices accordingly.
4115 	 *
4116 	 * The scsi3addr's of devices won't change so long as the
4117 	 * adapter is not reset.  That means we can rescan and
4118 	 * tell which devices we already know about, vs. new
4119 	 * devices, vs.  disappearing devices.
4120 	 */
4121 	struct ReportExtendedLUNdata *physdev_list = NULL;
4122 	struct ReportLUNdata *logdev_list = NULL;
4123 	struct bmic_identify_physical_device *id_phys = NULL;
4124 	struct bmic_identify_controller *id_ctlr = NULL;
4125 	u32 nphysicals = 0;
4126 	u32 nlogicals = 0;
4127 	u32 nlocal_logicals = 0;
4128 	u32 ndev_allocated = 0;
4129 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4130 	int ncurrent = 0;
4131 	int i, n_ext_target_devs, ndevs_to_allocate;
4132 	int raid_ctlr_position;
4133 	bool physical_device;
4134 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4135 
4136 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4137 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4138 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4139 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4140 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4141 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4142 
4143 	if (!currentsd || !physdev_list || !logdev_list ||
4144 		!tmpdevice || !id_phys || !id_ctlr) {
4145 		dev_err(&h->pdev->dev, "out of memory\n");
4146 		goto out;
4147 	}
4148 	memset(lunzerobits, 0, sizeof(lunzerobits));
4149 
4150 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4151 
4152 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4153 			logdev_list, &nlogicals)) {
4154 		h->drv_req_rescan = 1;
4155 		goto out;
4156 	}
4157 
4158 	/* Set number of local logicals (non PTRAID) */
4159 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4160 		dev_warn(&h->pdev->dev,
4161 			"%s: Can't determine number of local logical devices.\n",
4162 			__func__);
4163 	}
4164 
4165 	/* We might see up to the maximum number of logical and physical disks
4166 	 * plus external target devices, and a device for the local RAID
4167 	 * controller.
4168 	 */
4169 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4170 
4171 	/* Allocate the per device structures */
4172 	for (i = 0; i < ndevs_to_allocate; i++) {
4173 		if (i >= HPSA_MAX_DEVICES) {
4174 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4175 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4176 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4177 			break;
4178 		}
4179 
4180 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4181 		if (!currentsd[i]) {
4182 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4183 				__FILE__, __LINE__);
4184 			h->drv_req_rescan = 1;
4185 			goto out;
4186 		}
4187 		ndev_allocated++;
4188 	}
4189 
4190 	if (is_scsi_rev_5(h))
4191 		raid_ctlr_position = 0;
4192 	else
4193 		raid_ctlr_position = nphysicals + nlogicals;
4194 
4195 	/* adjust our table of devices */
4196 	n_ext_target_devs = 0;
4197 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4198 		u8 *lunaddrbytes, is_OBDR = 0;
4199 		int rc = 0;
4200 		int phys_dev_index = i - (raid_ctlr_position == 0);
4201 
4202 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4203 
4204 		/* Figure out where the LUN ID info is coming from */
4205 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4206 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4207 
4208 		/* skip masked non-disk devices */
4209 		if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4210 		   (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4211 		   (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4212 			continue;
4213 
4214 		/* Get device type, vendor, model, device id */
4215 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4216 							&is_OBDR);
4217 		if (rc == -ENOMEM) {
4218 			dev_warn(&h->pdev->dev,
4219 				"Out of memory, rescan deferred.\n");
4220 			h->drv_req_rescan = 1;
4221 			goto out;
4222 		}
4223 		if (rc) {
4224 			dev_warn(&h->pdev->dev,
4225 				"Inquiry failed, skipping device.\n");
4226 			continue;
4227 		}
4228 
4229 		/* Determine if this is a lun from an external target array */
4230 		tmpdevice->external =
4231 			figure_external_status(h, raid_ctlr_position, i,
4232 						nphysicals, nlocal_logicals);
4233 
4234 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4235 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4236 		this_device = currentsd[ncurrent];
4237 
4238 		/* Turn on discovery_polling if there are ext target devices.
4239 		 * Event-based change notification is unreliable for those.
4240 		 */
4241 		if (!h->discovery_polling) {
4242 			if (tmpdevice->external) {
4243 				h->discovery_polling = 1;
4244 				dev_info(&h->pdev->dev,
4245 					"External target, activate discovery polling.\n");
4246 			}
4247 		}
4248 
4249 
4250 		*this_device = *tmpdevice;
4251 		this_device->physical_device = physical_device;
4252 
4253 		/*
4254 		 * Expose all devices except for physical devices that
4255 		 * are masked.
4256 		 */
4257 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4258 			this_device->expose_device = 0;
4259 		else
4260 			this_device->expose_device = 1;
4261 
4262 
4263 		/*
4264 		 * Get the SAS address for physical devices that are exposed.
4265 		 */
4266 		if (this_device->physical_device && this_device->expose_device)
4267 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4268 
4269 		switch (this_device->devtype) {
4270 		case TYPE_ROM:
4271 			/* We don't *really* support actual CD-ROM devices,
4272 			 * just "One Button Disaster Recovery" tape drive
4273 			 * which temporarily pretends to be a CD-ROM drive.
4274 			 * So we check that the device is really an OBDR tape
4275 			 * device by checking for "$DR-10" in bytes 43-48 of
4276 			 * the inquiry data.
4277 			 */
4278 			if (is_OBDR)
4279 				ncurrent++;
4280 			break;
4281 		case TYPE_DISK:
4282 		case TYPE_ZBC:
4283 			if (this_device->physical_device) {
4284 				/* The disk is in HBA mode. */
4285 				/* Never use RAID mapper in HBA mode. */
4286 				this_device->offload_enabled = 0;
4287 				hpsa_get_ioaccel_drive_info(h, this_device,
4288 					physdev_list, phys_dev_index, id_phys);
4289 				hpsa_get_path_info(this_device,
4290 					physdev_list, phys_dev_index, id_phys);
4291 			}
4292 			ncurrent++;
4293 			break;
4294 		case TYPE_TAPE:
4295 		case TYPE_MEDIUM_CHANGER:
4296 			ncurrent++;
4297 			break;
4298 		case TYPE_ENCLOSURE:
4299 			if (!this_device->external)
4300 				hpsa_get_enclosure_info(h, lunaddrbytes,
4301 						physdev_list, phys_dev_index,
4302 						this_device);
4303 			ncurrent++;
4304 			break;
4305 		case TYPE_RAID:
4306 			/* Only present the Smartarray HBA as a RAID controller.
4307 			 * If it's a RAID controller other than the HBA itself
4308 			 * (an external RAID controller, MSA500 or similar)
4309 			 * don't present it.
4310 			 */
4311 			if (!is_hba_lunid(lunaddrbytes))
4312 				break;
4313 			ncurrent++;
4314 			break;
4315 		default:
4316 			break;
4317 		}
4318 		if (ncurrent >= HPSA_MAX_DEVICES)
4319 			break;
4320 	}
4321 
4322 	if (h->sas_host == NULL) {
4323 		int rc = 0;
4324 
4325 		rc = hpsa_add_sas_host(h);
4326 		if (rc) {
4327 			dev_warn(&h->pdev->dev,
4328 				"Could not add sas host %d\n", rc);
4329 			goto out;
4330 		}
4331 	}
4332 
4333 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4334 out:
4335 	kfree(tmpdevice);
4336 	for (i = 0; i < ndev_allocated; i++)
4337 		kfree(currentsd[i]);
4338 	kfree(currentsd);
4339 	kfree(physdev_list);
4340 	kfree(logdev_list);
4341 	kfree(id_ctlr);
4342 	kfree(id_phys);
4343 }
4344 
4345 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4346 				   struct scatterlist *sg)
4347 {
4348 	u64 addr64 = (u64) sg_dma_address(sg);
4349 	unsigned int len = sg_dma_len(sg);
4350 
4351 	desc->Addr = cpu_to_le64(addr64);
4352 	desc->Len = cpu_to_le32(len);
4353 	desc->Ext = 0;
4354 }
4355 
4356 /*
4357  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4358  * dma mapping  and fills in the scatter gather entries of the
4359  * hpsa command, cp.
4360  */
4361 static int hpsa_scatter_gather(struct ctlr_info *h,
4362 		struct CommandList *cp,
4363 		struct scsi_cmnd *cmd)
4364 {
4365 	struct scatterlist *sg;
4366 	int use_sg, i, sg_limit, chained, last_sg;
4367 	struct SGDescriptor *curr_sg;
4368 
4369 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4370 
4371 	use_sg = scsi_dma_map(cmd);
4372 	if (use_sg < 0)
4373 		return use_sg;
4374 
4375 	if (!use_sg)
4376 		goto sglist_finished;
4377 
4378 	/*
4379 	 * If the number of entries is greater than the max for a single list,
4380 	 * then we have a chained list; we will set up all but one entry in the
4381 	 * first list (the last entry is saved for link information);
4382 	 * otherwise, we don't have a chained list and we'll set up at each of
4383 	 * the entries in the one list.
4384 	 */
4385 	curr_sg = cp->SG;
4386 	chained = use_sg > h->max_cmd_sg_entries;
4387 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4388 	last_sg = scsi_sg_count(cmd) - 1;
4389 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4390 		hpsa_set_sg_descriptor(curr_sg, sg);
4391 		curr_sg++;
4392 	}
4393 
4394 	if (chained) {
4395 		/*
4396 		 * Continue with the chained list.  Set curr_sg to the chained
4397 		 * list.  Modify the limit to the total count less the entries
4398 		 * we've already set up.  Resume the scan at the list entry
4399 		 * where the previous loop left off.
4400 		 */
4401 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4402 		sg_limit = use_sg - sg_limit;
4403 		for_each_sg(sg, sg, sg_limit, i) {
4404 			hpsa_set_sg_descriptor(curr_sg, sg);
4405 			curr_sg++;
4406 		}
4407 	}
4408 
4409 	/* Back the pointer up to the last entry and mark it as "last". */
4410 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4411 
4412 	if (use_sg + chained > h->maxSG)
4413 		h->maxSG = use_sg + chained;
4414 
4415 	if (chained) {
4416 		cp->Header.SGList = h->max_cmd_sg_entries;
4417 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4418 		if (hpsa_map_sg_chain_block(h, cp)) {
4419 			scsi_dma_unmap(cmd);
4420 			return -1;
4421 		}
4422 		return 0;
4423 	}
4424 
4425 sglist_finished:
4426 
4427 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4428 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4429 	return 0;
4430 }
4431 
4432 #define IO_ACCEL_INELIGIBLE (1)
4433 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4434 {
4435 	int is_write = 0;
4436 	u32 block;
4437 	u32 block_cnt;
4438 
4439 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4440 	switch (cdb[0]) {
4441 	case WRITE_6:
4442 	case WRITE_12:
4443 		is_write = 1;
4444 	case READ_6:
4445 	case READ_12:
4446 		if (*cdb_len == 6) {
4447 			block = get_unaligned_be16(&cdb[2]);
4448 			block_cnt = cdb[4];
4449 			if (block_cnt == 0)
4450 				block_cnt = 256;
4451 		} else {
4452 			BUG_ON(*cdb_len != 12);
4453 			block = get_unaligned_be32(&cdb[2]);
4454 			block_cnt = get_unaligned_be32(&cdb[6]);
4455 		}
4456 		if (block_cnt > 0xffff)
4457 			return IO_ACCEL_INELIGIBLE;
4458 
4459 		cdb[0] = is_write ? WRITE_10 : READ_10;
4460 		cdb[1] = 0;
4461 		cdb[2] = (u8) (block >> 24);
4462 		cdb[3] = (u8) (block >> 16);
4463 		cdb[4] = (u8) (block >> 8);
4464 		cdb[5] = (u8) (block);
4465 		cdb[6] = 0;
4466 		cdb[7] = (u8) (block_cnt >> 8);
4467 		cdb[8] = (u8) (block_cnt);
4468 		cdb[9] = 0;
4469 		*cdb_len = 10;
4470 		break;
4471 	}
4472 	return 0;
4473 }
4474 
4475 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4476 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4477 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4478 {
4479 	struct scsi_cmnd *cmd = c->scsi_cmd;
4480 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4481 	unsigned int len;
4482 	unsigned int total_len = 0;
4483 	struct scatterlist *sg;
4484 	u64 addr64;
4485 	int use_sg, i;
4486 	struct SGDescriptor *curr_sg;
4487 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4488 
4489 	/* TODO: implement chaining support */
4490 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4491 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4492 		return IO_ACCEL_INELIGIBLE;
4493 	}
4494 
4495 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4496 
4497 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4498 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4499 		return IO_ACCEL_INELIGIBLE;
4500 	}
4501 
4502 	c->cmd_type = CMD_IOACCEL1;
4503 
4504 	/* Adjust the DMA address to point to the accelerated command buffer */
4505 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4506 				(c->cmdindex * sizeof(*cp));
4507 	BUG_ON(c->busaddr & 0x0000007F);
4508 
4509 	use_sg = scsi_dma_map(cmd);
4510 	if (use_sg < 0) {
4511 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4512 		return use_sg;
4513 	}
4514 
4515 	if (use_sg) {
4516 		curr_sg = cp->SG;
4517 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4518 			addr64 = (u64) sg_dma_address(sg);
4519 			len  = sg_dma_len(sg);
4520 			total_len += len;
4521 			curr_sg->Addr = cpu_to_le64(addr64);
4522 			curr_sg->Len = cpu_to_le32(len);
4523 			curr_sg->Ext = cpu_to_le32(0);
4524 			curr_sg++;
4525 		}
4526 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4527 
4528 		switch (cmd->sc_data_direction) {
4529 		case DMA_TO_DEVICE:
4530 			control |= IOACCEL1_CONTROL_DATA_OUT;
4531 			break;
4532 		case DMA_FROM_DEVICE:
4533 			control |= IOACCEL1_CONTROL_DATA_IN;
4534 			break;
4535 		case DMA_NONE:
4536 			control |= IOACCEL1_CONTROL_NODATAXFER;
4537 			break;
4538 		default:
4539 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4540 			cmd->sc_data_direction);
4541 			BUG();
4542 			break;
4543 		}
4544 	} else {
4545 		control |= IOACCEL1_CONTROL_NODATAXFER;
4546 	}
4547 
4548 	c->Header.SGList = use_sg;
4549 	/* Fill out the command structure to submit */
4550 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4551 	cp->transfer_len = cpu_to_le32(total_len);
4552 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4553 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4554 	cp->control = cpu_to_le32(control);
4555 	memcpy(cp->CDB, cdb, cdb_len);
4556 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4557 	/* Tag was already set at init time. */
4558 	enqueue_cmd_and_start_io(h, c);
4559 	return 0;
4560 }
4561 
4562 /*
4563  * Queue a command directly to a device behind the controller using the
4564  * I/O accelerator path.
4565  */
4566 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4567 	struct CommandList *c)
4568 {
4569 	struct scsi_cmnd *cmd = c->scsi_cmd;
4570 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4571 
4572 	c->phys_disk = dev;
4573 
4574 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4575 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4576 }
4577 
4578 /*
4579  * Set encryption parameters for the ioaccel2 request
4580  */
4581 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4582 	struct CommandList *c, struct io_accel2_cmd *cp)
4583 {
4584 	struct scsi_cmnd *cmd = c->scsi_cmd;
4585 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4586 	struct raid_map_data *map = &dev->raid_map;
4587 	u64 first_block;
4588 
4589 	/* Are we doing encryption on this device */
4590 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4591 		return;
4592 	/* Set the data encryption key index. */
4593 	cp->dekindex = map->dekindex;
4594 
4595 	/* Set the encryption enable flag, encoded into direction field. */
4596 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4597 
4598 	/* Set encryption tweak values based on logical block address
4599 	 * If block size is 512, tweak value is LBA.
4600 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4601 	 */
4602 	switch (cmd->cmnd[0]) {
4603 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4604 	case WRITE_6:
4605 	case READ_6:
4606 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4607 		break;
4608 	case WRITE_10:
4609 	case READ_10:
4610 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4611 	case WRITE_12:
4612 	case READ_12:
4613 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4614 		break;
4615 	case WRITE_16:
4616 	case READ_16:
4617 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4618 		break;
4619 	default:
4620 		dev_err(&h->pdev->dev,
4621 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4622 			__func__, cmd->cmnd[0]);
4623 		BUG();
4624 		break;
4625 	}
4626 
4627 	if (le32_to_cpu(map->volume_blk_size) != 512)
4628 		first_block = first_block *
4629 				le32_to_cpu(map->volume_blk_size)/512;
4630 
4631 	cp->tweak_lower = cpu_to_le32(first_block);
4632 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4633 }
4634 
4635 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4636 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4637 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4638 {
4639 	struct scsi_cmnd *cmd = c->scsi_cmd;
4640 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4641 	struct ioaccel2_sg_element *curr_sg;
4642 	int use_sg, i;
4643 	struct scatterlist *sg;
4644 	u64 addr64;
4645 	u32 len;
4646 	u32 total_len = 0;
4647 
4648 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4649 
4650 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4651 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4652 		return IO_ACCEL_INELIGIBLE;
4653 	}
4654 
4655 	c->cmd_type = CMD_IOACCEL2;
4656 	/* Adjust the DMA address to point to the accelerated command buffer */
4657 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4658 				(c->cmdindex * sizeof(*cp));
4659 	BUG_ON(c->busaddr & 0x0000007F);
4660 
4661 	memset(cp, 0, sizeof(*cp));
4662 	cp->IU_type = IOACCEL2_IU_TYPE;
4663 
4664 	use_sg = scsi_dma_map(cmd);
4665 	if (use_sg < 0) {
4666 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4667 		return use_sg;
4668 	}
4669 
4670 	if (use_sg) {
4671 		curr_sg = cp->sg;
4672 		if (use_sg > h->ioaccel_maxsg) {
4673 			addr64 = le64_to_cpu(
4674 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4675 			curr_sg->address = cpu_to_le64(addr64);
4676 			curr_sg->length = 0;
4677 			curr_sg->reserved[0] = 0;
4678 			curr_sg->reserved[1] = 0;
4679 			curr_sg->reserved[2] = 0;
4680 			curr_sg->chain_indicator = 0x80;
4681 
4682 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4683 		}
4684 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4685 			addr64 = (u64) sg_dma_address(sg);
4686 			len  = sg_dma_len(sg);
4687 			total_len += len;
4688 			curr_sg->address = cpu_to_le64(addr64);
4689 			curr_sg->length = cpu_to_le32(len);
4690 			curr_sg->reserved[0] = 0;
4691 			curr_sg->reserved[1] = 0;
4692 			curr_sg->reserved[2] = 0;
4693 			curr_sg->chain_indicator = 0;
4694 			curr_sg++;
4695 		}
4696 
4697 		switch (cmd->sc_data_direction) {
4698 		case DMA_TO_DEVICE:
4699 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4700 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4701 			break;
4702 		case DMA_FROM_DEVICE:
4703 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4704 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4705 			break;
4706 		case DMA_NONE:
4707 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4708 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4709 			break;
4710 		default:
4711 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4712 				cmd->sc_data_direction);
4713 			BUG();
4714 			break;
4715 		}
4716 	} else {
4717 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4718 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4719 	}
4720 
4721 	/* Set encryption parameters, if necessary */
4722 	set_encrypt_ioaccel2(h, c, cp);
4723 
4724 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4725 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4726 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4727 
4728 	cp->data_len = cpu_to_le32(total_len);
4729 	cp->err_ptr = cpu_to_le64(c->busaddr +
4730 			offsetof(struct io_accel2_cmd, error_data));
4731 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4732 
4733 	/* fill in sg elements */
4734 	if (use_sg > h->ioaccel_maxsg) {
4735 		cp->sg_count = 1;
4736 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4737 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4738 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4739 			scsi_dma_unmap(cmd);
4740 			return -1;
4741 		}
4742 	} else
4743 		cp->sg_count = (u8) use_sg;
4744 
4745 	enqueue_cmd_and_start_io(h, c);
4746 	return 0;
4747 }
4748 
4749 /*
4750  * Queue a command to the correct I/O accelerator path.
4751  */
4752 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4753 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4754 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4755 {
4756 	/* Try to honor the device's queue depth */
4757 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4758 					phys_disk->queue_depth) {
4759 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4760 		return IO_ACCEL_INELIGIBLE;
4761 	}
4762 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4763 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4764 						cdb, cdb_len, scsi3addr,
4765 						phys_disk);
4766 	else
4767 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4768 						cdb, cdb_len, scsi3addr,
4769 						phys_disk);
4770 }
4771 
4772 static void raid_map_helper(struct raid_map_data *map,
4773 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4774 {
4775 	if (offload_to_mirror == 0)  {
4776 		/* use physical disk in the first mirrored group. */
4777 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4778 		return;
4779 	}
4780 	do {
4781 		/* determine mirror group that *map_index indicates */
4782 		*current_group = *map_index /
4783 			le16_to_cpu(map->data_disks_per_row);
4784 		if (offload_to_mirror == *current_group)
4785 			continue;
4786 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4787 			/* select map index from next group */
4788 			*map_index += le16_to_cpu(map->data_disks_per_row);
4789 			(*current_group)++;
4790 		} else {
4791 			/* select map index from first group */
4792 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4793 			*current_group = 0;
4794 		}
4795 	} while (offload_to_mirror != *current_group);
4796 }
4797 
4798 /*
4799  * Attempt to perform offload RAID mapping for a logical volume I/O.
4800  */
4801 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4802 	struct CommandList *c)
4803 {
4804 	struct scsi_cmnd *cmd = c->scsi_cmd;
4805 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4806 	struct raid_map_data *map = &dev->raid_map;
4807 	struct raid_map_disk_data *dd = &map->data[0];
4808 	int is_write = 0;
4809 	u32 map_index;
4810 	u64 first_block, last_block;
4811 	u32 block_cnt;
4812 	u32 blocks_per_row;
4813 	u64 first_row, last_row;
4814 	u32 first_row_offset, last_row_offset;
4815 	u32 first_column, last_column;
4816 	u64 r0_first_row, r0_last_row;
4817 	u32 r5or6_blocks_per_row;
4818 	u64 r5or6_first_row, r5or6_last_row;
4819 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4820 	u32 r5or6_first_column, r5or6_last_column;
4821 	u32 total_disks_per_row;
4822 	u32 stripesize;
4823 	u32 first_group, last_group, current_group;
4824 	u32 map_row;
4825 	u32 disk_handle;
4826 	u64 disk_block;
4827 	u32 disk_block_cnt;
4828 	u8 cdb[16];
4829 	u8 cdb_len;
4830 	u16 strip_size;
4831 #if BITS_PER_LONG == 32
4832 	u64 tmpdiv;
4833 #endif
4834 	int offload_to_mirror;
4835 
4836 	/* check for valid opcode, get LBA and block count */
4837 	switch (cmd->cmnd[0]) {
4838 	case WRITE_6:
4839 		is_write = 1;
4840 	case READ_6:
4841 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4842 		block_cnt = cmd->cmnd[4];
4843 		if (block_cnt == 0)
4844 			block_cnt = 256;
4845 		break;
4846 	case WRITE_10:
4847 		is_write = 1;
4848 	case READ_10:
4849 		first_block =
4850 			(((u64) cmd->cmnd[2]) << 24) |
4851 			(((u64) cmd->cmnd[3]) << 16) |
4852 			(((u64) cmd->cmnd[4]) << 8) |
4853 			cmd->cmnd[5];
4854 		block_cnt =
4855 			(((u32) cmd->cmnd[7]) << 8) |
4856 			cmd->cmnd[8];
4857 		break;
4858 	case WRITE_12:
4859 		is_write = 1;
4860 	case READ_12:
4861 		first_block =
4862 			(((u64) cmd->cmnd[2]) << 24) |
4863 			(((u64) cmd->cmnd[3]) << 16) |
4864 			(((u64) cmd->cmnd[4]) << 8) |
4865 			cmd->cmnd[5];
4866 		block_cnt =
4867 			(((u32) cmd->cmnd[6]) << 24) |
4868 			(((u32) cmd->cmnd[7]) << 16) |
4869 			(((u32) cmd->cmnd[8]) << 8) |
4870 		cmd->cmnd[9];
4871 		break;
4872 	case WRITE_16:
4873 		is_write = 1;
4874 	case READ_16:
4875 		first_block =
4876 			(((u64) cmd->cmnd[2]) << 56) |
4877 			(((u64) cmd->cmnd[3]) << 48) |
4878 			(((u64) cmd->cmnd[4]) << 40) |
4879 			(((u64) cmd->cmnd[5]) << 32) |
4880 			(((u64) cmd->cmnd[6]) << 24) |
4881 			(((u64) cmd->cmnd[7]) << 16) |
4882 			(((u64) cmd->cmnd[8]) << 8) |
4883 			cmd->cmnd[9];
4884 		block_cnt =
4885 			(((u32) cmd->cmnd[10]) << 24) |
4886 			(((u32) cmd->cmnd[11]) << 16) |
4887 			(((u32) cmd->cmnd[12]) << 8) |
4888 			cmd->cmnd[13];
4889 		break;
4890 	default:
4891 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4892 	}
4893 	last_block = first_block + block_cnt - 1;
4894 
4895 	/* check for write to non-RAID-0 */
4896 	if (is_write && dev->raid_level != 0)
4897 		return IO_ACCEL_INELIGIBLE;
4898 
4899 	/* check for invalid block or wraparound */
4900 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4901 		last_block < first_block)
4902 		return IO_ACCEL_INELIGIBLE;
4903 
4904 	/* calculate stripe information for the request */
4905 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4906 				le16_to_cpu(map->strip_size);
4907 	strip_size = le16_to_cpu(map->strip_size);
4908 #if BITS_PER_LONG == 32
4909 	tmpdiv = first_block;
4910 	(void) do_div(tmpdiv, blocks_per_row);
4911 	first_row = tmpdiv;
4912 	tmpdiv = last_block;
4913 	(void) do_div(tmpdiv, blocks_per_row);
4914 	last_row = tmpdiv;
4915 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4916 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4917 	tmpdiv = first_row_offset;
4918 	(void) do_div(tmpdiv, strip_size);
4919 	first_column = tmpdiv;
4920 	tmpdiv = last_row_offset;
4921 	(void) do_div(tmpdiv, strip_size);
4922 	last_column = tmpdiv;
4923 #else
4924 	first_row = first_block / blocks_per_row;
4925 	last_row = last_block / blocks_per_row;
4926 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4927 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4928 	first_column = first_row_offset / strip_size;
4929 	last_column = last_row_offset / strip_size;
4930 #endif
4931 
4932 	/* if this isn't a single row/column then give to the controller */
4933 	if ((first_row != last_row) || (first_column != last_column))
4934 		return IO_ACCEL_INELIGIBLE;
4935 
4936 	/* proceeding with driver mapping */
4937 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4938 				le16_to_cpu(map->metadata_disks_per_row);
4939 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4940 				le16_to_cpu(map->row_cnt);
4941 	map_index = (map_row * total_disks_per_row) + first_column;
4942 
4943 	switch (dev->raid_level) {
4944 	case HPSA_RAID_0:
4945 		break; /* nothing special to do */
4946 	case HPSA_RAID_1:
4947 		/* Handles load balance across RAID 1 members.
4948 		 * (2-drive R1 and R10 with even # of drives.)
4949 		 * Appropriate for SSDs, not optimal for HDDs
4950 		 */
4951 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4952 		if (dev->offload_to_mirror)
4953 			map_index += le16_to_cpu(map->data_disks_per_row);
4954 		dev->offload_to_mirror = !dev->offload_to_mirror;
4955 		break;
4956 	case HPSA_RAID_ADM:
4957 		/* Handles N-way mirrors  (R1-ADM)
4958 		 * and R10 with # of drives divisible by 3.)
4959 		 */
4960 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4961 
4962 		offload_to_mirror = dev->offload_to_mirror;
4963 		raid_map_helper(map, offload_to_mirror,
4964 				&map_index, &current_group);
4965 		/* set mirror group to use next time */
4966 		offload_to_mirror =
4967 			(offload_to_mirror >=
4968 			le16_to_cpu(map->layout_map_count) - 1)
4969 			? 0 : offload_to_mirror + 1;
4970 		dev->offload_to_mirror = offload_to_mirror;
4971 		/* Avoid direct use of dev->offload_to_mirror within this
4972 		 * function since multiple threads might simultaneously
4973 		 * increment it beyond the range of dev->layout_map_count -1.
4974 		 */
4975 		break;
4976 	case HPSA_RAID_5:
4977 	case HPSA_RAID_6:
4978 		if (le16_to_cpu(map->layout_map_count) <= 1)
4979 			break;
4980 
4981 		/* Verify first and last block are in same RAID group */
4982 		r5or6_blocks_per_row =
4983 			le16_to_cpu(map->strip_size) *
4984 			le16_to_cpu(map->data_disks_per_row);
4985 		BUG_ON(r5or6_blocks_per_row == 0);
4986 		stripesize = r5or6_blocks_per_row *
4987 			le16_to_cpu(map->layout_map_count);
4988 #if BITS_PER_LONG == 32
4989 		tmpdiv = first_block;
4990 		first_group = do_div(tmpdiv, stripesize);
4991 		tmpdiv = first_group;
4992 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4993 		first_group = tmpdiv;
4994 		tmpdiv = last_block;
4995 		last_group = do_div(tmpdiv, stripesize);
4996 		tmpdiv = last_group;
4997 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4998 		last_group = tmpdiv;
4999 #else
5000 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5001 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5002 #endif
5003 		if (first_group != last_group)
5004 			return IO_ACCEL_INELIGIBLE;
5005 
5006 		/* Verify request is in a single row of RAID 5/6 */
5007 #if BITS_PER_LONG == 32
5008 		tmpdiv = first_block;
5009 		(void) do_div(tmpdiv, stripesize);
5010 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5011 		tmpdiv = last_block;
5012 		(void) do_div(tmpdiv, stripesize);
5013 		r5or6_last_row = r0_last_row = tmpdiv;
5014 #else
5015 		first_row = r5or6_first_row = r0_first_row =
5016 						first_block / stripesize;
5017 		r5or6_last_row = r0_last_row = last_block / stripesize;
5018 #endif
5019 		if (r5or6_first_row != r5or6_last_row)
5020 			return IO_ACCEL_INELIGIBLE;
5021 
5022 
5023 		/* Verify request is in a single column */
5024 #if BITS_PER_LONG == 32
5025 		tmpdiv = first_block;
5026 		first_row_offset = do_div(tmpdiv, stripesize);
5027 		tmpdiv = first_row_offset;
5028 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5029 		r5or6_first_row_offset = first_row_offset;
5030 		tmpdiv = last_block;
5031 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5032 		tmpdiv = r5or6_last_row_offset;
5033 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5034 		tmpdiv = r5or6_first_row_offset;
5035 		(void) do_div(tmpdiv, map->strip_size);
5036 		first_column = r5or6_first_column = tmpdiv;
5037 		tmpdiv = r5or6_last_row_offset;
5038 		(void) do_div(tmpdiv, map->strip_size);
5039 		r5or6_last_column = tmpdiv;
5040 #else
5041 		first_row_offset = r5or6_first_row_offset =
5042 			(u32)((first_block % stripesize) %
5043 						r5or6_blocks_per_row);
5044 
5045 		r5or6_last_row_offset =
5046 			(u32)((last_block % stripesize) %
5047 						r5or6_blocks_per_row);
5048 
5049 		first_column = r5or6_first_column =
5050 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5051 		r5or6_last_column =
5052 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5053 #endif
5054 		if (r5or6_first_column != r5or6_last_column)
5055 			return IO_ACCEL_INELIGIBLE;
5056 
5057 		/* Request is eligible */
5058 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5059 			le16_to_cpu(map->row_cnt);
5060 
5061 		map_index = (first_group *
5062 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5063 			(map_row * total_disks_per_row) + first_column;
5064 		break;
5065 	default:
5066 		return IO_ACCEL_INELIGIBLE;
5067 	}
5068 
5069 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5070 		return IO_ACCEL_INELIGIBLE;
5071 
5072 	c->phys_disk = dev->phys_disk[map_index];
5073 	if (!c->phys_disk)
5074 		return IO_ACCEL_INELIGIBLE;
5075 
5076 	disk_handle = dd[map_index].ioaccel_handle;
5077 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5078 			first_row * le16_to_cpu(map->strip_size) +
5079 			(first_row_offset - first_column *
5080 			le16_to_cpu(map->strip_size));
5081 	disk_block_cnt = block_cnt;
5082 
5083 	/* handle differing logical/physical block sizes */
5084 	if (map->phys_blk_shift) {
5085 		disk_block <<= map->phys_blk_shift;
5086 		disk_block_cnt <<= map->phys_blk_shift;
5087 	}
5088 	BUG_ON(disk_block_cnt > 0xffff);
5089 
5090 	/* build the new CDB for the physical disk I/O */
5091 	if (disk_block > 0xffffffff) {
5092 		cdb[0] = is_write ? WRITE_16 : READ_16;
5093 		cdb[1] = 0;
5094 		cdb[2] = (u8) (disk_block >> 56);
5095 		cdb[3] = (u8) (disk_block >> 48);
5096 		cdb[4] = (u8) (disk_block >> 40);
5097 		cdb[5] = (u8) (disk_block >> 32);
5098 		cdb[6] = (u8) (disk_block >> 24);
5099 		cdb[7] = (u8) (disk_block >> 16);
5100 		cdb[8] = (u8) (disk_block >> 8);
5101 		cdb[9] = (u8) (disk_block);
5102 		cdb[10] = (u8) (disk_block_cnt >> 24);
5103 		cdb[11] = (u8) (disk_block_cnt >> 16);
5104 		cdb[12] = (u8) (disk_block_cnt >> 8);
5105 		cdb[13] = (u8) (disk_block_cnt);
5106 		cdb[14] = 0;
5107 		cdb[15] = 0;
5108 		cdb_len = 16;
5109 	} else {
5110 		cdb[0] = is_write ? WRITE_10 : READ_10;
5111 		cdb[1] = 0;
5112 		cdb[2] = (u8) (disk_block >> 24);
5113 		cdb[3] = (u8) (disk_block >> 16);
5114 		cdb[4] = (u8) (disk_block >> 8);
5115 		cdb[5] = (u8) (disk_block);
5116 		cdb[6] = 0;
5117 		cdb[7] = (u8) (disk_block_cnt >> 8);
5118 		cdb[8] = (u8) (disk_block_cnt);
5119 		cdb[9] = 0;
5120 		cdb_len = 10;
5121 	}
5122 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5123 						dev->scsi3addr,
5124 						dev->phys_disk[map_index]);
5125 }
5126 
5127 /*
5128  * Submit commands down the "normal" RAID stack path
5129  * All callers to hpsa_ciss_submit must check lockup_detected
5130  * beforehand, before (opt.) and after calling cmd_alloc
5131  */
5132 static int hpsa_ciss_submit(struct ctlr_info *h,
5133 	struct CommandList *c, struct scsi_cmnd *cmd,
5134 	unsigned char scsi3addr[])
5135 {
5136 	cmd->host_scribble = (unsigned char *) c;
5137 	c->cmd_type = CMD_SCSI;
5138 	c->scsi_cmd = cmd;
5139 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5140 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5141 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5142 
5143 	/* Fill in the request block... */
5144 
5145 	c->Request.Timeout = 0;
5146 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5147 	c->Request.CDBLen = cmd->cmd_len;
5148 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5149 	switch (cmd->sc_data_direction) {
5150 	case DMA_TO_DEVICE:
5151 		c->Request.type_attr_dir =
5152 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5153 		break;
5154 	case DMA_FROM_DEVICE:
5155 		c->Request.type_attr_dir =
5156 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5157 		break;
5158 	case DMA_NONE:
5159 		c->Request.type_attr_dir =
5160 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5161 		break;
5162 	case DMA_BIDIRECTIONAL:
5163 		/* This can happen if a buggy application does a scsi passthru
5164 		 * and sets both inlen and outlen to non-zero. ( see
5165 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5166 		 */
5167 
5168 		c->Request.type_attr_dir =
5169 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5170 		/* This is technically wrong, and hpsa controllers should
5171 		 * reject it with CMD_INVALID, which is the most correct
5172 		 * response, but non-fibre backends appear to let it
5173 		 * slide by, and give the same results as if this field
5174 		 * were set correctly.  Either way is acceptable for
5175 		 * our purposes here.
5176 		 */
5177 
5178 		break;
5179 
5180 	default:
5181 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5182 			cmd->sc_data_direction);
5183 		BUG();
5184 		break;
5185 	}
5186 
5187 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5188 		hpsa_cmd_resolve_and_free(h, c);
5189 		return SCSI_MLQUEUE_HOST_BUSY;
5190 	}
5191 	enqueue_cmd_and_start_io(h, c);
5192 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5193 	return 0;
5194 }
5195 
5196 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5197 				struct CommandList *c)
5198 {
5199 	dma_addr_t cmd_dma_handle, err_dma_handle;
5200 
5201 	/* Zero out all of commandlist except the last field, refcount */
5202 	memset(c, 0, offsetof(struct CommandList, refcount));
5203 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5204 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5205 	c->err_info = h->errinfo_pool + index;
5206 	memset(c->err_info, 0, sizeof(*c->err_info));
5207 	err_dma_handle = h->errinfo_pool_dhandle
5208 	    + index * sizeof(*c->err_info);
5209 	c->cmdindex = index;
5210 	c->busaddr = (u32) cmd_dma_handle;
5211 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5212 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5213 	c->h = h;
5214 	c->scsi_cmd = SCSI_CMD_IDLE;
5215 }
5216 
5217 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5218 {
5219 	int i;
5220 
5221 	for (i = 0; i < h->nr_cmds; i++) {
5222 		struct CommandList *c = h->cmd_pool + i;
5223 
5224 		hpsa_cmd_init(h, i, c);
5225 		atomic_set(&c->refcount, 0);
5226 	}
5227 }
5228 
5229 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5230 				struct CommandList *c)
5231 {
5232 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5233 
5234 	BUG_ON(c->cmdindex != index);
5235 
5236 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5237 	memset(c->err_info, 0, sizeof(*c->err_info));
5238 	c->busaddr = (u32) cmd_dma_handle;
5239 }
5240 
5241 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5242 		struct CommandList *c, struct scsi_cmnd *cmd,
5243 		unsigned char *scsi3addr)
5244 {
5245 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5246 	int rc = IO_ACCEL_INELIGIBLE;
5247 
5248 	cmd->host_scribble = (unsigned char *) c;
5249 
5250 	if (dev->offload_enabled) {
5251 		hpsa_cmd_init(h, c->cmdindex, c);
5252 		c->cmd_type = CMD_SCSI;
5253 		c->scsi_cmd = cmd;
5254 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5255 		if (rc < 0)     /* scsi_dma_map failed. */
5256 			rc = SCSI_MLQUEUE_HOST_BUSY;
5257 	} else if (dev->hba_ioaccel_enabled) {
5258 		hpsa_cmd_init(h, c->cmdindex, c);
5259 		c->cmd_type = CMD_SCSI;
5260 		c->scsi_cmd = cmd;
5261 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5262 		if (rc < 0)     /* scsi_dma_map failed. */
5263 			rc = SCSI_MLQUEUE_HOST_BUSY;
5264 	}
5265 	return rc;
5266 }
5267 
5268 static void hpsa_command_resubmit_worker(struct work_struct *work)
5269 {
5270 	struct scsi_cmnd *cmd;
5271 	struct hpsa_scsi_dev_t *dev;
5272 	struct CommandList *c = container_of(work, struct CommandList, work);
5273 
5274 	cmd = c->scsi_cmd;
5275 	dev = cmd->device->hostdata;
5276 	if (!dev) {
5277 		cmd->result = DID_NO_CONNECT << 16;
5278 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5279 	}
5280 	if (c->reset_pending)
5281 		return hpsa_cmd_resolve_and_free(c->h, c);
5282 	if (c->abort_pending)
5283 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5284 	if (c->cmd_type == CMD_IOACCEL2) {
5285 		struct ctlr_info *h = c->h;
5286 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5287 		int rc;
5288 
5289 		if (c2->error_data.serv_response ==
5290 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5291 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5292 			if (rc == 0)
5293 				return;
5294 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5295 				/*
5296 				 * If we get here, it means dma mapping failed.
5297 				 * Try again via scsi mid layer, which will
5298 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5299 				 */
5300 				cmd->result = DID_IMM_RETRY << 16;
5301 				return hpsa_cmd_free_and_done(h, c, cmd);
5302 			}
5303 			/* else, fall thru and resubmit down CISS path */
5304 		}
5305 	}
5306 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5307 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5308 		/*
5309 		 * If we get here, it means dma mapping failed. Try
5310 		 * again via scsi mid layer, which will then get
5311 		 * SCSI_MLQUEUE_HOST_BUSY.
5312 		 *
5313 		 * hpsa_ciss_submit will have already freed c
5314 		 * if it encountered a dma mapping failure.
5315 		 */
5316 		cmd->result = DID_IMM_RETRY << 16;
5317 		cmd->scsi_done(cmd);
5318 	}
5319 }
5320 
5321 /* Running in struct Scsi_Host->host_lock less mode */
5322 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5323 {
5324 	struct ctlr_info *h;
5325 	struct hpsa_scsi_dev_t *dev;
5326 	unsigned char scsi3addr[8];
5327 	struct CommandList *c;
5328 	int rc = 0;
5329 
5330 	/* Get the ptr to our adapter structure out of cmd->host. */
5331 	h = sdev_to_hba(cmd->device);
5332 
5333 	BUG_ON(cmd->request->tag < 0);
5334 
5335 	dev = cmd->device->hostdata;
5336 	if (!dev) {
5337 		cmd->result = NOT_READY << 16; /* host byte */
5338 		cmd->scsi_done(cmd);
5339 		return 0;
5340 	}
5341 
5342 	if (dev->removed) {
5343 		cmd->result = DID_NO_CONNECT << 16;
5344 		cmd->scsi_done(cmd);
5345 		return 0;
5346 	}
5347 
5348 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5349 
5350 	if (unlikely(lockup_detected(h))) {
5351 		cmd->result = DID_NO_CONNECT << 16;
5352 		cmd->scsi_done(cmd);
5353 		return 0;
5354 	}
5355 	c = cmd_tagged_alloc(h, cmd);
5356 
5357 	/*
5358 	 * Call alternate submit routine for I/O accelerated commands.
5359 	 * Retries always go down the normal I/O path.
5360 	 */
5361 	if (likely(cmd->retries == 0 &&
5362 		cmd->request->cmd_type == REQ_TYPE_FS &&
5363 		h->acciopath_status)) {
5364 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5365 		if (rc == 0)
5366 			return 0;
5367 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5368 			hpsa_cmd_resolve_and_free(h, c);
5369 			return SCSI_MLQUEUE_HOST_BUSY;
5370 		}
5371 	}
5372 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5373 }
5374 
5375 static void hpsa_scan_complete(struct ctlr_info *h)
5376 {
5377 	unsigned long flags;
5378 
5379 	spin_lock_irqsave(&h->scan_lock, flags);
5380 	h->scan_finished = 1;
5381 	wake_up_all(&h->scan_wait_queue);
5382 	spin_unlock_irqrestore(&h->scan_lock, flags);
5383 }
5384 
5385 static void hpsa_scan_start(struct Scsi_Host *sh)
5386 {
5387 	struct ctlr_info *h = shost_to_hba(sh);
5388 	unsigned long flags;
5389 
5390 	/*
5391 	 * Don't let rescans be initiated on a controller known to be locked
5392 	 * up.  If the controller locks up *during* a rescan, that thread is
5393 	 * probably hosed, but at least we can prevent new rescan threads from
5394 	 * piling up on a locked up controller.
5395 	 */
5396 	if (unlikely(lockup_detected(h)))
5397 		return hpsa_scan_complete(h);
5398 
5399 	/* wait until any scan already in progress is finished. */
5400 	while (1) {
5401 		spin_lock_irqsave(&h->scan_lock, flags);
5402 		if (h->scan_finished)
5403 			break;
5404 		spin_unlock_irqrestore(&h->scan_lock, flags);
5405 		wait_event(h->scan_wait_queue, h->scan_finished);
5406 		/* Note: We don't need to worry about a race between this
5407 		 * thread and driver unload because the midlayer will
5408 		 * have incremented the reference count, so unload won't
5409 		 * happen if we're in here.
5410 		 */
5411 	}
5412 	h->scan_finished = 0; /* mark scan as in progress */
5413 	spin_unlock_irqrestore(&h->scan_lock, flags);
5414 
5415 	if (unlikely(lockup_detected(h)))
5416 		return hpsa_scan_complete(h);
5417 
5418 	hpsa_update_scsi_devices(h);
5419 
5420 	hpsa_scan_complete(h);
5421 }
5422 
5423 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5424 {
5425 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5426 
5427 	if (!logical_drive)
5428 		return -ENODEV;
5429 
5430 	if (qdepth < 1)
5431 		qdepth = 1;
5432 	else if (qdepth > logical_drive->queue_depth)
5433 		qdepth = logical_drive->queue_depth;
5434 
5435 	return scsi_change_queue_depth(sdev, qdepth);
5436 }
5437 
5438 static int hpsa_scan_finished(struct Scsi_Host *sh,
5439 	unsigned long elapsed_time)
5440 {
5441 	struct ctlr_info *h = shost_to_hba(sh);
5442 	unsigned long flags;
5443 	int finished;
5444 
5445 	spin_lock_irqsave(&h->scan_lock, flags);
5446 	finished = h->scan_finished;
5447 	spin_unlock_irqrestore(&h->scan_lock, flags);
5448 	return finished;
5449 }
5450 
5451 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5452 {
5453 	struct Scsi_Host *sh;
5454 
5455 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5456 	if (sh == NULL) {
5457 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5458 		return -ENOMEM;
5459 	}
5460 
5461 	sh->io_port = 0;
5462 	sh->n_io_port = 0;
5463 	sh->this_id = -1;
5464 	sh->max_channel = 3;
5465 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5466 	sh->max_lun = HPSA_MAX_LUN;
5467 	sh->max_id = HPSA_MAX_LUN;
5468 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5469 	sh->cmd_per_lun = sh->can_queue;
5470 	sh->sg_tablesize = h->maxsgentries;
5471 	sh->transportt = hpsa_sas_transport_template;
5472 	sh->hostdata[0] = (unsigned long) h;
5473 	sh->irq = h->intr[h->intr_mode];
5474 	sh->unique_id = sh->irq;
5475 
5476 	h->scsi_host = sh;
5477 	return 0;
5478 }
5479 
5480 static int hpsa_scsi_add_host(struct ctlr_info *h)
5481 {
5482 	int rv;
5483 
5484 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5485 	if (rv) {
5486 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5487 		return rv;
5488 	}
5489 	scsi_scan_host(h->scsi_host);
5490 	return 0;
5491 }
5492 
5493 /*
5494  * The block layer has already gone to the trouble of picking out a unique,
5495  * small-integer tag for this request.  We use an offset from that value as
5496  * an index to select our command block.  (The offset allows us to reserve the
5497  * low-numbered entries for our own uses.)
5498  */
5499 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5500 {
5501 	int idx = scmd->request->tag;
5502 
5503 	if (idx < 0)
5504 		return idx;
5505 
5506 	/* Offset to leave space for internal cmds. */
5507 	return idx += HPSA_NRESERVED_CMDS;
5508 }
5509 
5510 /*
5511  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5512  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5513  */
5514 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5515 				struct CommandList *c, unsigned char lunaddr[],
5516 				int reply_queue)
5517 {
5518 	int rc;
5519 
5520 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5521 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5522 			NULL, 0, 0, lunaddr, TYPE_CMD);
5523 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5524 	if (rc)
5525 		return rc;
5526 	/* no unmap needed here because no data xfer. */
5527 
5528 	/* Check if the unit is already ready. */
5529 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5530 		return 0;
5531 
5532 	/*
5533 	 * The first command sent after reset will receive "unit attention" to
5534 	 * indicate that the LUN has been reset...this is actually what we're
5535 	 * looking for (but, success is good too).
5536 	 */
5537 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5538 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5539 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5540 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5541 		return 0;
5542 
5543 	return 1;
5544 }
5545 
5546 /*
5547  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5548  * returns zero when the unit is ready, and non-zero when giving up.
5549  */
5550 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5551 				struct CommandList *c,
5552 				unsigned char lunaddr[], int reply_queue)
5553 {
5554 	int rc;
5555 	int count = 0;
5556 	int waittime = 1; /* seconds */
5557 
5558 	/* Send test unit ready until device ready, or give up. */
5559 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5560 
5561 		/*
5562 		 * Wait for a bit.  do this first, because if we send
5563 		 * the TUR right away, the reset will just abort it.
5564 		 */
5565 		msleep(1000 * waittime);
5566 
5567 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5568 		if (!rc)
5569 			break;
5570 
5571 		/* Increase wait time with each try, up to a point. */
5572 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5573 			waittime *= 2;
5574 
5575 		dev_warn(&h->pdev->dev,
5576 			 "waiting %d secs for device to become ready.\n",
5577 			 waittime);
5578 	}
5579 
5580 	return rc;
5581 }
5582 
5583 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5584 					   unsigned char lunaddr[],
5585 					   int reply_queue)
5586 {
5587 	int first_queue;
5588 	int last_queue;
5589 	int rq;
5590 	int rc = 0;
5591 	struct CommandList *c;
5592 
5593 	c = cmd_alloc(h);
5594 
5595 	/*
5596 	 * If no specific reply queue was requested, then send the TUR
5597 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5598 	 * the loop exactly once using only the specified queue.
5599 	 */
5600 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5601 		first_queue = 0;
5602 		last_queue = h->nreply_queues - 1;
5603 	} else {
5604 		first_queue = reply_queue;
5605 		last_queue = reply_queue;
5606 	}
5607 
5608 	for (rq = first_queue; rq <= last_queue; rq++) {
5609 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5610 		if (rc)
5611 			break;
5612 	}
5613 
5614 	if (rc)
5615 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5616 	else
5617 		dev_warn(&h->pdev->dev, "device is ready.\n");
5618 
5619 	cmd_free(h, c);
5620 	return rc;
5621 }
5622 
5623 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5624  * complaining.  Doing a host- or bus-reset can't do anything good here.
5625  */
5626 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5627 {
5628 	int rc;
5629 	struct ctlr_info *h;
5630 	struct hpsa_scsi_dev_t *dev;
5631 	u8 reset_type;
5632 	char msg[48];
5633 
5634 	/* find the controller to which the command to be aborted was sent */
5635 	h = sdev_to_hba(scsicmd->device);
5636 	if (h == NULL) /* paranoia */
5637 		return FAILED;
5638 
5639 	if (lockup_detected(h))
5640 		return FAILED;
5641 
5642 	dev = scsicmd->device->hostdata;
5643 	if (!dev) {
5644 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5645 		return FAILED;
5646 	}
5647 
5648 	/* if controller locked up, we can guarantee command won't complete */
5649 	if (lockup_detected(h)) {
5650 		snprintf(msg, sizeof(msg),
5651 			 "cmd %d RESET FAILED, lockup detected",
5652 			 hpsa_get_cmd_index(scsicmd));
5653 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5654 		return FAILED;
5655 	}
5656 
5657 	/* this reset request might be the result of a lockup; check */
5658 	if (detect_controller_lockup(h)) {
5659 		snprintf(msg, sizeof(msg),
5660 			 "cmd %d RESET FAILED, new lockup detected",
5661 			 hpsa_get_cmd_index(scsicmd));
5662 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5663 		return FAILED;
5664 	}
5665 
5666 	/* Do not attempt on controller */
5667 	if (is_hba_lunid(dev->scsi3addr))
5668 		return SUCCESS;
5669 
5670 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5671 		reset_type = HPSA_DEVICE_RESET_MSG;
5672 	else
5673 		reset_type = HPSA_PHYS_TARGET_RESET;
5674 
5675 	sprintf(msg, "resetting %s",
5676 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5677 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5678 
5679 	h->reset_in_progress = 1;
5680 
5681 	/* send a reset to the SCSI LUN which the command was sent to */
5682 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5683 			   DEFAULT_REPLY_QUEUE);
5684 	sprintf(msg, "reset %s %s",
5685 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5686 		rc == 0 ? "completed successfully" : "failed");
5687 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5688 	h->reset_in_progress = 0;
5689 	return rc == 0 ? SUCCESS : FAILED;
5690 }
5691 
5692 static void swizzle_abort_tag(u8 *tag)
5693 {
5694 	u8 original_tag[8];
5695 
5696 	memcpy(original_tag, tag, 8);
5697 	tag[0] = original_tag[3];
5698 	tag[1] = original_tag[2];
5699 	tag[2] = original_tag[1];
5700 	tag[3] = original_tag[0];
5701 	tag[4] = original_tag[7];
5702 	tag[5] = original_tag[6];
5703 	tag[6] = original_tag[5];
5704 	tag[7] = original_tag[4];
5705 }
5706 
5707 static void hpsa_get_tag(struct ctlr_info *h,
5708 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5709 {
5710 	u64 tag;
5711 	if (c->cmd_type == CMD_IOACCEL1) {
5712 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5713 			&h->ioaccel_cmd_pool[c->cmdindex];
5714 		tag = le64_to_cpu(cm1->tag);
5715 		*tagupper = cpu_to_le32(tag >> 32);
5716 		*taglower = cpu_to_le32(tag);
5717 		return;
5718 	}
5719 	if (c->cmd_type == CMD_IOACCEL2) {
5720 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5721 			&h->ioaccel2_cmd_pool[c->cmdindex];
5722 		/* upper tag not used in ioaccel2 mode */
5723 		memset(tagupper, 0, sizeof(*tagupper));
5724 		*taglower = cm2->Tag;
5725 		return;
5726 	}
5727 	tag = le64_to_cpu(c->Header.tag);
5728 	*tagupper = cpu_to_le32(tag >> 32);
5729 	*taglower = cpu_to_le32(tag);
5730 }
5731 
5732 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5733 	struct CommandList *abort, int reply_queue)
5734 {
5735 	int rc = IO_OK;
5736 	struct CommandList *c;
5737 	struct ErrorInfo *ei;
5738 	__le32 tagupper, taglower;
5739 
5740 	c = cmd_alloc(h);
5741 
5742 	/* fill_cmd can't fail here, no buffer to map */
5743 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5744 		0, 0, scsi3addr, TYPE_MSG);
5745 	if (h->needs_abort_tags_swizzled)
5746 		swizzle_abort_tag(&c->Request.CDB[4]);
5747 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5748 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5749 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5750 		__func__, tagupper, taglower);
5751 	/* no unmap needed here because no data xfer. */
5752 
5753 	ei = c->err_info;
5754 	switch (ei->CommandStatus) {
5755 	case CMD_SUCCESS:
5756 		break;
5757 	case CMD_TMF_STATUS:
5758 		rc = hpsa_evaluate_tmf_status(h, c);
5759 		break;
5760 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5761 		rc = -1;
5762 		break;
5763 	default:
5764 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5765 			__func__, tagupper, taglower);
5766 		hpsa_scsi_interpret_error(h, c);
5767 		rc = -1;
5768 		break;
5769 	}
5770 	cmd_free(h, c);
5771 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5772 		__func__, tagupper, taglower);
5773 	return rc;
5774 }
5775 
5776 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5777 	struct CommandList *command_to_abort, int reply_queue)
5778 {
5779 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5780 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5781 	struct io_accel2_cmd *c2a =
5782 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5783 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5784 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5785 
5786 	/*
5787 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5788 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5789 	 * actually fits, and doesn't overrun the error info space.
5790 	 */
5791 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5792 			sizeof(struct io_accel2_cmd));
5793 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5794 			offsetof(struct hpsa_tmf_struct, error_len) +
5795 				sizeof(ac->error_len));
5796 
5797 	c->cmd_type = IOACCEL2_TMF;
5798 	c->scsi_cmd = SCSI_CMD_BUSY;
5799 
5800 	/* Adjust the DMA address to point to the accelerated command buffer */
5801 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5802 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5803 	BUG_ON(c->busaddr & 0x0000007F);
5804 
5805 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5806 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5807 	ac->reply_queue = reply_queue;
5808 	ac->tmf = IOACCEL2_TMF_ABORT;
5809 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5810 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
5811 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5812 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5813 	ac->error_ptr = cpu_to_le64(c->busaddr +
5814 			offsetof(struct io_accel2_cmd, error_data));
5815 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5816 }
5817 
5818 /* ioaccel2 path firmware cannot handle abort task requests.
5819  * Change abort requests to physical target reset, and send to the
5820  * address of the physical disk used for the ioaccel 2 command.
5821  * Return 0 on success (IO_OK)
5822  *	 -1 on failure
5823  */
5824 
5825 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5826 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5827 {
5828 	int rc = IO_OK;
5829 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5830 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5831 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5832 	unsigned char *psa = &phys_scsi3addr[0];
5833 
5834 	/* Get a pointer to the hpsa logical device. */
5835 	scmd = abort->scsi_cmd;
5836 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5837 	if (dev == NULL) {
5838 		dev_warn(&h->pdev->dev,
5839 			"Cannot abort: no device pointer for command.\n");
5840 			return -1; /* not abortable */
5841 	}
5842 
5843 	if (h->raid_offload_debug > 0)
5844 		dev_info(&h->pdev->dev,
5845 			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5846 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5847 			"Reset as abort",
5848 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5849 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5850 
5851 	if (!dev->offload_enabled) {
5852 		dev_warn(&h->pdev->dev,
5853 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5854 		return -1; /* not abortable */
5855 	}
5856 
5857 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
5858 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5859 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5860 		return -1; /* not abortable */
5861 	}
5862 
5863 	/* send the reset */
5864 	if (h->raid_offload_debug > 0)
5865 		dev_info(&h->pdev->dev,
5866 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5867 			psa[0], psa[1], psa[2], psa[3],
5868 			psa[4], psa[5], psa[6], psa[7]);
5869 	rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5870 	if (rc != 0) {
5871 		dev_warn(&h->pdev->dev,
5872 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5873 			psa[0], psa[1], psa[2], psa[3],
5874 			psa[4], psa[5], psa[6], psa[7]);
5875 		return rc; /* failed to reset */
5876 	}
5877 
5878 	/* wait for device to recover */
5879 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5880 		dev_warn(&h->pdev->dev,
5881 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5882 			psa[0], psa[1], psa[2], psa[3],
5883 			psa[4], psa[5], psa[6], psa[7]);
5884 		return -1;  /* failed to recover */
5885 	}
5886 
5887 	/* device recovered */
5888 	dev_info(&h->pdev->dev,
5889 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5890 		psa[0], psa[1], psa[2], psa[3],
5891 		psa[4], psa[5], psa[6], psa[7]);
5892 
5893 	return rc; /* success */
5894 }
5895 
5896 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5897 	struct CommandList *abort, int reply_queue)
5898 {
5899 	int rc = IO_OK;
5900 	struct CommandList *c;
5901 	__le32 taglower, tagupper;
5902 	struct hpsa_scsi_dev_t *dev;
5903 	struct io_accel2_cmd *c2;
5904 
5905 	dev = abort->scsi_cmd->device->hostdata;
5906 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5907 		return -1;
5908 
5909 	c = cmd_alloc(h);
5910 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5911 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5912 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5913 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5914 	dev_dbg(&h->pdev->dev,
5915 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5916 		__func__, tagupper, taglower);
5917 	/* no unmap needed here because no data xfer. */
5918 
5919 	dev_dbg(&h->pdev->dev,
5920 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5921 		__func__, tagupper, taglower, c2->error_data.serv_response);
5922 	switch (c2->error_data.serv_response) {
5923 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5924 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5925 		rc = 0;
5926 		break;
5927 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5928 	case IOACCEL2_SERV_RESPONSE_FAILURE:
5929 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5930 		rc = -1;
5931 		break;
5932 	default:
5933 		dev_warn(&h->pdev->dev,
5934 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5935 			__func__, tagupper, taglower,
5936 			c2->error_data.serv_response);
5937 		rc = -1;
5938 	}
5939 	cmd_free(h, c);
5940 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5941 		tagupper, taglower);
5942 	return rc;
5943 }
5944 
5945 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5946 	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
5947 {
5948 	/*
5949 	 * ioccelerator mode 2 commands should be aborted via the
5950 	 * accelerated path, since RAID path is unaware of these commands,
5951 	 * but not all underlying firmware can handle abort TMF.
5952 	 * Change abort to physical device reset when abort TMF is unsupported.
5953 	 */
5954 	if (abort->cmd_type == CMD_IOACCEL2) {
5955 		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
5956 			dev->physical_device)
5957 			return hpsa_send_abort_ioaccel2(h, abort,
5958 						reply_queue);
5959 		else
5960 			return hpsa_send_reset_as_abort_ioaccel2(h,
5961 							dev->scsi3addr,
5962 							abort, reply_queue);
5963 	}
5964 	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
5965 }
5966 
5967 /* Find out which reply queue a command was meant to return on */
5968 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5969 					struct CommandList *c)
5970 {
5971 	if (c->cmd_type == CMD_IOACCEL2)
5972 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5973 	return c->Header.ReplyQueue;
5974 }
5975 
5976 /*
5977  * Limit concurrency of abort commands to prevent
5978  * over-subscription of commands
5979  */
5980 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5981 {
5982 #define ABORT_CMD_WAIT_MSECS 5000
5983 	return !wait_event_timeout(h->abort_cmd_wait_queue,
5984 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5985 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5986 }
5987 
5988 /* Send an abort for the specified command.
5989  *	If the device and controller support it,
5990  *		send a task abort request.
5991  */
5992 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5993 {
5994 
5995 	int rc;
5996 	struct ctlr_info *h;
5997 	struct hpsa_scsi_dev_t *dev;
5998 	struct CommandList *abort; /* pointer to command to be aborted */
5999 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
6000 	char msg[256];		/* For debug messaging. */
6001 	int ml = 0;
6002 	__le32 tagupper, taglower;
6003 	int refcount, reply_queue;
6004 
6005 	if (sc == NULL)
6006 		return FAILED;
6007 
6008 	if (sc->device == NULL)
6009 		return FAILED;
6010 
6011 	/* Find the controller of the command to be aborted */
6012 	h = sdev_to_hba(sc->device);
6013 	if (h == NULL)
6014 		return FAILED;
6015 
6016 	/* Find the device of the command to be aborted */
6017 	dev = sc->device->hostdata;
6018 	if (!dev) {
6019 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6020 				msg);
6021 		return FAILED;
6022 	}
6023 
6024 	/* If controller locked up, we can guarantee command won't complete */
6025 	if (lockup_detected(h)) {
6026 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6027 					"ABORT FAILED, lockup detected");
6028 		return FAILED;
6029 	}
6030 
6031 	/* This is a good time to check if controller lockup has occurred */
6032 	if (detect_controller_lockup(h)) {
6033 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6034 					"ABORT FAILED, new lockup detected");
6035 		return FAILED;
6036 	}
6037 
6038 	/* Check that controller supports some kind of task abort */
6039 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6040 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6041 		return FAILED;
6042 
6043 	memset(msg, 0, sizeof(msg));
6044 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6045 		h->scsi_host->host_no, sc->device->channel,
6046 		sc->device->id, sc->device->lun,
6047 		"Aborting command", sc);
6048 
6049 	/* Get SCSI command to be aborted */
6050 	abort = (struct CommandList *) sc->host_scribble;
6051 	if (abort == NULL) {
6052 		/* This can happen if the command already completed. */
6053 		return SUCCESS;
6054 	}
6055 	refcount = atomic_inc_return(&abort->refcount);
6056 	if (refcount == 1) { /* Command is done already. */
6057 		cmd_free(h, abort);
6058 		return SUCCESS;
6059 	}
6060 
6061 	/* Don't bother trying the abort if we know it won't work. */
6062 	if (abort->cmd_type != CMD_IOACCEL2 &&
6063 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6064 		cmd_free(h, abort);
6065 		return FAILED;
6066 	}
6067 
6068 	/*
6069 	 * Check that we're aborting the right command.
6070 	 * It's possible the CommandList already completed and got re-used.
6071 	 */
6072 	if (abort->scsi_cmd != sc) {
6073 		cmd_free(h, abort);
6074 		return SUCCESS;
6075 	}
6076 
6077 	abort->abort_pending = true;
6078 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6079 	reply_queue = hpsa_extract_reply_queue(h, abort);
6080 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6081 	as  = abort->scsi_cmd;
6082 	if (as != NULL)
6083 		ml += sprintf(msg+ml,
6084 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6085 			as->cmd_len, as->cmnd[0], as->cmnd[1],
6086 			as->serial_number);
6087 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6088 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6089 
6090 	/*
6091 	 * Command is in flight, or possibly already completed
6092 	 * by the firmware (but not to the scsi mid layer) but we can't
6093 	 * distinguish which.  Send the abort down.
6094 	 */
6095 	if (wait_for_available_abort_cmd(h)) {
6096 		dev_warn(&h->pdev->dev,
6097 			"%s FAILED, timeout waiting for an abort command to become available.\n",
6098 			msg);
6099 		cmd_free(h, abort);
6100 		return FAILED;
6101 	}
6102 	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6103 	atomic_inc(&h->abort_cmds_available);
6104 	wake_up_all(&h->abort_cmd_wait_queue);
6105 	if (rc != 0) {
6106 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6107 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6108 				"FAILED to abort command");
6109 		cmd_free(h, abort);
6110 		return FAILED;
6111 	}
6112 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6113 	wait_event(h->event_sync_wait_queue,
6114 		   abort->scsi_cmd != sc || lockup_detected(h));
6115 	cmd_free(h, abort);
6116 	return !lockup_detected(h) ? SUCCESS : FAILED;
6117 }
6118 
6119 /*
6120  * For operations with an associated SCSI command, a command block is allocated
6121  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6122  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6123  * the complement, although cmd_free() may be called instead.
6124  */
6125 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6126 					    struct scsi_cmnd *scmd)
6127 {
6128 	int idx = hpsa_get_cmd_index(scmd);
6129 	struct CommandList *c = h->cmd_pool + idx;
6130 
6131 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6132 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6133 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6134 		/* The index value comes from the block layer, so if it's out of
6135 		 * bounds, it's probably not our bug.
6136 		 */
6137 		BUG();
6138 	}
6139 
6140 	atomic_inc(&c->refcount);
6141 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6142 		/*
6143 		 * We expect that the SCSI layer will hand us a unique tag
6144 		 * value.  Thus, there should never be a collision here between
6145 		 * two requests...because if the selected command isn't idle
6146 		 * then someone is going to be very disappointed.
6147 		 */
6148 		dev_err(&h->pdev->dev,
6149 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6150 			idx);
6151 		if (c->scsi_cmd != NULL)
6152 			scsi_print_command(c->scsi_cmd);
6153 		scsi_print_command(scmd);
6154 	}
6155 
6156 	hpsa_cmd_partial_init(h, idx, c);
6157 	return c;
6158 }
6159 
6160 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6161 {
6162 	/*
6163 	 * Release our reference to the block.  We don't need to do anything
6164 	 * else to free it, because it is accessed by index.  (There's no point
6165 	 * in checking the result of the decrement, since we cannot guarantee
6166 	 * that there isn't a concurrent abort which is also accessing it.)
6167 	 */
6168 	(void)atomic_dec(&c->refcount);
6169 }
6170 
6171 /*
6172  * For operations that cannot sleep, a command block is allocated at init,
6173  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6174  * which ones are free or in use.  Lock must be held when calling this.
6175  * cmd_free() is the complement.
6176  * This function never gives up and returns NULL.  If it hangs,
6177  * another thread must call cmd_free() to free some tags.
6178  */
6179 
6180 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6181 {
6182 	struct CommandList *c;
6183 	int refcount, i;
6184 	int offset = 0;
6185 
6186 	/*
6187 	 * There is some *extremely* small but non-zero chance that that
6188 	 * multiple threads could get in here, and one thread could
6189 	 * be scanning through the list of bits looking for a free
6190 	 * one, but the free ones are always behind him, and other
6191 	 * threads sneak in behind him and eat them before he can
6192 	 * get to them, so that while there is always a free one, a
6193 	 * very unlucky thread might be starved anyway, never able to
6194 	 * beat the other threads.  In reality, this happens so
6195 	 * infrequently as to be indistinguishable from never.
6196 	 *
6197 	 * Note that we start allocating commands before the SCSI host structure
6198 	 * is initialized.  Since the search starts at bit zero, this
6199 	 * all works, since we have at least one command structure available;
6200 	 * however, it means that the structures with the low indexes have to be
6201 	 * reserved for driver-initiated requests, while requests from the block
6202 	 * layer will use the higher indexes.
6203 	 */
6204 
6205 	for (;;) {
6206 		i = find_next_zero_bit(h->cmd_pool_bits,
6207 					HPSA_NRESERVED_CMDS,
6208 					offset);
6209 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6210 			offset = 0;
6211 			continue;
6212 		}
6213 		c = h->cmd_pool + i;
6214 		refcount = atomic_inc_return(&c->refcount);
6215 		if (unlikely(refcount > 1)) {
6216 			cmd_free(h, c); /* already in use */
6217 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6218 			continue;
6219 		}
6220 		set_bit(i & (BITS_PER_LONG - 1),
6221 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6222 		break; /* it's ours now. */
6223 	}
6224 	hpsa_cmd_partial_init(h, i, c);
6225 	return c;
6226 }
6227 
6228 /*
6229  * This is the complementary operation to cmd_alloc().  Note, however, in some
6230  * corner cases it may also be used to free blocks allocated by
6231  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6232  * the clear-bit is harmless.
6233  */
6234 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6235 {
6236 	if (atomic_dec_and_test(&c->refcount)) {
6237 		int i;
6238 
6239 		i = c - h->cmd_pool;
6240 		clear_bit(i & (BITS_PER_LONG - 1),
6241 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6242 	}
6243 }
6244 
6245 #ifdef CONFIG_COMPAT
6246 
6247 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6248 	void __user *arg)
6249 {
6250 	IOCTL32_Command_struct __user *arg32 =
6251 	    (IOCTL32_Command_struct __user *) arg;
6252 	IOCTL_Command_struct arg64;
6253 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6254 	int err;
6255 	u32 cp;
6256 
6257 	memset(&arg64, 0, sizeof(arg64));
6258 	err = 0;
6259 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6260 			   sizeof(arg64.LUN_info));
6261 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6262 			   sizeof(arg64.Request));
6263 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6264 			   sizeof(arg64.error_info));
6265 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6266 	err |= get_user(cp, &arg32->buf);
6267 	arg64.buf = compat_ptr(cp);
6268 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6269 
6270 	if (err)
6271 		return -EFAULT;
6272 
6273 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6274 	if (err)
6275 		return err;
6276 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6277 			 sizeof(arg32->error_info));
6278 	if (err)
6279 		return -EFAULT;
6280 	return err;
6281 }
6282 
6283 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6284 	int cmd, void __user *arg)
6285 {
6286 	BIG_IOCTL32_Command_struct __user *arg32 =
6287 	    (BIG_IOCTL32_Command_struct __user *) arg;
6288 	BIG_IOCTL_Command_struct arg64;
6289 	BIG_IOCTL_Command_struct __user *p =
6290 	    compat_alloc_user_space(sizeof(arg64));
6291 	int err;
6292 	u32 cp;
6293 
6294 	memset(&arg64, 0, sizeof(arg64));
6295 	err = 0;
6296 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6297 			   sizeof(arg64.LUN_info));
6298 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6299 			   sizeof(arg64.Request));
6300 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6301 			   sizeof(arg64.error_info));
6302 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6303 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6304 	err |= get_user(cp, &arg32->buf);
6305 	arg64.buf = compat_ptr(cp);
6306 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6307 
6308 	if (err)
6309 		return -EFAULT;
6310 
6311 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6312 	if (err)
6313 		return err;
6314 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6315 			 sizeof(arg32->error_info));
6316 	if (err)
6317 		return -EFAULT;
6318 	return err;
6319 }
6320 
6321 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6322 {
6323 	switch (cmd) {
6324 	case CCISS_GETPCIINFO:
6325 	case CCISS_GETINTINFO:
6326 	case CCISS_SETINTINFO:
6327 	case CCISS_GETNODENAME:
6328 	case CCISS_SETNODENAME:
6329 	case CCISS_GETHEARTBEAT:
6330 	case CCISS_GETBUSTYPES:
6331 	case CCISS_GETFIRMVER:
6332 	case CCISS_GETDRIVVER:
6333 	case CCISS_REVALIDVOLS:
6334 	case CCISS_DEREGDISK:
6335 	case CCISS_REGNEWDISK:
6336 	case CCISS_REGNEWD:
6337 	case CCISS_RESCANDISK:
6338 	case CCISS_GETLUNINFO:
6339 		return hpsa_ioctl(dev, cmd, arg);
6340 
6341 	case CCISS_PASSTHRU32:
6342 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6343 	case CCISS_BIG_PASSTHRU32:
6344 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6345 
6346 	default:
6347 		return -ENOIOCTLCMD;
6348 	}
6349 }
6350 #endif
6351 
6352 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6353 {
6354 	struct hpsa_pci_info pciinfo;
6355 
6356 	if (!argp)
6357 		return -EINVAL;
6358 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6359 	pciinfo.bus = h->pdev->bus->number;
6360 	pciinfo.dev_fn = h->pdev->devfn;
6361 	pciinfo.board_id = h->board_id;
6362 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6363 		return -EFAULT;
6364 	return 0;
6365 }
6366 
6367 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6368 {
6369 	DriverVer_type DriverVer;
6370 	unsigned char vmaj, vmin, vsubmin;
6371 	int rc;
6372 
6373 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6374 		&vmaj, &vmin, &vsubmin);
6375 	if (rc != 3) {
6376 		dev_info(&h->pdev->dev, "driver version string '%s' "
6377 			"unrecognized.", HPSA_DRIVER_VERSION);
6378 		vmaj = 0;
6379 		vmin = 0;
6380 		vsubmin = 0;
6381 	}
6382 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6383 	if (!argp)
6384 		return -EINVAL;
6385 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6386 		return -EFAULT;
6387 	return 0;
6388 }
6389 
6390 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6391 {
6392 	IOCTL_Command_struct iocommand;
6393 	struct CommandList *c;
6394 	char *buff = NULL;
6395 	u64 temp64;
6396 	int rc = 0;
6397 
6398 	if (!argp)
6399 		return -EINVAL;
6400 	if (!capable(CAP_SYS_RAWIO))
6401 		return -EPERM;
6402 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6403 		return -EFAULT;
6404 	if ((iocommand.buf_size < 1) &&
6405 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6406 		return -EINVAL;
6407 	}
6408 	if (iocommand.buf_size > 0) {
6409 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6410 		if (buff == NULL)
6411 			return -ENOMEM;
6412 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6413 			/* Copy the data into the buffer we created */
6414 			if (copy_from_user(buff, iocommand.buf,
6415 				iocommand.buf_size)) {
6416 				rc = -EFAULT;
6417 				goto out_kfree;
6418 			}
6419 		} else {
6420 			memset(buff, 0, iocommand.buf_size);
6421 		}
6422 	}
6423 	c = cmd_alloc(h);
6424 
6425 	/* Fill in the command type */
6426 	c->cmd_type = CMD_IOCTL_PEND;
6427 	c->scsi_cmd = SCSI_CMD_BUSY;
6428 	/* Fill in Command Header */
6429 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6430 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6431 		c->Header.SGList = 1;
6432 		c->Header.SGTotal = cpu_to_le16(1);
6433 	} else	{ /* no buffers to fill */
6434 		c->Header.SGList = 0;
6435 		c->Header.SGTotal = cpu_to_le16(0);
6436 	}
6437 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6438 
6439 	/* Fill in Request block */
6440 	memcpy(&c->Request, &iocommand.Request,
6441 		sizeof(c->Request));
6442 
6443 	/* Fill in the scatter gather information */
6444 	if (iocommand.buf_size > 0) {
6445 		temp64 = pci_map_single(h->pdev, buff,
6446 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6447 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6448 			c->SG[0].Addr = cpu_to_le64(0);
6449 			c->SG[0].Len = cpu_to_le32(0);
6450 			rc = -ENOMEM;
6451 			goto out;
6452 		}
6453 		c->SG[0].Addr = cpu_to_le64(temp64);
6454 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6455 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6456 	}
6457 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6458 					DEFAULT_TIMEOUT);
6459 	if (iocommand.buf_size > 0)
6460 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6461 	check_ioctl_unit_attention(h, c);
6462 	if (rc) {
6463 		rc = -EIO;
6464 		goto out;
6465 	}
6466 
6467 	/* Copy the error information out */
6468 	memcpy(&iocommand.error_info, c->err_info,
6469 		sizeof(iocommand.error_info));
6470 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6471 		rc = -EFAULT;
6472 		goto out;
6473 	}
6474 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6475 		iocommand.buf_size > 0) {
6476 		/* Copy the data out of the buffer we created */
6477 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6478 			rc = -EFAULT;
6479 			goto out;
6480 		}
6481 	}
6482 out:
6483 	cmd_free(h, c);
6484 out_kfree:
6485 	kfree(buff);
6486 	return rc;
6487 }
6488 
6489 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6490 {
6491 	BIG_IOCTL_Command_struct *ioc;
6492 	struct CommandList *c;
6493 	unsigned char **buff = NULL;
6494 	int *buff_size = NULL;
6495 	u64 temp64;
6496 	BYTE sg_used = 0;
6497 	int status = 0;
6498 	u32 left;
6499 	u32 sz;
6500 	BYTE __user *data_ptr;
6501 
6502 	if (!argp)
6503 		return -EINVAL;
6504 	if (!capable(CAP_SYS_RAWIO))
6505 		return -EPERM;
6506 	ioc = (BIG_IOCTL_Command_struct *)
6507 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
6508 	if (!ioc) {
6509 		status = -ENOMEM;
6510 		goto cleanup1;
6511 	}
6512 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6513 		status = -EFAULT;
6514 		goto cleanup1;
6515 	}
6516 	if ((ioc->buf_size < 1) &&
6517 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6518 		status = -EINVAL;
6519 		goto cleanup1;
6520 	}
6521 	/* Check kmalloc limits  using all SGs */
6522 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6523 		status = -EINVAL;
6524 		goto cleanup1;
6525 	}
6526 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6527 		status = -EINVAL;
6528 		goto cleanup1;
6529 	}
6530 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6531 	if (!buff) {
6532 		status = -ENOMEM;
6533 		goto cleanup1;
6534 	}
6535 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6536 	if (!buff_size) {
6537 		status = -ENOMEM;
6538 		goto cleanup1;
6539 	}
6540 	left = ioc->buf_size;
6541 	data_ptr = ioc->buf;
6542 	while (left) {
6543 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6544 		buff_size[sg_used] = sz;
6545 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6546 		if (buff[sg_used] == NULL) {
6547 			status = -ENOMEM;
6548 			goto cleanup1;
6549 		}
6550 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6551 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6552 				status = -EFAULT;
6553 				goto cleanup1;
6554 			}
6555 		} else
6556 			memset(buff[sg_used], 0, sz);
6557 		left -= sz;
6558 		data_ptr += sz;
6559 		sg_used++;
6560 	}
6561 	c = cmd_alloc(h);
6562 
6563 	c->cmd_type = CMD_IOCTL_PEND;
6564 	c->scsi_cmd = SCSI_CMD_BUSY;
6565 	c->Header.ReplyQueue = 0;
6566 	c->Header.SGList = (u8) sg_used;
6567 	c->Header.SGTotal = cpu_to_le16(sg_used);
6568 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6569 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6570 	if (ioc->buf_size > 0) {
6571 		int i;
6572 		for (i = 0; i < sg_used; i++) {
6573 			temp64 = pci_map_single(h->pdev, buff[i],
6574 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6575 			if (dma_mapping_error(&h->pdev->dev,
6576 							(dma_addr_t) temp64)) {
6577 				c->SG[i].Addr = cpu_to_le64(0);
6578 				c->SG[i].Len = cpu_to_le32(0);
6579 				hpsa_pci_unmap(h->pdev, c, i,
6580 					PCI_DMA_BIDIRECTIONAL);
6581 				status = -ENOMEM;
6582 				goto cleanup0;
6583 			}
6584 			c->SG[i].Addr = cpu_to_le64(temp64);
6585 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6586 			c->SG[i].Ext = cpu_to_le32(0);
6587 		}
6588 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6589 	}
6590 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6591 						DEFAULT_TIMEOUT);
6592 	if (sg_used)
6593 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6594 	check_ioctl_unit_attention(h, c);
6595 	if (status) {
6596 		status = -EIO;
6597 		goto cleanup0;
6598 	}
6599 
6600 	/* Copy the error information out */
6601 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6602 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6603 		status = -EFAULT;
6604 		goto cleanup0;
6605 	}
6606 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6607 		int i;
6608 
6609 		/* Copy the data out of the buffer we created */
6610 		BYTE __user *ptr = ioc->buf;
6611 		for (i = 0; i < sg_used; i++) {
6612 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6613 				status = -EFAULT;
6614 				goto cleanup0;
6615 			}
6616 			ptr += buff_size[i];
6617 		}
6618 	}
6619 	status = 0;
6620 cleanup0:
6621 	cmd_free(h, c);
6622 cleanup1:
6623 	if (buff) {
6624 		int i;
6625 
6626 		for (i = 0; i < sg_used; i++)
6627 			kfree(buff[i]);
6628 		kfree(buff);
6629 	}
6630 	kfree(buff_size);
6631 	kfree(ioc);
6632 	return status;
6633 }
6634 
6635 static void check_ioctl_unit_attention(struct ctlr_info *h,
6636 	struct CommandList *c)
6637 {
6638 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6639 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6640 		(void) check_for_unit_attention(h, c);
6641 }
6642 
6643 /*
6644  * ioctl
6645  */
6646 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6647 {
6648 	struct ctlr_info *h;
6649 	void __user *argp = (void __user *)arg;
6650 	int rc;
6651 
6652 	h = sdev_to_hba(dev);
6653 
6654 	switch (cmd) {
6655 	case CCISS_DEREGDISK:
6656 	case CCISS_REGNEWDISK:
6657 	case CCISS_REGNEWD:
6658 		hpsa_scan_start(h->scsi_host);
6659 		return 0;
6660 	case CCISS_GETPCIINFO:
6661 		return hpsa_getpciinfo_ioctl(h, argp);
6662 	case CCISS_GETDRIVVER:
6663 		return hpsa_getdrivver_ioctl(h, argp);
6664 	case CCISS_PASSTHRU:
6665 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6666 			return -EAGAIN;
6667 		rc = hpsa_passthru_ioctl(h, argp);
6668 		atomic_inc(&h->passthru_cmds_avail);
6669 		return rc;
6670 	case CCISS_BIG_PASSTHRU:
6671 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6672 			return -EAGAIN;
6673 		rc = hpsa_big_passthru_ioctl(h, argp);
6674 		atomic_inc(&h->passthru_cmds_avail);
6675 		return rc;
6676 	default:
6677 		return -ENOTTY;
6678 	}
6679 }
6680 
6681 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6682 				u8 reset_type)
6683 {
6684 	struct CommandList *c;
6685 
6686 	c = cmd_alloc(h);
6687 
6688 	/* fill_cmd can't fail here, no data buffer to map */
6689 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6690 		RAID_CTLR_LUNID, TYPE_MSG);
6691 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6692 	c->waiting = NULL;
6693 	enqueue_cmd_and_start_io(h, c);
6694 	/* Don't wait for completion, the reset won't complete.  Don't free
6695 	 * the command either.  This is the last command we will send before
6696 	 * re-initializing everything, so it doesn't matter and won't leak.
6697 	 */
6698 	return;
6699 }
6700 
6701 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6702 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6703 	int cmd_type)
6704 {
6705 	int pci_dir = XFER_NONE;
6706 	u64 tag; /* for commands to be aborted */
6707 
6708 	c->cmd_type = CMD_IOCTL_PEND;
6709 	c->scsi_cmd = SCSI_CMD_BUSY;
6710 	c->Header.ReplyQueue = 0;
6711 	if (buff != NULL && size > 0) {
6712 		c->Header.SGList = 1;
6713 		c->Header.SGTotal = cpu_to_le16(1);
6714 	} else {
6715 		c->Header.SGList = 0;
6716 		c->Header.SGTotal = cpu_to_le16(0);
6717 	}
6718 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6719 
6720 	if (cmd_type == TYPE_CMD) {
6721 		switch (cmd) {
6722 		case HPSA_INQUIRY:
6723 			/* are we trying to read a vital product page */
6724 			if (page_code & VPD_PAGE) {
6725 				c->Request.CDB[1] = 0x01;
6726 				c->Request.CDB[2] = (page_code & 0xff);
6727 			}
6728 			c->Request.CDBLen = 6;
6729 			c->Request.type_attr_dir =
6730 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6731 			c->Request.Timeout = 0;
6732 			c->Request.CDB[0] = HPSA_INQUIRY;
6733 			c->Request.CDB[4] = size & 0xFF;
6734 			break;
6735 		case HPSA_REPORT_LOG:
6736 		case HPSA_REPORT_PHYS:
6737 			/* Talking to controller so It's a physical command
6738 			   mode = 00 target = 0.  Nothing to write.
6739 			 */
6740 			c->Request.CDBLen = 12;
6741 			c->Request.type_attr_dir =
6742 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6743 			c->Request.Timeout = 0;
6744 			c->Request.CDB[0] = cmd;
6745 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6746 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6747 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6748 			c->Request.CDB[9] = size & 0xFF;
6749 			break;
6750 		case BMIC_SENSE_DIAG_OPTIONS:
6751 			c->Request.CDBLen = 16;
6752 			c->Request.type_attr_dir =
6753 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6754 			c->Request.Timeout = 0;
6755 			/* Spec says this should be BMIC_WRITE */
6756 			c->Request.CDB[0] = BMIC_READ;
6757 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6758 			break;
6759 		case BMIC_SET_DIAG_OPTIONS:
6760 			c->Request.CDBLen = 16;
6761 			c->Request.type_attr_dir =
6762 					TYPE_ATTR_DIR(cmd_type,
6763 						ATTR_SIMPLE, XFER_WRITE);
6764 			c->Request.Timeout = 0;
6765 			c->Request.CDB[0] = BMIC_WRITE;
6766 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6767 			break;
6768 		case HPSA_CACHE_FLUSH:
6769 			c->Request.CDBLen = 12;
6770 			c->Request.type_attr_dir =
6771 					TYPE_ATTR_DIR(cmd_type,
6772 						ATTR_SIMPLE, XFER_WRITE);
6773 			c->Request.Timeout = 0;
6774 			c->Request.CDB[0] = BMIC_WRITE;
6775 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6776 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6777 			c->Request.CDB[8] = size & 0xFF;
6778 			break;
6779 		case TEST_UNIT_READY:
6780 			c->Request.CDBLen = 6;
6781 			c->Request.type_attr_dir =
6782 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6783 			c->Request.Timeout = 0;
6784 			break;
6785 		case HPSA_GET_RAID_MAP:
6786 			c->Request.CDBLen = 12;
6787 			c->Request.type_attr_dir =
6788 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6789 			c->Request.Timeout = 0;
6790 			c->Request.CDB[0] = HPSA_CISS_READ;
6791 			c->Request.CDB[1] = cmd;
6792 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6793 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6794 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6795 			c->Request.CDB[9] = size & 0xFF;
6796 			break;
6797 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6798 			c->Request.CDBLen = 10;
6799 			c->Request.type_attr_dir =
6800 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6801 			c->Request.Timeout = 0;
6802 			c->Request.CDB[0] = BMIC_READ;
6803 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6804 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6805 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6806 			break;
6807 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6808 			c->Request.CDBLen = 10;
6809 			c->Request.type_attr_dir =
6810 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6811 			c->Request.Timeout = 0;
6812 			c->Request.CDB[0] = BMIC_READ;
6813 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6814 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6815 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6816 			break;
6817 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6818 			c->Request.CDBLen = 10;
6819 			c->Request.type_attr_dir =
6820 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6821 			c->Request.Timeout = 0;
6822 			c->Request.CDB[0] = BMIC_READ;
6823 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6824 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6825 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6826 			break;
6827 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6828 			c->Request.CDBLen = 10;
6829 			c->Request.type_attr_dir =
6830 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6831 			c->Request.Timeout = 0;
6832 			c->Request.CDB[0] = BMIC_READ;
6833 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6834 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6835 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6836 			break;
6837 		case BMIC_IDENTIFY_CONTROLLER:
6838 			c->Request.CDBLen = 10;
6839 			c->Request.type_attr_dir =
6840 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6841 			c->Request.Timeout = 0;
6842 			c->Request.CDB[0] = BMIC_READ;
6843 			c->Request.CDB[1] = 0;
6844 			c->Request.CDB[2] = 0;
6845 			c->Request.CDB[3] = 0;
6846 			c->Request.CDB[4] = 0;
6847 			c->Request.CDB[5] = 0;
6848 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6849 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6850 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6851 			c->Request.CDB[9] = 0;
6852 			break;
6853 		default:
6854 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6855 			BUG();
6856 			return -1;
6857 		}
6858 	} else if (cmd_type == TYPE_MSG) {
6859 		switch (cmd) {
6860 
6861 		case  HPSA_PHYS_TARGET_RESET:
6862 			c->Request.CDBLen = 16;
6863 			c->Request.type_attr_dir =
6864 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6865 			c->Request.Timeout = 0; /* Don't time out */
6866 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6867 			c->Request.CDB[0] = HPSA_RESET;
6868 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6869 			/* Physical target reset needs no control bytes 4-7*/
6870 			c->Request.CDB[4] = 0x00;
6871 			c->Request.CDB[5] = 0x00;
6872 			c->Request.CDB[6] = 0x00;
6873 			c->Request.CDB[7] = 0x00;
6874 			break;
6875 		case  HPSA_DEVICE_RESET_MSG:
6876 			c->Request.CDBLen = 16;
6877 			c->Request.type_attr_dir =
6878 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6879 			c->Request.Timeout = 0; /* Don't time out */
6880 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6881 			c->Request.CDB[0] =  cmd;
6882 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6883 			/* If bytes 4-7 are zero, it means reset the */
6884 			/* LunID device */
6885 			c->Request.CDB[4] = 0x00;
6886 			c->Request.CDB[5] = 0x00;
6887 			c->Request.CDB[6] = 0x00;
6888 			c->Request.CDB[7] = 0x00;
6889 			break;
6890 		case  HPSA_ABORT_MSG:
6891 			memcpy(&tag, buff, sizeof(tag));
6892 			dev_dbg(&h->pdev->dev,
6893 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6894 				tag, c->Header.tag);
6895 			c->Request.CDBLen = 16;
6896 			c->Request.type_attr_dir =
6897 					TYPE_ATTR_DIR(cmd_type,
6898 						ATTR_SIMPLE, XFER_WRITE);
6899 			c->Request.Timeout = 0; /* Don't time out */
6900 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6901 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6902 			c->Request.CDB[2] = 0x00; /* reserved */
6903 			c->Request.CDB[3] = 0x00; /* reserved */
6904 			/* Tag to abort goes in CDB[4]-CDB[11] */
6905 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6906 			c->Request.CDB[12] = 0x00; /* reserved */
6907 			c->Request.CDB[13] = 0x00; /* reserved */
6908 			c->Request.CDB[14] = 0x00; /* reserved */
6909 			c->Request.CDB[15] = 0x00; /* reserved */
6910 		break;
6911 		default:
6912 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6913 				cmd);
6914 			BUG();
6915 		}
6916 	} else {
6917 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6918 		BUG();
6919 	}
6920 
6921 	switch (GET_DIR(c->Request.type_attr_dir)) {
6922 	case XFER_READ:
6923 		pci_dir = PCI_DMA_FROMDEVICE;
6924 		break;
6925 	case XFER_WRITE:
6926 		pci_dir = PCI_DMA_TODEVICE;
6927 		break;
6928 	case XFER_NONE:
6929 		pci_dir = PCI_DMA_NONE;
6930 		break;
6931 	default:
6932 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6933 	}
6934 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6935 		return -1;
6936 	return 0;
6937 }
6938 
6939 /*
6940  * Map (physical) PCI mem into (virtual) kernel space
6941  */
6942 static void __iomem *remap_pci_mem(ulong base, ulong size)
6943 {
6944 	ulong page_base = ((ulong) base) & PAGE_MASK;
6945 	ulong page_offs = ((ulong) base) - page_base;
6946 	void __iomem *page_remapped = ioremap_nocache(page_base,
6947 		page_offs + size);
6948 
6949 	return page_remapped ? (page_remapped + page_offs) : NULL;
6950 }
6951 
6952 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6953 {
6954 	return h->access.command_completed(h, q);
6955 }
6956 
6957 static inline bool interrupt_pending(struct ctlr_info *h)
6958 {
6959 	return h->access.intr_pending(h);
6960 }
6961 
6962 static inline long interrupt_not_for_us(struct ctlr_info *h)
6963 {
6964 	return (h->access.intr_pending(h) == 0) ||
6965 		(h->interrupts_enabled == 0);
6966 }
6967 
6968 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6969 	u32 raw_tag)
6970 {
6971 	if (unlikely(tag_index >= h->nr_cmds)) {
6972 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6973 		return 1;
6974 	}
6975 	return 0;
6976 }
6977 
6978 static inline void finish_cmd(struct CommandList *c)
6979 {
6980 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6981 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6982 			|| c->cmd_type == CMD_IOACCEL2))
6983 		complete_scsi_command(c);
6984 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6985 		complete(c->waiting);
6986 }
6987 
6988 /* process completion of an indexed ("direct lookup") command */
6989 static inline void process_indexed_cmd(struct ctlr_info *h,
6990 	u32 raw_tag)
6991 {
6992 	u32 tag_index;
6993 	struct CommandList *c;
6994 
6995 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6996 	if (!bad_tag(h, tag_index, raw_tag)) {
6997 		c = h->cmd_pool + tag_index;
6998 		finish_cmd(c);
6999 	}
7000 }
7001 
7002 /* Some controllers, like p400, will give us one interrupt
7003  * after a soft reset, even if we turned interrupts off.
7004  * Only need to check for this in the hpsa_xxx_discard_completions
7005  * functions.
7006  */
7007 static int ignore_bogus_interrupt(struct ctlr_info *h)
7008 {
7009 	if (likely(!reset_devices))
7010 		return 0;
7011 
7012 	if (likely(h->interrupts_enabled))
7013 		return 0;
7014 
7015 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7016 		"(known firmware bug.)  Ignoring.\n");
7017 
7018 	return 1;
7019 }
7020 
7021 /*
7022  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7023  * Relies on (h-q[x] == x) being true for x such that
7024  * 0 <= x < MAX_REPLY_QUEUES.
7025  */
7026 static struct ctlr_info *queue_to_hba(u8 *queue)
7027 {
7028 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7029 }
7030 
7031 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7032 {
7033 	struct ctlr_info *h = queue_to_hba(queue);
7034 	u8 q = *(u8 *) queue;
7035 	u32 raw_tag;
7036 
7037 	if (ignore_bogus_interrupt(h))
7038 		return IRQ_NONE;
7039 
7040 	if (interrupt_not_for_us(h))
7041 		return IRQ_NONE;
7042 	h->last_intr_timestamp = get_jiffies_64();
7043 	while (interrupt_pending(h)) {
7044 		raw_tag = get_next_completion(h, q);
7045 		while (raw_tag != FIFO_EMPTY)
7046 			raw_tag = next_command(h, q);
7047 	}
7048 	return IRQ_HANDLED;
7049 }
7050 
7051 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7052 {
7053 	struct ctlr_info *h = queue_to_hba(queue);
7054 	u32 raw_tag;
7055 	u8 q = *(u8 *) queue;
7056 
7057 	if (ignore_bogus_interrupt(h))
7058 		return IRQ_NONE;
7059 
7060 	h->last_intr_timestamp = get_jiffies_64();
7061 	raw_tag = get_next_completion(h, q);
7062 	while (raw_tag != FIFO_EMPTY)
7063 		raw_tag = next_command(h, q);
7064 	return IRQ_HANDLED;
7065 }
7066 
7067 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7068 {
7069 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7070 	u32 raw_tag;
7071 	u8 q = *(u8 *) queue;
7072 
7073 	if (interrupt_not_for_us(h))
7074 		return IRQ_NONE;
7075 	h->last_intr_timestamp = get_jiffies_64();
7076 	while (interrupt_pending(h)) {
7077 		raw_tag = get_next_completion(h, q);
7078 		while (raw_tag != FIFO_EMPTY) {
7079 			process_indexed_cmd(h, raw_tag);
7080 			raw_tag = next_command(h, q);
7081 		}
7082 	}
7083 	return IRQ_HANDLED;
7084 }
7085 
7086 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7087 {
7088 	struct ctlr_info *h = queue_to_hba(queue);
7089 	u32 raw_tag;
7090 	u8 q = *(u8 *) queue;
7091 
7092 	h->last_intr_timestamp = get_jiffies_64();
7093 	raw_tag = get_next_completion(h, q);
7094 	while (raw_tag != FIFO_EMPTY) {
7095 		process_indexed_cmd(h, raw_tag);
7096 		raw_tag = next_command(h, q);
7097 	}
7098 	return IRQ_HANDLED;
7099 }
7100 
7101 /* Send a message CDB to the firmware. Careful, this only works
7102  * in simple mode, not performant mode due to the tag lookup.
7103  * We only ever use this immediately after a controller reset.
7104  */
7105 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7106 			unsigned char type)
7107 {
7108 	struct Command {
7109 		struct CommandListHeader CommandHeader;
7110 		struct RequestBlock Request;
7111 		struct ErrDescriptor ErrorDescriptor;
7112 	};
7113 	struct Command *cmd;
7114 	static const size_t cmd_sz = sizeof(*cmd) +
7115 					sizeof(cmd->ErrorDescriptor);
7116 	dma_addr_t paddr64;
7117 	__le32 paddr32;
7118 	u32 tag;
7119 	void __iomem *vaddr;
7120 	int i, err;
7121 
7122 	vaddr = pci_ioremap_bar(pdev, 0);
7123 	if (vaddr == NULL)
7124 		return -ENOMEM;
7125 
7126 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7127 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7128 	 * memory.
7129 	 */
7130 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7131 	if (err) {
7132 		iounmap(vaddr);
7133 		return err;
7134 	}
7135 
7136 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7137 	if (cmd == NULL) {
7138 		iounmap(vaddr);
7139 		return -ENOMEM;
7140 	}
7141 
7142 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7143 	 * although there's no guarantee, we assume that the address is at
7144 	 * least 4-byte aligned (most likely, it's page-aligned).
7145 	 */
7146 	paddr32 = cpu_to_le32(paddr64);
7147 
7148 	cmd->CommandHeader.ReplyQueue = 0;
7149 	cmd->CommandHeader.SGList = 0;
7150 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7151 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7152 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7153 
7154 	cmd->Request.CDBLen = 16;
7155 	cmd->Request.type_attr_dir =
7156 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7157 	cmd->Request.Timeout = 0; /* Don't time out */
7158 	cmd->Request.CDB[0] = opcode;
7159 	cmd->Request.CDB[1] = type;
7160 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7161 	cmd->ErrorDescriptor.Addr =
7162 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7163 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7164 
7165 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7166 
7167 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7168 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7169 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7170 			break;
7171 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7172 	}
7173 
7174 	iounmap(vaddr);
7175 
7176 	/* we leak the DMA buffer here ... no choice since the controller could
7177 	 *  still complete the command.
7178 	 */
7179 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7180 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7181 			opcode, type);
7182 		return -ETIMEDOUT;
7183 	}
7184 
7185 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7186 
7187 	if (tag & HPSA_ERROR_BIT) {
7188 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7189 			opcode, type);
7190 		return -EIO;
7191 	}
7192 
7193 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7194 		opcode, type);
7195 	return 0;
7196 }
7197 
7198 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7199 
7200 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7201 	void __iomem *vaddr, u32 use_doorbell)
7202 {
7203 
7204 	if (use_doorbell) {
7205 		/* For everything after the P600, the PCI power state method
7206 		 * of resetting the controller doesn't work, so we have this
7207 		 * other way using the doorbell register.
7208 		 */
7209 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7210 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7211 
7212 		/* PMC hardware guys tell us we need a 10 second delay after
7213 		 * doorbell reset and before any attempt to talk to the board
7214 		 * at all to ensure that this actually works and doesn't fall
7215 		 * over in some weird corner cases.
7216 		 */
7217 		msleep(10000);
7218 	} else { /* Try to do it the PCI power state way */
7219 
7220 		/* Quoting from the Open CISS Specification: "The Power
7221 		 * Management Control/Status Register (CSR) controls the power
7222 		 * state of the device.  The normal operating state is D0,
7223 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7224 		 * the controller, place the interface device in D3 then to D0,
7225 		 * this causes a secondary PCI reset which will reset the
7226 		 * controller." */
7227 
7228 		int rc = 0;
7229 
7230 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7231 
7232 		/* enter the D3hot power management state */
7233 		rc = pci_set_power_state(pdev, PCI_D3hot);
7234 		if (rc)
7235 			return rc;
7236 
7237 		msleep(500);
7238 
7239 		/* enter the D0 power management state */
7240 		rc = pci_set_power_state(pdev, PCI_D0);
7241 		if (rc)
7242 			return rc;
7243 
7244 		/*
7245 		 * The P600 requires a small delay when changing states.
7246 		 * Otherwise we may think the board did not reset and we bail.
7247 		 * This for kdump only and is particular to the P600.
7248 		 */
7249 		msleep(500);
7250 	}
7251 	return 0;
7252 }
7253 
7254 static void init_driver_version(char *driver_version, int len)
7255 {
7256 	memset(driver_version, 0, len);
7257 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7258 }
7259 
7260 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7261 {
7262 	char *driver_version;
7263 	int i, size = sizeof(cfgtable->driver_version);
7264 
7265 	driver_version = kmalloc(size, GFP_KERNEL);
7266 	if (!driver_version)
7267 		return -ENOMEM;
7268 
7269 	init_driver_version(driver_version, size);
7270 	for (i = 0; i < size; i++)
7271 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7272 	kfree(driver_version);
7273 	return 0;
7274 }
7275 
7276 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7277 					  unsigned char *driver_ver)
7278 {
7279 	int i;
7280 
7281 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7282 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7283 }
7284 
7285 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7286 {
7287 
7288 	char *driver_ver, *old_driver_ver;
7289 	int rc, size = sizeof(cfgtable->driver_version);
7290 
7291 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7292 	if (!old_driver_ver)
7293 		return -ENOMEM;
7294 	driver_ver = old_driver_ver + size;
7295 
7296 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7297 	 * should have been changed, otherwise we know the reset failed.
7298 	 */
7299 	init_driver_version(old_driver_ver, size);
7300 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7301 	rc = !memcmp(driver_ver, old_driver_ver, size);
7302 	kfree(old_driver_ver);
7303 	return rc;
7304 }
7305 /* This does a hard reset of the controller using PCI power management
7306  * states or the using the doorbell register.
7307  */
7308 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7309 {
7310 	u64 cfg_offset;
7311 	u32 cfg_base_addr;
7312 	u64 cfg_base_addr_index;
7313 	void __iomem *vaddr;
7314 	unsigned long paddr;
7315 	u32 misc_fw_support;
7316 	int rc;
7317 	struct CfgTable __iomem *cfgtable;
7318 	u32 use_doorbell;
7319 	u16 command_register;
7320 
7321 	/* For controllers as old as the P600, this is very nearly
7322 	 * the same thing as
7323 	 *
7324 	 * pci_save_state(pci_dev);
7325 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7326 	 * pci_set_power_state(pci_dev, PCI_D0);
7327 	 * pci_restore_state(pci_dev);
7328 	 *
7329 	 * For controllers newer than the P600, the pci power state
7330 	 * method of resetting doesn't work so we have another way
7331 	 * using the doorbell register.
7332 	 */
7333 
7334 	if (!ctlr_is_resettable(board_id)) {
7335 		dev_warn(&pdev->dev, "Controller not resettable\n");
7336 		return -ENODEV;
7337 	}
7338 
7339 	/* if controller is soft- but not hard resettable... */
7340 	if (!ctlr_is_hard_resettable(board_id))
7341 		return -ENOTSUPP; /* try soft reset later. */
7342 
7343 	/* Save the PCI command register */
7344 	pci_read_config_word(pdev, 4, &command_register);
7345 	pci_save_state(pdev);
7346 
7347 	/* find the first memory BAR, so we can find the cfg table */
7348 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7349 	if (rc)
7350 		return rc;
7351 	vaddr = remap_pci_mem(paddr, 0x250);
7352 	if (!vaddr)
7353 		return -ENOMEM;
7354 
7355 	/* find cfgtable in order to check if reset via doorbell is supported */
7356 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7357 					&cfg_base_addr_index, &cfg_offset);
7358 	if (rc)
7359 		goto unmap_vaddr;
7360 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7361 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7362 	if (!cfgtable) {
7363 		rc = -ENOMEM;
7364 		goto unmap_vaddr;
7365 	}
7366 	rc = write_driver_ver_to_cfgtable(cfgtable);
7367 	if (rc)
7368 		goto unmap_cfgtable;
7369 
7370 	/* If reset via doorbell register is supported, use that.
7371 	 * There are two such methods.  Favor the newest method.
7372 	 */
7373 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7374 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7375 	if (use_doorbell) {
7376 		use_doorbell = DOORBELL_CTLR_RESET2;
7377 	} else {
7378 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7379 		if (use_doorbell) {
7380 			dev_warn(&pdev->dev,
7381 				"Soft reset not supported. Firmware update is required.\n");
7382 			rc = -ENOTSUPP; /* try soft reset */
7383 			goto unmap_cfgtable;
7384 		}
7385 	}
7386 
7387 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7388 	if (rc)
7389 		goto unmap_cfgtable;
7390 
7391 	pci_restore_state(pdev);
7392 	pci_write_config_word(pdev, 4, command_register);
7393 
7394 	/* Some devices (notably the HP Smart Array 5i Controller)
7395 	   need a little pause here */
7396 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7397 
7398 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7399 	if (rc) {
7400 		dev_warn(&pdev->dev,
7401 			"Failed waiting for board to become ready after hard reset\n");
7402 		goto unmap_cfgtable;
7403 	}
7404 
7405 	rc = controller_reset_failed(vaddr);
7406 	if (rc < 0)
7407 		goto unmap_cfgtable;
7408 	if (rc) {
7409 		dev_warn(&pdev->dev, "Unable to successfully reset "
7410 			"controller. Will try soft reset.\n");
7411 		rc = -ENOTSUPP;
7412 	} else {
7413 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7414 	}
7415 
7416 unmap_cfgtable:
7417 	iounmap(cfgtable);
7418 
7419 unmap_vaddr:
7420 	iounmap(vaddr);
7421 	return rc;
7422 }
7423 
7424 /*
7425  *  We cannot read the structure directly, for portability we must use
7426  *   the io functions.
7427  *   This is for debug only.
7428  */
7429 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7430 {
7431 #ifdef HPSA_DEBUG
7432 	int i;
7433 	char temp_name[17];
7434 
7435 	dev_info(dev, "Controller Configuration information\n");
7436 	dev_info(dev, "------------------------------------\n");
7437 	for (i = 0; i < 4; i++)
7438 		temp_name[i] = readb(&(tb->Signature[i]));
7439 	temp_name[4] = '\0';
7440 	dev_info(dev, "   Signature = %s\n", temp_name);
7441 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7442 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7443 	       readl(&(tb->TransportSupport)));
7444 	dev_info(dev, "   Transport methods active = 0x%x\n",
7445 	       readl(&(tb->TransportActive)));
7446 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7447 	       readl(&(tb->HostWrite.TransportRequest)));
7448 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7449 	       readl(&(tb->HostWrite.CoalIntDelay)));
7450 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7451 	       readl(&(tb->HostWrite.CoalIntCount)));
7452 	dev_info(dev, "   Max outstanding commands = %d\n",
7453 	       readl(&(tb->CmdsOutMax)));
7454 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7455 	for (i = 0; i < 16; i++)
7456 		temp_name[i] = readb(&(tb->ServerName[i]));
7457 	temp_name[16] = '\0';
7458 	dev_info(dev, "   Server Name = %s\n", temp_name);
7459 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7460 		readl(&(tb->HeartBeat)));
7461 #endif				/* HPSA_DEBUG */
7462 }
7463 
7464 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7465 {
7466 	int i, offset, mem_type, bar_type;
7467 
7468 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7469 		return 0;
7470 	offset = 0;
7471 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7472 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7473 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7474 			offset += 4;
7475 		else {
7476 			mem_type = pci_resource_flags(pdev, i) &
7477 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7478 			switch (mem_type) {
7479 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7480 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7481 				offset += 4;	/* 32 bit */
7482 				break;
7483 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7484 				offset += 8;
7485 				break;
7486 			default:	/* reserved in PCI 2.2 */
7487 				dev_warn(&pdev->dev,
7488 				       "base address is invalid\n");
7489 				return -1;
7490 				break;
7491 			}
7492 		}
7493 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7494 			return i + 1;
7495 	}
7496 	return -1;
7497 }
7498 
7499 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7500 {
7501 	if (h->msix_vector) {
7502 		if (h->pdev->msix_enabled)
7503 			pci_disable_msix(h->pdev);
7504 		h->msix_vector = 0;
7505 	} else if (h->msi_vector) {
7506 		if (h->pdev->msi_enabled)
7507 			pci_disable_msi(h->pdev);
7508 		h->msi_vector = 0;
7509 	}
7510 }
7511 
7512 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7513  * controllers that are capable. If not, we use legacy INTx mode.
7514  */
7515 static void hpsa_interrupt_mode(struct ctlr_info *h)
7516 {
7517 #ifdef CONFIG_PCI_MSI
7518 	int err, i;
7519 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7520 
7521 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7522 		hpsa_msix_entries[i].vector = 0;
7523 		hpsa_msix_entries[i].entry = i;
7524 	}
7525 
7526 	/* Some boards advertise MSI but don't really support it */
7527 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7528 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7529 		goto default_int_mode;
7530 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7531 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7532 		h->msix_vector = MAX_REPLY_QUEUES;
7533 		if (h->msix_vector > num_online_cpus())
7534 			h->msix_vector = num_online_cpus();
7535 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7536 					    1, h->msix_vector);
7537 		if (err < 0) {
7538 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7539 			h->msix_vector = 0;
7540 			goto single_msi_mode;
7541 		} else if (err < h->msix_vector) {
7542 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7543 			       "available\n", err);
7544 		}
7545 		h->msix_vector = err;
7546 		for (i = 0; i < h->msix_vector; i++)
7547 			h->intr[i] = hpsa_msix_entries[i].vector;
7548 		return;
7549 	}
7550 single_msi_mode:
7551 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7552 		dev_info(&h->pdev->dev, "MSI capable controller\n");
7553 		if (!pci_enable_msi(h->pdev))
7554 			h->msi_vector = 1;
7555 		else
7556 			dev_warn(&h->pdev->dev, "MSI init failed\n");
7557 	}
7558 default_int_mode:
7559 #endif				/* CONFIG_PCI_MSI */
7560 	/* if we get here we're going to use the default interrupt mode */
7561 	h->intr[h->intr_mode] = h->pdev->irq;
7562 }
7563 
7564 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7565 {
7566 	int i;
7567 	u32 subsystem_vendor_id, subsystem_device_id;
7568 
7569 	subsystem_vendor_id = pdev->subsystem_vendor;
7570 	subsystem_device_id = pdev->subsystem_device;
7571 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7572 		    subsystem_vendor_id;
7573 
7574 	for (i = 0; i < ARRAY_SIZE(products); i++)
7575 		if (*board_id == products[i].board_id)
7576 			return i;
7577 
7578 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7579 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7580 		!hpsa_allow_any) {
7581 		dev_warn(&pdev->dev, "unrecognized board ID: "
7582 			"0x%08x, ignoring.\n", *board_id);
7583 			return -ENODEV;
7584 	}
7585 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7586 }
7587 
7588 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7589 				    unsigned long *memory_bar)
7590 {
7591 	int i;
7592 
7593 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7594 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7595 			/* addressing mode bits already removed */
7596 			*memory_bar = pci_resource_start(pdev, i);
7597 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7598 				*memory_bar);
7599 			return 0;
7600 		}
7601 	dev_warn(&pdev->dev, "no memory BAR found\n");
7602 	return -ENODEV;
7603 }
7604 
7605 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7606 				     int wait_for_ready)
7607 {
7608 	int i, iterations;
7609 	u32 scratchpad;
7610 	if (wait_for_ready)
7611 		iterations = HPSA_BOARD_READY_ITERATIONS;
7612 	else
7613 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7614 
7615 	for (i = 0; i < iterations; i++) {
7616 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7617 		if (wait_for_ready) {
7618 			if (scratchpad == HPSA_FIRMWARE_READY)
7619 				return 0;
7620 		} else {
7621 			if (scratchpad != HPSA_FIRMWARE_READY)
7622 				return 0;
7623 		}
7624 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7625 	}
7626 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7627 	return -ENODEV;
7628 }
7629 
7630 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7631 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7632 			       u64 *cfg_offset)
7633 {
7634 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7635 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7636 	*cfg_base_addr &= (u32) 0x0000ffff;
7637 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7638 	if (*cfg_base_addr_index == -1) {
7639 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7640 		return -ENODEV;
7641 	}
7642 	return 0;
7643 }
7644 
7645 static void hpsa_free_cfgtables(struct ctlr_info *h)
7646 {
7647 	if (h->transtable) {
7648 		iounmap(h->transtable);
7649 		h->transtable = NULL;
7650 	}
7651 	if (h->cfgtable) {
7652 		iounmap(h->cfgtable);
7653 		h->cfgtable = NULL;
7654 	}
7655 }
7656 
7657 /* Find and map CISS config table and transfer table
7658 + * several items must be unmapped (freed) later
7659 + * */
7660 static int hpsa_find_cfgtables(struct ctlr_info *h)
7661 {
7662 	u64 cfg_offset;
7663 	u32 cfg_base_addr;
7664 	u64 cfg_base_addr_index;
7665 	u32 trans_offset;
7666 	int rc;
7667 
7668 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7669 		&cfg_base_addr_index, &cfg_offset);
7670 	if (rc)
7671 		return rc;
7672 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7673 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7674 	if (!h->cfgtable) {
7675 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7676 		return -ENOMEM;
7677 	}
7678 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7679 	if (rc)
7680 		return rc;
7681 	/* Find performant mode table. */
7682 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7683 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7684 				cfg_base_addr_index)+cfg_offset+trans_offset,
7685 				sizeof(*h->transtable));
7686 	if (!h->transtable) {
7687 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7688 		hpsa_free_cfgtables(h);
7689 		return -ENOMEM;
7690 	}
7691 	return 0;
7692 }
7693 
7694 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7695 {
7696 #define MIN_MAX_COMMANDS 16
7697 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7698 
7699 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7700 
7701 	/* Limit commands in memory limited kdump scenario. */
7702 	if (reset_devices && h->max_commands > 32)
7703 		h->max_commands = 32;
7704 
7705 	if (h->max_commands < MIN_MAX_COMMANDS) {
7706 		dev_warn(&h->pdev->dev,
7707 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7708 			h->max_commands,
7709 			MIN_MAX_COMMANDS);
7710 		h->max_commands = MIN_MAX_COMMANDS;
7711 	}
7712 }
7713 
7714 /* If the controller reports that the total max sg entries is greater than 512,
7715  * then we know that chained SG blocks work.  (Original smart arrays did not
7716  * support chained SG blocks and would return zero for max sg entries.)
7717  */
7718 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7719 {
7720 	return h->maxsgentries > 512;
7721 }
7722 
7723 /* Interrogate the hardware for some limits:
7724  * max commands, max SG elements without chaining, and with chaining,
7725  * SG chain block size, etc.
7726  */
7727 static void hpsa_find_board_params(struct ctlr_info *h)
7728 {
7729 	hpsa_get_max_perf_mode_cmds(h);
7730 	h->nr_cmds = h->max_commands;
7731 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7732 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7733 	if (hpsa_supports_chained_sg_blocks(h)) {
7734 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7735 		h->max_cmd_sg_entries = 32;
7736 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7737 		h->maxsgentries--; /* save one for chain pointer */
7738 	} else {
7739 		/*
7740 		 * Original smart arrays supported at most 31 s/g entries
7741 		 * embedded inline in the command (trying to use more
7742 		 * would lock up the controller)
7743 		 */
7744 		h->max_cmd_sg_entries = 31;
7745 		h->maxsgentries = 31; /* default to traditional values */
7746 		h->chainsize = 0;
7747 	}
7748 
7749 	/* Find out what task management functions are supported and cache */
7750 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7751 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7752 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7753 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7754 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7755 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7756 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7757 }
7758 
7759 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7760 {
7761 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7762 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7763 		return false;
7764 	}
7765 	return true;
7766 }
7767 
7768 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7769 {
7770 	u32 driver_support;
7771 
7772 	driver_support = readl(&(h->cfgtable->driver_support));
7773 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7774 #ifdef CONFIG_X86
7775 	driver_support |= ENABLE_SCSI_PREFETCH;
7776 #endif
7777 	driver_support |= ENABLE_UNIT_ATTN;
7778 	writel(driver_support, &(h->cfgtable->driver_support));
7779 }
7780 
7781 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7782  * in a prefetch beyond physical memory.
7783  */
7784 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7785 {
7786 	u32 dma_prefetch;
7787 
7788 	if (h->board_id != 0x3225103C)
7789 		return;
7790 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7791 	dma_prefetch |= 0x8000;
7792 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7793 }
7794 
7795 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7796 {
7797 	int i;
7798 	u32 doorbell_value;
7799 	unsigned long flags;
7800 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7801 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7802 		spin_lock_irqsave(&h->lock, flags);
7803 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7804 		spin_unlock_irqrestore(&h->lock, flags);
7805 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7806 			goto done;
7807 		/* delay and try again */
7808 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7809 	}
7810 	return -ENODEV;
7811 done:
7812 	return 0;
7813 }
7814 
7815 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7816 {
7817 	int i;
7818 	u32 doorbell_value;
7819 	unsigned long flags;
7820 
7821 	/* under certain very rare conditions, this can take awhile.
7822 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7823 	 * as we enter this code.)
7824 	 */
7825 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7826 		if (h->remove_in_progress)
7827 			goto done;
7828 		spin_lock_irqsave(&h->lock, flags);
7829 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7830 		spin_unlock_irqrestore(&h->lock, flags);
7831 		if (!(doorbell_value & CFGTBL_ChangeReq))
7832 			goto done;
7833 		/* delay and try again */
7834 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7835 	}
7836 	return -ENODEV;
7837 done:
7838 	return 0;
7839 }
7840 
7841 /* return -ENODEV or other reason on error, 0 on success */
7842 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7843 {
7844 	u32 trans_support;
7845 
7846 	trans_support = readl(&(h->cfgtable->TransportSupport));
7847 	if (!(trans_support & SIMPLE_MODE))
7848 		return -ENOTSUPP;
7849 
7850 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7851 
7852 	/* Update the field, and then ring the doorbell */
7853 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7854 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7855 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7856 	if (hpsa_wait_for_mode_change_ack(h))
7857 		goto error;
7858 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7859 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7860 		goto error;
7861 	h->transMethod = CFGTBL_Trans_Simple;
7862 	return 0;
7863 error:
7864 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7865 	return -ENODEV;
7866 }
7867 
7868 /* free items allocated or mapped by hpsa_pci_init */
7869 static void hpsa_free_pci_init(struct ctlr_info *h)
7870 {
7871 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7872 	iounmap(h->vaddr);			/* pci_init 3 */
7873 	h->vaddr = NULL;
7874 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7875 	/*
7876 	 * call pci_disable_device before pci_release_regions per
7877 	 * Documentation/PCI/pci.txt
7878 	 */
7879 	pci_disable_device(h->pdev);		/* pci_init 1 */
7880 	pci_release_regions(h->pdev);		/* pci_init 2 */
7881 }
7882 
7883 /* several items must be freed later */
7884 static int hpsa_pci_init(struct ctlr_info *h)
7885 {
7886 	int prod_index, err;
7887 
7888 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7889 	if (prod_index < 0)
7890 		return prod_index;
7891 	h->product_name = products[prod_index].product_name;
7892 	h->access = *(products[prod_index].access);
7893 
7894 	h->needs_abort_tags_swizzled =
7895 		ctlr_needs_abort_tags_swizzled(h->board_id);
7896 
7897 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7898 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7899 
7900 	err = pci_enable_device(h->pdev);
7901 	if (err) {
7902 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7903 		pci_disable_device(h->pdev);
7904 		return err;
7905 	}
7906 
7907 	err = pci_request_regions(h->pdev, HPSA);
7908 	if (err) {
7909 		dev_err(&h->pdev->dev,
7910 			"failed to obtain PCI resources\n");
7911 		pci_disable_device(h->pdev);
7912 		return err;
7913 	}
7914 
7915 	pci_set_master(h->pdev);
7916 
7917 	hpsa_interrupt_mode(h);
7918 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7919 	if (err)
7920 		goto clean2;	/* intmode+region, pci */
7921 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7922 	if (!h->vaddr) {
7923 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7924 		err = -ENOMEM;
7925 		goto clean2;	/* intmode+region, pci */
7926 	}
7927 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7928 	if (err)
7929 		goto clean3;	/* vaddr, intmode+region, pci */
7930 	err = hpsa_find_cfgtables(h);
7931 	if (err)
7932 		goto clean3;	/* vaddr, intmode+region, pci */
7933 	hpsa_find_board_params(h);
7934 
7935 	if (!hpsa_CISS_signature_present(h)) {
7936 		err = -ENODEV;
7937 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7938 	}
7939 	hpsa_set_driver_support_bits(h);
7940 	hpsa_p600_dma_prefetch_quirk(h);
7941 	err = hpsa_enter_simple_mode(h);
7942 	if (err)
7943 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7944 	return 0;
7945 
7946 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7947 	hpsa_free_cfgtables(h);
7948 clean3:	/* vaddr, intmode+region, pci */
7949 	iounmap(h->vaddr);
7950 	h->vaddr = NULL;
7951 clean2:	/* intmode+region, pci */
7952 	hpsa_disable_interrupt_mode(h);
7953 	/*
7954 	 * call pci_disable_device before pci_release_regions per
7955 	 * Documentation/PCI/pci.txt
7956 	 */
7957 	pci_disable_device(h->pdev);
7958 	pci_release_regions(h->pdev);
7959 	return err;
7960 }
7961 
7962 static void hpsa_hba_inquiry(struct ctlr_info *h)
7963 {
7964 	int rc;
7965 
7966 #define HBA_INQUIRY_BYTE_COUNT 64
7967 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7968 	if (!h->hba_inquiry_data)
7969 		return;
7970 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7971 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7972 	if (rc != 0) {
7973 		kfree(h->hba_inquiry_data);
7974 		h->hba_inquiry_data = NULL;
7975 	}
7976 }
7977 
7978 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7979 {
7980 	int rc, i;
7981 	void __iomem *vaddr;
7982 
7983 	if (!reset_devices)
7984 		return 0;
7985 
7986 	/* kdump kernel is loading, we don't know in which state is
7987 	 * the pci interface. The dev->enable_cnt is equal zero
7988 	 * so we call enable+disable, wait a while and switch it on.
7989 	 */
7990 	rc = pci_enable_device(pdev);
7991 	if (rc) {
7992 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7993 		return -ENODEV;
7994 	}
7995 	pci_disable_device(pdev);
7996 	msleep(260);			/* a randomly chosen number */
7997 	rc = pci_enable_device(pdev);
7998 	if (rc) {
7999 		dev_warn(&pdev->dev, "failed to enable device.\n");
8000 		return -ENODEV;
8001 	}
8002 
8003 	pci_set_master(pdev);
8004 
8005 	vaddr = pci_ioremap_bar(pdev, 0);
8006 	if (vaddr == NULL) {
8007 		rc = -ENOMEM;
8008 		goto out_disable;
8009 	}
8010 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8011 	iounmap(vaddr);
8012 
8013 	/* Reset the controller with a PCI power-cycle or via doorbell */
8014 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8015 
8016 	/* -ENOTSUPP here means we cannot reset the controller
8017 	 * but it's already (and still) up and running in
8018 	 * "performant mode".  Or, it might be 640x, which can't reset
8019 	 * due to concerns about shared bbwc between 6402/6404 pair.
8020 	 */
8021 	if (rc)
8022 		goto out_disable;
8023 
8024 	/* Now try to get the controller to respond to a no-op */
8025 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8026 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8027 		if (hpsa_noop(pdev) == 0)
8028 			break;
8029 		else
8030 			dev_warn(&pdev->dev, "no-op failed%s\n",
8031 					(i < 11 ? "; re-trying" : ""));
8032 	}
8033 
8034 out_disable:
8035 
8036 	pci_disable_device(pdev);
8037 	return rc;
8038 }
8039 
8040 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8041 {
8042 	kfree(h->cmd_pool_bits);
8043 	h->cmd_pool_bits = NULL;
8044 	if (h->cmd_pool) {
8045 		pci_free_consistent(h->pdev,
8046 				h->nr_cmds * sizeof(struct CommandList),
8047 				h->cmd_pool,
8048 				h->cmd_pool_dhandle);
8049 		h->cmd_pool = NULL;
8050 		h->cmd_pool_dhandle = 0;
8051 	}
8052 	if (h->errinfo_pool) {
8053 		pci_free_consistent(h->pdev,
8054 				h->nr_cmds * sizeof(struct ErrorInfo),
8055 				h->errinfo_pool,
8056 				h->errinfo_pool_dhandle);
8057 		h->errinfo_pool = NULL;
8058 		h->errinfo_pool_dhandle = 0;
8059 	}
8060 }
8061 
8062 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8063 {
8064 	h->cmd_pool_bits = kzalloc(
8065 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8066 		sizeof(unsigned long), GFP_KERNEL);
8067 	h->cmd_pool = pci_alloc_consistent(h->pdev,
8068 		    h->nr_cmds * sizeof(*h->cmd_pool),
8069 		    &(h->cmd_pool_dhandle));
8070 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
8071 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8072 		    &(h->errinfo_pool_dhandle));
8073 	if ((h->cmd_pool_bits == NULL)
8074 	    || (h->cmd_pool == NULL)
8075 	    || (h->errinfo_pool == NULL)) {
8076 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8077 		goto clean_up;
8078 	}
8079 	hpsa_preinitialize_commands(h);
8080 	return 0;
8081 clean_up:
8082 	hpsa_free_cmd_pool(h);
8083 	return -ENOMEM;
8084 }
8085 
8086 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8087 {
8088 	int i, cpu;
8089 
8090 	cpu = cpumask_first(cpu_online_mask);
8091 	for (i = 0; i < h->msix_vector; i++) {
8092 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8093 		cpu = cpumask_next(cpu, cpu_online_mask);
8094 	}
8095 }
8096 
8097 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8098 static void hpsa_free_irqs(struct ctlr_info *h)
8099 {
8100 	int i;
8101 
8102 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8103 		/* Single reply queue, only one irq to free */
8104 		i = h->intr_mode;
8105 		irq_set_affinity_hint(h->intr[i], NULL);
8106 		free_irq(h->intr[i], &h->q[i]);
8107 		h->q[i] = 0;
8108 		return;
8109 	}
8110 
8111 	for (i = 0; i < h->msix_vector; i++) {
8112 		irq_set_affinity_hint(h->intr[i], NULL);
8113 		free_irq(h->intr[i], &h->q[i]);
8114 		h->q[i] = 0;
8115 	}
8116 	for (; i < MAX_REPLY_QUEUES; i++)
8117 		h->q[i] = 0;
8118 }
8119 
8120 /* returns 0 on success; cleans up and returns -Enn on error */
8121 static int hpsa_request_irqs(struct ctlr_info *h,
8122 	irqreturn_t (*msixhandler)(int, void *),
8123 	irqreturn_t (*intxhandler)(int, void *))
8124 {
8125 	int rc, i;
8126 
8127 	/*
8128 	 * initialize h->q[x] = x so that interrupt handlers know which
8129 	 * queue to process.
8130 	 */
8131 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8132 		h->q[i] = (u8) i;
8133 
8134 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8135 		/* If performant mode and MSI-X, use multiple reply queues */
8136 		for (i = 0; i < h->msix_vector; i++) {
8137 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8138 			rc = request_irq(h->intr[i], msixhandler,
8139 					0, h->intrname[i],
8140 					&h->q[i]);
8141 			if (rc) {
8142 				int j;
8143 
8144 				dev_err(&h->pdev->dev,
8145 					"failed to get irq %d for %s\n",
8146 				       h->intr[i], h->devname);
8147 				for (j = 0; j < i; j++) {
8148 					free_irq(h->intr[j], &h->q[j]);
8149 					h->q[j] = 0;
8150 				}
8151 				for (; j < MAX_REPLY_QUEUES; j++)
8152 					h->q[j] = 0;
8153 				return rc;
8154 			}
8155 		}
8156 		hpsa_irq_affinity_hints(h);
8157 	} else {
8158 		/* Use single reply pool */
8159 		if (h->msix_vector > 0 || h->msi_vector) {
8160 			if (h->msix_vector)
8161 				sprintf(h->intrname[h->intr_mode],
8162 					"%s-msix", h->devname);
8163 			else
8164 				sprintf(h->intrname[h->intr_mode],
8165 					"%s-msi", h->devname);
8166 			rc = request_irq(h->intr[h->intr_mode],
8167 				msixhandler, 0,
8168 				h->intrname[h->intr_mode],
8169 				&h->q[h->intr_mode]);
8170 		} else {
8171 			sprintf(h->intrname[h->intr_mode],
8172 				"%s-intx", h->devname);
8173 			rc = request_irq(h->intr[h->intr_mode],
8174 				intxhandler, IRQF_SHARED,
8175 				h->intrname[h->intr_mode],
8176 				&h->q[h->intr_mode]);
8177 		}
8178 		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8179 	}
8180 	if (rc) {
8181 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8182 		       h->intr[h->intr_mode], h->devname);
8183 		hpsa_free_irqs(h);
8184 		return -ENODEV;
8185 	}
8186 	return 0;
8187 }
8188 
8189 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8190 {
8191 	int rc;
8192 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8193 
8194 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8195 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8196 	if (rc) {
8197 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8198 		return rc;
8199 	}
8200 
8201 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8202 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8203 	if (rc) {
8204 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8205 			"after soft reset.\n");
8206 		return rc;
8207 	}
8208 
8209 	return 0;
8210 }
8211 
8212 static void hpsa_free_reply_queues(struct ctlr_info *h)
8213 {
8214 	int i;
8215 
8216 	for (i = 0; i < h->nreply_queues; i++) {
8217 		if (!h->reply_queue[i].head)
8218 			continue;
8219 		pci_free_consistent(h->pdev,
8220 					h->reply_queue_size,
8221 					h->reply_queue[i].head,
8222 					h->reply_queue[i].busaddr);
8223 		h->reply_queue[i].head = NULL;
8224 		h->reply_queue[i].busaddr = 0;
8225 	}
8226 	h->reply_queue_size = 0;
8227 }
8228 
8229 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8230 {
8231 	hpsa_free_performant_mode(h);		/* init_one 7 */
8232 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8233 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8234 	hpsa_free_irqs(h);			/* init_one 4 */
8235 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8236 	h->scsi_host = NULL;			/* init_one 3 */
8237 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8238 	free_percpu(h->lockup_detected);	/* init_one 2 */
8239 	h->lockup_detected = NULL;		/* init_one 2 */
8240 	if (h->resubmit_wq) {
8241 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8242 		h->resubmit_wq = NULL;
8243 	}
8244 	if (h->rescan_ctlr_wq) {
8245 		destroy_workqueue(h->rescan_ctlr_wq);
8246 		h->rescan_ctlr_wq = NULL;
8247 	}
8248 	kfree(h);				/* init_one 1 */
8249 }
8250 
8251 /* Called when controller lockup detected. */
8252 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8253 {
8254 	int i, refcount;
8255 	struct CommandList *c;
8256 	int failcount = 0;
8257 
8258 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8259 	for (i = 0; i < h->nr_cmds; i++) {
8260 		c = h->cmd_pool + i;
8261 		refcount = atomic_inc_return(&c->refcount);
8262 		if (refcount > 1) {
8263 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8264 			finish_cmd(c);
8265 			atomic_dec(&h->commands_outstanding);
8266 			failcount++;
8267 		}
8268 		cmd_free(h, c);
8269 	}
8270 	dev_warn(&h->pdev->dev,
8271 		"failed %d commands in fail_all\n", failcount);
8272 }
8273 
8274 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8275 {
8276 	int cpu;
8277 
8278 	for_each_online_cpu(cpu) {
8279 		u32 *lockup_detected;
8280 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8281 		*lockup_detected = value;
8282 	}
8283 	wmb(); /* be sure the per-cpu variables are out to memory */
8284 }
8285 
8286 static void controller_lockup_detected(struct ctlr_info *h)
8287 {
8288 	unsigned long flags;
8289 	u32 lockup_detected;
8290 
8291 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8292 	spin_lock_irqsave(&h->lock, flags);
8293 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8294 	if (!lockup_detected) {
8295 		/* no heartbeat, but controller gave us a zero. */
8296 		dev_warn(&h->pdev->dev,
8297 			"lockup detected after %d but scratchpad register is zero\n",
8298 			h->heartbeat_sample_interval / HZ);
8299 		lockup_detected = 0xffffffff;
8300 	}
8301 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8302 	spin_unlock_irqrestore(&h->lock, flags);
8303 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8304 			lockup_detected, h->heartbeat_sample_interval / HZ);
8305 	pci_disable_device(h->pdev);
8306 	fail_all_outstanding_cmds(h);
8307 }
8308 
8309 static int detect_controller_lockup(struct ctlr_info *h)
8310 {
8311 	u64 now;
8312 	u32 heartbeat;
8313 	unsigned long flags;
8314 
8315 	now = get_jiffies_64();
8316 	/* If we've received an interrupt recently, we're ok. */
8317 	if (time_after64(h->last_intr_timestamp +
8318 				(h->heartbeat_sample_interval), now))
8319 		return false;
8320 
8321 	/*
8322 	 * If we've already checked the heartbeat recently, we're ok.
8323 	 * This could happen if someone sends us a signal. We
8324 	 * otherwise don't care about signals in this thread.
8325 	 */
8326 	if (time_after64(h->last_heartbeat_timestamp +
8327 				(h->heartbeat_sample_interval), now))
8328 		return false;
8329 
8330 	/* If heartbeat has not changed since we last looked, we're not ok. */
8331 	spin_lock_irqsave(&h->lock, flags);
8332 	heartbeat = readl(&h->cfgtable->HeartBeat);
8333 	spin_unlock_irqrestore(&h->lock, flags);
8334 	if (h->last_heartbeat == heartbeat) {
8335 		controller_lockup_detected(h);
8336 		return true;
8337 	}
8338 
8339 	/* We're ok. */
8340 	h->last_heartbeat = heartbeat;
8341 	h->last_heartbeat_timestamp = now;
8342 	return false;
8343 }
8344 
8345 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8346 {
8347 	int i;
8348 	char *event_type;
8349 
8350 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8351 		return;
8352 
8353 	/* Ask the controller to clear the events we're handling. */
8354 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8355 			| CFGTBL_Trans_io_accel2)) &&
8356 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8357 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8358 
8359 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8360 			event_type = "state change";
8361 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8362 			event_type = "configuration change";
8363 		/* Stop sending new RAID offload reqs via the IO accelerator */
8364 		scsi_block_requests(h->scsi_host);
8365 		for (i = 0; i < h->ndevices; i++) {
8366 			h->dev[i]->offload_enabled = 0;
8367 			h->dev[i]->offload_to_be_enabled = 0;
8368 		}
8369 		hpsa_drain_accel_commands(h);
8370 		/* Set 'accelerator path config change' bit */
8371 		dev_warn(&h->pdev->dev,
8372 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8373 			h->events, event_type);
8374 		writel(h->events, &(h->cfgtable->clear_event_notify));
8375 		/* Set the "clear event notify field update" bit 6 */
8376 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8377 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8378 		hpsa_wait_for_clear_event_notify_ack(h);
8379 		scsi_unblock_requests(h->scsi_host);
8380 	} else {
8381 		/* Acknowledge controller notification events. */
8382 		writel(h->events, &(h->cfgtable->clear_event_notify));
8383 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8384 		hpsa_wait_for_clear_event_notify_ack(h);
8385 #if 0
8386 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8387 		hpsa_wait_for_mode_change_ack(h);
8388 #endif
8389 	}
8390 	return;
8391 }
8392 
8393 /* Check a register on the controller to see if there are configuration
8394  * changes (added/changed/removed logical drives, etc.) which mean that
8395  * we should rescan the controller for devices.
8396  * Also check flag for driver-initiated rescan.
8397  */
8398 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8399 {
8400 	if (h->drv_req_rescan) {
8401 		h->drv_req_rescan = 0;
8402 		return 1;
8403 	}
8404 
8405 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8406 		return 0;
8407 
8408 	h->events = readl(&(h->cfgtable->event_notify));
8409 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8410 }
8411 
8412 /*
8413  * Check if any of the offline devices have become ready
8414  */
8415 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8416 {
8417 	unsigned long flags;
8418 	struct offline_device_entry *d;
8419 	struct list_head *this, *tmp;
8420 
8421 	spin_lock_irqsave(&h->offline_device_lock, flags);
8422 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8423 		d = list_entry(this, struct offline_device_entry,
8424 				offline_list);
8425 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8426 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8427 			spin_lock_irqsave(&h->offline_device_lock, flags);
8428 			list_del(&d->offline_list);
8429 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8430 			return 1;
8431 		}
8432 		spin_lock_irqsave(&h->offline_device_lock, flags);
8433 	}
8434 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8435 	return 0;
8436 }
8437 
8438 static int hpsa_luns_changed(struct ctlr_info *h)
8439 {
8440 	int rc = 1; /* assume there are changes */
8441 	struct ReportLUNdata *logdev = NULL;
8442 
8443 	/* if we can't find out if lun data has changed,
8444 	 * assume that it has.
8445 	 */
8446 
8447 	if (!h->lastlogicals)
8448 		goto out;
8449 
8450 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8451 	if (!logdev) {
8452 		dev_warn(&h->pdev->dev,
8453 			"Out of memory, can't track lun changes.\n");
8454 		goto out;
8455 	}
8456 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8457 		dev_warn(&h->pdev->dev,
8458 			"report luns failed, can't track lun changes.\n");
8459 		goto out;
8460 	}
8461 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8462 		dev_info(&h->pdev->dev,
8463 			"Lun changes detected.\n");
8464 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8465 		goto out;
8466 	} else
8467 		rc = 0; /* no changes detected. */
8468 out:
8469 	kfree(logdev);
8470 	return rc;
8471 }
8472 
8473 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8474 {
8475 	unsigned long flags;
8476 	struct ctlr_info *h = container_of(to_delayed_work(work),
8477 					struct ctlr_info, rescan_ctlr_work);
8478 
8479 
8480 	if (h->remove_in_progress)
8481 		return;
8482 
8483 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8484 		scsi_host_get(h->scsi_host);
8485 		hpsa_ack_ctlr_events(h);
8486 		hpsa_scan_start(h->scsi_host);
8487 		scsi_host_put(h->scsi_host);
8488 	} else if (h->discovery_polling) {
8489 		hpsa_disable_rld_caching(h);
8490 		if (hpsa_luns_changed(h)) {
8491 			struct Scsi_Host *sh = NULL;
8492 
8493 			dev_info(&h->pdev->dev,
8494 				"driver discovery polling rescan.\n");
8495 			sh = scsi_host_get(h->scsi_host);
8496 			if (sh != NULL) {
8497 				hpsa_scan_start(sh);
8498 				scsi_host_put(sh);
8499 			}
8500 		}
8501 	}
8502 	spin_lock_irqsave(&h->lock, flags);
8503 	if (!h->remove_in_progress)
8504 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8505 				h->heartbeat_sample_interval);
8506 	spin_unlock_irqrestore(&h->lock, flags);
8507 }
8508 
8509 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8510 {
8511 	unsigned long flags;
8512 	struct ctlr_info *h = container_of(to_delayed_work(work),
8513 					struct ctlr_info, monitor_ctlr_work);
8514 
8515 	detect_controller_lockup(h);
8516 	if (lockup_detected(h))
8517 		return;
8518 
8519 	spin_lock_irqsave(&h->lock, flags);
8520 	if (!h->remove_in_progress)
8521 		schedule_delayed_work(&h->monitor_ctlr_work,
8522 				h->heartbeat_sample_interval);
8523 	spin_unlock_irqrestore(&h->lock, flags);
8524 }
8525 
8526 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8527 						char *name)
8528 {
8529 	struct workqueue_struct *wq = NULL;
8530 
8531 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8532 	if (!wq)
8533 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8534 
8535 	return wq;
8536 }
8537 
8538 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8539 {
8540 	int dac, rc;
8541 	struct ctlr_info *h;
8542 	int try_soft_reset = 0;
8543 	unsigned long flags;
8544 	u32 board_id;
8545 
8546 	if (number_of_controllers == 0)
8547 		printk(KERN_INFO DRIVER_NAME "\n");
8548 
8549 	rc = hpsa_lookup_board_id(pdev, &board_id);
8550 	if (rc < 0) {
8551 		dev_warn(&pdev->dev, "Board ID not found\n");
8552 		return rc;
8553 	}
8554 
8555 	rc = hpsa_init_reset_devices(pdev, board_id);
8556 	if (rc) {
8557 		if (rc != -ENOTSUPP)
8558 			return rc;
8559 		/* If the reset fails in a particular way (it has no way to do
8560 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8561 		 * a soft reset once we get the controller configured up to the
8562 		 * point that it can accept a command.
8563 		 */
8564 		try_soft_reset = 1;
8565 		rc = 0;
8566 	}
8567 
8568 reinit_after_soft_reset:
8569 
8570 	/* Command structures must be aligned on a 32-byte boundary because
8571 	 * the 5 lower bits of the address are used by the hardware. and by
8572 	 * the driver.  See comments in hpsa.h for more info.
8573 	 */
8574 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8575 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8576 	if (!h) {
8577 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8578 		return -ENOMEM;
8579 	}
8580 
8581 	h->pdev = pdev;
8582 
8583 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8584 	INIT_LIST_HEAD(&h->offline_device_list);
8585 	spin_lock_init(&h->lock);
8586 	spin_lock_init(&h->offline_device_lock);
8587 	spin_lock_init(&h->scan_lock);
8588 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8589 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8590 
8591 	/* Allocate and clear per-cpu variable lockup_detected */
8592 	h->lockup_detected = alloc_percpu(u32);
8593 	if (!h->lockup_detected) {
8594 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8595 		rc = -ENOMEM;
8596 		goto clean1;	/* aer/h */
8597 	}
8598 	set_lockup_detected_for_all_cpus(h, 0);
8599 
8600 	rc = hpsa_pci_init(h);
8601 	if (rc)
8602 		goto clean2;	/* lu, aer/h */
8603 
8604 	/* relies on h-> settings made by hpsa_pci_init, including
8605 	 * interrupt_mode h->intr */
8606 	rc = hpsa_scsi_host_alloc(h);
8607 	if (rc)
8608 		goto clean2_5;	/* pci, lu, aer/h */
8609 
8610 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8611 	h->ctlr = number_of_controllers;
8612 	number_of_controllers++;
8613 
8614 	/* configure PCI DMA stuff */
8615 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8616 	if (rc == 0) {
8617 		dac = 1;
8618 	} else {
8619 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8620 		if (rc == 0) {
8621 			dac = 0;
8622 		} else {
8623 			dev_err(&pdev->dev, "no suitable DMA available\n");
8624 			goto clean3;	/* shost, pci, lu, aer/h */
8625 		}
8626 	}
8627 
8628 	/* make sure the board interrupts are off */
8629 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8630 
8631 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8632 	if (rc)
8633 		goto clean3;	/* shost, pci, lu, aer/h */
8634 	rc = hpsa_alloc_cmd_pool(h);
8635 	if (rc)
8636 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8637 	rc = hpsa_alloc_sg_chain_blocks(h);
8638 	if (rc)
8639 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8640 	init_waitqueue_head(&h->scan_wait_queue);
8641 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8642 	init_waitqueue_head(&h->event_sync_wait_queue);
8643 	mutex_init(&h->reset_mutex);
8644 	h->scan_finished = 1; /* no scan currently in progress */
8645 
8646 	pci_set_drvdata(pdev, h);
8647 	h->ndevices = 0;
8648 
8649 	spin_lock_init(&h->devlock);
8650 	rc = hpsa_put_ctlr_into_performant_mode(h);
8651 	if (rc)
8652 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8653 
8654 	/* create the resubmit workqueue */
8655 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8656 	if (!h->rescan_ctlr_wq) {
8657 		rc = -ENOMEM;
8658 		goto clean7;
8659 	}
8660 
8661 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8662 	if (!h->resubmit_wq) {
8663 		rc = -ENOMEM;
8664 		goto clean7;	/* aer/h */
8665 	}
8666 
8667 	/*
8668 	 * At this point, the controller is ready to take commands.
8669 	 * Now, if reset_devices and the hard reset didn't work, try
8670 	 * the soft reset and see if that works.
8671 	 */
8672 	if (try_soft_reset) {
8673 
8674 		/* This is kind of gross.  We may or may not get a completion
8675 		 * from the soft reset command, and if we do, then the value
8676 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8677 		 * after the reset throwing away any completions we get during
8678 		 * that time.  Unregister the interrupt handler and register
8679 		 * fake ones to scoop up any residual completions.
8680 		 */
8681 		spin_lock_irqsave(&h->lock, flags);
8682 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8683 		spin_unlock_irqrestore(&h->lock, flags);
8684 		hpsa_free_irqs(h);
8685 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8686 					hpsa_intx_discard_completions);
8687 		if (rc) {
8688 			dev_warn(&h->pdev->dev,
8689 				"Failed to request_irq after soft reset.\n");
8690 			/*
8691 			 * cannot goto clean7 or free_irqs will be called
8692 			 * again. Instead, do its work
8693 			 */
8694 			hpsa_free_performant_mode(h);	/* clean7 */
8695 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8696 			hpsa_free_cmd_pool(h);		/* clean5 */
8697 			/*
8698 			 * skip hpsa_free_irqs(h) clean4 since that
8699 			 * was just called before request_irqs failed
8700 			 */
8701 			goto clean3;
8702 		}
8703 
8704 		rc = hpsa_kdump_soft_reset(h);
8705 		if (rc)
8706 			/* Neither hard nor soft reset worked, we're hosed. */
8707 			goto clean7;
8708 
8709 		dev_info(&h->pdev->dev, "Board READY.\n");
8710 		dev_info(&h->pdev->dev,
8711 			"Waiting for stale completions to drain.\n");
8712 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8713 		msleep(10000);
8714 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8715 
8716 		rc = controller_reset_failed(h->cfgtable);
8717 		if (rc)
8718 			dev_info(&h->pdev->dev,
8719 				"Soft reset appears to have failed.\n");
8720 
8721 		/* since the controller's reset, we have to go back and re-init
8722 		 * everything.  Easiest to just forget what we've done and do it
8723 		 * all over again.
8724 		 */
8725 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8726 		try_soft_reset = 0;
8727 		if (rc)
8728 			/* don't goto clean, we already unallocated */
8729 			return -ENODEV;
8730 
8731 		goto reinit_after_soft_reset;
8732 	}
8733 
8734 	/* Enable Accelerated IO path at driver layer */
8735 	h->acciopath_status = 1;
8736 	/* Disable discovery polling.*/
8737 	h->discovery_polling = 0;
8738 
8739 
8740 	/* Turn the interrupts on so we can service requests */
8741 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8742 
8743 	hpsa_hba_inquiry(h);
8744 
8745 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8746 	if (!h->lastlogicals)
8747 		dev_info(&h->pdev->dev,
8748 			"Can't track change to report lun data\n");
8749 
8750 	/* hook into SCSI subsystem */
8751 	rc = hpsa_scsi_add_host(h);
8752 	if (rc)
8753 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8754 
8755 	/* Monitor the controller for firmware lockups */
8756 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8757 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8758 	schedule_delayed_work(&h->monitor_ctlr_work,
8759 				h->heartbeat_sample_interval);
8760 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8761 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8762 				h->heartbeat_sample_interval);
8763 	return 0;
8764 
8765 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8766 	hpsa_free_performant_mode(h);
8767 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8768 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8769 	hpsa_free_sg_chain_blocks(h);
8770 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8771 	hpsa_free_cmd_pool(h);
8772 clean4: /* irq, shost, pci, lu, aer/h */
8773 	hpsa_free_irqs(h);
8774 clean3: /* shost, pci, lu, aer/h */
8775 	scsi_host_put(h->scsi_host);
8776 	h->scsi_host = NULL;
8777 clean2_5: /* pci, lu, aer/h */
8778 	hpsa_free_pci_init(h);
8779 clean2: /* lu, aer/h */
8780 	if (h->lockup_detected) {
8781 		free_percpu(h->lockup_detected);
8782 		h->lockup_detected = NULL;
8783 	}
8784 clean1:	/* wq/aer/h */
8785 	if (h->resubmit_wq) {
8786 		destroy_workqueue(h->resubmit_wq);
8787 		h->resubmit_wq = NULL;
8788 	}
8789 	if (h->rescan_ctlr_wq) {
8790 		destroy_workqueue(h->rescan_ctlr_wq);
8791 		h->rescan_ctlr_wq = NULL;
8792 	}
8793 	kfree(h);
8794 	return rc;
8795 }
8796 
8797 static void hpsa_flush_cache(struct ctlr_info *h)
8798 {
8799 	char *flush_buf;
8800 	struct CommandList *c;
8801 	int rc;
8802 
8803 	if (unlikely(lockup_detected(h)))
8804 		return;
8805 	flush_buf = kzalloc(4, GFP_KERNEL);
8806 	if (!flush_buf)
8807 		return;
8808 
8809 	c = cmd_alloc(h);
8810 
8811 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8812 		RAID_CTLR_LUNID, TYPE_CMD)) {
8813 		goto out;
8814 	}
8815 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8816 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8817 	if (rc)
8818 		goto out;
8819 	if (c->err_info->CommandStatus != 0)
8820 out:
8821 		dev_warn(&h->pdev->dev,
8822 			"error flushing cache on controller\n");
8823 	cmd_free(h, c);
8824 	kfree(flush_buf);
8825 }
8826 
8827 /* Make controller gather fresh report lun data each time we
8828  * send down a report luns request
8829  */
8830 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8831 {
8832 	u32 *options;
8833 	struct CommandList *c;
8834 	int rc;
8835 
8836 	/* Don't bother trying to set diag options if locked up */
8837 	if (unlikely(h->lockup_detected))
8838 		return;
8839 
8840 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8841 	if (!options) {
8842 		dev_err(&h->pdev->dev,
8843 			"Error: failed to disable rld caching, during alloc.\n");
8844 		return;
8845 	}
8846 
8847 	c = cmd_alloc(h);
8848 
8849 	/* first, get the current diag options settings */
8850 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8851 		RAID_CTLR_LUNID, TYPE_CMD))
8852 		goto errout;
8853 
8854 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8855 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8856 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8857 		goto errout;
8858 
8859 	/* Now, set the bit for disabling the RLD caching */
8860 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8861 
8862 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8863 		RAID_CTLR_LUNID, TYPE_CMD))
8864 		goto errout;
8865 
8866 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8867 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8868 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8869 		goto errout;
8870 
8871 	/* Now verify that it got set: */
8872 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8873 		RAID_CTLR_LUNID, TYPE_CMD))
8874 		goto errout;
8875 
8876 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8877 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8878 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8879 		goto errout;
8880 
8881 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8882 		goto out;
8883 
8884 errout:
8885 	dev_err(&h->pdev->dev,
8886 			"Error: failed to disable report lun data caching.\n");
8887 out:
8888 	cmd_free(h, c);
8889 	kfree(options);
8890 }
8891 
8892 static void hpsa_shutdown(struct pci_dev *pdev)
8893 {
8894 	struct ctlr_info *h;
8895 
8896 	h = pci_get_drvdata(pdev);
8897 	/* Turn board interrupts off  and send the flush cache command
8898 	 * sendcmd will turn off interrupt, and send the flush...
8899 	 * To write all data in the battery backed cache to disks
8900 	 */
8901 	hpsa_flush_cache(h);
8902 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8903 	hpsa_free_irqs(h);			/* init_one 4 */
8904 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8905 }
8906 
8907 static void hpsa_free_device_info(struct ctlr_info *h)
8908 {
8909 	int i;
8910 
8911 	for (i = 0; i < h->ndevices; i++) {
8912 		kfree(h->dev[i]);
8913 		h->dev[i] = NULL;
8914 	}
8915 }
8916 
8917 static void hpsa_remove_one(struct pci_dev *pdev)
8918 {
8919 	struct ctlr_info *h;
8920 	unsigned long flags;
8921 
8922 	if (pci_get_drvdata(pdev) == NULL) {
8923 		dev_err(&pdev->dev, "unable to remove device\n");
8924 		return;
8925 	}
8926 	h = pci_get_drvdata(pdev);
8927 
8928 	/* Get rid of any controller monitoring work items */
8929 	spin_lock_irqsave(&h->lock, flags);
8930 	h->remove_in_progress = 1;
8931 	spin_unlock_irqrestore(&h->lock, flags);
8932 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8933 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8934 	destroy_workqueue(h->rescan_ctlr_wq);
8935 	destroy_workqueue(h->resubmit_wq);
8936 
8937 	/*
8938 	 * Call before disabling interrupts.
8939 	 * scsi_remove_host can trigger I/O operations especially
8940 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8941 	 * operations which cannot complete and will hang the system.
8942 	 */
8943 	if (h->scsi_host)
8944 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8945 	/* includes hpsa_free_irqs - init_one 4 */
8946 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8947 	hpsa_shutdown(pdev);
8948 
8949 	hpsa_free_device_info(h);		/* scan */
8950 
8951 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8952 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8953 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8954 	hpsa_free_performant_mode(h);			/* init_one 7 */
8955 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8956 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8957 	kfree(h->lastlogicals);
8958 
8959 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8960 
8961 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8962 	h->scsi_host = NULL;				/* init_one 3 */
8963 
8964 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8965 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8966 
8967 	free_percpu(h->lockup_detected);		/* init_one 2 */
8968 	h->lockup_detected = NULL;			/* init_one 2 */
8969 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8970 
8971 	hpsa_delete_sas_host(h);
8972 
8973 	kfree(h);					/* init_one 1 */
8974 }
8975 
8976 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8977 	__attribute__((unused)) pm_message_t state)
8978 {
8979 	return -ENOSYS;
8980 }
8981 
8982 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8983 {
8984 	return -ENOSYS;
8985 }
8986 
8987 static struct pci_driver hpsa_pci_driver = {
8988 	.name = HPSA,
8989 	.probe = hpsa_init_one,
8990 	.remove = hpsa_remove_one,
8991 	.id_table = hpsa_pci_device_id,	/* id_table */
8992 	.shutdown = hpsa_shutdown,
8993 	.suspend = hpsa_suspend,
8994 	.resume = hpsa_resume,
8995 };
8996 
8997 /* Fill in bucket_map[], given nsgs (the max number of
8998  * scatter gather elements supported) and bucket[],
8999  * which is an array of 8 integers.  The bucket[] array
9000  * contains 8 different DMA transfer sizes (in 16
9001  * byte increments) which the controller uses to fetch
9002  * commands.  This function fills in bucket_map[], which
9003  * maps a given number of scatter gather elements to one of
9004  * the 8 DMA transfer sizes.  The point of it is to allow the
9005  * controller to only do as much DMA as needed to fetch the
9006  * command, with the DMA transfer size encoded in the lower
9007  * bits of the command address.
9008  */
9009 static void  calc_bucket_map(int bucket[], int num_buckets,
9010 	int nsgs, int min_blocks, u32 *bucket_map)
9011 {
9012 	int i, j, b, size;
9013 
9014 	/* Note, bucket_map must have nsgs+1 entries. */
9015 	for (i = 0; i <= nsgs; i++) {
9016 		/* Compute size of a command with i SG entries */
9017 		size = i + min_blocks;
9018 		b = num_buckets; /* Assume the biggest bucket */
9019 		/* Find the bucket that is just big enough */
9020 		for (j = 0; j < num_buckets; j++) {
9021 			if (bucket[j] >= size) {
9022 				b = j;
9023 				break;
9024 			}
9025 		}
9026 		/* for a command with i SG entries, use bucket b. */
9027 		bucket_map[i] = b;
9028 	}
9029 }
9030 
9031 /*
9032  * return -ENODEV on err, 0 on success (or no action)
9033  * allocates numerous items that must be freed later
9034  */
9035 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9036 {
9037 	int i;
9038 	unsigned long register_value;
9039 	unsigned long transMethod = CFGTBL_Trans_Performant |
9040 			(trans_support & CFGTBL_Trans_use_short_tags) |
9041 				CFGTBL_Trans_enable_directed_msix |
9042 			(trans_support & (CFGTBL_Trans_io_accel1 |
9043 				CFGTBL_Trans_io_accel2));
9044 	struct access_method access = SA5_performant_access;
9045 
9046 	/* This is a bit complicated.  There are 8 registers on
9047 	 * the controller which we write to to tell it 8 different
9048 	 * sizes of commands which there may be.  It's a way of
9049 	 * reducing the DMA done to fetch each command.  Encoded into
9050 	 * each command's tag are 3 bits which communicate to the controller
9051 	 * which of the eight sizes that command fits within.  The size of
9052 	 * each command depends on how many scatter gather entries there are.
9053 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9054 	 * with the number of 16-byte blocks a command of that size requires.
9055 	 * The smallest command possible requires 5 such 16 byte blocks.
9056 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9057 	 * blocks.  Note, this only extends to the SG entries contained
9058 	 * within the command block, and does not extend to chained blocks
9059 	 * of SG elements.   bft[] contains the eight values we write to
9060 	 * the registers.  They are not evenly distributed, but have more
9061 	 * sizes for small commands, and fewer sizes for larger commands.
9062 	 */
9063 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9064 #define MIN_IOACCEL2_BFT_ENTRY 5
9065 #define HPSA_IOACCEL2_HEADER_SZ 4
9066 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9067 			13, 14, 15, 16, 17, 18, 19,
9068 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9069 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9070 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9071 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9072 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9073 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9074 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9075 	/*  5 = 1 s/g entry or 4k
9076 	 *  6 = 2 s/g entry or 8k
9077 	 *  8 = 4 s/g entry or 16k
9078 	 * 10 = 6 s/g entry or 24k
9079 	 */
9080 
9081 	/* If the controller supports either ioaccel method then
9082 	 * we can also use the RAID stack submit path that does not
9083 	 * perform the superfluous readl() after each command submission.
9084 	 */
9085 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9086 		access = SA5_performant_access_no_read;
9087 
9088 	/* Controller spec: zero out this buffer. */
9089 	for (i = 0; i < h->nreply_queues; i++)
9090 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9091 
9092 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9093 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9094 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9095 	for (i = 0; i < 8; i++)
9096 		writel(bft[i], &h->transtable->BlockFetch[i]);
9097 
9098 	/* size of controller ring buffer */
9099 	writel(h->max_commands, &h->transtable->RepQSize);
9100 	writel(h->nreply_queues, &h->transtable->RepQCount);
9101 	writel(0, &h->transtable->RepQCtrAddrLow32);
9102 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9103 
9104 	for (i = 0; i < h->nreply_queues; i++) {
9105 		writel(0, &h->transtable->RepQAddr[i].upper);
9106 		writel(h->reply_queue[i].busaddr,
9107 			&h->transtable->RepQAddr[i].lower);
9108 	}
9109 
9110 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9111 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9112 	/*
9113 	 * enable outbound interrupt coalescing in accelerator mode;
9114 	 */
9115 	if (trans_support & CFGTBL_Trans_io_accel1) {
9116 		access = SA5_ioaccel_mode1_access;
9117 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9118 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9119 	} else {
9120 		if (trans_support & CFGTBL_Trans_io_accel2) {
9121 			access = SA5_ioaccel_mode2_access;
9122 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9123 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9124 		}
9125 	}
9126 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9127 	if (hpsa_wait_for_mode_change_ack(h)) {
9128 		dev_err(&h->pdev->dev,
9129 			"performant mode problem - doorbell timeout\n");
9130 		return -ENODEV;
9131 	}
9132 	register_value = readl(&(h->cfgtable->TransportActive));
9133 	if (!(register_value & CFGTBL_Trans_Performant)) {
9134 		dev_err(&h->pdev->dev,
9135 			"performant mode problem - transport not active\n");
9136 		return -ENODEV;
9137 	}
9138 	/* Change the access methods to the performant access methods */
9139 	h->access = access;
9140 	h->transMethod = transMethod;
9141 
9142 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9143 		(trans_support & CFGTBL_Trans_io_accel2)))
9144 		return 0;
9145 
9146 	if (trans_support & CFGTBL_Trans_io_accel1) {
9147 		/* Set up I/O accelerator mode */
9148 		for (i = 0; i < h->nreply_queues; i++) {
9149 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9150 			h->reply_queue[i].current_entry =
9151 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9152 		}
9153 		bft[7] = h->ioaccel_maxsg + 8;
9154 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9155 				h->ioaccel1_blockFetchTable);
9156 
9157 		/* initialize all reply queue entries to unused */
9158 		for (i = 0; i < h->nreply_queues; i++)
9159 			memset(h->reply_queue[i].head,
9160 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9161 				h->reply_queue_size);
9162 
9163 		/* set all the constant fields in the accelerator command
9164 		 * frames once at init time to save CPU cycles later.
9165 		 */
9166 		for (i = 0; i < h->nr_cmds; i++) {
9167 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9168 
9169 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9170 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9171 					(i * sizeof(struct ErrorInfo)));
9172 			cp->err_info_len = sizeof(struct ErrorInfo);
9173 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9174 			cp->host_context_flags =
9175 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9176 			cp->timeout_sec = 0;
9177 			cp->ReplyQueue = 0;
9178 			cp->tag =
9179 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9180 			cp->host_addr =
9181 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9182 					(i * sizeof(struct io_accel1_cmd)));
9183 		}
9184 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9185 		u64 cfg_offset, cfg_base_addr_index;
9186 		u32 bft2_offset, cfg_base_addr;
9187 		int rc;
9188 
9189 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9190 			&cfg_base_addr_index, &cfg_offset);
9191 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9192 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9193 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9194 				4, h->ioaccel2_blockFetchTable);
9195 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9196 		BUILD_BUG_ON(offsetof(struct CfgTable,
9197 				io_accel_request_size_offset) != 0xb8);
9198 		h->ioaccel2_bft2_regs =
9199 			remap_pci_mem(pci_resource_start(h->pdev,
9200 					cfg_base_addr_index) +
9201 					cfg_offset + bft2_offset,
9202 					ARRAY_SIZE(bft2) *
9203 					sizeof(*h->ioaccel2_bft2_regs));
9204 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9205 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9206 	}
9207 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9208 	if (hpsa_wait_for_mode_change_ack(h)) {
9209 		dev_err(&h->pdev->dev,
9210 			"performant mode problem - enabling ioaccel mode\n");
9211 		return -ENODEV;
9212 	}
9213 	return 0;
9214 }
9215 
9216 /* Free ioaccel1 mode command blocks and block fetch table */
9217 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9218 {
9219 	if (h->ioaccel_cmd_pool) {
9220 		pci_free_consistent(h->pdev,
9221 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9222 			h->ioaccel_cmd_pool,
9223 			h->ioaccel_cmd_pool_dhandle);
9224 		h->ioaccel_cmd_pool = NULL;
9225 		h->ioaccel_cmd_pool_dhandle = 0;
9226 	}
9227 	kfree(h->ioaccel1_blockFetchTable);
9228 	h->ioaccel1_blockFetchTable = NULL;
9229 }
9230 
9231 /* Allocate ioaccel1 mode command blocks and block fetch table */
9232 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9233 {
9234 	h->ioaccel_maxsg =
9235 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9236 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9237 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9238 
9239 	/* Command structures must be aligned on a 128-byte boundary
9240 	 * because the 7 lower bits of the address are used by the
9241 	 * hardware.
9242 	 */
9243 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9244 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9245 	h->ioaccel_cmd_pool =
9246 		pci_alloc_consistent(h->pdev,
9247 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9248 			&(h->ioaccel_cmd_pool_dhandle));
9249 
9250 	h->ioaccel1_blockFetchTable =
9251 		kmalloc(((h->ioaccel_maxsg + 1) *
9252 				sizeof(u32)), GFP_KERNEL);
9253 
9254 	if ((h->ioaccel_cmd_pool == NULL) ||
9255 		(h->ioaccel1_blockFetchTable == NULL))
9256 		goto clean_up;
9257 
9258 	memset(h->ioaccel_cmd_pool, 0,
9259 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9260 	return 0;
9261 
9262 clean_up:
9263 	hpsa_free_ioaccel1_cmd_and_bft(h);
9264 	return -ENOMEM;
9265 }
9266 
9267 /* Free ioaccel2 mode command blocks and block fetch table */
9268 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9269 {
9270 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9271 
9272 	if (h->ioaccel2_cmd_pool) {
9273 		pci_free_consistent(h->pdev,
9274 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9275 			h->ioaccel2_cmd_pool,
9276 			h->ioaccel2_cmd_pool_dhandle);
9277 		h->ioaccel2_cmd_pool = NULL;
9278 		h->ioaccel2_cmd_pool_dhandle = 0;
9279 	}
9280 	kfree(h->ioaccel2_blockFetchTable);
9281 	h->ioaccel2_blockFetchTable = NULL;
9282 }
9283 
9284 /* Allocate ioaccel2 mode command blocks and block fetch table */
9285 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9286 {
9287 	int rc;
9288 
9289 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9290 
9291 	h->ioaccel_maxsg =
9292 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9293 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9294 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9295 
9296 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9297 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9298 	h->ioaccel2_cmd_pool =
9299 		pci_alloc_consistent(h->pdev,
9300 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9301 			&(h->ioaccel2_cmd_pool_dhandle));
9302 
9303 	h->ioaccel2_blockFetchTable =
9304 		kmalloc(((h->ioaccel_maxsg + 1) *
9305 				sizeof(u32)), GFP_KERNEL);
9306 
9307 	if ((h->ioaccel2_cmd_pool == NULL) ||
9308 		(h->ioaccel2_blockFetchTable == NULL)) {
9309 		rc = -ENOMEM;
9310 		goto clean_up;
9311 	}
9312 
9313 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9314 	if (rc)
9315 		goto clean_up;
9316 
9317 	memset(h->ioaccel2_cmd_pool, 0,
9318 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9319 	return 0;
9320 
9321 clean_up:
9322 	hpsa_free_ioaccel2_cmd_and_bft(h);
9323 	return rc;
9324 }
9325 
9326 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9327 static void hpsa_free_performant_mode(struct ctlr_info *h)
9328 {
9329 	kfree(h->blockFetchTable);
9330 	h->blockFetchTable = NULL;
9331 	hpsa_free_reply_queues(h);
9332 	hpsa_free_ioaccel1_cmd_and_bft(h);
9333 	hpsa_free_ioaccel2_cmd_and_bft(h);
9334 }
9335 
9336 /* return -ENODEV on error, 0 on success (or no action)
9337  * allocates numerous items that must be freed later
9338  */
9339 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9340 {
9341 	u32 trans_support;
9342 	unsigned long transMethod = CFGTBL_Trans_Performant |
9343 					CFGTBL_Trans_use_short_tags;
9344 	int i, rc;
9345 
9346 	if (hpsa_simple_mode)
9347 		return 0;
9348 
9349 	trans_support = readl(&(h->cfgtable->TransportSupport));
9350 	if (!(trans_support & PERFORMANT_MODE))
9351 		return 0;
9352 
9353 	/* Check for I/O accelerator mode support */
9354 	if (trans_support & CFGTBL_Trans_io_accel1) {
9355 		transMethod |= CFGTBL_Trans_io_accel1 |
9356 				CFGTBL_Trans_enable_directed_msix;
9357 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9358 		if (rc)
9359 			return rc;
9360 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9361 		transMethod |= CFGTBL_Trans_io_accel2 |
9362 				CFGTBL_Trans_enable_directed_msix;
9363 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9364 		if (rc)
9365 			return rc;
9366 	}
9367 
9368 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9369 	hpsa_get_max_perf_mode_cmds(h);
9370 	/* Performant mode ring buffer and supporting data structures */
9371 	h->reply_queue_size = h->max_commands * sizeof(u64);
9372 
9373 	for (i = 0; i < h->nreply_queues; i++) {
9374 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9375 						h->reply_queue_size,
9376 						&(h->reply_queue[i].busaddr));
9377 		if (!h->reply_queue[i].head) {
9378 			rc = -ENOMEM;
9379 			goto clean1;	/* rq, ioaccel */
9380 		}
9381 		h->reply_queue[i].size = h->max_commands;
9382 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9383 		h->reply_queue[i].current_entry = 0;
9384 	}
9385 
9386 	/* Need a block fetch table for performant mode */
9387 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9388 				sizeof(u32)), GFP_KERNEL);
9389 	if (!h->blockFetchTable) {
9390 		rc = -ENOMEM;
9391 		goto clean1;	/* rq, ioaccel */
9392 	}
9393 
9394 	rc = hpsa_enter_performant_mode(h, trans_support);
9395 	if (rc)
9396 		goto clean2;	/* bft, rq, ioaccel */
9397 	return 0;
9398 
9399 clean2:	/* bft, rq, ioaccel */
9400 	kfree(h->blockFetchTable);
9401 	h->blockFetchTable = NULL;
9402 clean1:	/* rq, ioaccel */
9403 	hpsa_free_reply_queues(h);
9404 	hpsa_free_ioaccel1_cmd_and_bft(h);
9405 	hpsa_free_ioaccel2_cmd_and_bft(h);
9406 	return rc;
9407 }
9408 
9409 static int is_accelerated_cmd(struct CommandList *c)
9410 {
9411 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9412 }
9413 
9414 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9415 {
9416 	struct CommandList *c = NULL;
9417 	int i, accel_cmds_out;
9418 	int refcount;
9419 
9420 	do { /* wait for all outstanding ioaccel commands to drain out */
9421 		accel_cmds_out = 0;
9422 		for (i = 0; i < h->nr_cmds; i++) {
9423 			c = h->cmd_pool + i;
9424 			refcount = atomic_inc_return(&c->refcount);
9425 			if (refcount > 1) /* Command is allocated */
9426 				accel_cmds_out += is_accelerated_cmd(c);
9427 			cmd_free(h, c);
9428 		}
9429 		if (accel_cmds_out <= 0)
9430 			break;
9431 		msleep(100);
9432 	} while (1);
9433 }
9434 
9435 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9436 				struct hpsa_sas_port *hpsa_sas_port)
9437 {
9438 	struct hpsa_sas_phy *hpsa_sas_phy;
9439 	struct sas_phy *phy;
9440 
9441 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9442 	if (!hpsa_sas_phy)
9443 		return NULL;
9444 
9445 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9446 		hpsa_sas_port->next_phy_index);
9447 	if (!phy) {
9448 		kfree(hpsa_sas_phy);
9449 		return NULL;
9450 	}
9451 
9452 	hpsa_sas_port->next_phy_index++;
9453 	hpsa_sas_phy->phy = phy;
9454 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9455 
9456 	return hpsa_sas_phy;
9457 }
9458 
9459 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9460 {
9461 	struct sas_phy *phy = hpsa_sas_phy->phy;
9462 
9463 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9464 	sas_phy_free(phy);
9465 	if (hpsa_sas_phy->added_to_port)
9466 		list_del(&hpsa_sas_phy->phy_list_entry);
9467 	kfree(hpsa_sas_phy);
9468 }
9469 
9470 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9471 {
9472 	int rc;
9473 	struct hpsa_sas_port *hpsa_sas_port;
9474 	struct sas_phy *phy;
9475 	struct sas_identify *identify;
9476 
9477 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9478 	phy = hpsa_sas_phy->phy;
9479 
9480 	identify = &phy->identify;
9481 	memset(identify, 0, sizeof(*identify));
9482 	identify->sas_address = hpsa_sas_port->sas_address;
9483 	identify->device_type = SAS_END_DEVICE;
9484 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9485 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9486 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9487 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9488 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9489 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9490 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9491 
9492 	rc = sas_phy_add(hpsa_sas_phy->phy);
9493 	if (rc)
9494 		return rc;
9495 
9496 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9497 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9498 			&hpsa_sas_port->phy_list_head);
9499 	hpsa_sas_phy->added_to_port = true;
9500 
9501 	return 0;
9502 }
9503 
9504 static int
9505 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9506 				struct sas_rphy *rphy)
9507 {
9508 	struct sas_identify *identify;
9509 
9510 	identify = &rphy->identify;
9511 	identify->sas_address = hpsa_sas_port->sas_address;
9512 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9513 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9514 
9515 	return sas_rphy_add(rphy);
9516 }
9517 
9518 static struct hpsa_sas_port
9519 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9520 				u64 sas_address)
9521 {
9522 	int rc;
9523 	struct hpsa_sas_port *hpsa_sas_port;
9524 	struct sas_port *port;
9525 
9526 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9527 	if (!hpsa_sas_port)
9528 		return NULL;
9529 
9530 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9531 	hpsa_sas_port->parent_node = hpsa_sas_node;
9532 
9533 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9534 	if (!port)
9535 		goto free_hpsa_port;
9536 
9537 	rc = sas_port_add(port);
9538 	if (rc)
9539 		goto free_sas_port;
9540 
9541 	hpsa_sas_port->port = port;
9542 	hpsa_sas_port->sas_address = sas_address;
9543 	list_add_tail(&hpsa_sas_port->port_list_entry,
9544 			&hpsa_sas_node->port_list_head);
9545 
9546 	return hpsa_sas_port;
9547 
9548 free_sas_port:
9549 	sas_port_free(port);
9550 free_hpsa_port:
9551 	kfree(hpsa_sas_port);
9552 
9553 	return NULL;
9554 }
9555 
9556 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9557 {
9558 	struct hpsa_sas_phy *hpsa_sas_phy;
9559 	struct hpsa_sas_phy *next;
9560 
9561 	list_for_each_entry_safe(hpsa_sas_phy, next,
9562 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9563 		hpsa_free_sas_phy(hpsa_sas_phy);
9564 
9565 	sas_port_delete(hpsa_sas_port->port);
9566 	list_del(&hpsa_sas_port->port_list_entry);
9567 	kfree(hpsa_sas_port);
9568 }
9569 
9570 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9571 {
9572 	struct hpsa_sas_node *hpsa_sas_node;
9573 
9574 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9575 	if (hpsa_sas_node) {
9576 		hpsa_sas_node->parent_dev = parent_dev;
9577 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9578 	}
9579 
9580 	return hpsa_sas_node;
9581 }
9582 
9583 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9584 {
9585 	struct hpsa_sas_port *hpsa_sas_port;
9586 	struct hpsa_sas_port *next;
9587 
9588 	if (!hpsa_sas_node)
9589 		return;
9590 
9591 	list_for_each_entry_safe(hpsa_sas_port, next,
9592 			&hpsa_sas_node->port_list_head, port_list_entry)
9593 		hpsa_free_sas_port(hpsa_sas_port);
9594 
9595 	kfree(hpsa_sas_node);
9596 }
9597 
9598 static struct hpsa_scsi_dev_t
9599 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9600 					struct sas_rphy *rphy)
9601 {
9602 	int i;
9603 	struct hpsa_scsi_dev_t *device;
9604 
9605 	for (i = 0; i < h->ndevices; i++) {
9606 		device = h->dev[i];
9607 		if (!device->sas_port)
9608 			continue;
9609 		if (device->sas_port->rphy == rphy)
9610 			return device;
9611 	}
9612 
9613 	return NULL;
9614 }
9615 
9616 static int hpsa_add_sas_host(struct ctlr_info *h)
9617 {
9618 	int rc;
9619 	struct device *parent_dev;
9620 	struct hpsa_sas_node *hpsa_sas_node;
9621 	struct hpsa_sas_port *hpsa_sas_port;
9622 	struct hpsa_sas_phy *hpsa_sas_phy;
9623 
9624 	parent_dev = &h->scsi_host->shost_gendev;
9625 
9626 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9627 	if (!hpsa_sas_node)
9628 		return -ENOMEM;
9629 
9630 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9631 	if (!hpsa_sas_port) {
9632 		rc = -ENODEV;
9633 		goto free_sas_node;
9634 	}
9635 
9636 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9637 	if (!hpsa_sas_phy) {
9638 		rc = -ENODEV;
9639 		goto free_sas_port;
9640 	}
9641 
9642 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9643 	if (rc)
9644 		goto free_sas_phy;
9645 
9646 	h->sas_host = hpsa_sas_node;
9647 
9648 	return 0;
9649 
9650 free_sas_phy:
9651 	hpsa_free_sas_phy(hpsa_sas_phy);
9652 free_sas_port:
9653 	hpsa_free_sas_port(hpsa_sas_port);
9654 free_sas_node:
9655 	hpsa_free_sas_node(hpsa_sas_node);
9656 
9657 	return rc;
9658 }
9659 
9660 static void hpsa_delete_sas_host(struct ctlr_info *h)
9661 {
9662 	hpsa_free_sas_node(h->sas_host);
9663 }
9664 
9665 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9666 				struct hpsa_scsi_dev_t *device)
9667 {
9668 	int rc;
9669 	struct hpsa_sas_port *hpsa_sas_port;
9670 	struct sas_rphy *rphy;
9671 
9672 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9673 	if (!hpsa_sas_port)
9674 		return -ENOMEM;
9675 
9676 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9677 	if (!rphy) {
9678 		rc = -ENODEV;
9679 		goto free_sas_port;
9680 	}
9681 
9682 	hpsa_sas_port->rphy = rphy;
9683 	device->sas_port = hpsa_sas_port;
9684 
9685 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9686 	if (rc)
9687 		goto free_sas_port;
9688 
9689 	return 0;
9690 
9691 free_sas_port:
9692 	hpsa_free_sas_port(hpsa_sas_port);
9693 	device->sas_port = NULL;
9694 
9695 	return rc;
9696 }
9697 
9698 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9699 {
9700 	if (device->sas_port) {
9701 		hpsa_free_sas_port(device->sas_port);
9702 		device->sas_port = NULL;
9703 	}
9704 }
9705 
9706 static int
9707 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9708 {
9709 	return 0;
9710 }
9711 
9712 static int
9713 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9714 {
9715 	*identifier = 0;
9716 	return 0;
9717 }
9718 
9719 static int
9720 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9721 {
9722 	return -ENXIO;
9723 }
9724 
9725 static int
9726 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9727 {
9728 	return 0;
9729 }
9730 
9731 static int
9732 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9733 {
9734 	return 0;
9735 }
9736 
9737 static int
9738 hpsa_sas_phy_setup(struct sas_phy *phy)
9739 {
9740 	return 0;
9741 }
9742 
9743 static void
9744 hpsa_sas_phy_release(struct sas_phy *phy)
9745 {
9746 }
9747 
9748 static int
9749 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9750 {
9751 	return -EINVAL;
9752 }
9753 
9754 /* SMP = Serial Management Protocol */
9755 static int
9756 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9757 struct request *req)
9758 {
9759 	return -EINVAL;
9760 }
9761 
9762 static struct sas_function_template hpsa_sas_transport_functions = {
9763 	.get_linkerrors = hpsa_sas_get_linkerrors,
9764 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9765 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9766 	.phy_reset = hpsa_sas_phy_reset,
9767 	.phy_enable = hpsa_sas_phy_enable,
9768 	.phy_setup = hpsa_sas_phy_setup,
9769 	.phy_release = hpsa_sas_phy_release,
9770 	.set_phy_speed = hpsa_sas_phy_speed,
9771 	.smp_handler = hpsa_sas_smp_handler,
9772 };
9773 
9774 /*
9775  *  This is it.  Register the PCI driver information for the cards we control
9776  *  the OS will call our registered routines when it finds one of our cards.
9777  */
9778 static int __init hpsa_init(void)
9779 {
9780 	int rc;
9781 
9782 	hpsa_sas_transport_template =
9783 		sas_attach_transport(&hpsa_sas_transport_functions);
9784 	if (!hpsa_sas_transport_template)
9785 		return -ENODEV;
9786 
9787 	rc = pci_register_driver(&hpsa_pci_driver);
9788 
9789 	if (rc)
9790 		sas_release_transport(hpsa_sas_transport_template);
9791 
9792 	return rc;
9793 }
9794 
9795 static void __exit hpsa_cleanup(void)
9796 {
9797 	pci_unregister_driver(&hpsa_pci_driver);
9798 	sas_release_transport(hpsa_sas_transport_template);
9799 }
9800 
9801 static void __attribute__((unused)) verify_offsets(void)
9802 {
9803 #define VERIFY_OFFSET(member, offset) \
9804 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9805 
9806 	VERIFY_OFFSET(structure_size, 0);
9807 	VERIFY_OFFSET(volume_blk_size, 4);
9808 	VERIFY_OFFSET(volume_blk_cnt, 8);
9809 	VERIFY_OFFSET(phys_blk_shift, 16);
9810 	VERIFY_OFFSET(parity_rotation_shift, 17);
9811 	VERIFY_OFFSET(strip_size, 18);
9812 	VERIFY_OFFSET(disk_starting_blk, 20);
9813 	VERIFY_OFFSET(disk_blk_cnt, 28);
9814 	VERIFY_OFFSET(data_disks_per_row, 36);
9815 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9816 	VERIFY_OFFSET(row_cnt, 40);
9817 	VERIFY_OFFSET(layout_map_count, 42);
9818 	VERIFY_OFFSET(flags, 44);
9819 	VERIFY_OFFSET(dekindex, 46);
9820 	/* VERIFY_OFFSET(reserved, 48 */
9821 	VERIFY_OFFSET(data, 64);
9822 
9823 #undef VERIFY_OFFSET
9824 
9825 #define VERIFY_OFFSET(member, offset) \
9826 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9827 
9828 	VERIFY_OFFSET(IU_type, 0);
9829 	VERIFY_OFFSET(direction, 1);
9830 	VERIFY_OFFSET(reply_queue, 2);
9831 	/* VERIFY_OFFSET(reserved1, 3);  */
9832 	VERIFY_OFFSET(scsi_nexus, 4);
9833 	VERIFY_OFFSET(Tag, 8);
9834 	VERIFY_OFFSET(cdb, 16);
9835 	VERIFY_OFFSET(cciss_lun, 32);
9836 	VERIFY_OFFSET(data_len, 40);
9837 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9838 	VERIFY_OFFSET(sg_count, 45);
9839 	/* VERIFY_OFFSET(reserved3 */
9840 	VERIFY_OFFSET(err_ptr, 48);
9841 	VERIFY_OFFSET(err_len, 56);
9842 	/* VERIFY_OFFSET(reserved4  */
9843 	VERIFY_OFFSET(sg, 64);
9844 
9845 #undef VERIFY_OFFSET
9846 
9847 #define VERIFY_OFFSET(member, offset) \
9848 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9849 
9850 	VERIFY_OFFSET(dev_handle, 0x00);
9851 	VERIFY_OFFSET(reserved1, 0x02);
9852 	VERIFY_OFFSET(function, 0x03);
9853 	VERIFY_OFFSET(reserved2, 0x04);
9854 	VERIFY_OFFSET(err_info, 0x0C);
9855 	VERIFY_OFFSET(reserved3, 0x10);
9856 	VERIFY_OFFSET(err_info_len, 0x12);
9857 	VERIFY_OFFSET(reserved4, 0x13);
9858 	VERIFY_OFFSET(sgl_offset, 0x14);
9859 	VERIFY_OFFSET(reserved5, 0x15);
9860 	VERIFY_OFFSET(transfer_len, 0x1C);
9861 	VERIFY_OFFSET(reserved6, 0x20);
9862 	VERIFY_OFFSET(io_flags, 0x24);
9863 	VERIFY_OFFSET(reserved7, 0x26);
9864 	VERIFY_OFFSET(LUN, 0x34);
9865 	VERIFY_OFFSET(control, 0x3C);
9866 	VERIFY_OFFSET(CDB, 0x40);
9867 	VERIFY_OFFSET(reserved8, 0x50);
9868 	VERIFY_OFFSET(host_context_flags, 0x60);
9869 	VERIFY_OFFSET(timeout_sec, 0x62);
9870 	VERIFY_OFFSET(ReplyQueue, 0x64);
9871 	VERIFY_OFFSET(reserved9, 0x65);
9872 	VERIFY_OFFSET(tag, 0x68);
9873 	VERIFY_OFFSET(host_addr, 0x70);
9874 	VERIFY_OFFSET(CISS_LUN, 0x78);
9875 	VERIFY_OFFSET(SG, 0x78 + 8);
9876 #undef VERIFY_OFFSET
9877 }
9878 
9879 module_init(hpsa_init);
9880 module_exit(hpsa_cleanup);
9881