xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 239480ab)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.18-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
137 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
143 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
147 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
148 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
149 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x3241103C, "Smart Array P212", &SA5_access},
162 	{0x3243103C, "Smart Array P410", &SA5_access},
163 	{0x3245103C, "Smart Array P410i", &SA5_access},
164 	{0x3247103C, "Smart Array P411", &SA5_access},
165 	{0x3249103C, "Smart Array P812", &SA5_access},
166 	{0x324A103C, "Smart Array P712m", &SA5_access},
167 	{0x324B103C, "Smart Array P711m", &SA5_access},
168 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
169 	{0x3350103C, "Smart Array P222", &SA5_access},
170 	{0x3351103C, "Smart Array P420", &SA5_access},
171 	{0x3352103C, "Smart Array P421", &SA5_access},
172 	{0x3353103C, "Smart Array P822", &SA5_access},
173 	{0x3354103C, "Smart Array P420i", &SA5_access},
174 	{0x3355103C, "Smart Array P220i", &SA5_access},
175 	{0x3356103C, "Smart Array P721m", &SA5_access},
176 	{0x1920103C, "Smart Array P430i", &SA5_access},
177 	{0x1921103C, "Smart Array P830i", &SA5_access},
178 	{0x1922103C, "Smart Array P430", &SA5_access},
179 	{0x1923103C, "Smart Array P431", &SA5_access},
180 	{0x1924103C, "Smart Array P830", &SA5_access},
181 	{0x1925103C, "Smart Array P831", &SA5_access},
182 	{0x1926103C, "Smart Array P731m", &SA5_access},
183 	{0x1928103C, "Smart Array P230i", &SA5_access},
184 	{0x1929103C, "Smart Array P530", &SA5_access},
185 	{0x21BD103C, "Smart Array P244br", &SA5_access},
186 	{0x21BE103C, "Smart Array P741m", &SA5_access},
187 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
188 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
189 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
190 	{0x21C2103C, "Smart Array P440", &SA5_access},
191 	{0x21C3103C, "Smart Array P441", &SA5_access},
192 	{0x21C4103C, "Smart Array", &SA5_access},
193 	{0x21C5103C, "Smart Array P841", &SA5_access},
194 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
195 	{0x21C7103C, "Smart HBA H240", &SA5_access},
196 	{0x21C8103C, "Smart HBA H241", &SA5_access},
197 	{0x21C9103C, "Smart Array", &SA5_access},
198 	{0x21CA103C, "Smart Array P246br", &SA5_access},
199 	{0x21CB103C, "Smart Array P840", &SA5_access},
200 	{0x21CC103C, "Smart Array", &SA5_access},
201 	{0x21CD103C, "Smart Array", &SA5_access},
202 	{0x21CE103C, "Smart HBA", &SA5_access},
203 	{0x05809005, "SmartHBA-SA", &SA5_access},
204 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
205 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
206 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
207 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
208 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
209 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
210 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
211 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
212 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
213 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
214 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
215 };
216 
217 static struct scsi_transport_template *hpsa_sas_transport_template;
218 static int hpsa_add_sas_host(struct ctlr_info *h);
219 static void hpsa_delete_sas_host(struct ctlr_info *h);
220 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
221 			struct hpsa_scsi_dev_t *device);
222 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
223 static struct hpsa_scsi_dev_t
224 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
225 		struct sas_rphy *rphy);
226 
227 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
228 static const struct scsi_cmnd hpsa_cmd_busy;
229 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
230 static const struct scsi_cmnd hpsa_cmd_idle;
231 static int number_of_controllers;
232 
233 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
234 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
235 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
236 
237 #ifdef CONFIG_COMPAT
238 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
239 	void __user *arg);
240 #endif
241 
242 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
243 static struct CommandList *cmd_alloc(struct ctlr_info *h);
244 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
245 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
246 					    struct scsi_cmnd *scmd);
247 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
248 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
249 	int cmd_type);
250 static void hpsa_free_cmd_pool(struct ctlr_info *h);
251 #define VPD_PAGE (1 << 8)
252 #define HPSA_SIMPLE_ERROR_BITS 0x03
253 
254 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
255 static void hpsa_scan_start(struct Scsi_Host *);
256 static int hpsa_scan_finished(struct Scsi_Host *sh,
257 	unsigned long elapsed_time);
258 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
259 
260 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
261 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
262 static int hpsa_slave_alloc(struct scsi_device *sdev);
263 static int hpsa_slave_configure(struct scsi_device *sdev);
264 static void hpsa_slave_destroy(struct scsi_device *sdev);
265 
266 static void hpsa_update_scsi_devices(struct ctlr_info *h);
267 static int check_for_unit_attention(struct ctlr_info *h,
268 	struct CommandList *c);
269 static void check_ioctl_unit_attention(struct ctlr_info *h,
270 	struct CommandList *c);
271 /* performant mode helper functions */
272 static void calc_bucket_map(int *bucket, int num_buckets,
273 	int nsgs, int min_blocks, u32 *bucket_map);
274 static void hpsa_free_performant_mode(struct ctlr_info *h);
275 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
276 static inline u32 next_command(struct ctlr_info *h, u8 q);
277 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
278 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
279 			       u64 *cfg_offset);
280 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
281 				    unsigned long *memory_bar);
282 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
283 static int wait_for_device_to_become_ready(struct ctlr_info *h,
284 					   unsigned char lunaddr[],
285 					   int reply_queue);
286 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
287 				     int wait_for_ready);
288 static inline void finish_cmd(struct CommandList *c);
289 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
290 #define BOARD_NOT_READY 0
291 #define BOARD_READY 1
292 static void hpsa_drain_accel_commands(struct ctlr_info *h);
293 static void hpsa_flush_cache(struct ctlr_info *h);
294 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
295 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
296 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
297 static void hpsa_command_resubmit_worker(struct work_struct *work);
298 static u32 lockup_detected(struct ctlr_info *h);
299 static int detect_controller_lockup(struct ctlr_info *h);
300 static void hpsa_disable_rld_caching(struct ctlr_info *h);
301 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
302 	struct ReportExtendedLUNdata *buf, int bufsize);
303 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
304 	unsigned char scsi3addr[], u8 page);
305 static int hpsa_luns_changed(struct ctlr_info *h);
306 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
307 			       struct hpsa_scsi_dev_t *dev,
308 			       unsigned char *scsi3addr);
309 
310 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
311 {
312 	unsigned long *priv = shost_priv(sdev->host);
313 	return (struct ctlr_info *) *priv;
314 }
315 
316 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
317 {
318 	unsigned long *priv = shost_priv(sh);
319 	return (struct ctlr_info *) *priv;
320 }
321 
322 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
323 {
324 	return c->scsi_cmd == SCSI_CMD_IDLE;
325 }
326 
327 static inline bool hpsa_is_pending_event(struct CommandList *c)
328 {
329 	return c->abort_pending || c->reset_pending;
330 }
331 
332 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
333 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
334 			u8 *sense_key, u8 *asc, u8 *ascq)
335 {
336 	struct scsi_sense_hdr sshdr;
337 	bool rc;
338 
339 	*sense_key = -1;
340 	*asc = -1;
341 	*ascq = -1;
342 
343 	if (sense_data_len < 1)
344 		return;
345 
346 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
347 	if (rc) {
348 		*sense_key = sshdr.sense_key;
349 		*asc = sshdr.asc;
350 		*ascq = sshdr.ascq;
351 	}
352 }
353 
354 static int check_for_unit_attention(struct ctlr_info *h,
355 	struct CommandList *c)
356 {
357 	u8 sense_key, asc, ascq;
358 	int sense_len;
359 
360 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
361 		sense_len = sizeof(c->err_info->SenseInfo);
362 	else
363 		sense_len = c->err_info->SenseLen;
364 
365 	decode_sense_data(c->err_info->SenseInfo, sense_len,
366 				&sense_key, &asc, &ascq);
367 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
368 		return 0;
369 
370 	switch (asc) {
371 	case STATE_CHANGED:
372 		dev_warn(&h->pdev->dev,
373 			"%s: a state change detected, command retried\n",
374 			h->devname);
375 		break;
376 	case LUN_FAILED:
377 		dev_warn(&h->pdev->dev,
378 			"%s: LUN failure detected\n", h->devname);
379 		break;
380 	case REPORT_LUNS_CHANGED:
381 		dev_warn(&h->pdev->dev,
382 			"%s: report LUN data changed\n", h->devname);
383 	/*
384 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
385 	 * target (array) devices.
386 	 */
387 		break;
388 	case POWER_OR_RESET:
389 		dev_warn(&h->pdev->dev,
390 			"%s: a power on or device reset detected\n",
391 			h->devname);
392 		break;
393 	case UNIT_ATTENTION_CLEARED:
394 		dev_warn(&h->pdev->dev,
395 			"%s: unit attention cleared by another initiator\n",
396 			h->devname);
397 		break;
398 	default:
399 		dev_warn(&h->pdev->dev,
400 			"%s: unknown unit attention detected\n",
401 			h->devname);
402 		break;
403 	}
404 	return 1;
405 }
406 
407 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
408 {
409 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
410 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
411 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
412 		return 0;
413 	dev_warn(&h->pdev->dev, HPSA "device busy");
414 	return 1;
415 }
416 
417 static u32 lockup_detected(struct ctlr_info *h);
418 static ssize_t host_show_lockup_detected(struct device *dev,
419 		struct device_attribute *attr, char *buf)
420 {
421 	int ld;
422 	struct ctlr_info *h;
423 	struct Scsi_Host *shost = class_to_shost(dev);
424 
425 	h = shost_to_hba(shost);
426 	ld = lockup_detected(h);
427 
428 	return sprintf(buf, "ld=%d\n", ld);
429 }
430 
431 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
432 					 struct device_attribute *attr,
433 					 const char *buf, size_t count)
434 {
435 	int status, len;
436 	struct ctlr_info *h;
437 	struct Scsi_Host *shost = class_to_shost(dev);
438 	char tmpbuf[10];
439 
440 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
441 		return -EACCES;
442 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
443 	strncpy(tmpbuf, buf, len);
444 	tmpbuf[len] = '\0';
445 	if (sscanf(tmpbuf, "%d", &status) != 1)
446 		return -EINVAL;
447 	h = shost_to_hba(shost);
448 	h->acciopath_status = !!status;
449 	dev_warn(&h->pdev->dev,
450 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
451 		h->acciopath_status ? "enabled" : "disabled");
452 	return count;
453 }
454 
455 static ssize_t host_store_raid_offload_debug(struct device *dev,
456 					 struct device_attribute *attr,
457 					 const char *buf, size_t count)
458 {
459 	int debug_level, len;
460 	struct ctlr_info *h;
461 	struct Scsi_Host *shost = class_to_shost(dev);
462 	char tmpbuf[10];
463 
464 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
465 		return -EACCES;
466 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
467 	strncpy(tmpbuf, buf, len);
468 	tmpbuf[len] = '\0';
469 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
470 		return -EINVAL;
471 	if (debug_level < 0)
472 		debug_level = 0;
473 	h = shost_to_hba(shost);
474 	h->raid_offload_debug = debug_level;
475 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
476 		h->raid_offload_debug);
477 	return count;
478 }
479 
480 static ssize_t host_store_rescan(struct device *dev,
481 				 struct device_attribute *attr,
482 				 const char *buf, size_t count)
483 {
484 	struct ctlr_info *h;
485 	struct Scsi_Host *shost = class_to_shost(dev);
486 	h = shost_to_hba(shost);
487 	hpsa_scan_start(h->scsi_host);
488 	return count;
489 }
490 
491 static ssize_t host_show_firmware_revision(struct device *dev,
492 	     struct device_attribute *attr, char *buf)
493 {
494 	struct ctlr_info *h;
495 	struct Scsi_Host *shost = class_to_shost(dev);
496 	unsigned char *fwrev;
497 
498 	h = shost_to_hba(shost);
499 	if (!h->hba_inquiry_data)
500 		return 0;
501 	fwrev = &h->hba_inquiry_data[32];
502 	return snprintf(buf, 20, "%c%c%c%c\n",
503 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
504 }
505 
506 static ssize_t host_show_commands_outstanding(struct device *dev,
507 	     struct device_attribute *attr, char *buf)
508 {
509 	struct Scsi_Host *shost = class_to_shost(dev);
510 	struct ctlr_info *h = shost_to_hba(shost);
511 
512 	return snprintf(buf, 20, "%d\n",
513 			atomic_read(&h->commands_outstanding));
514 }
515 
516 static ssize_t host_show_transport_mode(struct device *dev,
517 	struct device_attribute *attr, char *buf)
518 {
519 	struct ctlr_info *h;
520 	struct Scsi_Host *shost = class_to_shost(dev);
521 
522 	h = shost_to_hba(shost);
523 	return snprintf(buf, 20, "%s\n",
524 		h->transMethod & CFGTBL_Trans_Performant ?
525 			"performant" : "simple");
526 }
527 
528 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
529 	struct device_attribute *attr, char *buf)
530 {
531 	struct ctlr_info *h;
532 	struct Scsi_Host *shost = class_to_shost(dev);
533 
534 	h = shost_to_hba(shost);
535 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
536 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
537 }
538 
539 /* List of controllers which cannot be hard reset on kexec with reset_devices */
540 static u32 unresettable_controller[] = {
541 	0x324a103C, /* Smart Array P712m */
542 	0x324b103C, /* Smart Array P711m */
543 	0x3223103C, /* Smart Array P800 */
544 	0x3234103C, /* Smart Array P400 */
545 	0x3235103C, /* Smart Array P400i */
546 	0x3211103C, /* Smart Array E200i */
547 	0x3212103C, /* Smart Array E200 */
548 	0x3213103C, /* Smart Array E200i */
549 	0x3214103C, /* Smart Array E200i */
550 	0x3215103C, /* Smart Array E200i */
551 	0x3237103C, /* Smart Array E500 */
552 	0x323D103C, /* Smart Array P700m */
553 	0x40800E11, /* Smart Array 5i */
554 	0x409C0E11, /* Smart Array 6400 */
555 	0x409D0E11, /* Smart Array 6400 EM */
556 	0x40700E11, /* Smart Array 5300 */
557 	0x40820E11, /* Smart Array 532 */
558 	0x40830E11, /* Smart Array 5312 */
559 	0x409A0E11, /* Smart Array 641 */
560 	0x409B0E11, /* Smart Array 642 */
561 	0x40910E11, /* Smart Array 6i */
562 };
563 
564 /* List of controllers which cannot even be soft reset */
565 static u32 soft_unresettable_controller[] = {
566 	0x40800E11, /* Smart Array 5i */
567 	0x40700E11, /* Smart Array 5300 */
568 	0x40820E11, /* Smart Array 532 */
569 	0x40830E11, /* Smart Array 5312 */
570 	0x409A0E11, /* Smart Array 641 */
571 	0x409B0E11, /* Smart Array 642 */
572 	0x40910E11, /* Smart Array 6i */
573 	/* Exclude 640x boards.  These are two pci devices in one slot
574 	 * which share a battery backed cache module.  One controls the
575 	 * cache, the other accesses the cache through the one that controls
576 	 * it.  If we reset the one controlling the cache, the other will
577 	 * likely not be happy.  Just forbid resetting this conjoined mess.
578 	 * The 640x isn't really supported by hpsa anyway.
579 	 */
580 	0x409C0E11, /* Smart Array 6400 */
581 	0x409D0E11, /* Smart Array 6400 EM */
582 };
583 
584 static u32 needs_abort_tags_swizzled[] = {
585 	0x323D103C, /* Smart Array P700m */
586 	0x324a103C, /* Smart Array P712m */
587 	0x324b103C, /* SmartArray P711m */
588 };
589 
590 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
591 {
592 	int i;
593 
594 	for (i = 0; i < nelems; i++)
595 		if (a[i] == board_id)
596 			return 1;
597 	return 0;
598 }
599 
600 static int ctlr_is_hard_resettable(u32 board_id)
601 {
602 	return !board_id_in_array(unresettable_controller,
603 			ARRAY_SIZE(unresettable_controller), board_id);
604 }
605 
606 static int ctlr_is_soft_resettable(u32 board_id)
607 {
608 	return !board_id_in_array(soft_unresettable_controller,
609 			ARRAY_SIZE(soft_unresettable_controller), board_id);
610 }
611 
612 static int ctlr_is_resettable(u32 board_id)
613 {
614 	return ctlr_is_hard_resettable(board_id) ||
615 		ctlr_is_soft_resettable(board_id);
616 }
617 
618 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
619 {
620 	return board_id_in_array(needs_abort_tags_swizzled,
621 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
622 }
623 
624 static ssize_t host_show_resettable(struct device *dev,
625 	struct device_attribute *attr, char *buf)
626 {
627 	struct ctlr_info *h;
628 	struct Scsi_Host *shost = class_to_shost(dev);
629 
630 	h = shost_to_hba(shost);
631 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
632 }
633 
634 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
635 {
636 	return (scsi3addr[3] & 0xC0) == 0x40;
637 }
638 
639 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
640 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
641 };
642 #define HPSA_RAID_0	0
643 #define HPSA_RAID_4	1
644 #define HPSA_RAID_1	2	/* also used for RAID 10 */
645 #define HPSA_RAID_5	3	/* also used for RAID 50 */
646 #define HPSA_RAID_51	4
647 #define HPSA_RAID_6	5	/* also used for RAID 60 */
648 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
649 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
650 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
651 
652 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
653 {
654 	return !device->physical_device;
655 }
656 
657 static ssize_t raid_level_show(struct device *dev,
658 	     struct device_attribute *attr, char *buf)
659 {
660 	ssize_t l = 0;
661 	unsigned char rlevel;
662 	struct ctlr_info *h;
663 	struct scsi_device *sdev;
664 	struct hpsa_scsi_dev_t *hdev;
665 	unsigned long flags;
666 
667 	sdev = to_scsi_device(dev);
668 	h = sdev_to_hba(sdev);
669 	spin_lock_irqsave(&h->lock, flags);
670 	hdev = sdev->hostdata;
671 	if (!hdev) {
672 		spin_unlock_irqrestore(&h->lock, flags);
673 		return -ENODEV;
674 	}
675 
676 	/* Is this even a logical drive? */
677 	if (!is_logical_device(hdev)) {
678 		spin_unlock_irqrestore(&h->lock, flags);
679 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
680 		return l;
681 	}
682 
683 	rlevel = hdev->raid_level;
684 	spin_unlock_irqrestore(&h->lock, flags);
685 	if (rlevel > RAID_UNKNOWN)
686 		rlevel = RAID_UNKNOWN;
687 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
688 	return l;
689 }
690 
691 static ssize_t lunid_show(struct device *dev,
692 	     struct device_attribute *attr, char *buf)
693 {
694 	struct ctlr_info *h;
695 	struct scsi_device *sdev;
696 	struct hpsa_scsi_dev_t *hdev;
697 	unsigned long flags;
698 	unsigned char lunid[8];
699 
700 	sdev = to_scsi_device(dev);
701 	h = sdev_to_hba(sdev);
702 	spin_lock_irqsave(&h->lock, flags);
703 	hdev = sdev->hostdata;
704 	if (!hdev) {
705 		spin_unlock_irqrestore(&h->lock, flags);
706 		return -ENODEV;
707 	}
708 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
709 	spin_unlock_irqrestore(&h->lock, flags);
710 	return snprintf(buf, 20, "0x%8phN\n", lunid);
711 }
712 
713 static ssize_t unique_id_show(struct device *dev,
714 	     struct device_attribute *attr, char *buf)
715 {
716 	struct ctlr_info *h;
717 	struct scsi_device *sdev;
718 	struct hpsa_scsi_dev_t *hdev;
719 	unsigned long flags;
720 	unsigned char sn[16];
721 
722 	sdev = to_scsi_device(dev);
723 	h = sdev_to_hba(sdev);
724 	spin_lock_irqsave(&h->lock, flags);
725 	hdev = sdev->hostdata;
726 	if (!hdev) {
727 		spin_unlock_irqrestore(&h->lock, flags);
728 		return -ENODEV;
729 	}
730 	memcpy(sn, hdev->device_id, sizeof(sn));
731 	spin_unlock_irqrestore(&h->lock, flags);
732 	return snprintf(buf, 16 * 2 + 2,
733 			"%02X%02X%02X%02X%02X%02X%02X%02X"
734 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
735 			sn[0], sn[1], sn[2], sn[3],
736 			sn[4], sn[5], sn[6], sn[7],
737 			sn[8], sn[9], sn[10], sn[11],
738 			sn[12], sn[13], sn[14], sn[15]);
739 }
740 
741 static ssize_t sas_address_show(struct device *dev,
742 	      struct device_attribute *attr, char *buf)
743 {
744 	struct ctlr_info *h;
745 	struct scsi_device *sdev;
746 	struct hpsa_scsi_dev_t *hdev;
747 	unsigned long flags;
748 	u64 sas_address;
749 
750 	sdev = to_scsi_device(dev);
751 	h = sdev_to_hba(sdev);
752 	spin_lock_irqsave(&h->lock, flags);
753 	hdev = sdev->hostdata;
754 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
755 		spin_unlock_irqrestore(&h->lock, flags);
756 		return -ENODEV;
757 	}
758 	sas_address = hdev->sas_address;
759 	spin_unlock_irqrestore(&h->lock, flags);
760 
761 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
762 }
763 
764 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
765 	     struct device_attribute *attr, char *buf)
766 {
767 	struct ctlr_info *h;
768 	struct scsi_device *sdev;
769 	struct hpsa_scsi_dev_t *hdev;
770 	unsigned long flags;
771 	int offload_enabled;
772 
773 	sdev = to_scsi_device(dev);
774 	h = sdev_to_hba(sdev);
775 	spin_lock_irqsave(&h->lock, flags);
776 	hdev = sdev->hostdata;
777 	if (!hdev) {
778 		spin_unlock_irqrestore(&h->lock, flags);
779 		return -ENODEV;
780 	}
781 	offload_enabled = hdev->offload_enabled;
782 	spin_unlock_irqrestore(&h->lock, flags);
783 	return snprintf(buf, 20, "%d\n", offload_enabled);
784 }
785 
786 #define MAX_PATHS 8
787 static ssize_t path_info_show(struct device *dev,
788 	     struct device_attribute *attr, char *buf)
789 {
790 	struct ctlr_info *h;
791 	struct scsi_device *sdev;
792 	struct hpsa_scsi_dev_t *hdev;
793 	unsigned long flags;
794 	int i;
795 	int output_len = 0;
796 	u8 box;
797 	u8 bay;
798 	u8 path_map_index = 0;
799 	char *active;
800 	unsigned char phys_connector[2];
801 
802 	sdev = to_scsi_device(dev);
803 	h = sdev_to_hba(sdev);
804 	spin_lock_irqsave(&h->devlock, flags);
805 	hdev = sdev->hostdata;
806 	if (!hdev) {
807 		spin_unlock_irqrestore(&h->devlock, flags);
808 		return -ENODEV;
809 	}
810 
811 	bay = hdev->bay;
812 	for (i = 0; i < MAX_PATHS; i++) {
813 		path_map_index = 1<<i;
814 		if (i == hdev->active_path_index)
815 			active = "Active";
816 		else if (hdev->path_map & path_map_index)
817 			active = "Inactive";
818 		else
819 			continue;
820 
821 		output_len += scnprintf(buf + output_len,
822 				PAGE_SIZE - output_len,
823 				"[%d:%d:%d:%d] %20.20s ",
824 				h->scsi_host->host_no,
825 				hdev->bus, hdev->target, hdev->lun,
826 				scsi_device_type(hdev->devtype));
827 
828 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
829 			output_len += scnprintf(buf + output_len,
830 						PAGE_SIZE - output_len,
831 						"%s\n", active);
832 			continue;
833 		}
834 
835 		box = hdev->box[i];
836 		memcpy(&phys_connector, &hdev->phys_connector[i],
837 			sizeof(phys_connector));
838 		if (phys_connector[0] < '0')
839 			phys_connector[0] = '0';
840 		if (phys_connector[1] < '0')
841 			phys_connector[1] = '0';
842 		output_len += scnprintf(buf + output_len,
843 				PAGE_SIZE - output_len,
844 				"PORT: %.2s ",
845 				phys_connector);
846 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
847 			hdev->expose_device) {
848 			if (box == 0 || box == 0xFF) {
849 				output_len += scnprintf(buf + output_len,
850 					PAGE_SIZE - output_len,
851 					"BAY: %hhu %s\n",
852 					bay, active);
853 			} else {
854 				output_len += scnprintf(buf + output_len,
855 					PAGE_SIZE - output_len,
856 					"BOX: %hhu BAY: %hhu %s\n",
857 					box, bay, active);
858 			}
859 		} else if (box != 0 && box != 0xFF) {
860 			output_len += scnprintf(buf + output_len,
861 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
862 				box, active);
863 		} else
864 			output_len += scnprintf(buf + output_len,
865 				PAGE_SIZE - output_len, "%s\n", active);
866 	}
867 
868 	spin_unlock_irqrestore(&h->devlock, flags);
869 	return output_len;
870 }
871 
872 static ssize_t host_show_ctlr_num(struct device *dev,
873 	struct device_attribute *attr, char *buf)
874 {
875 	struct ctlr_info *h;
876 	struct Scsi_Host *shost = class_to_shost(dev);
877 
878 	h = shost_to_hba(shost);
879 	return snprintf(buf, 20, "%d\n", h->ctlr);
880 }
881 
882 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
883 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
884 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
885 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
886 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
887 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
888 			host_show_hp_ssd_smart_path_enabled, NULL);
889 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
890 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
891 		host_show_hp_ssd_smart_path_status,
892 		host_store_hp_ssd_smart_path_status);
893 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
894 			host_store_raid_offload_debug);
895 static DEVICE_ATTR(firmware_revision, S_IRUGO,
896 	host_show_firmware_revision, NULL);
897 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
898 	host_show_commands_outstanding, NULL);
899 static DEVICE_ATTR(transport_mode, S_IRUGO,
900 	host_show_transport_mode, NULL);
901 static DEVICE_ATTR(resettable, S_IRUGO,
902 	host_show_resettable, NULL);
903 static DEVICE_ATTR(lockup_detected, S_IRUGO,
904 	host_show_lockup_detected, NULL);
905 static DEVICE_ATTR(ctlr_num, S_IRUGO,
906 	host_show_ctlr_num, NULL);
907 
908 static struct device_attribute *hpsa_sdev_attrs[] = {
909 	&dev_attr_raid_level,
910 	&dev_attr_lunid,
911 	&dev_attr_unique_id,
912 	&dev_attr_hp_ssd_smart_path_enabled,
913 	&dev_attr_path_info,
914 	&dev_attr_sas_address,
915 	NULL,
916 };
917 
918 static struct device_attribute *hpsa_shost_attrs[] = {
919 	&dev_attr_rescan,
920 	&dev_attr_firmware_revision,
921 	&dev_attr_commands_outstanding,
922 	&dev_attr_transport_mode,
923 	&dev_attr_resettable,
924 	&dev_attr_hp_ssd_smart_path_status,
925 	&dev_attr_raid_offload_debug,
926 	&dev_attr_lockup_detected,
927 	&dev_attr_ctlr_num,
928 	NULL,
929 };
930 
931 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
932 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
933 
934 static struct scsi_host_template hpsa_driver_template = {
935 	.module			= THIS_MODULE,
936 	.name			= HPSA,
937 	.proc_name		= HPSA,
938 	.queuecommand		= hpsa_scsi_queue_command,
939 	.scan_start		= hpsa_scan_start,
940 	.scan_finished		= hpsa_scan_finished,
941 	.change_queue_depth	= hpsa_change_queue_depth,
942 	.this_id		= -1,
943 	.use_clustering		= ENABLE_CLUSTERING,
944 	.eh_abort_handler	= hpsa_eh_abort_handler,
945 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
946 	.ioctl			= hpsa_ioctl,
947 	.slave_alloc		= hpsa_slave_alloc,
948 	.slave_configure	= hpsa_slave_configure,
949 	.slave_destroy		= hpsa_slave_destroy,
950 #ifdef CONFIG_COMPAT
951 	.compat_ioctl		= hpsa_compat_ioctl,
952 #endif
953 	.sdev_attrs = hpsa_sdev_attrs,
954 	.shost_attrs = hpsa_shost_attrs,
955 	.max_sectors = 8192,
956 	.no_write_same = 1,
957 };
958 
959 static inline u32 next_command(struct ctlr_info *h, u8 q)
960 {
961 	u32 a;
962 	struct reply_queue_buffer *rq = &h->reply_queue[q];
963 
964 	if (h->transMethod & CFGTBL_Trans_io_accel1)
965 		return h->access.command_completed(h, q);
966 
967 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
968 		return h->access.command_completed(h, q);
969 
970 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
971 		a = rq->head[rq->current_entry];
972 		rq->current_entry++;
973 		atomic_dec(&h->commands_outstanding);
974 	} else {
975 		a = FIFO_EMPTY;
976 	}
977 	/* Check for wraparound */
978 	if (rq->current_entry == h->max_commands) {
979 		rq->current_entry = 0;
980 		rq->wraparound ^= 1;
981 	}
982 	return a;
983 }
984 
985 /*
986  * There are some special bits in the bus address of the
987  * command that we have to set for the controller to know
988  * how to process the command:
989  *
990  * Normal performant mode:
991  * bit 0: 1 means performant mode, 0 means simple mode.
992  * bits 1-3 = block fetch table entry
993  * bits 4-6 = command type (== 0)
994  *
995  * ioaccel1 mode:
996  * bit 0 = "performant mode" bit.
997  * bits 1-3 = block fetch table entry
998  * bits 4-6 = command type (== 110)
999  * (command type is needed because ioaccel1 mode
1000  * commands are submitted through the same register as normal
1001  * mode commands, so this is how the controller knows whether
1002  * the command is normal mode or ioaccel1 mode.)
1003  *
1004  * ioaccel2 mode:
1005  * bit 0 = "performant mode" bit.
1006  * bits 1-4 = block fetch table entry (note extra bit)
1007  * bits 4-6 = not needed, because ioaccel2 mode has
1008  * a separate special register for submitting commands.
1009  */
1010 
1011 /*
1012  * set_performant_mode: Modify the tag for cciss performant
1013  * set bit 0 for pull model, bits 3-1 for block fetch
1014  * register number
1015  */
1016 #define DEFAULT_REPLY_QUEUE (-1)
1017 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1018 					int reply_queue)
1019 {
1020 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1021 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1022 		if (unlikely(!h->msix_vectors))
1023 			return;
1024 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025 			c->Header.ReplyQueue =
1026 				raw_smp_processor_id() % h->nreply_queues;
1027 		else
1028 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1029 	}
1030 }
1031 
1032 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1033 						struct CommandList *c,
1034 						int reply_queue)
1035 {
1036 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1037 
1038 	/*
1039 	 * Tell the controller to post the reply to the queue for this
1040 	 * processor.  This seems to give the best I/O throughput.
1041 	 */
1042 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1044 	else
1045 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1046 	/*
1047 	 * Set the bits in the address sent down to include:
1048 	 *  - performant mode bit (bit 0)
1049 	 *  - pull count (bits 1-3)
1050 	 *  - command type (bits 4-6)
1051 	 */
1052 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1053 					IOACCEL1_BUSADDR_CMDTYPE;
1054 }
1055 
1056 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1057 						struct CommandList *c,
1058 						int reply_queue)
1059 {
1060 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1061 		&h->ioaccel2_cmd_pool[c->cmdindex];
1062 
1063 	/* Tell the controller to post the reply to the queue for this
1064 	 * processor.  This seems to give the best I/O throughput.
1065 	 */
1066 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1068 	else
1069 		cp->reply_queue = reply_queue % h->nreply_queues;
1070 	/* Set the bits in the address sent down to include:
1071 	 *  - performant mode bit not used in ioaccel mode 2
1072 	 *  - pull count (bits 0-3)
1073 	 *  - command type isn't needed for ioaccel2
1074 	 */
1075 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1076 }
1077 
1078 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1079 						struct CommandList *c,
1080 						int reply_queue)
1081 {
1082 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1083 
1084 	/*
1085 	 * Tell the controller to post the reply to the queue for this
1086 	 * processor.  This seems to give the best I/O throughput.
1087 	 */
1088 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1089 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1090 	else
1091 		cp->reply_queue = reply_queue % h->nreply_queues;
1092 	/*
1093 	 * Set the bits in the address sent down to include:
1094 	 *  - performant mode bit not used in ioaccel mode 2
1095 	 *  - pull count (bits 0-3)
1096 	 *  - command type isn't needed for ioaccel2
1097 	 */
1098 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1099 }
1100 
1101 static int is_firmware_flash_cmd(u8 *cdb)
1102 {
1103 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1104 }
1105 
1106 /*
1107  * During firmware flash, the heartbeat register may not update as frequently
1108  * as it should.  So we dial down lockup detection during firmware flash. and
1109  * dial it back up when firmware flash completes.
1110  */
1111 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1112 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1113 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1114 		struct CommandList *c)
1115 {
1116 	if (!is_firmware_flash_cmd(c->Request.CDB))
1117 		return;
1118 	atomic_inc(&h->firmware_flash_in_progress);
1119 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1120 }
1121 
1122 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1123 		struct CommandList *c)
1124 {
1125 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1126 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1127 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1128 }
1129 
1130 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1131 	struct CommandList *c, int reply_queue)
1132 {
1133 	dial_down_lockup_detection_during_fw_flash(h, c);
1134 	atomic_inc(&h->commands_outstanding);
1135 	switch (c->cmd_type) {
1136 	case CMD_IOACCEL1:
1137 		set_ioaccel1_performant_mode(h, c, reply_queue);
1138 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1139 		break;
1140 	case CMD_IOACCEL2:
1141 		set_ioaccel2_performant_mode(h, c, reply_queue);
1142 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143 		break;
1144 	case IOACCEL2_TMF:
1145 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1146 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1147 		break;
1148 	default:
1149 		set_performant_mode(h, c, reply_queue);
1150 		h->access.submit_command(h, c);
1151 	}
1152 }
1153 
1154 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1155 {
1156 	if (unlikely(hpsa_is_pending_event(c)))
1157 		return finish_cmd(c);
1158 
1159 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1160 }
1161 
1162 static inline int is_hba_lunid(unsigned char scsi3addr[])
1163 {
1164 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1165 }
1166 
1167 static inline int is_scsi_rev_5(struct ctlr_info *h)
1168 {
1169 	if (!h->hba_inquiry_data)
1170 		return 0;
1171 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1172 		return 1;
1173 	return 0;
1174 }
1175 
1176 static int hpsa_find_target_lun(struct ctlr_info *h,
1177 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1178 {
1179 	/* finds an unused bus, target, lun for a new physical device
1180 	 * assumes h->devlock is held
1181 	 */
1182 	int i, found = 0;
1183 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1184 
1185 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1186 
1187 	for (i = 0; i < h->ndevices; i++) {
1188 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1189 			__set_bit(h->dev[i]->target, lun_taken);
1190 	}
1191 
1192 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1193 	if (i < HPSA_MAX_DEVICES) {
1194 		/* *bus = 1; */
1195 		*target = i;
1196 		*lun = 0;
1197 		found = 1;
1198 	}
1199 	return !found;
1200 }
1201 
1202 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1203 	struct hpsa_scsi_dev_t *dev, char *description)
1204 {
1205 #define LABEL_SIZE 25
1206 	char label[LABEL_SIZE];
1207 
1208 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1209 		return;
1210 
1211 	switch (dev->devtype) {
1212 	case TYPE_RAID:
1213 		snprintf(label, LABEL_SIZE, "controller");
1214 		break;
1215 	case TYPE_ENCLOSURE:
1216 		snprintf(label, LABEL_SIZE, "enclosure");
1217 		break;
1218 	case TYPE_DISK:
1219 	case TYPE_ZBC:
1220 		if (dev->external)
1221 			snprintf(label, LABEL_SIZE, "external");
1222 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1223 			snprintf(label, LABEL_SIZE, "%s",
1224 				raid_label[PHYSICAL_DRIVE]);
1225 		else
1226 			snprintf(label, LABEL_SIZE, "RAID-%s",
1227 				dev->raid_level > RAID_UNKNOWN ? "?" :
1228 				raid_label[dev->raid_level]);
1229 		break;
1230 	case TYPE_ROM:
1231 		snprintf(label, LABEL_SIZE, "rom");
1232 		break;
1233 	case TYPE_TAPE:
1234 		snprintf(label, LABEL_SIZE, "tape");
1235 		break;
1236 	case TYPE_MEDIUM_CHANGER:
1237 		snprintf(label, LABEL_SIZE, "changer");
1238 		break;
1239 	default:
1240 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1241 		break;
1242 	}
1243 
1244 	dev_printk(level, &h->pdev->dev,
1245 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1246 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1247 			description,
1248 			scsi_device_type(dev->devtype),
1249 			dev->vendor,
1250 			dev->model,
1251 			label,
1252 			dev->offload_config ? '+' : '-',
1253 			dev->offload_enabled ? '+' : '-',
1254 			dev->expose_device);
1255 }
1256 
1257 /* Add an entry into h->dev[] array. */
1258 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1259 		struct hpsa_scsi_dev_t *device,
1260 		struct hpsa_scsi_dev_t *added[], int *nadded)
1261 {
1262 	/* assumes h->devlock is held */
1263 	int n = h->ndevices;
1264 	int i;
1265 	unsigned char addr1[8], addr2[8];
1266 	struct hpsa_scsi_dev_t *sd;
1267 
1268 	if (n >= HPSA_MAX_DEVICES) {
1269 		dev_err(&h->pdev->dev, "too many devices, some will be "
1270 			"inaccessible.\n");
1271 		return -1;
1272 	}
1273 
1274 	/* physical devices do not have lun or target assigned until now. */
1275 	if (device->lun != -1)
1276 		/* Logical device, lun is already assigned. */
1277 		goto lun_assigned;
1278 
1279 	/* If this device a non-zero lun of a multi-lun device
1280 	 * byte 4 of the 8-byte LUN addr will contain the logical
1281 	 * unit no, zero otherwise.
1282 	 */
1283 	if (device->scsi3addr[4] == 0) {
1284 		/* This is not a non-zero lun of a multi-lun device */
1285 		if (hpsa_find_target_lun(h, device->scsi3addr,
1286 			device->bus, &device->target, &device->lun) != 0)
1287 			return -1;
1288 		goto lun_assigned;
1289 	}
1290 
1291 	/* This is a non-zero lun of a multi-lun device.
1292 	 * Search through our list and find the device which
1293 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1294 	 * Assign the same bus and target for this new LUN.
1295 	 * Use the logical unit number from the firmware.
1296 	 */
1297 	memcpy(addr1, device->scsi3addr, 8);
1298 	addr1[4] = 0;
1299 	addr1[5] = 0;
1300 	for (i = 0; i < n; i++) {
1301 		sd = h->dev[i];
1302 		memcpy(addr2, sd->scsi3addr, 8);
1303 		addr2[4] = 0;
1304 		addr2[5] = 0;
1305 		/* differ only in byte 4 and 5? */
1306 		if (memcmp(addr1, addr2, 8) == 0) {
1307 			device->bus = sd->bus;
1308 			device->target = sd->target;
1309 			device->lun = device->scsi3addr[4];
1310 			break;
1311 		}
1312 	}
1313 	if (device->lun == -1) {
1314 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1315 			" suspect firmware bug or unsupported hardware "
1316 			"configuration.\n");
1317 			return -1;
1318 	}
1319 
1320 lun_assigned:
1321 
1322 	h->dev[n] = device;
1323 	h->ndevices++;
1324 	added[*nadded] = device;
1325 	(*nadded)++;
1326 	hpsa_show_dev_msg(KERN_INFO, h, device,
1327 		device->expose_device ? "added" : "masked");
1328 	device->offload_to_be_enabled = device->offload_enabled;
1329 	device->offload_enabled = 0;
1330 	return 0;
1331 }
1332 
1333 /* Update an entry in h->dev[] array. */
1334 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1335 	int entry, struct hpsa_scsi_dev_t *new_entry)
1336 {
1337 	int offload_enabled;
1338 	/* assumes h->devlock is held */
1339 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1340 
1341 	/* Raid level changed. */
1342 	h->dev[entry]->raid_level = new_entry->raid_level;
1343 
1344 	/* Raid offload parameters changed.  Careful about the ordering. */
1345 	if (new_entry->offload_config && new_entry->offload_enabled) {
1346 		/*
1347 		 * if drive is newly offload_enabled, we want to copy the
1348 		 * raid map data first.  If previously offload_enabled and
1349 		 * offload_config were set, raid map data had better be
1350 		 * the same as it was before.  if raid map data is changed
1351 		 * then it had better be the case that
1352 		 * h->dev[entry]->offload_enabled is currently 0.
1353 		 */
1354 		h->dev[entry]->raid_map = new_entry->raid_map;
1355 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1356 	}
1357 	if (new_entry->hba_ioaccel_enabled) {
1358 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1360 	}
1361 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1362 	h->dev[entry]->offload_config = new_entry->offload_config;
1363 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1364 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1365 
1366 	/*
1367 	 * We can turn off ioaccel offload now, but need to delay turning
1368 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1369 	 * can't do that until all the devices are updated.
1370 	 */
1371 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1372 	if (!new_entry->offload_enabled)
1373 		h->dev[entry]->offload_enabled = 0;
1374 
1375 	offload_enabled = h->dev[entry]->offload_enabled;
1376 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1377 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1378 	h->dev[entry]->offload_enabled = offload_enabled;
1379 }
1380 
1381 /* Replace an entry from h->dev[] array. */
1382 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1383 	int entry, struct hpsa_scsi_dev_t *new_entry,
1384 	struct hpsa_scsi_dev_t *added[], int *nadded,
1385 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1386 {
1387 	/* assumes h->devlock is held */
1388 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1389 	removed[*nremoved] = h->dev[entry];
1390 	(*nremoved)++;
1391 
1392 	/*
1393 	 * New physical devices won't have target/lun assigned yet
1394 	 * so we need to preserve the values in the slot we are replacing.
1395 	 */
1396 	if (new_entry->target == -1) {
1397 		new_entry->target = h->dev[entry]->target;
1398 		new_entry->lun = h->dev[entry]->lun;
1399 	}
1400 
1401 	h->dev[entry] = new_entry;
1402 	added[*nadded] = new_entry;
1403 	(*nadded)++;
1404 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1405 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1406 	new_entry->offload_enabled = 0;
1407 }
1408 
1409 /* Remove an entry from h->dev[] array. */
1410 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1411 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413 	/* assumes h->devlock is held */
1414 	int i;
1415 	struct hpsa_scsi_dev_t *sd;
1416 
1417 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1418 
1419 	sd = h->dev[entry];
1420 	removed[*nremoved] = h->dev[entry];
1421 	(*nremoved)++;
1422 
1423 	for (i = entry; i < h->ndevices-1; i++)
1424 		h->dev[i] = h->dev[i+1];
1425 	h->ndevices--;
1426 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1427 }
1428 
1429 #define SCSI3ADDR_EQ(a, b) ( \
1430 	(a)[7] == (b)[7] && \
1431 	(a)[6] == (b)[6] && \
1432 	(a)[5] == (b)[5] && \
1433 	(a)[4] == (b)[4] && \
1434 	(a)[3] == (b)[3] && \
1435 	(a)[2] == (b)[2] && \
1436 	(a)[1] == (b)[1] && \
1437 	(a)[0] == (b)[0])
1438 
1439 static void fixup_botched_add(struct ctlr_info *h,
1440 	struct hpsa_scsi_dev_t *added)
1441 {
1442 	/* called when scsi_add_device fails in order to re-adjust
1443 	 * h->dev[] to match the mid layer's view.
1444 	 */
1445 	unsigned long flags;
1446 	int i, j;
1447 
1448 	spin_lock_irqsave(&h->lock, flags);
1449 	for (i = 0; i < h->ndevices; i++) {
1450 		if (h->dev[i] == added) {
1451 			for (j = i; j < h->ndevices-1; j++)
1452 				h->dev[j] = h->dev[j+1];
1453 			h->ndevices--;
1454 			break;
1455 		}
1456 	}
1457 	spin_unlock_irqrestore(&h->lock, flags);
1458 	kfree(added);
1459 }
1460 
1461 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1462 	struct hpsa_scsi_dev_t *dev2)
1463 {
1464 	/* we compare everything except lun and target as these
1465 	 * are not yet assigned.  Compare parts likely
1466 	 * to differ first
1467 	 */
1468 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1469 		sizeof(dev1->scsi3addr)) != 0)
1470 		return 0;
1471 	if (memcmp(dev1->device_id, dev2->device_id,
1472 		sizeof(dev1->device_id)) != 0)
1473 		return 0;
1474 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1475 		return 0;
1476 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1477 		return 0;
1478 	if (dev1->devtype != dev2->devtype)
1479 		return 0;
1480 	if (dev1->bus != dev2->bus)
1481 		return 0;
1482 	return 1;
1483 }
1484 
1485 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1486 	struct hpsa_scsi_dev_t *dev2)
1487 {
1488 	/* Device attributes that can change, but don't mean
1489 	 * that the device is a different device, nor that the OS
1490 	 * needs to be told anything about the change.
1491 	 */
1492 	if (dev1->raid_level != dev2->raid_level)
1493 		return 1;
1494 	if (dev1->offload_config != dev2->offload_config)
1495 		return 1;
1496 	if (dev1->offload_enabled != dev2->offload_enabled)
1497 		return 1;
1498 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1499 		if (dev1->queue_depth != dev2->queue_depth)
1500 			return 1;
1501 	return 0;
1502 }
1503 
1504 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1505  * and return needle location in *index.  If scsi3addr matches, but not
1506  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1507  * location in *index.
1508  * In the case of a minor device attribute change, such as RAID level, just
1509  * return DEVICE_UPDATED, along with the updated device's location in index.
1510  * If needle not found, return DEVICE_NOT_FOUND.
1511  */
1512 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1513 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1514 	int *index)
1515 {
1516 	int i;
1517 #define DEVICE_NOT_FOUND 0
1518 #define DEVICE_CHANGED 1
1519 #define DEVICE_SAME 2
1520 #define DEVICE_UPDATED 3
1521 	if (needle == NULL)
1522 		return DEVICE_NOT_FOUND;
1523 
1524 	for (i = 0; i < haystack_size; i++) {
1525 		if (haystack[i] == NULL) /* previously removed. */
1526 			continue;
1527 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1528 			*index = i;
1529 			if (device_is_the_same(needle, haystack[i])) {
1530 				if (device_updated(needle, haystack[i]))
1531 					return DEVICE_UPDATED;
1532 				return DEVICE_SAME;
1533 			} else {
1534 				/* Keep offline devices offline */
1535 				if (needle->volume_offline)
1536 					return DEVICE_NOT_FOUND;
1537 				return DEVICE_CHANGED;
1538 			}
1539 		}
1540 	}
1541 	*index = -1;
1542 	return DEVICE_NOT_FOUND;
1543 }
1544 
1545 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1546 					unsigned char scsi3addr[])
1547 {
1548 	struct offline_device_entry *device;
1549 	unsigned long flags;
1550 
1551 	/* Check to see if device is already on the list */
1552 	spin_lock_irqsave(&h->offline_device_lock, flags);
1553 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1554 		if (memcmp(device->scsi3addr, scsi3addr,
1555 			sizeof(device->scsi3addr)) == 0) {
1556 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557 			return;
1558 		}
1559 	}
1560 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1561 
1562 	/* Device is not on the list, add it. */
1563 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1564 	if (!device)
1565 		return;
1566 
1567 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1568 	spin_lock_irqsave(&h->offline_device_lock, flags);
1569 	list_add_tail(&device->offline_list, &h->offline_device_list);
1570 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1571 }
1572 
1573 /* Print a message explaining various offline volume states */
1574 static void hpsa_show_volume_status(struct ctlr_info *h,
1575 	struct hpsa_scsi_dev_t *sd)
1576 {
1577 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1578 		dev_info(&h->pdev->dev,
1579 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1580 			h->scsi_host->host_no,
1581 			sd->bus, sd->target, sd->lun);
1582 	switch (sd->volume_offline) {
1583 	case HPSA_LV_OK:
1584 		break;
1585 	case HPSA_LV_UNDERGOING_ERASE:
1586 		dev_info(&h->pdev->dev,
1587 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1588 			h->scsi_host->host_no,
1589 			sd->bus, sd->target, sd->lun);
1590 		break;
1591 	case HPSA_LV_NOT_AVAILABLE:
1592 		dev_info(&h->pdev->dev,
1593 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1594 			h->scsi_host->host_no,
1595 			sd->bus, sd->target, sd->lun);
1596 		break;
1597 	case HPSA_LV_UNDERGOING_RPI:
1598 		dev_info(&h->pdev->dev,
1599 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1600 			h->scsi_host->host_no,
1601 			sd->bus, sd->target, sd->lun);
1602 		break;
1603 	case HPSA_LV_PENDING_RPI:
1604 		dev_info(&h->pdev->dev,
1605 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1606 			h->scsi_host->host_no,
1607 			sd->bus, sd->target, sd->lun);
1608 		break;
1609 	case HPSA_LV_ENCRYPTED_NO_KEY:
1610 		dev_info(&h->pdev->dev,
1611 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1612 			h->scsi_host->host_no,
1613 			sd->bus, sd->target, sd->lun);
1614 		break;
1615 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1616 		dev_info(&h->pdev->dev,
1617 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1618 			h->scsi_host->host_no,
1619 			sd->bus, sd->target, sd->lun);
1620 		break;
1621 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1622 		dev_info(&h->pdev->dev,
1623 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1624 			h->scsi_host->host_no,
1625 			sd->bus, sd->target, sd->lun);
1626 		break;
1627 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1628 		dev_info(&h->pdev->dev,
1629 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1630 			h->scsi_host->host_no,
1631 			sd->bus, sd->target, sd->lun);
1632 		break;
1633 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1634 		dev_info(&h->pdev->dev,
1635 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1636 			h->scsi_host->host_no,
1637 			sd->bus, sd->target, sd->lun);
1638 		break;
1639 	case HPSA_LV_PENDING_ENCRYPTION:
1640 		dev_info(&h->pdev->dev,
1641 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1642 			h->scsi_host->host_no,
1643 			sd->bus, sd->target, sd->lun);
1644 		break;
1645 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1646 		dev_info(&h->pdev->dev,
1647 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1648 			h->scsi_host->host_no,
1649 			sd->bus, sd->target, sd->lun);
1650 		break;
1651 	}
1652 }
1653 
1654 /*
1655  * Figure the list of physical drive pointers for a logical drive with
1656  * raid offload configured.
1657  */
1658 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1659 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1660 				struct hpsa_scsi_dev_t *logical_drive)
1661 {
1662 	struct raid_map_data *map = &logical_drive->raid_map;
1663 	struct raid_map_disk_data *dd = &map->data[0];
1664 	int i, j;
1665 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1666 				le16_to_cpu(map->metadata_disks_per_row);
1667 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1668 				le16_to_cpu(map->layout_map_count) *
1669 				total_disks_per_row;
1670 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1671 				total_disks_per_row;
1672 	int qdepth;
1673 
1674 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1675 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1676 
1677 	logical_drive->nphysical_disks = nraid_map_entries;
1678 
1679 	qdepth = 0;
1680 	for (i = 0; i < nraid_map_entries; i++) {
1681 		logical_drive->phys_disk[i] = NULL;
1682 		if (!logical_drive->offload_config)
1683 			continue;
1684 		for (j = 0; j < ndevices; j++) {
1685 			if (dev[j] == NULL)
1686 				continue;
1687 			if (dev[j]->devtype != TYPE_DISK &&
1688 			    dev[j]->devtype != TYPE_ZBC)
1689 				continue;
1690 			if (is_logical_device(dev[j]))
1691 				continue;
1692 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1693 				continue;
1694 
1695 			logical_drive->phys_disk[i] = dev[j];
1696 			if (i < nphys_disk)
1697 				qdepth = min(h->nr_cmds, qdepth +
1698 				    logical_drive->phys_disk[i]->queue_depth);
1699 			break;
1700 		}
1701 
1702 		/*
1703 		 * This can happen if a physical drive is removed and
1704 		 * the logical drive is degraded.  In that case, the RAID
1705 		 * map data will refer to a physical disk which isn't actually
1706 		 * present.  And in that case offload_enabled should already
1707 		 * be 0, but we'll turn it off here just in case
1708 		 */
1709 		if (!logical_drive->phys_disk[i]) {
1710 			logical_drive->offload_enabled = 0;
1711 			logical_drive->offload_to_be_enabled = 0;
1712 			logical_drive->queue_depth = 8;
1713 		}
1714 	}
1715 	if (nraid_map_entries)
1716 		/*
1717 		 * This is correct for reads, too high for full stripe writes,
1718 		 * way too high for partial stripe writes
1719 		 */
1720 		logical_drive->queue_depth = qdepth;
1721 	else
1722 		logical_drive->queue_depth = h->nr_cmds;
1723 }
1724 
1725 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1726 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1727 {
1728 	int i;
1729 
1730 	for (i = 0; i < ndevices; i++) {
1731 		if (dev[i] == NULL)
1732 			continue;
1733 		if (dev[i]->devtype != TYPE_DISK &&
1734 		    dev[i]->devtype != TYPE_ZBC)
1735 			continue;
1736 		if (!is_logical_device(dev[i]))
1737 			continue;
1738 
1739 		/*
1740 		 * If offload is currently enabled, the RAID map and
1741 		 * phys_disk[] assignment *better* not be changing
1742 		 * and since it isn't changing, we do not need to
1743 		 * update it.
1744 		 */
1745 		if (dev[i]->offload_enabled)
1746 			continue;
1747 
1748 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1749 	}
1750 }
1751 
1752 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1753 {
1754 	int rc = 0;
1755 
1756 	if (!h->scsi_host)
1757 		return 1;
1758 
1759 	if (is_logical_device(device)) /* RAID */
1760 		rc = scsi_add_device(h->scsi_host, device->bus,
1761 					device->target, device->lun);
1762 	else /* HBA */
1763 		rc = hpsa_add_sas_device(h->sas_host, device);
1764 
1765 	return rc;
1766 }
1767 
1768 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1769 						struct hpsa_scsi_dev_t *dev)
1770 {
1771 	int i;
1772 	int count = 0;
1773 
1774 	for (i = 0; i < h->nr_cmds; i++) {
1775 		struct CommandList *c = h->cmd_pool + i;
1776 		int refcount = atomic_inc_return(&c->refcount);
1777 
1778 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1779 				dev->scsi3addr)) {
1780 			unsigned long flags;
1781 
1782 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1783 			if (!hpsa_is_cmd_idle(c))
1784 				++count;
1785 			spin_unlock_irqrestore(&h->lock, flags);
1786 		}
1787 
1788 		cmd_free(h, c);
1789 	}
1790 
1791 	return count;
1792 }
1793 
1794 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1795 						struct hpsa_scsi_dev_t *device)
1796 {
1797 	int cmds = 0;
1798 	int waits = 0;
1799 
1800 	while (1) {
1801 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1802 		if (cmds == 0)
1803 			break;
1804 		if (++waits > 20)
1805 			break;
1806 		dev_warn(&h->pdev->dev,
1807 			"%s: removing device with %d outstanding commands!\n",
1808 			__func__, cmds);
1809 		msleep(1000);
1810 	}
1811 }
1812 
1813 static void hpsa_remove_device(struct ctlr_info *h,
1814 			struct hpsa_scsi_dev_t *device)
1815 {
1816 	struct scsi_device *sdev = NULL;
1817 
1818 	if (!h->scsi_host)
1819 		return;
1820 
1821 	if (is_logical_device(device)) { /* RAID */
1822 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1823 						device->target, device->lun);
1824 		if (sdev) {
1825 			scsi_remove_device(sdev);
1826 			scsi_device_put(sdev);
1827 		} else {
1828 			/*
1829 			 * We don't expect to get here.  Future commands
1830 			 * to this device will get a selection timeout as
1831 			 * if the device were gone.
1832 			 */
1833 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1834 					"didn't find device for removal.");
1835 		}
1836 	} else { /* HBA */
1837 
1838 		device->removed = 1;
1839 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1840 
1841 		hpsa_remove_sas_device(device);
1842 	}
1843 }
1844 
1845 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1846 	struct hpsa_scsi_dev_t *sd[], int nsds)
1847 {
1848 	/* sd contains scsi3 addresses and devtypes, and inquiry
1849 	 * data.  This function takes what's in sd to be the current
1850 	 * reality and updates h->dev[] to reflect that reality.
1851 	 */
1852 	int i, entry, device_change, changes = 0;
1853 	struct hpsa_scsi_dev_t *csd;
1854 	unsigned long flags;
1855 	struct hpsa_scsi_dev_t **added, **removed;
1856 	int nadded, nremoved;
1857 
1858 	/*
1859 	 * A reset can cause a device status to change
1860 	 * re-schedule the scan to see what happened.
1861 	 */
1862 	if (h->reset_in_progress) {
1863 		h->drv_req_rescan = 1;
1864 		return;
1865 	}
1866 
1867 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1868 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1869 
1870 	if (!added || !removed) {
1871 		dev_warn(&h->pdev->dev, "out of memory in "
1872 			"adjust_hpsa_scsi_table\n");
1873 		goto free_and_out;
1874 	}
1875 
1876 	spin_lock_irqsave(&h->devlock, flags);
1877 
1878 	/* find any devices in h->dev[] that are not in
1879 	 * sd[] and remove them from h->dev[], and for any
1880 	 * devices which have changed, remove the old device
1881 	 * info and add the new device info.
1882 	 * If minor device attributes change, just update
1883 	 * the existing device structure.
1884 	 */
1885 	i = 0;
1886 	nremoved = 0;
1887 	nadded = 0;
1888 	while (i < h->ndevices) {
1889 		csd = h->dev[i];
1890 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1891 		if (device_change == DEVICE_NOT_FOUND) {
1892 			changes++;
1893 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1894 			continue; /* remove ^^^, hence i not incremented */
1895 		} else if (device_change == DEVICE_CHANGED) {
1896 			changes++;
1897 			hpsa_scsi_replace_entry(h, i, sd[entry],
1898 				added, &nadded, removed, &nremoved);
1899 			/* Set it to NULL to prevent it from being freed
1900 			 * at the bottom of hpsa_update_scsi_devices()
1901 			 */
1902 			sd[entry] = NULL;
1903 		} else if (device_change == DEVICE_UPDATED) {
1904 			hpsa_scsi_update_entry(h, i, sd[entry]);
1905 		}
1906 		i++;
1907 	}
1908 
1909 	/* Now, make sure every device listed in sd[] is also
1910 	 * listed in h->dev[], adding them if they aren't found
1911 	 */
1912 
1913 	for (i = 0; i < nsds; i++) {
1914 		if (!sd[i]) /* if already added above. */
1915 			continue;
1916 
1917 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1918 		 * as the SCSI mid-layer does not handle such devices well.
1919 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1920 		 * at 160Hz, and prevents the system from coming up.
1921 		 */
1922 		if (sd[i]->volume_offline) {
1923 			hpsa_show_volume_status(h, sd[i]);
1924 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1925 			continue;
1926 		}
1927 
1928 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1929 					h->ndevices, &entry);
1930 		if (device_change == DEVICE_NOT_FOUND) {
1931 			changes++;
1932 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1933 				break;
1934 			sd[i] = NULL; /* prevent from being freed later. */
1935 		} else if (device_change == DEVICE_CHANGED) {
1936 			/* should never happen... */
1937 			changes++;
1938 			dev_warn(&h->pdev->dev,
1939 				"device unexpectedly changed.\n");
1940 			/* but if it does happen, we just ignore that device */
1941 		}
1942 	}
1943 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1944 
1945 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1946 	 * any logical drives that need it enabled.
1947 	 */
1948 	for (i = 0; i < h->ndevices; i++) {
1949 		if (h->dev[i] == NULL)
1950 			continue;
1951 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1952 	}
1953 
1954 	spin_unlock_irqrestore(&h->devlock, flags);
1955 
1956 	/* Monitor devices which are in one of several NOT READY states to be
1957 	 * brought online later. This must be done without holding h->devlock,
1958 	 * so don't touch h->dev[]
1959 	 */
1960 	for (i = 0; i < nsds; i++) {
1961 		if (!sd[i]) /* if already added above. */
1962 			continue;
1963 		if (sd[i]->volume_offline)
1964 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1965 	}
1966 
1967 	/* Don't notify scsi mid layer of any changes the first time through
1968 	 * (or if there are no changes) scsi_scan_host will do it later the
1969 	 * first time through.
1970 	 */
1971 	if (!changes)
1972 		goto free_and_out;
1973 
1974 	/* Notify scsi mid layer of any removed devices */
1975 	for (i = 0; i < nremoved; i++) {
1976 		if (removed[i] == NULL)
1977 			continue;
1978 		if (removed[i]->expose_device)
1979 			hpsa_remove_device(h, removed[i]);
1980 		kfree(removed[i]);
1981 		removed[i] = NULL;
1982 	}
1983 
1984 	/* Notify scsi mid layer of any added devices */
1985 	for (i = 0; i < nadded; i++) {
1986 		int rc = 0;
1987 
1988 		if (added[i] == NULL)
1989 			continue;
1990 		if (!(added[i]->expose_device))
1991 			continue;
1992 		rc = hpsa_add_device(h, added[i]);
1993 		if (!rc)
1994 			continue;
1995 		dev_warn(&h->pdev->dev,
1996 			"addition failed %d, device not added.", rc);
1997 		/* now we have to remove it from h->dev,
1998 		 * since it didn't get added to scsi mid layer
1999 		 */
2000 		fixup_botched_add(h, added[i]);
2001 		h->drv_req_rescan = 1;
2002 	}
2003 
2004 free_and_out:
2005 	kfree(added);
2006 	kfree(removed);
2007 }
2008 
2009 /*
2010  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2011  * Assume's h->devlock is held.
2012  */
2013 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2014 	int bus, int target, int lun)
2015 {
2016 	int i;
2017 	struct hpsa_scsi_dev_t *sd;
2018 
2019 	for (i = 0; i < h->ndevices; i++) {
2020 		sd = h->dev[i];
2021 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2022 			return sd;
2023 	}
2024 	return NULL;
2025 }
2026 
2027 static int hpsa_slave_alloc(struct scsi_device *sdev)
2028 {
2029 	struct hpsa_scsi_dev_t *sd = NULL;
2030 	unsigned long flags;
2031 	struct ctlr_info *h;
2032 
2033 	h = sdev_to_hba(sdev);
2034 	spin_lock_irqsave(&h->devlock, flags);
2035 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2036 		struct scsi_target *starget;
2037 		struct sas_rphy *rphy;
2038 
2039 		starget = scsi_target(sdev);
2040 		rphy = target_to_rphy(starget);
2041 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2042 		if (sd) {
2043 			sd->target = sdev_id(sdev);
2044 			sd->lun = sdev->lun;
2045 		}
2046 	}
2047 	if (!sd)
2048 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2049 					sdev_id(sdev), sdev->lun);
2050 
2051 	if (sd && sd->expose_device) {
2052 		atomic_set(&sd->ioaccel_cmds_out, 0);
2053 		sdev->hostdata = sd;
2054 	} else
2055 		sdev->hostdata = NULL;
2056 	spin_unlock_irqrestore(&h->devlock, flags);
2057 	return 0;
2058 }
2059 
2060 /* configure scsi device based on internal per-device structure */
2061 static int hpsa_slave_configure(struct scsi_device *sdev)
2062 {
2063 	struct hpsa_scsi_dev_t *sd;
2064 	int queue_depth;
2065 
2066 	sd = sdev->hostdata;
2067 	sdev->no_uld_attach = !sd || !sd->expose_device;
2068 
2069 	if (sd)
2070 		queue_depth = sd->queue_depth != 0 ?
2071 			sd->queue_depth : sdev->host->can_queue;
2072 	else
2073 		queue_depth = sdev->host->can_queue;
2074 
2075 	scsi_change_queue_depth(sdev, queue_depth);
2076 
2077 	return 0;
2078 }
2079 
2080 static void hpsa_slave_destroy(struct scsi_device *sdev)
2081 {
2082 	/* nothing to do. */
2083 }
2084 
2085 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2086 {
2087 	int i;
2088 
2089 	if (!h->ioaccel2_cmd_sg_list)
2090 		return;
2091 	for (i = 0; i < h->nr_cmds; i++) {
2092 		kfree(h->ioaccel2_cmd_sg_list[i]);
2093 		h->ioaccel2_cmd_sg_list[i] = NULL;
2094 	}
2095 	kfree(h->ioaccel2_cmd_sg_list);
2096 	h->ioaccel2_cmd_sg_list = NULL;
2097 }
2098 
2099 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2100 {
2101 	int i;
2102 
2103 	if (h->chainsize <= 0)
2104 		return 0;
2105 
2106 	h->ioaccel2_cmd_sg_list =
2107 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2108 					GFP_KERNEL);
2109 	if (!h->ioaccel2_cmd_sg_list)
2110 		return -ENOMEM;
2111 	for (i = 0; i < h->nr_cmds; i++) {
2112 		h->ioaccel2_cmd_sg_list[i] =
2113 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2114 					h->maxsgentries, GFP_KERNEL);
2115 		if (!h->ioaccel2_cmd_sg_list[i])
2116 			goto clean;
2117 	}
2118 	return 0;
2119 
2120 clean:
2121 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2122 	return -ENOMEM;
2123 }
2124 
2125 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2126 {
2127 	int i;
2128 
2129 	if (!h->cmd_sg_list)
2130 		return;
2131 	for (i = 0; i < h->nr_cmds; i++) {
2132 		kfree(h->cmd_sg_list[i]);
2133 		h->cmd_sg_list[i] = NULL;
2134 	}
2135 	kfree(h->cmd_sg_list);
2136 	h->cmd_sg_list = NULL;
2137 }
2138 
2139 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2140 {
2141 	int i;
2142 
2143 	if (h->chainsize <= 0)
2144 		return 0;
2145 
2146 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2147 				GFP_KERNEL);
2148 	if (!h->cmd_sg_list)
2149 		return -ENOMEM;
2150 
2151 	for (i = 0; i < h->nr_cmds; i++) {
2152 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2153 						h->chainsize, GFP_KERNEL);
2154 		if (!h->cmd_sg_list[i])
2155 			goto clean;
2156 
2157 	}
2158 	return 0;
2159 
2160 clean:
2161 	hpsa_free_sg_chain_blocks(h);
2162 	return -ENOMEM;
2163 }
2164 
2165 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2166 	struct io_accel2_cmd *cp, struct CommandList *c)
2167 {
2168 	struct ioaccel2_sg_element *chain_block;
2169 	u64 temp64;
2170 	u32 chain_size;
2171 
2172 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2173 	chain_size = le32_to_cpu(cp->sg[0].length);
2174 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2175 				PCI_DMA_TODEVICE);
2176 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2177 		/* prevent subsequent unmapping */
2178 		cp->sg->address = 0;
2179 		return -1;
2180 	}
2181 	cp->sg->address = cpu_to_le64(temp64);
2182 	return 0;
2183 }
2184 
2185 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2186 	struct io_accel2_cmd *cp)
2187 {
2188 	struct ioaccel2_sg_element *chain_sg;
2189 	u64 temp64;
2190 	u32 chain_size;
2191 
2192 	chain_sg = cp->sg;
2193 	temp64 = le64_to_cpu(chain_sg->address);
2194 	chain_size = le32_to_cpu(cp->sg[0].length);
2195 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2196 }
2197 
2198 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2199 	struct CommandList *c)
2200 {
2201 	struct SGDescriptor *chain_sg, *chain_block;
2202 	u64 temp64;
2203 	u32 chain_len;
2204 
2205 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2206 	chain_block = h->cmd_sg_list[c->cmdindex];
2207 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2208 	chain_len = sizeof(*chain_sg) *
2209 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2210 	chain_sg->Len = cpu_to_le32(chain_len);
2211 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2212 				PCI_DMA_TODEVICE);
2213 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2214 		/* prevent subsequent unmapping */
2215 		chain_sg->Addr = cpu_to_le64(0);
2216 		return -1;
2217 	}
2218 	chain_sg->Addr = cpu_to_le64(temp64);
2219 	return 0;
2220 }
2221 
2222 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2223 	struct CommandList *c)
2224 {
2225 	struct SGDescriptor *chain_sg;
2226 
2227 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2228 		return;
2229 
2230 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2231 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2232 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2233 }
2234 
2235 
2236 /* Decode the various types of errors on ioaccel2 path.
2237  * Return 1 for any error that should generate a RAID path retry.
2238  * Return 0 for errors that don't require a RAID path retry.
2239  */
2240 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2241 					struct CommandList *c,
2242 					struct scsi_cmnd *cmd,
2243 					struct io_accel2_cmd *c2,
2244 					struct hpsa_scsi_dev_t *dev)
2245 {
2246 	int data_len;
2247 	int retry = 0;
2248 	u32 ioaccel2_resid = 0;
2249 
2250 	switch (c2->error_data.serv_response) {
2251 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2252 		switch (c2->error_data.status) {
2253 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2254 			break;
2255 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2256 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2257 			if (c2->error_data.data_present !=
2258 					IOACCEL2_SENSE_DATA_PRESENT) {
2259 				memset(cmd->sense_buffer, 0,
2260 					SCSI_SENSE_BUFFERSIZE);
2261 				break;
2262 			}
2263 			/* copy the sense data */
2264 			data_len = c2->error_data.sense_data_len;
2265 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2266 				data_len = SCSI_SENSE_BUFFERSIZE;
2267 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2268 				data_len =
2269 					sizeof(c2->error_data.sense_data_buff);
2270 			memcpy(cmd->sense_buffer,
2271 				c2->error_data.sense_data_buff, data_len);
2272 			retry = 1;
2273 			break;
2274 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2275 			retry = 1;
2276 			break;
2277 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2278 			retry = 1;
2279 			break;
2280 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2281 			retry = 1;
2282 			break;
2283 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2284 			retry = 1;
2285 			break;
2286 		default:
2287 			retry = 1;
2288 			break;
2289 		}
2290 		break;
2291 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2292 		switch (c2->error_data.status) {
2293 		case IOACCEL2_STATUS_SR_IO_ERROR:
2294 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2295 		case IOACCEL2_STATUS_SR_OVERRUN:
2296 			retry = 1;
2297 			break;
2298 		case IOACCEL2_STATUS_SR_UNDERRUN:
2299 			cmd->result = (DID_OK << 16);		/* host byte */
2300 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2301 			ioaccel2_resid = get_unaligned_le32(
2302 						&c2->error_data.resid_cnt[0]);
2303 			scsi_set_resid(cmd, ioaccel2_resid);
2304 			break;
2305 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2306 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2307 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2308 			/*
2309 			 * Did an HBA disk disappear? We will eventually
2310 			 * get a state change event from the controller but
2311 			 * in the meantime, we need to tell the OS that the
2312 			 * HBA disk is no longer there and stop I/O
2313 			 * from going down. This allows the potential re-insert
2314 			 * of the disk to get the same device node.
2315 			 */
2316 			if (dev->physical_device && dev->expose_device) {
2317 				cmd->result = DID_NO_CONNECT << 16;
2318 				dev->removed = 1;
2319 				h->drv_req_rescan = 1;
2320 				dev_warn(&h->pdev->dev,
2321 					"%s: device is gone!\n", __func__);
2322 			} else
2323 				/*
2324 				 * Retry by sending down the RAID path.
2325 				 * We will get an event from ctlr to
2326 				 * trigger rescan regardless.
2327 				 */
2328 				retry = 1;
2329 			break;
2330 		default:
2331 			retry = 1;
2332 		}
2333 		break;
2334 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2335 		break;
2336 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2337 		break;
2338 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2339 		retry = 1;
2340 		break;
2341 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2342 		break;
2343 	default:
2344 		retry = 1;
2345 		break;
2346 	}
2347 
2348 	return retry;	/* retry on raid path? */
2349 }
2350 
2351 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2352 		struct CommandList *c)
2353 {
2354 	bool do_wake = false;
2355 
2356 	/*
2357 	 * Prevent the following race in the abort handler:
2358 	 *
2359 	 * 1. LLD is requested to abort a SCSI command
2360 	 * 2. The SCSI command completes
2361 	 * 3. The struct CommandList associated with step 2 is made available
2362 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2363 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2364 	 *    finds struct CommandList and tries to aborts it
2365 	 * Now we have aborted the wrong command.
2366 	 *
2367 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2368 	 * this command has completed.  Then, check to see if the handler is
2369 	 * waiting for this command, and, if so, wake it.
2370 	 */
2371 	c->scsi_cmd = SCSI_CMD_IDLE;
2372 	mb();	/* Declare command idle before checking for pending events. */
2373 	if (c->abort_pending) {
2374 		do_wake = true;
2375 		c->abort_pending = false;
2376 	}
2377 	if (c->reset_pending) {
2378 		unsigned long flags;
2379 		struct hpsa_scsi_dev_t *dev;
2380 
2381 		/*
2382 		 * There appears to be a reset pending; lock the lock and
2383 		 * reconfirm.  If so, then decrement the count of outstanding
2384 		 * commands and wake the reset command if this is the last one.
2385 		 */
2386 		spin_lock_irqsave(&h->lock, flags);
2387 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2388 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2389 			do_wake = true;
2390 		c->reset_pending = NULL;
2391 		spin_unlock_irqrestore(&h->lock, flags);
2392 	}
2393 
2394 	if (do_wake)
2395 		wake_up_all(&h->event_sync_wait_queue);
2396 }
2397 
2398 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2399 				      struct CommandList *c)
2400 {
2401 	hpsa_cmd_resolve_events(h, c);
2402 	cmd_tagged_free(h, c);
2403 }
2404 
2405 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2406 		struct CommandList *c, struct scsi_cmnd *cmd)
2407 {
2408 	hpsa_cmd_resolve_and_free(h, c);
2409 	if (cmd && cmd->scsi_done)
2410 		cmd->scsi_done(cmd);
2411 }
2412 
2413 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2414 {
2415 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2416 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2417 }
2418 
2419 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2420 {
2421 	cmd->result = DID_ABORT << 16;
2422 }
2423 
2424 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2425 				    struct scsi_cmnd *cmd)
2426 {
2427 	hpsa_set_scsi_cmd_aborted(cmd);
2428 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2429 			 c->Request.CDB, c->err_info->ScsiStatus);
2430 	hpsa_cmd_resolve_and_free(h, c);
2431 }
2432 
2433 static void process_ioaccel2_completion(struct ctlr_info *h,
2434 		struct CommandList *c, struct scsi_cmnd *cmd,
2435 		struct hpsa_scsi_dev_t *dev)
2436 {
2437 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2438 
2439 	/* check for good status */
2440 	if (likely(c2->error_data.serv_response == 0 &&
2441 			c2->error_data.status == 0))
2442 		return hpsa_cmd_free_and_done(h, c, cmd);
2443 
2444 	/*
2445 	 * Any RAID offload error results in retry which will use
2446 	 * the normal I/O path so the controller can handle whatever's
2447 	 * wrong.
2448 	 */
2449 	if (is_logical_device(dev) &&
2450 		c2->error_data.serv_response ==
2451 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2452 		if (c2->error_data.status ==
2453 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2454 			dev->offload_enabled = 0;
2455 			dev->offload_to_be_enabled = 0;
2456 		}
2457 
2458 		return hpsa_retry_cmd(h, c);
2459 	}
2460 
2461 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2462 		return hpsa_retry_cmd(h, c);
2463 
2464 	return hpsa_cmd_free_and_done(h, c, cmd);
2465 }
2466 
2467 /* Returns 0 on success, < 0 otherwise. */
2468 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2469 					struct CommandList *cp)
2470 {
2471 	u8 tmf_status = cp->err_info->ScsiStatus;
2472 
2473 	switch (tmf_status) {
2474 	case CISS_TMF_COMPLETE:
2475 		/*
2476 		 * CISS_TMF_COMPLETE never happens, instead,
2477 		 * ei->CommandStatus == 0 for this case.
2478 		 */
2479 	case CISS_TMF_SUCCESS:
2480 		return 0;
2481 	case CISS_TMF_INVALID_FRAME:
2482 	case CISS_TMF_NOT_SUPPORTED:
2483 	case CISS_TMF_FAILED:
2484 	case CISS_TMF_WRONG_LUN:
2485 	case CISS_TMF_OVERLAPPED_TAG:
2486 		break;
2487 	default:
2488 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2489 				tmf_status);
2490 		break;
2491 	}
2492 	return -tmf_status;
2493 }
2494 
2495 static void complete_scsi_command(struct CommandList *cp)
2496 {
2497 	struct scsi_cmnd *cmd;
2498 	struct ctlr_info *h;
2499 	struct ErrorInfo *ei;
2500 	struct hpsa_scsi_dev_t *dev;
2501 	struct io_accel2_cmd *c2;
2502 
2503 	u8 sense_key;
2504 	u8 asc;      /* additional sense code */
2505 	u8 ascq;     /* additional sense code qualifier */
2506 	unsigned long sense_data_size;
2507 
2508 	ei = cp->err_info;
2509 	cmd = cp->scsi_cmd;
2510 	h = cp->h;
2511 
2512 	if (!cmd->device) {
2513 		cmd->result = DID_NO_CONNECT << 16;
2514 		return hpsa_cmd_free_and_done(h, cp, cmd);
2515 	}
2516 
2517 	dev = cmd->device->hostdata;
2518 	if (!dev) {
2519 		cmd->result = DID_NO_CONNECT << 16;
2520 		return hpsa_cmd_free_and_done(h, cp, cmd);
2521 	}
2522 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2523 
2524 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2525 	if ((cp->cmd_type == CMD_SCSI) &&
2526 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2527 		hpsa_unmap_sg_chain_block(h, cp);
2528 
2529 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2530 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2531 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2532 
2533 	cmd->result = (DID_OK << 16); 		/* host byte */
2534 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2535 
2536 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2537 		if (dev->physical_device && dev->expose_device &&
2538 			dev->removed) {
2539 			cmd->result = DID_NO_CONNECT << 16;
2540 			return hpsa_cmd_free_and_done(h, cp, cmd);
2541 		}
2542 		if (likely(cp->phys_disk != NULL))
2543 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2544 	}
2545 
2546 	/*
2547 	 * We check for lockup status here as it may be set for
2548 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2549 	 * fail_all_oustanding_cmds()
2550 	 */
2551 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2552 		/* DID_NO_CONNECT will prevent a retry */
2553 		cmd->result = DID_NO_CONNECT << 16;
2554 		return hpsa_cmd_free_and_done(h, cp, cmd);
2555 	}
2556 
2557 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2558 		if (cp->reset_pending)
2559 			return hpsa_cmd_free_and_done(h, cp, cmd);
2560 		if (cp->abort_pending)
2561 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2562 	}
2563 
2564 	if (cp->cmd_type == CMD_IOACCEL2)
2565 		return process_ioaccel2_completion(h, cp, cmd, dev);
2566 
2567 	scsi_set_resid(cmd, ei->ResidualCnt);
2568 	if (ei->CommandStatus == 0)
2569 		return hpsa_cmd_free_and_done(h, cp, cmd);
2570 
2571 	/* For I/O accelerator commands, copy over some fields to the normal
2572 	 * CISS header used below for error handling.
2573 	 */
2574 	if (cp->cmd_type == CMD_IOACCEL1) {
2575 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2576 		cp->Header.SGList = scsi_sg_count(cmd);
2577 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2578 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2579 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2580 		cp->Header.tag = c->tag;
2581 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2582 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2583 
2584 		/* Any RAID offload error results in retry which will use
2585 		 * the normal I/O path so the controller can handle whatever's
2586 		 * wrong.
2587 		 */
2588 		if (is_logical_device(dev)) {
2589 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2590 				dev->offload_enabled = 0;
2591 			return hpsa_retry_cmd(h, cp);
2592 		}
2593 	}
2594 
2595 	/* an error has occurred */
2596 	switch (ei->CommandStatus) {
2597 
2598 	case CMD_TARGET_STATUS:
2599 		cmd->result |= ei->ScsiStatus;
2600 		/* copy the sense data */
2601 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2602 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2603 		else
2604 			sense_data_size = sizeof(ei->SenseInfo);
2605 		if (ei->SenseLen < sense_data_size)
2606 			sense_data_size = ei->SenseLen;
2607 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2608 		if (ei->ScsiStatus)
2609 			decode_sense_data(ei->SenseInfo, sense_data_size,
2610 				&sense_key, &asc, &ascq);
2611 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2612 			if (sense_key == ABORTED_COMMAND) {
2613 				cmd->result |= DID_SOFT_ERROR << 16;
2614 				break;
2615 			}
2616 			break;
2617 		}
2618 		/* Problem was not a check condition
2619 		 * Pass it up to the upper layers...
2620 		 */
2621 		if (ei->ScsiStatus) {
2622 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2623 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2624 				"Returning result: 0x%x\n",
2625 				cp, ei->ScsiStatus,
2626 				sense_key, asc, ascq,
2627 				cmd->result);
2628 		} else {  /* scsi status is zero??? How??? */
2629 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2630 				"Returning no connection.\n", cp),
2631 
2632 			/* Ordinarily, this case should never happen,
2633 			 * but there is a bug in some released firmware
2634 			 * revisions that allows it to happen if, for
2635 			 * example, a 4100 backplane loses power and
2636 			 * the tape drive is in it.  We assume that
2637 			 * it's a fatal error of some kind because we
2638 			 * can't show that it wasn't. We will make it
2639 			 * look like selection timeout since that is
2640 			 * the most common reason for this to occur,
2641 			 * and it's severe enough.
2642 			 */
2643 
2644 			cmd->result = DID_NO_CONNECT << 16;
2645 		}
2646 		break;
2647 
2648 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2649 		break;
2650 	case CMD_DATA_OVERRUN:
2651 		dev_warn(&h->pdev->dev,
2652 			"CDB %16phN data overrun\n", cp->Request.CDB);
2653 		break;
2654 	case CMD_INVALID: {
2655 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2656 		print_cmd(cp); */
2657 		/* We get CMD_INVALID if you address a non-existent device
2658 		 * instead of a selection timeout (no response).  You will
2659 		 * see this if you yank out a drive, then try to access it.
2660 		 * This is kind of a shame because it means that any other
2661 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2662 		 * missing target. */
2663 		cmd->result = DID_NO_CONNECT << 16;
2664 	}
2665 		break;
2666 	case CMD_PROTOCOL_ERR:
2667 		cmd->result = DID_ERROR << 16;
2668 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2669 				cp->Request.CDB);
2670 		break;
2671 	case CMD_HARDWARE_ERR:
2672 		cmd->result = DID_ERROR << 16;
2673 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2674 			cp->Request.CDB);
2675 		break;
2676 	case CMD_CONNECTION_LOST:
2677 		cmd->result = DID_ERROR << 16;
2678 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2679 			cp->Request.CDB);
2680 		break;
2681 	case CMD_ABORTED:
2682 		/* Return now to avoid calling scsi_done(). */
2683 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2684 	case CMD_ABORT_FAILED:
2685 		cmd->result = DID_ERROR << 16;
2686 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2687 			cp->Request.CDB);
2688 		break;
2689 	case CMD_UNSOLICITED_ABORT:
2690 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2691 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2692 			cp->Request.CDB);
2693 		break;
2694 	case CMD_TIMEOUT:
2695 		cmd->result = DID_TIME_OUT << 16;
2696 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2697 			cp->Request.CDB);
2698 		break;
2699 	case CMD_UNABORTABLE:
2700 		cmd->result = DID_ERROR << 16;
2701 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2702 		break;
2703 	case CMD_TMF_STATUS:
2704 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2705 			cmd->result = DID_ERROR << 16;
2706 		break;
2707 	case CMD_IOACCEL_DISABLED:
2708 		/* This only handles the direct pass-through case since RAID
2709 		 * offload is handled above.  Just attempt a retry.
2710 		 */
2711 		cmd->result = DID_SOFT_ERROR << 16;
2712 		dev_warn(&h->pdev->dev,
2713 				"cp %p had HP SSD Smart Path error\n", cp);
2714 		break;
2715 	default:
2716 		cmd->result = DID_ERROR << 16;
2717 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2718 				cp, ei->CommandStatus);
2719 	}
2720 
2721 	return hpsa_cmd_free_and_done(h, cp, cmd);
2722 }
2723 
2724 static void hpsa_pci_unmap(struct pci_dev *pdev,
2725 	struct CommandList *c, int sg_used, int data_direction)
2726 {
2727 	int i;
2728 
2729 	for (i = 0; i < sg_used; i++)
2730 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2731 				le32_to_cpu(c->SG[i].Len),
2732 				data_direction);
2733 }
2734 
2735 static int hpsa_map_one(struct pci_dev *pdev,
2736 		struct CommandList *cp,
2737 		unsigned char *buf,
2738 		size_t buflen,
2739 		int data_direction)
2740 {
2741 	u64 addr64;
2742 
2743 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2744 		cp->Header.SGList = 0;
2745 		cp->Header.SGTotal = cpu_to_le16(0);
2746 		return 0;
2747 	}
2748 
2749 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2750 	if (dma_mapping_error(&pdev->dev, addr64)) {
2751 		/* Prevent subsequent unmap of something never mapped */
2752 		cp->Header.SGList = 0;
2753 		cp->Header.SGTotal = cpu_to_le16(0);
2754 		return -1;
2755 	}
2756 	cp->SG[0].Addr = cpu_to_le64(addr64);
2757 	cp->SG[0].Len = cpu_to_le32(buflen);
2758 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2759 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2760 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2761 	return 0;
2762 }
2763 
2764 #define NO_TIMEOUT ((unsigned long) -1)
2765 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2766 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2767 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2768 {
2769 	DECLARE_COMPLETION_ONSTACK(wait);
2770 
2771 	c->waiting = &wait;
2772 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2773 	if (timeout_msecs == NO_TIMEOUT) {
2774 		/* TODO: get rid of this no-timeout thing */
2775 		wait_for_completion_io(&wait);
2776 		return IO_OK;
2777 	}
2778 	if (!wait_for_completion_io_timeout(&wait,
2779 					msecs_to_jiffies(timeout_msecs))) {
2780 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2781 		return -ETIMEDOUT;
2782 	}
2783 	return IO_OK;
2784 }
2785 
2786 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2787 				   int reply_queue, unsigned long timeout_msecs)
2788 {
2789 	if (unlikely(lockup_detected(h))) {
2790 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2791 		return IO_OK;
2792 	}
2793 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2794 }
2795 
2796 static u32 lockup_detected(struct ctlr_info *h)
2797 {
2798 	int cpu;
2799 	u32 rc, *lockup_detected;
2800 
2801 	cpu = get_cpu();
2802 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2803 	rc = *lockup_detected;
2804 	put_cpu();
2805 	return rc;
2806 }
2807 
2808 #define MAX_DRIVER_CMD_RETRIES 25
2809 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2810 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2811 {
2812 	int backoff_time = 10, retry_count = 0;
2813 	int rc;
2814 
2815 	do {
2816 		memset(c->err_info, 0, sizeof(*c->err_info));
2817 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2818 						  timeout_msecs);
2819 		if (rc)
2820 			break;
2821 		retry_count++;
2822 		if (retry_count > 3) {
2823 			msleep(backoff_time);
2824 			if (backoff_time < 1000)
2825 				backoff_time *= 2;
2826 		}
2827 	} while ((check_for_unit_attention(h, c) ||
2828 			check_for_busy(h, c)) &&
2829 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2830 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2831 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2832 		rc = -EIO;
2833 	return rc;
2834 }
2835 
2836 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2837 				struct CommandList *c)
2838 {
2839 	const u8 *cdb = c->Request.CDB;
2840 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2841 
2842 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2843 		 txt, lun, cdb);
2844 }
2845 
2846 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2847 			struct CommandList *cp)
2848 {
2849 	const struct ErrorInfo *ei = cp->err_info;
2850 	struct device *d = &cp->h->pdev->dev;
2851 	u8 sense_key, asc, ascq;
2852 	int sense_len;
2853 
2854 	switch (ei->CommandStatus) {
2855 	case CMD_TARGET_STATUS:
2856 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2857 			sense_len = sizeof(ei->SenseInfo);
2858 		else
2859 			sense_len = ei->SenseLen;
2860 		decode_sense_data(ei->SenseInfo, sense_len,
2861 					&sense_key, &asc, &ascq);
2862 		hpsa_print_cmd(h, "SCSI status", cp);
2863 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2864 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2865 				sense_key, asc, ascq);
2866 		else
2867 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2868 		if (ei->ScsiStatus == 0)
2869 			dev_warn(d, "SCSI status is abnormally zero.  "
2870 			"(probably indicates selection timeout "
2871 			"reported incorrectly due to a known "
2872 			"firmware bug, circa July, 2001.)\n");
2873 		break;
2874 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2875 		break;
2876 	case CMD_DATA_OVERRUN:
2877 		hpsa_print_cmd(h, "overrun condition", cp);
2878 		break;
2879 	case CMD_INVALID: {
2880 		/* controller unfortunately reports SCSI passthru's
2881 		 * to non-existent targets as invalid commands.
2882 		 */
2883 		hpsa_print_cmd(h, "invalid command", cp);
2884 		dev_warn(d, "probably means device no longer present\n");
2885 		}
2886 		break;
2887 	case CMD_PROTOCOL_ERR:
2888 		hpsa_print_cmd(h, "protocol error", cp);
2889 		break;
2890 	case CMD_HARDWARE_ERR:
2891 		hpsa_print_cmd(h, "hardware error", cp);
2892 		break;
2893 	case CMD_CONNECTION_LOST:
2894 		hpsa_print_cmd(h, "connection lost", cp);
2895 		break;
2896 	case CMD_ABORTED:
2897 		hpsa_print_cmd(h, "aborted", cp);
2898 		break;
2899 	case CMD_ABORT_FAILED:
2900 		hpsa_print_cmd(h, "abort failed", cp);
2901 		break;
2902 	case CMD_UNSOLICITED_ABORT:
2903 		hpsa_print_cmd(h, "unsolicited abort", cp);
2904 		break;
2905 	case CMD_TIMEOUT:
2906 		hpsa_print_cmd(h, "timed out", cp);
2907 		break;
2908 	case CMD_UNABORTABLE:
2909 		hpsa_print_cmd(h, "unabortable", cp);
2910 		break;
2911 	case CMD_CTLR_LOCKUP:
2912 		hpsa_print_cmd(h, "controller lockup detected", cp);
2913 		break;
2914 	default:
2915 		hpsa_print_cmd(h, "unknown status", cp);
2916 		dev_warn(d, "Unknown command status %x\n",
2917 				ei->CommandStatus);
2918 	}
2919 }
2920 
2921 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2922 			u16 page, unsigned char *buf,
2923 			unsigned char bufsize)
2924 {
2925 	int rc = IO_OK;
2926 	struct CommandList *c;
2927 	struct ErrorInfo *ei;
2928 
2929 	c = cmd_alloc(h);
2930 
2931 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2932 			page, scsi3addr, TYPE_CMD)) {
2933 		rc = -1;
2934 		goto out;
2935 	}
2936 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2937 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2938 	if (rc)
2939 		goto out;
2940 	ei = c->err_info;
2941 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2942 		hpsa_scsi_interpret_error(h, c);
2943 		rc = -1;
2944 	}
2945 out:
2946 	cmd_free(h, c);
2947 	return rc;
2948 }
2949 
2950 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2951 	u8 reset_type, int reply_queue)
2952 {
2953 	int rc = IO_OK;
2954 	struct CommandList *c;
2955 	struct ErrorInfo *ei;
2956 
2957 	c = cmd_alloc(h);
2958 
2959 
2960 	/* fill_cmd can't fail here, no data buffer to map. */
2961 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2962 			scsi3addr, TYPE_MSG);
2963 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2964 	if (rc) {
2965 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2966 		goto out;
2967 	}
2968 	/* no unmap needed here because no data xfer. */
2969 
2970 	ei = c->err_info;
2971 	if (ei->CommandStatus != 0) {
2972 		hpsa_scsi_interpret_error(h, c);
2973 		rc = -1;
2974 	}
2975 out:
2976 	cmd_free(h, c);
2977 	return rc;
2978 }
2979 
2980 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2981 			       struct hpsa_scsi_dev_t *dev,
2982 			       unsigned char *scsi3addr)
2983 {
2984 	int i;
2985 	bool match = false;
2986 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2987 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2988 
2989 	if (hpsa_is_cmd_idle(c))
2990 		return false;
2991 
2992 	switch (c->cmd_type) {
2993 	case CMD_SCSI:
2994 	case CMD_IOCTL_PEND:
2995 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2996 				sizeof(c->Header.LUN.LunAddrBytes));
2997 		break;
2998 
2999 	case CMD_IOACCEL1:
3000 	case CMD_IOACCEL2:
3001 		if (c->phys_disk == dev) {
3002 			/* HBA mode match */
3003 			match = true;
3004 		} else {
3005 			/* Possible RAID mode -- check each phys dev. */
3006 			/* FIXME:  Do we need to take out a lock here?  If
3007 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3008 			 * instead. */
3009 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3010 				/* FIXME: an alternate test might be
3011 				 *
3012 				 * match = dev->phys_disk[i]->ioaccel_handle
3013 				 *              == c2->scsi_nexus;      */
3014 				match = dev->phys_disk[i] == c->phys_disk;
3015 			}
3016 		}
3017 		break;
3018 
3019 	case IOACCEL2_TMF:
3020 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3021 			match = dev->phys_disk[i]->ioaccel_handle ==
3022 					le32_to_cpu(ac->it_nexus);
3023 		}
3024 		break;
3025 
3026 	case 0:		/* The command is in the middle of being initialized. */
3027 		match = false;
3028 		break;
3029 
3030 	default:
3031 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3032 			c->cmd_type);
3033 		BUG();
3034 	}
3035 
3036 	return match;
3037 }
3038 
3039 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3040 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3041 {
3042 	int i;
3043 	int rc = 0;
3044 
3045 	/* We can really only handle one reset at a time */
3046 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3047 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3048 		return -EINTR;
3049 	}
3050 
3051 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3052 
3053 	for (i = 0; i < h->nr_cmds; i++) {
3054 		struct CommandList *c = h->cmd_pool + i;
3055 		int refcount = atomic_inc_return(&c->refcount);
3056 
3057 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3058 			unsigned long flags;
3059 
3060 			/*
3061 			 * Mark the target command as having a reset pending,
3062 			 * then lock a lock so that the command cannot complete
3063 			 * while we're considering it.  If the command is not
3064 			 * idle then count it; otherwise revoke the event.
3065 			 */
3066 			c->reset_pending = dev;
3067 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3068 			if (!hpsa_is_cmd_idle(c))
3069 				atomic_inc(&dev->reset_cmds_out);
3070 			else
3071 				c->reset_pending = NULL;
3072 			spin_unlock_irqrestore(&h->lock, flags);
3073 		}
3074 
3075 		cmd_free(h, c);
3076 	}
3077 
3078 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3079 	if (!rc)
3080 		wait_event(h->event_sync_wait_queue,
3081 			atomic_read(&dev->reset_cmds_out) == 0 ||
3082 			lockup_detected(h));
3083 
3084 	if (unlikely(lockup_detected(h))) {
3085 		dev_warn(&h->pdev->dev,
3086 			 "Controller lockup detected during reset wait\n");
3087 		rc = -ENODEV;
3088 	}
3089 
3090 	if (unlikely(rc))
3091 		atomic_set(&dev->reset_cmds_out, 0);
3092 	else
3093 		wait_for_device_to_become_ready(h, scsi3addr, 0);
3094 
3095 	mutex_unlock(&h->reset_mutex);
3096 	return rc;
3097 }
3098 
3099 static void hpsa_get_raid_level(struct ctlr_info *h,
3100 	unsigned char *scsi3addr, unsigned char *raid_level)
3101 {
3102 	int rc;
3103 	unsigned char *buf;
3104 
3105 	*raid_level = RAID_UNKNOWN;
3106 	buf = kzalloc(64, GFP_KERNEL);
3107 	if (!buf)
3108 		return;
3109 
3110 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3111 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3112 		goto exit;
3113 
3114 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3115 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3116 
3117 	if (rc == 0)
3118 		*raid_level = buf[8];
3119 	if (*raid_level > RAID_UNKNOWN)
3120 		*raid_level = RAID_UNKNOWN;
3121 exit:
3122 	kfree(buf);
3123 	return;
3124 }
3125 
3126 #define HPSA_MAP_DEBUG
3127 #ifdef HPSA_MAP_DEBUG
3128 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3129 				struct raid_map_data *map_buff)
3130 {
3131 	struct raid_map_disk_data *dd = &map_buff->data[0];
3132 	int map, row, col;
3133 	u16 map_cnt, row_cnt, disks_per_row;
3134 
3135 	if (rc != 0)
3136 		return;
3137 
3138 	/* Show details only if debugging has been activated. */
3139 	if (h->raid_offload_debug < 2)
3140 		return;
3141 
3142 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3143 				le32_to_cpu(map_buff->structure_size));
3144 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3145 			le32_to_cpu(map_buff->volume_blk_size));
3146 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3147 			le64_to_cpu(map_buff->volume_blk_cnt));
3148 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3149 			map_buff->phys_blk_shift);
3150 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3151 			map_buff->parity_rotation_shift);
3152 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3153 			le16_to_cpu(map_buff->strip_size));
3154 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3155 			le64_to_cpu(map_buff->disk_starting_blk));
3156 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3157 			le64_to_cpu(map_buff->disk_blk_cnt));
3158 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3159 			le16_to_cpu(map_buff->data_disks_per_row));
3160 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3161 			le16_to_cpu(map_buff->metadata_disks_per_row));
3162 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3163 			le16_to_cpu(map_buff->row_cnt));
3164 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3165 			le16_to_cpu(map_buff->layout_map_count));
3166 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3167 			le16_to_cpu(map_buff->flags));
3168 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3169 			le16_to_cpu(map_buff->flags) &
3170 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3171 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3172 			le16_to_cpu(map_buff->dekindex));
3173 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3174 	for (map = 0; map < map_cnt; map++) {
3175 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3176 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3177 		for (row = 0; row < row_cnt; row++) {
3178 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3179 			disks_per_row =
3180 				le16_to_cpu(map_buff->data_disks_per_row);
3181 			for (col = 0; col < disks_per_row; col++, dd++)
3182 				dev_info(&h->pdev->dev,
3183 					"    D%02u: h=0x%04x xor=%u,%u\n",
3184 					col, dd->ioaccel_handle,
3185 					dd->xor_mult[0], dd->xor_mult[1]);
3186 			disks_per_row =
3187 				le16_to_cpu(map_buff->metadata_disks_per_row);
3188 			for (col = 0; col < disks_per_row; col++, dd++)
3189 				dev_info(&h->pdev->dev,
3190 					"    M%02u: h=0x%04x xor=%u,%u\n",
3191 					col, dd->ioaccel_handle,
3192 					dd->xor_mult[0], dd->xor_mult[1]);
3193 		}
3194 	}
3195 }
3196 #else
3197 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3198 			__attribute__((unused)) int rc,
3199 			__attribute__((unused)) struct raid_map_data *map_buff)
3200 {
3201 }
3202 #endif
3203 
3204 static int hpsa_get_raid_map(struct ctlr_info *h,
3205 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3206 {
3207 	int rc = 0;
3208 	struct CommandList *c;
3209 	struct ErrorInfo *ei;
3210 
3211 	c = cmd_alloc(h);
3212 
3213 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3214 			sizeof(this_device->raid_map), 0,
3215 			scsi3addr, TYPE_CMD)) {
3216 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3217 		cmd_free(h, c);
3218 		return -1;
3219 	}
3220 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3221 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3222 	if (rc)
3223 		goto out;
3224 	ei = c->err_info;
3225 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3226 		hpsa_scsi_interpret_error(h, c);
3227 		rc = -1;
3228 		goto out;
3229 	}
3230 	cmd_free(h, c);
3231 
3232 	/* @todo in the future, dynamically allocate RAID map memory */
3233 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3234 				sizeof(this_device->raid_map)) {
3235 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3236 		rc = -1;
3237 	}
3238 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3239 	return rc;
3240 out:
3241 	cmd_free(h, c);
3242 	return rc;
3243 }
3244 
3245 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3246 		unsigned char scsi3addr[], u16 bmic_device_index,
3247 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3248 {
3249 	int rc = IO_OK;
3250 	struct CommandList *c;
3251 	struct ErrorInfo *ei;
3252 
3253 	c = cmd_alloc(h);
3254 
3255 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3256 		0, RAID_CTLR_LUNID, TYPE_CMD);
3257 	if (rc)
3258 		goto out;
3259 
3260 	c->Request.CDB[2] = bmic_device_index & 0xff;
3261 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3262 
3263 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3264 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3265 	if (rc)
3266 		goto out;
3267 	ei = c->err_info;
3268 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3269 		hpsa_scsi_interpret_error(h, c);
3270 		rc = -1;
3271 	}
3272 out:
3273 	cmd_free(h, c);
3274 	return rc;
3275 }
3276 
3277 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3278 	struct bmic_identify_controller *buf, size_t bufsize)
3279 {
3280 	int rc = IO_OK;
3281 	struct CommandList *c;
3282 	struct ErrorInfo *ei;
3283 
3284 	c = cmd_alloc(h);
3285 
3286 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3287 		0, RAID_CTLR_LUNID, TYPE_CMD);
3288 	if (rc)
3289 		goto out;
3290 
3291 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3292 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3293 	if (rc)
3294 		goto out;
3295 	ei = c->err_info;
3296 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3297 		hpsa_scsi_interpret_error(h, c);
3298 		rc = -1;
3299 	}
3300 out:
3301 	cmd_free(h, c);
3302 	return rc;
3303 }
3304 
3305 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3306 		unsigned char scsi3addr[], u16 bmic_device_index,
3307 		struct bmic_identify_physical_device *buf, size_t bufsize)
3308 {
3309 	int rc = IO_OK;
3310 	struct CommandList *c;
3311 	struct ErrorInfo *ei;
3312 
3313 	c = cmd_alloc(h);
3314 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3315 		0, RAID_CTLR_LUNID, TYPE_CMD);
3316 	if (rc)
3317 		goto out;
3318 
3319 	c->Request.CDB[2] = bmic_device_index & 0xff;
3320 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3321 
3322 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3323 						DEFAULT_TIMEOUT);
3324 	ei = c->err_info;
3325 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3326 		hpsa_scsi_interpret_error(h, c);
3327 		rc = -1;
3328 	}
3329 out:
3330 	cmd_free(h, c);
3331 
3332 	return rc;
3333 }
3334 
3335 /*
3336  * get enclosure information
3337  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3338  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3339  * Uses id_physical_device to determine the box_index.
3340  */
3341 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3342 			unsigned char *scsi3addr,
3343 			struct ReportExtendedLUNdata *rlep, int rle_index,
3344 			struct hpsa_scsi_dev_t *encl_dev)
3345 {
3346 	int rc = -1;
3347 	struct CommandList *c = NULL;
3348 	struct ErrorInfo *ei = NULL;
3349 	struct bmic_sense_storage_box_params *bssbp = NULL;
3350 	struct bmic_identify_physical_device *id_phys = NULL;
3351 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3352 	u16 bmic_device_index = 0;
3353 
3354 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3355 
3356 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3357 		rc = IO_OK;
3358 		goto out;
3359 	}
3360 
3361 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3362 	if (!bssbp)
3363 		goto out;
3364 
3365 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3366 	if (!id_phys)
3367 		goto out;
3368 
3369 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3370 						id_phys, sizeof(*id_phys));
3371 	if (rc) {
3372 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3373 			__func__, encl_dev->external, bmic_device_index);
3374 		goto out;
3375 	}
3376 
3377 	c = cmd_alloc(h);
3378 
3379 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3380 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3381 
3382 	if (rc)
3383 		goto out;
3384 
3385 	if (id_phys->phys_connector[1] == 'E')
3386 		c->Request.CDB[5] = id_phys->box_index;
3387 	else
3388 		c->Request.CDB[5] = 0;
3389 
3390 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3391 						DEFAULT_TIMEOUT);
3392 	if (rc)
3393 		goto out;
3394 
3395 	ei = c->err_info;
3396 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3397 		rc = -1;
3398 		goto out;
3399 	}
3400 
3401 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3402 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3403 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3404 
3405 	rc = IO_OK;
3406 out:
3407 	kfree(bssbp);
3408 	kfree(id_phys);
3409 
3410 	if (c)
3411 		cmd_free(h, c);
3412 
3413 	if (rc != IO_OK)
3414 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3415 			"Error, could not get enclosure information\n");
3416 }
3417 
3418 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3419 						unsigned char *scsi3addr)
3420 {
3421 	struct ReportExtendedLUNdata *physdev;
3422 	u32 nphysicals;
3423 	u64 sa = 0;
3424 	int i;
3425 
3426 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3427 	if (!physdev)
3428 		return 0;
3429 
3430 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3431 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3432 		kfree(physdev);
3433 		return 0;
3434 	}
3435 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3436 
3437 	for (i = 0; i < nphysicals; i++)
3438 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3439 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3440 			break;
3441 		}
3442 
3443 	kfree(physdev);
3444 
3445 	return sa;
3446 }
3447 
3448 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3449 					struct hpsa_scsi_dev_t *dev)
3450 {
3451 	int rc;
3452 	u64 sa = 0;
3453 
3454 	if (is_hba_lunid(scsi3addr)) {
3455 		struct bmic_sense_subsystem_info *ssi;
3456 
3457 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3458 		if (!ssi)
3459 			return;
3460 
3461 		rc = hpsa_bmic_sense_subsystem_information(h,
3462 					scsi3addr, 0, ssi, sizeof(*ssi));
3463 		if (rc == 0) {
3464 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3465 			h->sas_address = sa;
3466 		}
3467 
3468 		kfree(ssi);
3469 	} else
3470 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3471 
3472 	dev->sas_address = sa;
3473 }
3474 
3475 /* Get a device id from inquiry page 0x83 */
3476 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3477 	unsigned char scsi3addr[], u8 page)
3478 {
3479 	int rc;
3480 	int i;
3481 	int pages;
3482 	unsigned char *buf, bufsize;
3483 
3484 	buf = kzalloc(256, GFP_KERNEL);
3485 	if (!buf)
3486 		return false;
3487 
3488 	/* Get the size of the page list first */
3489 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3490 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3491 				buf, HPSA_VPD_HEADER_SZ);
3492 	if (rc != 0)
3493 		goto exit_unsupported;
3494 	pages = buf[3];
3495 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3496 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3497 	else
3498 		bufsize = 255;
3499 
3500 	/* Get the whole VPD page list */
3501 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3502 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3503 				buf, bufsize);
3504 	if (rc != 0)
3505 		goto exit_unsupported;
3506 
3507 	pages = buf[3];
3508 	for (i = 1; i <= pages; i++)
3509 		if (buf[3 + i] == page)
3510 			goto exit_supported;
3511 exit_unsupported:
3512 	kfree(buf);
3513 	return false;
3514 exit_supported:
3515 	kfree(buf);
3516 	return true;
3517 }
3518 
3519 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3520 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3521 {
3522 	int rc;
3523 	unsigned char *buf;
3524 	u8 ioaccel_status;
3525 
3526 	this_device->offload_config = 0;
3527 	this_device->offload_enabled = 0;
3528 	this_device->offload_to_be_enabled = 0;
3529 
3530 	buf = kzalloc(64, GFP_KERNEL);
3531 	if (!buf)
3532 		return;
3533 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3534 		goto out;
3535 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3536 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3537 	if (rc != 0)
3538 		goto out;
3539 
3540 #define IOACCEL_STATUS_BYTE 4
3541 #define OFFLOAD_CONFIGURED_BIT 0x01
3542 #define OFFLOAD_ENABLED_BIT 0x02
3543 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3544 	this_device->offload_config =
3545 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3546 	if (this_device->offload_config) {
3547 		this_device->offload_enabled =
3548 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3549 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3550 			this_device->offload_enabled = 0;
3551 	}
3552 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3553 out:
3554 	kfree(buf);
3555 	return;
3556 }
3557 
3558 /* Get the device id from inquiry page 0x83 */
3559 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3560 	unsigned char *device_id, int index, int buflen)
3561 {
3562 	int rc;
3563 	unsigned char *buf;
3564 
3565 	/* Does controller have VPD for device id? */
3566 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3567 		return 1; /* not supported */
3568 
3569 	buf = kzalloc(64, GFP_KERNEL);
3570 	if (!buf)
3571 		return -ENOMEM;
3572 
3573 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3574 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3575 	if (rc == 0) {
3576 		if (buflen > 16)
3577 			buflen = 16;
3578 		memcpy(device_id, &buf[8], buflen);
3579 	}
3580 
3581 	kfree(buf);
3582 
3583 	return rc; /*0 - got id,  otherwise, didn't */
3584 }
3585 
3586 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3587 		void *buf, int bufsize,
3588 		int extended_response)
3589 {
3590 	int rc = IO_OK;
3591 	struct CommandList *c;
3592 	unsigned char scsi3addr[8];
3593 	struct ErrorInfo *ei;
3594 
3595 	c = cmd_alloc(h);
3596 
3597 	/* address the controller */
3598 	memset(scsi3addr, 0, sizeof(scsi3addr));
3599 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3600 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3601 		rc = -1;
3602 		goto out;
3603 	}
3604 	if (extended_response)
3605 		c->Request.CDB[1] = extended_response;
3606 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3607 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3608 	if (rc)
3609 		goto out;
3610 	ei = c->err_info;
3611 	if (ei->CommandStatus != 0 &&
3612 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3613 		hpsa_scsi_interpret_error(h, c);
3614 		rc = -1;
3615 	} else {
3616 		struct ReportLUNdata *rld = buf;
3617 
3618 		if (rld->extended_response_flag != extended_response) {
3619 			dev_err(&h->pdev->dev,
3620 				"report luns requested format %u, got %u\n",
3621 				extended_response,
3622 				rld->extended_response_flag);
3623 			rc = -1;
3624 		}
3625 	}
3626 out:
3627 	cmd_free(h, c);
3628 	return rc;
3629 }
3630 
3631 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3632 		struct ReportExtendedLUNdata *buf, int bufsize)
3633 {
3634 	int rc;
3635 	struct ReportLUNdata *lbuf;
3636 
3637 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3638 				      HPSA_REPORT_PHYS_EXTENDED);
3639 	if (!rc || !hpsa_allow_any)
3640 		return rc;
3641 
3642 	/* REPORT PHYS EXTENDED is not supported */
3643 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3644 	if (!lbuf)
3645 		return -ENOMEM;
3646 
3647 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3648 	if (!rc) {
3649 		int i;
3650 		u32 nphys;
3651 
3652 		/* Copy ReportLUNdata header */
3653 		memcpy(buf, lbuf, 8);
3654 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3655 		for (i = 0; i < nphys; i++)
3656 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3657 	}
3658 	kfree(lbuf);
3659 	return rc;
3660 }
3661 
3662 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3663 		struct ReportLUNdata *buf, int bufsize)
3664 {
3665 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3666 }
3667 
3668 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3669 	int bus, int target, int lun)
3670 {
3671 	device->bus = bus;
3672 	device->target = target;
3673 	device->lun = lun;
3674 }
3675 
3676 /* Use VPD inquiry to get details of volume status */
3677 static int hpsa_get_volume_status(struct ctlr_info *h,
3678 					unsigned char scsi3addr[])
3679 {
3680 	int rc;
3681 	int status;
3682 	int size;
3683 	unsigned char *buf;
3684 
3685 	buf = kzalloc(64, GFP_KERNEL);
3686 	if (!buf)
3687 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3688 
3689 	/* Does controller have VPD for logical volume status? */
3690 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3691 		goto exit_failed;
3692 
3693 	/* Get the size of the VPD return buffer */
3694 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3695 					buf, HPSA_VPD_HEADER_SZ);
3696 	if (rc != 0)
3697 		goto exit_failed;
3698 	size = buf[3];
3699 
3700 	/* Now get the whole VPD buffer */
3701 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3702 					buf, size + HPSA_VPD_HEADER_SZ);
3703 	if (rc != 0)
3704 		goto exit_failed;
3705 	status = buf[4]; /* status byte */
3706 
3707 	kfree(buf);
3708 	return status;
3709 exit_failed:
3710 	kfree(buf);
3711 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3712 }
3713 
3714 /* Determine offline status of a volume.
3715  * Return either:
3716  *  0 (not offline)
3717  *  0xff (offline for unknown reasons)
3718  *  # (integer code indicating one of several NOT READY states
3719  *     describing why a volume is to be kept offline)
3720  */
3721 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3722 					unsigned char scsi3addr[])
3723 {
3724 	struct CommandList *c;
3725 	unsigned char *sense;
3726 	u8 sense_key, asc, ascq;
3727 	int sense_len;
3728 	int rc, ldstat = 0;
3729 	u16 cmd_status;
3730 	u8 scsi_status;
3731 #define ASC_LUN_NOT_READY 0x04
3732 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3733 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3734 
3735 	c = cmd_alloc(h);
3736 
3737 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3738 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3739 					DEFAULT_TIMEOUT);
3740 	if (rc) {
3741 		cmd_free(h, c);
3742 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3743 	}
3744 	sense = c->err_info->SenseInfo;
3745 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3746 		sense_len = sizeof(c->err_info->SenseInfo);
3747 	else
3748 		sense_len = c->err_info->SenseLen;
3749 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3750 	cmd_status = c->err_info->CommandStatus;
3751 	scsi_status = c->err_info->ScsiStatus;
3752 	cmd_free(h, c);
3753 
3754 	/* Determine the reason for not ready state */
3755 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3756 
3757 	/* Keep volume offline in certain cases: */
3758 	switch (ldstat) {
3759 	case HPSA_LV_FAILED:
3760 	case HPSA_LV_UNDERGOING_ERASE:
3761 	case HPSA_LV_NOT_AVAILABLE:
3762 	case HPSA_LV_UNDERGOING_RPI:
3763 	case HPSA_LV_PENDING_RPI:
3764 	case HPSA_LV_ENCRYPTED_NO_KEY:
3765 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3766 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3767 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3768 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3769 		return ldstat;
3770 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3771 		/* If VPD status page isn't available,
3772 		 * use ASC/ASCQ to determine state
3773 		 */
3774 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3775 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3776 			return ldstat;
3777 		break;
3778 	default:
3779 		break;
3780 	}
3781 	return HPSA_LV_OK;
3782 }
3783 
3784 /*
3785  * Find out if a logical device supports aborts by simply trying one.
3786  * Smart Array may claim not to support aborts on logical drives, but
3787  * if a MSA2000 * is connected, the drives on that will be presented
3788  * by the Smart Array as logical drives, and aborts may be sent to
3789  * those devices successfully.  So the simplest way to find out is
3790  * to simply try an abort and see how the device responds.
3791  */
3792 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3793 					unsigned char *scsi3addr)
3794 {
3795 	struct CommandList *c;
3796 	struct ErrorInfo *ei;
3797 	int rc = 0;
3798 
3799 	u64 tag = (u64) -1; /* bogus tag */
3800 
3801 	/* Assume that physical devices support aborts */
3802 	if (!is_logical_dev_addr_mode(scsi3addr))
3803 		return 1;
3804 
3805 	c = cmd_alloc(h);
3806 
3807 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3808 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3809 					DEFAULT_TIMEOUT);
3810 	/* no unmap needed here because no data xfer. */
3811 	ei = c->err_info;
3812 	switch (ei->CommandStatus) {
3813 	case CMD_INVALID:
3814 		rc = 0;
3815 		break;
3816 	case CMD_UNABORTABLE:
3817 	case CMD_ABORT_FAILED:
3818 		rc = 1;
3819 		break;
3820 	case CMD_TMF_STATUS:
3821 		rc = hpsa_evaluate_tmf_status(h, c);
3822 		break;
3823 	default:
3824 		rc = 0;
3825 		break;
3826 	}
3827 	cmd_free(h, c);
3828 	return rc;
3829 }
3830 
3831 static int hpsa_update_device_info(struct ctlr_info *h,
3832 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3833 	unsigned char *is_OBDR_device)
3834 {
3835 
3836 #define OBDR_SIG_OFFSET 43
3837 #define OBDR_TAPE_SIG "$DR-10"
3838 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3839 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3840 
3841 	unsigned char *inq_buff;
3842 	unsigned char *obdr_sig;
3843 	int rc = 0;
3844 
3845 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3846 	if (!inq_buff) {
3847 		rc = -ENOMEM;
3848 		goto bail_out;
3849 	}
3850 
3851 	/* Do an inquiry to the device to see what it is. */
3852 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3853 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3854 		dev_err(&h->pdev->dev,
3855 			"%s: inquiry failed, device will be skipped.\n",
3856 			__func__);
3857 		rc = HPSA_INQUIRY_FAILED;
3858 		goto bail_out;
3859 	}
3860 
3861 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3862 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3863 
3864 	this_device->devtype = (inq_buff[0] & 0x1f);
3865 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3866 	memcpy(this_device->vendor, &inq_buff[8],
3867 		sizeof(this_device->vendor));
3868 	memcpy(this_device->model, &inq_buff[16],
3869 		sizeof(this_device->model));
3870 	this_device->rev = inq_buff[2];
3871 	memset(this_device->device_id, 0,
3872 		sizeof(this_device->device_id));
3873 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3874 		sizeof(this_device->device_id)))
3875 		dev_err(&h->pdev->dev,
3876 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3877 			h->ctlr, __func__,
3878 			h->scsi_host->host_no,
3879 			this_device->target, this_device->lun,
3880 			scsi_device_type(this_device->devtype),
3881 			this_device->model);
3882 
3883 	if ((this_device->devtype == TYPE_DISK ||
3884 		this_device->devtype == TYPE_ZBC) &&
3885 		is_logical_dev_addr_mode(scsi3addr)) {
3886 		unsigned char volume_offline;
3887 
3888 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3889 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3890 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3891 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3892 		this_device->volume_offline = volume_offline;
3893 		if (volume_offline == HPSA_LV_FAILED) {
3894 			rc = HPSA_LV_FAILED;
3895 			dev_err(&h->pdev->dev,
3896 				"%s: LV failed, device will be skipped.\n",
3897 				__func__);
3898 			goto bail_out;
3899 		}
3900 	} else {
3901 		this_device->raid_level = RAID_UNKNOWN;
3902 		this_device->offload_config = 0;
3903 		this_device->offload_enabled = 0;
3904 		this_device->offload_to_be_enabled = 0;
3905 		this_device->hba_ioaccel_enabled = 0;
3906 		this_device->volume_offline = 0;
3907 		this_device->queue_depth = h->nr_cmds;
3908 	}
3909 
3910 	if (is_OBDR_device) {
3911 		/* See if this is a One-Button-Disaster-Recovery device
3912 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3913 		 */
3914 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3915 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3916 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3917 						OBDR_SIG_LEN) == 0);
3918 	}
3919 	kfree(inq_buff);
3920 	return 0;
3921 
3922 bail_out:
3923 	kfree(inq_buff);
3924 	return rc;
3925 }
3926 
3927 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3928 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3929 {
3930 	unsigned long flags;
3931 	int rc, entry;
3932 	/*
3933 	 * See if this device supports aborts.  If we already know
3934 	 * the device, we already know if it supports aborts, otherwise
3935 	 * we have to find out if it supports aborts by trying one.
3936 	 */
3937 	spin_lock_irqsave(&h->devlock, flags);
3938 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3939 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3940 		entry >= 0 && entry < h->ndevices) {
3941 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3942 		spin_unlock_irqrestore(&h->devlock, flags);
3943 	} else {
3944 		spin_unlock_irqrestore(&h->devlock, flags);
3945 		dev->supports_aborts =
3946 				hpsa_device_supports_aborts(h, scsi3addr);
3947 		if (dev->supports_aborts < 0)
3948 			dev->supports_aborts = 0;
3949 	}
3950 }
3951 
3952 /*
3953  * Helper function to assign bus, target, lun mapping of devices.
3954  * Logical drive target and lun are assigned at this time, but
3955  * physical device lun and target assignment are deferred (assigned
3956  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3957 */
3958 static void figure_bus_target_lun(struct ctlr_info *h,
3959 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3960 {
3961 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3962 
3963 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3964 		/* physical device, target and lun filled in later */
3965 		if (is_hba_lunid(lunaddrbytes)) {
3966 			int bus = HPSA_HBA_BUS;
3967 
3968 			if (!device->rev)
3969 				bus = HPSA_LEGACY_HBA_BUS;
3970 			hpsa_set_bus_target_lun(device,
3971 					bus, 0, lunid & 0x3fff);
3972 		} else
3973 			/* defer target, lun assignment for physical devices */
3974 			hpsa_set_bus_target_lun(device,
3975 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3976 		return;
3977 	}
3978 	/* It's a logical device */
3979 	if (device->external) {
3980 		hpsa_set_bus_target_lun(device,
3981 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3982 			lunid & 0x00ff);
3983 		return;
3984 	}
3985 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3986 				0, lunid & 0x3fff);
3987 }
3988 
3989 
3990 /*
3991  * Get address of physical disk used for an ioaccel2 mode command:
3992  *	1. Extract ioaccel2 handle from the command.
3993  *	2. Find a matching ioaccel2 handle from list of physical disks.
3994  *	3. Return:
3995  *		1 and set scsi3addr to address of matching physical
3996  *		0 if no matching physical disk was found.
3997  */
3998 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3999 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
4000 {
4001 	struct io_accel2_cmd *c2 =
4002 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4003 	unsigned long flags;
4004 	int i;
4005 
4006 	spin_lock_irqsave(&h->devlock, flags);
4007 	for (i = 0; i < h->ndevices; i++)
4008 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4009 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
4010 				sizeof(h->dev[i]->scsi3addr));
4011 			spin_unlock_irqrestore(&h->devlock, flags);
4012 			return 1;
4013 		}
4014 	spin_unlock_irqrestore(&h->devlock, flags);
4015 	return 0;
4016 }
4017 
4018 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4019 	int i, int nphysicals, int nlocal_logicals)
4020 {
4021 	/* In report logicals, local logicals are listed first,
4022 	* then any externals.
4023 	*/
4024 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4025 
4026 	if (i == raid_ctlr_position)
4027 		return 0;
4028 
4029 	if (i < logicals_start)
4030 		return 0;
4031 
4032 	/* i is in logicals range, but still within local logicals */
4033 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4034 		return 0;
4035 
4036 	return 1; /* it's an external lun */
4037 }
4038 
4039 /*
4040  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4041  * logdev.  The number of luns in physdev and logdev are returned in
4042  * *nphysicals and *nlogicals, respectively.
4043  * Returns 0 on success, -1 otherwise.
4044  */
4045 static int hpsa_gather_lun_info(struct ctlr_info *h,
4046 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4047 	struct ReportLUNdata *logdev, u32 *nlogicals)
4048 {
4049 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4050 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4051 		return -1;
4052 	}
4053 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4054 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4055 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4056 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4057 		*nphysicals = HPSA_MAX_PHYS_LUN;
4058 	}
4059 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4060 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4061 		return -1;
4062 	}
4063 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4064 	/* Reject Logicals in excess of our max capability. */
4065 	if (*nlogicals > HPSA_MAX_LUN) {
4066 		dev_warn(&h->pdev->dev,
4067 			"maximum logical LUNs (%d) exceeded.  "
4068 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4069 			*nlogicals - HPSA_MAX_LUN);
4070 			*nlogicals = HPSA_MAX_LUN;
4071 	}
4072 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4073 		dev_warn(&h->pdev->dev,
4074 			"maximum logical + physical LUNs (%d) exceeded. "
4075 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4076 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4077 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4078 	}
4079 	return 0;
4080 }
4081 
4082 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4083 	int i, int nphysicals, int nlogicals,
4084 	struct ReportExtendedLUNdata *physdev_list,
4085 	struct ReportLUNdata *logdev_list)
4086 {
4087 	/* Helper function, figure out where the LUN ID info is coming from
4088 	 * given index i, lists of physical and logical devices, where in
4089 	 * the list the raid controller is supposed to appear (first or last)
4090 	 */
4091 
4092 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4093 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4094 
4095 	if (i == raid_ctlr_position)
4096 		return RAID_CTLR_LUNID;
4097 
4098 	if (i < logicals_start)
4099 		return &physdev_list->LUN[i -
4100 				(raid_ctlr_position == 0)].lunid[0];
4101 
4102 	if (i < last_device)
4103 		return &logdev_list->LUN[i - nphysicals -
4104 			(raid_ctlr_position == 0)][0];
4105 	BUG();
4106 	return NULL;
4107 }
4108 
4109 /* get physical drive ioaccel handle and queue depth */
4110 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4111 		struct hpsa_scsi_dev_t *dev,
4112 		struct ReportExtendedLUNdata *rlep, int rle_index,
4113 		struct bmic_identify_physical_device *id_phys)
4114 {
4115 	int rc;
4116 	struct ext_report_lun_entry *rle;
4117 
4118 	/*
4119 	 * external targets don't support BMIC
4120 	 */
4121 	if (dev->external) {
4122 		dev->queue_depth = 7;
4123 		return;
4124 	}
4125 
4126 	rle = &rlep->LUN[rle_index];
4127 
4128 	dev->ioaccel_handle = rle->ioaccel_handle;
4129 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4130 		dev->hba_ioaccel_enabled = 1;
4131 	memset(id_phys, 0, sizeof(*id_phys));
4132 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4133 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4134 			sizeof(*id_phys));
4135 	if (!rc)
4136 		/* Reserve space for FW operations */
4137 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4138 #define DRIVE_QUEUE_DEPTH 7
4139 		dev->queue_depth =
4140 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4141 				DRIVE_CMDS_RESERVED_FOR_FW;
4142 	else
4143 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4144 }
4145 
4146 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4147 	struct ReportExtendedLUNdata *rlep, int rle_index,
4148 	struct bmic_identify_physical_device *id_phys)
4149 {
4150 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4151 
4152 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4153 		this_device->hba_ioaccel_enabled = 1;
4154 
4155 	memcpy(&this_device->active_path_index,
4156 		&id_phys->active_path_number,
4157 		sizeof(this_device->active_path_index));
4158 	memcpy(&this_device->path_map,
4159 		&id_phys->redundant_path_present_map,
4160 		sizeof(this_device->path_map));
4161 	memcpy(&this_device->box,
4162 		&id_phys->alternate_paths_phys_box_on_port,
4163 		sizeof(this_device->box));
4164 	memcpy(&this_device->phys_connector,
4165 		&id_phys->alternate_paths_phys_connector,
4166 		sizeof(this_device->phys_connector));
4167 	memcpy(&this_device->bay,
4168 		&id_phys->phys_bay_in_box,
4169 		sizeof(this_device->bay));
4170 }
4171 
4172 /* get number of local logical disks. */
4173 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4174 	struct bmic_identify_controller *id_ctlr,
4175 	u32 *nlocals)
4176 {
4177 	int rc;
4178 
4179 	if (!id_ctlr) {
4180 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4181 			__func__);
4182 		return -ENOMEM;
4183 	}
4184 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4185 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4186 	if (!rc)
4187 		if (id_ctlr->configured_logical_drive_count < 256)
4188 			*nlocals = id_ctlr->configured_logical_drive_count;
4189 		else
4190 			*nlocals = le16_to_cpu(
4191 					id_ctlr->extended_logical_unit_count);
4192 	else
4193 		*nlocals = -1;
4194 	return rc;
4195 }
4196 
4197 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4198 {
4199 	struct bmic_identify_physical_device *id_phys;
4200 	bool is_spare = false;
4201 	int rc;
4202 
4203 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4204 	if (!id_phys)
4205 		return false;
4206 
4207 	rc = hpsa_bmic_id_physical_device(h,
4208 					lunaddrbytes,
4209 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4210 					id_phys, sizeof(*id_phys));
4211 	if (rc == 0)
4212 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4213 
4214 	kfree(id_phys);
4215 	return is_spare;
4216 }
4217 
4218 #define RPL_DEV_FLAG_NON_DISK                           0x1
4219 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4220 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4221 
4222 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4223 
4224 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4225 				struct ext_report_lun_entry *rle)
4226 {
4227 	u8 device_flags;
4228 	u8 device_type;
4229 
4230 	if (!MASKED_DEVICE(lunaddrbytes))
4231 		return false;
4232 
4233 	device_flags = rle->device_flags;
4234 	device_type = rle->device_type;
4235 
4236 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4237 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4238 			return false;
4239 		return true;
4240 	}
4241 
4242 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4243 		return false;
4244 
4245 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4246 		return false;
4247 
4248 	/*
4249 	 * Spares may be spun down, we do not want to
4250 	 * do an Inquiry to a RAID set spare drive as
4251 	 * that would have them spun up, that is a
4252 	 * performance hit because I/O to the RAID device
4253 	 * stops while the spin up occurs which can take
4254 	 * over 50 seconds.
4255 	 */
4256 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4257 		return true;
4258 
4259 	return false;
4260 }
4261 
4262 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4263 {
4264 	/* the idea here is we could get notified
4265 	 * that some devices have changed, so we do a report
4266 	 * physical luns and report logical luns cmd, and adjust
4267 	 * our list of devices accordingly.
4268 	 *
4269 	 * The scsi3addr's of devices won't change so long as the
4270 	 * adapter is not reset.  That means we can rescan and
4271 	 * tell which devices we already know about, vs. new
4272 	 * devices, vs.  disappearing devices.
4273 	 */
4274 	struct ReportExtendedLUNdata *physdev_list = NULL;
4275 	struct ReportLUNdata *logdev_list = NULL;
4276 	struct bmic_identify_physical_device *id_phys = NULL;
4277 	struct bmic_identify_controller *id_ctlr = NULL;
4278 	u32 nphysicals = 0;
4279 	u32 nlogicals = 0;
4280 	u32 nlocal_logicals = 0;
4281 	u32 ndev_allocated = 0;
4282 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4283 	int ncurrent = 0;
4284 	int i, n_ext_target_devs, ndevs_to_allocate;
4285 	int raid_ctlr_position;
4286 	bool physical_device;
4287 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4288 
4289 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4290 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4291 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4292 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4293 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4294 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4295 
4296 	if (!currentsd || !physdev_list || !logdev_list ||
4297 		!tmpdevice || !id_phys || !id_ctlr) {
4298 		dev_err(&h->pdev->dev, "out of memory\n");
4299 		goto out;
4300 	}
4301 	memset(lunzerobits, 0, sizeof(lunzerobits));
4302 
4303 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4304 
4305 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4306 			logdev_list, &nlogicals)) {
4307 		h->drv_req_rescan = 1;
4308 		goto out;
4309 	}
4310 
4311 	/* Set number of local logicals (non PTRAID) */
4312 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4313 		dev_warn(&h->pdev->dev,
4314 			"%s: Can't determine number of local logical devices.\n",
4315 			__func__);
4316 	}
4317 
4318 	/* We might see up to the maximum number of logical and physical disks
4319 	 * plus external target devices, and a device for the local RAID
4320 	 * controller.
4321 	 */
4322 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4323 
4324 	/* Allocate the per device structures */
4325 	for (i = 0; i < ndevs_to_allocate; i++) {
4326 		if (i >= HPSA_MAX_DEVICES) {
4327 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4328 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4329 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4330 			break;
4331 		}
4332 
4333 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4334 		if (!currentsd[i]) {
4335 			h->drv_req_rescan = 1;
4336 			goto out;
4337 		}
4338 		ndev_allocated++;
4339 	}
4340 
4341 	if (is_scsi_rev_5(h))
4342 		raid_ctlr_position = 0;
4343 	else
4344 		raid_ctlr_position = nphysicals + nlogicals;
4345 
4346 	/* adjust our table of devices */
4347 	n_ext_target_devs = 0;
4348 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4349 		u8 *lunaddrbytes, is_OBDR = 0;
4350 		int rc = 0;
4351 		int phys_dev_index = i - (raid_ctlr_position == 0);
4352 		bool skip_device = false;
4353 
4354 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4355 
4356 		/* Figure out where the LUN ID info is coming from */
4357 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4358 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4359 
4360 		/* Determine if this is a lun from an external target array */
4361 		tmpdevice->external =
4362 			figure_external_status(h, raid_ctlr_position, i,
4363 						nphysicals, nlocal_logicals);
4364 
4365 		/*
4366 		 * Skip over some devices such as a spare.
4367 		 */
4368 		if (!tmpdevice->external && physical_device) {
4369 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4370 					&physdev_list->LUN[phys_dev_index]);
4371 			if (skip_device)
4372 				continue;
4373 		}
4374 
4375 		/* Get device type, vendor, model, device id */
4376 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4377 							&is_OBDR);
4378 		if (rc == -ENOMEM) {
4379 			dev_warn(&h->pdev->dev,
4380 				"Out of memory, rescan deferred.\n");
4381 			h->drv_req_rescan = 1;
4382 			goto out;
4383 		}
4384 		if (rc) {
4385 			h->drv_req_rescan = 1;
4386 			continue;
4387 		}
4388 
4389 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4390 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4391 		this_device = currentsd[ncurrent];
4392 
4393 		/* Turn on discovery_polling if there are ext target devices.
4394 		 * Event-based change notification is unreliable for those.
4395 		 */
4396 		if (!h->discovery_polling) {
4397 			if (tmpdevice->external) {
4398 				h->discovery_polling = 1;
4399 				dev_info(&h->pdev->dev,
4400 					"External target, activate discovery polling.\n");
4401 			}
4402 		}
4403 
4404 
4405 		*this_device = *tmpdevice;
4406 		this_device->physical_device = physical_device;
4407 
4408 		/*
4409 		 * Expose all devices except for physical devices that
4410 		 * are masked.
4411 		 */
4412 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4413 			this_device->expose_device = 0;
4414 		else
4415 			this_device->expose_device = 1;
4416 
4417 
4418 		/*
4419 		 * Get the SAS address for physical devices that are exposed.
4420 		 */
4421 		if (this_device->physical_device && this_device->expose_device)
4422 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4423 
4424 		switch (this_device->devtype) {
4425 		case TYPE_ROM:
4426 			/* We don't *really* support actual CD-ROM devices,
4427 			 * just "One Button Disaster Recovery" tape drive
4428 			 * which temporarily pretends to be a CD-ROM drive.
4429 			 * So we check that the device is really an OBDR tape
4430 			 * device by checking for "$DR-10" in bytes 43-48 of
4431 			 * the inquiry data.
4432 			 */
4433 			if (is_OBDR)
4434 				ncurrent++;
4435 			break;
4436 		case TYPE_DISK:
4437 		case TYPE_ZBC:
4438 			if (this_device->physical_device) {
4439 				/* The disk is in HBA mode. */
4440 				/* Never use RAID mapper in HBA mode. */
4441 				this_device->offload_enabled = 0;
4442 				hpsa_get_ioaccel_drive_info(h, this_device,
4443 					physdev_list, phys_dev_index, id_phys);
4444 				hpsa_get_path_info(this_device,
4445 					physdev_list, phys_dev_index, id_phys);
4446 			}
4447 			ncurrent++;
4448 			break;
4449 		case TYPE_TAPE:
4450 		case TYPE_MEDIUM_CHANGER:
4451 			ncurrent++;
4452 			break;
4453 		case TYPE_ENCLOSURE:
4454 			if (!this_device->external)
4455 				hpsa_get_enclosure_info(h, lunaddrbytes,
4456 						physdev_list, phys_dev_index,
4457 						this_device);
4458 			ncurrent++;
4459 			break;
4460 		case TYPE_RAID:
4461 			/* Only present the Smartarray HBA as a RAID controller.
4462 			 * If it's a RAID controller other than the HBA itself
4463 			 * (an external RAID controller, MSA500 or similar)
4464 			 * don't present it.
4465 			 */
4466 			if (!is_hba_lunid(lunaddrbytes))
4467 				break;
4468 			ncurrent++;
4469 			break;
4470 		default:
4471 			break;
4472 		}
4473 		if (ncurrent >= HPSA_MAX_DEVICES)
4474 			break;
4475 	}
4476 
4477 	if (h->sas_host == NULL) {
4478 		int rc = 0;
4479 
4480 		rc = hpsa_add_sas_host(h);
4481 		if (rc) {
4482 			dev_warn(&h->pdev->dev,
4483 				"Could not add sas host %d\n", rc);
4484 			goto out;
4485 		}
4486 	}
4487 
4488 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4489 out:
4490 	kfree(tmpdevice);
4491 	for (i = 0; i < ndev_allocated; i++)
4492 		kfree(currentsd[i]);
4493 	kfree(currentsd);
4494 	kfree(physdev_list);
4495 	kfree(logdev_list);
4496 	kfree(id_ctlr);
4497 	kfree(id_phys);
4498 }
4499 
4500 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4501 				   struct scatterlist *sg)
4502 {
4503 	u64 addr64 = (u64) sg_dma_address(sg);
4504 	unsigned int len = sg_dma_len(sg);
4505 
4506 	desc->Addr = cpu_to_le64(addr64);
4507 	desc->Len = cpu_to_le32(len);
4508 	desc->Ext = 0;
4509 }
4510 
4511 /*
4512  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4513  * dma mapping  and fills in the scatter gather entries of the
4514  * hpsa command, cp.
4515  */
4516 static int hpsa_scatter_gather(struct ctlr_info *h,
4517 		struct CommandList *cp,
4518 		struct scsi_cmnd *cmd)
4519 {
4520 	struct scatterlist *sg;
4521 	int use_sg, i, sg_limit, chained, last_sg;
4522 	struct SGDescriptor *curr_sg;
4523 
4524 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4525 
4526 	use_sg = scsi_dma_map(cmd);
4527 	if (use_sg < 0)
4528 		return use_sg;
4529 
4530 	if (!use_sg)
4531 		goto sglist_finished;
4532 
4533 	/*
4534 	 * If the number of entries is greater than the max for a single list,
4535 	 * then we have a chained list; we will set up all but one entry in the
4536 	 * first list (the last entry is saved for link information);
4537 	 * otherwise, we don't have a chained list and we'll set up at each of
4538 	 * the entries in the one list.
4539 	 */
4540 	curr_sg = cp->SG;
4541 	chained = use_sg > h->max_cmd_sg_entries;
4542 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4543 	last_sg = scsi_sg_count(cmd) - 1;
4544 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4545 		hpsa_set_sg_descriptor(curr_sg, sg);
4546 		curr_sg++;
4547 	}
4548 
4549 	if (chained) {
4550 		/*
4551 		 * Continue with the chained list.  Set curr_sg to the chained
4552 		 * list.  Modify the limit to the total count less the entries
4553 		 * we've already set up.  Resume the scan at the list entry
4554 		 * where the previous loop left off.
4555 		 */
4556 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4557 		sg_limit = use_sg - sg_limit;
4558 		for_each_sg(sg, sg, sg_limit, i) {
4559 			hpsa_set_sg_descriptor(curr_sg, sg);
4560 			curr_sg++;
4561 		}
4562 	}
4563 
4564 	/* Back the pointer up to the last entry and mark it as "last". */
4565 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4566 
4567 	if (use_sg + chained > h->maxSG)
4568 		h->maxSG = use_sg + chained;
4569 
4570 	if (chained) {
4571 		cp->Header.SGList = h->max_cmd_sg_entries;
4572 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4573 		if (hpsa_map_sg_chain_block(h, cp)) {
4574 			scsi_dma_unmap(cmd);
4575 			return -1;
4576 		}
4577 		return 0;
4578 	}
4579 
4580 sglist_finished:
4581 
4582 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4583 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4584 	return 0;
4585 }
4586 
4587 #define IO_ACCEL_INELIGIBLE (1)
4588 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4589 {
4590 	int is_write = 0;
4591 	u32 block;
4592 	u32 block_cnt;
4593 
4594 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4595 	switch (cdb[0]) {
4596 	case WRITE_6:
4597 	case WRITE_12:
4598 		is_write = 1;
4599 	case READ_6:
4600 	case READ_12:
4601 		if (*cdb_len == 6) {
4602 			block = (((cdb[1] & 0x1F) << 16) |
4603 				(cdb[2] << 8) |
4604 				cdb[3]);
4605 			block_cnt = cdb[4];
4606 			if (block_cnt == 0)
4607 				block_cnt = 256;
4608 		} else {
4609 			BUG_ON(*cdb_len != 12);
4610 			block = get_unaligned_be32(&cdb[2]);
4611 			block_cnt = get_unaligned_be32(&cdb[6]);
4612 		}
4613 		if (block_cnt > 0xffff)
4614 			return IO_ACCEL_INELIGIBLE;
4615 
4616 		cdb[0] = is_write ? WRITE_10 : READ_10;
4617 		cdb[1] = 0;
4618 		cdb[2] = (u8) (block >> 24);
4619 		cdb[3] = (u8) (block >> 16);
4620 		cdb[4] = (u8) (block >> 8);
4621 		cdb[5] = (u8) (block);
4622 		cdb[6] = 0;
4623 		cdb[7] = (u8) (block_cnt >> 8);
4624 		cdb[8] = (u8) (block_cnt);
4625 		cdb[9] = 0;
4626 		*cdb_len = 10;
4627 		break;
4628 	}
4629 	return 0;
4630 }
4631 
4632 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4633 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4634 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4635 {
4636 	struct scsi_cmnd *cmd = c->scsi_cmd;
4637 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4638 	unsigned int len;
4639 	unsigned int total_len = 0;
4640 	struct scatterlist *sg;
4641 	u64 addr64;
4642 	int use_sg, i;
4643 	struct SGDescriptor *curr_sg;
4644 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4645 
4646 	/* TODO: implement chaining support */
4647 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4648 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4649 		return IO_ACCEL_INELIGIBLE;
4650 	}
4651 
4652 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4653 
4654 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4655 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4656 		return IO_ACCEL_INELIGIBLE;
4657 	}
4658 
4659 	c->cmd_type = CMD_IOACCEL1;
4660 
4661 	/* Adjust the DMA address to point to the accelerated command buffer */
4662 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4663 				(c->cmdindex * sizeof(*cp));
4664 	BUG_ON(c->busaddr & 0x0000007F);
4665 
4666 	use_sg = scsi_dma_map(cmd);
4667 	if (use_sg < 0) {
4668 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4669 		return use_sg;
4670 	}
4671 
4672 	if (use_sg) {
4673 		curr_sg = cp->SG;
4674 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4675 			addr64 = (u64) sg_dma_address(sg);
4676 			len  = sg_dma_len(sg);
4677 			total_len += len;
4678 			curr_sg->Addr = cpu_to_le64(addr64);
4679 			curr_sg->Len = cpu_to_le32(len);
4680 			curr_sg->Ext = cpu_to_le32(0);
4681 			curr_sg++;
4682 		}
4683 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4684 
4685 		switch (cmd->sc_data_direction) {
4686 		case DMA_TO_DEVICE:
4687 			control |= IOACCEL1_CONTROL_DATA_OUT;
4688 			break;
4689 		case DMA_FROM_DEVICE:
4690 			control |= IOACCEL1_CONTROL_DATA_IN;
4691 			break;
4692 		case DMA_NONE:
4693 			control |= IOACCEL1_CONTROL_NODATAXFER;
4694 			break;
4695 		default:
4696 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4697 			cmd->sc_data_direction);
4698 			BUG();
4699 			break;
4700 		}
4701 	} else {
4702 		control |= IOACCEL1_CONTROL_NODATAXFER;
4703 	}
4704 
4705 	c->Header.SGList = use_sg;
4706 	/* Fill out the command structure to submit */
4707 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4708 	cp->transfer_len = cpu_to_le32(total_len);
4709 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4710 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4711 	cp->control = cpu_to_le32(control);
4712 	memcpy(cp->CDB, cdb, cdb_len);
4713 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4714 	/* Tag was already set at init time. */
4715 	enqueue_cmd_and_start_io(h, c);
4716 	return 0;
4717 }
4718 
4719 /*
4720  * Queue a command directly to a device behind the controller using the
4721  * I/O accelerator path.
4722  */
4723 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4724 	struct CommandList *c)
4725 {
4726 	struct scsi_cmnd *cmd = c->scsi_cmd;
4727 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4728 
4729 	if (!dev)
4730 		return -1;
4731 
4732 	c->phys_disk = dev;
4733 
4734 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4735 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4736 }
4737 
4738 /*
4739  * Set encryption parameters for the ioaccel2 request
4740  */
4741 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4742 	struct CommandList *c, struct io_accel2_cmd *cp)
4743 {
4744 	struct scsi_cmnd *cmd = c->scsi_cmd;
4745 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4746 	struct raid_map_data *map = &dev->raid_map;
4747 	u64 first_block;
4748 
4749 	/* Are we doing encryption on this device */
4750 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4751 		return;
4752 	/* Set the data encryption key index. */
4753 	cp->dekindex = map->dekindex;
4754 
4755 	/* Set the encryption enable flag, encoded into direction field. */
4756 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4757 
4758 	/* Set encryption tweak values based on logical block address
4759 	 * If block size is 512, tweak value is LBA.
4760 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4761 	 */
4762 	switch (cmd->cmnd[0]) {
4763 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4764 	case READ_6:
4765 	case WRITE_6:
4766 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4767 				(cmd->cmnd[2] << 8) |
4768 				cmd->cmnd[3]);
4769 		break;
4770 	case WRITE_10:
4771 	case READ_10:
4772 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4773 	case WRITE_12:
4774 	case READ_12:
4775 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4776 		break;
4777 	case WRITE_16:
4778 	case READ_16:
4779 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4780 		break;
4781 	default:
4782 		dev_err(&h->pdev->dev,
4783 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4784 			__func__, cmd->cmnd[0]);
4785 		BUG();
4786 		break;
4787 	}
4788 
4789 	if (le32_to_cpu(map->volume_blk_size) != 512)
4790 		first_block = first_block *
4791 				le32_to_cpu(map->volume_blk_size)/512;
4792 
4793 	cp->tweak_lower = cpu_to_le32(first_block);
4794 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4795 }
4796 
4797 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4798 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4799 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4800 {
4801 	struct scsi_cmnd *cmd = c->scsi_cmd;
4802 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4803 	struct ioaccel2_sg_element *curr_sg;
4804 	int use_sg, i;
4805 	struct scatterlist *sg;
4806 	u64 addr64;
4807 	u32 len;
4808 	u32 total_len = 0;
4809 
4810 	if (!cmd->device)
4811 		return -1;
4812 
4813 	if (!cmd->device->hostdata)
4814 		return -1;
4815 
4816 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4817 
4818 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4819 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4820 		return IO_ACCEL_INELIGIBLE;
4821 	}
4822 
4823 	c->cmd_type = CMD_IOACCEL2;
4824 	/* Adjust the DMA address to point to the accelerated command buffer */
4825 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4826 				(c->cmdindex * sizeof(*cp));
4827 	BUG_ON(c->busaddr & 0x0000007F);
4828 
4829 	memset(cp, 0, sizeof(*cp));
4830 	cp->IU_type = IOACCEL2_IU_TYPE;
4831 
4832 	use_sg = scsi_dma_map(cmd);
4833 	if (use_sg < 0) {
4834 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4835 		return use_sg;
4836 	}
4837 
4838 	if (use_sg) {
4839 		curr_sg = cp->sg;
4840 		if (use_sg > h->ioaccel_maxsg) {
4841 			addr64 = le64_to_cpu(
4842 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4843 			curr_sg->address = cpu_to_le64(addr64);
4844 			curr_sg->length = 0;
4845 			curr_sg->reserved[0] = 0;
4846 			curr_sg->reserved[1] = 0;
4847 			curr_sg->reserved[2] = 0;
4848 			curr_sg->chain_indicator = 0x80;
4849 
4850 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4851 		}
4852 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4853 			addr64 = (u64) sg_dma_address(sg);
4854 			len  = sg_dma_len(sg);
4855 			total_len += len;
4856 			curr_sg->address = cpu_to_le64(addr64);
4857 			curr_sg->length = cpu_to_le32(len);
4858 			curr_sg->reserved[0] = 0;
4859 			curr_sg->reserved[1] = 0;
4860 			curr_sg->reserved[2] = 0;
4861 			curr_sg->chain_indicator = 0;
4862 			curr_sg++;
4863 		}
4864 
4865 		switch (cmd->sc_data_direction) {
4866 		case DMA_TO_DEVICE:
4867 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4868 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4869 			break;
4870 		case DMA_FROM_DEVICE:
4871 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4872 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4873 			break;
4874 		case DMA_NONE:
4875 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4876 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4877 			break;
4878 		default:
4879 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4880 				cmd->sc_data_direction);
4881 			BUG();
4882 			break;
4883 		}
4884 	} else {
4885 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4886 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4887 	}
4888 
4889 	/* Set encryption parameters, if necessary */
4890 	set_encrypt_ioaccel2(h, c, cp);
4891 
4892 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4893 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4894 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4895 
4896 	cp->data_len = cpu_to_le32(total_len);
4897 	cp->err_ptr = cpu_to_le64(c->busaddr +
4898 			offsetof(struct io_accel2_cmd, error_data));
4899 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4900 
4901 	/* fill in sg elements */
4902 	if (use_sg > h->ioaccel_maxsg) {
4903 		cp->sg_count = 1;
4904 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4905 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4906 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4907 			scsi_dma_unmap(cmd);
4908 			return -1;
4909 		}
4910 	} else
4911 		cp->sg_count = (u8) use_sg;
4912 
4913 	enqueue_cmd_and_start_io(h, c);
4914 	return 0;
4915 }
4916 
4917 /*
4918  * Queue a command to the correct I/O accelerator path.
4919  */
4920 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4921 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4922 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4923 {
4924 	if (!c->scsi_cmd->device)
4925 		return -1;
4926 
4927 	if (!c->scsi_cmd->device->hostdata)
4928 		return -1;
4929 
4930 	/* Try to honor the device's queue depth */
4931 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4932 					phys_disk->queue_depth) {
4933 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4934 		return IO_ACCEL_INELIGIBLE;
4935 	}
4936 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4937 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4938 						cdb, cdb_len, scsi3addr,
4939 						phys_disk);
4940 	else
4941 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4942 						cdb, cdb_len, scsi3addr,
4943 						phys_disk);
4944 }
4945 
4946 static void raid_map_helper(struct raid_map_data *map,
4947 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4948 {
4949 	if (offload_to_mirror == 0)  {
4950 		/* use physical disk in the first mirrored group. */
4951 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4952 		return;
4953 	}
4954 	do {
4955 		/* determine mirror group that *map_index indicates */
4956 		*current_group = *map_index /
4957 			le16_to_cpu(map->data_disks_per_row);
4958 		if (offload_to_mirror == *current_group)
4959 			continue;
4960 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4961 			/* select map index from next group */
4962 			*map_index += le16_to_cpu(map->data_disks_per_row);
4963 			(*current_group)++;
4964 		} else {
4965 			/* select map index from first group */
4966 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4967 			*current_group = 0;
4968 		}
4969 	} while (offload_to_mirror != *current_group);
4970 }
4971 
4972 /*
4973  * Attempt to perform offload RAID mapping for a logical volume I/O.
4974  */
4975 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4976 	struct CommandList *c)
4977 {
4978 	struct scsi_cmnd *cmd = c->scsi_cmd;
4979 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4980 	struct raid_map_data *map = &dev->raid_map;
4981 	struct raid_map_disk_data *dd = &map->data[0];
4982 	int is_write = 0;
4983 	u32 map_index;
4984 	u64 first_block, last_block;
4985 	u32 block_cnt;
4986 	u32 blocks_per_row;
4987 	u64 first_row, last_row;
4988 	u32 first_row_offset, last_row_offset;
4989 	u32 first_column, last_column;
4990 	u64 r0_first_row, r0_last_row;
4991 	u32 r5or6_blocks_per_row;
4992 	u64 r5or6_first_row, r5or6_last_row;
4993 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4994 	u32 r5or6_first_column, r5or6_last_column;
4995 	u32 total_disks_per_row;
4996 	u32 stripesize;
4997 	u32 first_group, last_group, current_group;
4998 	u32 map_row;
4999 	u32 disk_handle;
5000 	u64 disk_block;
5001 	u32 disk_block_cnt;
5002 	u8 cdb[16];
5003 	u8 cdb_len;
5004 	u16 strip_size;
5005 #if BITS_PER_LONG == 32
5006 	u64 tmpdiv;
5007 #endif
5008 	int offload_to_mirror;
5009 
5010 	if (!dev)
5011 		return -1;
5012 
5013 	/* check for valid opcode, get LBA and block count */
5014 	switch (cmd->cmnd[0]) {
5015 	case WRITE_6:
5016 		is_write = 1;
5017 	case READ_6:
5018 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5019 				(cmd->cmnd[2] << 8) |
5020 				cmd->cmnd[3]);
5021 		block_cnt = cmd->cmnd[4];
5022 		if (block_cnt == 0)
5023 			block_cnt = 256;
5024 		break;
5025 	case WRITE_10:
5026 		is_write = 1;
5027 	case READ_10:
5028 		first_block =
5029 			(((u64) cmd->cmnd[2]) << 24) |
5030 			(((u64) cmd->cmnd[3]) << 16) |
5031 			(((u64) cmd->cmnd[4]) << 8) |
5032 			cmd->cmnd[5];
5033 		block_cnt =
5034 			(((u32) cmd->cmnd[7]) << 8) |
5035 			cmd->cmnd[8];
5036 		break;
5037 	case WRITE_12:
5038 		is_write = 1;
5039 	case READ_12:
5040 		first_block =
5041 			(((u64) cmd->cmnd[2]) << 24) |
5042 			(((u64) cmd->cmnd[3]) << 16) |
5043 			(((u64) cmd->cmnd[4]) << 8) |
5044 			cmd->cmnd[5];
5045 		block_cnt =
5046 			(((u32) cmd->cmnd[6]) << 24) |
5047 			(((u32) cmd->cmnd[7]) << 16) |
5048 			(((u32) cmd->cmnd[8]) << 8) |
5049 		cmd->cmnd[9];
5050 		break;
5051 	case WRITE_16:
5052 		is_write = 1;
5053 	case READ_16:
5054 		first_block =
5055 			(((u64) cmd->cmnd[2]) << 56) |
5056 			(((u64) cmd->cmnd[3]) << 48) |
5057 			(((u64) cmd->cmnd[4]) << 40) |
5058 			(((u64) cmd->cmnd[5]) << 32) |
5059 			(((u64) cmd->cmnd[6]) << 24) |
5060 			(((u64) cmd->cmnd[7]) << 16) |
5061 			(((u64) cmd->cmnd[8]) << 8) |
5062 			cmd->cmnd[9];
5063 		block_cnt =
5064 			(((u32) cmd->cmnd[10]) << 24) |
5065 			(((u32) cmd->cmnd[11]) << 16) |
5066 			(((u32) cmd->cmnd[12]) << 8) |
5067 			cmd->cmnd[13];
5068 		break;
5069 	default:
5070 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5071 	}
5072 	last_block = first_block + block_cnt - 1;
5073 
5074 	/* check for write to non-RAID-0 */
5075 	if (is_write && dev->raid_level != 0)
5076 		return IO_ACCEL_INELIGIBLE;
5077 
5078 	/* check for invalid block or wraparound */
5079 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5080 		last_block < first_block)
5081 		return IO_ACCEL_INELIGIBLE;
5082 
5083 	/* calculate stripe information for the request */
5084 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5085 				le16_to_cpu(map->strip_size);
5086 	strip_size = le16_to_cpu(map->strip_size);
5087 #if BITS_PER_LONG == 32
5088 	tmpdiv = first_block;
5089 	(void) do_div(tmpdiv, blocks_per_row);
5090 	first_row = tmpdiv;
5091 	tmpdiv = last_block;
5092 	(void) do_div(tmpdiv, blocks_per_row);
5093 	last_row = tmpdiv;
5094 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5095 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5096 	tmpdiv = first_row_offset;
5097 	(void) do_div(tmpdiv, strip_size);
5098 	first_column = tmpdiv;
5099 	tmpdiv = last_row_offset;
5100 	(void) do_div(tmpdiv, strip_size);
5101 	last_column = tmpdiv;
5102 #else
5103 	first_row = first_block / blocks_per_row;
5104 	last_row = last_block / blocks_per_row;
5105 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5106 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5107 	first_column = first_row_offset / strip_size;
5108 	last_column = last_row_offset / strip_size;
5109 #endif
5110 
5111 	/* if this isn't a single row/column then give to the controller */
5112 	if ((first_row != last_row) || (first_column != last_column))
5113 		return IO_ACCEL_INELIGIBLE;
5114 
5115 	/* proceeding with driver mapping */
5116 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5117 				le16_to_cpu(map->metadata_disks_per_row);
5118 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5119 				le16_to_cpu(map->row_cnt);
5120 	map_index = (map_row * total_disks_per_row) + first_column;
5121 
5122 	switch (dev->raid_level) {
5123 	case HPSA_RAID_0:
5124 		break; /* nothing special to do */
5125 	case HPSA_RAID_1:
5126 		/* Handles load balance across RAID 1 members.
5127 		 * (2-drive R1 and R10 with even # of drives.)
5128 		 * Appropriate for SSDs, not optimal for HDDs
5129 		 */
5130 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5131 		if (dev->offload_to_mirror)
5132 			map_index += le16_to_cpu(map->data_disks_per_row);
5133 		dev->offload_to_mirror = !dev->offload_to_mirror;
5134 		break;
5135 	case HPSA_RAID_ADM:
5136 		/* Handles N-way mirrors  (R1-ADM)
5137 		 * and R10 with # of drives divisible by 3.)
5138 		 */
5139 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5140 
5141 		offload_to_mirror = dev->offload_to_mirror;
5142 		raid_map_helper(map, offload_to_mirror,
5143 				&map_index, &current_group);
5144 		/* set mirror group to use next time */
5145 		offload_to_mirror =
5146 			(offload_to_mirror >=
5147 			le16_to_cpu(map->layout_map_count) - 1)
5148 			? 0 : offload_to_mirror + 1;
5149 		dev->offload_to_mirror = offload_to_mirror;
5150 		/* Avoid direct use of dev->offload_to_mirror within this
5151 		 * function since multiple threads might simultaneously
5152 		 * increment it beyond the range of dev->layout_map_count -1.
5153 		 */
5154 		break;
5155 	case HPSA_RAID_5:
5156 	case HPSA_RAID_6:
5157 		if (le16_to_cpu(map->layout_map_count) <= 1)
5158 			break;
5159 
5160 		/* Verify first and last block are in same RAID group */
5161 		r5or6_blocks_per_row =
5162 			le16_to_cpu(map->strip_size) *
5163 			le16_to_cpu(map->data_disks_per_row);
5164 		BUG_ON(r5or6_blocks_per_row == 0);
5165 		stripesize = r5or6_blocks_per_row *
5166 			le16_to_cpu(map->layout_map_count);
5167 #if BITS_PER_LONG == 32
5168 		tmpdiv = first_block;
5169 		first_group = do_div(tmpdiv, stripesize);
5170 		tmpdiv = first_group;
5171 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5172 		first_group = tmpdiv;
5173 		tmpdiv = last_block;
5174 		last_group = do_div(tmpdiv, stripesize);
5175 		tmpdiv = last_group;
5176 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5177 		last_group = tmpdiv;
5178 #else
5179 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5180 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5181 #endif
5182 		if (first_group != last_group)
5183 			return IO_ACCEL_INELIGIBLE;
5184 
5185 		/* Verify request is in a single row of RAID 5/6 */
5186 #if BITS_PER_LONG == 32
5187 		tmpdiv = first_block;
5188 		(void) do_div(tmpdiv, stripesize);
5189 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5190 		tmpdiv = last_block;
5191 		(void) do_div(tmpdiv, stripesize);
5192 		r5or6_last_row = r0_last_row = tmpdiv;
5193 #else
5194 		first_row = r5or6_first_row = r0_first_row =
5195 						first_block / stripesize;
5196 		r5or6_last_row = r0_last_row = last_block / stripesize;
5197 #endif
5198 		if (r5or6_first_row != r5or6_last_row)
5199 			return IO_ACCEL_INELIGIBLE;
5200 
5201 
5202 		/* Verify request is in a single column */
5203 #if BITS_PER_LONG == 32
5204 		tmpdiv = first_block;
5205 		first_row_offset = do_div(tmpdiv, stripesize);
5206 		tmpdiv = first_row_offset;
5207 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5208 		r5or6_first_row_offset = first_row_offset;
5209 		tmpdiv = last_block;
5210 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5211 		tmpdiv = r5or6_last_row_offset;
5212 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5213 		tmpdiv = r5or6_first_row_offset;
5214 		(void) do_div(tmpdiv, map->strip_size);
5215 		first_column = r5or6_first_column = tmpdiv;
5216 		tmpdiv = r5or6_last_row_offset;
5217 		(void) do_div(tmpdiv, map->strip_size);
5218 		r5or6_last_column = tmpdiv;
5219 #else
5220 		first_row_offset = r5or6_first_row_offset =
5221 			(u32)((first_block % stripesize) %
5222 						r5or6_blocks_per_row);
5223 
5224 		r5or6_last_row_offset =
5225 			(u32)((last_block % stripesize) %
5226 						r5or6_blocks_per_row);
5227 
5228 		first_column = r5or6_first_column =
5229 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5230 		r5or6_last_column =
5231 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5232 #endif
5233 		if (r5or6_first_column != r5or6_last_column)
5234 			return IO_ACCEL_INELIGIBLE;
5235 
5236 		/* Request is eligible */
5237 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5238 			le16_to_cpu(map->row_cnt);
5239 
5240 		map_index = (first_group *
5241 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5242 			(map_row * total_disks_per_row) + first_column;
5243 		break;
5244 	default:
5245 		return IO_ACCEL_INELIGIBLE;
5246 	}
5247 
5248 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5249 		return IO_ACCEL_INELIGIBLE;
5250 
5251 	c->phys_disk = dev->phys_disk[map_index];
5252 	if (!c->phys_disk)
5253 		return IO_ACCEL_INELIGIBLE;
5254 
5255 	disk_handle = dd[map_index].ioaccel_handle;
5256 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5257 			first_row * le16_to_cpu(map->strip_size) +
5258 			(first_row_offset - first_column *
5259 			le16_to_cpu(map->strip_size));
5260 	disk_block_cnt = block_cnt;
5261 
5262 	/* handle differing logical/physical block sizes */
5263 	if (map->phys_blk_shift) {
5264 		disk_block <<= map->phys_blk_shift;
5265 		disk_block_cnt <<= map->phys_blk_shift;
5266 	}
5267 	BUG_ON(disk_block_cnt > 0xffff);
5268 
5269 	/* build the new CDB for the physical disk I/O */
5270 	if (disk_block > 0xffffffff) {
5271 		cdb[0] = is_write ? WRITE_16 : READ_16;
5272 		cdb[1] = 0;
5273 		cdb[2] = (u8) (disk_block >> 56);
5274 		cdb[3] = (u8) (disk_block >> 48);
5275 		cdb[4] = (u8) (disk_block >> 40);
5276 		cdb[5] = (u8) (disk_block >> 32);
5277 		cdb[6] = (u8) (disk_block >> 24);
5278 		cdb[7] = (u8) (disk_block >> 16);
5279 		cdb[8] = (u8) (disk_block >> 8);
5280 		cdb[9] = (u8) (disk_block);
5281 		cdb[10] = (u8) (disk_block_cnt >> 24);
5282 		cdb[11] = (u8) (disk_block_cnt >> 16);
5283 		cdb[12] = (u8) (disk_block_cnt >> 8);
5284 		cdb[13] = (u8) (disk_block_cnt);
5285 		cdb[14] = 0;
5286 		cdb[15] = 0;
5287 		cdb_len = 16;
5288 	} else {
5289 		cdb[0] = is_write ? WRITE_10 : READ_10;
5290 		cdb[1] = 0;
5291 		cdb[2] = (u8) (disk_block >> 24);
5292 		cdb[3] = (u8) (disk_block >> 16);
5293 		cdb[4] = (u8) (disk_block >> 8);
5294 		cdb[5] = (u8) (disk_block);
5295 		cdb[6] = 0;
5296 		cdb[7] = (u8) (disk_block_cnt >> 8);
5297 		cdb[8] = (u8) (disk_block_cnt);
5298 		cdb[9] = 0;
5299 		cdb_len = 10;
5300 	}
5301 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5302 						dev->scsi3addr,
5303 						dev->phys_disk[map_index]);
5304 }
5305 
5306 /*
5307  * Submit commands down the "normal" RAID stack path
5308  * All callers to hpsa_ciss_submit must check lockup_detected
5309  * beforehand, before (opt.) and after calling cmd_alloc
5310  */
5311 static int hpsa_ciss_submit(struct ctlr_info *h,
5312 	struct CommandList *c, struct scsi_cmnd *cmd,
5313 	unsigned char scsi3addr[])
5314 {
5315 	cmd->host_scribble = (unsigned char *) c;
5316 	c->cmd_type = CMD_SCSI;
5317 	c->scsi_cmd = cmd;
5318 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5319 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5320 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5321 
5322 	/* Fill in the request block... */
5323 
5324 	c->Request.Timeout = 0;
5325 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5326 	c->Request.CDBLen = cmd->cmd_len;
5327 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5328 	switch (cmd->sc_data_direction) {
5329 	case DMA_TO_DEVICE:
5330 		c->Request.type_attr_dir =
5331 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5332 		break;
5333 	case DMA_FROM_DEVICE:
5334 		c->Request.type_attr_dir =
5335 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5336 		break;
5337 	case DMA_NONE:
5338 		c->Request.type_attr_dir =
5339 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5340 		break;
5341 	case DMA_BIDIRECTIONAL:
5342 		/* This can happen if a buggy application does a scsi passthru
5343 		 * and sets both inlen and outlen to non-zero. ( see
5344 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5345 		 */
5346 
5347 		c->Request.type_attr_dir =
5348 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5349 		/* This is technically wrong, and hpsa controllers should
5350 		 * reject it with CMD_INVALID, which is the most correct
5351 		 * response, but non-fibre backends appear to let it
5352 		 * slide by, and give the same results as if this field
5353 		 * were set correctly.  Either way is acceptable for
5354 		 * our purposes here.
5355 		 */
5356 
5357 		break;
5358 
5359 	default:
5360 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5361 			cmd->sc_data_direction);
5362 		BUG();
5363 		break;
5364 	}
5365 
5366 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5367 		hpsa_cmd_resolve_and_free(h, c);
5368 		return SCSI_MLQUEUE_HOST_BUSY;
5369 	}
5370 	enqueue_cmd_and_start_io(h, c);
5371 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5372 	return 0;
5373 }
5374 
5375 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5376 				struct CommandList *c)
5377 {
5378 	dma_addr_t cmd_dma_handle, err_dma_handle;
5379 
5380 	/* Zero out all of commandlist except the last field, refcount */
5381 	memset(c, 0, offsetof(struct CommandList, refcount));
5382 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5383 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5384 	c->err_info = h->errinfo_pool + index;
5385 	memset(c->err_info, 0, sizeof(*c->err_info));
5386 	err_dma_handle = h->errinfo_pool_dhandle
5387 	    + index * sizeof(*c->err_info);
5388 	c->cmdindex = index;
5389 	c->busaddr = (u32) cmd_dma_handle;
5390 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5391 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5392 	c->h = h;
5393 	c->scsi_cmd = SCSI_CMD_IDLE;
5394 }
5395 
5396 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5397 {
5398 	int i;
5399 
5400 	for (i = 0; i < h->nr_cmds; i++) {
5401 		struct CommandList *c = h->cmd_pool + i;
5402 
5403 		hpsa_cmd_init(h, i, c);
5404 		atomic_set(&c->refcount, 0);
5405 	}
5406 }
5407 
5408 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5409 				struct CommandList *c)
5410 {
5411 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5412 
5413 	BUG_ON(c->cmdindex != index);
5414 
5415 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5416 	memset(c->err_info, 0, sizeof(*c->err_info));
5417 	c->busaddr = (u32) cmd_dma_handle;
5418 }
5419 
5420 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5421 		struct CommandList *c, struct scsi_cmnd *cmd,
5422 		unsigned char *scsi3addr)
5423 {
5424 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5425 	int rc = IO_ACCEL_INELIGIBLE;
5426 
5427 	if (!dev)
5428 		return SCSI_MLQUEUE_HOST_BUSY;
5429 
5430 	cmd->host_scribble = (unsigned char *) c;
5431 
5432 	if (dev->offload_enabled) {
5433 		hpsa_cmd_init(h, c->cmdindex, c);
5434 		c->cmd_type = CMD_SCSI;
5435 		c->scsi_cmd = cmd;
5436 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5437 		if (rc < 0)     /* scsi_dma_map failed. */
5438 			rc = SCSI_MLQUEUE_HOST_BUSY;
5439 	} else if (dev->hba_ioaccel_enabled) {
5440 		hpsa_cmd_init(h, c->cmdindex, c);
5441 		c->cmd_type = CMD_SCSI;
5442 		c->scsi_cmd = cmd;
5443 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5444 		if (rc < 0)     /* scsi_dma_map failed. */
5445 			rc = SCSI_MLQUEUE_HOST_BUSY;
5446 	}
5447 	return rc;
5448 }
5449 
5450 static void hpsa_command_resubmit_worker(struct work_struct *work)
5451 {
5452 	struct scsi_cmnd *cmd;
5453 	struct hpsa_scsi_dev_t *dev;
5454 	struct CommandList *c = container_of(work, struct CommandList, work);
5455 
5456 	cmd = c->scsi_cmd;
5457 	dev = cmd->device->hostdata;
5458 	if (!dev) {
5459 		cmd->result = DID_NO_CONNECT << 16;
5460 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5461 	}
5462 	if (c->reset_pending)
5463 		return hpsa_cmd_resolve_and_free(c->h, c);
5464 	if (c->abort_pending)
5465 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5466 	if (c->cmd_type == CMD_IOACCEL2) {
5467 		struct ctlr_info *h = c->h;
5468 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5469 		int rc;
5470 
5471 		if (c2->error_data.serv_response ==
5472 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5473 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5474 			if (rc == 0)
5475 				return;
5476 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5477 				/*
5478 				 * If we get here, it means dma mapping failed.
5479 				 * Try again via scsi mid layer, which will
5480 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5481 				 */
5482 				cmd->result = DID_IMM_RETRY << 16;
5483 				return hpsa_cmd_free_and_done(h, c, cmd);
5484 			}
5485 			/* else, fall thru and resubmit down CISS path */
5486 		}
5487 	}
5488 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5489 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5490 		/*
5491 		 * If we get here, it means dma mapping failed. Try
5492 		 * again via scsi mid layer, which will then get
5493 		 * SCSI_MLQUEUE_HOST_BUSY.
5494 		 *
5495 		 * hpsa_ciss_submit will have already freed c
5496 		 * if it encountered a dma mapping failure.
5497 		 */
5498 		cmd->result = DID_IMM_RETRY << 16;
5499 		cmd->scsi_done(cmd);
5500 	}
5501 }
5502 
5503 /* Running in struct Scsi_Host->host_lock less mode */
5504 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5505 {
5506 	struct ctlr_info *h;
5507 	struct hpsa_scsi_dev_t *dev;
5508 	unsigned char scsi3addr[8];
5509 	struct CommandList *c;
5510 	int rc = 0;
5511 
5512 	/* Get the ptr to our adapter structure out of cmd->host. */
5513 	h = sdev_to_hba(cmd->device);
5514 
5515 	BUG_ON(cmd->request->tag < 0);
5516 
5517 	dev = cmd->device->hostdata;
5518 	if (!dev) {
5519 		cmd->result = DID_NO_CONNECT << 16;
5520 		cmd->scsi_done(cmd);
5521 		return 0;
5522 	}
5523 
5524 	if (dev->removed) {
5525 		cmd->result = DID_NO_CONNECT << 16;
5526 		cmd->scsi_done(cmd);
5527 		return 0;
5528 	}
5529 
5530 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5531 
5532 	if (unlikely(lockup_detected(h))) {
5533 		cmd->result = DID_NO_CONNECT << 16;
5534 		cmd->scsi_done(cmd);
5535 		return 0;
5536 	}
5537 	c = cmd_tagged_alloc(h, cmd);
5538 
5539 	/*
5540 	 * Call alternate submit routine for I/O accelerated commands.
5541 	 * Retries always go down the normal I/O path.
5542 	 */
5543 	if (likely(cmd->retries == 0 &&
5544 			!blk_rq_is_passthrough(cmd->request) &&
5545 			h->acciopath_status)) {
5546 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5547 		if (rc == 0)
5548 			return 0;
5549 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5550 			hpsa_cmd_resolve_and_free(h, c);
5551 			return SCSI_MLQUEUE_HOST_BUSY;
5552 		}
5553 	}
5554 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5555 }
5556 
5557 static void hpsa_scan_complete(struct ctlr_info *h)
5558 {
5559 	unsigned long flags;
5560 
5561 	spin_lock_irqsave(&h->scan_lock, flags);
5562 	h->scan_finished = 1;
5563 	wake_up(&h->scan_wait_queue);
5564 	spin_unlock_irqrestore(&h->scan_lock, flags);
5565 }
5566 
5567 static void hpsa_scan_start(struct Scsi_Host *sh)
5568 {
5569 	struct ctlr_info *h = shost_to_hba(sh);
5570 	unsigned long flags;
5571 
5572 	/*
5573 	 * Don't let rescans be initiated on a controller known to be locked
5574 	 * up.  If the controller locks up *during* a rescan, that thread is
5575 	 * probably hosed, but at least we can prevent new rescan threads from
5576 	 * piling up on a locked up controller.
5577 	 */
5578 	if (unlikely(lockup_detected(h)))
5579 		return hpsa_scan_complete(h);
5580 
5581 	/*
5582 	 * If a scan is already waiting to run, no need to add another
5583 	 */
5584 	spin_lock_irqsave(&h->scan_lock, flags);
5585 	if (h->scan_waiting) {
5586 		spin_unlock_irqrestore(&h->scan_lock, flags);
5587 		return;
5588 	}
5589 
5590 	spin_unlock_irqrestore(&h->scan_lock, flags);
5591 
5592 	/* wait until any scan already in progress is finished. */
5593 	while (1) {
5594 		spin_lock_irqsave(&h->scan_lock, flags);
5595 		if (h->scan_finished)
5596 			break;
5597 		h->scan_waiting = 1;
5598 		spin_unlock_irqrestore(&h->scan_lock, flags);
5599 		wait_event(h->scan_wait_queue, h->scan_finished);
5600 		/* Note: We don't need to worry about a race between this
5601 		 * thread and driver unload because the midlayer will
5602 		 * have incremented the reference count, so unload won't
5603 		 * happen if we're in here.
5604 		 */
5605 	}
5606 	h->scan_finished = 0; /* mark scan as in progress */
5607 	h->scan_waiting = 0;
5608 	spin_unlock_irqrestore(&h->scan_lock, flags);
5609 
5610 	if (unlikely(lockup_detected(h)))
5611 		return hpsa_scan_complete(h);
5612 
5613 	/*
5614 	 * Do the scan after a reset completion
5615 	 */
5616 	if (h->reset_in_progress) {
5617 		h->drv_req_rescan = 1;
5618 		return;
5619 	}
5620 
5621 	hpsa_update_scsi_devices(h);
5622 
5623 	hpsa_scan_complete(h);
5624 }
5625 
5626 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5627 {
5628 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5629 
5630 	if (!logical_drive)
5631 		return -ENODEV;
5632 
5633 	if (qdepth < 1)
5634 		qdepth = 1;
5635 	else if (qdepth > logical_drive->queue_depth)
5636 		qdepth = logical_drive->queue_depth;
5637 
5638 	return scsi_change_queue_depth(sdev, qdepth);
5639 }
5640 
5641 static int hpsa_scan_finished(struct Scsi_Host *sh,
5642 	unsigned long elapsed_time)
5643 {
5644 	struct ctlr_info *h = shost_to_hba(sh);
5645 	unsigned long flags;
5646 	int finished;
5647 
5648 	spin_lock_irqsave(&h->scan_lock, flags);
5649 	finished = h->scan_finished;
5650 	spin_unlock_irqrestore(&h->scan_lock, flags);
5651 	return finished;
5652 }
5653 
5654 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5655 {
5656 	struct Scsi_Host *sh;
5657 
5658 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5659 	if (sh == NULL) {
5660 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5661 		return -ENOMEM;
5662 	}
5663 
5664 	sh->io_port = 0;
5665 	sh->n_io_port = 0;
5666 	sh->this_id = -1;
5667 	sh->max_channel = 3;
5668 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5669 	sh->max_lun = HPSA_MAX_LUN;
5670 	sh->max_id = HPSA_MAX_LUN;
5671 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5672 	sh->cmd_per_lun = sh->can_queue;
5673 	sh->sg_tablesize = h->maxsgentries;
5674 	sh->transportt = hpsa_sas_transport_template;
5675 	sh->hostdata[0] = (unsigned long) h;
5676 	sh->irq = pci_irq_vector(h->pdev, 0);
5677 	sh->unique_id = sh->irq;
5678 
5679 	h->scsi_host = sh;
5680 	return 0;
5681 }
5682 
5683 static int hpsa_scsi_add_host(struct ctlr_info *h)
5684 {
5685 	int rv;
5686 
5687 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5688 	if (rv) {
5689 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5690 		return rv;
5691 	}
5692 	scsi_scan_host(h->scsi_host);
5693 	return 0;
5694 }
5695 
5696 /*
5697  * The block layer has already gone to the trouble of picking out a unique,
5698  * small-integer tag for this request.  We use an offset from that value as
5699  * an index to select our command block.  (The offset allows us to reserve the
5700  * low-numbered entries for our own uses.)
5701  */
5702 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5703 {
5704 	int idx = scmd->request->tag;
5705 
5706 	if (idx < 0)
5707 		return idx;
5708 
5709 	/* Offset to leave space for internal cmds. */
5710 	return idx += HPSA_NRESERVED_CMDS;
5711 }
5712 
5713 /*
5714  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5715  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5716  */
5717 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5718 				struct CommandList *c, unsigned char lunaddr[],
5719 				int reply_queue)
5720 {
5721 	int rc;
5722 
5723 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5724 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5725 			NULL, 0, 0, lunaddr, TYPE_CMD);
5726 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5727 	if (rc)
5728 		return rc;
5729 	/* no unmap needed here because no data xfer. */
5730 
5731 	/* Check if the unit is already ready. */
5732 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5733 		return 0;
5734 
5735 	/*
5736 	 * The first command sent after reset will receive "unit attention" to
5737 	 * indicate that the LUN has been reset...this is actually what we're
5738 	 * looking for (but, success is good too).
5739 	 */
5740 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5741 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5742 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5743 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5744 		return 0;
5745 
5746 	return 1;
5747 }
5748 
5749 /*
5750  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5751  * returns zero when the unit is ready, and non-zero when giving up.
5752  */
5753 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5754 				struct CommandList *c,
5755 				unsigned char lunaddr[], int reply_queue)
5756 {
5757 	int rc;
5758 	int count = 0;
5759 	int waittime = 1; /* seconds */
5760 
5761 	/* Send test unit ready until device ready, or give up. */
5762 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5763 
5764 		/*
5765 		 * Wait for a bit.  do this first, because if we send
5766 		 * the TUR right away, the reset will just abort it.
5767 		 */
5768 		msleep(1000 * waittime);
5769 
5770 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5771 		if (!rc)
5772 			break;
5773 
5774 		/* Increase wait time with each try, up to a point. */
5775 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5776 			waittime *= 2;
5777 
5778 		dev_warn(&h->pdev->dev,
5779 			 "waiting %d secs for device to become ready.\n",
5780 			 waittime);
5781 	}
5782 
5783 	return rc;
5784 }
5785 
5786 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5787 					   unsigned char lunaddr[],
5788 					   int reply_queue)
5789 {
5790 	int first_queue;
5791 	int last_queue;
5792 	int rq;
5793 	int rc = 0;
5794 	struct CommandList *c;
5795 
5796 	c = cmd_alloc(h);
5797 
5798 	/*
5799 	 * If no specific reply queue was requested, then send the TUR
5800 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5801 	 * the loop exactly once using only the specified queue.
5802 	 */
5803 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5804 		first_queue = 0;
5805 		last_queue = h->nreply_queues - 1;
5806 	} else {
5807 		first_queue = reply_queue;
5808 		last_queue = reply_queue;
5809 	}
5810 
5811 	for (rq = first_queue; rq <= last_queue; rq++) {
5812 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5813 		if (rc)
5814 			break;
5815 	}
5816 
5817 	if (rc)
5818 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5819 	else
5820 		dev_warn(&h->pdev->dev, "device is ready.\n");
5821 
5822 	cmd_free(h, c);
5823 	return rc;
5824 }
5825 
5826 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5827  * complaining.  Doing a host- or bus-reset can't do anything good here.
5828  */
5829 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5830 {
5831 	int rc;
5832 	struct ctlr_info *h;
5833 	struct hpsa_scsi_dev_t *dev;
5834 	u8 reset_type;
5835 	char msg[48];
5836 
5837 	/* find the controller to which the command to be aborted was sent */
5838 	h = sdev_to_hba(scsicmd->device);
5839 	if (h == NULL) /* paranoia */
5840 		return FAILED;
5841 
5842 	if (lockup_detected(h))
5843 		return FAILED;
5844 
5845 	dev = scsicmd->device->hostdata;
5846 	if (!dev) {
5847 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5848 		return FAILED;
5849 	}
5850 
5851 	/* if controller locked up, we can guarantee command won't complete */
5852 	if (lockup_detected(h)) {
5853 		snprintf(msg, sizeof(msg),
5854 			 "cmd %d RESET FAILED, lockup detected",
5855 			 hpsa_get_cmd_index(scsicmd));
5856 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5857 		return FAILED;
5858 	}
5859 
5860 	/* this reset request might be the result of a lockup; check */
5861 	if (detect_controller_lockup(h)) {
5862 		snprintf(msg, sizeof(msg),
5863 			 "cmd %d RESET FAILED, new lockup detected",
5864 			 hpsa_get_cmd_index(scsicmd));
5865 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5866 		return FAILED;
5867 	}
5868 
5869 	/* Do not attempt on controller */
5870 	if (is_hba_lunid(dev->scsi3addr))
5871 		return SUCCESS;
5872 
5873 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5874 		reset_type = HPSA_DEVICE_RESET_MSG;
5875 	else
5876 		reset_type = HPSA_PHYS_TARGET_RESET;
5877 
5878 	sprintf(msg, "resetting %s",
5879 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5880 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5881 
5882 	h->reset_in_progress = 1;
5883 
5884 	/* send a reset to the SCSI LUN which the command was sent to */
5885 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5886 			   DEFAULT_REPLY_QUEUE);
5887 	sprintf(msg, "reset %s %s",
5888 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5889 		rc == 0 ? "completed successfully" : "failed");
5890 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5891 	h->reset_in_progress = 0;
5892 	return rc == 0 ? SUCCESS : FAILED;
5893 }
5894 
5895 static void swizzle_abort_tag(u8 *tag)
5896 {
5897 	u8 original_tag[8];
5898 
5899 	memcpy(original_tag, tag, 8);
5900 	tag[0] = original_tag[3];
5901 	tag[1] = original_tag[2];
5902 	tag[2] = original_tag[1];
5903 	tag[3] = original_tag[0];
5904 	tag[4] = original_tag[7];
5905 	tag[5] = original_tag[6];
5906 	tag[6] = original_tag[5];
5907 	tag[7] = original_tag[4];
5908 }
5909 
5910 static void hpsa_get_tag(struct ctlr_info *h,
5911 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5912 {
5913 	u64 tag;
5914 	if (c->cmd_type == CMD_IOACCEL1) {
5915 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5916 			&h->ioaccel_cmd_pool[c->cmdindex];
5917 		tag = le64_to_cpu(cm1->tag);
5918 		*tagupper = cpu_to_le32(tag >> 32);
5919 		*taglower = cpu_to_le32(tag);
5920 		return;
5921 	}
5922 	if (c->cmd_type == CMD_IOACCEL2) {
5923 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5924 			&h->ioaccel2_cmd_pool[c->cmdindex];
5925 		/* upper tag not used in ioaccel2 mode */
5926 		memset(tagupper, 0, sizeof(*tagupper));
5927 		*taglower = cm2->Tag;
5928 		return;
5929 	}
5930 	tag = le64_to_cpu(c->Header.tag);
5931 	*tagupper = cpu_to_le32(tag >> 32);
5932 	*taglower = cpu_to_le32(tag);
5933 }
5934 
5935 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5936 	struct CommandList *abort, int reply_queue)
5937 {
5938 	int rc = IO_OK;
5939 	struct CommandList *c;
5940 	struct ErrorInfo *ei;
5941 	__le32 tagupper, taglower;
5942 
5943 	c = cmd_alloc(h);
5944 
5945 	/* fill_cmd can't fail here, no buffer to map */
5946 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5947 		0, 0, scsi3addr, TYPE_MSG);
5948 	if (h->needs_abort_tags_swizzled)
5949 		swizzle_abort_tag(&c->Request.CDB[4]);
5950 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5951 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5952 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5953 		__func__, tagupper, taglower);
5954 	/* no unmap needed here because no data xfer. */
5955 
5956 	ei = c->err_info;
5957 	switch (ei->CommandStatus) {
5958 	case CMD_SUCCESS:
5959 		break;
5960 	case CMD_TMF_STATUS:
5961 		rc = hpsa_evaluate_tmf_status(h, c);
5962 		break;
5963 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5964 		rc = -1;
5965 		break;
5966 	default:
5967 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5968 			__func__, tagupper, taglower);
5969 		hpsa_scsi_interpret_error(h, c);
5970 		rc = -1;
5971 		break;
5972 	}
5973 	cmd_free(h, c);
5974 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5975 		__func__, tagupper, taglower);
5976 	return rc;
5977 }
5978 
5979 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5980 	struct CommandList *command_to_abort, int reply_queue)
5981 {
5982 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5983 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5984 	struct io_accel2_cmd *c2a =
5985 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5986 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5987 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5988 
5989 	if (!dev)
5990 		return;
5991 
5992 	/*
5993 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5994 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5995 	 * actually fits, and doesn't overrun the error info space.
5996 	 */
5997 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5998 			sizeof(struct io_accel2_cmd));
5999 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
6000 			offsetof(struct hpsa_tmf_struct, error_len) +
6001 				sizeof(ac->error_len));
6002 
6003 	c->cmd_type = IOACCEL2_TMF;
6004 	c->scsi_cmd = SCSI_CMD_BUSY;
6005 
6006 	/* Adjust the DMA address to point to the accelerated command buffer */
6007 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6008 				(c->cmdindex * sizeof(struct io_accel2_cmd));
6009 	BUG_ON(c->busaddr & 0x0000007F);
6010 
6011 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6012 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6013 	ac->reply_queue = reply_queue;
6014 	ac->tmf = IOACCEL2_TMF_ABORT;
6015 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6016 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
6017 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6018 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6019 	ac->error_ptr = cpu_to_le64(c->busaddr +
6020 			offsetof(struct io_accel2_cmd, error_data));
6021 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6022 }
6023 
6024 /* ioaccel2 path firmware cannot handle abort task requests.
6025  * Change abort requests to physical target reset, and send to the
6026  * address of the physical disk used for the ioaccel 2 command.
6027  * Return 0 on success (IO_OK)
6028  *	 -1 on failure
6029  */
6030 
6031 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6032 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6033 {
6034 	int rc = IO_OK;
6035 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6036 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6037 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6038 	unsigned char *psa = &phys_scsi3addr[0];
6039 
6040 	/* Get a pointer to the hpsa logical device. */
6041 	scmd = abort->scsi_cmd;
6042 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6043 	if (dev == NULL) {
6044 		dev_warn(&h->pdev->dev,
6045 			"Cannot abort: no device pointer for command.\n");
6046 			return -1; /* not abortable */
6047 	}
6048 
6049 	if (h->raid_offload_debug > 0)
6050 		dev_info(&h->pdev->dev,
6051 			"scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6052 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6053 			"Reset as abort", scsi3addr);
6054 
6055 	if (!dev->offload_enabled) {
6056 		dev_warn(&h->pdev->dev,
6057 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6058 		return -1; /* not abortable */
6059 	}
6060 
6061 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
6062 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6063 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6064 		return -1; /* not abortable */
6065 	}
6066 
6067 	/* send the reset */
6068 	if (h->raid_offload_debug > 0)
6069 		dev_info(&h->pdev->dev,
6070 			"Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6071 			psa);
6072 	rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6073 	if (rc != 0) {
6074 		dev_warn(&h->pdev->dev,
6075 			"Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6076 			psa);
6077 		return rc; /* failed to reset */
6078 	}
6079 
6080 	/* wait for device to recover */
6081 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6082 		dev_warn(&h->pdev->dev,
6083 			"Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6084 			psa);
6085 		return -1;  /* failed to recover */
6086 	}
6087 
6088 	/* device recovered */
6089 	dev_info(&h->pdev->dev,
6090 		"Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6091 		psa);
6092 
6093 	return rc; /* success */
6094 }
6095 
6096 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6097 	struct CommandList *abort, int reply_queue)
6098 {
6099 	int rc = IO_OK;
6100 	struct CommandList *c;
6101 	__le32 taglower, tagupper;
6102 	struct hpsa_scsi_dev_t *dev;
6103 	struct io_accel2_cmd *c2;
6104 
6105 	dev = abort->scsi_cmd->device->hostdata;
6106 	if (!dev)
6107 		return -1;
6108 
6109 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6110 		return -1;
6111 
6112 	c = cmd_alloc(h);
6113 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6114 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6115 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6116 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6117 	dev_dbg(&h->pdev->dev,
6118 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6119 		__func__, tagupper, taglower);
6120 	/* no unmap needed here because no data xfer. */
6121 
6122 	dev_dbg(&h->pdev->dev,
6123 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6124 		__func__, tagupper, taglower, c2->error_data.serv_response);
6125 	switch (c2->error_data.serv_response) {
6126 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6127 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6128 		rc = 0;
6129 		break;
6130 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6131 	case IOACCEL2_SERV_RESPONSE_FAILURE:
6132 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6133 		rc = -1;
6134 		break;
6135 	default:
6136 		dev_warn(&h->pdev->dev,
6137 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6138 			__func__, tagupper, taglower,
6139 			c2->error_data.serv_response);
6140 		rc = -1;
6141 	}
6142 	cmd_free(h, c);
6143 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6144 		tagupper, taglower);
6145 	return rc;
6146 }
6147 
6148 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6149 	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6150 {
6151 	/*
6152 	 * ioccelerator mode 2 commands should be aborted via the
6153 	 * accelerated path, since RAID path is unaware of these commands,
6154 	 * but not all underlying firmware can handle abort TMF.
6155 	 * Change abort to physical device reset when abort TMF is unsupported.
6156 	 */
6157 	if (abort->cmd_type == CMD_IOACCEL2) {
6158 		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6159 			dev->physical_device)
6160 			return hpsa_send_abort_ioaccel2(h, abort,
6161 						reply_queue);
6162 		else
6163 			return hpsa_send_reset_as_abort_ioaccel2(h,
6164 							dev->scsi3addr,
6165 							abort, reply_queue);
6166 	}
6167 	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6168 }
6169 
6170 /* Find out which reply queue a command was meant to return on */
6171 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6172 					struct CommandList *c)
6173 {
6174 	if (c->cmd_type == CMD_IOACCEL2)
6175 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6176 	return c->Header.ReplyQueue;
6177 }
6178 
6179 /*
6180  * Limit concurrency of abort commands to prevent
6181  * over-subscription of commands
6182  */
6183 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6184 {
6185 #define ABORT_CMD_WAIT_MSECS 5000
6186 	return !wait_event_timeout(h->abort_cmd_wait_queue,
6187 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6188 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6189 }
6190 
6191 /* Send an abort for the specified command.
6192  *	If the device and controller support it,
6193  *		send a task abort request.
6194  */
6195 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6196 {
6197 
6198 	int rc;
6199 	struct ctlr_info *h;
6200 	struct hpsa_scsi_dev_t *dev;
6201 	struct CommandList *abort; /* pointer to command to be aborted */
6202 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
6203 	char msg[256];		/* For debug messaging. */
6204 	int ml = 0;
6205 	__le32 tagupper, taglower;
6206 	int refcount, reply_queue;
6207 
6208 	if (sc == NULL)
6209 		return FAILED;
6210 
6211 	if (sc->device == NULL)
6212 		return FAILED;
6213 
6214 	/* Find the controller of the command to be aborted */
6215 	h = sdev_to_hba(sc->device);
6216 	if (h == NULL)
6217 		return FAILED;
6218 
6219 	/* Find the device of the command to be aborted */
6220 	dev = sc->device->hostdata;
6221 	if (!dev) {
6222 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6223 				msg);
6224 		return FAILED;
6225 	}
6226 
6227 	/* If controller locked up, we can guarantee command won't complete */
6228 	if (lockup_detected(h)) {
6229 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6230 					"ABORT FAILED, lockup detected");
6231 		return FAILED;
6232 	}
6233 
6234 	/* This is a good time to check if controller lockup has occurred */
6235 	if (detect_controller_lockup(h)) {
6236 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6237 					"ABORT FAILED, new lockup detected");
6238 		return FAILED;
6239 	}
6240 
6241 	/* Check that controller supports some kind of task abort */
6242 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6243 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6244 		return FAILED;
6245 
6246 	memset(msg, 0, sizeof(msg));
6247 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6248 		h->scsi_host->host_no, sc->device->channel,
6249 		sc->device->id, sc->device->lun,
6250 		"Aborting command", sc);
6251 
6252 	/* Get SCSI command to be aborted */
6253 	abort = (struct CommandList *) sc->host_scribble;
6254 	if (abort == NULL) {
6255 		/* This can happen if the command already completed. */
6256 		return SUCCESS;
6257 	}
6258 	refcount = atomic_inc_return(&abort->refcount);
6259 	if (refcount == 1) { /* Command is done already. */
6260 		cmd_free(h, abort);
6261 		return SUCCESS;
6262 	}
6263 
6264 	/* Don't bother trying the abort if we know it won't work. */
6265 	if (abort->cmd_type != CMD_IOACCEL2 &&
6266 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6267 		cmd_free(h, abort);
6268 		return FAILED;
6269 	}
6270 
6271 	/*
6272 	 * Check that we're aborting the right command.
6273 	 * It's possible the CommandList already completed and got re-used.
6274 	 */
6275 	if (abort->scsi_cmd != sc) {
6276 		cmd_free(h, abort);
6277 		return SUCCESS;
6278 	}
6279 
6280 	abort->abort_pending = true;
6281 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6282 	reply_queue = hpsa_extract_reply_queue(h, abort);
6283 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6284 	as  = abort->scsi_cmd;
6285 	if (as != NULL)
6286 		ml += sprintf(msg+ml,
6287 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6288 			as->cmd_len, as->cmnd[0], as->cmnd[1],
6289 			as->serial_number);
6290 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6291 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6292 
6293 	/*
6294 	 * Command is in flight, or possibly already completed
6295 	 * by the firmware (but not to the scsi mid layer) but we can't
6296 	 * distinguish which.  Send the abort down.
6297 	 */
6298 	if (wait_for_available_abort_cmd(h)) {
6299 		dev_warn(&h->pdev->dev,
6300 			"%s FAILED, timeout waiting for an abort command to become available.\n",
6301 			msg);
6302 		cmd_free(h, abort);
6303 		return FAILED;
6304 	}
6305 	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6306 	atomic_inc(&h->abort_cmds_available);
6307 	wake_up_all(&h->abort_cmd_wait_queue);
6308 	if (rc != 0) {
6309 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6310 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6311 				"FAILED to abort command");
6312 		cmd_free(h, abort);
6313 		return FAILED;
6314 	}
6315 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6316 	wait_event(h->event_sync_wait_queue,
6317 		   abort->scsi_cmd != sc || lockup_detected(h));
6318 	cmd_free(h, abort);
6319 	return !lockup_detected(h) ? SUCCESS : FAILED;
6320 }
6321 
6322 /*
6323  * For operations with an associated SCSI command, a command block is allocated
6324  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6325  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6326  * the complement, although cmd_free() may be called instead.
6327  */
6328 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6329 					    struct scsi_cmnd *scmd)
6330 {
6331 	int idx = hpsa_get_cmd_index(scmd);
6332 	struct CommandList *c = h->cmd_pool + idx;
6333 
6334 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6335 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6336 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6337 		/* The index value comes from the block layer, so if it's out of
6338 		 * bounds, it's probably not our bug.
6339 		 */
6340 		BUG();
6341 	}
6342 
6343 	atomic_inc(&c->refcount);
6344 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6345 		/*
6346 		 * We expect that the SCSI layer will hand us a unique tag
6347 		 * value.  Thus, there should never be a collision here between
6348 		 * two requests...because if the selected command isn't idle
6349 		 * then someone is going to be very disappointed.
6350 		 */
6351 		dev_err(&h->pdev->dev,
6352 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6353 			idx);
6354 		if (c->scsi_cmd != NULL)
6355 			scsi_print_command(c->scsi_cmd);
6356 		scsi_print_command(scmd);
6357 	}
6358 
6359 	hpsa_cmd_partial_init(h, idx, c);
6360 	return c;
6361 }
6362 
6363 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6364 {
6365 	/*
6366 	 * Release our reference to the block.  We don't need to do anything
6367 	 * else to free it, because it is accessed by index.  (There's no point
6368 	 * in checking the result of the decrement, since we cannot guarantee
6369 	 * that there isn't a concurrent abort which is also accessing it.)
6370 	 */
6371 	(void)atomic_dec(&c->refcount);
6372 }
6373 
6374 /*
6375  * For operations that cannot sleep, a command block is allocated at init,
6376  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6377  * which ones are free or in use.  Lock must be held when calling this.
6378  * cmd_free() is the complement.
6379  * This function never gives up and returns NULL.  If it hangs,
6380  * another thread must call cmd_free() to free some tags.
6381  */
6382 
6383 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6384 {
6385 	struct CommandList *c;
6386 	int refcount, i;
6387 	int offset = 0;
6388 
6389 	/*
6390 	 * There is some *extremely* small but non-zero chance that that
6391 	 * multiple threads could get in here, and one thread could
6392 	 * be scanning through the list of bits looking for a free
6393 	 * one, but the free ones are always behind him, and other
6394 	 * threads sneak in behind him and eat them before he can
6395 	 * get to them, so that while there is always a free one, a
6396 	 * very unlucky thread might be starved anyway, never able to
6397 	 * beat the other threads.  In reality, this happens so
6398 	 * infrequently as to be indistinguishable from never.
6399 	 *
6400 	 * Note that we start allocating commands before the SCSI host structure
6401 	 * is initialized.  Since the search starts at bit zero, this
6402 	 * all works, since we have at least one command structure available;
6403 	 * however, it means that the structures with the low indexes have to be
6404 	 * reserved for driver-initiated requests, while requests from the block
6405 	 * layer will use the higher indexes.
6406 	 */
6407 
6408 	for (;;) {
6409 		i = find_next_zero_bit(h->cmd_pool_bits,
6410 					HPSA_NRESERVED_CMDS,
6411 					offset);
6412 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6413 			offset = 0;
6414 			continue;
6415 		}
6416 		c = h->cmd_pool + i;
6417 		refcount = atomic_inc_return(&c->refcount);
6418 		if (unlikely(refcount > 1)) {
6419 			cmd_free(h, c); /* already in use */
6420 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6421 			continue;
6422 		}
6423 		set_bit(i & (BITS_PER_LONG - 1),
6424 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6425 		break; /* it's ours now. */
6426 	}
6427 	hpsa_cmd_partial_init(h, i, c);
6428 	return c;
6429 }
6430 
6431 /*
6432  * This is the complementary operation to cmd_alloc().  Note, however, in some
6433  * corner cases it may also be used to free blocks allocated by
6434  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6435  * the clear-bit is harmless.
6436  */
6437 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6438 {
6439 	if (atomic_dec_and_test(&c->refcount)) {
6440 		int i;
6441 
6442 		i = c - h->cmd_pool;
6443 		clear_bit(i & (BITS_PER_LONG - 1),
6444 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6445 	}
6446 }
6447 
6448 #ifdef CONFIG_COMPAT
6449 
6450 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6451 	void __user *arg)
6452 {
6453 	IOCTL32_Command_struct __user *arg32 =
6454 	    (IOCTL32_Command_struct __user *) arg;
6455 	IOCTL_Command_struct arg64;
6456 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6457 	int err;
6458 	u32 cp;
6459 
6460 	memset(&arg64, 0, sizeof(arg64));
6461 	err = 0;
6462 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6463 			   sizeof(arg64.LUN_info));
6464 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6465 			   sizeof(arg64.Request));
6466 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6467 			   sizeof(arg64.error_info));
6468 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6469 	err |= get_user(cp, &arg32->buf);
6470 	arg64.buf = compat_ptr(cp);
6471 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6472 
6473 	if (err)
6474 		return -EFAULT;
6475 
6476 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6477 	if (err)
6478 		return err;
6479 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6480 			 sizeof(arg32->error_info));
6481 	if (err)
6482 		return -EFAULT;
6483 	return err;
6484 }
6485 
6486 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6487 	int cmd, void __user *arg)
6488 {
6489 	BIG_IOCTL32_Command_struct __user *arg32 =
6490 	    (BIG_IOCTL32_Command_struct __user *) arg;
6491 	BIG_IOCTL_Command_struct arg64;
6492 	BIG_IOCTL_Command_struct __user *p =
6493 	    compat_alloc_user_space(sizeof(arg64));
6494 	int err;
6495 	u32 cp;
6496 
6497 	memset(&arg64, 0, sizeof(arg64));
6498 	err = 0;
6499 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6500 			   sizeof(arg64.LUN_info));
6501 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6502 			   sizeof(arg64.Request));
6503 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6504 			   sizeof(arg64.error_info));
6505 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6506 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6507 	err |= get_user(cp, &arg32->buf);
6508 	arg64.buf = compat_ptr(cp);
6509 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6510 
6511 	if (err)
6512 		return -EFAULT;
6513 
6514 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6515 	if (err)
6516 		return err;
6517 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6518 			 sizeof(arg32->error_info));
6519 	if (err)
6520 		return -EFAULT;
6521 	return err;
6522 }
6523 
6524 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6525 {
6526 	switch (cmd) {
6527 	case CCISS_GETPCIINFO:
6528 	case CCISS_GETINTINFO:
6529 	case CCISS_SETINTINFO:
6530 	case CCISS_GETNODENAME:
6531 	case CCISS_SETNODENAME:
6532 	case CCISS_GETHEARTBEAT:
6533 	case CCISS_GETBUSTYPES:
6534 	case CCISS_GETFIRMVER:
6535 	case CCISS_GETDRIVVER:
6536 	case CCISS_REVALIDVOLS:
6537 	case CCISS_DEREGDISK:
6538 	case CCISS_REGNEWDISK:
6539 	case CCISS_REGNEWD:
6540 	case CCISS_RESCANDISK:
6541 	case CCISS_GETLUNINFO:
6542 		return hpsa_ioctl(dev, cmd, arg);
6543 
6544 	case CCISS_PASSTHRU32:
6545 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6546 	case CCISS_BIG_PASSTHRU32:
6547 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6548 
6549 	default:
6550 		return -ENOIOCTLCMD;
6551 	}
6552 }
6553 #endif
6554 
6555 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6556 {
6557 	struct hpsa_pci_info pciinfo;
6558 
6559 	if (!argp)
6560 		return -EINVAL;
6561 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6562 	pciinfo.bus = h->pdev->bus->number;
6563 	pciinfo.dev_fn = h->pdev->devfn;
6564 	pciinfo.board_id = h->board_id;
6565 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6566 		return -EFAULT;
6567 	return 0;
6568 }
6569 
6570 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6571 {
6572 	DriverVer_type DriverVer;
6573 	unsigned char vmaj, vmin, vsubmin;
6574 	int rc;
6575 
6576 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6577 		&vmaj, &vmin, &vsubmin);
6578 	if (rc != 3) {
6579 		dev_info(&h->pdev->dev, "driver version string '%s' "
6580 			"unrecognized.", HPSA_DRIVER_VERSION);
6581 		vmaj = 0;
6582 		vmin = 0;
6583 		vsubmin = 0;
6584 	}
6585 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6586 	if (!argp)
6587 		return -EINVAL;
6588 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6589 		return -EFAULT;
6590 	return 0;
6591 }
6592 
6593 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6594 {
6595 	IOCTL_Command_struct iocommand;
6596 	struct CommandList *c;
6597 	char *buff = NULL;
6598 	u64 temp64;
6599 	int rc = 0;
6600 
6601 	if (!argp)
6602 		return -EINVAL;
6603 	if (!capable(CAP_SYS_RAWIO))
6604 		return -EPERM;
6605 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6606 		return -EFAULT;
6607 	if ((iocommand.buf_size < 1) &&
6608 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6609 		return -EINVAL;
6610 	}
6611 	if (iocommand.buf_size > 0) {
6612 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6613 		if (buff == NULL)
6614 			return -ENOMEM;
6615 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6616 			/* Copy the data into the buffer we created */
6617 			if (copy_from_user(buff, iocommand.buf,
6618 				iocommand.buf_size)) {
6619 				rc = -EFAULT;
6620 				goto out_kfree;
6621 			}
6622 		} else {
6623 			memset(buff, 0, iocommand.buf_size);
6624 		}
6625 	}
6626 	c = cmd_alloc(h);
6627 
6628 	/* Fill in the command type */
6629 	c->cmd_type = CMD_IOCTL_PEND;
6630 	c->scsi_cmd = SCSI_CMD_BUSY;
6631 	/* Fill in Command Header */
6632 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6633 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6634 		c->Header.SGList = 1;
6635 		c->Header.SGTotal = cpu_to_le16(1);
6636 	} else	{ /* no buffers to fill */
6637 		c->Header.SGList = 0;
6638 		c->Header.SGTotal = cpu_to_le16(0);
6639 	}
6640 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6641 
6642 	/* Fill in Request block */
6643 	memcpy(&c->Request, &iocommand.Request,
6644 		sizeof(c->Request));
6645 
6646 	/* Fill in the scatter gather information */
6647 	if (iocommand.buf_size > 0) {
6648 		temp64 = pci_map_single(h->pdev, buff,
6649 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6650 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6651 			c->SG[0].Addr = cpu_to_le64(0);
6652 			c->SG[0].Len = cpu_to_le32(0);
6653 			rc = -ENOMEM;
6654 			goto out;
6655 		}
6656 		c->SG[0].Addr = cpu_to_le64(temp64);
6657 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6658 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6659 	}
6660 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6661 					NO_TIMEOUT);
6662 	if (iocommand.buf_size > 0)
6663 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6664 	check_ioctl_unit_attention(h, c);
6665 	if (rc) {
6666 		rc = -EIO;
6667 		goto out;
6668 	}
6669 
6670 	/* Copy the error information out */
6671 	memcpy(&iocommand.error_info, c->err_info,
6672 		sizeof(iocommand.error_info));
6673 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6674 		rc = -EFAULT;
6675 		goto out;
6676 	}
6677 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6678 		iocommand.buf_size > 0) {
6679 		/* Copy the data out of the buffer we created */
6680 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6681 			rc = -EFAULT;
6682 			goto out;
6683 		}
6684 	}
6685 out:
6686 	cmd_free(h, c);
6687 out_kfree:
6688 	kfree(buff);
6689 	return rc;
6690 }
6691 
6692 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6693 {
6694 	BIG_IOCTL_Command_struct *ioc;
6695 	struct CommandList *c;
6696 	unsigned char **buff = NULL;
6697 	int *buff_size = NULL;
6698 	u64 temp64;
6699 	BYTE sg_used = 0;
6700 	int status = 0;
6701 	u32 left;
6702 	u32 sz;
6703 	BYTE __user *data_ptr;
6704 
6705 	if (!argp)
6706 		return -EINVAL;
6707 	if (!capable(CAP_SYS_RAWIO))
6708 		return -EPERM;
6709 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6710 	if (!ioc) {
6711 		status = -ENOMEM;
6712 		goto cleanup1;
6713 	}
6714 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6715 		status = -EFAULT;
6716 		goto cleanup1;
6717 	}
6718 	if ((ioc->buf_size < 1) &&
6719 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6720 		status = -EINVAL;
6721 		goto cleanup1;
6722 	}
6723 	/* Check kmalloc limits  using all SGs */
6724 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6725 		status = -EINVAL;
6726 		goto cleanup1;
6727 	}
6728 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6729 		status = -EINVAL;
6730 		goto cleanup1;
6731 	}
6732 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6733 	if (!buff) {
6734 		status = -ENOMEM;
6735 		goto cleanup1;
6736 	}
6737 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6738 	if (!buff_size) {
6739 		status = -ENOMEM;
6740 		goto cleanup1;
6741 	}
6742 	left = ioc->buf_size;
6743 	data_ptr = ioc->buf;
6744 	while (left) {
6745 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6746 		buff_size[sg_used] = sz;
6747 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6748 		if (buff[sg_used] == NULL) {
6749 			status = -ENOMEM;
6750 			goto cleanup1;
6751 		}
6752 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6753 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6754 				status = -EFAULT;
6755 				goto cleanup1;
6756 			}
6757 		} else
6758 			memset(buff[sg_used], 0, sz);
6759 		left -= sz;
6760 		data_ptr += sz;
6761 		sg_used++;
6762 	}
6763 	c = cmd_alloc(h);
6764 
6765 	c->cmd_type = CMD_IOCTL_PEND;
6766 	c->scsi_cmd = SCSI_CMD_BUSY;
6767 	c->Header.ReplyQueue = 0;
6768 	c->Header.SGList = (u8) sg_used;
6769 	c->Header.SGTotal = cpu_to_le16(sg_used);
6770 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6771 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6772 	if (ioc->buf_size > 0) {
6773 		int i;
6774 		for (i = 0; i < sg_used; i++) {
6775 			temp64 = pci_map_single(h->pdev, buff[i],
6776 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6777 			if (dma_mapping_error(&h->pdev->dev,
6778 							(dma_addr_t) temp64)) {
6779 				c->SG[i].Addr = cpu_to_le64(0);
6780 				c->SG[i].Len = cpu_to_le32(0);
6781 				hpsa_pci_unmap(h->pdev, c, i,
6782 					PCI_DMA_BIDIRECTIONAL);
6783 				status = -ENOMEM;
6784 				goto cleanup0;
6785 			}
6786 			c->SG[i].Addr = cpu_to_le64(temp64);
6787 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6788 			c->SG[i].Ext = cpu_to_le32(0);
6789 		}
6790 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6791 	}
6792 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6793 						NO_TIMEOUT);
6794 	if (sg_used)
6795 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6796 	check_ioctl_unit_attention(h, c);
6797 	if (status) {
6798 		status = -EIO;
6799 		goto cleanup0;
6800 	}
6801 
6802 	/* Copy the error information out */
6803 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6804 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6805 		status = -EFAULT;
6806 		goto cleanup0;
6807 	}
6808 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6809 		int i;
6810 
6811 		/* Copy the data out of the buffer we created */
6812 		BYTE __user *ptr = ioc->buf;
6813 		for (i = 0; i < sg_used; i++) {
6814 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6815 				status = -EFAULT;
6816 				goto cleanup0;
6817 			}
6818 			ptr += buff_size[i];
6819 		}
6820 	}
6821 	status = 0;
6822 cleanup0:
6823 	cmd_free(h, c);
6824 cleanup1:
6825 	if (buff) {
6826 		int i;
6827 
6828 		for (i = 0; i < sg_used; i++)
6829 			kfree(buff[i]);
6830 		kfree(buff);
6831 	}
6832 	kfree(buff_size);
6833 	kfree(ioc);
6834 	return status;
6835 }
6836 
6837 static void check_ioctl_unit_attention(struct ctlr_info *h,
6838 	struct CommandList *c)
6839 {
6840 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6841 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6842 		(void) check_for_unit_attention(h, c);
6843 }
6844 
6845 /*
6846  * ioctl
6847  */
6848 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6849 {
6850 	struct ctlr_info *h;
6851 	void __user *argp = (void __user *)arg;
6852 	int rc;
6853 
6854 	h = sdev_to_hba(dev);
6855 
6856 	switch (cmd) {
6857 	case CCISS_DEREGDISK:
6858 	case CCISS_REGNEWDISK:
6859 	case CCISS_REGNEWD:
6860 		hpsa_scan_start(h->scsi_host);
6861 		return 0;
6862 	case CCISS_GETPCIINFO:
6863 		return hpsa_getpciinfo_ioctl(h, argp);
6864 	case CCISS_GETDRIVVER:
6865 		return hpsa_getdrivver_ioctl(h, argp);
6866 	case CCISS_PASSTHRU:
6867 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6868 			return -EAGAIN;
6869 		rc = hpsa_passthru_ioctl(h, argp);
6870 		atomic_inc(&h->passthru_cmds_avail);
6871 		return rc;
6872 	case CCISS_BIG_PASSTHRU:
6873 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6874 			return -EAGAIN;
6875 		rc = hpsa_big_passthru_ioctl(h, argp);
6876 		atomic_inc(&h->passthru_cmds_avail);
6877 		return rc;
6878 	default:
6879 		return -ENOTTY;
6880 	}
6881 }
6882 
6883 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6884 				u8 reset_type)
6885 {
6886 	struct CommandList *c;
6887 
6888 	c = cmd_alloc(h);
6889 
6890 	/* fill_cmd can't fail here, no data buffer to map */
6891 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6892 		RAID_CTLR_LUNID, TYPE_MSG);
6893 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6894 	c->waiting = NULL;
6895 	enqueue_cmd_and_start_io(h, c);
6896 	/* Don't wait for completion, the reset won't complete.  Don't free
6897 	 * the command either.  This is the last command we will send before
6898 	 * re-initializing everything, so it doesn't matter and won't leak.
6899 	 */
6900 	return;
6901 }
6902 
6903 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6904 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6905 	int cmd_type)
6906 {
6907 	int pci_dir = XFER_NONE;
6908 	u64 tag; /* for commands to be aborted */
6909 
6910 	c->cmd_type = CMD_IOCTL_PEND;
6911 	c->scsi_cmd = SCSI_CMD_BUSY;
6912 	c->Header.ReplyQueue = 0;
6913 	if (buff != NULL && size > 0) {
6914 		c->Header.SGList = 1;
6915 		c->Header.SGTotal = cpu_to_le16(1);
6916 	} else {
6917 		c->Header.SGList = 0;
6918 		c->Header.SGTotal = cpu_to_le16(0);
6919 	}
6920 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6921 
6922 	if (cmd_type == TYPE_CMD) {
6923 		switch (cmd) {
6924 		case HPSA_INQUIRY:
6925 			/* are we trying to read a vital product page */
6926 			if (page_code & VPD_PAGE) {
6927 				c->Request.CDB[1] = 0x01;
6928 				c->Request.CDB[2] = (page_code & 0xff);
6929 			}
6930 			c->Request.CDBLen = 6;
6931 			c->Request.type_attr_dir =
6932 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6933 			c->Request.Timeout = 0;
6934 			c->Request.CDB[0] = HPSA_INQUIRY;
6935 			c->Request.CDB[4] = size & 0xFF;
6936 			break;
6937 		case HPSA_REPORT_LOG:
6938 		case HPSA_REPORT_PHYS:
6939 			/* Talking to controller so It's a physical command
6940 			   mode = 00 target = 0.  Nothing to write.
6941 			 */
6942 			c->Request.CDBLen = 12;
6943 			c->Request.type_attr_dir =
6944 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6945 			c->Request.Timeout = 0;
6946 			c->Request.CDB[0] = cmd;
6947 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6948 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6949 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6950 			c->Request.CDB[9] = size & 0xFF;
6951 			break;
6952 		case BMIC_SENSE_DIAG_OPTIONS:
6953 			c->Request.CDBLen = 16;
6954 			c->Request.type_attr_dir =
6955 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6956 			c->Request.Timeout = 0;
6957 			/* Spec says this should be BMIC_WRITE */
6958 			c->Request.CDB[0] = BMIC_READ;
6959 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6960 			break;
6961 		case BMIC_SET_DIAG_OPTIONS:
6962 			c->Request.CDBLen = 16;
6963 			c->Request.type_attr_dir =
6964 					TYPE_ATTR_DIR(cmd_type,
6965 						ATTR_SIMPLE, XFER_WRITE);
6966 			c->Request.Timeout = 0;
6967 			c->Request.CDB[0] = BMIC_WRITE;
6968 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6969 			break;
6970 		case HPSA_CACHE_FLUSH:
6971 			c->Request.CDBLen = 12;
6972 			c->Request.type_attr_dir =
6973 					TYPE_ATTR_DIR(cmd_type,
6974 						ATTR_SIMPLE, XFER_WRITE);
6975 			c->Request.Timeout = 0;
6976 			c->Request.CDB[0] = BMIC_WRITE;
6977 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6978 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6979 			c->Request.CDB[8] = size & 0xFF;
6980 			break;
6981 		case TEST_UNIT_READY:
6982 			c->Request.CDBLen = 6;
6983 			c->Request.type_attr_dir =
6984 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6985 			c->Request.Timeout = 0;
6986 			break;
6987 		case HPSA_GET_RAID_MAP:
6988 			c->Request.CDBLen = 12;
6989 			c->Request.type_attr_dir =
6990 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6991 			c->Request.Timeout = 0;
6992 			c->Request.CDB[0] = HPSA_CISS_READ;
6993 			c->Request.CDB[1] = cmd;
6994 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6995 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6996 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6997 			c->Request.CDB[9] = size & 0xFF;
6998 			break;
6999 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
7000 			c->Request.CDBLen = 10;
7001 			c->Request.type_attr_dir =
7002 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7003 			c->Request.Timeout = 0;
7004 			c->Request.CDB[0] = BMIC_READ;
7005 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
7006 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7007 			c->Request.CDB[8] = (size >> 8) & 0xFF;
7008 			break;
7009 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7010 			c->Request.CDBLen = 10;
7011 			c->Request.type_attr_dir =
7012 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7013 			c->Request.Timeout = 0;
7014 			c->Request.CDB[0] = BMIC_READ;
7015 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7016 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7017 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7018 			break;
7019 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7020 			c->Request.CDBLen = 10;
7021 			c->Request.type_attr_dir =
7022 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7023 			c->Request.Timeout = 0;
7024 			c->Request.CDB[0] = BMIC_READ;
7025 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7026 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7027 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7028 			break;
7029 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
7030 			c->Request.CDBLen = 10;
7031 			c->Request.type_attr_dir =
7032 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7033 			c->Request.Timeout = 0;
7034 			c->Request.CDB[0] = BMIC_READ;
7035 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7036 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7037 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7038 			break;
7039 		case BMIC_IDENTIFY_CONTROLLER:
7040 			c->Request.CDBLen = 10;
7041 			c->Request.type_attr_dir =
7042 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7043 			c->Request.Timeout = 0;
7044 			c->Request.CDB[0] = BMIC_READ;
7045 			c->Request.CDB[1] = 0;
7046 			c->Request.CDB[2] = 0;
7047 			c->Request.CDB[3] = 0;
7048 			c->Request.CDB[4] = 0;
7049 			c->Request.CDB[5] = 0;
7050 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7051 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7052 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7053 			c->Request.CDB[9] = 0;
7054 			break;
7055 		default:
7056 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7057 			BUG();
7058 			return -1;
7059 		}
7060 	} else if (cmd_type == TYPE_MSG) {
7061 		switch (cmd) {
7062 
7063 		case  HPSA_PHYS_TARGET_RESET:
7064 			c->Request.CDBLen = 16;
7065 			c->Request.type_attr_dir =
7066 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7067 			c->Request.Timeout = 0; /* Don't time out */
7068 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7069 			c->Request.CDB[0] = HPSA_RESET;
7070 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7071 			/* Physical target reset needs no control bytes 4-7*/
7072 			c->Request.CDB[4] = 0x00;
7073 			c->Request.CDB[5] = 0x00;
7074 			c->Request.CDB[6] = 0x00;
7075 			c->Request.CDB[7] = 0x00;
7076 			break;
7077 		case  HPSA_DEVICE_RESET_MSG:
7078 			c->Request.CDBLen = 16;
7079 			c->Request.type_attr_dir =
7080 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7081 			c->Request.Timeout = 0; /* Don't time out */
7082 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7083 			c->Request.CDB[0] =  cmd;
7084 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7085 			/* If bytes 4-7 are zero, it means reset the */
7086 			/* LunID device */
7087 			c->Request.CDB[4] = 0x00;
7088 			c->Request.CDB[5] = 0x00;
7089 			c->Request.CDB[6] = 0x00;
7090 			c->Request.CDB[7] = 0x00;
7091 			break;
7092 		case  HPSA_ABORT_MSG:
7093 			memcpy(&tag, buff, sizeof(tag));
7094 			dev_dbg(&h->pdev->dev,
7095 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7096 				tag, c->Header.tag);
7097 			c->Request.CDBLen = 16;
7098 			c->Request.type_attr_dir =
7099 					TYPE_ATTR_DIR(cmd_type,
7100 						ATTR_SIMPLE, XFER_WRITE);
7101 			c->Request.Timeout = 0; /* Don't time out */
7102 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7103 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7104 			c->Request.CDB[2] = 0x00; /* reserved */
7105 			c->Request.CDB[3] = 0x00; /* reserved */
7106 			/* Tag to abort goes in CDB[4]-CDB[11] */
7107 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7108 			c->Request.CDB[12] = 0x00; /* reserved */
7109 			c->Request.CDB[13] = 0x00; /* reserved */
7110 			c->Request.CDB[14] = 0x00; /* reserved */
7111 			c->Request.CDB[15] = 0x00; /* reserved */
7112 		break;
7113 		default:
7114 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
7115 				cmd);
7116 			BUG();
7117 		}
7118 	} else {
7119 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7120 		BUG();
7121 	}
7122 
7123 	switch (GET_DIR(c->Request.type_attr_dir)) {
7124 	case XFER_READ:
7125 		pci_dir = PCI_DMA_FROMDEVICE;
7126 		break;
7127 	case XFER_WRITE:
7128 		pci_dir = PCI_DMA_TODEVICE;
7129 		break;
7130 	case XFER_NONE:
7131 		pci_dir = PCI_DMA_NONE;
7132 		break;
7133 	default:
7134 		pci_dir = PCI_DMA_BIDIRECTIONAL;
7135 	}
7136 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7137 		return -1;
7138 	return 0;
7139 }
7140 
7141 /*
7142  * Map (physical) PCI mem into (virtual) kernel space
7143  */
7144 static void __iomem *remap_pci_mem(ulong base, ulong size)
7145 {
7146 	ulong page_base = ((ulong) base) & PAGE_MASK;
7147 	ulong page_offs = ((ulong) base) - page_base;
7148 	void __iomem *page_remapped = ioremap_nocache(page_base,
7149 		page_offs + size);
7150 
7151 	return page_remapped ? (page_remapped + page_offs) : NULL;
7152 }
7153 
7154 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7155 {
7156 	return h->access.command_completed(h, q);
7157 }
7158 
7159 static inline bool interrupt_pending(struct ctlr_info *h)
7160 {
7161 	return h->access.intr_pending(h);
7162 }
7163 
7164 static inline long interrupt_not_for_us(struct ctlr_info *h)
7165 {
7166 	return (h->access.intr_pending(h) == 0) ||
7167 		(h->interrupts_enabled == 0);
7168 }
7169 
7170 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7171 	u32 raw_tag)
7172 {
7173 	if (unlikely(tag_index >= h->nr_cmds)) {
7174 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7175 		return 1;
7176 	}
7177 	return 0;
7178 }
7179 
7180 static inline void finish_cmd(struct CommandList *c)
7181 {
7182 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7183 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7184 			|| c->cmd_type == CMD_IOACCEL2))
7185 		complete_scsi_command(c);
7186 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7187 		complete(c->waiting);
7188 }
7189 
7190 /* process completion of an indexed ("direct lookup") command */
7191 static inline void process_indexed_cmd(struct ctlr_info *h,
7192 	u32 raw_tag)
7193 {
7194 	u32 tag_index;
7195 	struct CommandList *c;
7196 
7197 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7198 	if (!bad_tag(h, tag_index, raw_tag)) {
7199 		c = h->cmd_pool + tag_index;
7200 		finish_cmd(c);
7201 	}
7202 }
7203 
7204 /* Some controllers, like p400, will give us one interrupt
7205  * after a soft reset, even if we turned interrupts off.
7206  * Only need to check for this in the hpsa_xxx_discard_completions
7207  * functions.
7208  */
7209 static int ignore_bogus_interrupt(struct ctlr_info *h)
7210 {
7211 	if (likely(!reset_devices))
7212 		return 0;
7213 
7214 	if (likely(h->interrupts_enabled))
7215 		return 0;
7216 
7217 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7218 		"(known firmware bug.)  Ignoring.\n");
7219 
7220 	return 1;
7221 }
7222 
7223 /*
7224  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7225  * Relies on (h-q[x] == x) being true for x such that
7226  * 0 <= x < MAX_REPLY_QUEUES.
7227  */
7228 static struct ctlr_info *queue_to_hba(u8 *queue)
7229 {
7230 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7231 }
7232 
7233 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7234 {
7235 	struct ctlr_info *h = queue_to_hba(queue);
7236 	u8 q = *(u8 *) queue;
7237 	u32 raw_tag;
7238 
7239 	if (ignore_bogus_interrupt(h))
7240 		return IRQ_NONE;
7241 
7242 	if (interrupt_not_for_us(h))
7243 		return IRQ_NONE;
7244 	h->last_intr_timestamp = get_jiffies_64();
7245 	while (interrupt_pending(h)) {
7246 		raw_tag = get_next_completion(h, q);
7247 		while (raw_tag != FIFO_EMPTY)
7248 			raw_tag = next_command(h, q);
7249 	}
7250 	return IRQ_HANDLED;
7251 }
7252 
7253 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7254 {
7255 	struct ctlr_info *h = queue_to_hba(queue);
7256 	u32 raw_tag;
7257 	u8 q = *(u8 *) queue;
7258 
7259 	if (ignore_bogus_interrupt(h))
7260 		return IRQ_NONE;
7261 
7262 	h->last_intr_timestamp = get_jiffies_64();
7263 	raw_tag = get_next_completion(h, q);
7264 	while (raw_tag != FIFO_EMPTY)
7265 		raw_tag = next_command(h, q);
7266 	return IRQ_HANDLED;
7267 }
7268 
7269 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7270 {
7271 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7272 	u32 raw_tag;
7273 	u8 q = *(u8 *) queue;
7274 
7275 	if (interrupt_not_for_us(h))
7276 		return IRQ_NONE;
7277 	h->last_intr_timestamp = get_jiffies_64();
7278 	while (interrupt_pending(h)) {
7279 		raw_tag = get_next_completion(h, q);
7280 		while (raw_tag != FIFO_EMPTY) {
7281 			process_indexed_cmd(h, raw_tag);
7282 			raw_tag = next_command(h, q);
7283 		}
7284 	}
7285 	return IRQ_HANDLED;
7286 }
7287 
7288 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7289 {
7290 	struct ctlr_info *h = queue_to_hba(queue);
7291 	u32 raw_tag;
7292 	u8 q = *(u8 *) queue;
7293 
7294 	h->last_intr_timestamp = get_jiffies_64();
7295 	raw_tag = get_next_completion(h, q);
7296 	while (raw_tag != FIFO_EMPTY) {
7297 		process_indexed_cmd(h, raw_tag);
7298 		raw_tag = next_command(h, q);
7299 	}
7300 	return IRQ_HANDLED;
7301 }
7302 
7303 /* Send a message CDB to the firmware. Careful, this only works
7304  * in simple mode, not performant mode due to the tag lookup.
7305  * We only ever use this immediately after a controller reset.
7306  */
7307 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7308 			unsigned char type)
7309 {
7310 	struct Command {
7311 		struct CommandListHeader CommandHeader;
7312 		struct RequestBlock Request;
7313 		struct ErrDescriptor ErrorDescriptor;
7314 	};
7315 	struct Command *cmd;
7316 	static const size_t cmd_sz = sizeof(*cmd) +
7317 					sizeof(cmd->ErrorDescriptor);
7318 	dma_addr_t paddr64;
7319 	__le32 paddr32;
7320 	u32 tag;
7321 	void __iomem *vaddr;
7322 	int i, err;
7323 
7324 	vaddr = pci_ioremap_bar(pdev, 0);
7325 	if (vaddr == NULL)
7326 		return -ENOMEM;
7327 
7328 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7329 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7330 	 * memory.
7331 	 */
7332 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7333 	if (err) {
7334 		iounmap(vaddr);
7335 		return err;
7336 	}
7337 
7338 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7339 	if (cmd == NULL) {
7340 		iounmap(vaddr);
7341 		return -ENOMEM;
7342 	}
7343 
7344 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7345 	 * although there's no guarantee, we assume that the address is at
7346 	 * least 4-byte aligned (most likely, it's page-aligned).
7347 	 */
7348 	paddr32 = cpu_to_le32(paddr64);
7349 
7350 	cmd->CommandHeader.ReplyQueue = 0;
7351 	cmd->CommandHeader.SGList = 0;
7352 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7353 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7354 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7355 
7356 	cmd->Request.CDBLen = 16;
7357 	cmd->Request.type_attr_dir =
7358 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7359 	cmd->Request.Timeout = 0; /* Don't time out */
7360 	cmd->Request.CDB[0] = opcode;
7361 	cmd->Request.CDB[1] = type;
7362 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7363 	cmd->ErrorDescriptor.Addr =
7364 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7365 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7366 
7367 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7368 
7369 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7370 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7371 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7372 			break;
7373 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7374 	}
7375 
7376 	iounmap(vaddr);
7377 
7378 	/* we leak the DMA buffer here ... no choice since the controller could
7379 	 *  still complete the command.
7380 	 */
7381 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7382 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7383 			opcode, type);
7384 		return -ETIMEDOUT;
7385 	}
7386 
7387 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7388 
7389 	if (tag & HPSA_ERROR_BIT) {
7390 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7391 			opcode, type);
7392 		return -EIO;
7393 	}
7394 
7395 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7396 		opcode, type);
7397 	return 0;
7398 }
7399 
7400 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7401 
7402 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7403 	void __iomem *vaddr, u32 use_doorbell)
7404 {
7405 
7406 	if (use_doorbell) {
7407 		/* For everything after the P600, the PCI power state method
7408 		 * of resetting the controller doesn't work, so we have this
7409 		 * other way using the doorbell register.
7410 		 */
7411 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7412 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7413 
7414 		/* PMC hardware guys tell us we need a 10 second delay after
7415 		 * doorbell reset and before any attempt to talk to the board
7416 		 * at all to ensure that this actually works and doesn't fall
7417 		 * over in some weird corner cases.
7418 		 */
7419 		msleep(10000);
7420 	} else { /* Try to do it the PCI power state way */
7421 
7422 		/* Quoting from the Open CISS Specification: "The Power
7423 		 * Management Control/Status Register (CSR) controls the power
7424 		 * state of the device.  The normal operating state is D0,
7425 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7426 		 * the controller, place the interface device in D3 then to D0,
7427 		 * this causes a secondary PCI reset which will reset the
7428 		 * controller." */
7429 
7430 		int rc = 0;
7431 
7432 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7433 
7434 		/* enter the D3hot power management state */
7435 		rc = pci_set_power_state(pdev, PCI_D3hot);
7436 		if (rc)
7437 			return rc;
7438 
7439 		msleep(500);
7440 
7441 		/* enter the D0 power management state */
7442 		rc = pci_set_power_state(pdev, PCI_D0);
7443 		if (rc)
7444 			return rc;
7445 
7446 		/*
7447 		 * The P600 requires a small delay when changing states.
7448 		 * Otherwise we may think the board did not reset and we bail.
7449 		 * This for kdump only and is particular to the P600.
7450 		 */
7451 		msleep(500);
7452 	}
7453 	return 0;
7454 }
7455 
7456 static void init_driver_version(char *driver_version, int len)
7457 {
7458 	memset(driver_version, 0, len);
7459 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7460 }
7461 
7462 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7463 {
7464 	char *driver_version;
7465 	int i, size = sizeof(cfgtable->driver_version);
7466 
7467 	driver_version = kmalloc(size, GFP_KERNEL);
7468 	if (!driver_version)
7469 		return -ENOMEM;
7470 
7471 	init_driver_version(driver_version, size);
7472 	for (i = 0; i < size; i++)
7473 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7474 	kfree(driver_version);
7475 	return 0;
7476 }
7477 
7478 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7479 					  unsigned char *driver_ver)
7480 {
7481 	int i;
7482 
7483 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7484 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7485 }
7486 
7487 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7488 {
7489 
7490 	char *driver_ver, *old_driver_ver;
7491 	int rc, size = sizeof(cfgtable->driver_version);
7492 
7493 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7494 	if (!old_driver_ver)
7495 		return -ENOMEM;
7496 	driver_ver = old_driver_ver + size;
7497 
7498 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7499 	 * should have been changed, otherwise we know the reset failed.
7500 	 */
7501 	init_driver_version(old_driver_ver, size);
7502 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7503 	rc = !memcmp(driver_ver, old_driver_ver, size);
7504 	kfree(old_driver_ver);
7505 	return rc;
7506 }
7507 /* This does a hard reset of the controller using PCI power management
7508  * states or the using the doorbell register.
7509  */
7510 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7511 {
7512 	u64 cfg_offset;
7513 	u32 cfg_base_addr;
7514 	u64 cfg_base_addr_index;
7515 	void __iomem *vaddr;
7516 	unsigned long paddr;
7517 	u32 misc_fw_support;
7518 	int rc;
7519 	struct CfgTable __iomem *cfgtable;
7520 	u32 use_doorbell;
7521 	u16 command_register;
7522 
7523 	/* For controllers as old as the P600, this is very nearly
7524 	 * the same thing as
7525 	 *
7526 	 * pci_save_state(pci_dev);
7527 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7528 	 * pci_set_power_state(pci_dev, PCI_D0);
7529 	 * pci_restore_state(pci_dev);
7530 	 *
7531 	 * For controllers newer than the P600, the pci power state
7532 	 * method of resetting doesn't work so we have another way
7533 	 * using the doorbell register.
7534 	 */
7535 
7536 	if (!ctlr_is_resettable(board_id)) {
7537 		dev_warn(&pdev->dev, "Controller not resettable\n");
7538 		return -ENODEV;
7539 	}
7540 
7541 	/* if controller is soft- but not hard resettable... */
7542 	if (!ctlr_is_hard_resettable(board_id))
7543 		return -ENOTSUPP; /* try soft reset later. */
7544 
7545 	/* Save the PCI command register */
7546 	pci_read_config_word(pdev, 4, &command_register);
7547 	pci_save_state(pdev);
7548 
7549 	/* find the first memory BAR, so we can find the cfg table */
7550 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7551 	if (rc)
7552 		return rc;
7553 	vaddr = remap_pci_mem(paddr, 0x250);
7554 	if (!vaddr)
7555 		return -ENOMEM;
7556 
7557 	/* find cfgtable in order to check if reset via doorbell is supported */
7558 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7559 					&cfg_base_addr_index, &cfg_offset);
7560 	if (rc)
7561 		goto unmap_vaddr;
7562 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7563 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7564 	if (!cfgtable) {
7565 		rc = -ENOMEM;
7566 		goto unmap_vaddr;
7567 	}
7568 	rc = write_driver_ver_to_cfgtable(cfgtable);
7569 	if (rc)
7570 		goto unmap_cfgtable;
7571 
7572 	/* If reset via doorbell register is supported, use that.
7573 	 * There are two such methods.  Favor the newest method.
7574 	 */
7575 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7576 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7577 	if (use_doorbell) {
7578 		use_doorbell = DOORBELL_CTLR_RESET2;
7579 	} else {
7580 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7581 		if (use_doorbell) {
7582 			dev_warn(&pdev->dev,
7583 				"Soft reset not supported. Firmware update is required.\n");
7584 			rc = -ENOTSUPP; /* try soft reset */
7585 			goto unmap_cfgtable;
7586 		}
7587 	}
7588 
7589 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7590 	if (rc)
7591 		goto unmap_cfgtable;
7592 
7593 	pci_restore_state(pdev);
7594 	pci_write_config_word(pdev, 4, command_register);
7595 
7596 	/* Some devices (notably the HP Smart Array 5i Controller)
7597 	   need a little pause here */
7598 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7599 
7600 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7601 	if (rc) {
7602 		dev_warn(&pdev->dev,
7603 			"Failed waiting for board to become ready after hard reset\n");
7604 		goto unmap_cfgtable;
7605 	}
7606 
7607 	rc = controller_reset_failed(vaddr);
7608 	if (rc < 0)
7609 		goto unmap_cfgtable;
7610 	if (rc) {
7611 		dev_warn(&pdev->dev, "Unable to successfully reset "
7612 			"controller. Will try soft reset.\n");
7613 		rc = -ENOTSUPP;
7614 	} else {
7615 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7616 	}
7617 
7618 unmap_cfgtable:
7619 	iounmap(cfgtable);
7620 
7621 unmap_vaddr:
7622 	iounmap(vaddr);
7623 	return rc;
7624 }
7625 
7626 /*
7627  *  We cannot read the structure directly, for portability we must use
7628  *   the io functions.
7629  *   This is for debug only.
7630  */
7631 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7632 {
7633 #ifdef HPSA_DEBUG
7634 	int i;
7635 	char temp_name[17];
7636 
7637 	dev_info(dev, "Controller Configuration information\n");
7638 	dev_info(dev, "------------------------------------\n");
7639 	for (i = 0; i < 4; i++)
7640 		temp_name[i] = readb(&(tb->Signature[i]));
7641 	temp_name[4] = '\0';
7642 	dev_info(dev, "   Signature = %s\n", temp_name);
7643 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7644 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7645 	       readl(&(tb->TransportSupport)));
7646 	dev_info(dev, "   Transport methods active = 0x%x\n",
7647 	       readl(&(tb->TransportActive)));
7648 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7649 	       readl(&(tb->HostWrite.TransportRequest)));
7650 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7651 	       readl(&(tb->HostWrite.CoalIntDelay)));
7652 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7653 	       readl(&(tb->HostWrite.CoalIntCount)));
7654 	dev_info(dev, "   Max outstanding commands = %d\n",
7655 	       readl(&(tb->CmdsOutMax)));
7656 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7657 	for (i = 0; i < 16; i++)
7658 		temp_name[i] = readb(&(tb->ServerName[i]));
7659 	temp_name[16] = '\0';
7660 	dev_info(dev, "   Server Name = %s\n", temp_name);
7661 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7662 		readl(&(tb->HeartBeat)));
7663 #endif				/* HPSA_DEBUG */
7664 }
7665 
7666 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7667 {
7668 	int i, offset, mem_type, bar_type;
7669 
7670 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7671 		return 0;
7672 	offset = 0;
7673 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7674 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7675 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7676 			offset += 4;
7677 		else {
7678 			mem_type = pci_resource_flags(pdev, i) &
7679 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7680 			switch (mem_type) {
7681 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7682 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7683 				offset += 4;	/* 32 bit */
7684 				break;
7685 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7686 				offset += 8;
7687 				break;
7688 			default:	/* reserved in PCI 2.2 */
7689 				dev_warn(&pdev->dev,
7690 				       "base address is invalid\n");
7691 				return -1;
7692 				break;
7693 			}
7694 		}
7695 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7696 			return i + 1;
7697 	}
7698 	return -1;
7699 }
7700 
7701 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7702 {
7703 	pci_free_irq_vectors(h->pdev);
7704 	h->msix_vectors = 0;
7705 }
7706 
7707 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7708  * controllers that are capable. If not, we use legacy INTx mode.
7709  */
7710 static int hpsa_interrupt_mode(struct ctlr_info *h)
7711 {
7712 	unsigned int flags = PCI_IRQ_LEGACY;
7713 	int ret;
7714 
7715 	/* Some boards advertise MSI but don't really support it */
7716 	switch (h->board_id) {
7717 	case 0x40700E11:
7718 	case 0x40800E11:
7719 	case 0x40820E11:
7720 	case 0x40830E11:
7721 		break;
7722 	default:
7723 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7724 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7725 		if (ret > 0) {
7726 			h->msix_vectors = ret;
7727 			return 0;
7728 		}
7729 
7730 		flags |= PCI_IRQ_MSI;
7731 		break;
7732 	}
7733 
7734 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7735 	if (ret < 0)
7736 		return ret;
7737 	return 0;
7738 }
7739 
7740 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7741 {
7742 	int i;
7743 	u32 subsystem_vendor_id, subsystem_device_id;
7744 
7745 	subsystem_vendor_id = pdev->subsystem_vendor;
7746 	subsystem_device_id = pdev->subsystem_device;
7747 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7748 		    subsystem_vendor_id;
7749 
7750 	for (i = 0; i < ARRAY_SIZE(products); i++)
7751 		if (*board_id == products[i].board_id)
7752 			return i;
7753 
7754 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7755 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7756 		!hpsa_allow_any) {
7757 		dev_warn(&pdev->dev, "unrecognized board ID: "
7758 			"0x%08x, ignoring.\n", *board_id);
7759 			return -ENODEV;
7760 	}
7761 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7762 }
7763 
7764 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7765 				    unsigned long *memory_bar)
7766 {
7767 	int i;
7768 
7769 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7770 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7771 			/* addressing mode bits already removed */
7772 			*memory_bar = pci_resource_start(pdev, i);
7773 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7774 				*memory_bar);
7775 			return 0;
7776 		}
7777 	dev_warn(&pdev->dev, "no memory BAR found\n");
7778 	return -ENODEV;
7779 }
7780 
7781 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7782 				     int wait_for_ready)
7783 {
7784 	int i, iterations;
7785 	u32 scratchpad;
7786 	if (wait_for_ready)
7787 		iterations = HPSA_BOARD_READY_ITERATIONS;
7788 	else
7789 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7790 
7791 	for (i = 0; i < iterations; i++) {
7792 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7793 		if (wait_for_ready) {
7794 			if (scratchpad == HPSA_FIRMWARE_READY)
7795 				return 0;
7796 		} else {
7797 			if (scratchpad != HPSA_FIRMWARE_READY)
7798 				return 0;
7799 		}
7800 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7801 	}
7802 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7803 	return -ENODEV;
7804 }
7805 
7806 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7807 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7808 			       u64 *cfg_offset)
7809 {
7810 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7811 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7812 	*cfg_base_addr &= (u32) 0x0000ffff;
7813 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7814 	if (*cfg_base_addr_index == -1) {
7815 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7816 		return -ENODEV;
7817 	}
7818 	return 0;
7819 }
7820 
7821 static void hpsa_free_cfgtables(struct ctlr_info *h)
7822 {
7823 	if (h->transtable) {
7824 		iounmap(h->transtable);
7825 		h->transtable = NULL;
7826 	}
7827 	if (h->cfgtable) {
7828 		iounmap(h->cfgtable);
7829 		h->cfgtable = NULL;
7830 	}
7831 }
7832 
7833 /* Find and map CISS config table and transfer table
7834 + * several items must be unmapped (freed) later
7835 + * */
7836 static int hpsa_find_cfgtables(struct ctlr_info *h)
7837 {
7838 	u64 cfg_offset;
7839 	u32 cfg_base_addr;
7840 	u64 cfg_base_addr_index;
7841 	u32 trans_offset;
7842 	int rc;
7843 
7844 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7845 		&cfg_base_addr_index, &cfg_offset);
7846 	if (rc)
7847 		return rc;
7848 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7849 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7850 	if (!h->cfgtable) {
7851 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7852 		return -ENOMEM;
7853 	}
7854 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7855 	if (rc)
7856 		return rc;
7857 	/* Find performant mode table. */
7858 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7859 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7860 				cfg_base_addr_index)+cfg_offset+trans_offset,
7861 				sizeof(*h->transtable));
7862 	if (!h->transtable) {
7863 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7864 		hpsa_free_cfgtables(h);
7865 		return -ENOMEM;
7866 	}
7867 	return 0;
7868 }
7869 
7870 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7871 {
7872 #define MIN_MAX_COMMANDS 16
7873 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7874 
7875 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7876 
7877 	/* Limit commands in memory limited kdump scenario. */
7878 	if (reset_devices && h->max_commands > 32)
7879 		h->max_commands = 32;
7880 
7881 	if (h->max_commands < MIN_MAX_COMMANDS) {
7882 		dev_warn(&h->pdev->dev,
7883 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7884 			h->max_commands,
7885 			MIN_MAX_COMMANDS);
7886 		h->max_commands = MIN_MAX_COMMANDS;
7887 	}
7888 }
7889 
7890 /* If the controller reports that the total max sg entries is greater than 512,
7891  * then we know that chained SG blocks work.  (Original smart arrays did not
7892  * support chained SG blocks and would return zero for max sg entries.)
7893  */
7894 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7895 {
7896 	return h->maxsgentries > 512;
7897 }
7898 
7899 /* Interrogate the hardware for some limits:
7900  * max commands, max SG elements without chaining, and with chaining,
7901  * SG chain block size, etc.
7902  */
7903 static void hpsa_find_board_params(struct ctlr_info *h)
7904 {
7905 	hpsa_get_max_perf_mode_cmds(h);
7906 	h->nr_cmds = h->max_commands;
7907 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7908 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7909 	if (hpsa_supports_chained_sg_blocks(h)) {
7910 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7911 		h->max_cmd_sg_entries = 32;
7912 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7913 		h->maxsgentries--; /* save one for chain pointer */
7914 	} else {
7915 		/*
7916 		 * Original smart arrays supported at most 31 s/g entries
7917 		 * embedded inline in the command (trying to use more
7918 		 * would lock up the controller)
7919 		 */
7920 		h->max_cmd_sg_entries = 31;
7921 		h->maxsgentries = 31; /* default to traditional values */
7922 		h->chainsize = 0;
7923 	}
7924 
7925 	/* Find out what task management functions are supported and cache */
7926 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7927 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7928 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7929 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7930 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7931 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7932 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7933 }
7934 
7935 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7936 {
7937 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7938 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7939 		return false;
7940 	}
7941 	return true;
7942 }
7943 
7944 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7945 {
7946 	u32 driver_support;
7947 
7948 	driver_support = readl(&(h->cfgtable->driver_support));
7949 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7950 #ifdef CONFIG_X86
7951 	driver_support |= ENABLE_SCSI_PREFETCH;
7952 #endif
7953 	driver_support |= ENABLE_UNIT_ATTN;
7954 	writel(driver_support, &(h->cfgtable->driver_support));
7955 }
7956 
7957 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7958  * in a prefetch beyond physical memory.
7959  */
7960 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7961 {
7962 	u32 dma_prefetch;
7963 
7964 	if (h->board_id != 0x3225103C)
7965 		return;
7966 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7967 	dma_prefetch |= 0x8000;
7968 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7969 }
7970 
7971 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7972 {
7973 	int i;
7974 	u32 doorbell_value;
7975 	unsigned long flags;
7976 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7977 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7978 		spin_lock_irqsave(&h->lock, flags);
7979 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7980 		spin_unlock_irqrestore(&h->lock, flags);
7981 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7982 			goto done;
7983 		/* delay and try again */
7984 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7985 	}
7986 	return -ENODEV;
7987 done:
7988 	return 0;
7989 }
7990 
7991 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7992 {
7993 	int i;
7994 	u32 doorbell_value;
7995 	unsigned long flags;
7996 
7997 	/* under certain very rare conditions, this can take awhile.
7998 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7999 	 * as we enter this code.)
8000 	 */
8001 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
8002 		if (h->remove_in_progress)
8003 			goto done;
8004 		spin_lock_irqsave(&h->lock, flags);
8005 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8006 		spin_unlock_irqrestore(&h->lock, flags);
8007 		if (!(doorbell_value & CFGTBL_ChangeReq))
8008 			goto done;
8009 		/* delay and try again */
8010 		msleep(MODE_CHANGE_WAIT_INTERVAL);
8011 	}
8012 	return -ENODEV;
8013 done:
8014 	return 0;
8015 }
8016 
8017 /* return -ENODEV or other reason on error, 0 on success */
8018 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8019 {
8020 	u32 trans_support;
8021 
8022 	trans_support = readl(&(h->cfgtable->TransportSupport));
8023 	if (!(trans_support & SIMPLE_MODE))
8024 		return -ENOTSUPP;
8025 
8026 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8027 
8028 	/* Update the field, and then ring the doorbell */
8029 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8030 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8031 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8032 	if (hpsa_wait_for_mode_change_ack(h))
8033 		goto error;
8034 	print_cfg_table(&h->pdev->dev, h->cfgtable);
8035 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8036 		goto error;
8037 	h->transMethod = CFGTBL_Trans_Simple;
8038 	return 0;
8039 error:
8040 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8041 	return -ENODEV;
8042 }
8043 
8044 /* free items allocated or mapped by hpsa_pci_init */
8045 static void hpsa_free_pci_init(struct ctlr_info *h)
8046 {
8047 	hpsa_free_cfgtables(h);			/* pci_init 4 */
8048 	iounmap(h->vaddr);			/* pci_init 3 */
8049 	h->vaddr = NULL;
8050 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8051 	/*
8052 	 * call pci_disable_device before pci_release_regions per
8053 	 * Documentation/PCI/pci.txt
8054 	 */
8055 	pci_disable_device(h->pdev);		/* pci_init 1 */
8056 	pci_release_regions(h->pdev);		/* pci_init 2 */
8057 }
8058 
8059 /* several items must be freed later */
8060 static int hpsa_pci_init(struct ctlr_info *h)
8061 {
8062 	int prod_index, err;
8063 
8064 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8065 	if (prod_index < 0)
8066 		return prod_index;
8067 	h->product_name = products[prod_index].product_name;
8068 	h->access = *(products[prod_index].access);
8069 
8070 	h->needs_abort_tags_swizzled =
8071 		ctlr_needs_abort_tags_swizzled(h->board_id);
8072 
8073 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8074 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8075 
8076 	err = pci_enable_device(h->pdev);
8077 	if (err) {
8078 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8079 		pci_disable_device(h->pdev);
8080 		return err;
8081 	}
8082 
8083 	err = pci_request_regions(h->pdev, HPSA);
8084 	if (err) {
8085 		dev_err(&h->pdev->dev,
8086 			"failed to obtain PCI resources\n");
8087 		pci_disable_device(h->pdev);
8088 		return err;
8089 	}
8090 
8091 	pci_set_master(h->pdev);
8092 
8093 	err = hpsa_interrupt_mode(h);
8094 	if (err)
8095 		goto clean1;
8096 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8097 	if (err)
8098 		goto clean2;	/* intmode+region, pci */
8099 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
8100 	if (!h->vaddr) {
8101 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8102 		err = -ENOMEM;
8103 		goto clean2;	/* intmode+region, pci */
8104 	}
8105 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8106 	if (err)
8107 		goto clean3;	/* vaddr, intmode+region, pci */
8108 	err = hpsa_find_cfgtables(h);
8109 	if (err)
8110 		goto clean3;	/* vaddr, intmode+region, pci */
8111 	hpsa_find_board_params(h);
8112 
8113 	if (!hpsa_CISS_signature_present(h)) {
8114 		err = -ENODEV;
8115 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8116 	}
8117 	hpsa_set_driver_support_bits(h);
8118 	hpsa_p600_dma_prefetch_quirk(h);
8119 	err = hpsa_enter_simple_mode(h);
8120 	if (err)
8121 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8122 	return 0;
8123 
8124 clean4:	/* cfgtables, vaddr, intmode+region, pci */
8125 	hpsa_free_cfgtables(h);
8126 clean3:	/* vaddr, intmode+region, pci */
8127 	iounmap(h->vaddr);
8128 	h->vaddr = NULL;
8129 clean2:	/* intmode+region, pci */
8130 	hpsa_disable_interrupt_mode(h);
8131 clean1:
8132 	/*
8133 	 * call pci_disable_device before pci_release_regions per
8134 	 * Documentation/PCI/pci.txt
8135 	 */
8136 	pci_disable_device(h->pdev);
8137 	pci_release_regions(h->pdev);
8138 	return err;
8139 }
8140 
8141 static void hpsa_hba_inquiry(struct ctlr_info *h)
8142 {
8143 	int rc;
8144 
8145 #define HBA_INQUIRY_BYTE_COUNT 64
8146 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8147 	if (!h->hba_inquiry_data)
8148 		return;
8149 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8150 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8151 	if (rc != 0) {
8152 		kfree(h->hba_inquiry_data);
8153 		h->hba_inquiry_data = NULL;
8154 	}
8155 }
8156 
8157 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8158 {
8159 	int rc, i;
8160 	void __iomem *vaddr;
8161 
8162 	if (!reset_devices)
8163 		return 0;
8164 
8165 	/* kdump kernel is loading, we don't know in which state is
8166 	 * the pci interface. The dev->enable_cnt is equal zero
8167 	 * so we call enable+disable, wait a while and switch it on.
8168 	 */
8169 	rc = pci_enable_device(pdev);
8170 	if (rc) {
8171 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8172 		return -ENODEV;
8173 	}
8174 	pci_disable_device(pdev);
8175 	msleep(260);			/* a randomly chosen number */
8176 	rc = pci_enable_device(pdev);
8177 	if (rc) {
8178 		dev_warn(&pdev->dev, "failed to enable device.\n");
8179 		return -ENODEV;
8180 	}
8181 
8182 	pci_set_master(pdev);
8183 
8184 	vaddr = pci_ioremap_bar(pdev, 0);
8185 	if (vaddr == NULL) {
8186 		rc = -ENOMEM;
8187 		goto out_disable;
8188 	}
8189 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8190 	iounmap(vaddr);
8191 
8192 	/* Reset the controller with a PCI power-cycle or via doorbell */
8193 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8194 
8195 	/* -ENOTSUPP here means we cannot reset the controller
8196 	 * but it's already (and still) up and running in
8197 	 * "performant mode".  Or, it might be 640x, which can't reset
8198 	 * due to concerns about shared bbwc between 6402/6404 pair.
8199 	 */
8200 	if (rc)
8201 		goto out_disable;
8202 
8203 	/* Now try to get the controller to respond to a no-op */
8204 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8205 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8206 		if (hpsa_noop(pdev) == 0)
8207 			break;
8208 		else
8209 			dev_warn(&pdev->dev, "no-op failed%s\n",
8210 					(i < 11 ? "; re-trying" : ""));
8211 	}
8212 
8213 out_disable:
8214 
8215 	pci_disable_device(pdev);
8216 	return rc;
8217 }
8218 
8219 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8220 {
8221 	kfree(h->cmd_pool_bits);
8222 	h->cmd_pool_bits = NULL;
8223 	if (h->cmd_pool) {
8224 		pci_free_consistent(h->pdev,
8225 				h->nr_cmds * sizeof(struct CommandList),
8226 				h->cmd_pool,
8227 				h->cmd_pool_dhandle);
8228 		h->cmd_pool = NULL;
8229 		h->cmd_pool_dhandle = 0;
8230 	}
8231 	if (h->errinfo_pool) {
8232 		pci_free_consistent(h->pdev,
8233 				h->nr_cmds * sizeof(struct ErrorInfo),
8234 				h->errinfo_pool,
8235 				h->errinfo_pool_dhandle);
8236 		h->errinfo_pool = NULL;
8237 		h->errinfo_pool_dhandle = 0;
8238 	}
8239 }
8240 
8241 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8242 {
8243 	h->cmd_pool_bits = kzalloc(
8244 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8245 		sizeof(unsigned long), GFP_KERNEL);
8246 	h->cmd_pool = pci_alloc_consistent(h->pdev,
8247 		    h->nr_cmds * sizeof(*h->cmd_pool),
8248 		    &(h->cmd_pool_dhandle));
8249 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
8250 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8251 		    &(h->errinfo_pool_dhandle));
8252 	if ((h->cmd_pool_bits == NULL)
8253 	    || (h->cmd_pool == NULL)
8254 	    || (h->errinfo_pool == NULL)) {
8255 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8256 		goto clean_up;
8257 	}
8258 	hpsa_preinitialize_commands(h);
8259 	return 0;
8260 clean_up:
8261 	hpsa_free_cmd_pool(h);
8262 	return -ENOMEM;
8263 }
8264 
8265 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8266 static void hpsa_free_irqs(struct ctlr_info *h)
8267 {
8268 	int i;
8269 
8270 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8271 		/* Single reply queue, only one irq to free */
8272 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8273 		h->q[h->intr_mode] = 0;
8274 		return;
8275 	}
8276 
8277 	for (i = 0; i < h->msix_vectors; i++) {
8278 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8279 		h->q[i] = 0;
8280 	}
8281 	for (; i < MAX_REPLY_QUEUES; i++)
8282 		h->q[i] = 0;
8283 }
8284 
8285 /* returns 0 on success; cleans up and returns -Enn on error */
8286 static int hpsa_request_irqs(struct ctlr_info *h,
8287 	irqreturn_t (*msixhandler)(int, void *),
8288 	irqreturn_t (*intxhandler)(int, void *))
8289 {
8290 	int rc, i;
8291 
8292 	/*
8293 	 * initialize h->q[x] = x so that interrupt handlers know which
8294 	 * queue to process.
8295 	 */
8296 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8297 		h->q[i] = (u8) i;
8298 
8299 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8300 		/* If performant mode and MSI-X, use multiple reply queues */
8301 		for (i = 0; i < h->msix_vectors; i++) {
8302 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8303 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8304 					0, h->intrname[i],
8305 					&h->q[i]);
8306 			if (rc) {
8307 				int j;
8308 
8309 				dev_err(&h->pdev->dev,
8310 					"failed to get irq %d for %s\n",
8311 				       pci_irq_vector(h->pdev, i), h->devname);
8312 				for (j = 0; j < i; j++) {
8313 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8314 					h->q[j] = 0;
8315 				}
8316 				for (; j < MAX_REPLY_QUEUES; j++)
8317 					h->q[j] = 0;
8318 				return rc;
8319 			}
8320 		}
8321 	} else {
8322 		/* Use single reply pool */
8323 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8324 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8325 				h->msix_vectors ? "x" : "");
8326 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8327 				msixhandler, 0,
8328 				h->intrname[0],
8329 				&h->q[h->intr_mode]);
8330 		} else {
8331 			sprintf(h->intrname[h->intr_mode],
8332 				"%s-intx", h->devname);
8333 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8334 				intxhandler, IRQF_SHARED,
8335 				h->intrname[0],
8336 				&h->q[h->intr_mode]);
8337 		}
8338 	}
8339 	if (rc) {
8340 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8341 		       pci_irq_vector(h->pdev, 0), h->devname);
8342 		hpsa_free_irqs(h);
8343 		return -ENODEV;
8344 	}
8345 	return 0;
8346 }
8347 
8348 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8349 {
8350 	int rc;
8351 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8352 
8353 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8354 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8355 	if (rc) {
8356 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8357 		return rc;
8358 	}
8359 
8360 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8361 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8362 	if (rc) {
8363 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8364 			"after soft reset.\n");
8365 		return rc;
8366 	}
8367 
8368 	return 0;
8369 }
8370 
8371 static void hpsa_free_reply_queues(struct ctlr_info *h)
8372 {
8373 	int i;
8374 
8375 	for (i = 0; i < h->nreply_queues; i++) {
8376 		if (!h->reply_queue[i].head)
8377 			continue;
8378 		pci_free_consistent(h->pdev,
8379 					h->reply_queue_size,
8380 					h->reply_queue[i].head,
8381 					h->reply_queue[i].busaddr);
8382 		h->reply_queue[i].head = NULL;
8383 		h->reply_queue[i].busaddr = 0;
8384 	}
8385 	h->reply_queue_size = 0;
8386 }
8387 
8388 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8389 {
8390 	hpsa_free_performant_mode(h);		/* init_one 7 */
8391 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8392 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8393 	hpsa_free_irqs(h);			/* init_one 4 */
8394 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8395 	h->scsi_host = NULL;			/* init_one 3 */
8396 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8397 	free_percpu(h->lockup_detected);	/* init_one 2 */
8398 	h->lockup_detected = NULL;		/* init_one 2 */
8399 	if (h->resubmit_wq) {
8400 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8401 		h->resubmit_wq = NULL;
8402 	}
8403 	if (h->rescan_ctlr_wq) {
8404 		destroy_workqueue(h->rescan_ctlr_wq);
8405 		h->rescan_ctlr_wq = NULL;
8406 	}
8407 	kfree(h);				/* init_one 1 */
8408 }
8409 
8410 /* Called when controller lockup detected. */
8411 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8412 {
8413 	int i, refcount;
8414 	struct CommandList *c;
8415 	int failcount = 0;
8416 
8417 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8418 	for (i = 0; i < h->nr_cmds; i++) {
8419 		c = h->cmd_pool + i;
8420 		refcount = atomic_inc_return(&c->refcount);
8421 		if (refcount > 1) {
8422 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8423 			finish_cmd(c);
8424 			atomic_dec(&h->commands_outstanding);
8425 			failcount++;
8426 		}
8427 		cmd_free(h, c);
8428 	}
8429 	dev_warn(&h->pdev->dev,
8430 		"failed %d commands in fail_all\n", failcount);
8431 }
8432 
8433 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8434 {
8435 	int cpu;
8436 
8437 	for_each_online_cpu(cpu) {
8438 		u32 *lockup_detected;
8439 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8440 		*lockup_detected = value;
8441 	}
8442 	wmb(); /* be sure the per-cpu variables are out to memory */
8443 }
8444 
8445 static void controller_lockup_detected(struct ctlr_info *h)
8446 {
8447 	unsigned long flags;
8448 	u32 lockup_detected;
8449 
8450 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8451 	spin_lock_irqsave(&h->lock, flags);
8452 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8453 	if (!lockup_detected) {
8454 		/* no heartbeat, but controller gave us a zero. */
8455 		dev_warn(&h->pdev->dev,
8456 			"lockup detected after %d but scratchpad register is zero\n",
8457 			h->heartbeat_sample_interval / HZ);
8458 		lockup_detected = 0xffffffff;
8459 	}
8460 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8461 	spin_unlock_irqrestore(&h->lock, flags);
8462 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8463 			lockup_detected, h->heartbeat_sample_interval / HZ);
8464 	pci_disable_device(h->pdev);
8465 	fail_all_outstanding_cmds(h);
8466 }
8467 
8468 static int detect_controller_lockup(struct ctlr_info *h)
8469 {
8470 	u64 now;
8471 	u32 heartbeat;
8472 	unsigned long flags;
8473 
8474 	now = get_jiffies_64();
8475 	/* If we've received an interrupt recently, we're ok. */
8476 	if (time_after64(h->last_intr_timestamp +
8477 				(h->heartbeat_sample_interval), now))
8478 		return false;
8479 
8480 	/*
8481 	 * If we've already checked the heartbeat recently, we're ok.
8482 	 * This could happen if someone sends us a signal. We
8483 	 * otherwise don't care about signals in this thread.
8484 	 */
8485 	if (time_after64(h->last_heartbeat_timestamp +
8486 				(h->heartbeat_sample_interval), now))
8487 		return false;
8488 
8489 	/* If heartbeat has not changed since we last looked, we're not ok. */
8490 	spin_lock_irqsave(&h->lock, flags);
8491 	heartbeat = readl(&h->cfgtable->HeartBeat);
8492 	spin_unlock_irqrestore(&h->lock, flags);
8493 	if (h->last_heartbeat == heartbeat) {
8494 		controller_lockup_detected(h);
8495 		return true;
8496 	}
8497 
8498 	/* We're ok. */
8499 	h->last_heartbeat = heartbeat;
8500 	h->last_heartbeat_timestamp = now;
8501 	return false;
8502 }
8503 
8504 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8505 {
8506 	int i;
8507 	char *event_type;
8508 
8509 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8510 		return;
8511 
8512 	/* Ask the controller to clear the events we're handling. */
8513 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8514 			| CFGTBL_Trans_io_accel2)) &&
8515 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8516 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8517 
8518 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8519 			event_type = "state change";
8520 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8521 			event_type = "configuration change";
8522 		/* Stop sending new RAID offload reqs via the IO accelerator */
8523 		scsi_block_requests(h->scsi_host);
8524 		for (i = 0; i < h->ndevices; i++) {
8525 			h->dev[i]->offload_enabled = 0;
8526 			h->dev[i]->offload_to_be_enabled = 0;
8527 		}
8528 		hpsa_drain_accel_commands(h);
8529 		/* Set 'accelerator path config change' bit */
8530 		dev_warn(&h->pdev->dev,
8531 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8532 			h->events, event_type);
8533 		writel(h->events, &(h->cfgtable->clear_event_notify));
8534 		/* Set the "clear event notify field update" bit 6 */
8535 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8536 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8537 		hpsa_wait_for_clear_event_notify_ack(h);
8538 		scsi_unblock_requests(h->scsi_host);
8539 	} else {
8540 		/* Acknowledge controller notification events. */
8541 		writel(h->events, &(h->cfgtable->clear_event_notify));
8542 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8543 		hpsa_wait_for_clear_event_notify_ack(h);
8544 #if 0
8545 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8546 		hpsa_wait_for_mode_change_ack(h);
8547 #endif
8548 	}
8549 	return;
8550 }
8551 
8552 /* Check a register on the controller to see if there are configuration
8553  * changes (added/changed/removed logical drives, etc.) which mean that
8554  * we should rescan the controller for devices.
8555  * Also check flag for driver-initiated rescan.
8556  */
8557 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8558 {
8559 	if (h->drv_req_rescan) {
8560 		h->drv_req_rescan = 0;
8561 		return 1;
8562 	}
8563 
8564 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8565 		return 0;
8566 
8567 	h->events = readl(&(h->cfgtable->event_notify));
8568 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8569 }
8570 
8571 /*
8572  * Check if any of the offline devices have become ready
8573  */
8574 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8575 {
8576 	unsigned long flags;
8577 	struct offline_device_entry *d;
8578 	struct list_head *this, *tmp;
8579 
8580 	spin_lock_irqsave(&h->offline_device_lock, flags);
8581 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8582 		d = list_entry(this, struct offline_device_entry,
8583 				offline_list);
8584 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8585 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8586 			spin_lock_irqsave(&h->offline_device_lock, flags);
8587 			list_del(&d->offline_list);
8588 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8589 			return 1;
8590 		}
8591 		spin_lock_irqsave(&h->offline_device_lock, flags);
8592 	}
8593 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8594 	return 0;
8595 }
8596 
8597 static int hpsa_luns_changed(struct ctlr_info *h)
8598 {
8599 	int rc = 1; /* assume there are changes */
8600 	struct ReportLUNdata *logdev = NULL;
8601 
8602 	/* if we can't find out if lun data has changed,
8603 	 * assume that it has.
8604 	 */
8605 
8606 	if (!h->lastlogicals)
8607 		return rc;
8608 
8609 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8610 	if (!logdev)
8611 		return rc;
8612 
8613 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8614 		dev_warn(&h->pdev->dev,
8615 			"report luns failed, can't track lun changes.\n");
8616 		goto out;
8617 	}
8618 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8619 		dev_info(&h->pdev->dev,
8620 			"Lun changes detected.\n");
8621 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8622 		goto out;
8623 	} else
8624 		rc = 0; /* no changes detected. */
8625 out:
8626 	kfree(logdev);
8627 	return rc;
8628 }
8629 
8630 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8631 {
8632 	unsigned long flags;
8633 	struct ctlr_info *h = container_of(to_delayed_work(work),
8634 					struct ctlr_info, rescan_ctlr_work);
8635 
8636 
8637 	if (h->remove_in_progress)
8638 		return;
8639 
8640 	/*
8641 	 * Do the scan after the reset
8642 	 */
8643 	if (h->reset_in_progress) {
8644 		h->drv_req_rescan = 1;
8645 		return;
8646 	}
8647 
8648 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8649 		scsi_host_get(h->scsi_host);
8650 		hpsa_ack_ctlr_events(h);
8651 		hpsa_scan_start(h->scsi_host);
8652 		scsi_host_put(h->scsi_host);
8653 	} else if (h->discovery_polling) {
8654 		hpsa_disable_rld_caching(h);
8655 		if (hpsa_luns_changed(h)) {
8656 			struct Scsi_Host *sh = NULL;
8657 
8658 			dev_info(&h->pdev->dev,
8659 				"driver discovery polling rescan.\n");
8660 			sh = scsi_host_get(h->scsi_host);
8661 			if (sh != NULL) {
8662 				hpsa_scan_start(sh);
8663 				scsi_host_put(sh);
8664 			}
8665 		}
8666 	}
8667 	spin_lock_irqsave(&h->lock, flags);
8668 	if (!h->remove_in_progress)
8669 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8670 				h->heartbeat_sample_interval);
8671 	spin_unlock_irqrestore(&h->lock, flags);
8672 }
8673 
8674 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8675 {
8676 	unsigned long flags;
8677 	struct ctlr_info *h = container_of(to_delayed_work(work),
8678 					struct ctlr_info, monitor_ctlr_work);
8679 
8680 	detect_controller_lockup(h);
8681 	if (lockup_detected(h))
8682 		return;
8683 
8684 	spin_lock_irqsave(&h->lock, flags);
8685 	if (!h->remove_in_progress)
8686 		schedule_delayed_work(&h->monitor_ctlr_work,
8687 				h->heartbeat_sample_interval);
8688 	spin_unlock_irqrestore(&h->lock, flags);
8689 }
8690 
8691 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8692 						char *name)
8693 {
8694 	struct workqueue_struct *wq = NULL;
8695 
8696 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8697 	if (!wq)
8698 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8699 
8700 	return wq;
8701 }
8702 
8703 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8704 {
8705 	int dac, rc;
8706 	struct ctlr_info *h;
8707 	int try_soft_reset = 0;
8708 	unsigned long flags;
8709 	u32 board_id;
8710 
8711 	if (number_of_controllers == 0)
8712 		printk(KERN_INFO DRIVER_NAME "\n");
8713 
8714 	rc = hpsa_lookup_board_id(pdev, &board_id);
8715 	if (rc < 0) {
8716 		dev_warn(&pdev->dev, "Board ID not found\n");
8717 		return rc;
8718 	}
8719 
8720 	rc = hpsa_init_reset_devices(pdev, board_id);
8721 	if (rc) {
8722 		if (rc != -ENOTSUPP)
8723 			return rc;
8724 		/* If the reset fails in a particular way (it has no way to do
8725 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8726 		 * a soft reset once we get the controller configured up to the
8727 		 * point that it can accept a command.
8728 		 */
8729 		try_soft_reset = 1;
8730 		rc = 0;
8731 	}
8732 
8733 reinit_after_soft_reset:
8734 
8735 	/* Command structures must be aligned on a 32-byte boundary because
8736 	 * the 5 lower bits of the address are used by the hardware. and by
8737 	 * the driver.  See comments in hpsa.h for more info.
8738 	 */
8739 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8740 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8741 	if (!h) {
8742 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8743 		return -ENOMEM;
8744 	}
8745 
8746 	h->pdev = pdev;
8747 
8748 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8749 	INIT_LIST_HEAD(&h->offline_device_list);
8750 	spin_lock_init(&h->lock);
8751 	spin_lock_init(&h->offline_device_lock);
8752 	spin_lock_init(&h->scan_lock);
8753 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8754 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8755 
8756 	/* Allocate and clear per-cpu variable lockup_detected */
8757 	h->lockup_detected = alloc_percpu(u32);
8758 	if (!h->lockup_detected) {
8759 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8760 		rc = -ENOMEM;
8761 		goto clean1;	/* aer/h */
8762 	}
8763 	set_lockup_detected_for_all_cpus(h, 0);
8764 
8765 	rc = hpsa_pci_init(h);
8766 	if (rc)
8767 		goto clean2;	/* lu, aer/h */
8768 
8769 	/* relies on h-> settings made by hpsa_pci_init, including
8770 	 * interrupt_mode h->intr */
8771 	rc = hpsa_scsi_host_alloc(h);
8772 	if (rc)
8773 		goto clean2_5;	/* pci, lu, aer/h */
8774 
8775 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8776 	h->ctlr = number_of_controllers;
8777 	number_of_controllers++;
8778 
8779 	/* configure PCI DMA stuff */
8780 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8781 	if (rc == 0) {
8782 		dac = 1;
8783 	} else {
8784 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8785 		if (rc == 0) {
8786 			dac = 0;
8787 		} else {
8788 			dev_err(&pdev->dev, "no suitable DMA available\n");
8789 			goto clean3;	/* shost, pci, lu, aer/h */
8790 		}
8791 	}
8792 
8793 	/* make sure the board interrupts are off */
8794 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8795 
8796 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8797 	if (rc)
8798 		goto clean3;	/* shost, pci, lu, aer/h */
8799 	rc = hpsa_alloc_cmd_pool(h);
8800 	if (rc)
8801 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8802 	rc = hpsa_alloc_sg_chain_blocks(h);
8803 	if (rc)
8804 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8805 	init_waitqueue_head(&h->scan_wait_queue);
8806 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8807 	init_waitqueue_head(&h->event_sync_wait_queue);
8808 	mutex_init(&h->reset_mutex);
8809 	h->scan_finished = 1; /* no scan currently in progress */
8810 	h->scan_waiting = 0;
8811 
8812 	pci_set_drvdata(pdev, h);
8813 	h->ndevices = 0;
8814 
8815 	spin_lock_init(&h->devlock);
8816 	rc = hpsa_put_ctlr_into_performant_mode(h);
8817 	if (rc)
8818 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8819 
8820 	/* create the resubmit workqueue */
8821 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8822 	if (!h->rescan_ctlr_wq) {
8823 		rc = -ENOMEM;
8824 		goto clean7;
8825 	}
8826 
8827 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8828 	if (!h->resubmit_wq) {
8829 		rc = -ENOMEM;
8830 		goto clean7;	/* aer/h */
8831 	}
8832 
8833 	/*
8834 	 * At this point, the controller is ready to take commands.
8835 	 * Now, if reset_devices and the hard reset didn't work, try
8836 	 * the soft reset and see if that works.
8837 	 */
8838 	if (try_soft_reset) {
8839 
8840 		/* This is kind of gross.  We may or may not get a completion
8841 		 * from the soft reset command, and if we do, then the value
8842 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8843 		 * after the reset throwing away any completions we get during
8844 		 * that time.  Unregister the interrupt handler and register
8845 		 * fake ones to scoop up any residual completions.
8846 		 */
8847 		spin_lock_irqsave(&h->lock, flags);
8848 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8849 		spin_unlock_irqrestore(&h->lock, flags);
8850 		hpsa_free_irqs(h);
8851 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8852 					hpsa_intx_discard_completions);
8853 		if (rc) {
8854 			dev_warn(&h->pdev->dev,
8855 				"Failed to request_irq after soft reset.\n");
8856 			/*
8857 			 * cannot goto clean7 or free_irqs will be called
8858 			 * again. Instead, do its work
8859 			 */
8860 			hpsa_free_performant_mode(h);	/* clean7 */
8861 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8862 			hpsa_free_cmd_pool(h);		/* clean5 */
8863 			/*
8864 			 * skip hpsa_free_irqs(h) clean4 since that
8865 			 * was just called before request_irqs failed
8866 			 */
8867 			goto clean3;
8868 		}
8869 
8870 		rc = hpsa_kdump_soft_reset(h);
8871 		if (rc)
8872 			/* Neither hard nor soft reset worked, we're hosed. */
8873 			goto clean7;
8874 
8875 		dev_info(&h->pdev->dev, "Board READY.\n");
8876 		dev_info(&h->pdev->dev,
8877 			"Waiting for stale completions to drain.\n");
8878 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8879 		msleep(10000);
8880 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8881 
8882 		rc = controller_reset_failed(h->cfgtable);
8883 		if (rc)
8884 			dev_info(&h->pdev->dev,
8885 				"Soft reset appears to have failed.\n");
8886 
8887 		/* since the controller's reset, we have to go back and re-init
8888 		 * everything.  Easiest to just forget what we've done and do it
8889 		 * all over again.
8890 		 */
8891 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8892 		try_soft_reset = 0;
8893 		if (rc)
8894 			/* don't goto clean, we already unallocated */
8895 			return -ENODEV;
8896 
8897 		goto reinit_after_soft_reset;
8898 	}
8899 
8900 	/* Enable Accelerated IO path at driver layer */
8901 	h->acciopath_status = 1;
8902 	/* Disable discovery polling.*/
8903 	h->discovery_polling = 0;
8904 
8905 
8906 	/* Turn the interrupts on so we can service requests */
8907 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8908 
8909 	hpsa_hba_inquiry(h);
8910 
8911 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8912 	if (!h->lastlogicals)
8913 		dev_info(&h->pdev->dev,
8914 			"Can't track change to report lun data\n");
8915 
8916 	/* hook into SCSI subsystem */
8917 	rc = hpsa_scsi_add_host(h);
8918 	if (rc)
8919 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8920 
8921 	/* Monitor the controller for firmware lockups */
8922 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8923 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8924 	schedule_delayed_work(&h->monitor_ctlr_work,
8925 				h->heartbeat_sample_interval);
8926 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8927 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8928 				h->heartbeat_sample_interval);
8929 	return 0;
8930 
8931 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8932 	hpsa_free_performant_mode(h);
8933 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8934 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8935 	hpsa_free_sg_chain_blocks(h);
8936 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8937 	hpsa_free_cmd_pool(h);
8938 clean4: /* irq, shost, pci, lu, aer/h */
8939 	hpsa_free_irqs(h);
8940 clean3: /* shost, pci, lu, aer/h */
8941 	scsi_host_put(h->scsi_host);
8942 	h->scsi_host = NULL;
8943 clean2_5: /* pci, lu, aer/h */
8944 	hpsa_free_pci_init(h);
8945 clean2: /* lu, aer/h */
8946 	if (h->lockup_detected) {
8947 		free_percpu(h->lockup_detected);
8948 		h->lockup_detected = NULL;
8949 	}
8950 clean1:	/* wq/aer/h */
8951 	if (h->resubmit_wq) {
8952 		destroy_workqueue(h->resubmit_wq);
8953 		h->resubmit_wq = NULL;
8954 	}
8955 	if (h->rescan_ctlr_wq) {
8956 		destroy_workqueue(h->rescan_ctlr_wq);
8957 		h->rescan_ctlr_wq = NULL;
8958 	}
8959 	kfree(h);
8960 	return rc;
8961 }
8962 
8963 static void hpsa_flush_cache(struct ctlr_info *h)
8964 {
8965 	char *flush_buf;
8966 	struct CommandList *c;
8967 	int rc;
8968 
8969 	if (unlikely(lockup_detected(h)))
8970 		return;
8971 	flush_buf = kzalloc(4, GFP_KERNEL);
8972 	if (!flush_buf)
8973 		return;
8974 
8975 	c = cmd_alloc(h);
8976 
8977 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8978 		RAID_CTLR_LUNID, TYPE_CMD)) {
8979 		goto out;
8980 	}
8981 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8982 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8983 	if (rc)
8984 		goto out;
8985 	if (c->err_info->CommandStatus != 0)
8986 out:
8987 		dev_warn(&h->pdev->dev,
8988 			"error flushing cache on controller\n");
8989 	cmd_free(h, c);
8990 	kfree(flush_buf);
8991 }
8992 
8993 /* Make controller gather fresh report lun data each time we
8994  * send down a report luns request
8995  */
8996 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8997 {
8998 	u32 *options;
8999 	struct CommandList *c;
9000 	int rc;
9001 
9002 	/* Don't bother trying to set diag options if locked up */
9003 	if (unlikely(h->lockup_detected))
9004 		return;
9005 
9006 	options = kzalloc(sizeof(*options), GFP_KERNEL);
9007 	if (!options)
9008 		return;
9009 
9010 	c = cmd_alloc(h);
9011 
9012 	/* first, get the current diag options settings */
9013 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9014 		RAID_CTLR_LUNID, TYPE_CMD))
9015 		goto errout;
9016 
9017 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9018 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9019 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
9020 		goto errout;
9021 
9022 	/* Now, set the bit for disabling the RLD caching */
9023 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9024 
9025 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9026 		RAID_CTLR_LUNID, TYPE_CMD))
9027 		goto errout;
9028 
9029 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9030 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9031 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9032 		goto errout;
9033 
9034 	/* Now verify that it got set: */
9035 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9036 		RAID_CTLR_LUNID, TYPE_CMD))
9037 		goto errout;
9038 
9039 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9040 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9041 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9042 		goto errout;
9043 
9044 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9045 		goto out;
9046 
9047 errout:
9048 	dev_err(&h->pdev->dev,
9049 			"Error: failed to disable report lun data caching.\n");
9050 out:
9051 	cmd_free(h, c);
9052 	kfree(options);
9053 }
9054 
9055 static void hpsa_shutdown(struct pci_dev *pdev)
9056 {
9057 	struct ctlr_info *h;
9058 
9059 	h = pci_get_drvdata(pdev);
9060 	/* Turn board interrupts off  and send the flush cache command
9061 	 * sendcmd will turn off interrupt, and send the flush...
9062 	 * To write all data in the battery backed cache to disks
9063 	 */
9064 	hpsa_flush_cache(h);
9065 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9066 	hpsa_free_irqs(h);			/* init_one 4 */
9067 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9068 }
9069 
9070 static void hpsa_free_device_info(struct ctlr_info *h)
9071 {
9072 	int i;
9073 
9074 	for (i = 0; i < h->ndevices; i++) {
9075 		kfree(h->dev[i]);
9076 		h->dev[i] = NULL;
9077 	}
9078 }
9079 
9080 static void hpsa_remove_one(struct pci_dev *pdev)
9081 {
9082 	struct ctlr_info *h;
9083 	unsigned long flags;
9084 
9085 	if (pci_get_drvdata(pdev) == NULL) {
9086 		dev_err(&pdev->dev, "unable to remove device\n");
9087 		return;
9088 	}
9089 	h = pci_get_drvdata(pdev);
9090 
9091 	/* Get rid of any controller monitoring work items */
9092 	spin_lock_irqsave(&h->lock, flags);
9093 	h->remove_in_progress = 1;
9094 	spin_unlock_irqrestore(&h->lock, flags);
9095 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9096 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9097 	destroy_workqueue(h->rescan_ctlr_wq);
9098 	destroy_workqueue(h->resubmit_wq);
9099 
9100 	/*
9101 	 * Call before disabling interrupts.
9102 	 * scsi_remove_host can trigger I/O operations especially
9103 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9104 	 * operations which cannot complete and will hang the system.
9105 	 */
9106 	if (h->scsi_host)
9107 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9108 	/* includes hpsa_free_irqs - init_one 4 */
9109 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9110 	hpsa_shutdown(pdev);
9111 
9112 	hpsa_free_device_info(h);		/* scan */
9113 
9114 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9115 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9116 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9117 	hpsa_free_performant_mode(h);			/* init_one 7 */
9118 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9119 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9120 	kfree(h->lastlogicals);
9121 
9122 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9123 
9124 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9125 	h->scsi_host = NULL;				/* init_one 3 */
9126 
9127 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9128 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9129 
9130 	free_percpu(h->lockup_detected);		/* init_one 2 */
9131 	h->lockup_detected = NULL;			/* init_one 2 */
9132 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9133 
9134 	hpsa_delete_sas_host(h);
9135 
9136 	kfree(h);					/* init_one 1 */
9137 }
9138 
9139 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9140 	__attribute__((unused)) pm_message_t state)
9141 {
9142 	return -ENOSYS;
9143 }
9144 
9145 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9146 {
9147 	return -ENOSYS;
9148 }
9149 
9150 static struct pci_driver hpsa_pci_driver = {
9151 	.name = HPSA,
9152 	.probe = hpsa_init_one,
9153 	.remove = hpsa_remove_one,
9154 	.id_table = hpsa_pci_device_id,	/* id_table */
9155 	.shutdown = hpsa_shutdown,
9156 	.suspend = hpsa_suspend,
9157 	.resume = hpsa_resume,
9158 };
9159 
9160 /* Fill in bucket_map[], given nsgs (the max number of
9161  * scatter gather elements supported) and bucket[],
9162  * which is an array of 8 integers.  The bucket[] array
9163  * contains 8 different DMA transfer sizes (in 16
9164  * byte increments) which the controller uses to fetch
9165  * commands.  This function fills in bucket_map[], which
9166  * maps a given number of scatter gather elements to one of
9167  * the 8 DMA transfer sizes.  The point of it is to allow the
9168  * controller to only do as much DMA as needed to fetch the
9169  * command, with the DMA transfer size encoded in the lower
9170  * bits of the command address.
9171  */
9172 static void  calc_bucket_map(int bucket[], int num_buckets,
9173 	int nsgs, int min_blocks, u32 *bucket_map)
9174 {
9175 	int i, j, b, size;
9176 
9177 	/* Note, bucket_map must have nsgs+1 entries. */
9178 	for (i = 0; i <= nsgs; i++) {
9179 		/* Compute size of a command with i SG entries */
9180 		size = i + min_blocks;
9181 		b = num_buckets; /* Assume the biggest bucket */
9182 		/* Find the bucket that is just big enough */
9183 		for (j = 0; j < num_buckets; j++) {
9184 			if (bucket[j] >= size) {
9185 				b = j;
9186 				break;
9187 			}
9188 		}
9189 		/* for a command with i SG entries, use bucket b. */
9190 		bucket_map[i] = b;
9191 	}
9192 }
9193 
9194 /*
9195  * return -ENODEV on err, 0 on success (or no action)
9196  * allocates numerous items that must be freed later
9197  */
9198 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9199 {
9200 	int i;
9201 	unsigned long register_value;
9202 	unsigned long transMethod = CFGTBL_Trans_Performant |
9203 			(trans_support & CFGTBL_Trans_use_short_tags) |
9204 				CFGTBL_Trans_enable_directed_msix |
9205 			(trans_support & (CFGTBL_Trans_io_accel1 |
9206 				CFGTBL_Trans_io_accel2));
9207 	struct access_method access = SA5_performant_access;
9208 
9209 	/* This is a bit complicated.  There are 8 registers on
9210 	 * the controller which we write to to tell it 8 different
9211 	 * sizes of commands which there may be.  It's a way of
9212 	 * reducing the DMA done to fetch each command.  Encoded into
9213 	 * each command's tag are 3 bits which communicate to the controller
9214 	 * which of the eight sizes that command fits within.  The size of
9215 	 * each command depends on how many scatter gather entries there are.
9216 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9217 	 * with the number of 16-byte blocks a command of that size requires.
9218 	 * The smallest command possible requires 5 such 16 byte blocks.
9219 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9220 	 * blocks.  Note, this only extends to the SG entries contained
9221 	 * within the command block, and does not extend to chained blocks
9222 	 * of SG elements.   bft[] contains the eight values we write to
9223 	 * the registers.  They are not evenly distributed, but have more
9224 	 * sizes for small commands, and fewer sizes for larger commands.
9225 	 */
9226 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9227 #define MIN_IOACCEL2_BFT_ENTRY 5
9228 #define HPSA_IOACCEL2_HEADER_SZ 4
9229 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9230 			13, 14, 15, 16, 17, 18, 19,
9231 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9232 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9233 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9234 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9235 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9236 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9237 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9238 	/*  5 = 1 s/g entry or 4k
9239 	 *  6 = 2 s/g entry or 8k
9240 	 *  8 = 4 s/g entry or 16k
9241 	 * 10 = 6 s/g entry or 24k
9242 	 */
9243 
9244 	/* If the controller supports either ioaccel method then
9245 	 * we can also use the RAID stack submit path that does not
9246 	 * perform the superfluous readl() after each command submission.
9247 	 */
9248 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9249 		access = SA5_performant_access_no_read;
9250 
9251 	/* Controller spec: zero out this buffer. */
9252 	for (i = 0; i < h->nreply_queues; i++)
9253 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9254 
9255 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9256 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9257 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9258 	for (i = 0; i < 8; i++)
9259 		writel(bft[i], &h->transtable->BlockFetch[i]);
9260 
9261 	/* size of controller ring buffer */
9262 	writel(h->max_commands, &h->transtable->RepQSize);
9263 	writel(h->nreply_queues, &h->transtable->RepQCount);
9264 	writel(0, &h->transtable->RepQCtrAddrLow32);
9265 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9266 
9267 	for (i = 0; i < h->nreply_queues; i++) {
9268 		writel(0, &h->transtable->RepQAddr[i].upper);
9269 		writel(h->reply_queue[i].busaddr,
9270 			&h->transtable->RepQAddr[i].lower);
9271 	}
9272 
9273 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9274 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9275 	/*
9276 	 * enable outbound interrupt coalescing in accelerator mode;
9277 	 */
9278 	if (trans_support & CFGTBL_Trans_io_accel1) {
9279 		access = SA5_ioaccel_mode1_access;
9280 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9281 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9282 	} else
9283 		if (trans_support & CFGTBL_Trans_io_accel2)
9284 			access = SA5_ioaccel_mode2_access;
9285 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9286 	if (hpsa_wait_for_mode_change_ack(h)) {
9287 		dev_err(&h->pdev->dev,
9288 			"performant mode problem - doorbell timeout\n");
9289 		return -ENODEV;
9290 	}
9291 	register_value = readl(&(h->cfgtable->TransportActive));
9292 	if (!(register_value & CFGTBL_Trans_Performant)) {
9293 		dev_err(&h->pdev->dev,
9294 			"performant mode problem - transport not active\n");
9295 		return -ENODEV;
9296 	}
9297 	/* Change the access methods to the performant access methods */
9298 	h->access = access;
9299 	h->transMethod = transMethod;
9300 
9301 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9302 		(trans_support & CFGTBL_Trans_io_accel2)))
9303 		return 0;
9304 
9305 	if (trans_support & CFGTBL_Trans_io_accel1) {
9306 		/* Set up I/O accelerator mode */
9307 		for (i = 0; i < h->nreply_queues; i++) {
9308 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9309 			h->reply_queue[i].current_entry =
9310 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9311 		}
9312 		bft[7] = h->ioaccel_maxsg + 8;
9313 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9314 				h->ioaccel1_blockFetchTable);
9315 
9316 		/* initialize all reply queue entries to unused */
9317 		for (i = 0; i < h->nreply_queues; i++)
9318 			memset(h->reply_queue[i].head,
9319 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9320 				h->reply_queue_size);
9321 
9322 		/* set all the constant fields in the accelerator command
9323 		 * frames once at init time to save CPU cycles later.
9324 		 */
9325 		for (i = 0; i < h->nr_cmds; i++) {
9326 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9327 
9328 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9329 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9330 					(i * sizeof(struct ErrorInfo)));
9331 			cp->err_info_len = sizeof(struct ErrorInfo);
9332 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9333 			cp->host_context_flags =
9334 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9335 			cp->timeout_sec = 0;
9336 			cp->ReplyQueue = 0;
9337 			cp->tag =
9338 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9339 			cp->host_addr =
9340 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9341 					(i * sizeof(struct io_accel1_cmd)));
9342 		}
9343 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9344 		u64 cfg_offset, cfg_base_addr_index;
9345 		u32 bft2_offset, cfg_base_addr;
9346 		int rc;
9347 
9348 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9349 			&cfg_base_addr_index, &cfg_offset);
9350 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9351 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9352 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9353 				4, h->ioaccel2_blockFetchTable);
9354 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9355 		BUILD_BUG_ON(offsetof(struct CfgTable,
9356 				io_accel_request_size_offset) != 0xb8);
9357 		h->ioaccel2_bft2_regs =
9358 			remap_pci_mem(pci_resource_start(h->pdev,
9359 					cfg_base_addr_index) +
9360 					cfg_offset + bft2_offset,
9361 					ARRAY_SIZE(bft2) *
9362 					sizeof(*h->ioaccel2_bft2_regs));
9363 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9364 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9365 	}
9366 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9367 	if (hpsa_wait_for_mode_change_ack(h)) {
9368 		dev_err(&h->pdev->dev,
9369 			"performant mode problem - enabling ioaccel mode\n");
9370 		return -ENODEV;
9371 	}
9372 	return 0;
9373 }
9374 
9375 /* Free ioaccel1 mode command blocks and block fetch table */
9376 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9377 {
9378 	if (h->ioaccel_cmd_pool) {
9379 		pci_free_consistent(h->pdev,
9380 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9381 			h->ioaccel_cmd_pool,
9382 			h->ioaccel_cmd_pool_dhandle);
9383 		h->ioaccel_cmd_pool = NULL;
9384 		h->ioaccel_cmd_pool_dhandle = 0;
9385 	}
9386 	kfree(h->ioaccel1_blockFetchTable);
9387 	h->ioaccel1_blockFetchTable = NULL;
9388 }
9389 
9390 /* Allocate ioaccel1 mode command blocks and block fetch table */
9391 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9392 {
9393 	h->ioaccel_maxsg =
9394 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9395 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9396 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9397 
9398 	/* Command structures must be aligned on a 128-byte boundary
9399 	 * because the 7 lower bits of the address are used by the
9400 	 * hardware.
9401 	 */
9402 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9403 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9404 	h->ioaccel_cmd_pool =
9405 		pci_alloc_consistent(h->pdev,
9406 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9407 			&(h->ioaccel_cmd_pool_dhandle));
9408 
9409 	h->ioaccel1_blockFetchTable =
9410 		kmalloc(((h->ioaccel_maxsg + 1) *
9411 				sizeof(u32)), GFP_KERNEL);
9412 
9413 	if ((h->ioaccel_cmd_pool == NULL) ||
9414 		(h->ioaccel1_blockFetchTable == NULL))
9415 		goto clean_up;
9416 
9417 	memset(h->ioaccel_cmd_pool, 0,
9418 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9419 	return 0;
9420 
9421 clean_up:
9422 	hpsa_free_ioaccel1_cmd_and_bft(h);
9423 	return -ENOMEM;
9424 }
9425 
9426 /* Free ioaccel2 mode command blocks and block fetch table */
9427 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9428 {
9429 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9430 
9431 	if (h->ioaccel2_cmd_pool) {
9432 		pci_free_consistent(h->pdev,
9433 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9434 			h->ioaccel2_cmd_pool,
9435 			h->ioaccel2_cmd_pool_dhandle);
9436 		h->ioaccel2_cmd_pool = NULL;
9437 		h->ioaccel2_cmd_pool_dhandle = 0;
9438 	}
9439 	kfree(h->ioaccel2_blockFetchTable);
9440 	h->ioaccel2_blockFetchTable = NULL;
9441 }
9442 
9443 /* Allocate ioaccel2 mode command blocks and block fetch table */
9444 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9445 {
9446 	int rc;
9447 
9448 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9449 
9450 	h->ioaccel_maxsg =
9451 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9452 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9453 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9454 
9455 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9456 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9457 	h->ioaccel2_cmd_pool =
9458 		pci_alloc_consistent(h->pdev,
9459 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9460 			&(h->ioaccel2_cmd_pool_dhandle));
9461 
9462 	h->ioaccel2_blockFetchTable =
9463 		kmalloc(((h->ioaccel_maxsg + 1) *
9464 				sizeof(u32)), GFP_KERNEL);
9465 
9466 	if ((h->ioaccel2_cmd_pool == NULL) ||
9467 		(h->ioaccel2_blockFetchTable == NULL)) {
9468 		rc = -ENOMEM;
9469 		goto clean_up;
9470 	}
9471 
9472 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9473 	if (rc)
9474 		goto clean_up;
9475 
9476 	memset(h->ioaccel2_cmd_pool, 0,
9477 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9478 	return 0;
9479 
9480 clean_up:
9481 	hpsa_free_ioaccel2_cmd_and_bft(h);
9482 	return rc;
9483 }
9484 
9485 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9486 static void hpsa_free_performant_mode(struct ctlr_info *h)
9487 {
9488 	kfree(h->blockFetchTable);
9489 	h->blockFetchTable = NULL;
9490 	hpsa_free_reply_queues(h);
9491 	hpsa_free_ioaccel1_cmd_and_bft(h);
9492 	hpsa_free_ioaccel2_cmd_and_bft(h);
9493 }
9494 
9495 /* return -ENODEV on error, 0 on success (or no action)
9496  * allocates numerous items that must be freed later
9497  */
9498 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9499 {
9500 	u32 trans_support;
9501 	unsigned long transMethod = CFGTBL_Trans_Performant |
9502 					CFGTBL_Trans_use_short_tags;
9503 	int i, rc;
9504 
9505 	if (hpsa_simple_mode)
9506 		return 0;
9507 
9508 	trans_support = readl(&(h->cfgtable->TransportSupport));
9509 	if (!(trans_support & PERFORMANT_MODE))
9510 		return 0;
9511 
9512 	/* Check for I/O accelerator mode support */
9513 	if (trans_support & CFGTBL_Trans_io_accel1) {
9514 		transMethod |= CFGTBL_Trans_io_accel1 |
9515 				CFGTBL_Trans_enable_directed_msix;
9516 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9517 		if (rc)
9518 			return rc;
9519 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9520 		transMethod |= CFGTBL_Trans_io_accel2 |
9521 				CFGTBL_Trans_enable_directed_msix;
9522 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9523 		if (rc)
9524 			return rc;
9525 	}
9526 
9527 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9528 	hpsa_get_max_perf_mode_cmds(h);
9529 	/* Performant mode ring buffer and supporting data structures */
9530 	h->reply_queue_size = h->max_commands * sizeof(u64);
9531 
9532 	for (i = 0; i < h->nreply_queues; i++) {
9533 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9534 						h->reply_queue_size,
9535 						&(h->reply_queue[i].busaddr));
9536 		if (!h->reply_queue[i].head) {
9537 			rc = -ENOMEM;
9538 			goto clean1;	/* rq, ioaccel */
9539 		}
9540 		h->reply_queue[i].size = h->max_commands;
9541 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9542 		h->reply_queue[i].current_entry = 0;
9543 	}
9544 
9545 	/* Need a block fetch table for performant mode */
9546 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9547 				sizeof(u32)), GFP_KERNEL);
9548 	if (!h->blockFetchTable) {
9549 		rc = -ENOMEM;
9550 		goto clean1;	/* rq, ioaccel */
9551 	}
9552 
9553 	rc = hpsa_enter_performant_mode(h, trans_support);
9554 	if (rc)
9555 		goto clean2;	/* bft, rq, ioaccel */
9556 	return 0;
9557 
9558 clean2:	/* bft, rq, ioaccel */
9559 	kfree(h->blockFetchTable);
9560 	h->blockFetchTable = NULL;
9561 clean1:	/* rq, ioaccel */
9562 	hpsa_free_reply_queues(h);
9563 	hpsa_free_ioaccel1_cmd_and_bft(h);
9564 	hpsa_free_ioaccel2_cmd_and_bft(h);
9565 	return rc;
9566 }
9567 
9568 static int is_accelerated_cmd(struct CommandList *c)
9569 {
9570 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9571 }
9572 
9573 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9574 {
9575 	struct CommandList *c = NULL;
9576 	int i, accel_cmds_out;
9577 	int refcount;
9578 
9579 	do { /* wait for all outstanding ioaccel commands to drain out */
9580 		accel_cmds_out = 0;
9581 		for (i = 0; i < h->nr_cmds; i++) {
9582 			c = h->cmd_pool + i;
9583 			refcount = atomic_inc_return(&c->refcount);
9584 			if (refcount > 1) /* Command is allocated */
9585 				accel_cmds_out += is_accelerated_cmd(c);
9586 			cmd_free(h, c);
9587 		}
9588 		if (accel_cmds_out <= 0)
9589 			break;
9590 		msleep(100);
9591 	} while (1);
9592 }
9593 
9594 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9595 				struct hpsa_sas_port *hpsa_sas_port)
9596 {
9597 	struct hpsa_sas_phy *hpsa_sas_phy;
9598 	struct sas_phy *phy;
9599 
9600 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9601 	if (!hpsa_sas_phy)
9602 		return NULL;
9603 
9604 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9605 		hpsa_sas_port->next_phy_index);
9606 	if (!phy) {
9607 		kfree(hpsa_sas_phy);
9608 		return NULL;
9609 	}
9610 
9611 	hpsa_sas_port->next_phy_index++;
9612 	hpsa_sas_phy->phy = phy;
9613 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9614 
9615 	return hpsa_sas_phy;
9616 }
9617 
9618 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9619 {
9620 	struct sas_phy *phy = hpsa_sas_phy->phy;
9621 
9622 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9623 	sas_phy_free(phy);
9624 	if (hpsa_sas_phy->added_to_port)
9625 		list_del(&hpsa_sas_phy->phy_list_entry);
9626 	kfree(hpsa_sas_phy);
9627 }
9628 
9629 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9630 {
9631 	int rc;
9632 	struct hpsa_sas_port *hpsa_sas_port;
9633 	struct sas_phy *phy;
9634 	struct sas_identify *identify;
9635 
9636 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9637 	phy = hpsa_sas_phy->phy;
9638 
9639 	identify = &phy->identify;
9640 	memset(identify, 0, sizeof(*identify));
9641 	identify->sas_address = hpsa_sas_port->sas_address;
9642 	identify->device_type = SAS_END_DEVICE;
9643 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9644 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9645 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9646 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9647 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9648 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9649 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9650 
9651 	rc = sas_phy_add(hpsa_sas_phy->phy);
9652 	if (rc)
9653 		return rc;
9654 
9655 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9656 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9657 			&hpsa_sas_port->phy_list_head);
9658 	hpsa_sas_phy->added_to_port = true;
9659 
9660 	return 0;
9661 }
9662 
9663 static int
9664 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9665 				struct sas_rphy *rphy)
9666 {
9667 	struct sas_identify *identify;
9668 
9669 	identify = &rphy->identify;
9670 	identify->sas_address = hpsa_sas_port->sas_address;
9671 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9672 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9673 
9674 	return sas_rphy_add(rphy);
9675 }
9676 
9677 static struct hpsa_sas_port
9678 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9679 				u64 sas_address)
9680 {
9681 	int rc;
9682 	struct hpsa_sas_port *hpsa_sas_port;
9683 	struct sas_port *port;
9684 
9685 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9686 	if (!hpsa_sas_port)
9687 		return NULL;
9688 
9689 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9690 	hpsa_sas_port->parent_node = hpsa_sas_node;
9691 
9692 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9693 	if (!port)
9694 		goto free_hpsa_port;
9695 
9696 	rc = sas_port_add(port);
9697 	if (rc)
9698 		goto free_sas_port;
9699 
9700 	hpsa_sas_port->port = port;
9701 	hpsa_sas_port->sas_address = sas_address;
9702 	list_add_tail(&hpsa_sas_port->port_list_entry,
9703 			&hpsa_sas_node->port_list_head);
9704 
9705 	return hpsa_sas_port;
9706 
9707 free_sas_port:
9708 	sas_port_free(port);
9709 free_hpsa_port:
9710 	kfree(hpsa_sas_port);
9711 
9712 	return NULL;
9713 }
9714 
9715 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9716 {
9717 	struct hpsa_sas_phy *hpsa_sas_phy;
9718 	struct hpsa_sas_phy *next;
9719 
9720 	list_for_each_entry_safe(hpsa_sas_phy, next,
9721 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9722 		hpsa_free_sas_phy(hpsa_sas_phy);
9723 
9724 	sas_port_delete(hpsa_sas_port->port);
9725 	list_del(&hpsa_sas_port->port_list_entry);
9726 	kfree(hpsa_sas_port);
9727 }
9728 
9729 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9730 {
9731 	struct hpsa_sas_node *hpsa_sas_node;
9732 
9733 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9734 	if (hpsa_sas_node) {
9735 		hpsa_sas_node->parent_dev = parent_dev;
9736 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9737 	}
9738 
9739 	return hpsa_sas_node;
9740 }
9741 
9742 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9743 {
9744 	struct hpsa_sas_port *hpsa_sas_port;
9745 	struct hpsa_sas_port *next;
9746 
9747 	if (!hpsa_sas_node)
9748 		return;
9749 
9750 	list_for_each_entry_safe(hpsa_sas_port, next,
9751 			&hpsa_sas_node->port_list_head, port_list_entry)
9752 		hpsa_free_sas_port(hpsa_sas_port);
9753 
9754 	kfree(hpsa_sas_node);
9755 }
9756 
9757 static struct hpsa_scsi_dev_t
9758 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9759 					struct sas_rphy *rphy)
9760 {
9761 	int i;
9762 	struct hpsa_scsi_dev_t *device;
9763 
9764 	for (i = 0; i < h->ndevices; i++) {
9765 		device = h->dev[i];
9766 		if (!device->sas_port)
9767 			continue;
9768 		if (device->sas_port->rphy == rphy)
9769 			return device;
9770 	}
9771 
9772 	return NULL;
9773 }
9774 
9775 static int hpsa_add_sas_host(struct ctlr_info *h)
9776 {
9777 	int rc;
9778 	struct device *parent_dev;
9779 	struct hpsa_sas_node *hpsa_sas_node;
9780 	struct hpsa_sas_port *hpsa_sas_port;
9781 	struct hpsa_sas_phy *hpsa_sas_phy;
9782 
9783 	parent_dev = &h->scsi_host->shost_gendev;
9784 
9785 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9786 	if (!hpsa_sas_node)
9787 		return -ENOMEM;
9788 
9789 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9790 	if (!hpsa_sas_port) {
9791 		rc = -ENODEV;
9792 		goto free_sas_node;
9793 	}
9794 
9795 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9796 	if (!hpsa_sas_phy) {
9797 		rc = -ENODEV;
9798 		goto free_sas_port;
9799 	}
9800 
9801 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9802 	if (rc)
9803 		goto free_sas_phy;
9804 
9805 	h->sas_host = hpsa_sas_node;
9806 
9807 	return 0;
9808 
9809 free_sas_phy:
9810 	hpsa_free_sas_phy(hpsa_sas_phy);
9811 free_sas_port:
9812 	hpsa_free_sas_port(hpsa_sas_port);
9813 free_sas_node:
9814 	hpsa_free_sas_node(hpsa_sas_node);
9815 
9816 	return rc;
9817 }
9818 
9819 static void hpsa_delete_sas_host(struct ctlr_info *h)
9820 {
9821 	hpsa_free_sas_node(h->sas_host);
9822 }
9823 
9824 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9825 				struct hpsa_scsi_dev_t *device)
9826 {
9827 	int rc;
9828 	struct hpsa_sas_port *hpsa_sas_port;
9829 	struct sas_rphy *rphy;
9830 
9831 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9832 	if (!hpsa_sas_port)
9833 		return -ENOMEM;
9834 
9835 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9836 	if (!rphy) {
9837 		rc = -ENODEV;
9838 		goto free_sas_port;
9839 	}
9840 
9841 	hpsa_sas_port->rphy = rphy;
9842 	device->sas_port = hpsa_sas_port;
9843 
9844 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9845 	if (rc)
9846 		goto free_sas_port;
9847 
9848 	return 0;
9849 
9850 free_sas_port:
9851 	hpsa_free_sas_port(hpsa_sas_port);
9852 	device->sas_port = NULL;
9853 
9854 	return rc;
9855 }
9856 
9857 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9858 {
9859 	if (device->sas_port) {
9860 		hpsa_free_sas_port(device->sas_port);
9861 		device->sas_port = NULL;
9862 	}
9863 }
9864 
9865 static int
9866 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9867 {
9868 	return 0;
9869 }
9870 
9871 static int
9872 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9873 {
9874 	*identifier = 0;
9875 	return 0;
9876 }
9877 
9878 static int
9879 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9880 {
9881 	return -ENXIO;
9882 }
9883 
9884 static int
9885 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9886 {
9887 	return 0;
9888 }
9889 
9890 static int
9891 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9892 {
9893 	return 0;
9894 }
9895 
9896 static int
9897 hpsa_sas_phy_setup(struct sas_phy *phy)
9898 {
9899 	return 0;
9900 }
9901 
9902 static void
9903 hpsa_sas_phy_release(struct sas_phy *phy)
9904 {
9905 }
9906 
9907 static int
9908 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9909 {
9910 	return -EINVAL;
9911 }
9912 
9913 /* SMP = Serial Management Protocol */
9914 static int
9915 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9916 struct request *req)
9917 {
9918 	return -EINVAL;
9919 }
9920 
9921 static struct sas_function_template hpsa_sas_transport_functions = {
9922 	.get_linkerrors = hpsa_sas_get_linkerrors,
9923 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9924 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9925 	.phy_reset = hpsa_sas_phy_reset,
9926 	.phy_enable = hpsa_sas_phy_enable,
9927 	.phy_setup = hpsa_sas_phy_setup,
9928 	.phy_release = hpsa_sas_phy_release,
9929 	.set_phy_speed = hpsa_sas_phy_speed,
9930 	.smp_handler = hpsa_sas_smp_handler,
9931 };
9932 
9933 /*
9934  *  This is it.  Register the PCI driver information for the cards we control
9935  *  the OS will call our registered routines when it finds one of our cards.
9936  */
9937 static int __init hpsa_init(void)
9938 {
9939 	int rc;
9940 
9941 	hpsa_sas_transport_template =
9942 		sas_attach_transport(&hpsa_sas_transport_functions);
9943 	if (!hpsa_sas_transport_template)
9944 		return -ENODEV;
9945 
9946 	rc = pci_register_driver(&hpsa_pci_driver);
9947 
9948 	if (rc)
9949 		sas_release_transport(hpsa_sas_transport_template);
9950 
9951 	return rc;
9952 }
9953 
9954 static void __exit hpsa_cleanup(void)
9955 {
9956 	pci_unregister_driver(&hpsa_pci_driver);
9957 	sas_release_transport(hpsa_sas_transport_template);
9958 }
9959 
9960 static void __attribute__((unused)) verify_offsets(void)
9961 {
9962 #define VERIFY_OFFSET(member, offset) \
9963 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9964 
9965 	VERIFY_OFFSET(structure_size, 0);
9966 	VERIFY_OFFSET(volume_blk_size, 4);
9967 	VERIFY_OFFSET(volume_blk_cnt, 8);
9968 	VERIFY_OFFSET(phys_blk_shift, 16);
9969 	VERIFY_OFFSET(parity_rotation_shift, 17);
9970 	VERIFY_OFFSET(strip_size, 18);
9971 	VERIFY_OFFSET(disk_starting_blk, 20);
9972 	VERIFY_OFFSET(disk_blk_cnt, 28);
9973 	VERIFY_OFFSET(data_disks_per_row, 36);
9974 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9975 	VERIFY_OFFSET(row_cnt, 40);
9976 	VERIFY_OFFSET(layout_map_count, 42);
9977 	VERIFY_OFFSET(flags, 44);
9978 	VERIFY_OFFSET(dekindex, 46);
9979 	/* VERIFY_OFFSET(reserved, 48 */
9980 	VERIFY_OFFSET(data, 64);
9981 
9982 #undef VERIFY_OFFSET
9983 
9984 #define VERIFY_OFFSET(member, offset) \
9985 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9986 
9987 	VERIFY_OFFSET(IU_type, 0);
9988 	VERIFY_OFFSET(direction, 1);
9989 	VERIFY_OFFSET(reply_queue, 2);
9990 	/* VERIFY_OFFSET(reserved1, 3);  */
9991 	VERIFY_OFFSET(scsi_nexus, 4);
9992 	VERIFY_OFFSET(Tag, 8);
9993 	VERIFY_OFFSET(cdb, 16);
9994 	VERIFY_OFFSET(cciss_lun, 32);
9995 	VERIFY_OFFSET(data_len, 40);
9996 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9997 	VERIFY_OFFSET(sg_count, 45);
9998 	/* VERIFY_OFFSET(reserved3 */
9999 	VERIFY_OFFSET(err_ptr, 48);
10000 	VERIFY_OFFSET(err_len, 56);
10001 	/* VERIFY_OFFSET(reserved4  */
10002 	VERIFY_OFFSET(sg, 64);
10003 
10004 #undef VERIFY_OFFSET
10005 
10006 #define VERIFY_OFFSET(member, offset) \
10007 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10008 
10009 	VERIFY_OFFSET(dev_handle, 0x00);
10010 	VERIFY_OFFSET(reserved1, 0x02);
10011 	VERIFY_OFFSET(function, 0x03);
10012 	VERIFY_OFFSET(reserved2, 0x04);
10013 	VERIFY_OFFSET(err_info, 0x0C);
10014 	VERIFY_OFFSET(reserved3, 0x10);
10015 	VERIFY_OFFSET(err_info_len, 0x12);
10016 	VERIFY_OFFSET(reserved4, 0x13);
10017 	VERIFY_OFFSET(sgl_offset, 0x14);
10018 	VERIFY_OFFSET(reserved5, 0x15);
10019 	VERIFY_OFFSET(transfer_len, 0x1C);
10020 	VERIFY_OFFSET(reserved6, 0x20);
10021 	VERIFY_OFFSET(io_flags, 0x24);
10022 	VERIFY_OFFSET(reserved7, 0x26);
10023 	VERIFY_OFFSET(LUN, 0x34);
10024 	VERIFY_OFFSET(control, 0x3C);
10025 	VERIFY_OFFSET(CDB, 0x40);
10026 	VERIFY_OFFSET(reserved8, 0x50);
10027 	VERIFY_OFFSET(host_context_flags, 0x60);
10028 	VERIFY_OFFSET(timeout_sec, 0x62);
10029 	VERIFY_OFFSET(ReplyQueue, 0x64);
10030 	VERIFY_OFFSET(reserved9, 0x65);
10031 	VERIFY_OFFSET(tag, 0x68);
10032 	VERIFY_OFFSET(host_addr, 0x70);
10033 	VERIFY_OFFSET(CISS_LUN, 0x78);
10034 	VERIFY_OFFSET(SG, 0x78 + 8);
10035 #undef VERIFY_OFFSET
10036 }
10037 
10038 module_init(hpsa_init);
10039 module_exit(hpsa_cleanup);
10040