xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 1802d0be)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-160"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
255 		      void __user *arg);
256 
257 #ifdef CONFIG_COMPAT
258 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
259 	void __user *arg);
260 #endif
261 
262 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
263 static struct CommandList *cmd_alloc(struct ctlr_info *h);
264 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
266 					    struct scsi_cmnd *scmd);
267 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
268 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
269 	int cmd_type);
270 static void hpsa_free_cmd_pool(struct ctlr_info *h);
271 #define VPD_PAGE (1 << 8)
272 #define HPSA_SIMPLE_ERROR_BITS 0x03
273 
274 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
275 static void hpsa_scan_start(struct Scsi_Host *);
276 static int hpsa_scan_finished(struct Scsi_Host *sh,
277 	unsigned long elapsed_time);
278 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
279 
280 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
281 static int hpsa_slave_alloc(struct scsi_device *sdev);
282 static int hpsa_slave_configure(struct scsi_device *sdev);
283 static void hpsa_slave_destroy(struct scsi_device *sdev);
284 
285 static void hpsa_update_scsi_devices(struct ctlr_info *h);
286 static int check_for_unit_attention(struct ctlr_info *h,
287 	struct CommandList *c);
288 static void check_ioctl_unit_attention(struct ctlr_info *h,
289 	struct CommandList *c);
290 /* performant mode helper functions */
291 static void calc_bucket_map(int *bucket, int num_buckets,
292 	int nsgs, int min_blocks, u32 *bucket_map);
293 static void hpsa_free_performant_mode(struct ctlr_info *h);
294 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
295 static inline u32 next_command(struct ctlr_info *h, u8 q);
296 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
297 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
298 			       u64 *cfg_offset);
299 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
300 				    unsigned long *memory_bar);
301 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
302 				bool *legacy_board);
303 static int wait_for_device_to_become_ready(struct ctlr_info *h,
304 					   unsigned char lunaddr[],
305 					   int reply_queue);
306 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
307 				     int wait_for_ready);
308 static inline void finish_cmd(struct CommandList *c);
309 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
310 #define BOARD_NOT_READY 0
311 #define BOARD_READY 1
312 static void hpsa_drain_accel_commands(struct ctlr_info *h);
313 static void hpsa_flush_cache(struct ctlr_info *h);
314 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
315 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
316 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
317 static void hpsa_command_resubmit_worker(struct work_struct *work);
318 static u32 lockup_detected(struct ctlr_info *h);
319 static int detect_controller_lockup(struct ctlr_info *h);
320 static void hpsa_disable_rld_caching(struct ctlr_info *h);
321 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
322 	struct ReportExtendedLUNdata *buf, int bufsize);
323 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
324 	unsigned char scsi3addr[], u8 page);
325 static int hpsa_luns_changed(struct ctlr_info *h);
326 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
327 			       struct hpsa_scsi_dev_t *dev,
328 			       unsigned char *scsi3addr);
329 
330 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
331 {
332 	unsigned long *priv = shost_priv(sdev->host);
333 	return (struct ctlr_info *) *priv;
334 }
335 
336 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
337 {
338 	unsigned long *priv = shost_priv(sh);
339 	return (struct ctlr_info *) *priv;
340 }
341 
342 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
343 {
344 	return c->scsi_cmd == SCSI_CMD_IDLE;
345 }
346 
347 static inline bool hpsa_is_pending_event(struct CommandList *c)
348 {
349 	return c->reset_pending;
350 }
351 
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 			u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 	struct scsi_sense_hdr sshdr;
357 	bool rc;
358 
359 	*sense_key = -1;
360 	*asc = -1;
361 	*ascq = -1;
362 
363 	if (sense_data_len < 1)
364 		return;
365 
366 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 	if (rc) {
368 		*sense_key = sshdr.sense_key;
369 		*asc = sshdr.asc;
370 		*ascq = sshdr.ascq;
371 	}
372 }
373 
374 static int check_for_unit_attention(struct ctlr_info *h,
375 	struct CommandList *c)
376 {
377 	u8 sense_key, asc, ascq;
378 	int sense_len;
379 
380 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 		sense_len = sizeof(c->err_info->SenseInfo);
382 	else
383 		sense_len = c->err_info->SenseLen;
384 
385 	decode_sense_data(c->err_info->SenseInfo, sense_len,
386 				&sense_key, &asc, &ascq);
387 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 		return 0;
389 
390 	switch (asc) {
391 	case STATE_CHANGED:
392 		dev_warn(&h->pdev->dev,
393 			"%s: a state change detected, command retried\n",
394 			h->devname);
395 		break;
396 	case LUN_FAILED:
397 		dev_warn(&h->pdev->dev,
398 			"%s: LUN failure detected\n", h->devname);
399 		break;
400 	case REPORT_LUNS_CHANGED:
401 		dev_warn(&h->pdev->dev,
402 			"%s: report LUN data changed\n", h->devname);
403 	/*
404 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 	 * target (array) devices.
406 	 */
407 		break;
408 	case POWER_OR_RESET:
409 		dev_warn(&h->pdev->dev,
410 			"%s: a power on or device reset detected\n",
411 			h->devname);
412 		break;
413 	case UNIT_ATTENTION_CLEARED:
414 		dev_warn(&h->pdev->dev,
415 			"%s: unit attention cleared by another initiator\n",
416 			h->devname);
417 		break;
418 	default:
419 		dev_warn(&h->pdev->dev,
420 			"%s: unknown unit attention detected\n",
421 			h->devname);
422 		break;
423 	}
424 	return 1;
425 }
426 
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 		return 0;
433 	dev_warn(&h->pdev->dev, HPSA "device busy");
434 	return 1;
435 }
436 
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	int ld;
442 	struct ctlr_info *h;
443 	struct Scsi_Host *shost = class_to_shost(dev);
444 
445 	h = shost_to_hba(shost);
446 	ld = lockup_detected(h);
447 
448 	return sprintf(buf, "ld=%d\n", ld);
449 }
450 
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 					 struct device_attribute *attr,
453 					 const char *buf, size_t count)
454 {
455 	int status, len;
456 	struct ctlr_info *h;
457 	struct Scsi_Host *shost = class_to_shost(dev);
458 	char tmpbuf[10];
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 	strncpy(tmpbuf, buf, len);
464 	tmpbuf[len] = '\0';
465 	if (sscanf(tmpbuf, "%d", &status) != 1)
466 		return -EINVAL;
467 	h = shost_to_hba(shost);
468 	h->acciopath_status = !!status;
469 	dev_warn(&h->pdev->dev,
470 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 		h->acciopath_status ? "enabled" : "disabled");
472 	return count;
473 }
474 
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 					 struct device_attribute *attr,
477 					 const char *buf, size_t count)
478 {
479 	int debug_level, len;
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 	char tmpbuf[10];
483 
484 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 		return -EACCES;
486 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 	strncpy(tmpbuf, buf, len);
488 	tmpbuf[len] = '\0';
489 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 		return -EINVAL;
491 	if (debug_level < 0)
492 		debug_level = 0;
493 	h = shost_to_hba(shost);
494 	h->raid_offload_debug = debug_level;
495 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 		h->raid_offload_debug);
497 	return count;
498 }
499 
500 static ssize_t host_store_rescan(struct device *dev,
501 				 struct device_attribute *attr,
502 				 const char *buf, size_t count)
503 {
504 	struct ctlr_info *h;
505 	struct Scsi_Host *shost = class_to_shost(dev);
506 	h = shost_to_hba(shost);
507 	hpsa_scan_start(h->scsi_host);
508 	return count;
509 }
510 
511 static ssize_t host_show_firmware_revision(struct device *dev,
512 	     struct device_attribute *attr, char *buf)
513 {
514 	struct ctlr_info *h;
515 	struct Scsi_Host *shost = class_to_shost(dev);
516 	unsigned char *fwrev;
517 
518 	h = shost_to_hba(shost);
519 	if (!h->hba_inquiry_data)
520 		return 0;
521 	fwrev = &h->hba_inquiry_data[32];
522 	return snprintf(buf, 20, "%c%c%c%c\n",
523 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
524 }
525 
526 static ssize_t host_show_commands_outstanding(struct device *dev,
527 	     struct device_attribute *attr, char *buf)
528 {
529 	struct Scsi_Host *shost = class_to_shost(dev);
530 	struct ctlr_info *h = shost_to_hba(shost);
531 
532 	return snprintf(buf, 20, "%d\n",
533 			atomic_read(&h->commands_outstanding));
534 }
535 
536 static ssize_t host_show_transport_mode(struct device *dev,
537 	struct device_attribute *attr, char *buf)
538 {
539 	struct ctlr_info *h;
540 	struct Scsi_Host *shost = class_to_shost(dev);
541 
542 	h = shost_to_hba(shost);
543 	return snprintf(buf, 20, "%s\n",
544 		h->transMethod & CFGTBL_Trans_Performant ?
545 			"performant" : "simple");
546 }
547 
548 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
549 	struct device_attribute *attr, char *buf)
550 {
551 	struct ctlr_info *h;
552 	struct Scsi_Host *shost = class_to_shost(dev);
553 
554 	h = shost_to_hba(shost);
555 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
556 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
557 }
558 
559 /* List of controllers which cannot be hard reset on kexec with reset_devices */
560 static u32 unresettable_controller[] = {
561 	0x324a103C, /* Smart Array P712m */
562 	0x324b103C, /* Smart Array P711m */
563 	0x3223103C, /* Smart Array P800 */
564 	0x3234103C, /* Smart Array P400 */
565 	0x3235103C, /* Smart Array P400i */
566 	0x3211103C, /* Smart Array E200i */
567 	0x3212103C, /* Smart Array E200 */
568 	0x3213103C, /* Smart Array E200i */
569 	0x3214103C, /* Smart Array E200i */
570 	0x3215103C, /* Smart Array E200i */
571 	0x3237103C, /* Smart Array E500 */
572 	0x323D103C, /* Smart Array P700m */
573 	0x40800E11, /* Smart Array 5i */
574 	0x409C0E11, /* Smart Array 6400 */
575 	0x409D0E11, /* Smart Array 6400 EM */
576 	0x40700E11, /* Smart Array 5300 */
577 	0x40820E11, /* Smart Array 532 */
578 	0x40830E11, /* Smart Array 5312 */
579 	0x409A0E11, /* Smart Array 641 */
580 	0x409B0E11, /* Smart Array 642 */
581 	0x40910E11, /* Smart Array 6i */
582 };
583 
584 /* List of controllers which cannot even be soft reset */
585 static u32 soft_unresettable_controller[] = {
586 	0x40800E11, /* Smart Array 5i */
587 	0x40700E11, /* Smart Array 5300 */
588 	0x40820E11, /* Smart Array 532 */
589 	0x40830E11, /* Smart Array 5312 */
590 	0x409A0E11, /* Smart Array 641 */
591 	0x409B0E11, /* Smart Array 642 */
592 	0x40910E11, /* Smart Array 6i */
593 	/* Exclude 640x boards.  These are two pci devices in one slot
594 	 * which share a battery backed cache module.  One controls the
595 	 * cache, the other accesses the cache through the one that controls
596 	 * it.  If we reset the one controlling the cache, the other will
597 	 * likely not be happy.  Just forbid resetting this conjoined mess.
598 	 * The 640x isn't really supported by hpsa anyway.
599 	 */
600 	0x409C0E11, /* Smart Array 6400 */
601 	0x409D0E11, /* Smart Array 6400 EM */
602 };
603 
604 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
605 {
606 	int i;
607 
608 	for (i = 0; i < nelems; i++)
609 		if (a[i] == board_id)
610 			return 1;
611 	return 0;
612 }
613 
614 static int ctlr_is_hard_resettable(u32 board_id)
615 {
616 	return !board_id_in_array(unresettable_controller,
617 			ARRAY_SIZE(unresettable_controller), board_id);
618 }
619 
620 static int ctlr_is_soft_resettable(u32 board_id)
621 {
622 	return !board_id_in_array(soft_unresettable_controller,
623 			ARRAY_SIZE(soft_unresettable_controller), board_id);
624 }
625 
626 static int ctlr_is_resettable(u32 board_id)
627 {
628 	return ctlr_is_hard_resettable(board_id) ||
629 		ctlr_is_soft_resettable(board_id);
630 }
631 
632 static ssize_t host_show_resettable(struct device *dev,
633 	struct device_attribute *attr, char *buf)
634 {
635 	struct ctlr_info *h;
636 	struct Scsi_Host *shost = class_to_shost(dev);
637 
638 	h = shost_to_hba(shost);
639 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
640 }
641 
642 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
643 {
644 	return (scsi3addr[3] & 0xC0) == 0x40;
645 }
646 
647 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
648 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 };
650 #define HPSA_RAID_0	0
651 #define HPSA_RAID_4	1
652 #define HPSA_RAID_1	2	/* also used for RAID 10 */
653 #define HPSA_RAID_5	3	/* also used for RAID 50 */
654 #define HPSA_RAID_51	4
655 #define HPSA_RAID_6	5	/* also used for RAID 60 */
656 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
657 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
658 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659 
660 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
661 {
662 	return !device->physical_device;
663 }
664 
665 static ssize_t raid_level_show(struct device *dev,
666 	     struct device_attribute *attr, char *buf)
667 {
668 	ssize_t l = 0;
669 	unsigned char rlevel;
670 	struct ctlr_info *h;
671 	struct scsi_device *sdev;
672 	struct hpsa_scsi_dev_t *hdev;
673 	unsigned long flags;
674 
675 	sdev = to_scsi_device(dev);
676 	h = sdev_to_hba(sdev);
677 	spin_lock_irqsave(&h->lock, flags);
678 	hdev = sdev->hostdata;
679 	if (!hdev) {
680 		spin_unlock_irqrestore(&h->lock, flags);
681 		return -ENODEV;
682 	}
683 
684 	/* Is this even a logical drive? */
685 	if (!is_logical_device(hdev)) {
686 		spin_unlock_irqrestore(&h->lock, flags);
687 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
688 		return l;
689 	}
690 
691 	rlevel = hdev->raid_level;
692 	spin_unlock_irqrestore(&h->lock, flags);
693 	if (rlevel > RAID_UNKNOWN)
694 		rlevel = RAID_UNKNOWN;
695 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
696 	return l;
697 }
698 
699 static ssize_t lunid_show(struct device *dev,
700 	     struct device_attribute *attr, char *buf)
701 {
702 	struct ctlr_info *h;
703 	struct scsi_device *sdev;
704 	struct hpsa_scsi_dev_t *hdev;
705 	unsigned long flags;
706 	unsigned char lunid[8];
707 
708 	sdev = to_scsi_device(dev);
709 	h = sdev_to_hba(sdev);
710 	spin_lock_irqsave(&h->lock, flags);
711 	hdev = sdev->hostdata;
712 	if (!hdev) {
713 		spin_unlock_irqrestore(&h->lock, flags);
714 		return -ENODEV;
715 	}
716 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
717 	spin_unlock_irqrestore(&h->lock, flags);
718 	return snprintf(buf, 20, "0x%8phN\n", lunid);
719 }
720 
721 static ssize_t unique_id_show(struct device *dev,
722 	     struct device_attribute *attr, char *buf)
723 {
724 	struct ctlr_info *h;
725 	struct scsi_device *sdev;
726 	struct hpsa_scsi_dev_t *hdev;
727 	unsigned long flags;
728 	unsigned char sn[16];
729 
730 	sdev = to_scsi_device(dev);
731 	h = sdev_to_hba(sdev);
732 	spin_lock_irqsave(&h->lock, flags);
733 	hdev = sdev->hostdata;
734 	if (!hdev) {
735 		spin_unlock_irqrestore(&h->lock, flags);
736 		return -ENODEV;
737 	}
738 	memcpy(sn, hdev->device_id, sizeof(sn));
739 	spin_unlock_irqrestore(&h->lock, flags);
740 	return snprintf(buf, 16 * 2 + 2,
741 			"%02X%02X%02X%02X%02X%02X%02X%02X"
742 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
743 			sn[0], sn[1], sn[2], sn[3],
744 			sn[4], sn[5], sn[6], sn[7],
745 			sn[8], sn[9], sn[10], sn[11],
746 			sn[12], sn[13], sn[14], sn[15]);
747 }
748 
749 static ssize_t sas_address_show(struct device *dev,
750 	      struct device_attribute *attr, char *buf)
751 {
752 	struct ctlr_info *h;
753 	struct scsi_device *sdev;
754 	struct hpsa_scsi_dev_t *hdev;
755 	unsigned long flags;
756 	u64 sas_address;
757 
758 	sdev = to_scsi_device(dev);
759 	h = sdev_to_hba(sdev);
760 	spin_lock_irqsave(&h->lock, flags);
761 	hdev = sdev->hostdata;
762 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
763 		spin_unlock_irqrestore(&h->lock, flags);
764 		return -ENODEV;
765 	}
766 	sas_address = hdev->sas_address;
767 	spin_unlock_irqrestore(&h->lock, flags);
768 
769 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
770 }
771 
772 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
773 	     struct device_attribute *attr, char *buf)
774 {
775 	struct ctlr_info *h;
776 	struct scsi_device *sdev;
777 	struct hpsa_scsi_dev_t *hdev;
778 	unsigned long flags;
779 	int offload_enabled;
780 
781 	sdev = to_scsi_device(dev);
782 	h = sdev_to_hba(sdev);
783 	spin_lock_irqsave(&h->lock, flags);
784 	hdev = sdev->hostdata;
785 	if (!hdev) {
786 		spin_unlock_irqrestore(&h->lock, flags);
787 		return -ENODEV;
788 	}
789 	offload_enabled = hdev->offload_enabled;
790 	spin_unlock_irqrestore(&h->lock, flags);
791 
792 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
793 		return snprintf(buf, 20, "%d\n", offload_enabled);
794 	else
795 		return snprintf(buf, 40, "%s\n",
796 				"Not applicable for a controller");
797 }
798 
799 #define MAX_PATHS 8
800 static ssize_t path_info_show(struct device *dev,
801 	     struct device_attribute *attr, char *buf)
802 {
803 	struct ctlr_info *h;
804 	struct scsi_device *sdev;
805 	struct hpsa_scsi_dev_t *hdev;
806 	unsigned long flags;
807 	int i;
808 	int output_len = 0;
809 	u8 box;
810 	u8 bay;
811 	u8 path_map_index = 0;
812 	char *active;
813 	unsigned char phys_connector[2];
814 
815 	sdev = to_scsi_device(dev);
816 	h = sdev_to_hba(sdev);
817 	spin_lock_irqsave(&h->devlock, flags);
818 	hdev = sdev->hostdata;
819 	if (!hdev) {
820 		spin_unlock_irqrestore(&h->devlock, flags);
821 		return -ENODEV;
822 	}
823 
824 	bay = hdev->bay;
825 	for (i = 0; i < MAX_PATHS; i++) {
826 		path_map_index = 1<<i;
827 		if (i == hdev->active_path_index)
828 			active = "Active";
829 		else if (hdev->path_map & path_map_index)
830 			active = "Inactive";
831 		else
832 			continue;
833 
834 		output_len += scnprintf(buf + output_len,
835 				PAGE_SIZE - output_len,
836 				"[%d:%d:%d:%d] %20.20s ",
837 				h->scsi_host->host_no,
838 				hdev->bus, hdev->target, hdev->lun,
839 				scsi_device_type(hdev->devtype));
840 
841 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
842 			output_len += scnprintf(buf + output_len,
843 						PAGE_SIZE - output_len,
844 						"%s\n", active);
845 			continue;
846 		}
847 
848 		box = hdev->box[i];
849 		memcpy(&phys_connector, &hdev->phys_connector[i],
850 			sizeof(phys_connector));
851 		if (phys_connector[0] < '0')
852 			phys_connector[0] = '0';
853 		if (phys_connector[1] < '0')
854 			phys_connector[1] = '0';
855 		output_len += scnprintf(buf + output_len,
856 				PAGE_SIZE - output_len,
857 				"PORT: %.2s ",
858 				phys_connector);
859 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
860 			hdev->expose_device) {
861 			if (box == 0 || box == 0xFF) {
862 				output_len += scnprintf(buf + output_len,
863 					PAGE_SIZE - output_len,
864 					"BAY: %hhu %s\n",
865 					bay, active);
866 			} else {
867 				output_len += scnprintf(buf + output_len,
868 					PAGE_SIZE - output_len,
869 					"BOX: %hhu BAY: %hhu %s\n",
870 					box, bay, active);
871 			}
872 		} else if (box != 0 && box != 0xFF) {
873 			output_len += scnprintf(buf + output_len,
874 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
875 				box, active);
876 		} else
877 			output_len += scnprintf(buf + output_len,
878 				PAGE_SIZE - output_len, "%s\n", active);
879 	}
880 
881 	spin_unlock_irqrestore(&h->devlock, flags);
882 	return output_len;
883 }
884 
885 static ssize_t host_show_ctlr_num(struct device *dev,
886 	struct device_attribute *attr, char *buf)
887 {
888 	struct ctlr_info *h;
889 	struct Scsi_Host *shost = class_to_shost(dev);
890 
891 	h = shost_to_hba(shost);
892 	return snprintf(buf, 20, "%d\n", h->ctlr);
893 }
894 
895 static ssize_t host_show_legacy_board(struct device *dev,
896 	struct device_attribute *attr, char *buf)
897 {
898 	struct ctlr_info *h;
899 	struct Scsi_Host *shost = class_to_shost(dev);
900 
901 	h = shost_to_hba(shost);
902 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
903 }
904 
905 static DEVICE_ATTR_RO(raid_level);
906 static DEVICE_ATTR_RO(lunid);
907 static DEVICE_ATTR_RO(unique_id);
908 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
909 static DEVICE_ATTR_RO(sas_address);
910 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
911 			host_show_hp_ssd_smart_path_enabled, NULL);
912 static DEVICE_ATTR_RO(path_info);
913 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
914 		host_show_hp_ssd_smart_path_status,
915 		host_store_hp_ssd_smart_path_status);
916 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
917 			host_store_raid_offload_debug);
918 static DEVICE_ATTR(firmware_revision, S_IRUGO,
919 	host_show_firmware_revision, NULL);
920 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
921 	host_show_commands_outstanding, NULL);
922 static DEVICE_ATTR(transport_mode, S_IRUGO,
923 	host_show_transport_mode, NULL);
924 static DEVICE_ATTR(resettable, S_IRUGO,
925 	host_show_resettable, NULL);
926 static DEVICE_ATTR(lockup_detected, S_IRUGO,
927 	host_show_lockup_detected, NULL);
928 static DEVICE_ATTR(ctlr_num, S_IRUGO,
929 	host_show_ctlr_num, NULL);
930 static DEVICE_ATTR(legacy_board, S_IRUGO,
931 	host_show_legacy_board, NULL);
932 
933 static struct device_attribute *hpsa_sdev_attrs[] = {
934 	&dev_attr_raid_level,
935 	&dev_attr_lunid,
936 	&dev_attr_unique_id,
937 	&dev_attr_hp_ssd_smart_path_enabled,
938 	&dev_attr_path_info,
939 	&dev_attr_sas_address,
940 	NULL,
941 };
942 
943 static struct device_attribute *hpsa_shost_attrs[] = {
944 	&dev_attr_rescan,
945 	&dev_attr_firmware_revision,
946 	&dev_attr_commands_outstanding,
947 	&dev_attr_transport_mode,
948 	&dev_attr_resettable,
949 	&dev_attr_hp_ssd_smart_path_status,
950 	&dev_attr_raid_offload_debug,
951 	&dev_attr_lockup_detected,
952 	&dev_attr_ctlr_num,
953 	&dev_attr_legacy_board,
954 	NULL,
955 };
956 
957 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
958 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
959 
960 static struct scsi_host_template hpsa_driver_template = {
961 	.module			= THIS_MODULE,
962 	.name			= HPSA,
963 	.proc_name		= HPSA,
964 	.queuecommand		= hpsa_scsi_queue_command,
965 	.scan_start		= hpsa_scan_start,
966 	.scan_finished		= hpsa_scan_finished,
967 	.change_queue_depth	= hpsa_change_queue_depth,
968 	.this_id		= -1,
969 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 	.ioctl			= hpsa_ioctl,
971 	.slave_alloc		= hpsa_slave_alloc,
972 	.slave_configure	= hpsa_slave_configure,
973 	.slave_destroy		= hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 	.compat_ioctl		= hpsa_compat_ioctl,
976 #endif
977 	.sdev_attrs = hpsa_sdev_attrs,
978 	.shost_attrs = hpsa_shost_attrs,
979 	.max_sectors = 2048,
980 	.no_write_same = 1,
981 };
982 
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 	u32 a;
986 	struct reply_queue_buffer *rq = &h->reply_queue[q];
987 
988 	if (h->transMethod & CFGTBL_Trans_io_accel1)
989 		return h->access.command_completed(h, q);
990 
991 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 		return h->access.command_completed(h, q);
993 
994 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 		a = rq->head[rq->current_entry];
996 		rq->current_entry++;
997 		atomic_dec(&h->commands_outstanding);
998 	} else {
999 		a = FIFO_EMPTY;
1000 	}
1001 	/* Check for wraparound */
1002 	if (rq->current_entry == h->max_commands) {
1003 		rq->current_entry = 0;
1004 		rq->wraparound ^= 1;
1005 	}
1006 	return a;
1007 }
1008 
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034 
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 					int reply_queue)
1043 {
1044 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 		if (unlikely(!h->msix_vectors))
1047 			return;
1048 		c->Header.ReplyQueue = reply_queue;
1049 	}
1050 }
1051 
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053 						struct CommandList *c,
1054 						int reply_queue)
1055 {
1056 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057 
1058 	/*
1059 	 * Tell the controller to post the reply to the queue for this
1060 	 * processor.  This seems to give the best I/O throughput.
1061 	 */
1062 	cp->ReplyQueue = reply_queue;
1063 	/*
1064 	 * Set the bits in the address sent down to include:
1065 	 *  - performant mode bit (bit 0)
1066 	 *  - pull count (bits 1-3)
1067 	 *  - command type (bits 4-6)
1068 	 */
1069 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070 					IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072 
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074 						struct CommandList *c,
1075 						int reply_queue)
1076 {
1077 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078 		&h->ioaccel2_cmd_pool[c->cmdindex];
1079 
1080 	/* Tell the controller to post the reply to the queue for this
1081 	 * processor.  This seems to give the best I/O throughput.
1082 	 */
1083 	cp->reply_queue = reply_queue;
1084 	/* Set the bits in the address sent down to include:
1085 	 *  - performant mode bit not used in ioaccel mode 2
1086 	 *  - pull count (bits 0-3)
1087 	 *  - command type isn't needed for ioaccel2
1088 	 */
1089 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091 
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093 						struct CommandList *c,
1094 						int reply_queue)
1095 {
1096 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097 
1098 	/*
1099 	 * Tell the controller to post the reply to the queue for this
1100 	 * processor.  This seems to give the best I/O throughput.
1101 	 */
1102 	cp->reply_queue = reply_queue;
1103 	/*
1104 	 * Set the bits in the address sent down to include:
1105 	 *  - performant mode bit not used in ioaccel mode 2
1106 	 *  - pull count (bits 0-3)
1107 	 *  - command type isn't needed for ioaccel2
1108 	 */
1109 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111 
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116 
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126 		struct CommandList *c)
1127 {
1128 	if (!is_firmware_flash_cmd(c->Request.CDB))
1129 		return;
1130 	atomic_inc(&h->firmware_flash_in_progress);
1131 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133 
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135 		struct CommandList *c)
1136 {
1137 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1138 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1139 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141 
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143 	struct CommandList *c, int reply_queue)
1144 {
1145 	dial_down_lockup_detection_during_fw_flash(h, c);
1146 	atomic_inc(&h->commands_outstanding);
1147 
1148 	reply_queue = h->reply_map[raw_smp_processor_id()];
1149 	switch (c->cmd_type) {
1150 	case CMD_IOACCEL1:
1151 		set_ioaccel1_performant_mode(h, c, reply_queue);
1152 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153 		break;
1154 	case CMD_IOACCEL2:
1155 		set_ioaccel2_performant_mode(h, c, reply_queue);
1156 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157 		break;
1158 	case IOACCEL2_TMF:
1159 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 		break;
1162 	default:
1163 		set_performant_mode(h, c, reply_queue);
1164 		h->access.submit_command(h, c);
1165 	}
1166 }
1167 
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170 	if (unlikely(hpsa_is_pending_event(c)))
1171 		return finish_cmd(c);
1172 
1173 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175 
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180 
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183 	if (!h->hba_inquiry_data)
1184 		return 0;
1185 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186 		return 1;
1187 	return 0;
1188 }
1189 
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193 	/* finds an unused bus, target, lun for a new physical device
1194 	 * assumes h->devlock is held
1195 	 */
1196 	int i, found = 0;
1197 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198 
1199 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200 
1201 	for (i = 0; i < h->ndevices; i++) {
1202 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203 			__set_bit(h->dev[i]->target, lun_taken);
1204 	}
1205 
1206 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207 	if (i < HPSA_MAX_DEVICES) {
1208 		/* *bus = 1; */
1209 		*target = i;
1210 		*lun = 0;
1211 		found = 1;
1212 	}
1213 	return !found;
1214 }
1215 
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217 	struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220 	char label[LABEL_SIZE];
1221 
1222 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223 		return;
1224 
1225 	switch (dev->devtype) {
1226 	case TYPE_RAID:
1227 		snprintf(label, LABEL_SIZE, "controller");
1228 		break;
1229 	case TYPE_ENCLOSURE:
1230 		snprintf(label, LABEL_SIZE, "enclosure");
1231 		break;
1232 	case TYPE_DISK:
1233 	case TYPE_ZBC:
1234 		if (dev->external)
1235 			snprintf(label, LABEL_SIZE, "external");
1236 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237 			snprintf(label, LABEL_SIZE, "%s",
1238 				raid_label[PHYSICAL_DRIVE]);
1239 		else
1240 			snprintf(label, LABEL_SIZE, "RAID-%s",
1241 				dev->raid_level > RAID_UNKNOWN ? "?" :
1242 				raid_label[dev->raid_level]);
1243 		break;
1244 	case TYPE_ROM:
1245 		snprintf(label, LABEL_SIZE, "rom");
1246 		break;
1247 	case TYPE_TAPE:
1248 		snprintf(label, LABEL_SIZE, "tape");
1249 		break;
1250 	case TYPE_MEDIUM_CHANGER:
1251 		snprintf(label, LABEL_SIZE, "changer");
1252 		break;
1253 	default:
1254 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1255 		break;
1256 	}
1257 
1258 	dev_printk(level, &h->pdev->dev,
1259 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261 			description,
1262 			scsi_device_type(dev->devtype),
1263 			dev->vendor,
1264 			dev->model,
1265 			label,
1266 			dev->offload_config ? '+' : '-',
1267 			dev->offload_to_be_enabled ? '+' : '-',
1268 			dev->expose_device);
1269 }
1270 
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273 		struct hpsa_scsi_dev_t *device,
1274 		struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276 	/* assumes h->devlock is held */
1277 	int n = h->ndevices;
1278 	int i;
1279 	unsigned char addr1[8], addr2[8];
1280 	struct hpsa_scsi_dev_t *sd;
1281 
1282 	if (n >= HPSA_MAX_DEVICES) {
1283 		dev_err(&h->pdev->dev, "too many devices, some will be "
1284 			"inaccessible.\n");
1285 		return -1;
1286 	}
1287 
1288 	/* physical devices do not have lun or target assigned until now. */
1289 	if (device->lun != -1)
1290 		/* Logical device, lun is already assigned. */
1291 		goto lun_assigned;
1292 
1293 	/* If this device a non-zero lun of a multi-lun device
1294 	 * byte 4 of the 8-byte LUN addr will contain the logical
1295 	 * unit no, zero otherwise.
1296 	 */
1297 	if (device->scsi3addr[4] == 0) {
1298 		/* This is not a non-zero lun of a multi-lun device */
1299 		if (hpsa_find_target_lun(h, device->scsi3addr,
1300 			device->bus, &device->target, &device->lun) != 0)
1301 			return -1;
1302 		goto lun_assigned;
1303 	}
1304 
1305 	/* This is a non-zero lun of a multi-lun device.
1306 	 * Search through our list and find the device which
1307 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 	 * Assign the same bus and target for this new LUN.
1309 	 * Use the logical unit number from the firmware.
1310 	 */
1311 	memcpy(addr1, device->scsi3addr, 8);
1312 	addr1[4] = 0;
1313 	addr1[5] = 0;
1314 	for (i = 0; i < n; i++) {
1315 		sd = h->dev[i];
1316 		memcpy(addr2, sd->scsi3addr, 8);
1317 		addr2[4] = 0;
1318 		addr2[5] = 0;
1319 		/* differ only in byte 4 and 5? */
1320 		if (memcmp(addr1, addr2, 8) == 0) {
1321 			device->bus = sd->bus;
1322 			device->target = sd->target;
1323 			device->lun = device->scsi3addr[4];
1324 			break;
1325 		}
1326 	}
1327 	if (device->lun == -1) {
1328 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329 			" suspect firmware bug or unsupported hardware "
1330 			"configuration.\n");
1331 		return -1;
1332 	}
1333 
1334 lun_assigned:
1335 
1336 	h->dev[n] = device;
1337 	h->ndevices++;
1338 	added[*nadded] = device;
1339 	(*nadded)++;
1340 	hpsa_show_dev_msg(KERN_INFO, h, device,
1341 		device->expose_device ? "added" : "masked");
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351 	int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353 	/* assumes h->devlock is held */
1354 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355 
1356 	/* Raid level changed. */
1357 	h->dev[entry]->raid_level = new_entry->raid_level;
1358 
1359 	/*
1360 	 * ioacccel_handle may have changed for a dual domain disk
1361 	 */
1362 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363 
1364 	/* Raid offload parameters changed.  Careful about the ordering. */
1365 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366 		/*
1367 		 * if drive is newly offload_enabled, we want to copy the
1368 		 * raid map data first.  If previously offload_enabled and
1369 		 * offload_config were set, raid map data had better be
1370 		 * the same as it was before. If raid map data has changed
1371 		 * then it had better be the case that
1372 		 * h->dev[entry]->offload_enabled is currently 0.
1373 		 */
1374 		h->dev[entry]->raid_map = new_entry->raid_map;
1375 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 	}
1377 	if (new_entry->offload_to_be_enabled) {
1378 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 	}
1381 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 	h->dev[entry]->offload_config = new_entry->offload_config;
1383 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385 
1386 	/*
1387 	 * We can turn off ioaccel offload now, but need to delay turning
1388 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 	 * can't do that until all the devices are updated.
1390 	 */
1391 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392 
1393 	/*
1394 	 * turn ioaccel off immediately if told to do so.
1395 	 */
1396 	if (!new_entry->offload_to_be_enabled)
1397 		h->dev[entry]->offload_enabled = 0;
1398 
1399 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401 
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404 	int entry, struct hpsa_scsi_dev_t *new_entry,
1405 	struct hpsa_scsi_dev_t *added[], int *nadded,
1406 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408 	/* assumes h->devlock is held */
1409 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410 	removed[*nremoved] = h->dev[entry];
1411 	(*nremoved)++;
1412 
1413 	/*
1414 	 * New physical devices won't have target/lun assigned yet
1415 	 * so we need to preserve the values in the slot we are replacing.
1416 	 */
1417 	if (new_entry->target == -1) {
1418 		new_entry->target = h->dev[entry]->target;
1419 		new_entry->lun = h->dev[entry]->lun;
1420 	}
1421 
1422 	h->dev[entry] = new_entry;
1423 	added[*nadded] = new_entry;
1424 	(*nadded)++;
1425 
1426 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428 
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 	/* assumes h->devlock is held */
1434 	int i;
1435 	struct hpsa_scsi_dev_t *sd;
1436 
1437 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438 
1439 	sd = h->dev[entry];
1440 	removed[*nremoved] = h->dev[entry];
1441 	(*nremoved)++;
1442 
1443 	for (i = entry; i < h->ndevices-1; i++)
1444 		h->dev[i] = h->dev[i+1];
1445 	h->ndevices--;
1446 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448 
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 	(a)[7] == (b)[7] && \
1451 	(a)[6] == (b)[6] && \
1452 	(a)[5] == (b)[5] && \
1453 	(a)[4] == (b)[4] && \
1454 	(a)[3] == (b)[3] && \
1455 	(a)[2] == (b)[2] && \
1456 	(a)[1] == (b)[1] && \
1457 	(a)[0] == (b)[0])
1458 
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 	struct hpsa_scsi_dev_t *added)
1461 {
1462 	/* called when scsi_add_device fails in order to re-adjust
1463 	 * h->dev[] to match the mid layer's view.
1464 	 */
1465 	unsigned long flags;
1466 	int i, j;
1467 
1468 	spin_lock_irqsave(&h->lock, flags);
1469 	for (i = 0; i < h->ndevices; i++) {
1470 		if (h->dev[i] == added) {
1471 			for (j = i; j < h->ndevices-1; j++)
1472 				h->dev[j] = h->dev[j+1];
1473 			h->ndevices--;
1474 			break;
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&h->lock, flags);
1478 	kfree(added);
1479 }
1480 
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* we compare everything except lun and target as these
1485 	 * are not yet assigned.  Compare parts likely
1486 	 * to differ first
1487 	 */
1488 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 		sizeof(dev1->scsi3addr)) != 0)
1490 		return 0;
1491 	if (memcmp(dev1->device_id, dev2->device_id,
1492 		sizeof(dev1->device_id)) != 0)
1493 		return 0;
1494 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 		return 0;
1498 	if (dev1->devtype != dev2->devtype)
1499 		return 0;
1500 	if (dev1->bus != dev2->bus)
1501 		return 0;
1502 	return 1;
1503 }
1504 
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 	struct hpsa_scsi_dev_t *dev2)
1507 {
1508 	/* Device attributes that can change, but don't mean
1509 	 * that the device is a different device, nor that the OS
1510 	 * needs to be told anything about the change.
1511 	 */
1512 	if (dev1->raid_level != dev2->raid_level)
1513 		return 1;
1514 	if (dev1->offload_config != dev2->offload_config)
1515 		return 1;
1516 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517 		return 1;
1518 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 		if (dev1->queue_depth != dev2->queue_depth)
1520 			return 1;
1521 	/*
1522 	 * This can happen for dual domain devices. An active
1523 	 * path change causes the ioaccel handle to change
1524 	 *
1525 	 * for example note the handle differences between p0 and p1
1526 	 * Device                    WWN               ,WWN hash,Handle
1527 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529 	 */
1530 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531 		return 1;
1532 	return 0;
1533 }
1534 
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545 	int *index)
1546 {
1547 	int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552 	if (needle == NULL)
1553 		return DEVICE_NOT_FOUND;
1554 
1555 	for (i = 0; i < haystack_size; i++) {
1556 		if (haystack[i] == NULL) /* previously removed. */
1557 			continue;
1558 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559 			*index = i;
1560 			if (device_is_the_same(needle, haystack[i])) {
1561 				if (device_updated(needle, haystack[i]))
1562 					return DEVICE_UPDATED;
1563 				return DEVICE_SAME;
1564 			} else {
1565 				/* Keep offline devices offline */
1566 				if (needle->volume_offline)
1567 					return DEVICE_NOT_FOUND;
1568 				return DEVICE_CHANGED;
1569 			}
1570 		}
1571 	}
1572 	*index = -1;
1573 	return DEVICE_NOT_FOUND;
1574 }
1575 
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577 					unsigned char scsi3addr[])
1578 {
1579 	struct offline_device_entry *device;
1580 	unsigned long flags;
1581 
1582 	/* Check to see if device is already on the list */
1583 	spin_lock_irqsave(&h->offline_device_lock, flags);
1584 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585 		if (memcmp(device->scsi3addr, scsi3addr,
1586 			sizeof(device->scsi3addr)) == 0) {
1587 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 			return;
1589 		}
1590 	}
1591 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592 
1593 	/* Device is not on the list, add it. */
1594 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1595 	if (!device)
1596 		return;
1597 
1598 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599 	spin_lock_irqsave(&h->offline_device_lock, flags);
1600 	list_add_tail(&device->offline_list, &h->offline_device_list);
1601 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603 
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606 	struct hpsa_scsi_dev_t *sd)
1607 {
1608 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609 		dev_info(&h->pdev->dev,
1610 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 			h->scsi_host->host_no,
1612 			sd->bus, sd->target, sd->lun);
1613 	switch (sd->volume_offline) {
1614 	case HPSA_LV_OK:
1615 		break;
1616 	case HPSA_LV_UNDERGOING_ERASE:
1617 		dev_info(&h->pdev->dev,
1618 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 			h->scsi_host->host_no,
1620 			sd->bus, sd->target, sd->lun);
1621 		break;
1622 	case HPSA_LV_NOT_AVAILABLE:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_UNDERGOING_RPI:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_PENDING_RPI:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_ENCRYPTED_NO_KEY:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_PENDING_ENCRYPTION:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	}
1683 }
1684 
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1691 				struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693 	struct raid_map_data *map = &logical_drive->raid_map;
1694 	struct raid_map_disk_data *dd = &map->data[0];
1695 	int i, j;
1696 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697 				le16_to_cpu(map->metadata_disks_per_row);
1698 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699 				le16_to_cpu(map->layout_map_count) *
1700 				total_disks_per_row;
1701 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702 				total_disks_per_row;
1703 	int qdepth;
1704 
1705 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707 
1708 	logical_drive->nphysical_disks = nraid_map_entries;
1709 
1710 	qdepth = 0;
1711 	for (i = 0; i < nraid_map_entries; i++) {
1712 		logical_drive->phys_disk[i] = NULL;
1713 		if (!logical_drive->offload_config)
1714 			continue;
1715 		for (j = 0; j < ndevices; j++) {
1716 			if (dev[j] == NULL)
1717 				continue;
1718 			if (dev[j]->devtype != TYPE_DISK &&
1719 			    dev[j]->devtype != TYPE_ZBC)
1720 				continue;
1721 			if (is_logical_device(dev[j]))
1722 				continue;
1723 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724 				continue;
1725 
1726 			logical_drive->phys_disk[i] = dev[j];
1727 			if (i < nphys_disk)
1728 				qdepth = min(h->nr_cmds, qdepth +
1729 				    logical_drive->phys_disk[i]->queue_depth);
1730 			break;
1731 		}
1732 
1733 		/*
1734 		 * This can happen if a physical drive is removed and
1735 		 * the logical drive is degraded.  In that case, the RAID
1736 		 * map data will refer to a physical disk which isn't actually
1737 		 * present.  And in that case offload_enabled should already
1738 		 * be 0, but we'll turn it off here just in case
1739 		 */
1740 		if (!logical_drive->phys_disk[i]) {
1741 			dev_warn(&h->pdev->dev,
1742 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743 				__func__,
1744 				h->scsi_host->host_no, logical_drive->bus,
1745 				logical_drive->target, logical_drive->lun);
1746 			logical_drive->offload_enabled = 0;
1747 			logical_drive->offload_to_be_enabled = 0;
1748 			logical_drive->queue_depth = 8;
1749 		}
1750 	}
1751 	if (nraid_map_entries)
1752 		/*
1753 		 * This is correct for reads, too high for full stripe writes,
1754 		 * way too high for partial stripe writes
1755 		 */
1756 		logical_drive->queue_depth = qdepth;
1757 	else {
1758 		if (logical_drive->external)
1759 			logical_drive->queue_depth = EXTERNAL_QD;
1760 		else
1761 			logical_drive->queue_depth = h->nr_cmds;
1762 	}
1763 }
1764 
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768 	int i;
1769 
1770 	for (i = 0; i < ndevices; i++) {
1771 		if (dev[i] == NULL)
1772 			continue;
1773 		if (dev[i]->devtype != TYPE_DISK &&
1774 		    dev[i]->devtype != TYPE_ZBC)
1775 			continue;
1776 		if (!is_logical_device(dev[i]))
1777 			continue;
1778 
1779 		/*
1780 		 * If offload is currently enabled, the RAID map and
1781 		 * phys_disk[] assignment *better* not be changing
1782 		 * because we would be changing ioaccel phsy_disk[] pointers
1783 		 * on a ioaccel volume processing I/O requests.
1784 		 *
1785 		 * If an ioaccel volume status changed, initially because it was
1786 		 * re-configured and thus underwent a transformation, or
1787 		 * a drive failed, we would have received a state change
1788 		 * request and ioaccel should have been turned off. When the
1789 		 * transformation completes, we get another state change
1790 		 * request to turn ioaccel back on. In this case, we need
1791 		 * to update the ioaccel information.
1792 		 *
1793 		 * Thus: If it is not currently enabled, but will be after
1794 		 * the scan completes, make sure the ioaccel pointers
1795 		 * are up to date.
1796 		 */
1797 
1798 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800 	}
1801 }
1802 
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805 	int rc = 0;
1806 
1807 	if (!h->scsi_host)
1808 		return 1;
1809 
1810 	if (is_logical_device(device)) /* RAID */
1811 		rc = scsi_add_device(h->scsi_host, device->bus,
1812 					device->target, device->lun);
1813 	else /* HBA */
1814 		rc = hpsa_add_sas_device(h->sas_host, device);
1815 
1816 	return rc;
1817 }
1818 
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 						struct hpsa_scsi_dev_t *dev)
1821 {
1822 	int i;
1823 	int count = 0;
1824 
1825 	for (i = 0; i < h->nr_cmds; i++) {
1826 		struct CommandList *c = h->cmd_pool + i;
1827 		int refcount = atomic_inc_return(&c->refcount);
1828 
1829 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 				dev->scsi3addr)) {
1831 			unsigned long flags;
1832 
1833 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1834 			if (!hpsa_is_cmd_idle(c))
1835 				++count;
1836 			spin_unlock_irqrestore(&h->lock, flags);
1837 		}
1838 
1839 		cmd_free(h, c);
1840 	}
1841 
1842 	return count;
1843 }
1844 
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846 						struct hpsa_scsi_dev_t *device)
1847 {
1848 	int cmds = 0;
1849 	int waits = 0;
1850 
1851 	while (1) {
1852 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 		if (cmds == 0)
1854 			break;
1855 		if (++waits > 20)
1856 			break;
1857 		msleep(1000);
1858 	}
1859 
1860 	if (waits > 20)
1861 		dev_warn(&h->pdev->dev,
1862 			"%s: removing device with %d outstanding commands!\n",
1863 			__func__, cmds);
1864 }
1865 
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867 			struct hpsa_scsi_dev_t *device)
1868 {
1869 	struct scsi_device *sdev = NULL;
1870 
1871 	if (!h->scsi_host)
1872 		return;
1873 
1874 	/*
1875 	 * Allow for commands to drain
1876 	 */
1877 	device->removed = 1;
1878 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879 
1880 	if (is_logical_device(device)) { /* RAID */
1881 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882 						device->target, device->lun);
1883 		if (sdev) {
1884 			scsi_remove_device(sdev);
1885 			scsi_device_put(sdev);
1886 		} else {
1887 			/*
1888 			 * We don't expect to get here.  Future commands
1889 			 * to this device will get a selection timeout as
1890 			 * if the device were gone.
1891 			 */
1892 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1893 					"didn't find device for removal.");
1894 		}
1895 	} else { /* HBA */
1896 
1897 		hpsa_remove_sas_device(device);
1898 	}
1899 }
1900 
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902 	struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904 	/* sd contains scsi3 addresses and devtypes, and inquiry
1905 	 * data.  This function takes what's in sd to be the current
1906 	 * reality and updates h->dev[] to reflect that reality.
1907 	 */
1908 	int i, entry, device_change, changes = 0;
1909 	struct hpsa_scsi_dev_t *csd;
1910 	unsigned long flags;
1911 	struct hpsa_scsi_dev_t **added, **removed;
1912 	int nadded, nremoved;
1913 
1914 	/*
1915 	 * A reset can cause a device status to change
1916 	 * re-schedule the scan to see what happened.
1917 	 */
1918 	spin_lock_irqsave(&h->reset_lock, flags);
1919 	if (h->reset_in_progress) {
1920 		h->drv_req_rescan = 1;
1921 		spin_unlock_irqrestore(&h->reset_lock, flags);
1922 		return;
1923 	}
1924 	spin_unlock_irqrestore(&h->reset_lock, flags);
1925 
1926 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928 
1929 	if (!added || !removed) {
1930 		dev_warn(&h->pdev->dev, "out of memory in "
1931 			"adjust_hpsa_scsi_table\n");
1932 		goto free_and_out;
1933 	}
1934 
1935 	spin_lock_irqsave(&h->devlock, flags);
1936 
1937 	/* find any devices in h->dev[] that are not in
1938 	 * sd[] and remove them from h->dev[], and for any
1939 	 * devices which have changed, remove the old device
1940 	 * info and add the new device info.
1941 	 * If minor device attributes change, just update
1942 	 * the existing device structure.
1943 	 */
1944 	i = 0;
1945 	nremoved = 0;
1946 	nadded = 0;
1947 	while (i < h->ndevices) {
1948 		csd = h->dev[i];
1949 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950 		if (device_change == DEVICE_NOT_FOUND) {
1951 			changes++;
1952 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953 			continue; /* remove ^^^, hence i not incremented */
1954 		} else if (device_change == DEVICE_CHANGED) {
1955 			changes++;
1956 			hpsa_scsi_replace_entry(h, i, sd[entry],
1957 				added, &nadded, removed, &nremoved);
1958 			/* Set it to NULL to prevent it from being freed
1959 			 * at the bottom of hpsa_update_scsi_devices()
1960 			 */
1961 			sd[entry] = NULL;
1962 		} else if (device_change == DEVICE_UPDATED) {
1963 			hpsa_scsi_update_entry(h, i, sd[entry]);
1964 		}
1965 		i++;
1966 	}
1967 
1968 	/* Now, make sure every device listed in sd[] is also
1969 	 * listed in h->dev[], adding them if they aren't found
1970 	 */
1971 
1972 	for (i = 0; i < nsds; i++) {
1973 		if (!sd[i]) /* if already added above. */
1974 			continue;
1975 
1976 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 		 * as the SCSI mid-layer does not handle such devices well.
1978 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 		 * at 160Hz, and prevents the system from coming up.
1980 		 */
1981 		if (sd[i]->volume_offline) {
1982 			hpsa_show_volume_status(h, sd[i]);
1983 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984 			continue;
1985 		}
1986 
1987 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988 					h->ndevices, &entry);
1989 		if (device_change == DEVICE_NOT_FOUND) {
1990 			changes++;
1991 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992 				break;
1993 			sd[i] = NULL; /* prevent from being freed later. */
1994 		} else if (device_change == DEVICE_CHANGED) {
1995 			/* should never happen... */
1996 			changes++;
1997 			dev_warn(&h->pdev->dev,
1998 				"device unexpectedly changed.\n");
1999 			/* but if it does happen, we just ignore that device */
2000 		}
2001 	}
2002 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003 
2004 	/*
2005 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 	 * any logical drives that need it enabled.
2007 	 *
2008 	 * The raid map should be current by now.
2009 	 *
2010 	 * We are updating the device list used for I/O requests.
2011 	 */
2012 	for (i = 0; i < h->ndevices; i++) {
2013 		if (h->dev[i] == NULL)
2014 			continue;
2015 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016 	}
2017 
2018 	spin_unlock_irqrestore(&h->devlock, flags);
2019 
2020 	/* Monitor devices which are in one of several NOT READY states to be
2021 	 * brought online later. This must be done without holding h->devlock,
2022 	 * so don't touch h->dev[]
2023 	 */
2024 	for (i = 0; i < nsds; i++) {
2025 		if (!sd[i]) /* if already added above. */
2026 			continue;
2027 		if (sd[i]->volume_offline)
2028 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029 	}
2030 
2031 	/* Don't notify scsi mid layer of any changes the first time through
2032 	 * (or if there are no changes) scsi_scan_host will do it later the
2033 	 * first time through.
2034 	 */
2035 	if (!changes)
2036 		goto free_and_out;
2037 
2038 	/* Notify scsi mid layer of any removed devices */
2039 	for (i = 0; i < nremoved; i++) {
2040 		if (removed[i] == NULL)
2041 			continue;
2042 		if (removed[i]->expose_device)
2043 			hpsa_remove_device(h, removed[i]);
2044 		kfree(removed[i]);
2045 		removed[i] = NULL;
2046 	}
2047 
2048 	/* Notify scsi mid layer of any added devices */
2049 	for (i = 0; i < nadded; i++) {
2050 		int rc = 0;
2051 
2052 		if (added[i] == NULL)
2053 			continue;
2054 		if (!(added[i]->expose_device))
2055 			continue;
2056 		rc = hpsa_add_device(h, added[i]);
2057 		if (!rc)
2058 			continue;
2059 		dev_warn(&h->pdev->dev,
2060 			"addition failed %d, device not added.", rc);
2061 		/* now we have to remove it from h->dev,
2062 		 * since it didn't get added to scsi mid layer
2063 		 */
2064 		fixup_botched_add(h, added[i]);
2065 		h->drv_req_rescan = 1;
2066 	}
2067 
2068 free_and_out:
2069 	kfree(added);
2070 	kfree(removed);
2071 }
2072 
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078 	int bus, int target, int lun)
2079 {
2080 	int i;
2081 	struct hpsa_scsi_dev_t *sd;
2082 
2083 	for (i = 0; i < h->ndevices; i++) {
2084 		sd = h->dev[i];
2085 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086 			return sd;
2087 	}
2088 	return NULL;
2089 }
2090 
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093 	struct hpsa_scsi_dev_t *sd = NULL;
2094 	unsigned long flags;
2095 	struct ctlr_info *h;
2096 
2097 	h = sdev_to_hba(sdev);
2098 	spin_lock_irqsave(&h->devlock, flags);
2099 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100 		struct scsi_target *starget;
2101 		struct sas_rphy *rphy;
2102 
2103 		starget = scsi_target(sdev);
2104 		rphy = target_to_rphy(starget);
2105 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106 		if (sd) {
2107 			sd->target = sdev_id(sdev);
2108 			sd->lun = sdev->lun;
2109 		}
2110 	}
2111 	if (!sd)
2112 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113 					sdev_id(sdev), sdev->lun);
2114 
2115 	if (sd && sd->expose_device) {
2116 		atomic_set(&sd->ioaccel_cmds_out, 0);
2117 		sdev->hostdata = sd;
2118 	} else
2119 		sdev->hostdata = NULL;
2120 	spin_unlock_irqrestore(&h->devlock, flags);
2121 	return 0;
2122 }
2123 
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127 	struct hpsa_scsi_dev_t *sd;
2128 	int queue_depth;
2129 
2130 	sd = sdev->hostdata;
2131 	sdev->no_uld_attach = !sd || !sd->expose_device;
2132 
2133 	if (sd) {
2134 		if (sd->external)
2135 			queue_depth = EXTERNAL_QD;
2136 		else
2137 			queue_depth = sd->queue_depth != 0 ?
2138 					sd->queue_depth : sdev->host->can_queue;
2139 	} else
2140 		queue_depth = sdev->host->can_queue;
2141 
2142 	scsi_change_queue_depth(sdev, queue_depth);
2143 
2144 	return 0;
2145 }
2146 
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149 	/* nothing to do. */
2150 }
2151 
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154 	int i;
2155 
2156 	if (!h->ioaccel2_cmd_sg_list)
2157 		return;
2158 	for (i = 0; i < h->nr_cmds; i++) {
2159 		kfree(h->ioaccel2_cmd_sg_list[i]);
2160 		h->ioaccel2_cmd_sg_list[i] = NULL;
2161 	}
2162 	kfree(h->ioaccel2_cmd_sg_list);
2163 	h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165 
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168 	int i;
2169 
2170 	if (h->chainsize <= 0)
2171 		return 0;
2172 
2173 	h->ioaccel2_cmd_sg_list =
2174 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175 					GFP_KERNEL);
2176 	if (!h->ioaccel2_cmd_sg_list)
2177 		return -ENOMEM;
2178 	for (i = 0; i < h->nr_cmds; i++) {
2179 		h->ioaccel2_cmd_sg_list[i] =
2180 			kmalloc_array(h->maxsgentries,
2181 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182 				      GFP_KERNEL);
2183 		if (!h->ioaccel2_cmd_sg_list[i])
2184 			goto clean;
2185 	}
2186 	return 0;
2187 
2188 clean:
2189 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2190 	return -ENOMEM;
2191 }
2192 
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195 	int i;
2196 
2197 	if (!h->cmd_sg_list)
2198 		return;
2199 	for (i = 0; i < h->nr_cmds; i++) {
2200 		kfree(h->cmd_sg_list[i]);
2201 		h->cmd_sg_list[i] = NULL;
2202 	}
2203 	kfree(h->cmd_sg_list);
2204 	h->cmd_sg_list = NULL;
2205 }
2206 
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209 	int i;
2210 
2211 	if (h->chainsize <= 0)
2212 		return 0;
2213 
2214 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215 				 GFP_KERNEL);
2216 	if (!h->cmd_sg_list)
2217 		return -ENOMEM;
2218 
2219 	for (i = 0; i < h->nr_cmds; i++) {
2220 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221 						  sizeof(*h->cmd_sg_list[i]),
2222 						  GFP_KERNEL);
2223 		if (!h->cmd_sg_list[i])
2224 			goto clean;
2225 
2226 	}
2227 	return 0;
2228 
2229 clean:
2230 	hpsa_free_sg_chain_blocks(h);
2231 	return -ENOMEM;
2232 }
2233 
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235 	struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237 	struct ioaccel2_sg_element *chain_block;
2238 	u64 temp64;
2239 	u32 chain_size;
2240 
2241 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242 	chain_size = le32_to_cpu(cp->sg[0].length);
2243 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244 				DMA_TO_DEVICE);
2245 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246 		/* prevent subsequent unmapping */
2247 		cp->sg->address = 0;
2248 		return -1;
2249 	}
2250 	cp->sg->address = cpu_to_le64(temp64);
2251 	return 0;
2252 }
2253 
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255 	struct io_accel2_cmd *cp)
2256 {
2257 	struct ioaccel2_sg_element *chain_sg;
2258 	u64 temp64;
2259 	u32 chain_size;
2260 
2261 	chain_sg = cp->sg;
2262 	temp64 = le64_to_cpu(chain_sg->address);
2263 	chain_size = le32_to_cpu(cp->sg[0].length);
2264 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2265 }
2266 
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268 	struct CommandList *c)
2269 {
2270 	struct SGDescriptor *chain_sg, *chain_block;
2271 	u64 temp64;
2272 	u32 chain_len;
2273 
2274 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275 	chain_block = h->cmd_sg_list[c->cmdindex];
2276 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277 	chain_len = sizeof(*chain_sg) *
2278 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279 	chain_sg->Len = cpu_to_le32(chain_len);
2280 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281 				DMA_TO_DEVICE);
2282 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283 		/* prevent subsequent unmapping */
2284 		chain_sg->Addr = cpu_to_le64(0);
2285 		return -1;
2286 	}
2287 	chain_sg->Addr = cpu_to_le64(temp64);
2288 	return 0;
2289 }
2290 
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292 	struct CommandList *c)
2293 {
2294 	struct SGDescriptor *chain_sg;
2295 
2296 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297 		return;
2298 
2299 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2302 }
2303 
2304 
2305 /* Decode the various types of errors on ioaccel2 path.
2306  * Return 1 for any error that should generate a RAID path retry.
2307  * Return 0 for errors that don't require a RAID path retry.
2308  */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310 					struct CommandList *c,
2311 					struct scsi_cmnd *cmd,
2312 					struct io_accel2_cmd *c2,
2313 					struct hpsa_scsi_dev_t *dev)
2314 {
2315 	int data_len;
2316 	int retry = 0;
2317 	u32 ioaccel2_resid = 0;
2318 
2319 	switch (c2->error_data.serv_response) {
2320 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321 		switch (c2->error_data.status) {
2322 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323 			break;
2324 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2326 			if (c2->error_data.data_present !=
2327 					IOACCEL2_SENSE_DATA_PRESENT) {
2328 				memset(cmd->sense_buffer, 0,
2329 					SCSI_SENSE_BUFFERSIZE);
2330 				break;
2331 			}
2332 			/* copy the sense data */
2333 			data_len = c2->error_data.sense_data_len;
2334 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2335 				data_len = SCSI_SENSE_BUFFERSIZE;
2336 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2337 				data_len =
2338 					sizeof(c2->error_data.sense_data_buff);
2339 			memcpy(cmd->sense_buffer,
2340 				c2->error_data.sense_data_buff, data_len);
2341 			retry = 1;
2342 			break;
2343 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344 			retry = 1;
2345 			break;
2346 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347 			retry = 1;
2348 			break;
2349 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350 			retry = 1;
2351 			break;
2352 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353 			retry = 1;
2354 			break;
2355 		default:
2356 			retry = 1;
2357 			break;
2358 		}
2359 		break;
2360 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2361 		switch (c2->error_data.status) {
2362 		case IOACCEL2_STATUS_SR_IO_ERROR:
2363 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2364 		case IOACCEL2_STATUS_SR_OVERRUN:
2365 			retry = 1;
2366 			break;
2367 		case IOACCEL2_STATUS_SR_UNDERRUN:
2368 			cmd->result = (DID_OK << 16);		/* host byte */
2369 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2370 			ioaccel2_resid = get_unaligned_le32(
2371 						&c2->error_data.resid_cnt[0]);
2372 			scsi_set_resid(cmd, ioaccel2_resid);
2373 			break;
2374 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377 			/*
2378 			 * Did an HBA disk disappear? We will eventually
2379 			 * get a state change event from the controller but
2380 			 * in the meantime, we need to tell the OS that the
2381 			 * HBA disk is no longer there and stop I/O
2382 			 * from going down. This allows the potential re-insert
2383 			 * of the disk to get the same device node.
2384 			 */
2385 			if (dev->physical_device && dev->expose_device) {
2386 				cmd->result = DID_NO_CONNECT << 16;
2387 				dev->removed = 1;
2388 				h->drv_req_rescan = 1;
2389 				dev_warn(&h->pdev->dev,
2390 					"%s: device is gone!\n", __func__);
2391 			} else
2392 				/*
2393 				 * Retry by sending down the RAID path.
2394 				 * We will get an event from ctlr to
2395 				 * trigger rescan regardless.
2396 				 */
2397 				retry = 1;
2398 			break;
2399 		default:
2400 			retry = 1;
2401 		}
2402 		break;
2403 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404 		break;
2405 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406 		break;
2407 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408 		retry = 1;
2409 		break;
2410 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411 		break;
2412 	default:
2413 		retry = 1;
2414 		break;
2415 	}
2416 
2417 	return retry;	/* retry on raid path? */
2418 }
2419 
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421 		struct CommandList *c)
2422 {
2423 	bool do_wake = false;
2424 
2425 	/*
2426 	 * Reset c->scsi_cmd here so that the reset handler will know
2427 	 * this command has completed.  Then, check to see if the handler is
2428 	 * waiting for this command, and, if so, wake it.
2429 	 */
2430 	c->scsi_cmd = SCSI_CMD_IDLE;
2431 	mb();	/* Declare command idle before checking for pending events. */
2432 	if (c->reset_pending) {
2433 		unsigned long flags;
2434 		struct hpsa_scsi_dev_t *dev;
2435 
2436 		/*
2437 		 * There appears to be a reset pending; lock the lock and
2438 		 * reconfirm.  If so, then decrement the count of outstanding
2439 		 * commands and wake the reset command if this is the last one.
2440 		 */
2441 		spin_lock_irqsave(&h->lock, flags);
2442 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2443 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444 			do_wake = true;
2445 		c->reset_pending = NULL;
2446 		spin_unlock_irqrestore(&h->lock, flags);
2447 	}
2448 
2449 	if (do_wake)
2450 		wake_up_all(&h->event_sync_wait_queue);
2451 }
2452 
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454 				      struct CommandList *c)
2455 {
2456 	hpsa_cmd_resolve_events(h, c);
2457 	cmd_tagged_free(h, c);
2458 }
2459 
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461 		struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463 	hpsa_cmd_resolve_and_free(h, c);
2464 	if (cmd && cmd->scsi_done)
2465 		cmd->scsi_done(cmd);
2466 }
2467 
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473 
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475 		struct CommandList *c, struct scsi_cmnd *cmd,
2476 		struct hpsa_scsi_dev_t *dev)
2477 {
2478 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479 
2480 	/* check for good status */
2481 	if (likely(c2->error_data.serv_response == 0 &&
2482 			c2->error_data.status == 0))
2483 		return hpsa_cmd_free_and_done(h, c, cmd);
2484 
2485 	/*
2486 	 * Any RAID offload error results in retry which will use
2487 	 * the normal I/O path so the controller can handle whatever is
2488 	 * wrong.
2489 	 */
2490 	if (is_logical_device(dev) &&
2491 		c2->error_data.serv_response ==
2492 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2493 		if (c2->error_data.status ==
2494 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495 			dev->offload_enabled = 0;
2496 			dev->offload_to_be_enabled = 0;
2497 		}
2498 
2499 		return hpsa_retry_cmd(h, c);
2500 	}
2501 
2502 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503 		return hpsa_retry_cmd(h, c);
2504 
2505 	return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507 
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510 					struct CommandList *cp)
2511 {
2512 	u8 tmf_status = cp->err_info->ScsiStatus;
2513 
2514 	switch (tmf_status) {
2515 	case CISS_TMF_COMPLETE:
2516 		/*
2517 		 * CISS_TMF_COMPLETE never happens, instead,
2518 		 * ei->CommandStatus == 0 for this case.
2519 		 */
2520 	case CISS_TMF_SUCCESS:
2521 		return 0;
2522 	case CISS_TMF_INVALID_FRAME:
2523 	case CISS_TMF_NOT_SUPPORTED:
2524 	case CISS_TMF_FAILED:
2525 	case CISS_TMF_WRONG_LUN:
2526 	case CISS_TMF_OVERLAPPED_TAG:
2527 		break;
2528 	default:
2529 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530 				tmf_status);
2531 		break;
2532 	}
2533 	return -tmf_status;
2534 }
2535 
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538 	struct scsi_cmnd *cmd;
2539 	struct ctlr_info *h;
2540 	struct ErrorInfo *ei;
2541 	struct hpsa_scsi_dev_t *dev;
2542 	struct io_accel2_cmd *c2;
2543 
2544 	u8 sense_key;
2545 	u8 asc;      /* additional sense code */
2546 	u8 ascq;     /* additional sense code qualifier */
2547 	unsigned long sense_data_size;
2548 
2549 	ei = cp->err_info;
2550 	cmd = cp->scsi_cmd;
2551 	h = cp->h;
2552 
2553 	if (!cmd->device) {
2554 		cmd->result = DID_NO_CONNECT << 16;
2555 		return hpsa_cmd_free_and_done(h, cp, cmd);
2556 	}
2557 
2558 	dev = cmd->device->hostdata;
2559 	if (!dev) {
2560 		cmd->result = DID_NO_CONNECT << 16;
2561 		return hpsa_cmd_free_and_done(h, cp, cmd);
2562 	}
2563 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564 
2565 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566 	if ((cp->cmd_type == CMD_SCSI) &&
2567 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568 		hpsa_unmap_sg_chain_block(h, cp);
2569 
2570 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2571 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573 
2574 	cmd->result = (DID_OK << 16); 		/* host byte */
2575 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2576 
2577 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578 		if (dev->physical_device && dev->expose_device &&
2579 			dev->removed) {
2580 			cmd->result = DID_NO_CONNECT << 16;
2581 			return hpsa_cmd_free_and_done(h, cp, cmd);
2582 		}
2583 		if (likely(cp->phys_disk != NULL))
2584 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585 	}
2586 
2587 	/*
2588 	 * We check for lockup status here as it may be set for
2589 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590 	 * fail_all_oustanding_cmds()
2591 	 */
2592 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593 		/* DID_NO_CONNECT will prevent a retry */
2594 		cmd->result = DID_NO_CONNECT << 16;
2595 		return hpsa_cmd_free_and_done(h, cp, cmd);
2596 	}
2597 
2598 	if ((unlikely(hpsa_is_pending_event(cp))))
2599 		if (cp->reset_pending)
2600 			return hpsa_cmd_free_and_done(h, cp, cmd);
2601 
2602 	if (cp->cmd_type == CMD_IOACCEL2)
2603 		return process_ioaccel2_completion(h, cp, cmd, dev);
2604 
2605 	scsi_set_resid(cmd, ei->ResidualCnt);
2606 	if (ei->CommandStatus == 0)
2607 		return hpsa_cmd_free_and_done(h, cp, cmd);
2608 
2609 	/* For I/O accelerator commands, copy over some fields to the normal
2610 	 * CISS header used below for error handling.
2611 	 */
2612 	if (cp->cmd_type == CMD_IOACCEL1) {
2613 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614 		cp->Header.SGList = scsi_sg_count(cmd);
2615 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618 		cp->Header.tag = c->tag;
2619 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621 
2622 		/* Any RAID offload error results in retry which will use
2623 		 * the normal I/O path so the controller can handle whatever's
2624 		 * wrong.
2625 		 */
2626 		if (is_logical_device(dev)) {
2627 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628 				dev->offload_enabled = 0;
2629 			return hpsa_retry_cmd(h, cp);
2630 		}
2631 	}
2632 
2633 	/* an error has occurred */
2634 	switch (ei->CommandStatus) {
2635 
2636 	case CMD_TARGET_STATUS:
2637 		cmd->result |= ei->ScsiStatus;
2638 		/* copy the sense data */
2639 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641 		else
2642 			sense_data_size = sizeof(ei->SenseInfo);
2643 		if (ei->SenseLen < sense_data_size)
2644 			sense_data_size = ei->SenseLen;
2645 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646 		if (ei->ScsiStatus)
2647 			decode_sense_data(ei->SenseInfo, sense_data_size,
2648 				&sense_key, &asc, &ascq);
2649 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650 			switch (sense_key) {
2651 			case ABORTED_COMMAND:
2652 				cmd->result |= DID_SOFT_ERROR << 16;
2653 				break;
2654 			case UNIT_ATTENTION:
2655 				if (asc == 0x3F && ascq == 0x0E)
2656 					h->drv_req_rescan = 1;
2657 				break;
2658 			case ILLEGAL_REQUEST:
2659 				if (asc == 0x25 && ascq == 0x00) {
2660 					dev->removed = 1;
2661 					cmd->result = DID_NO_CONNECT << 16;
2662 				}
2663 				break;
2664 			}
2665 			break;
2666 		}
2667 		/* Problem was not a check condition
2668 		 * Pass it up to the upper layers...
2669 		 */
2670 		if (ei->ScsiStatus) {
2671 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2672 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2673 				"Returning result: 0x%x\n",
2674 				cp, ei->ScsiStatus,
2675 				sense_key, asc, ascq,
2676 				cmd->result);
2677 		} else {  /* scsi status is zero??? How??? */
2678 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2679 				"Returning no connection.\n", cp),
2680 
2681 			/* Ordinarily, this case should never happen,
2682 			 * but there is a bug in some released firmware
2683 			 * revisions that allows it to happen if, for
2684 			 * example, a 4100 backplane loses power and
2685 			 * the tape drive is in it.  We assume that
2686 			 * it's a fatal error of some kind because we
2687 			 * can't show that it wasn't. We will make it
2688 			 * look like selection timeout since that is
2689 			 * the most common reason for this to occur,
2690 			 * and it's severe enough.
2691 			 */
2692 
2693 			cmd->result = DID_NO_CONNECT << 16;
2694 		}
2695 		break;
2696 
2697 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2698 		break;
2699 	case CMD_DATA_OVERRUN:
2700 		dev_warn(&h->pdev->dev,
2701 			"CDB %16phN data overrun\n", cp->Request.CDB);
2702 		break;
2703 	case CMD_INVALID: {
2704 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2705 		print_cmd(cp); */
2706 		/* We get CMD_INVALID if you address a non-existent device
2707 		 * instead of a selection timeout (no response).  You will
2708 		 * see this if you yank out a drive, then try to access it.
2709 		 * This is kind of a shame because it means that any other
2710 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2711 		 * missing target. */
2712 		cmd->result = DID_NO_CONNECT << 16;
2713 	}
2714 		break;
2715 	case CMD_PROTOCOL_ERR:
2716 		cmd->result = DID_ERROR << 16;
2717 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2718 				cp->Request.CDB);
2719 		break;
2720 	case CMD_HARDWARE_ERR:
2721 		cmd->result = DID_ERROR << 16;
2722 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2723 			cp->Request.CDB);
2724 		break;
2725 	case CMD_CONNECTION_LOST:
2726 		cmd->result = DID_ERROR << 16;
2727 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2728 			cp->Request.CDB);
2729 		break;
2730 	case CMD_ABORTED:
2731 		cmd->result = DID_ABORT << 16;
2732 		break;
2733 	case CMD_ABORT_FAILED:
2734 		cmd->result = DID_ERROR << 16;
2735 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2736 			cp->Request.CDB);
2737 		break;
2738 	case CMD_UNSOLICITED_ABORT:
2739 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2740 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2741 			cp->Request.CDB);
2742 		break;
2743 	case CMD_TIMEOUT:
2744 		cmd->result = DID_TIME_OUT << 16;
2745 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2746 			cp->Request.CDB);
2747 		break;
2748 	case CMD_UNABORTABLE:
2749 		cmd->result = DID_ERROR << 16;
2750 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2751 		break;
2752 	case CMD_TMF_STATUS:
2753 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2754 			cmd->result = DID_ERROR << 16;
2755 		break;
2756 	case CMD_IOACCEL_DISABLED:
2757 		/* This only handles the direct pass-through case since RAID
2758 		 * offload is handled above.  Just attempt a retry.
2759 		 */
2760 		cmd->result = DID_SOFT_ERROR << 16;
2761 		dev_warn(&h->pdev->dev,
2762 				"cp %p had HP SSD Smart Path error\n", cp);
2763 		break;
2764 	default:
2765 		cmd->result = DID_ERROR << 16;
2766 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2767 				cp, ei->CommandStatus);
2768 	}
2769 
2770 	return hpsa_cmd_free_and_done(h, cp, cmd);
2771 }
2772 
2773 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2774 		int sg_used, enum dma_data_direction data_direction)
2775 {
2776 	int i;
2777 
2778 	for (i = 0; i < sg_used; i++)
2779 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2780 				le32_to_cpu(c->SG[i].Len),
2781 				data_direction);
2782 }
2783 
2784 static int hpsa_map_one(struct pci_dev *pdev,
2785 		struct CommandList *cp,
2786 		unsigned char *buf,
2787 		size_t buflen,
2788 		enum dma_data_direction data_direction)
2789 {
2790 	u64 addr64;
2791 
2792 	if (buflen == 0 || data_direction == DMA_NONE) {
2793 		cp->Header.SGList = 0;
2794 		cp->Header.SGTotal = cpu_to_le16(0);
2795 		return 0;
2796 	}
2797 
2798 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2799 	if (dma_mapping_error(&pdev->dev, addr64)) {
2800 		/* Prevent subsequent unmap of something never mapped */
2801 		cp->Header.SGList = 0;
2802 		cp->Header.SGTotal = cpu_to_le16(0);
2803 		return -1;
2804 	}
2805 	cp->SG[0].Addr = cpu_to_le64(addr64);
2806 	cp->SG[0].Len = cpu_to_le32(buflen);
2807 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2808 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2809 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2810 	return 0;
2811 }
2812 
2813 #define NO_TIMEOUT ((unsigned long) -1)
2814 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2815 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2816 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2817 {
2818 	DECLARE_COMPLETION_ONSTACK(wait);
2819 
2820 	c->waiting = &wait;
2821 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2822 	if (timeout_msecs == NO_TIMEOUT) {
2823 		/* TODO: get rid of this no-timeout thing */
2824 		wait_for_completion_io(&wait);
2825 		return IO_OK;
2826 	}
2827 	if (!wait_for_completion_io_timeout(&wait,
2828 					msecs_to_jiffies(timeout_msecs))) {
2829 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2830 		return -ETIMEDOUT;
2831 	}
2832 	return IO_OK;
2833 }
2834 
2835 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2836 				   int reply_queue, unsigned long timeout_msecs)
2837 {
2838 	if (unlikely(lockup_detected(h))) {
2839 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2840 		return IO_OK;
2841 	}
2842 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2843 }
2844 
2845 static u32 lockup_detected(struct ctlr_info *h)
2846 {
2847 	int cpu;
2848 	u32 rc, *lockup_detected;
2849 
2850 	cpu = get_cpu();
2851 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2852 	rc = *lockup_detected;
2853 	put_cpu();
2854 	return rc;
2855 }
2856 
2857 #define MAX_DRIVER_CMD_RETRIES 25
2858 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2859 		struct CommandList *c, enum dma_data_direction data_direction,
2860 		unsigned long timeout_msecs)
2861 {
2862 	int backoff_time = 10, retry_count = 0;
2863 	int rc;
2864 
2865 	do {
2866 		memset(c->err_info, 0, sizeof(*c->err_info));
2867 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2868 						  timeout_msecs);
2869 		if (rc)
2870 			break;
2871 		retry_count++;
2872 		if (retry_count > 3) {
2873 			msleep(backoff_time);
2874 			if (backoff_time < 1000)
2875 				backoff_time *= 2;
2876 		}
2877 	} while ((check_for_unit_attention(h, c) ||
2878 			check_for_busy(h, c)) &&
2879 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2880 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2881 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2882 		rc = -EIO;
2883 	return rc;
2884 }
2885 
2886 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2887 				struct CommandList *c)
2888 {
2889 	const u8 *cdb = c->Request.CDB;
2890 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2891 
2892 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2893 		 txt, lun, cdb);
2894 }
2895 
2896 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2897 			struct CommandList *cp)
2898 {
2899 	const struct ErrorInfo *ei = cp->err_info;
2900 	struct device *d = &cp->h->pdev->dev;
2901 	u8 sense_key, asc, ascq;
2902 	int sense_len;
2903 
2904 	switch (ei->CommandStatus) {
2905 	case CMD_TARGET_STATUS:
2906 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2907 			sense_len = sizeof(ei->SenseInfo);
2908 		else
2909 			sense_len = ei->SenseLen;
2910 		decode_sense_data(ei->SenseInfo, sense_len,
2911 					&sense_key, &asc, &ascq);
2912 		hpsa_print_cmd(h, "SCSI status", cp);
2913 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2914 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2915 				sense_key, asc, ascq);
2916 		else
2917 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2918 		if (ei->ScsiStatus == 0)
2919 			dev_warn(d, "SCSI status is abnormally zero.  "
2920 			"(probably indicates selection timeout "
2921 			"reported incorrectly due to a known "
2922 			"firmware bug, circa July, 2001.)\n");
2923 		break;
2924 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2925 		break;
2926 	case CMD_DATA_OVERRUN:
2927 		hpsa_print_cmd(h, "overrun condition", cp);
2928 		break;
2929 	case CMD_INVALID: {
2930 		/* controller unfortunately reports SCSI passthru's
2931 		 * to non-existent targets as invalid commands.
2932 		 */
2933 		hpsa_print_cmd(h, "invalid command", cp);
2934 		dev_warn(d, "probably means device no longer present\n");
2935 		}
2936 		break;
2937 	case CMD_PROTOCOL_ERR:
2938 		hpsa_print_cmd(h, "protocol error", cp);
2939 		break;
2940 	case CMD_HARDWARE_ERR:
2941 		hpsa_print_cmd(h, "hardware error", cp);
2942 		break;
2943 	case CMD_CONNECTION_LOST:
2944 		hpsa_print_cmd(h, "connection lost", cp);
2945 		break;
2946 	case CMD_ABORTED:
2947 		hpsa_print_cmd(h, "aborted", cp);
2948 		break;
2949 	case CMD_ABORT_FAILED:
2950 		hpsa_print_cmd(h, "abort failed", cp);
2951 		break;
2952 	case CMD_UNSOLICITED_ABORT:
2953 		hpsa_print_cmd(h, "unsolicited abort", cp);
2954 		break;
2955 	case CMD_TIMEOUT:
2956 		hpsa_print_cmd(h, "timed out", cp);
2957 		break;
2958 	case CMD_UNABORTABLE:
2959 		hpsa_print_cmd(h, "unabortable", cp);
2960 		break;
2961 	case CMD_CTLR_LOCKUP:
2962 		hpsa_print_cmd(h, "controller lockup detected", cp);
2963 		break;
2964 	default:
2965 		hpsa_print_cmd(h, "unknown status", cp);
2966 		dev_warn(d, "Unknown command status %x\n",
2967 				ei->CommandStatus);
2968 	}
2969 }
2970 
2971 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2972 					u8 page, u8 *buf, size_t bufsize)
2973 {
2974 	int rc = IO_OK;
2975 	struct CommandList *c;
2976 	struct ErrorInfo *ei;
2977 
2978 	c = cmd_alloc(h);
2979 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2980 			page, scsi3addr, TYPE_CMD)) {
2981 		rc = -1;
2982 		goto out;
2983 	}
2984 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2985 			NO_TIMEOUT);
2986 	if (rc)
2987 		goto out;
2988 	ei = c->err_info;
2989 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2990 		hpsa_scsi_interpret_error(h, c);
2991 		rc = -1;
2992 	}
2993 out:
2994 	cmd_free(h, c);
2995 	return rc;
2996 }
2997 
2998 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2999 						u8 *scsi3addr)
3000 {
3001 	u8 *buf;
3002 	u64 sa = 0;
3003 	int rc = 0;
3004 
3005 	buf = kzalloc(1024, GFP_KERNEL);
3006 	if (!buf)
3007 		return 0;
3008 
3009 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3010 					buf, 1024);
3011 
3012 	if (rc)
3013 		goto out;
3014 
3015 	sa = get_unaligned_be64(buf+12);
3016 
3017 out:
3018 	kfree(buf);
3019 	return sa;
3020 }
3021 
3022 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3023 			u16 page, unsigned char *buf,
3024 			unsigned char bufsize)
3025 {
3026 	int rc = IO_OK;
3027 	struct CommandList *c;
3028 	struct ErrorInfo *ei;
3029 
3030 	c = cmd_alloc(h);
3031 
3032 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3033 			page, scsi3addr, TYPE_CMD)) {
3034 		rc = -1;
3035 		goto out;
3036 	}
3037 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3038 			NO_TIMEOUT);
3039 	if (rc)
3040 		goto out;
3041 	ei = c->err_info;
3042 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3043 		hpsa_scsi_interpret_error(h, c);
3044 		rc = -1;
3045 	}
3046 out:
3047 	cmd_free(h, c);
3048 	return rc;
3049 }
3050 
3051 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3052 	u8 reset_type, int reply_queue)
3053 {
3054 	int rc = IO_OK;
3055 	struct CommandList *c;
3056 	struct ErrorInfo *ei;
3057 
3058 	c = cmd_alloc(h);
3059 
3060 
3061 	/* fill_cmd can't fail here, no data buffer to map. */
3062 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3063 			scsi3addr, TYPE_MSG);
3064 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3065 	if (rc) {
3066 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3067 		goto out;
3068 	}
3069 	/* no unmap needed here because no data xfer. */
3070 
3071 	ei = c->err_info;
3072 	if (ei->CommandStatus != 0) {
3073 		hpsa_scsi_interpret_error(h, c);
3074 		rc = -1;
3075 	}
3076 out:
3077 	cmd_free(h, c);
3078 	return rc;
3079 }
3080 
3081 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3082 			       struct hpsa_scsi_dev_t *dev,
3083 			       unsigned char *scsi3addr)
3084 {
3085 	int i;
3086 	bool match = false;
3087 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3088 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3089 
3090 	if (hpsa_is_cmd_idle(c))
3091 		return false;
3092 
3093 	switch (c->cmd_type) {
3094 	case CMD_SCSI:
3095 	case CMD_IOCTL_PEND:
3096 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3097 				sizeof(c->Header.LUN.LunAddrBytes));
3098 		break;
3099 
3100 	case CMD_IOACCEL1:
3101 	case CMD_IOACCEL2:
3102 		if (c->phys_disk == dev) {
3103 			/* HBA mode match */
3104 			match = true;
3105 		} else {
3106 			/* Possible RAID mode -- check each phys dev. */
3107 			/* FIXME:  Do we need to take out a lock here?  If
3108 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3109 			 * instead. */
3110 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111 				/* FIXME: an alternate test might be
3112 				 *
3113 				 * match = dev->phys_disk[i]->ioaccel_handle
3114 				 *              == c2->scsi_nexus;      */
3115 				match = dev->phys_disk[i] == c->phys_disk;
3116 			}
3117 		}
3118 		break;
3119 
3120 	case IOACCEL2_TMF:
3121 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3122 			match = dev->phys_disk[i]->ioaccel_handle ==
3123 					le32_to_cpu(ac->it_nexus);
3124 		}
3125 		break;
3126 
3127 	case 0:		/* The command is in the middle of being initialized. */
3128 		match = false;
3129 		break;
3130 
3131 	default:
3132 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3133 			c->cmd_type);
3134 		BUG();
3135 	}
3136 
3137 	return match;
3138 }
3139 
3140 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3141 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3142 {
3143 	int i;
3144 	int rc = 0;
3145 
3146 	/* We can really only handle one reset at a time */
3147 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3148 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3149 		return -EINTR;
3150 	}
3151 
3152 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3153 
3154 	for (i = 0; i < h->nr_cmds; i++) {
3155 		struct CommandList *c = h->cmd_pool + i;
3156 		int refcount = atomic_inc_return(&c->refcount);
3157 
3158 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3159 			unsigned long flags;
3160 
3161 			/*
3162 			 * Mark the target command as having a reset pending,
3163 			 * then lock a lock so that the command cannot complete
3164 			 * while we're considering it.  If the command is not
3165 			 * idle then count it; otherwise revoke the event.
3166 			 */
3167 			c->reset_pending = dev;
3168 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3169 			if (!hpsa_is_cmd_idle(c))
3170 				atomic_inc(&dev->reset_cmds_out);
3171 			else
3172 				c->reset_pending = NULL;
3173 			spin_unlock_irqrestore(&h->lock, flags);
3174 		}
3175 
3176 		cmd_free(h, c);
3177 	}
3178 
3179 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3180 	if (!rc)
3181 		wait_event(h->event_sync_wait_queue,
3182 			atomic_read(&dev->reset_cmds_out) == 0 ||
3183 			lockup_detected(h));
3184 
3185 	if (unlikely(lockup_detected(h))) {
3186 		dev_warn(&h->pdev->dev,
3187 			 "Controller lockup detected during reset wait\n");
3188 		rc = -ENODEV;
3189 	}
3190 
3191 	if (unlikely(rc))
3192 		atomic_set(&dev->reset_cmds_out, 0);
3193 	else
3194 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3195 
3196 	mutex_unlock(&h->reset_mutex);
3197 	return rc;
3198 }
3199 
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201 	unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203 	int rc;
3204 	unsigned char *buf;
3205 
3206 	*raid_level = RAID_UNKNOWN;
3207 	buf = kzalloc(64, GFP_KERNEL);
3208 	if (!buf)
3209 		return;
3210 
3211 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3212 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3213 		goto exit;
3214 
3215 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217 
3218 	if (rc == 0)
3219 		*raid_level = buf[8];
3220 	if (*raid_level > RAID_UNKNOWN)
3221 		*raid_level = RAID_UNKNOWN;
3222 exit:
3223 	kfree(buf);
3224 	return;
3225 }
3226 
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230 				struct raid_map_data *map_buff)
3231 {
3232 	struct raid_map_disk_data *dd = &map_buff->data[0];
3233 	int map, row, col;
3234 	u16 map_cnt, row_cnt, disks_per_row;
3235 
3236 	if (rc != 0)
3237 		return;
3238 
3239 	/* Show details only if debugging has been activated. */
3240 	if (h->raid_offload_debug < 2)
3241 		return;
3242 
3243 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3244 				le32_to_cpu(map_buff->structure_size));
3245 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246 			le32_to_cpu(map_buff->volume_blk_size));
3247 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248 			le64_to_cpu(map_buff->volume_blk_cnt));
3249 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250 			map_buff->phys_blk_shift);
3251 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252 			map_buff->parity_rotation_shift);
3253 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3254 			le16_to_cpu(map_buff->strip_size));
3255 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256 			le64_to_cpu(map_buff->disk_starting_blk));
3257 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258 			le64_to_cpu(map_buff->disk_blk_cnt));
3259 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260 			le16_to_cpu(map_buff->data_disks_per_row));
3261 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262 			le16_to_cpu(map_buff->metadata_disks_per_row));
3263 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264 			le16_to_cpu(map_buff->row_cnt));
3265 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266 			le16_to_cpu(map_buff->layout_map_count));
3267 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268 			le16_to_cpu(map_buff->flags));
3269 	dev_info(&h->pdev->dev, "encryption = %s\n",
3270 			le16_to_cpu(map_buff->flags) &
3271 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3273 			le16_to_cpu(map_buff->dekindex));
3274 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275 	for (map = 0; map < map_cnt; map++) {
3276 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3277 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3278 		for (row = 0; row < row_cnt; row++) {
3279 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280 			disks_per_row =
3281 				le16_to_cpu(map_buff->data_disks_per_row);
3282 			for (col = 0; col < disks_per_row; col++, dd++)
3283 				dev_info(&h->pdev->dev,
3284 					"    D%02u: h=0x%04x xor=%u,%u\n",
3285 					col, dd->ioaccel_handle,
3286 					dd->xor_mult[0], dd->xor_mult[1]);
3287 			disks_per_row =
3288 				le16_to_cpu(map_buff->metadata_disks_per_row);
3289 			for (col = 0; col < disks_per_row; col++, dd++)
3290 				dev_info(&h->pdev->dev,
3291 					"    M%02u: h=0x%04x xor=%u,%u\n",
3292 					col, dd->ioaccel_handle,
3293 					dd->xor_mult[0], dd->xor_mult[1]);
3294 		}
3295 	}
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299 			__attribute__((unused)) int rc,
3300 			__attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304 
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308 	int rc = 0;
3309 	struct CommandList *c;
3310 	struct ErrorInfo *ei;
3311 
3312 	c = cmd_alloc(h);
3313 
3314 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315 			sizeof(this_device->raid_map), 0,
3316 			scsi3addr, TYPE_CMD)) {
3317 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318 		cmd_free(h, c);
3319 		return -1;
3320 	}
3321 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322 			NO_TIMEOUT);
3323 	if (rc)
3324 		goto out;
3325 	ei = c->err_info;
3326 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327 		hpsa_scsi_interpret_error(h, c);
3328 		rc = -1;
3329 		goto out;
3330 	}
3331 	cmd_free(h, c);
3332 
3333 	/* @todo in the future, dynamically allocate RAID map memory */
3334 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3335 				sizeof(this_device->raid_map)) {
3336 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337 		rc = -1;
3338 	}
3339 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340 	return rc;
3341 out:
3342 	cmd_free(h, c);
3343 	return rc;
3344 }
3345 
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347 		unsigned char scsi3addr[], u16 bmic_device_index,
3348 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350 	int rc = IO_OK;
3351 	struct CommandList *c;
3352 	struct ErrorInfo *ei;
3353 
3354 	c = cmd_alloc(h);
3355 
3356 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357 		0, RAID_CTLR_LUNID, TYPE_CMD);
3358 	if (rc)
3359 		goto out;
3360 
3361 	c->Request.CDB[2] = bmic_device_index & 0xff;
3362 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363 
3364 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365 			NO_TIMEOUT);
3366 	if (rc)
3367 		goto out;
3368 	ei = c->err_info;
3369 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370 		hpsa_scsi_interpret_error(h, c);
3371 		rc = -1;
3372 	}
3373 out:
3374 	cmd_free(h, c);
3375 	return rc;
3376 }
3377 
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379 	struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381 	int rc = IO_OK;
3382 	struct CommandList *c;
3383 	struct ErrorInfo *ei;
3384 
3385 	c = cmd_alloc(h);
3386 
3387 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388 		0, RAID_CTLR_LUNID, TYPE_CMD);
3389 	if (rc)
3390 		goto out;
3391 
3392 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393 			NO_TIMEOUT);
3394 	if (rc)
3395 		goto out;
3396 	ei = c->err_info;
3397 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398 		hpsa_scsi_interpret_error(h, c);
3399 		rc = -1;
3400 	}
3401 out:
3402 	cmd_free(h, c);
3403 	return rc;
3404 }
3405 
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407 		unsigned char scsi3addr[], u16 bmic_device_index,
3408 		struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410 	int rc = IO_OK;
3411 	struct CommandList *c;
3412 	struct ErrorInfo *ei;
3413 
3414 	c = cmd_alloc(h);
3415 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416 		0, RAID_CTLR_LUNID, TYPE_CMD);
3417 	if (rc)
3418 		goto out;
3419 
3420 	c->Request.CDB[2] = bmic_device_index & 0xff;
3421 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422 
3423 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424 						NO_TIMEOUT);
3425 	ei = c->err_info;
3426 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427 		hpsa_scsi_interpret_error(h, c);
3428 		rc = -1;
3429 	}
3430 out:
3431 	cmd_free(h, c);
3432 
3433 	return rc;
3434 }
3435 
3436 /*
3437  * get enclosure information
3438  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440  * Uses id_physical_device to determine the box_index.
3441  */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443 			unsigned char *scsi3addr,
3444 			struct ReportExtendedLUNdata *rlep, int rle_index,
3445 			struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447 	int rc = -1;
3448 	struct CommandList *c = NULL;
3449 	struct ErrorInfo *ei = NULL;
3450 	struct bmic_sense_storage_box_params *bssbp = NULL;
3451 	struct bmic_identify_physical_device *id_phys = NULL;
3452 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3453 	u16 bmic_device_index = 0;
3454 
3455 	encl_dev->eli =
3456 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3457 
3458 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3459 
3460 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3461 		rc = IO_OK;
3462 		goto out;
3463 	}
3464 
3465 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3466 		rc = IO_OK;
3467 		goto out;
3468 	}
3469 
3470 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3471 	if (!bssbp)
3472 		goto out;
3473 
3474 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3475 	if (!id_phys)
3476 		goto out;
3477 
3478 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3479 						id_phys, sizeof(*id_phys));
3480 	if (rc) {
3481 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3482 			__func__, encl_dev->external, bmic_device_index);
3483 		goto out;
3484 	}
3485 
3486 	c = cmd_alloc(h);
3487 
3488 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3489 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3490 
3491 	if (rc)
3492 		goto out;
3493 
3494 	if (id_phys->phys_connector[1] == 'E')
3495 		c->Request.CDB[5] = id_phys->box_index;
3496 	else
3497 		c->Request.CDB[5] = 0;
3498 
3499 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3500 						NO_TIMEOUT);
3501 	if (rc)
3502 		goto out;
3503 
3504 	ei = c->err_info;
3505 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3506 		rc = -1;
3507 		goto out;
3508 	}
3509 
3510 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3511 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3512 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3513 
3514 	rc = IO_OK;
3515 out:
3516 	kfree(bssbp);
3517 	kfree(id_phys);
3518 
3519 	if (c)
3520 		cmd_free(h, c);
3521 
3522 	if (rc != IO_OK)
3523 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3524 			"Error, could not get enclosure information");
3525 }
3526 
3527 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3528 						unsigned char *scsi3addr)
3529 {
3530 	struct ReportExtendedLUNdata *physdev;
3531 	u32 nphysicals;
3532 	u64 sa = 0;
3533 	int i;
3534 
3535 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3536 	if (!physdev)
3537 		return 0;
3538 
3539 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3540 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3541 		kfree(physdev);
3542 		return 0;
3543 	}
3544 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3545 
3546 	for (i = 0; i < nphysicals; i++)
3547 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3548 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3549 			break;
3550 		}
3551 
3552 	kfree(physdev);
3553 
3554 	return sa;
3555 }
3556 
3557 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3558 					struct hpsa_scsi_dev_t *dev)
3559 {
3560 	int rc;
3561 	u64 sa = 0;
3562 
3563 	if (is_hba_lunid(scsi3addr)) {
3564 		struct bmic_sense_subsystem_info *ssi;
3565 
3566 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3567 		if (!ssi)
3568 			return;
3569 
3570 		rc = hpsa_bmic_sense_subsystem_information(h,
3571 					scsi3addr, 0, ssi, sizeof(*ssi));
3572 		if (rc == 0) {
3573 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3574 			h->sas_address = sa;
3575 		}
3576 
3577 		kfree(ssi);
3578 	} else
3579 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3580 
3581 	dev->sas_address = sa;
3582 }
3583 
3584 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3585 	struct ReportExtendedLUNdata *physdev)
3586 {
3587 	u32 nphysicals;
3588 	int i;
3589 
3590 	if (h->discovery_polling)
3591 		return;
3592 
3593 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3594 
3595 	for (i = 0; i < nphysicals; i++) {
3596 		if (physdev->LUN[i].device_type ==
3597 			BMIC_DEVICE_TYPE_CONTROLLER
3598 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3599 			dev_info(&h->pdev->dev,
3600 				"External controller present, activate discovery polling and disable rld caching\n");
3601 			hpsa_disable_rld_caching(h);
3602 			h->discovery_polling = 1;
3603 			break;
3604 		}
3605 	}
3606 }
3607 
3608 /* Get a device id from inquiry page 0x83 */
3609 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3610 	unsigned char scsi3addr[], u8 page)
3611 {
3612 	int rc;
3613 	int i;
3614 	int pages;
3615 	unsigned char *buf, bufsize;
3616 
3617 	buf = kzalloc(256, GFP_KERNEL);
3618 	if (!buf)
3619 		return false;
3620 
3621 	/* Get the size of the page list first */
3622 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3623 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3624 				buf, HPSA_VPD_HEADER_SZ);
3625 	if (rc != 0)
3626 		goto exit_unsupported;
3627 	pages = buf[3];
3628 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3629 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3630 	else
3631 		bufsize = 255;
3632 
3633 	/* Get the whole VPD page list */
3634 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3635 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3636 				buf, bufsize);
3637 	if (rc != 0)
3638 		goto exit_unsupported;
3639 
3640 	pages = buf[3];
3641 	for (i = 1; i <= pages; i++)
3642 		if (buf[3 + i] == page)
3643 			goto exit_supported;
3644 exit_unsupported:
3645 	kfree(buf);
3646 	return false;
3647 exit_supported:
3648 	kfree(buf);
3649 	return true;
3650 }
3651 
3652 /*
3653  * Called during a scan operation.
3654  * Sets ioaccel status on the new device list, not the existing device list
3655  *
3656  * The device list used during I/O will be updated later in
3657  * adjust_hpsa_scsi_table.
3658  */
3659 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3660 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3661 {
3662 	int rc;
3663 	unsigned char *buf;
3664 	u8 ioaccel_status;
3665 
3666 	this_device->offload_config = 0;
3667 	this_device->offload_enabled = 0;
3668 	this_device->offload_to_be_enabled = 0;
3669 
3670 	buf = kzalloc(64, GFP_KERNEL);
3671 	if (!buf)
3672 		return;
3673 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3674 		goto out;
3675 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3676 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3677 	if (rc != 0)
3678 		goto out;
3679 
3680 #define IOACCEL_STATUS_BYTE 4
3681 #define OFFLOAD_CONFIGURED_BIT 0x01
3682 #define OFFLOAD_ENABLED_BIT 0x02
3683 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3684 	this_device->offload_config =
3685 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3686 	if (this_device->offload_config) {
3687 		this_device->offload_to_be_enabled =
3688 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3689 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3690 			this_device->offload_to_be_enabled = 0;
3691 	}
3692 
3693 out:
3694 	kfree(buf);
3695 	return;
3696 }
3697 
3698 /* Get the device id from inquiry page 0x83 */
3699 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3700 	unsigned char *device_id, int index, int buflen)
3701 {
3702 	int rc;
3703 	unsigned char *buf;
3704 
3705 	/* Does controller have VPD for device id? */
3706 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3707 		return 1; /* not supported */
3708 
3709 	buf = kzalloc(64, GFP_KERNEL);
3710 	if (!buf)
3711 		return -ENOMEM;
3712 
3713 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3714 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3715 	if (rc == 0) {
3716 		if (buflen > 16)
3717 			buflen = 16;
3718 		memcpy(device_id, &buf[8], buflen);
3719 	}
3720 
3721 	kfree(buf);
3722 
3723 	return rc; /*0 - got id,  otherwise, didn't */
3724 }
3725 
3726 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3727 		void *buf, int bufsize,
3728 		int extended_response)
3729 {
3730 	int rc = IO_OK;
3731 	struct CommandList *c;
3732 	unsigned char scsi3addr[8];
3733 	struct ErrorInfo *ei;
3734 
3735 	c = cmd_alloc(h);
3736 
3737 	/* address the controller */
3738 	memset(scsi3addr, 0, sizeof(scsi3addr));
3739 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3740 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3741 		rc = -EAGAIN;
3742 		goto out;
3743 	}
3744 	if (extended_response)
3745 		c->Request.CDB[1] = extended_response;
3746 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3747 			NO_TIMEOUT);
3748 	if (rc)
3749 		goto out;
3750 	ei = c->err_info;
3751 	if (ei->CommandStatus != 0 &&
3752 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3753 		hpsa_scsi_interpret_error(h, c);
3754 		rc = -EIO;
3755 	} else {
3756 		struct ReportLUNdata *rld = buf;
3757 
3758 		if (rld->extended_response_flag != extended_response) {
3759 			if (!h->legacy_board) {
3760 				dev_err(&h->pdev->dev,
3761 					"report luns requested format %u, got %u\n",
3762 					extended_response,
3763 					rld->extended_response_flag);
3764 				rc = -EINVAL;
3765 			} else
3766 				rc = -EOPNOTSUPP;
3767 		}
3768 	}
3769 out:
3770 	cmd_free(h, c);
3771 	return rc;
3772 }
3773 
3774 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3775 		struct ReportExtendedLUNdata *buf, int bufsize)
3776 {
3777 	int rc;
3778 	struct ReportLUNdata *lbuf;
3779 
3780 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3781 				      HPSA_REPORT_PHYS_EXTENDED);
3782 	if (!rc || rc != -EOPNOTSUPP)
3783 		return rc;
3784 
3785 	/* REPORT PHYS EXTENDED is not supported */
3786 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3787 	if (!lbuf)
3788 		return -ENOMEM;
3789 
3790 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3791 	if (!rc) {
3792 		int i;
3793 		u32 nphys;
3794 
3795 		/* Copy ReportLUNdata header */
3796 		memcpy(buf, lbuf, 8);
3797 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3798 		for (i = 0; i < nphys; i++)
3799 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3800 	}
3801 	kfree(lbuf);
3802 	return rc;
3803 }
3804 
3805 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3806 		struct ReportLUNdata *buf, int bufsize)
3807 {
3808 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3809 }
3810 
3811 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3812 	int bus, int target, int lun)
3813 {
3814 	device->bus = bus;
3815 	device->target = target;
3816 	device->lun = lun;
3817 }
3818 
3819 /* Use VPD inquiry to get details of volume status */
3820 static int hpsa_get_volume_status(struct ctlr_info *h,
3821 					unsigned char scsi3addr[])
3822 {
3823 	int rc;
3824 	int status;
3825 	int size;
3826 	unsigned char *buf;
3827 
3828 	buf = kzalloc(64, GFP_KERNEL);
3829 	if (!buf)
3830 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3831 
3832 	/* Does controller have VPD for logical volume status? */
3833 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3834 		goto exit_failed;
3835 
3836 	/* Get the size of the VPD return buffer */
3837 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3838 					buf, HPSA_VPD_HEADER_SZ);
3839 	if (rc != 0)
3840 		goto exit_failed;
3841 	size = buf[3];
3842 
3843 	/* Now get the whole VPD buffer */
3844 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3845 					buf, size + HPSA_VPD_HEADER_SZ);
3846 	if (rc != 0)
3847 		goto exit_failed;
3848 	status = buf[4]; /* status byte */
3849 
3850 	kfree(buf);
3851 	return status;
3852 exit_failed:
3853 	kfree(buf);
3854 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3855 }
3856 
3857 /* Determine offline status of a volume.
3858  * Return either:
3859  *  0 (not offline)
3860  *  0xff (offline for unknown reasons)
3861  *  # (integer code indicating one of several NOT READY states
3862  *     describing why a volume is to be kept offline)
3863  */
3864 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3865 					unsigned char scsi3addr[])
3866 {
3867 	struct CommandList *c;
3868 	unsigned char *sense;
3869 	u8 sense_key, asc, ascq;
3870 	int sense_len;
3871 	int rc, ldstat = 0;
3872 	u16 cmd_status;
3873 	u8 scsi_status;
3874 #define ASC_LUN_NOT_READY 0x04
3875 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3876 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3877 
3878 	c = cmd_alloc(h);
3879 
3880 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3881 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3882 					NO_TIMEOUT);
3883 	if (rc) {
3884 		cmd_free(h, c);
3885 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3886 	}
3887 	sense = c->err_info->SenseInfo;
3888 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3889 		sense_len = sizeof(c->err_info->SenseInfo);
3890 	else
3891 		sense_len = c->err_info->SenseLen;
3892 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3893 	cmd_status = c->err_info->CommandStatus;
3894 	scsi_status = c->err_info->ScsiStatus;
3895 	cmd_free(h, c);
3896 
3897 	/* Determine the reason for not ready state */
3898 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3899 
3900 	/* Keep volume offline in certain cases: */
3901 	switch (ldstat) {
3902 	case HPSA_LV_FAILED:
3903 	case HPSA_LV_UNDERGOING_ERASE:
3904 	case HPSA_LV_NOT_AVAILABLE:
3905 	case HPSA_LV_UNDERGOING_RPI:
3906 	case HPSA_LV_PENDING_RPI:
3907 	case HPSA_LV_ENCRYPTED_NO_KEY:
3908 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3909 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3910 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3911 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3912 		return ldstat;
3913 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3914 		/* If VPD status page isn't available,
3915 		 * use ASC/ASCQ to determine state
3916 		 */
3917 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3918 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3919 			return ldstat;
3920 		break;
3921 	default:
3922 		break;
3923 	}
3924 	return HPSA_LV_OK;
3925 }
3926 
3927 static int hpsa_update_device_info(struct ctlr_info *h,
3928 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3929 	unsigned char *is_OBDR_device)
3930 {
3931 
3932 #define OBDR_SIG_OFFSET 43
3933 #define OBDR_TAPE_SIG "$DR-10"
3934 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3935 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3936 
3937 	unsigned char *inq_buff;
3938 	unsigned char *obdr_sig;
3939 	int rc = 0;
3940 
3941 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3942 	if (!inq_buff) {
3943 		rc = -ENOMEM;
3944 		goto bail_out;
3945 	}
3946 
3947 	/* Do an inquiry to the device to see what it is. */
3948 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3949 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3950 		dev_err(&h->pdev->dev,
3951 			"%s: inquiry failed, device will be skipped.\n",
3952 			__func__);
3953 		rc = HPSA_INQUIRY_FAILED;
3954 		goto bail_out;
3955 	}
3956 
3957 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3958 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3959 
3960 	this_device->devtype = (inq_buff[0] & 0x1f);
3961 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3962 	memcpy(this_device->vendor, &inq_buff[8],
3963 		sizeof(this_device->vendor));
3964 	memcpy(this_device->model, &inq_buff[16],
3965 		sizeof(this_device->model));
3966 	this_device->rev = inq_buff[2];
3967 	memset(this_device->device_id, 0,
3968 		sizeof(this_device->device_id));
3969 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3970 		sizeof(this_device->device_id)) < 0) {
3971 		dev_err(&h->pdev->dev,
3972 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3973 			h->ctlr, __func__,
3974 			h->scsi_host->host_no,
3975 			this_device->bus, this_device->target,
3976 			this_device->lun,
3977 			scsi_device_type(this_device->devtype),
3978 			this_device->model);
3979 		rc = HPSA_LV_FAILED;
3980 		goto bail_out;
3981 	}
3982 
3983 	if ((this_device->devtype == TYPE_DISK ||
3984 		this_device->devtype == TYPE_ZBC) &&
3985 		is_logical_dev_addr_mode(scsi3addr)) {
3986 		unsigned char volume_offline;
3987 
3988 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3989 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3990 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3991 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3992 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3993 		    h->legacy_board) {
3994 			/*
3995 			 * Legacy boards might not support volume status
3996 			 */
3997 			dev_info(&h->pdev->dev,
3998 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3999 				 this_device->target, this_device->lun);
4000 			volume_offline = 0;
4001 		}
4002 		this_device->volume_offline = volume_offline;
4003 		if (volume_offline == HPSA_LV_FAILED) {
4004 			rc = HPSA_LV_FAILED;
4005 			dev_err(&h->pdev->dev,
4006 				"%s: LV failed, device will be skipped.\n",
4007 				__func__);
4008 			goto bail_out;
4009 		}
4010 	} else {
4011 		this_device->raid_level = RAID_UNKNOWN;
4012 		this_device->offload_config = 0;
4013 		this_device->offload_enabled = 0;
4014 		this_device->offload_to_be_enabled = 0;
4015 		this_device->hba_ioaccel_enabled = 0;
4016 		this_device->volume_offline = 0;
4017 		this_device->queue_depth = h->nr_cmds;
4018 	}
4019 
4020 	if (this_device->external)
4021 		this_device->queue_depth = EXTERNAL_QD;
4022 
4023 	if (is_OBDR_device) {
4024 		/* See if this is a One-Button-Disaster-Recovery device
4025 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4026 		 */
4027 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4028 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4029 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4030 						OBDR_SIG_LEN) == 0);
4031 	}
4032 	kfree(inq_buff);
4033 	return 0;
4034 
4035 bail_out:
4036 	kfree(inq_buff);
4037 	return rc;
4038 }
4039 
4040 /*
4041  * Helper function to assign bus, target, lun mapping of devices.
4042  * Logical drive target and lun are assigned at this time, but
4043  * physical device lun and target assignment are deferred (assigned
4044  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4045 */
4046 static void figure_bus_target_lun(struct ctlr_info *h,
4047 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4048 {
4049 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4050 
4051 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4052 		/* physical device, target and lun filled in later */
4053 		if (is_hba_lunid(lunaddrbytes)) {
4054 			int bus = HPSA_HBA_BUS;
4055 
4056 			if (!device->rev)
4057 				bus = HPSA_LEGACY_HBA_BUS;
4058 			hpsa_set_bus_target_lun(device,
4059 					bus, 0, lunid & 0x3fff);
4060 		} else
4061 			/* defer target, lun assignment for physical devices */
4062 			hpsa_set_bus_target_lun(device,
4063 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4064 		return;
4065 	}
4066 	/* It's a logical device */
4067 	if (device->external) {
4068 		hpsa_set_bus_target_lun(device,
4069 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4070 			lunid & 0x00ff);
4071 		return;
4072 	}
4073 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4074 				0, lunid & 0x3fff);
4075 }
4076 
4077 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4078 	int i, int nphysicals, int nlocal_logicals)
4079 {
4080 	/* In report logicals, local logicals are listed first,
4081 	* then any externals.
4082 	*/
4083 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4084 
4085 	if (i == raid_ctlr_position)
4086 		return 0;
4087 
4088 	if (i < logicals_start)
4089 		return 0;
4090 
4091 	/* i is in logicals range, but still within local logicals */
4092 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4093 		return 0;
4094 
4095 	return 1; /* it's an external lun */
4096 }
4097 
4098 /*
4099  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4100  * logdev.  The number of luns in physdev and logdev are returned in
4101  * *nphysicals and *nlogicals, respectively.
4102  * Returns 0 on success, -1 otherwise.
4103  */
4104 static int hpsa_gather_lun_info(struct ctlr_info *h,
4105 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4106 	struct ReportLUNdata *logdev, u32 *nlogicals)
4107 {
4108 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4109 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4110 		return -1;
4111 	}
4112 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4113 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4114 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4115 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4116 		*nphysicals = HPSA_MAX_PHYS_LUN;
4117 	}
4118 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4119 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4120 		return -1;
4121 	}
4122 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4123 	/* Reject Logicals in excess of our max capability. */
4124 	if (*nlogicals > HPSA_MAX_LUN) {
4125 		dev_warn(&h->pdev->dev,
4126 			"maximum logical LUNs (%d) exceeded.  "
4127 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4128 			*nlogicals - HPSA_MAX_LUN);
4129 		*nlogicals = HPSA_MAX_LUN;
4130 	}
4131 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4132 		dev_warn(&h->pdev->dev,
4133 			"maximum logical + physical LUNs (%d) exceeded. "
4134 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4135 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4136 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4137 	}
4138 	return 0;
4139 }
4140 
4141 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4142 	int i, int nphysicals, int nlogicals,
4143 	struct ReportExtendedLUNdata *physdev_list,
4144 	struct ReportLUNdata *logdev_list)
4145 {
4146 	/* Helper function, figure out where the LUN ID info is coming from
4147 	 * given index i, lists of physical and logical devices, where in
4148 	 * the list the raid controller is supposed to appear (first or last)
4149 	 */
4150 
4151 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4152 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4153 
4154 	if (i == raid_ctlr_position)
4155 		return RAID_CTLR_LUNID;
4156 
4157 	if (i < logicals_start)
4158 		return &physdev_list->LUN[i -
4159 				(raid_ctlr_position == 0)].lunid[0];
4160 
4161 	if (i < last_device)
4162 		return &logdev_list->LUN[i - nphysicals -
4163 			(raid_ctlr_position == 0)][0];
4164 	BUG();
4165 	return NULL;
4166 }
4167 
4168 /* get physical drive ioaccel handle and queue depth */
4169 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4170 		struct hpsa_scsi_dev_t *dev,
4171 		struct ReportExtendedLUNdata *rlep, int rle_index,
4172 		struct bmic_identify_physical_device *id_phys)
4173 {
4174 	int rc;
4175 	struct ext_report_lun_entry *rle;
4176 
4177 	rle = &rlep->LUN[rle_index];
4178 
4179 	dev->ioaccel_handle = rle->ioaccel_handle;
4180 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4181 		dev->hba_ioaccel_enabled = 1;
4182 	memset(id_phys, 0, sizeof(*id_phys));
4183 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4184 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4185 			sizeof(*id_phys));
4186 	if (!rc)
4187 		/* Reserve space for FW operations */
4188 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4189 #define DRIVE_QUEUE_DEPTH 7
4190 		dev->queue_depth =
4191 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4192 				DRIVE_CMDS_RESERVED_FOR_FW;
4193 	else
4194 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4195 }
4196 
4197 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4198 	struct ReportExtendedLUNdata *rlep, int rle_index,
4199 	struct bmic_identify_physical_device *id_phys)
4200 {
4201 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4202 
4203 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4204 		this_device->hba_ioaccel_enabled = 1;
4205 
4206 	memcpy(&this_device->active_path_index,
4207 		&id_phys->active_path_number,
4208 		sizeof(this_device->active_path_index));
4209 	memcpy(&this_device->path_map,
4210 		&id_phys->redundant_path_present_map,
4211 		sizeof(this_device->path_map));
4212 	memcpy(&this_device->box,
4213 		&id_phys->alternate_paths_phys_box_on_port,
4214 		sizeof(this_device->box));
4215 	memcpy(&this_device->phys_connector,
4216 		&id_phys->alternate_paths_phys_connector,
4217 		sizeof(this_device->phys_connector));
4218 	memcpy(&this_device->bay,
4219 		&id_phys->phys_bay_in_box,
4220 		sizeof(this_device->bay));
4221 }
4222 
4223 /* get number of local logical disks. */
4224 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4225 	struct bmic_identify_controller *id_ctlr,
4226 	u32 *nlocals)
4227 {
4228 	int rc;
4229 
4230 	if (!id_ctlr) {
4231 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4232 			__func__);
4233 		return -ENOMEM;
4234 	}
4235 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4236 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4237 	if (!rc)
4238 		if (id_ctlr->configured_logical_drive_count < 255)
4239 			*nlocals = id_ctlr->configured_logical_drive_count;
4240 		else
4241 			*nlocals = le16_to_cpu(
4242 					id_ctlr->extended_logical_unit_count);
4243 	else
4244 		*nlocals = -1;
4245 	return rc;
4246 }
4247 
4248 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4249 {
4250 	struct bmic_identify_physical_device *id_phys;
4251 	bool is_spare = false;
4252 	int rc;
4253 
4254 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4255 	if (!id_phys)
4256 		return false;
4257 
4258 	rc = hpsa_bmic_id_physical_device(h,
4259 					lunaddrbytes,
4260 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4261 					id_phys, sizeof(*id_phys));
4262 	if (rc == 0)
4263 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4264 
4265 	kfree(id_phys);
4266 	return is_spare;
4267 }
4268 
4269 #define RPL_DEV_FLAG_NON_DISK                           0x1
4270 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4271 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4272 
4273 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4274 
4275 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4276 				struct ext_report_lun_entry *rle)
4277 {
4278 	u8 device_flags;
4279 	u8 device_type;
4280 
4281 	if (!MASKED_DEVICE(lunaddrbytes))
4282 		return false;
4283 
4284 	device_flags = rle->device_flags;
4285 	device_type = rle->device_type;
4286 
4287 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4288 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4289 			return false;
4290 		return true;
4291 	}
4292 
4293 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4294 		return false;
4295 
4296 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4297 		return false;
4298 
4299 	/*
4300 	 * Spares may be spun down, we do not want to
4301 	 * do an Inquiry to a RAID set spare drive as
4302 	 * that would have them spun up, that is a
4303 	 * performance hit because I/O to the RAID device
4304 	 * stops while the spin up occurs which can take
4305 	 * over 50 seconds.
4306 	 */
4307 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4308 		return true;
4309 
4310 	return false;
4311 }
4312 
4313 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4314 {
4315 	/* the idea here is we could get notified
4316 	 * that some devices have changed, so we do a report
4317 	 * physical luns and report logical luns cmd, and adjust
4318 	 * our list of devices accordingly.
4319 	 *
4320 	 * The scsi3addr's of devices won't change so long as the
4321 	 * adapter is not reset.  That means we can rescan and
4322 	 * tell which devices we already know about, vs. new
4323 	 * devices, vs.  disappearing devices.
4324 	 */
4325 	struct ReportExtendedLUNdata *physdev_list = NULL;
4326 	struct ReportLUNdata *logdev_list = NULL;
4327 	struct bmic_identify_physical_device *id_phys = NULL;
4328 	struct bmic_identify_controller *id_ctlr = NULL;
4329 	u32 nphysicals = 0;
4330 	u32 nlogicals = 0;
4331 	u32 nlocal_logicals = 0;
4332 	u32 ndev_allocated = 0;
4333 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4334 	int ncurrent = 0;
4335 	int i, n_ext_target_devs, ndevs_to_allocate;
4336 	int raid_ctlr_position;
4337 	bool physical_device;
4338 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4339 
4340 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4341 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4342 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4343 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4344 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4345 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4346 
4347 	if (!currentsd || !physdev_list || !logdev_list ||
4348 		!tmpdevice || !id_phys || !id_ctlr) {
4349 		dev_err(&h->pdev->dev, "out of memory\n");
4350 		goto out;
4351 	}
4352 	memset(lunzerobits, 0, sizeof(lunzerobits));
4353 
4354 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4355 
4356 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4357 			logdev_list, &nlogicals)) {
4358 		h->drv_req_rescan = 1;
4359 		goto out;
4360 	}
4361 
4362 	/* Set number of local logicals (non PTRAID) */
4363 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4364 		dev_warn(&h->pdev->dev,
4365 			"%s: Can't determine number of local logical devices.\n",
4366 			__func__);
4367 	}
4368 
4369 	/* We might see up to the maximum number of logical and physical disks
4370 	 * plus external target devices, and a device for the local RAID
4371 	 * controller.
4372 	 */
4373 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4374 
4375 	hpsa_ext_ctrl_present(h, physdev_list);
4376 
4377 	/* Allocate the per device structures */
4378 	for (i = 0; i < ndevs_to_allocate; i++) {
4379 		if (i >= HPSA_MAX_DEVICES) {
4380 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4381 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4382 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4383 			break;
4384 		}
4385 
4386 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4387 		if (!currentsd[i]) {
4388 			h->drv_req_rescan = 1;
4389 			goto out;
4390 		}
4391 		ndev_allocated++;
4392 	}
4393 
4394 	if (is_scsi_rev_5(h))
4395 		raid_ctlr_position = 0;
4396 	else
4397 		raid_ctlr_position = nphysicals + nlogicals;
4398 
4399 	/* adjust our table of devices */
4400 	n_ext_target_devs = 0;
4401 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4402 		u8 *lunaddrbytes, is_OBDR = 0;
4403 		int rc = 0;
4404 		int phys_dev_index = i - (raid_ctlr_position == 0);
4405 		bool skip_device = false;
4406 
4407 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4408 
4409 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4410 
4411 		/* Figure out where the LUN ID info is coming from */
4412 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4413 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4414 
4415 		/* Determine if this is a lun from an external target array */
4416 		tmpdevice->external =
4417 			figure_external_status(h, raid_ctlr_position, i,
4418 						nphysicals, nlocal_logicals);
4419 
4420 		/*
4421 		 * Skip over some devices such as a spare.
4422 		 */
4423 		if (!tmpdevice->external && physical_device) {
4424 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4425 					&physdev_list->LUN[phys_dev_index]);
4426 			if (skip_device)
4427 				continue;
4428 		}
4429 
4430 		/* Get device type, vendor, model, device id, raid_map */
4431 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4432 							&is_OBDR);
4433 		if (rc == -ENOMEM) {
4434 			dev_warn(&h->pdev->dev,
4435 				"Out of memory, rescan deferred.\n");
4436 			h->drv_req_rescan = 1;
4437 			goto out;
4438 		}
4439 		if (rc) {
4440 			h->drv_req_rescan = 1;
4441 			continue;
4442 		}
4443 
4444 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4445 		this_device = currentsd[ncurrent];
4446 
4447 		*this_device = *tmpdevice;
4448 		this_device->physical_device = physical_device;
4449 
4450 		/*
4451 		 * Expose all devices except for physical devices that
4452 		 * are masked.
4453 		 */
4454 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4455 			this_device->expose_device = 0;
4456 		else
4457 			this_device->expose_device = 1;
4458 
4459 
4460 		/*
4461 		 * Get the SAS address for physical devices that are exposed.
4462 		 */
4463 		if (this_device->physical_device && this_device->expose_device)
4464 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4465 
4466 		switch (this_device->devtype) {
4467 		case TYPE_ROM:
4468 			/* We don't *really* support actual CD-ROM devices,
4469 			 * just "One Button Disaster Recovery" tape drive
4470 			 * which temporarily pretends to be a CD-ROM drive.
4471 			 * So we check that the device is really an OBDR tape
4472 			 * device by checking for "$DR-10" in bytes 43-48 of
4473 			 * the inquiry data.
4474 			 */
4475 			if (is_OBDR)
4476 				ncurrent++;
4477 			break;
4478 		case TYPE_DISK:
4479 		case TYPE_ZBC:
4480 			if (this_device->physical_device) {
4481 				/* The disk is in HBA mode. */
4482 				/* Never use RAID mapper in HBA mode. */
4483 				this_device->offload_enabled = 0;
4484 				hpsa_get_ioaccel_drive_info(h, this_device,
4485 					physdev_list, phys_dev_index, id_phys);
4486 				hpsa_get_path_info(this_device,
4487 					physdev_list, phys_dev_index, id_phys);
4488 			}
4489 			ncurrent++;
4490 			break;
4491 		case TYPE_TAPE:
4492 		case TYPE_MEDIUM_CHANGER:
4493 			ncurrent++;
4494 			break;
4495 		case TYPE_ENCLOSURE:
4496 			if (!this_device->external)
4497 				hpsa_get_enclosure_info(h, lunaddrbytes,
4498 						physdev_list, phys_dev_index,
4499 						this_device);
4500 			ncurrent++;
4501 			break;
4502 		case TYPE_RAID:
4503 			/* Only present the Smartarray HBA as a RAID controller.
4504 			 * If it's a RAID controller other than the HBA itself
4505 			 * (an external RAID controller, MSA500 or similar)
4506 			 * don't present it.
4507 			 */
4508 			if (!is_hba_lunid(lunaddrbytes))
4509 				break;
4510 			ncurrent++;
4511 			break;
4512 		default:
4513 			break;
4514 		}
4515 		if (ncurrent >= HPSA_MAX_DEVICES)
4516 			break;
4517 	}
4518 
4519 	if (h->sas_host == NULL) {
4520 		int rc = 0;
4521 
4522 		rc = hpsa_add_sas_host(h);
4523 		if (rc) {
4524 			dev_warn(&h->pdev->dev,
4525 				"Could not add sas host %d\n", rc);
4526 			goto out;
4527 		}
4528 	}
4529 
4530 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4531 out:
4532 	kfree(tmpdevice);
4533 	for (i = 0; i < ndev_allocated; i++)
4534 		kfree(currentsd[i]);
4535 	kfree(currentsd);
4536 	kfree(physdev_list);
4537 	kfree(logdev_list);
4538 	kfree(id_ctlr);
4539 	kfree(id_phys);
4540 }
4541 
4542 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4543 				   struct scatterlist *sg)
4544 {
4545 	u64 addr64 = (u64) sg_dma_address(sg);
4546 	unsigned int len = sg_dma_len(sg);
4547 
4548 	desc->Addr = cpu_to_le64(addr64);
4549 	desc->Len = cpu_to_le32(len);
4550 	desc->Ext = 0;
4551 }
4552 
4553 /*
4554  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4555  * dma mapping  and fills in the scatter gather entries of the
4556  * hpsa command, cp.
4557  */
4558 static int hpsa_scatter_gather(struct ctlr_info *h,
4559 		struct CommandList *cp,
4560 		struct scsi_cmnd *cmd)
4561 {
4562 	struct scatterlist *sg;
4563 	int use_sg, i, sg_limit, chained, last_sg;
4564 	struct SGDescriptor *curr_sg;
4565 
4566 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4567 
4568 	use_sg = scsi_dma_map(cmd);
4569 	if (use_sg < 0)
4570 		return use_sg;
4571 
4572 	if (!use_sg)
4573 		goto sglist_finished;
4574 
4575 	/*
4576 	 * If the number of entries is greater than the max for a single list,
4577 	 * then we have a chained list; we will set up all but one entry in the
4578 	 * first list (the last entry is saved for link information);
4579 	 * otherwise, we don't have a chained list and we'll set up at each of
4580 	 * the entries in the one list.
4581 	 */
4582 	curr_sg = cp->SG;
4583 	chained = use_sg > h->max_cmd_sg_entries;
4584 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4585 	last_sg = scsi_sg_count(cmd) - 1;
4586 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4587 		hpsa_set_sg_descriptor(curr_sg, sg);
4588 		curr_sg++;
4589 	}
4590 
4591 	if (chained) {
4592 		/*
4593 		 * Continue with the chained list.  Set curr_sg to the chained
4594 		 * list.  Modify the limit to the total count less the entries
4595 		 * we've already set up.  Resume the scan at the list entry
4596 		 * where the previous loop left off.
4597 		 */
4598 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4599 		sg_limit = use_sg - sg_limit;
4600 		for_each_sg(sg, sg, sg_limit, i) {
4601 			hpsa_set_sg_descriptor(curr_sg, sg);
4602 			curr_sg++;
4603 		}
4604 	}
4605 
4606 	/* Back the pointer up to the last entry and mark it as "last". */
4607 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4608 
4609 	if (use_sg + chained > h->maxSG)
4610 		h->maxSG = use_sg + chained;
4611 
4612 	if (chained) {
4613 		cp->Header.SGList = h->max_cmd_sg_entries;
4614 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4615 		if (hpsa_map_sg_chain_block(h, cp)) {
4616 			scsi_dma_unmap(cmd);
4617 			return -1;
4618 		}
4619 		return 0;
4620 	}
4621 
4622 sglist_finished:
4623 
4624 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4625 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4626 	return 0;
4627 }
4628 
4629 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4630 						u8 *cdb, int cdb_len,
4631 						const char *func)
4632 {
4633 	dev_warn(&h->pdev->dev,
4634 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4635 		 func, cdb_len, cdb);
4636 }
4637 
4638 #define IO_ACCEL_INELIGIBLE 1
4639 /* zero-length transfers trigger hardware errors. */
4640 static bool is_zero_length_transfer(u8 *cdb)
4641 {
4642 	u32 block_cnt;
4643 
4644 	/* Block zero-length transfer sizes on certain commands. */
4645 	switch (cdb[0]) {
4646 	case READ_10:
4647 	case WRITE_10:
4648 	case VERIFY:		/* 0x2F */
4649 	case WRITE_VERIFY:	/* 0x2E */
4650 		block_cnt = get_unaligned_be16(&cdb[7]);
4651 		break;
4652 	case READ_12:
4653 	case WRITE_12:
4654 	case VERIFY_12: /* 0xAF */
4655 	case WRITE_VERIFY_12:	/* 0xAE */
4656 		block_cnt = get_unaligned_be32(&cdb[6]);
4657 		break;
4658 	case READ_16:
4659 	case WRITE_16:
4660 	case VERIFY_16:		/* 0x8F */
4661 		block_cnt = get_unaligned_be32(&cdb[10]);
4662 		break;
4663 	default:
4664 		return false;
4665 	}
4666 
4667 	return block_cnt == 0;
4668 }
4669 
4670 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4671 {
4672 	int is_write = 0;
4673 	u32 block;
4674 	u32 block_cnt;
4675 
4676 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4677 	switch (cdb[0]) {
4678 	case WRITE_6:
4679 	case WRITE_12:
4680 		is_write = 1;
4681 		/* fall through */
4682 	case READ_6:
4683 	case READ_12:
4684 		if (*cdb_len == 6) {
4685 			block = (((cdb[1] & 0x1F) << 16) |
4686 				(cdb[2] << 8) |
4687 				cdb[3]);
4688 			block_cnt = cdb[4];
4689 			if (block_cnt == 0)
4690 				block_cnt = 256;
4691 		} else {
4692 			BUG_ON(*cdb_len != 12);
4693 			block = get_unaligned_be32(&cdb[2]);
4694 			block_cnt = get_unaligned_be32(&cdb[6]);
4695 		}
4696 		if (block_cnt > 0xffff)
4697 			return IO_ACCEL_INELIGIBLE;
4698 
4699 		cdb[0] = is_write ? WRITE_10 : READ_10;
4700 		cdb[1] = 0;
4701 		cdb[2] = (u8) (block >> 24);
4702 		cdb[3] = (u8) (block >> 16);
4703 		cdb[4] = (u8) (block >> 8);
4704 		cdb[5] = (u8) (block);
4705 		cdb[6] = 0;
4706 		cdb[7] = (u8) (block_cnt >> 8);
4707 		cdb[8] = (u8) (block_cnt);
4708 		cdb[9] = 0;
4709 		*cdb_len = 10;
4710 		break;
4711 	}
4712 	return 0;
4713 }
4714 
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718 {
4719 	struct scsi_cmnd *cmd = c->scsi_cmd;
4720 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721 	unsigned int len;
4722 	unsigned int total_len = 0;
4723 	struct scatterlist *sg;
4724 	u64 addr64;
4725 	int use_sg, i;
4726 	struct SGDescriptor *curr_sg;
4727 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728 
4729 	/* TODO: implement chaining support */
4730 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4732 		return IO_ACCEL_INELIGIBLE;
4733 	}
4734 
4735 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736 
4737 	if (is_zero_length_transfer(cdb)) {
4738 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4740 		return IO_ACCEL_INELIGIBLE;
4741 	}
4742 
4743 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4745 		return IO_ACCEL_INELIGIBLE;
4746 	}
4747 
4748 	c->cmd_type = CMD_IOACCEL1;
4749 
4750 	/* Adjust the DMA address to point to the accelerated command buffer */
4751 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752 				(c->cmdindex * sizeof(*cp));
4753 	BUG_ON(c->busaddr & 0x0000007F);
4754 
4755 	use_sg = scsi_dma_map(cmd);
4756 	if (use_sg < 0) {
4757 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4758 		return use_sg;
4759 	}
4760 
4761 	if (use_sg) {
4762 		curr_sg = cp->SG;
4763 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4764 			addr64 = (u64) sg_dma_address(sg);
4765 			len  = sg_dma_len(sg);
4766 			total_len += len;
4767 			curr_sg->Addr = cpu_to_le64(addr64);
4768 			curr_sg->Len = cpu_to_le32(len);
4769 			curr_sg->Ext = cpu_to_le32(0);
4770 			curr_sg++;
4771 		}
4772 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773 
4774 		switch (cmd->sc_data_direction) {
4775 		case DMA_TO_DEVICE:
4776 			control |= IOACCEL1_CONTROL_DATA_OUT;
4777 			break;
4778 		case DMA_FROM_DEVICE:
4779 			control |= IOACCEL1_CONTROL_DATA_IN;
4780 			break;
4781 		case DMA_NONE:
4782 			control |= IOACCEL1_CONTROL_NODATAXFER;
4783 			break;
4784 		default:
4785 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786 			cmd->sc_data_direction);
4787 			BUG();
4788 			break;
4789 		}
4790 	} else {
4791 		control |= IOACCEL1_CONTROL_NODATAXFER;
4792 	}
4793 
4794 	c->Header.SGList = use_sg;
4795 	/* Fill out the command structure to submit */
4796 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797 	cp->transfer_len = cpu_to_le32(total_len);
4798 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800 	cp->control = cpu_to_le32(control);
4801 	memcpy(cp->CDB, cdb, cdb_len);
4802 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4803 	/* Tag was already set at init time. */
4804 	enqueue_cmd_and_start_io(h, c);
4805 	return 0;
4806 }
4807 
4808 /*
4809  * Queue a command directly to a device behind the controller using the
4810  * I/O accelerator path.
4811  */
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813 	struct CommandList *c)
4814 {
4815 	struct scsi_cmnd *cmd = c->scsi_cmd;
4816 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817 
4818 	if (!dev)
4819 		return -1;
4820 
4821 	c->phys_disk = dev;
4822 
4823 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4824 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4825 }
4826 
4827 /*
4828  * Set encryption parameters for the ioaccel2 request
4829  */
4830 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4831 	struct CommandList *c, struct io_accel2_cmd *cp)
4832 {
4833 	struct scsi_cmnd *cmd = c->scsi_cmd;
4834 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4835 	struct raid_map_data *map = &dev->raid_map;
4836 	u64 first_block;
4837 
4838 	/* Are we doing encryption on this device */
4839 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4840 		return;
4841 	/* Set the data encryption key index. */
4842 	cp->dekindex = map->dekindex;
4843 
4844 	/* Set the encryption enable flag, encoded into direction field. */
4845 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4846 
4847 	/* Set encryption tweak values based on logical block address
4848 	 * If block size is 512, tweak value is LBA.
4849 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4850 	 */
4851 	switch (cmd->cmnd[0]) {
4852 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4853 	case READ_6:
4854 	case WRITE_6:
4855 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4856 				(cmd->cmnd[2] << 8) |
4857 				cmd->cmnd[3]);
4858 		break;
4859 	case WRITE_10:
4860 	case READ_10:
4861 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4862 	case WRITE_12:
4863 	case READ_12:
4864 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4865 		break;
4866 	case WRITE_16:
4867 	case READ_16:
4868 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4869 		break;
4870 	default:
4871 		dev_err(&h->pdev->dev,
4872 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4873 			__func__, cmd->cmnd[0]);
4874 		BUG();
4875 		break;
4876 	}
4877 
4878 	if (le32_to_cpu(map->volume_blk_size) != 512)
4879 		first_block = first_block *
4880 				le32_to_cpu(map->volume_blk_size)/512;
4881 
4882 	cp->tweak_lower = cpu_to_le32(first_block);
4883 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4884 }
4885 
4886 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4887 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890 	struct scsi_cmnd *cmd = c->scsi_cmd;
4891 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4892 	struct ioaccel2_sg_element *curr_sg;
4893 	int use_sg, i;
4894 	struct scatterlist *sg;
4895 	u64 addr64;
4896 	u32 len;
4897 	u32 total_len = 0;
4898 
4899 	if (!cmd->device)
4900 		return -1;
4901 
4902 	if (!cmd->device->hostdata)
4903 		return -1;
4904 
4905 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4906 
4907 	if (is_zero_length_transfer(cdb)) {
4908 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4909 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4910 		return IO_ACCEL_INELIGIBLE;
4911 	}
4912 
4913 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4914 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4915 		return IO_ACCEL_INELIGIBLE;
4916 	}
4917 
4918 	c->cmd_type = CMD_IOACCEL2;
4919 	/* Adjust the DMA address to point to the accelerated command buffer */
4920 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4921 				(c->cmdindex * sizeof(*cp));
4922 	BUG_ON(c->busaddr & 0x0000007F);
4923 
4924 	memset(cp, 0, sizeof(*cp));
4925 	cp->IU_type = IOACCEL2_IU_TYPE;
4926 
4927 	use_sg = scsi_dma_map(cmd);
4928 	if (use_sg < 0) {
4929 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4930 		return use_sg;
4931 	}
4932 
4933 	if (use_sg) {
4934 		curr_sg = cp->sg;
4935 		if (use_sg > h->ioaccel_maxsg) {
4936 			addr64 = le64_to_cpu(
4937 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4938 			curr_sg->address = cpu_to_le64(addr64);
4939 			curr_sg->length = 0;
4940 			curr_sg->reserved[0] = 0;
4941 			curr_sg->reserved[1] = 0;
4942 			curr_sg->reserved[2] = 0;
4943 			curr_sg->chain_indicator = 0x80;
4944 
4945 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4946 		}
4947 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4948 			addr64 = (u64) sg_dma_address(sg);
4949 			len  = sg_dma_len(sg);
4950 			total_len += len;
4951 			curr_sg->address = cpu_to_le64(addr64);
4952 			curr_sg->length = cpu_to_le32(len);
4953 			curr_sg->reserved[0] = 0;
4954 			curr_sg->reserved[1] = 0;
4955 			curr_sg->reserved[2] = 0;
4956 			curr_sg->chain_indicator = 0;
4957 			curr_sg++;
4958 		}
4959 
4960 		switch (cmd->sc_data_direction) {
4961 		case DMA_TO_DEVICE:
4962 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4963 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4964 			break;
4965 		case DMA_FROM_DEVICE:
4966 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4967 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4968 			break;
4969 		case DMA_NONE:
4970 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4972 			break;
4973 		default:
4974 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4975 				cmd->sc_data_direction);
4976 			BUG();
4977 			break;
4978 		}
4979 	} else {
4980 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4981 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4982 	}
4983 
4984 	/* Set encryption parameters, if necessary */
4985 	set_encrypt_ioaccel2(h, c, cp);
4986 
4987 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4988 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4989 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4990 
4991 	cp->data_len = cpu_to_le32(total_len);
4992 	cp->err_ptr = cpu_to_le64(c->busaddr +
4993 			offsetof(struct io_accel2_cmd, error_data));
4994 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4995 
4996 	/* fill in sg elements */
4997 	if (use_sg > h->ioaccel_maxsg) {
4998 		cp->sg_count = 1;
4999 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5000 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5001 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5002 			scsi_dma_unmap(cmd);
5003 			return -1;
5004 		}
5005 	} else
5006 		cp->sg_count = (u8) use_sg;
5007 
5008 	enqueue_cmd_and_start_io(h, c);
5009 	return 0;
5010 }
5011 
5012 /*
5013  * Queue a command to the correct I/O accelerator path.
5014  */
5015 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5016 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5017 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5018 {
5019 	if (!c->scsi_cmd->device)
5020 		return -1;
5021 
5022 	if (!c->scsi_cmd->device->hostdata)
5023 		return -1;
5024 
5025 	/* Try to honor the device's queue depth */
5026 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5027 					phys_disk->queue_depth) {
5028 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5029 		return IO_ACCEL_INELIGIBLE;
5030 	}
5031 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5032 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5033 						cdb, cdb_len, scsi3addr,
5034 						phys_disk);
5035 	else
5036 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5037 						cdb, cdb_len, scsi3addr,
5038 						phys_disk);
5039 }
5040 
5041 static void raid_map_helper(struct raid_map_data *map,
5042 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5043 {
5044 	if (offload_to_mirror == 0)  {
5045 		/* use physical disk in the first mirrored group. */
5046 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5047 		return;
5048 	}
5049 	do {
5050 		/* determine mirror group that *map_index indicates */
5051 		*current_group = *map_index /
5052 			le16_to_cpu(map->data_disks_per_row);
5053 		if (offload_to_mirror == *current_group)
5054 			continue;
5055 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5056 			/* select map index from next group */
5057 			*map_index += le16_to_cpu(map->data_disks_per_row);
5058 			(*current_group)++;
5059 		} else {
5060 			/* select map index from first group */
5061 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5062 			*current_group = 0;
5063 		}
5064 	} while (offload_to_mirror != *current_group);
5065 }
5066 
5067 /*
5068  * Attempt to perform offload RAID mapping for a logical volume I/O.
5069  */
5070 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5071 	struct CommandList *c)
5072 {
5073 	struct scsi_cmnd *cmd = c->scsi_cmd;
5074 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5075 	struct raid_map_data *map = &dev->raid_map;
5076 	struct raid_map_disk_data *dd = &map->data[0];
5077 	int is_write = 0;
5078 	u32 map_index;
5079 	u64 first_block, last_block;
5080 	u32 block_cnt;
5081 	u32 blocks_per_row;
5082 	u64 first_row, last_row;
5083 	u32 first_row_offset, last_row_offset;
5084 	u32 first_column, last_column;
5085 	u64 r0_first_row, r0_last_row;
5086 	u32 r5or6_blocks_per_row;
5087 	u64 r5or6_first_row, r5or6_last_row;
5088 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5089 	u32 r5or6_first_column, r5or6_last_column;
5090 	u32 total_disks_per_row;
5091 	u32 stripesize;
5092 	u32 first_group, last_group, current_group;
5093 	u32 map_row;
5094 	u32 disk_handle;
5095 	u64 disk_block;
5096 	u32 disk_block_cnt;
5097 	u8 cdb[16];
5098 	u8 cdb_len;
5099 	u16 strip_size;
5100 #if BITS_PER_LONG == 32
5101 	u64 tmpdiv;
5102 #endif
5103 	int offload_to_mirror;
5104 
5105 	if (!dev)
5106 		return -1;
5107 
5108 	/* check for valid opcode, get LBA and block count */
5109 	switch (cmd->cmnd[0]) {
5110 	case WRITE_6:
5111 		is_write = 1;
5112 		/* fall through */
5113 	case READ_6:
5114 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5115 				(cmd->cmnd[2] << 8) |
5116 				cmd->cmnd[3]);
5117 		block_cnt = cmd->cmnd[4];
5118 		if (block_cnt == 0)
5119 			block_cnt = 256;
5120 		break;
5121 	case WRITE_10:
5122 		is_write = 1;
5123 		/* fall through */
5124 	case READ_10:
5125 		first_block =
5126 			(((u64) cmd->cmnd[2]) << 24) |
5127 			(((u64) cmd->cmnd[3]) << 16) |
5128 			(((u64) cmd->cmnd[4]) << 8) |
5129 			cmd->cmnd[5];
5130 		block_cnt =
5131 			(((u32) cmd->cmnd[7]) << 8) |
5132 			cmd->cmnd[8];
5133 		break;
5134 	case WRITE_12:
5135 		is_write = 1;
5136 		/* fall through */
5137 	case READ_12:
5138 		first_block =
5139 			(((u64) cmd->cmnd[2]) << 24) |
5140 			(((u64) cmd->cmnd[3]) << 16) |
5141 			(((u64) cmd->cmnd[4]) << 8) |
5142 			cmd->cmnd[5];
5143 		block_cnt =
5144 			(((u32) cmd->cmnd[6]) << 24) |
5145 			(((u32) cmd->cmnd[7]) << 16) |
5146 			(((u32) cmd->cmnd[8]) << 8) |
5147 		cmd->cmnd[9];
5148 		break;
5149 	case WRITE_16:
5150 		is_write = 1;
5151 		/* fall through */
5152 	case READ_16:
5153 		first_block =
5154 			(((u64) cmd->cmnd[2]) << 56) |
5155 			(((u64) cmd->cmnd[3]) << 48) |
5156 			(((u64) cmd->cmnd[4]) << 40) |
5157 			(((u64) cmd->cmnd[5]) << 32) |
5158 			(((u64) cmd->cmnd[6]) << 24) |
5159 			(((u64) cmd->cmnd[7]) << 16) |
5160 			(((u64) cmd->cmnd[8]) << 8) |
5161 			cmd->cmnd[9];
5162 		block_cnt =
5163 			(((u32) cmd->cmnd[10]) << 24) |
5164 			(((u32) cmd->cmnd[11]) << 16) |
5165 			(((u32) cmd->cmnd[12]) << 8) |
5166 			cmd->cmnd[13];
5167 		break;
5168 	default:
5169 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5170 	}
5171 	last_block = first_block + block_cnt - 1;
5172 
5173 	/* check for write to non-RAID-0 */
5174 	if (is_write && dev->raid_level != 0)
5175 		return IO_ACCEL_INELIGIBLE;
5176 
5177 	/* check for invalid block or wraparound */
5178 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5179 		last_block < first_block)
5180 		return IO_ACCEL_INELIGIBLE;
5181 
5182 	/* calculate stripe information for the request */
5183 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5184 				le16_to_cpu(map->strip_size);
5185 	strip_size = le16_to_cpu(map->strip_size);
5186 #if BITS_PER_LONG == 32
5187 	tmpdiv = first_block;
5188 	(void) do_div(tmpdiv, blocks_per_row);
5189 	first_row = tmpdiv;
5190 	tmpdiv = last_block;
5191 	(void) do_div(tmpdiv, blocks_per_row);
5192 	last_row = tmpdiv;
5193 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5194 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5195 	tmpdiv = first_row_offset;
5196 	(void) do_div(tmpdiv, strip_size);
5197 	first_column = tmpdiv;
5198 	tmpdiv = last_row_offset;
5199 	(void) do_div(tmpdiv, strip_size);
5200 	last_column = tmpdiv;
5201 #else
5202 	first_row = first_block / blocks_per_row;
5203 	last_row = last_block / blocks_per_row;
5204 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5205 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5206 	first_column = first_row_offset / strip_size;
5207 	last_column = last_row_offset / strip_size;
5208 #endif
5209 
5210 	/* if this isn't a single row/column then give to the controller */
5211 	if ((first_row != last_row) || (first_column != last_column))
5212 		return IO_ACCEL_INELIGIBLE;
5213 
5214 	/* proceeding with driver mapping */
5215 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5216 				le16_to_cpu(map->metadata_disks_per_row);
5217 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5218 				le16_to_cpu(map->row_cnt);
5219 	map_index = (map_row * total_disks_per_row) + first_column;
5220 
5221 	switch (dev->raid_level) {
5222 	case HPSA_RAID_0:
5223 		break; /* nothing special to do */
5224 	case HPSA_RAID_1:
5225 		/* Handles load balance across RAID 1 members.
5226 		 * (2-drive R1 and R10 with even # of drives.)
5227 		 * Appropriate for SSDs, not optimal for HDDs
5228 		 */
5229 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5230 		if (dev->offload_to_mirror)
5231 			map_index += le16_to_cpu(map->data_disks_per_row);
5232 		dev->offload_to_mirror = !dev->offload_to_mirror;
5233 		break;
5234 	case HPSA_RAID_ADM:
5235 		/* Handles N-way mirrors  (R1-ADM)
5236 		 * and R10 with # of drives divisible by 3.)
5237 		 */
5238 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5239 
5240 		offload_to_mirror = dev->offload_to_mirror;
5241 		raid_map_helper(map, offload_to_mirror,
5242 				&map_index, &current_group);
5243 		/* set mirror group to use next time */
5244 		offload_to_mirror =
5245 			(offload_to_mirror >=
5246 			le16_to_cpu(map->layout_map_count) - 1)
5247 			? 0 : offload_to_mirror + 1;
5248 		dev->offload_to_mirror = offload_to_mirror;
5249 		/* Avoid direct use of dev->offload_to_mirror within this
5250 		 * function since multiple threads might simultaneously
5251 		 * increment it beyond the range of dev->layout_map_count -1.
5252 		 */
5253 		break;
5254 	case HPSA_RAID_5:
5255 	case HPSA_RAID_6:
5256 		if (le16_to_cpu(map->layout_map_count) <= 1)
5257 			break;
5258 
5259 		/* Verify first and last block are in same RAID group */
5260 		r5or6_blocks_per_row =
5261 			le16_to_cpu(map->strip_size) *
5262 			le16_to_cpu(map->data_disks_per_row);
5263 		BUG_ON(r5or6_blocks_per_row == 0);
5264 		stripesize = r5or6_blocks_per_row *
5265 			le16_to_cpu(map->layout_map_count);
5266 #if BITS_PER_LONG == 32
5267 		tmpdiv = first_block;
5268 		first_group = do_div(tmpdiv, stripesize);
5269 		tmpdiv = first_group;
5270 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5271 		first_group = tmpdiv;
5272 		tmpdiv = last_block;
5273 		last_group = do_div(tmpdiv, stripesize);
5274 		tmpdiv = last_group;
5275 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5276 		last_group = tmpdiv;
5277 #else
5278 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5279 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5280 #endif
5281 		if (first_group != last_group)
5282 			return IO_ACCEL_INELIGIBLE;
5283 
5284 		/* Verify request is in a single row of RAID 5/6 */
5285 #if BITS_PER_LONG == 32
5286 		tmpdiv = first_block;
5287 		(void) do_div(tmpdiv, stripesize);
5288 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5289 		tmpdiv = last_block;
5290 		(void) do_div(tmpdiv, stripesize);
5291 		r5or6_last_row = r0_last_row = tmpdiv;
5292 #else
5293 		first_row = r5or6_first_row = r0_first_row =
5294 						first_block / stripesize;
5295 		r5or6_last_row = r0_last_row = last_block / stripesize;
5296 #endif
5297 		if (r5or6_first_row != r5or6_last_row)
5298 			return IO_ACCEL_INELIGIBLE;
5299 
5300 
5301 		/* Verify request is in a single column */
5302 #if BITS_PER_LONG == 32
5303 		tmpdiv = first_block;
5304 		first_row_offset = do_div(tmpdiv, stripesize);
5305 		tmpdiv = first_row_offset;
5306 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5307 		r5or6_first_row_offset = first_row_offset;
5308 		tmpdiv = last_block;
5309 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5310 		tmpdiv = r5or6_last_row_offset;
5311 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5312 		tmpdiv = r5or6_first_row_offset;
5313 		(void) do_div(tmpdiv, map->strip_size);
5314 		first_column = r5or6_first_column = tmpdiv;
5315 		tmpdiv = r5or6_last_row_offset;
5316 		(void) do_div(tmpdiv, map->strip_size);
5317 		r5or6_last_column = tmpdiv;
5318 #else
5319 		first_row_offset = r5or6_first_row_offset =
5320 			(u32)((first_block % stripesize) %
5321 						r5or6_blocks_per_row);
5322 
5323 		r5or6_last_row_offset =
5324 			(u32)((last_block % stripesize) %
5325 						r5or6_blocks_per_row);
5326 
5327 		first_column = r5or6_first_column =
5328 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5329 		r5or6_last_column =
5330 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5331 #endif
5332 		if (r5or6_first_column != r5or6_last_column)
5333 			return IO_ACCEL_INELIGIBLE;
5334 
5335 		/* Request is eligible */
5336 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5337 			le16_to_cpu(map->row_cnt);
5338 
5339 		map_index = (first_group *
5340 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5341 			(map_row * total_disks_per_row) + first_column;
5342 		break;
5343 	default:
5344 		return IO_ACCEL_INELIGIBLE;
5345 	}
5346 
5347 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5348 		return IO_ACCEL_INELIGIBLE;
5349 
5350 	c->phys_disk = dev->phys_disk[map_index];
5351 	if (!c->phys_disk)
5352 		return IO_ACCEL_INELIGIBLE;
5353 
5354 	disk_handle = dd[map_index].ioaccel_handle;
5355 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5356 			first_row * le16_to_cpu(map->strip_size) +
5357 			(first_row_offset - first_column *
5358 			le16_to_cpu(map->strip_size));
5359 	disk_block_cnt = block_cnt;
5360 
5361 	/* handle differing logical/physical block sizes */
5362 	if (map->phys_blk_shift) {
5363 		disk_block <<= map->phys_blk_shift;
5364 		disk_block_cnt <<= map->phys_blk_shift;
5365 	}
5366 	BUG_ON(disk_block_cnt > 0xffff);
5367 
5368 	/* build the new CDB for the physical disk I/O */
5369 	if (disk_block > 0xffffffff) {
5370 		cdb[0] = is_write ? WRITE_16 : READ_16;
5371 		cdb[1] = 0;
5372 		cdb[2] = (u8) (disk_block >> 56);
5373 		cdb[3] = (u8) (disk_block >> 48);
5374 		cdb[4] = (u8) (disk_block >> 40);
5375 		cdb[5] = (u8) (disk_block >> 32);
5376 		cdb[6] = (u8) (disk_block >> 24);
5377 		cdb[7] = (u8) (disk_block >> 16);
5378 		cdb[8] = (u8) (disk_block >> 8);
5379 		cdb[9] = (u8) (disk_block);
5380 		cdb[10] = (u8) (disk_block_cnt >> 24);
5381 		cdb[11] = (u8) (disk_block_cnt >> 16);
5382 		cdb[12] = (u8) (disk_block_cnt >> 8);
5383 		cdb[13] = (u8) (disk_block_cnt);
5384 		cdb[14] = 0;
5385 		cdb[15] = 0;
5386 		cdb_len = 16;
5387 	} else {
5388 		cdb[0] = is_write ? WRITE_10 : READ_10;
5389 		cdb[1] = 0;
5390 		cdb[2] = (u8) (disk_block >> 24);
5391 		cdb[3] = (u8) (disk_block >> 16);
5392 		cdb[4] = (u8) (disk_block >> 8);
5393 		cdb[5] = (u8) (disk_block);
5394 		cdb[6] = 0;
5395 		cdb[7] = (u8) (disk_block_cnt >> 8);
5396 		cdb[8] = (u8) (disk_block_cnt);
5397 		cdb[9] = 0;
5398 		cdb_len = 10;
5399 	}
5400 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5401 						dev->scsi3addr,
5402 						dev->phys_disk[map_index]);
5403 }
5404 
5405 /*
5406  * Submit commands down the "normal" RAID stack path
5407  * All callers to hpsa_ciss_submit must check lockup_detected
5408  * beforehand, before (opt.) and after calling cmd_alloc
5409  */
5410 static int hpsa_ciss_submit(struct ctlr_info *h,
5411 	struct CommandList *c, struct scsi_cmnd *cmd,
5412 	unsigned char scsi3addr[])
5413 {
5414 	cmd->host_scribble = (unsigned char *) c;
5415 	c->cmd_type = CMD_SCSI;
5416 	c->scsi_cmd = cmd;
5417 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5418 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5419 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5420 
5421 	/* Fill in the request block... */
5422 
5423 	c->Request.Timeout = 0;
5424 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5425 	c->Request.CDBLen = cmd->cmd_len;
5426 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5427 	switch (cmd->sc_data_direction) {
5428 	case DMA_TO_DEVICE:
5429 		c->Request.type_attr_dir =
5430 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5431 		break;
5432 	case DMA_FROM_DEVICE:
5433 		c->Request.type_attr_dir =
5434 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5435 		break;
5436 	case DMA_NONE:
5437 		c->Request.type_attr_dir =
5438 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5439 		break;
5440 	case DMA_BIDIRECTIONAL:
5441 		/* This can happen if a buggy application does a scsi passthru
5442 		 * and sets both inlen and outlen to non-zero. ( see
5443 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5444 		 */
5445 
5446 		c->Request.type_attr_dir =
5447 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5448 		/* This is technically wrong, and hpsa controllers should
5449 		 * reject it with CMD_INVALID, which is the most correct
5450 		 * response, but non-fibre backends appear to let it
5451 		 * slide by, and give the same results as if this field
5452 		 * were set correctly.  Either way is acceptable for
5453 		 * our purposes here.
5454 		 */
5455 
5456 		break;
5457 
5458 	default:
5459 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5460 			cmd->sc_data_direction);
5461 		BUG();
5462 		break;
5463 	}
5464 
5465 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5466 		hpsa_cmd_resolve_and_free(h, c);
5467 		return SCSI_MLQUEUE_HOST_BUSY;
5468 	}
5469 	enqueue_cmd_and_start_io(h, c);
5470 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5471 	return 0;
5472 }
5473 
5474 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5475 				struct CommandList *c)
5476 {
5477 	dma_addr_t cmd_dma_handle, err_dma_handle;
5478 
5479 	/* Zero out all of commandlist except the last field, refcount */
5480 	memset(c, 0, offsetof(struct CommandList, refcount));
5481 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5482 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5483 	c->err_info = h->errinfo_pool + index;
5484 	memset(c->err_info, 0, sizeof(*c->err_info));
5485 	err_dma_handle = h->errinfo_pool_dhandle
5486 	    + index * sizeof(*c->err_info);
5487 	c->cmdindex = index;
5488 	c->busaddr = (u32) cmd_dma_handle;
5489 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5490 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5491 	c->h = h;
5492 	c->scsi_cmd = SCSI_CMD_IDLE;
5493 }
5494 
5495 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5496 {
5497 	int i;
5498 
5499 	for (i = 0; i < h->nr_cmds; i++) {
5500 		struct CommandList *c = h->cmd_pool + i;
5501 
5502 		hpsa_cmd_init(h, i, c);
5503 		atomic_set(&c->refcount, 0);
5504 	}
5505 }
5506 
5507 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5508 				struct CommandList *c)
5509 {
5510 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5511 
5512 	BUG_ON(c->cmdindex != index);
5513 
5514 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5515 	memset(c->err_info, 0, sizeof(*c->err_info));
5516 	c->busaddr = (u32) cmd_dma_handle;
5517 }
5518 
5519 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5520 		struct CommandList *c, struct scsi_cmnd *cmd,
5521 		unsigned char *scsi3addr)
5522 {
5523 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5524 	int rc = IO_ACCEL_INELIGIBLE;
5525 
5526 	if (!dev)
5527 		return SCSI_MLQUEUE_HOST_BUSY;
5528 
5529 	cmd->host_scribble = (unsigned char *) c;
5530 
5531 	if (dev->offload_enabled) {
5532 		hpsa_cmd_init(h, c->cmdindex, c);
5533 		c->cmd_type = CMD_SCSI;
5534 		c->scsi_cmd = cmd;
5535 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5536 		if (rc < 0)     /* scsi_dma_map failed. */
5537 			rc = SCSI_MLQUEUE_HOST_BUSY;
5538 	} else if (dev->hba_ioaccel_enabled) {
5539 		hpsa_cmd_init(h, c->cmdindex, c);
5540 		c->cmd_type = CMD_SCSI;
5541 		c->scsi_cmd = cmd;
5542 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5543 		if (rc < 0)     /* scsi_dma_map failed. */
5544 			rc = SCSI_MLQUEUE_HOST_BUSY;
5545 	}
5546 	return rc;
5547 }
5548 
5549 static void hpsa_command_resubmit_worker(struct work_struct *work)
5550 {
5551 	struct scsi_cmnd *cmd;
5552 	struct hpsa_scsi_dev_t *dev;
5553 	struct CommandList *c = container_of(work, struct CommandList, work);
5554 
5555 	cmd = c->scsi_cmd;
5556 	dev = cmd->device->hostdata;
5557 	if (!dev) {
5558 		cmd->result = DID_NO_CONNECT << 16;
5559 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5560 	}
5561 	if (c->reset_pending)
5562 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5563 	if (c->cmd_type == CMD_IOACCEL2) {
5564 		struct ctlr_info *h = c->h;
5565 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5566 		int rc;
5567 
5568 		if (c2->error_data.serv_response ==
5569 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5570 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5571 			if (rc == 0)
5572 				return;
5573 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5574 				/*
5575 				 * If we get here, it means dma mapping failed.
5576 				 * Try again via scsi mid layer, which will
5577 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5578 				 */
5579 				cmd->result = DID_IMM_RETRY << 16;
5580 				return hpsa_cmd_free_and_done(h, c, cmd);
5581 			}
5582 			/* else, fall thru and resubmit down CISS path */
5583 		}
5584 	}
5585 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5586 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5587 		/*
5588 		 * If we get here, it means dma mapping failed. Try
5589 		 * again via scsi mid layer, which will then get
5590 		 * SCSI_MLQUEUE_HOST_BUSY.
5591 		 *
5592 		 * hpsa_ciss_submit will have already freed c
5593 		 * if it encountered a dma mapping failure.
5594 		 */
5595 		cmd->result = DID_IMM_RETRY << 16;
5596 		cmd->scsi_done(cmd);
5597 	}
5598 }
5599 
5600 /* Running in struct Scsi_Host->host_lock less mode */
5601 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5602 {
5603 	struct ctlr_info *h;
5604 	struct hpsa_scsi_dev_t *dev;
5605 	unsigned char scsi3addr[8];
5606 	struct CommandList *c;
5607 	int rc = 0;
5608 
5609 	/* Get the ptr to our adapter structure out of cmd->host. */
5610 	h = sdev_to_hba(cmd->device);
5611 
5612 	BUG_ON(cmd->request->tag < 0);
5613 
5614 	dev = cmd->device->hostdata;
5615 	if (!dev) {
5616 		cmd->result = DID_NO_CONNECT << 16;
5617 		cmd->scsi_done(cmd);
5618 		return 0;
5619 	}
5620 
5621 	if (dev->removed) {
5622 		cmd->result = DID_NO_CONNECT << 16;
5623 		cmd->scsi_done(cmd);
5624 		return 0;
5625 	}
5626 
5627 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5628 
5629 	if (unlikely(lockup_detected(h))) {
5630 		cmd->result = DID_NO_CONNECT << 16;
5631 		cmd->scsi_done(cmd);
5632 		return 0;
5633 	}
5634 	c = cmd_tagged_alloc(h, cmd);
5635 
5636 	/*
5637 	 * Call alternate submit routine for I/O accelerated commands.
5638 	 * Retries always go down the normal I/O path.
5639 	 */
5640 	if (likely(cmd->retries == 0 &&
5641 			!blk_rq_is_passthrough(cmd->request) &&
5642 			h->acciopath_status)) {
5643 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5644 		if (rc == 0)
5645 			return 0;
5646 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5647 			hpsa_cmd_resolve_and_free(h, c);
5648 			return SCSI_MLQUEUE_HOST_BUSY;
5649 		}
5650 	}
5651 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5652 }
5653 
5654 static void hpsa_scan_complete(struct ctlr_info *h)
5655 {
5656 	unsigned long flags;
5657 
5658 	spin_lock_irqsave(&h->scan_lock, flags);
5659 	h->scan_finished = 1;
5660 	wake_up(&h->scan_wait_queue);
5661 	spin_unlock_irqrestore(&h->scan_lock, flags);
5662 }
5663 
5664 static void hpsa_scan_start(struct Scsi_Host *sh)
5665 {
5666 	struct ctlr_info *h = shost_to_hba(sh);
5667 	unsigned long flags;
5668 
5669 	/*
5670 	 * Don't let rescans be initiated on a controller known to be locked
5671 	 * up.  If the controller locks up *during* a rescan, that thread is
5672 	 * probably hosed, but at least we can prevent new rescan threads from
5673 	 * piling up on a locked up controller.
5674 	 */
5675 	if (unlikely(lockup_detected(h)))
5676 		return hpsa_scan_complete(h);
5677 
5678 	/*
5679 	 * If a scan is already waiting to run, no need to add another
5680 	 */
5681 	spin_lock_irqsave(&h->scan_lock, flags);
5682 	if (h->scan_waiting) {
5683 		spin_unlock_irqrestore(&h->scan_lock, flags);
5684 		return;
5685 	}
5686 
5687 	spin_unlock_irqrestore(&h->scan_lock, flags);
5688 
5689 	/* wait until any scan already in progress is finished. */
5690 	while (1) {
5691 		spin_lock_irqsave(&h->scan_lock, flags);
5692 		if (h->scan_finished)
5693 			break;
5694 		h->scan_waiting = 1;
5695 		spin_unlock_irqrestore(&h->scan_lock, flags);
5696 		wait_event(h->scan_wait_queue, h->scan_finished);
5697 		/* Note: We don't need to worry about a race between this
5698 		 * thread and driver unload because the midlayer will
5699 		 * have incremented the reference count, so unload won't
5700 		 * happen if we're in here.
5701 		 */
5702 	}
5703 	h->scan_finished = 0; /* mark scan as in progress */
5704 	h->scan_waiting = 0;
5705 	spin_unlock_irqrestore(&h->scan_lock, flags);
5706 
5707 	if (unlikely(lockup_detected(h)))
5708 		return hpsa_scan_complete(h);
5709 
5710 	/*
5711 	 * Do the scan after a reset completion
5712 	 */
5713 	spin_lock_irqsave(&h->reset_lock, flags);
5714 	if (h->reset_in_progress) {
5715 		h->drv_req_rescan = 1;
5716 		spin_unlock_irqrestore(&h->reset_lock, flags);
5717 		hpsa_scan_complete(h);
5718 		return;
5719 	}
5720 	spin_unlock_irqrestore(&h->reset_lock, flags);
5721 
5722 	hpsa_update_scsi_devices(h);
5723 
5724 	hpsa_scan_complete(h);
5725 }
5726 
5727 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5728 {
5729 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5730 
5731 	if (!logical_drive)
5732 		return -ENODEV;
5733 
5734 	if (qdepth < 1)
5735 		qdepth = 1;
5736 	else if (qdepth > logical_drive->queue_depth)
5737 		qdepth = logical_drive->queue_depth;
5738 
5739 	return scsi_change_queue_depth(sdev, qdepth);
5740 }
5741 
5742 static int hpsa_scan_finished(struct Scsi_Host *sh,
5743 	unsigned long elapsed_time)
5744 {
5745 	struct ctlr_info *h = shost_to_hba(sh);
5746 	unsigned long flags;
5747 	int finished;
5748 
5749 	spin_lock_irqsave(&h->scan_lock, flags);
5750 	finished = h->scan_finished;
5751 	spin_unlock_irqrestore(&h->scan_lock, flags);
5752 	return finished;
5753 }
5754 
5755 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5756 {
5757 	struct Scsi_Host *sh;
5758 
5759 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5760 	if (sh == NULL) {
5761 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5762 		return -ENOMEM;
5763 	}
5764 
5765 	sh->io_port = 0;
5766 	sh->n_io_port = 0;
5767 	sh->this_id = -1;
5768 	sh->max_channel = 3;
5769 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5770 	sh->max_lun = HPSA_MAX_LUN;
5771 	sh->max_id = HPSA_MAX_LUN;
5772 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5773 	sh->cmd_per_lun = sh->can_queue;
5774 	sh->sg_tablesize = h->maxsgentries;
5775 	sh->transportt = hpsa_sas_transport_template;
5776 	sh->hostdata[0] = (unsigned long) h;
5777 	sh->irq = pci_irq_vector(h->pdev, 0);
5778 	sh->unique_id = sh->irq;
5779 
5780 	h->scsi_host = sh;
5781 	return 0;
5782 }
5783 
5784 static int hpsa_scsi_add_host(struct ctlr_info *h)
5785 {
5786 	int rv;
5787 
5788 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5789 	if (rv) {
5790 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5791 		return rv;
5792 	}
5793 	scsi_scan_host(h->scsi_host);
5794 	return 0;
5795 }
5796 
5797 /*
5798  * The block layer has already gone to the trouble of picking out a unique,
5799  * small-integer tag for this request.  We use an offset from that value as
5800  * an index to select our command block.  (The offset allows us to reserve the
5801  * low-numbered entries for our own uses.)
5802  */
5803 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5804 {
5805 	int idx = scmd->request->tag;
5806 
5807 	if (idx < 0)
5808 		return idx;
5809 
5810 	/* Offset to leave space for internal cmds. */
5811 	return idx += HPSA_NRESERVED_CMDS;
5812 }
5813 
5814 /*
5815  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5816  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5817  */
5818 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5819 				struct CommandList *c, unsigned char lunaddr[],
5820 				int reply_queue)
5821 {
5822 	int rc;
5823 
5824 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5825 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5826 			NULL, 0, 0, lunaddr, TYPE_CMD);
5827 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5828 	if (rc)
5829 		return rc;
5830 	/* no unmap needed here because no data xfer. */
5831 
5832 	/* Check if the unit is already ready. */
5833 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5834 		return 0;
5835 
5836 	/*
5837 	 * The first command sent after reset will receive "unit attention" to
5838 	 * indicate that the LUN has been reset...this is actually what we're
5839 	 * looking for (but, success is good too).
5840 	 */
5841 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5842 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5843 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5844 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5845 		return 0;
5846 
5847 	return 1;
5848 }
5849 
5850 /*
5851  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5852  * returns zero when the unit is ready, and non-zero when giving up.
5853  */
5854 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5855 				struct CommandList *c,
5856 				unsigned char lunaddr[], int reply_queue)
5857 {
5858 	int rc;
5859 	int count = 0;
5860 	int waittime = 1; /* seconds */
5861 
5862 	/* Send test unit ready until device ready, or give up. */
5863 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5864 
5865 		/*
5866 		 * Wait for a bit.  do this first, because if we send
5867 		 * the TUR right away, the reset will just abort it.
5868 		 */
5869 		msleep(1000 * waittime);
5870 
5871 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5872 		if (!rc)
5873 			break;
5874 
5875 		/* Increase wait time with each try, up to a point. */
5876 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5877 			waittime *= 2;
5878 
5879 		dev_warn(&h->pdev->dev,
5880 			 "waiting %d secs for device to become ready.\n",
5881 			 waittime);
5882 	}
5883 
5884 	return rc;
5885 }
5886 
5887 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5888 					   unsigned char lunaddr[],
5889 					   int reply_queue)
5890 {
5891 	int first_queue;
5892 	int last_queue;
5893 	int rq;
5894 	int rc = 0;
5895 	struct CommandList *c;
5896 
5897 	c = cmd_alloc(h);
5898 
5899 	/*
5900 	 * If no specific reply queue was requested, then send the TUR
5901 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5902 	 * the loop exactly once using only the specified queue.
5903 	 */
5904 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5905 		first_queue = 0;
5906 		last_queue = h->nreply_queues - 1;
5907 	} else {
5908 		first_queue = reply_queue;
5909 		last_queue = reply_queue;
5910 	}
5911 
5912 	for (rq = first_queue; rq <= last_queue; rq++) {
5913 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5914 		if (rc)
5915 			break;
5916 	}
5917 
5918 	if (rc)
5919 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5920 	else
5921 		dev_warn(&h->pdev->dev, "device is ready.\n");
5922 
5923 	cmd_free(h, c);
5924 	return rc;
5925 }
5926 
5927 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5928  * complaining.  Doing a host- or bus-reset can't do anything good here.
5929  */
5930 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5931 {
5932 	int rc = SUCCESS;
5933 	struct ctlr_info *h;
5934 	struct hpsa_scsi_dev_t *dev;
5935 	u8 reset_type;
5936 	char msg[48];
5937 	unsigned long flags;
5938 
5939 	/* find the controller to which the command to be aborted was sent */
5940 	h = sdev_to_hba(scsicmd->device);
5941 	if (h == NULL) /* paranoia */
5942 		return FAILED;
5943 
5944 	spin_lock_irqsave(&h->reset_lock, flags);
5945 	h->reset_in_progress = 1;
5946 	spin_unlock_irqrestore(&h->reset_lock, flags);
5947 
5948 	if (lockup_detected(h)) {
5949 		rc = FAILED;
5950 		goto return_reset_status;
5951 	}
5952 
5953 	dev = scsicmd->device->hostdata;
5954 	if (!dev) {
5955 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5956 		rc = FAILED;
5957 		goto return_reset_status;
5958 	}
5959 
5960 	if (dev->devtype == TYPE_ENCLOSURE) {
5961 		rc = SUCCESS;
5962 		goto return_reset_status;
5963 	}
5964 
5965 	/* if controller locked up, we can guarantee command won't complete */
5966 	if (lockup_detected(h)) {
5967 		snprintf(msg, sizeof(msg),
5968 			 "cmd %d RESET FAILED, lockup detected",
5969 			 hpsa_get_cmd_index(scsicmd));
5970 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5971 		rc = FAILED;
5972 		goto return_reset_status;
5973 	}
5974 
5975 	/* this reset request might be the result of a lockup; check */
5976 	if (detect_controller_lockup(h)) {
5977 		snprintf(msg, sizeof(msg),
5978 			 "cmd %d RESET FAILED, new lockup detected",
5979 			 hpsa_get_cmd_index(scsicmd));
5980 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5981 		rc = FAILED;
5982 		goto return_reset_status;
5983 	}
5984 
5985 	/* Do not attempt on controller */
5986 	if (is_hba_lunid(dev->scsi3addr)) {
5987 		rc = SUCCESS;
5988 		goto return_reset_status;
5989 	}
5990 
5991 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5992 		reset_type = HPSA_DEVICE_RESET_MSG;
5993 	else
5994 		reset_type = HPSA_PHYS_TARGET_RESET;
5995 
5996 	sprintf(msg, "resetting %s",
5997 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5998 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5999 
6000 	/* send a reset to the SCSI LUN which the command was sent to */
6001 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
6002 			   DEFAULT_REPLY_QUEUE);
6003 	if (rc == 0)
6004 		rc = SUCCESS;
6005 	else
6006 		rc = FAILED;
6007 
6008 	sprintf(msg, "reset %s %s",
6009 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6010 		rc == SUCCESS ? "completed successfully" : "failed");
6011 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6012 
6013 return_reset_status:
6014 	spin_lock_irqsave(&h->reset_lock, flags);
6015 	h->reset_in_progress = 0;
6016 	spin_unlock_irqrestore(&h->reset_lock, flags);
6017 	return rc;
6018 }
6019 
6020 /*
6021  * For operations with an associated SCSI command, a command block is allocated
6022  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6023  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6024  * the complement, although cmd_free() may be called instead.
6025  */
6026 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6027 					    struct scsi_cmnd *scmd)
6028 {
6029 	int idx = hpsa_get_cmd_index(scmd);
6030 	struct CommandList *c = h->cmd_pool + idx;
6031 
6032 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6033 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6034 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6035 		/* The index value comes from the block layer, so if it's out of
6036 		 * bounds, it's probably not our bug.
6037 		 */
6038 		BUG();
6039 	}
6040 
6041 	atomic_inc(&c->refcount);
6042 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6043 		/*
6044 		 * We expect that the SCSI layer will hand us a unique tag
6045 		 * value.  Thus, there should never be a collision here between
6046 		 * two requests...because if the selected command isn't idle
6047 		 * then someone is going to be very disappointed.
6048 		 */
6049 		dev_err(&h->pdev->dev,
6050 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6051 			idx);
6052 		if (c->scsi_cmd != NULL)
6053 			scsi_print_command(c->scsi_cmd);
6054 		scsi_print_command(scmd);
6055 	}
6056 
6057 	hpsa_cmd_partial_init(h, idx, c);
6058 	return c;
6059 }
6060 
6061 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6062 {
6063 	/*
6064 	 * Release our reference to the block.  We don't need to do anything
6065 	 * else to free it, because it is accessed by index.
6066 	 */
6067 	(void)atomic_dec(&c->refcount);
6068 }
6069 
6070 /*
6071  * For operations that cannot sleep, a command block is allocated at init,
6072  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6073  * which ones are free or in use.  Lock must be held when calling this.
6074  * cmd_free() is the complement.
6075  * This function never gives up and returns NULL.  If it hangs,
6076  * another thread must call cmd_free() to free some tags.
6077  */
6078 
6079 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6080 {
6081 	struct CommandList *c;
6082 	int refcount, i;
6083 	int offset = 0;
6084 
6085 	/*
6086 	 * There is some *extremely* small but non-zero chance that that
6087 	 * multiple threads could get in here, and one thread could
6088 	 * be scanning through the list of bits looking for a free
6089 	 * one, but the free ones are always behind him, and other
6090 	 * threads sneak in behind him and eat them before he can
6091 	 * get to them, so that while there is always a free one, a
6092 	 * very unlucky thread might be starved anyway, never able to
6093 	 * beat the other threads.  In reality, this happens so
6094 	 * infrequently as to be indistinguishable from never.
6095 	 *
6096 	 * Note that we start allocating commands before the SCSI host structure
6097 	 * is initialized.  Since the search starts at bit zero, this
6098 	 * all works, since we have at least one command structure available;
6099 	 * however, it means that the structures with the low indexes have to be
6100 	 * reserved for driver-initiated requests, while requests from the block
6101 	 * layer will use the higher indexes.
6102 	 */
6103 
6104 	for (;;) {
6105 		i = find_next_zero_bit(h->cmd_pool_bits,
6106 					HPSA_NRESERVED_CMDS,
6107 					offset);
6108 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6109 			offset = 0;
6110 			continue;
6111 		}
6112 		c = h->cmd_pool + i;
6113 		refcount = atomic_inc_return(&c->refcount);
6114 		if (unlikely(refcount > 1)) {
6115 			cmd_free(h, c); /* already in use */
6116 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6117 			continue;
6118 		}
6119 		set_bit(i & (BITS_PER_LONG - 1),
6120 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6121 		break; /* it's ours now. */
6122 	}
6123 	hpsa_cmd_partial_init(h, i, c);
6124 	return c;
6125 }
6126 
6127 /*
6128  * This is the complementary operation to cmd_alloc().  Note, however, in some
6129  * corner cases it may also be used to free blocks allocated by
6130  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6131  * the clear-bit is harmless.
6132  */
6133 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6134 {
6135 	if (atomic_dec_and_test(&c->refcount)) {
6136 		int i;
6137 
6138 		i = c - h->cmd_pool;
6139 		clear_bit(i & (BITS_PER_LONG - 1),
6140 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6141 	}
6142 }
6143 
6144 #ifdef CONFIG_COMPAT
6145 
6146 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6147 	void __user *arg)
6148 {
6149 	IOCTL32_Command_struct __user *arg32 =
6150 	    (IOCTL32_Command_struct __user *) arg;
6151 	IOCTL_Command_struct arg64;
6152 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6153 	int err;
6154 	u32 cp;
6155 
6156 	memset(&arg64, 0, sizeof(arg64));
6157 	err = 0;
6158 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6159 			   sizeof(arg64.LUN_info));
6160 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6161 			   sizeof(arg64.Request));
6162 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6163 			   sizeof(arg64.error_info));
6164 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6165 	err |= get_user(cp, &arg32->buf);
6166 	arg64.buf = compat_ptr(cp);
6167 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6168 
6169 	if (err)
6170 		return -EFAULT;
6171 
6172 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6173 	if (err)
6174 		return err;
6175 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6176 			 sizeof(arg32->error_info));
6177 	if (err)
6178 		return -EFAULT;
6179 	return err;
6180 }
6181 
6182 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6183 	unsigned int cmd, void __user *arg)
6184 {
6185 	BIG_IOCTL32_Command_struct __user *arg32 =
6186 	    (BIG_IOCTL32_Command_struct __user *) arg;
6187 	BIG_IOCTL_Command_struct arg64;
6188 	BIG_IOCTL_Command_struct __user *p =
6189 	    compat_alloc_user_space(sizeof(arg64));
6190 	int err;
6191 	u32 cp;
6192 
6193 	memset(&arg64, 0, sizeof(arg64));
6194 	err = 0;
6195 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6196 			   sizeof(arg64.LUN_info));
6197 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6198 			   sizeof(arg64.Request));
6199 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6200 			   sizeof(arg64.error_info));
6201 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6202 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6203 	err |= get_user(cp, &arg32->buf);
6204 	arg64.buf = compat_ptr(cp);
6205 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6206 
6207 	if (err)
6208 		return -EFAULT;
6209 
6210 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6211 	if (err)
6212 		return err;
6213 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6214 			 sizeof(arg32->error_info));
6215 	if (err)
6216 		return -EFAULT;
6217 	return err;
6218 }
6219 
6220 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6221 			     void __user *arg)
6222 {
6223 	switch (cmd) {
6224 	case CCISS_GETPCIINFO:
6225 	case CCISS_GETINTINFO:
6226 	case CCISS_SETINTINFO:
6227 	case CCISS_GETNODENAME:
6228 	case CCISS_SETNODENAME:
6229 	case CCISS_GETHEARTBEAT:
6230 	case CCISS_GETBUSTYPES:
6231 	case CCISS_GETFIRMVER:
6232 	case CCISS_GETDRIVVER:
6233 	case CCISS_REVALIDVOLS:
6234 	case CCISS_DEREGDISK:
6235 	case CCISS_REGNEWDISK:
6236 	case CCISS_REGNEWD:
6237 	case CCISS_RESCANDISK:
6238 	case CCISS_GETLUNINFO:
6239 		return hpsa_ioctl(dev, cmd, arg);
6240 
6241 	case CCISS_PASSTHRU32:
6242 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6243 	case CCISS_BIG_PASSTHRU32:
6244 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6245 
6246 	default:
6247 		return -ENOIOCTLCMD;
6248 	}
6249 }
6250 #endif
6251 
6252 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6253 {
6254 	struct hpsa_pci_info pciinfo;
6255 
6256 	if (!argp)
6257 		return -EINVAL;
6258 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6259 	pciinfo.bus = h->pdev->bus->number;
6260 	pciinfo.dev_fn = h->pdev->devfn;
6261 	pciinfo.board_id = h->board_id;
6262 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6263 		return -EFAULT;
6264 	return 0;
6265 }
6266 
6267 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6268 {
6269 	DriverVer_type DriverVer;
6270 	unsigned char vmaj, vmin, vsubmin;
6271 	int rc;
6272 
6273 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6274 		&vmaj, &vmin, &vsubmin);
6275 	if (rc != 3) {
6276 		dev_info(&h->pdev->dev, "driver version string '%s' "
6277 			"unrecognized.", HPSA_DRIVER_VERSION);
6278 		vmaj = 0;
6279 		vmin = 0;
6280 		vsubmin = 0;
6281 	}
6282 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6283 	if (!argp)
6284 		return -EINVAL;
6285 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6286 		return -EFAULT;
6287 	return 0;
6288 }
6289 
6290 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6291 {
6292 	IOCTL_Command_struct iocommand;
6293 	struct CommandList *c;
6294 	char *buff = NULL;
6295 	u64 temp64;
6296 	int rc = 0;
6297 
6298 	if (!argp)
6299 		return -EINVAL;
6300 	if (!capable(CAP_SYS_RAWIO))
6301 		return -EPERM;
6302 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6303 		return -EFAULT;
6304 	if ((iocommand.buf_size < 1) &&
6305 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6306 		return -EINVAL;
6307 	}
6308 	if (iocommand.buf_size > 0) {
6309 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6310 		if (buff == NULL)
6311 			return -ENOMEM;
6312 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6313 			/* Copy the data into the buffer we created */
6314 			if (copy_from_user(buff, iocommand.buf,
6315 				iocommand.buf_size)) {
6316 				rc = -EFAULT;
6317 				goto out_kfree;
6318 			}
6319 		} else {
6320 			memset(buff, 0, iocommand.buf_size);
6321 		}
6322 	}
6323 	c = cmd_alloc(h);
6324 
6325 	/* Fill in the command type */
6326 	c->cmd_type = CMD_IOCTL_PEND;
6327 	c->scsi_cmd = SCSI_CMD_BUSY;
6328 	/* Fill in Command Header */
6329 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6330 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6331 		c->Header.SGList = 1;
6332 		c->Header.SGTotal = cpu_to_le16(1);
6333 	} else	{ /* no buffers to fill */
6334 		c->Header.SGList = 0;
6335 		c->Header.SGTotal = cpu_to_le16(0);
6336 	}
6337 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6338 
6339 	/* Fill in Request block */
6340 	memcpy(&c->Request, &iocommand.Request,
6341 		sizeof(c->Request));
6342 
6343 	/* Fill in the scatter gather information */
6344 	if (iocommand.buf_size > 0) {
6345 		temp64 = dma_map_single(&h->pdev->dev, buff,
6346 			iocommand.buf_size, DMA_BIDIRECTIONAL);
6347 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6348 			c->SG[0].Addr = cpu_to_le64(0);
6349 			c->SG[0].Len = cpu_to_le32(0);
6350 			rc = -ENOMEM;
6351 			goto out;
6352 		}
6353 		c->SG[0].Addr = cpu_to_le64(temp64);
6354 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6355 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6356 	}
6357 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6358 					NO_TIMEOUT);
6359 	if (iocommand.buf_size > 0)
6360 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6361 	check_ioctl_unit_attention(h, c);
6362 	if (rc) {
6363 		rc = -EIO;
6364 		goto out;
6365 	}
6366 
6367 	/* Copy the error information out */
6368 	memcpy(&iocommand.error_info, c->err_info,
6369 		sizeof(iocommand.error_info));
6370 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6371 		rc = -EFAULT;
6372 		goto out;
6373 	}
6374 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6375 		iocommand.buf_size > 0) {
6376 		/* Copy the data out of the buffer we created */
6377 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6378 			rc = -EFAULT;
6379 			goto out;
6380 		}
6381 	}
6382 out:
6383 	cmd_free(h, c);
6384 out_kfree:
6385 	kfree(buff);
6386 	return rc;
6387 }
6388 
6389 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6390 {
6391 	BIG_IOCTL_Command_struct *ioc;
6392 	struct CommandList *c;
6393 	unsigned char **buff = NULL;
6394 	int *buff_size = NULL;
6395 	u64 temp64;
6396 	BYTE sg_used = 0;
6397 	int status = 0;
6398 	u32 left;
6399 	u32 sz;
6400 	BYTE __user *data_ptr;
6401 
6402 	if (!argp)
6403 		return -EINVAL;
6404 	if (!capable(CAP_SYS_RAWIO))
6405 		return -EPERM;
6406 	ioc = vmemdup_user(argp, sizeof(*ioc));
6407 	if (IS_ERR(ioc)) {
6408 		status = PTR_ERR(ioc);
6409 		goto cleanup1;
6410 	}
6411 	if ((ioc->buf_size < 1) &&
6412 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6413 		status = -EINVAL;
6414 		goto cleanup1;
6415 	}
6416 	/* Check kmalloc limits  using all SGs */
6417 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6418 		status = -EINVAL;
6419 		goto cleanup1;
6420 	}
6421 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6422 		status = -EINVAL;
6423 		goto cleanup1;
6424 	}
6425 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6426 	if (!buff) {
6427 		status = -ENOMEM;
6428 		goto cleanup1;
6429 	}
6430 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6431 	if (!buff_size) {
6432 		status = -ENOMEM;
6433 		goto cleanup1;
6434 	}
6435 	left = ioc->buf_size;
6436 	data_ptr = ioc->buf;
6437 	while (left) {
6438 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6439 		buff_size[sg_used] = sz;
6440 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6441 		if (buff[sg_used] == NULL) {
6442 			status = -ENOMEM;
6443 			goto cleanup1;
6444 		}
6445 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6446 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6447 				status = -EFAULT;
6448 				goto cleanup1;
6449 			}
6450 		} else
6451 			memset(buff[sg_used], 0, sz);
6452 		left -= sz;
6453 		data_ptr += sz;
6454 		sg_used++;
6455 	}
6456 	c = cmd_alloc(h);
6457 
6458 	c->cmd_type = CMD_IOCTL_PEND;
6459 	c->scsi_cmd = SCSI_CMD_BUSY;
6460 	c->Header.ReplyQueue = 0;
6461 	c->Header.SGList = (u8) sg_used;
6462 	c->Header.SGTotal = cpu_to_le16(sg_used);
6463 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6464 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6465 	if (ioc->buf_size > 0) {
6466 		int i;
6467 		for (i = 0; i < sg_used; i++) {
6468 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6469 				    buff_size[i], DMA_BIDIRECTIONAL);
6470 			if (dma_mapping_error(&h->pdev->dev,
6471 							(dma_addr_t) temp64)) {
6472 				c->SG[i].Addr = cpu_to_le64(0);
6473 				c->SG[i].Len = cpu_to_le32(0);
6474 				hpsa_pci_unmap(h->pdev, c, i,
6475 					DMA_BIDIRECTIONAL);
6476 				status = -ENOMEM;
6477 				goto cleanup0;
6478 			}
6479 			c->SG[i].Addr = cpu_to_le64(temp64);
6480 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6481 			c->SG[i].Ext = cpu_to_le32(0);
6482 		}
6483 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6484 	}
6485 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6486 						NO_TIMEOUT);
6487 	if (sg_used)
6488 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6489 	check_ioctl_unit_attention(h, c);
6490 	if (status) {
6491 		status = -EIO;
6492 		goto cleanup0;
6493 	}
6494 
6495 	/* Copy the error information out */
6496 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6497 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6498 		status = -EFAULT;
6499 		goto cleanup0;
6500 	}
6501 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6502 		int i;
6503 
6504 		/* Copy the data out of the buffer we created */
6505 		BYTE __user *ptr = ioc->buf;
6506 		for (i = 0; i < sg_used; i++) {
6507 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6508 				status = -EFAULT;
6509 				goto cleanup0;
6510 			}
6511 			ptr += buff_size[i];
6512 		}
6513 	}
6514 	status = 0;
6515 cleanup0:
6516 	cmd_free(h, c);
6517 cleanup1:
6518 	if (buff) {
6519 		int i;
6520 
6521 		for (i = 0; i < sg_used; i++)
6522 			kfree(buff[i]);
6523 		kfree(buff);
6524 	}
6525 	kfree(buff_size);
6526 	kvfree(ioc);
6527 	return status;
6528 }
6529 
6530 static void check_ioctl_unit_attention(struct ctlr_info *h,
6531 	struct CommandList *c)
6532 {
6533 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6534 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6535 		(void) check_for_unit_attention(h, c);
6536 }
6537 
6538 /*
6539  * ioctl
6540  */
6541 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6542 		      void __user *arg)
6543 {
6544 	struct ctlr_info *h;
6545 	void __user *argp = (void __user *)arg;
6546 	int rc;
6547 
6548 	h = sdev_to_hba(dev);
6549 
6550 	switch (cmd) {
6551 	case CCISS_DEREGDISK:
6552 	case CCISS_REGNEWDISK:
6553 	case CCISS_REGNEWD:
6554 		hpsa_scan_start(h->scsi_host);
6555 		return 0;
6556 	case CCISS_GETPCIINFO:
6557 		return hpsa_getpciinfo_ioctl(h, argp);
6558 	case CCISS_GETDRIVVER:
6559 		return hpsa_getdrivver_ioctl(h, argp);
6560 	case CCISS_PASSTHRU:
6561 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6562 			return -EAGAIN;
6563 		rc = hpsa_passthru_ioctl(h, argp);
6564 		atomic_inc(&h->passthru_cmds_avail);
6565 		return rc;
6566 	case CCISS_BIG_PASSTHRU:
6567 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6568 			return -EAGAIN;
6569 		rc = hpsa_big_passthru_ioctl(h, argp);
6570 		atomic_inc(&h->passthru_cmds_avail);
6571 		return rc;
6572 	default:
6573 		return -ENOTTY;
6574 	}
6575 }
6576 
6577 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6578 				u8 reset_type)
6579 {
6580 	struct CommandList *c;
6581 
6582 	c = cmd_alloc(h);
6583 
6584 	/* fill_cmd can't fail here, no data buffer to map */
6585 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6586 		RAID_CTLR_LUNID, TYPE_MSG);
6587 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6588 	c->waiting = NULL;
6589 	enqueue_cmd_and_start_io(h, c);
6590 	/* Don't wait for completion, the reset won't complete.  Don't free
6591 	 * the command either.  This is the last command we will send before
6592 	 * re-initializing everything, so it doesn't matter and won't leak.
6593 	 */
6594 	return;
6595 }
6596 
6597 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6598 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6599 	int cmd_type)
6600 {
6601 	enum dma_data_direction dir = DMA_NONE;
6602 
6603 	c->cmd_type = CMD_IOCTL_PEND;
6604 	c->scsi_cmd = SCSI_CMD_BUSY;
6605 	c->Header.ReplyQueue = 0;
6606 	if (buff != NULL && size > 0) {
6607 		c->Header.SGList = 1;
6608 		c->Header.SGTotal = cpu_to_le16(1);
6609 	} else {
6610 		c->Header.SGList = 0;
6611 		c->Header.SGTotal = cpu_to_le16(0);
6612 	}
6613 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6614 
6615 	if (cmd_type == TYPE_CMD) {
6616 		switch (cmd) {
6617 		case HPSA_INQUIRY:
6618 			/* are we trying to read a vital product page */
6619 			if (page_code & VPD_PAGE) {
6620 				c->Request.CDB[1] = 0x01;
6621 				c->Request.CDB[2] = (page_code & 0xff);
6622 			}
6623 			c->Request.CDBLen = 6;
6624 			c->Request.type_attr_dir =
6625 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6626 			c->Request.Timeout = 0;
6627 			c->Request.CDB[0] = HPSA_INQUIRY;
6628 			c->Request.CDB[4] = size & 0xFF;
6629 			break;
6630 		case RECEIVE_DIAGNOSTIC:
6631 			c->Request.CDBLen = 6;
6632 			c->Request.type_attr_dir =
6633 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6634 			c->Request.Timeout = 0;
6635 			c->Request.CDB[0] = cmd;
6636 			c->Request.CDB[1] = 1;
6637 			c->Request.CDB[2] = 1;
6638 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6639 			c->Request.CDB[4] = size & 0xFF;
6640 			break;
6641 		case HPSA_REPORT_LOG:
6642 		case HPSA_REPORT_PHYS:
6643 			/* Talking to controller so It's a physical command
6644 			   mode = 00 target = 0.  Nothing to write.
6645 			 */
6646 			c->Request.CDBLen = 12;
6647 			c->Request.type_attr_dir =
6648 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6649 			c->Request.Timeout = 0;
6650 			c->Request.CDB[0] = cmd;
6651 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6652 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6653 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6654 			c->Request.CDB[9] = size & 0xFF;
6655 			break;
6656 		case BMIC_SENSE_DIAG_OPTIONS:
6657 			c->Request.CDBLen = 16;
6658 			c->Request.type_attr_dir =
6659 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6660 			c->Request.Timeout = 0;
6661 			/* Spec says this should be BMIC_WRITE */
6662 			c->Request.CDB[0] = BMIC_READ;
6663 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6664 			break;
6665 		case BMIC_SET_DIAG_OPTIONS:
6666 			c->Request.CDBLen = 16;
6667 			c->Request.type_attr_dir =
6668 					TYPE_ATTR_DIR(cmd_type,
6669 						ATTR_SIMPLE, XFER_WRITE);
6670 			c->Request.Timeout = 0;
6671 			c->Request.CDB[0] = BMIC_WRITE;
6672 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6673 			break;
6674 		case HPSA_CACHE_FLUSH:
6675 			c->Request.CDBLen = 12;
6676 			c->Request.type_attr_dir =
6677 					TYPE_ATTR_DIR(cmd_type,
6678 						ATTR_SIMPLE, XFER_WRITE);
6679 			c->Request.Timeout = 0;
6680 			c->Request.CDB[0] = BMIC_WRITE;
6681 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6682 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6683 			c->Request.CDB[8] = size & 0xFF;
6684 			break;
6685 		case TEST_UNIT_READY:
6686 			c->Request.CDBLen = 6;
6687 			c->Request.type_attr_dir =
6688 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6689 			c->Request.Timeout = 0;
6690 			break;
6691 		case HPSA_GET_RAID_MAP:
6692 			c->Request.CDBLen = 12;
6693 			c->Request.type_attr_dir =
6694 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6695 			c->Request.Timeout = 0;
6696 			c->Request.CDB[0] = HPSA_CISS_READ;
6697 			c->Request.CDB[1] = cmd;
6698 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6699 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6700 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6701 			c->Request.CDB[9] = size & 0xFF;
6702 			break;
6703 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6704 			c->Request.CDBLen = 10;
6705 			c->Request.type_attr_dir =
6706 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6707 			c->Request.Timeout = 0;
6708 			c->Request.CDB[0] = BMIC_READ;
6709 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6710 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6711 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6712 			break;
6713 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6714 			c->Request.CDBLen = 10;
6715 			c->Request.type_attr_dir =
6716 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6717 			c->Request.Timeout = 0;
6718 			c->Request.CDB[0] = BMIC_READ;
6719 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6720 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6721 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6722 			break;
6723 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6724 			c->Request.CDBLen = 10;
6725 			c->Request.type_attr_dir =
6726 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6727 			c->Request.Timeout = 0;
6728 			c->Request.CDB[0] = BMIC_READ;
6729 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6730 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6731 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6732 			break;
6733 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6734 			c->Request.CDBLen = 10;
6735 			c->Request.type_attr_dir =
6736 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6737 			c->Request.Timeout = 0;
6738 			c->Request.CDB[0] = BMIC_READ;
6739 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6740 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6741 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6742 			break;
6743 		case BMIC_IDENTIFY_CONTROLLER:
6744 			c->Request.CDBLen = 10;
6745 			c->Request.type_attr_dir =
6746 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6747 			c->Request.Timeout = 0;
6748 			c->Request.CDB[0] = BMIC_READ;
6749 			c->Request.CDB[1] = 0;
6750 			c->Request.CDB[2] = 0;
6751 			c->Request.CDB[3] = 0;
6752 			c->Request.CDB[4] = 0;
6753 			c->Request.CDB[5] = 0;
6754 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6755 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6756 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6757 			c->Request.CDB[9] = 0;
6758 			break;
6759 		default:
6760 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6761 			BUG();
6762 		}
6763 	} else if (cmd_type == TYPE_MSG) {
6764 		switch (cmd) {
6765 
6766 		case  HPSA_PHYS_TARGET_RESET:
6767 			c->Request.CDBLen = 16;
6768 			c->Request.type_attr_dir =
6769 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6770 			c->Request.Timeout = 0; /* Don't time out */
6771 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6772 			c->Request.CDB[0] = HPSA_RESET;
6773 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6774 			/* Physical target reset needs no control bytes 4-7*/
6775 			c->Request.CDB[4] = 0x00;
6776 			c->Request.CDB[5] = 0x00;
6777 			c->Request.CDB[6] = 0x00;
6778 			c->Request.CDB[7] = 0x00;
6779 			break;
6780 		case  HPSA_DEVICE_RESET_MSG:
6781 			c->Request.CDBLen = 16;
6782 			c->Request.type_attr_dir =
6783 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6784 			c->Request.Timeout = 0; /* Don't time out */
6785 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6786 			c->Request.CDB[0] =  cmd;
6787 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6788 			/* If bytes 4-7 are zero, it means reset the */
6789 			/* LunID device */
6790 			c->Request.CDB[4] = 0x00;
6791 			c->Request.CDB[5] = 0x00;
6792 			c->Request.CDB[6] = 0x00;
6793 			c->Request.CDB[7] = 0x00;
6794 			break;
6795 		default:
6796 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6797 				cmd);
6798 			BUG();
6799 		}
6800 	} else {
6801 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6802 		BUG();
6803 	}
6804 
6805 	switch (GET_DIR(c->Request.type_attr_dir)) {
6806 	case XFER_READ:
6807 		dir = DMA_FROM_DEVICE;
6808 		break;
6809 	case XFER_WRITE:
6810 		dir = DMA_TO_DEVICE;
6811 		break;
6812 	case XFER_NONE:
6813 		dir = DMA_NONE;
6814 		break;
6815 	default:
6816 		dir = DMA_BIDIRECTIONAL;
6817 	}
6818 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6819 		return -1;
6820 	return 0;
6821 }
6822 
6823 /*
6824  * Map (physical) PCI mem into (virtual) kernel space
6825  */
6826 static void __iomem *remap_pci_mem(ulong base, ulong size)
6827 {
6828 	ulong page_base = ((ulong) base) & PAGE_MASK;
6829 	ulong page_offs = ((ulong) base) - page_base;
6830 	void __iomem *page_remapped = ioremap_nocache(page_base,
6831 		page_offs + size);
6832 
6833 	return page_remapped ? (page_remapped + page_offs) : NULL;
6834 }
6835 
6836 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6837 {
6838 	return h->access.command_completed(h, q);
6839 }
6840 
6841 static inline bool interrupt_pending(struct ctlr_info *h)
6842 {
6843 	return h->access.intr_pending(h);
6844 }
6845 
6846 static inline long interrupt_not_for_us(struct ctlr_info *h)
6847 {
6848 	return (h->access.intr_pending(h) == 0) ||
6849 		(h->interrupts_enabled == 0);
6850 }
6851 
6852 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6853 	u32 raw_tag)
6854 {
6855 	if (unlikely(tag_index >= h->nr_cmds)) {
6856 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6857 		return 1;
6858 	}
6859 	return 0;
6860 }
6861 
6862 static inline void finish_cmd(struct CommandList *c)
6863 {
6864 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6865 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6866 			|| c->cmd_type == CMD_IOACCEL2))
6867 		complete_scsi_command(c);
6868 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6869 		complete(c->waiting);
6870 }
6871 
6872 /* process completion of an indexed ("direct lookup") command */
6873 static inline void process_indexed_cmd(struct ctlr_info *h,
6874 	u32 raw_tag)
6875 {
6876 	u32 tag_index;
6877 	struct CommandList *c;
6878 
6879 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6880 	if (!bad_tag(h, tag_index, raw_tag)) {
6881 		c = h->cmd_pool + tag_index;
6882 		finish_cmd(c);
6883 	}
6884 }
6885 
6886 /* Some controllers, like p400, will give us one interrupt
6887  * after a soft reset, even if we turned interrupts off.
6888  * Only need to check for this in the hpsa_xxx_discard_completions
6889  * functions.
6890  */
6891 static int ignore_bogus_interrupt(struct ctlr_info *h)
6892 {
6893 	if (likely(!reset_devices))
6894 		return 0;
6895 
6896 	if (likely(h->interrupts_enabled))
6897 		return 0;
6898 
6899 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6900 		"(known firmware bug.)  Ignoring.\n");
6901 
6902 	return 1;
6903 }
6904 
6905 /*
6906  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6907  * Relies on (h-q[x] == x) being true for x such that
6908  * 0 <= x < MAX_REPLY_QUEUES.
6909  */
6910 static struct ctlr_info *queue_to_hba(u8 *queue)
6911 {
6912 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6913 }
6914 
6915 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6916 {
6917 	struct ctlr_info *h = queue_to_hba(queue);
6918 	u8 q = *(u8 *) queue;
6919 	u32 raw_tag;
6920 
6921 	if (ignore_bogus_interrupt(h))
6922 		return IRQ_NONE;
6923 
6924 	if (interrupt_not_for_us(h))
6925 		return IRQ_NONE;
6926 	h->last_intr_timestamp = get_jiffies_64();
6927 	while (interrupt_pending(h)) {
6928 		raw_tag = get_next_completion(h, q);
6929 		while (raw_tag != FIFO_EMPTY)
6930 			raw_tag = next_command(h, q);
6931 	}
6932 	return IRQ_HANDLED;
6933 }
6934 
6935 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6936 {
6937 	struct ctlr_info *h = queue_to_hba(queue);
6938 	u32 raw_tag;
6939 	u8 q = *(u8 *) queue;
6940 
6941 	if (ignore_bogus_interrupt(h))
6942 		return IRQ_NONE;
6943 
6944 	h->last_intr_timestamp = get_jiffies_64();
6945 	raw_tag = get_next_completion(h, q);
6946 	while (raw_tag != FIFO_EMPTY)
6947 		raw_tag = next_command(h, q);
6948 	return IRQ_HANDLED;
6949 }
6950 
6951 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6952 {
6953 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6954 	u32 raw_tag;
6955 	u8 q = *(u8 *) queue;
6956 
6957 	if (interrupt_not_for_us(h))
6958 		return IRQ_NONE;
6959 	h->last_intr_timestamp = get_jiffies_64();
6960 	while (interrupt_pending(h)) {
6961 		raw_tag = get_next_completion(h, q);
6962 		while (raw_tag != FIFO_EMPTY) {
6963 			process_indexed_cmd(h, raw_tag);
6964 			raw_tag = next_command(h, q);
6965 		}
6966 	}
6967 	return IRQ_HANDLED;
6968 }
6969 
6970 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6971 {
6972 	struct ctlr_info *h = queue_to_hba(queue);
6973 	u32 raw_tag;
6974 	u8 q = *(u8 *) queue;
6975 
6976 	h->last_intr_timestamp = get_jiffies_64();
6977 	raw_tag = get_next_completion(h, q);
6978 	while (raw_tag != FIFO_EMPTY) {
6979 		process_indexed_cmd(h, raw_tag);
6980 		raw_tag = next_command(h, q);
6981 	}
6982 	return IRQ_HANDLED;
6983 }
6984 
6985 /* Send a message CDB to the firmware. Careful, this only works
6986  * in simple mode, not performant mode due to the tag lookup.
6987  * We only ever use this immediately after a controller reset.
6988  */
6989 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6990 			unsigned char type)
6991 {
6992 	struct Command {
6993 		struct CommandListHeader CommandHeader;
6994 		struct RequestBlock Request;
6995 		struct ErrDescriptor ErrorDescriptor;
6996 	};
6997 	struct Command *cmd;
6998 	static const size_t cmd_sz = sizeof(*cmd) +
6999 					sizeof(cmd->ErrorDescriptor);
7000 	dma_addr_t paddr64;
7001 	__le32 paddr32;
7002 	u32 tag;
7003 	void __iomem *vaddr;
7004 	int i, err;
7005 
7006 	vaddr = pci_ioremap_bar(pdev, 0);
7007 	if (vaddr == NULL)
7008 		return -ENOMEM;
7009 
7010 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7011 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7012 	 * memory.
7013 	 */
7014 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7015 	if (err) {
7016 		iounmap(vaddr);
7017 		return err;
7018 	}
7019 
7020 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7021 	if (cmd == NULL) {
7022 		iounmap(vaddr);
7023 		return -ENOMEM;
7024 	}
7025 
7026 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7027 	 * although there's no guarantee, we assume that the address is at
7028 	 * least 4-byte aligned (most likely, it's page-aligned).
7029 	 */
7030 	paddr32 = cpu_to_le32(paddr64);
7031 
7032 	cmd->CommandHeader.ReplyQueue = 0;
7033 	cmd->CommandHeader.SGList = 0;
7034 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7035 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7036 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7037 
7038 	cmd->Request.CDBLen = 16;
7039 	cmd->Request.type_attr_dir =
7040 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7041 	cmd->Request.Timeout = 0; /* Don't time out */
7042 	cmd->Request.CDB[0] = opcode;
7043 	cmd->Request.CDB[1] = type;
7044 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7045 	cmd->ErrorDescriptor.Addr =
7046 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7047 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7048 
7049 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7050 
7051 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7052 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7053 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7054 			break;
7055 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7056 	}
7057 
7058 	iounmap(vaddr);
7059 
7060 	/* we leak the DMA buffer here ... no choice since the controller could
7061 	 *  still complete the command.
7062 	 */
7063 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7064 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7065 			opcode, type);
7066 		return -ETIMEDOUT;
7067 	}
7068 
7069 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7070 
7071 	if (tag & HPSA_ERROR_BIT) {
7072 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7073 			opcode, type);
7074 		return -EIO;
7075 	}
7076 
7077 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7078 		opcode, type);
7079 	return 0;
7080 }
7081 
7082 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7083 
7084 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7085 	void __iomem *vaddr, u32 use_doorbell)
7086 {
7087 
7088 	if (use_doorbell) {
7089 		/* For everything after the P600, the PCI power state method
7090 		 * of resetting the controller doesn't work, so we have this
7091 		 * other way using the doorbell register.
7092 		 */
7093 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7094 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7095 
7096 		/* PMC hardware guys tell us we need a 10 second delay after
7097 		 * doorbell reset and before any attempt to talk to the board
7098 		 * at all to ensure that this actually works and doesn't fall
7099 		 * over in some weird corner cases.
7100 		 */
7101 		msleep(10000);
7102 	} else { /* Try to do it the PCI power state way */
7103 
7104 		/* Quoting from the Open CISS Specification: "The Power
7105 		 * Management Control/Status Register (CSR) controls the power
7106 		 * state of the device.  The normal operating state is D0,
7107 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7108 		 * the controller, place the interface device in D3 then to D0,
7109 		 * this causes a secondary PCI reset which will reset the
7110 		 * controller." */
7111 
7112 		int rc = 0;
7113 
7114 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7115 
7116 		/* enter the D3hot power management state */
7117 		rc = pci_set_power_state(pdev, PCI_D3hot);
7118 		if (rc)
7119 			return rc;
7120 
7121 		msleep(500);
7122 
7123 		/* enter the D0 power management state */
7124 		rc = pci_set_power_state(pdev, PCI_D0);
7125 		if (rc)
7126 			return rc;
7127 
7128 		/*
7129 		 * The P600 requires a small delay when changing states.
7130 		 * Otherwise we may think the board did not reset and we bail.
7131 		 * This for kdump only and is particular to the P600.
7132 		 */
7133 		msleep(500);
7134 	}
7135 	return 0;
7136 }
7137 
7138 static void init_driver_version(char *driver_version, int len)
7139 {
7140 	memset(driver_version, 0, len);
7141 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7142 }
7143 
7144 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7145 {
7146 	char *driver_version;
7147 	int i, size = sizeof(cfgtable->driver_version);
7148 
7149 	driver_version = kmalloc(size, GFP_KERNEL);
7150 	if (!driver_version)
7151 		return -ENOMEM;
7152 
7153 	init_driver_version(driver_version, size);
7154 	for (i = 0; i < size; i++)
7155 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7156 	kfree(driver_version);
7157 	return 0;
7158 }
7159 
7160 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7161 					  unsigned char *driver_ver)
7162 {
7163 	int i;
7164 
7165 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7166 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7167 }
7168 
7169 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7170 {
7171 
7172 	char *driver_ver, *old_driver_ver;
7173 	int rc, size = sizeof(cfgtable->driver_version);
7174 
7175 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7176 	if (!old_driver_ver)
7177 		return -ENOMEM;
7178 	driver_ver = old_driver_ver + size;
7179 
7180 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7181 	 * should have been changed, otherwise we know the reset failed.
7182 	 */
7183 	init_driver_version(old_driver_ver, size);
7184 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7185 	rc = !memcmp(driver_ver, old_driver_ver, size);
7186 	kfree(old_driver_ver);
7187 	return rc;
7188 }
7189 /* This does a hard reset of the controller using PCI power management
7190  * states or the using the doorbell register.
7191  */
7192 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7193 {
7194 	u64 cfg_offset;
7195 	u32 cfg_base_addr;
7196 	u64 cfg_base_addr_index;
7197 	void __iomem *vaddr;
7198 	unsigned long paddr;
7199 	u32 misc_fw_support;
7200 	int rc;
7201 	struct CfgTable __iomem *cfgtable;
7202 	u32 use_doorbell;
7203 	u16 command_register;
7204 
7205 	/* For controllers as old as the P600, this is very nearly
7206 	 * the same thing as
7207 	 *
7208 	 * pci_save_state(pci_dev);
7209 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7210 	 * pci_set_power_state(pci_dev, PCI_D0);
7211 	 * pci_restore_state(pci_dev);
7212 	 *
7213 	 * For controllers newer than the P600, the pci power state
7214 	 * method of resetting doesn't work so we have another way
7215 	 * using the doorbell register.
7216 	 */
7217 
7218 	if (!ctlr_is_resettable(board_id)) {
7219 		dev_warn(&pdev->dev, "Controller not resettable\n");
7220 		return -ENODEV;
7221 	}
7222 
7223 	/* if controller is soft- but not hard resettable... */
7224 	if (!ctlr_is_hard_resettable(board_id))
7225 		return -ENOTSUPP; /* try soft reset later. */
7226 
7227 	/* Save the PCI command register */
7228 	pci_read_config_word(pdev, 4, &command_register);
7229 	pci_save_state(pdev);
7230 
7231 	/* find the first memory BAR, so we can find the cfg table */
7232 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7233 	if (rc)
7234 		return rc;
7235 	vaddr = remap_pci_mem(paddr, 0x250);
7236 	if (!vaddr)
7237 		return -ENOMEM;
7238 
7239 	/* find cfgtable in order to check if reset via doorbell is supported */
7240 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7241 					&cfg_base_addr_index, &cfg_offset);
7242 	if (rc)
7243 		goto unmap_vaddr;
7244 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7245 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7246 	if (!cfgtable) {
7247 		rc = -ENOMEM;
7248 		goto unmap_vaddr;
7249 	}
7250 	rc = write_driver_ver_to_cfgtable(cfgtable);
7251 	if (rc)
7252 		goto unmap_cfgtable;
7253 
7254 	/* If reset via doorbell register is supported, use that.
7255 	 * There are two such methods.  Favor the newest method.
7256 	 */
7257 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7258 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7259 	if (use_doorbell) {
7260 		use_doorbell = DOORBELL_CTLR_RESET2;
7261 	} else {
7262 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7263 		if (use_doorbell) {
7264 			dev_warn(&pdev->dev,
7265 				"Soft reset not supported. Firmware update is required.\n");
7266 			rc = -ENOTSUPP; /* try soft reset */
7267 			goto unmap_cfgtable;
7268 		}
7269 	}
7270 
7271 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7272 	if (rc)
7273 		goto unmap_cfgtable;
7274 
7275 	pci_restore_state(pdev);
7276 	pci_write_config_word(pdev, 4, command_register);
7277 
7278 	/* Some devices (notably the HP Smart Array 5i Controller)
7279 	   need a little pause here */
7280 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7281 
7282 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7283 	if (rc) {
7284 		dev_warn(&pdev->dev,
7285 			"Failed waiting for board to become ready after hard reset\n");
7286 		goto unmap_cfgtable;
7287 	}
7288 
7289 	rc = controller_reset_failed(vaddr);
7290 	if (rc < 0)
7291 		goto unmap_cfgtable;
7292 	if (rc) {
7293 		dev_warn(&pdev->dev, "Unable to successfully reset "
7294 			"controller. Will try soft reset.\n");
7295 		rc = -ENOTSUPP;
7296 	} else {
7297 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7298 	}
7299 
7300 unmap_cfgtable:
7301 	iounmap(cfgtable);
7302 
7303 unmap_vaddr:
7304 	iounmap(vaddr);
7305 	return rc;
7306 }
7307 
7308 /*
7309  *  We cannot read the structure directly, for portability we must use
7310  *   the io functions.
7311  *   This is for debug only.
7312  */
7313 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7314 {
7315 #ifdef HPSA_DEBUG
7316 	int i;
7317 	char temp_name[17];
7318 
7319 	dev_info(dev, "Controller Configuration information\n");
7320 	dev_info(dev, "------------------------------------\n");
7321 	for (i = 0; i < 4; i++)
7322 		temp_name[i] = readb(&(tb->Signature[i]));
7323 	temp_name[4] = '\0';
7324 	dev_info(dev, "   Signature = %s\n", temp_name);
7325 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7326 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7327 	       readl(&(tb->TransportSupport)));
7328 	dev_info(dev, "   Transport methods active = 0x%x\n",
7329 	       readl(&(tb->TransportActive)));
7330 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7331 	       readl(&(tb->HostWrite.TransportRequest)));
7332 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7333 	       readl(&(tb->HostWrite.CoalIntDelay)));
7334 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7335 	       readl(&(tb->HostWrite.CoalIntCount)));
7336 	dev_info(dev, "   Max outstanding commands = %d\n",
7337 	       readl(&(tb->CmdsOutMax)));
7338 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7339 	for (i = 0; i < 16; i++)
7340 		temp_name[i] = readb(&(tb->ServerName[i]));
7341 	temp_name[16] = '\0';
7342 	dev_info(dev, "   Server Name = %s\n", temp_name);
7343 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7344 		readl(&(tb->HeartBeat)));
7345 #endif				/* HPSA_DEBUG */
7346 }
7347 
7348 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7349 {
7350 	int i, offset, mem_type, bar_type;
7351 
7352 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7353 		return 0;
7354 	offset = 0;
7355 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7356 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7357 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7358 			offset += 4;
7359 		else {
7360 			mem_type = pci_resource_flags(pdev, i) &
7361 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7362 			switch (mem_type) {
7363 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7364 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7365 				offset += 4;	/* 32 bit */
7366 				break;
7367 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7368 				offset += 8;
7369 				break;
7370 			default:	/* reserved in PCI 2.2 */
7371 				dev_warn(&pdev->dev,
7372 				       "base address is invalid\n");
7373 				return -1;
7374 				break;
7375 			}
7376 		}
7377 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7378 			return i + 1;
7379 	}
7380 	return -1;
7381 }
7382 
7383 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7384 {
7385 	pci_free_irq_vectors(h->pdev);
7386 	h->msix_vectors = 0;
7387 }
7388 
7389 static void hpsa_setup_reply_map(struct ctlr_info *h)
7390 {
7391 	const struct cpumask *mask;
7392 	unsigned int queue, cpu;
7393 
7394 	for (queue = 0; queue < h->msix_vectors; queue++) {
7395 		mask = pci_irq_get_affinity(h->pdev, queue);
7396 		if (!mask)
7397 			goto fallback;
7398 
7399 		for_each_cpu(cpu, mask)
7400 			h->reply_map[cpu] = queue;
7401 	}
7402 	return;
7403 
7404 fallback:
7405 	for_each_possible_cpu(cpu)
7406 		h->reply_map[cpu] = 0;
7407 }
7408 
7409 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7410  * controllers that are capable. If not, we use legacy INTx mode.
7411  */
7412 static int hpsa_interrupt_mode(struct ctlr_info *h)
7413 {
7414 	unsigned int flags = PCI_IRQ_LEGACY;
7415 	int ret;
7416 
7417 	/* Some boards advertise MSI but don't really support it */
7418 	switch (h->board_id) {
7419 	case 0x40700E11:
7420 	case 0x40800E11:
7421 	case 0x40820E11:
7422 	case 0x40830E11:
7423 		break;
7424 	default:
7425 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7426 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7427 		if (ret > 0) {
7428 			h->msix_vectors = ret;
7429 			return 0;
7430 		}
7431 
7432 		flags |= PCI_IRQ_MSI;
7433 		break;
7434 	}
7435 
7436 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7437 	if (ret < 0)
7438 		return ret;
7439 	return 0;
7440 }
7441 
7442 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7443 				bool *legacy_board)
7444 {
7445 	int i;
7446 	u32 subsystem_vendor_id, subsystem_device_id;
7447 
7448 	subsystem_vendor_id = pdev->subsystem_vendor;
7449 	subsystem_device_id = pdev->subsystem_device;
7450 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7451 		    subsystem_vendor_id;
7452 
7453 	if (legacy_board)
7454 		*legacy_board = false;
7455 	for (i = 0; i < ARRAY_SIZE(products); i++)
7456 		if (*board_id == products[i].board_id) {
7457 			if (products[i].access != &SA5A_access &&
7458 			    products[i].access != &SA5B_access)
7459 				return i;
7460 			dev_warn(&pdev->dev,
7461 				 "legacy board ID: 0x%08x\n",
7462 				 *board_id);
7463 			if (legacy_board)
7464 			    *legacy_board = true;
7465 			return i;
7466 		}
7467 
7468 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7469 	if (legacy_board)
7470 		*legacy_board = true;
7471 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7472 }
7473 
7474 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7475 				    unsigned long *memory_bar)
7476 {
7477 	int i;
7478 
7479 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7480 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7481 			/* addressing mode bits already removed */
7482 			*memory_bar = pci_resource_start(pdev, i);
7483 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7484 				*memory_bar);
7485 			return 0;
7486 		}
7487 	dev_warn(&pdev->dev, "no memory BAR found\n");
7488 	return -ENODEV;
7489 }
7490 
7491 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7492 				     int wait_for_ready)
7493 {
7494 	int i, iterations;
7495 	u32 scratchpad;
7496 	if (wait_for_ready)
7497 		iterations = HPSA_BOARD_READY_ITERATIONS;
7498 	else
7499 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7500 
7501 	for (i = 0; i < iterations; i++) {
7502 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7503 		if (wait_for_ready) {
7504 			if (scratchpad == HPSA_FIRMWARE_READY)
7505 				return 0;
7506 		} else {
7507 			if (scratchpad != HPSA_FIRMWARE_READY)
7508 				return 0;
7509 		}
7510 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7511 	}
7512 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7513 	return -ENODEV;
7514 }
7515 
7516 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7517 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7518 			       u64 *cfg_offset)
7519 {
7520 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7521 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7522 	*cfg_base_addr &= (u32) 0x0000ffff;
7523 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7524 	if (*cfg_base_addr_index == -1) {
7525 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7526 		return -ENODEV;
7527 	}
7528 	return 0;
7529 }
7530 
7531 static void hpsa_free_cfgtables(struct ctlr_info *h)
7532 {
7533 	if (h->transtable) {
7534 		iounmap(h->transtable);
7535 		h->transtable = NULL;
7536 	}
7537 	if (h->cfgtable) {
7538 		iounmap(h->cfgtable);
7539 		h->cfgtable = NULL;
7540 	}
7541 }
7542 
7543 /* Find and map CISS config table and transfer table
7544 + * several items must be unmapped (freed) later
7545 + * */
7546 static int hpsa_find_cfgtables(struct ctlr_info *h)
7547 {
7548 	u64 cfg_offset;
7549 	u32 cfg_base_addr;
7550 	u64 cfg_base_addr_index;
7551 	u32 trans_offset;
7552 	int rc;
7553 
7554 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7555 		&cfg_base_addr_index, &cfg_offset);
7556 	if (rc)
7557 		return rc;
7558 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7559 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7560 	if (!h->cfgtable) {
7561 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7562 		return -ENOMEM;
7563 	}
7564 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7565 	if (rc)
7566 		return rc;
7567 	/* Find performant mode table. */
7568 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7569 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7570 				cfg_base_addr_index)+cfg_offset+trans_offset,
7571 				sizeof(*h->transtable));
7572 	if (!h->transtable) {
7573 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7574 		hpsa_free_cfgtables(h);
7575 		return -ENOMEM;
7576 	}
7577 	return 0;
7578 }
7579 
7580 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7581 {
7582 #define MIN_MAX_COMMANDS 16
7583 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7584 
7585 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7586 
7587 	/* Limit commands in memory limited kdump scenario. */
7588 	if (reset_devices && h->max_commands > 32)
7589 		h->max_commands = 32;
7590 
7591 	if (h->max_commands < MIN_MAX_COMMANDS) {
7592 		dev_warn(&h->pdev->dev,
7593 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7594 			h->max_commands,
7595 			MIN_MAX_COMMANDS);
7596 		h->max_commands = MIN_MAX_COMMANDS;
7597 	}
7598 }
7599 
7600 /* If the controller reports that the total max sg entries is greater than 512,
7601  * then we know that chained SG blocks work.  (Original smart arrays did not
7602  * support chained SG blocks and would return zero for max sg entries.)
7603  */
7604 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7605 {
7606 	return h->maxsgentries > 512;
7607 }
7608 
7609 /* Interrogate the hardware for some limits:
7610  * max commands, max SG elements without chaining, and with chaining,
7611  * SG chain block size, etc.
7612  */
7613 static void hpsa_find_board_params(struct ctlr_info *h)
7614 {
7615 	hpsa_get_max_perf_mode_cmds(h);
7616 	h->nr_cmds = h->max_commands;
7617 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7618 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7619 	if (hpsa_supports_chained_sg_blocks(h)) {
7620 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7621 		h->max_cmd_sg_entries = 32;
7622 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7623 		h->maxsgentries--; /* save one for chain pointer */
7624 	} else {
7625 		/*
7626 		 * Original smart arrays supported at most 31 s/g entries
7627 		 * embedded inline in the command (trying to use more
7628 		 * would lock up the controller)
7629 		 */
7630 		h->max_cmd_sg_entries = 31;
7631 		h->maxsgentries = 31; /* default to traditional values */
7632 		h->chainsize = 0;
7633 	}
7634 
7635 	/* Find out what task management functions are supported and cache */
7636 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7637 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7638 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7639 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7640 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7641 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7642 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7643 }
7644 
7645 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7646 {
7647 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7648 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7649 		return false;
7650 	}
7651 	return true;
7652 }
7653 
7654 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7655 {
7656 	u32 driver_support;
7657 
7658 	driver_support = readl(&(h->cfgtable->driver_support));
7659 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7660 #ifdef CONFIG_X86
7661 	driver_support |= ENABLE_SCSI_PREFETCH;
7662 #endif
7663 	driver_support |= ENABLE_UNIT_ATTN;
7664 	writel(driver_support, &(h->cfgtable->driver_support));
7665 }
7666 
7667 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7668  * in a prefetch beyond physical memory.
7669  */
7670 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7671 {
7672 	u32 dma_prefetch;
7673 
7674 	if (h->board_id != 0x3225103C)
7675 		return;
7676 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7677 	dma_prefetch |= 0x8000;
7678 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7679 }
7680 
7681 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7682 {
7683 	int i;
7684 	u32 doorbell_value;
7685 	unsigned long flags;
7686 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7687 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7688 		spin_lock_irqsave(&h->lock, flags);
7689 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7690 		spin_unlock_irqrestore(&h->lock, flags);
7691 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7692 			goto done;
7693 		/* delay and try again */
7694 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7695 	}
7696 	return -ENODEV;
7697 done:
7698 	return 0;
7699 }
7700 
7701 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7702 {
7703 	int i;
7704 	u32 doorbell_value;
7705 	unsigned long flags;
7706 
7707 	/* under certain very rare conditions, this can take awhile.
7708 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7709 	 * as we enter this code.)
7710 	 */
7711 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7712 		if (h->remove_in_progress)
7713 			goto done;
7714 		spin_lock_irqsave(&h->lock, flags);
7715 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7716 		spin_unlock_irqrestore(&h->lock, flags);
7717 		if (!(doorbell_value & CFGTBL_ChangeReq))
7718 			goto done;
7719 		/* delay and try again */
7720 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7721 	}
7722 	return -ENODEV;
7723 done:
7724 	return 0;
7725 }
7726 
7727 /* return -ENODEV or other reason on error, 0 on success */
7728 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7729 {
7730 	u32 trans_support;
7731 
7732 	trans_support = readl(&(h->cfgtable->TransportSupport));
7733 	if (!(trans_support & SIMPLE_MODE))
7734 		return -ENOTSUPP;
7735 
7736 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7737 
7738 	/* Update the field, and then ring the doorbell */
7739 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7740 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7741 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7742 	if (hpsa_wait_for_mode_change_ack(h))
7743 		goto error;
7744 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7745 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7746 		goto error;
7747 	h->transMethod = CFGTBL_Trans_Simple;
7748 	return 0;
7749 error:
7750 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7751 	return -ENODEV;
7752 }
7753 
7754 /* free items allocated or mapped by hpsa_pci_init */
7755 static void hpsa_free_pci_init(struct ctlr_info *h)
7756 {
7757 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7758 	iounmap(h->vaddr);			/* pci_init 3 */
7759 	h->vaddr = NULL;
7760 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7761 	/*
7762 	 * call pci_disable_device before pci_release_regions per
7763 	 * Documentation/PCI/pci.txt
7764 	 */
7765 	pci_disable_device(h->pdev);		/* pci_init 1 */
7766 	pci_release_regions(h->pdev);		/* pci_init 2 */
7767 }
7768 
7769 /* several items must be freed later */
7770 static int hpsa_pci_init(struct ctlr_info *h)
7771 {
7772 	int prod_index, err;
7773 	bool legacy_board;
7774 
7775 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7776 	if (prod_index < 0)
7777 		return prod_index;
7778 	h->product_name = products[prod_index].product_name;
7779 	h->access = *(products[prod_index].access);
7780 	h->legacy_board = legacy_board;
7781 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7782 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7783 
7784 	err = pci_enable_device(h->pdev);
7785 	if (err) {
7786 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7787 		pci_disable_device(h->pdev);
7788 		return err;
7789 	}
7790 
7791 	err = pci_request_regions(h->pdev, HPSA);
7792 	if (err) {
7793 		dev_err(&h->pdev->dev,
7794 			"failed to obtain PCI resources\n");
7795 		pci_disable_device(h->pdev);
7796 		return err;
7797 	}
7798 
7799 	pci_set_master(h->pdev);
7800 
7801 	err = hpsa_interrupt_mode(h);
7802 	if (err)
7803 		goto clean1;
7804 
7805 	/* setup mapping between CPU and reply queue */
7806 	hpsa_setup_reply_map(h);
7807 
7808 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7809 	if (err)
7810 		goto clean2;	/* intmode+region, pci */
7811 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7812 	if (!h->vaddr) {
7813 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7814 		err = -ENOMEM;
7815 		goto clean2;	/* intmode+region, pci */
7816 	}
7817 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7818 	if (err)
7819 		goto clean3;	/* vaddr, intmode+region, pci */
7820 	err = hpsa_find_cfgtables(h);
7821 	if (err)
7822 		goto clean3;	/* vaddr, intmode+region, pci */
7823 	hpsa_find_board_params(h);
7824 
7825 	if (!hpsa_CISS_signature_present(h)) {
7826 		err = -ENODEV;
7827 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7828 	}
7829 	hpsa_set_driver_support_bits(h);
7830 	hpsa_p600_dma_prefetch_quirk(h);
7831 	err = hpsa_enter_simple_mode(h);
7832 	if (err)
7833 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7834 	return 0;
7835 
7836 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7837 	hpsa_free_cfgtables(h);
7838 clean3:	/* vaddr, intmode+region, pci */
7839 	iounmap(h->vaddr);
7840 	h->vaddr = NULL;
7841 clean2:	/* intmode+region, pci */
7842 	hpsa_disable_interrupt_mode(h);
7843 clean1:
7844 	/*
7845 	 * call pci_disable_device before pci_release_regions per
7846 	 * Documentation/PCI/pci.txt
7847 	 */
7848 	pci_disable_device(h->pdev);
7849 	pci_release_regions(h->pdev);
7850 	return err;
7851 }
7852 
7853 static void hpsa_hba_inquiry(struct ctlr_info *h)
7854 {
7855 	int rc;
7856 
7857 #define HBA_INQUIRY_BYTE_COUNT 64
7858 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7859 	if (!h->hba_inquiry_data)
7860 		return;
7861 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7862 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7863 	if (rc != 0) {
7864 		kfree(h->hba_inquiry_data);
7865 		h->hba_inquiry_data = NULL;
7866 	}
7867 }
7868 
7869 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7870 {
7871 	int rc, i;
7872 	void __iomem *vaddr;
7873 
7874 	if (!reset_devices)
7875 		return 0;
7876 
7877 	/* kdump kernel is loading, we don't know in which state is
7878 	 * the pci interface. The dev->enable_cnt is equal zero
7879 	 * so we call enable+disable, wait a while and switch it on.
7880 	 */
7881 	rc = pci_enable_device(pdev);
7882 	if (rc) {
7883 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7884 		return -ENODEV;
7885 	}
7886 	pci_disable_device(pdev);
7887 	msleep(260);			/* a randomly chosen number */
7888 	rc = pci_enable_device(pdev);
7889 	if (rc) {
7890 		dev_warn(&pdev->dev, "failed to enable device.\n");
7891 		return -ENODEV;
7892 	}
7893 
7894 	pci_set_master(pdev);
7895 
7896 	vaddr = pci_ioremap_bar(pdev, 0);
7897 	if (vaddr == NULL) {
7898 		rc = -ENOMEM;
7899 		goto out_disable;
7900 	}
7901 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7902 	iounmap(vaddr);
7903 
7904 	/* Reset the controller with a PCI power-cycle or via doorbell */
7905 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7906 
7907 	/* -ENOTSUPP here means we cannot reset the controller
7908 	 * but it's already (and still) up and running in
7909 	 * "performant mode".  Or, it might be 640x, which can't reset
7910 	 * due to concerns about shared bbwc between 6402/6404 pair.
7911 	 */
7912 	if (rc)
7913 		goto out_disable;
7914 
7915 	/* Now try to get the controller to respond to a no-op */
7916 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7917 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7918 		if (hpsa_noop(pdev) == 0)
7919 			break;
7920 		else
7921 			dev_warn(&pdev->dev, "no-op failed%s\n",
7922 					(i < 11 ? "; re-trying" : ""));
7923 	}
7924 
7925 out_disable:
7926 
7927 	pci_disable_device(pdev);
7928 	return rc;
7929 }
7930 
7931 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7932 {
7933 	kfree(h->cmd_pool_bits);
7934 	h->cmd_pool_bits = NULL;
7935 	if (h->cmd_pool) {
7936 		dma_free_coherent(&h->pdev->dev,
7937 				h->nr_cmds * sizeof(struct CommandList),
7938 				h->cmd_pool,
7939 				h->cmd_pool_dhandle);
7940 		h->cmd_pool = NULL;
7941 		h->cmd_pool_dhandle = 0;
7942 	}
7943 	if (h->errinfo_pool) {
7944 		dma_free_coherent(&h->pdev->dev,
7945 				h->nr_cmds * sizeof(struct ErrorInfo),
7946 				h->errinfo_pool,
7947 				h->errinfo_pool_dhandle);
7948 		h->errinfo_pool = NULL;
7949 		h->errinfo_pool_dhandle = 0;
7950 	}
7951 }
7952 
7953 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7954 {
7955 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7956 				   sizeof(unsigned long),
7957 				   GFP_KERNEL);
7958 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7959 		    h->nr_cmds * sizeof(*h->cmd_pool),
7960 		    &h->cmd_pool_dhandle, GFP_KERNEL);
7961 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7962 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7963 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
7964 	if ((h->cmd_pool_bits == NULL)
7965 	    || (h->cmd_pool == NULL)
7966 	    || (h->errinfo_pool == NULL)) {
7967 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7968 		goto clean_up;
7969 	}
7970 	hpsa_preinitialize_commands(h);
7971 	return 0;
7972 clean_up:
7973 	hpsa_free_cmd_pool(h);
7974 	return -ENOMEM;
7975 }
7976 
7977 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7978 static void hpsa_free_irqs(struct ctlr_info *h)
7979 {
7980 	int i;
7981 
7982 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7983 		/* Single reply queue, only one irq to free */
7984 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7985 		h->q[h->intr_mode] = 0;
7986 		return;
7987 	}
7988 
7989 	for (i = 0; i < h->msix_vectors; i++) {
7990 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7991 		h->q[i] = 0;
7992 	}
7993 	for (; i < MAX_REPLY_QUEUES; i++)
7994 		h->q[i] = 0;
7995 }
7996 
7997 /* returns 0 on success; cleans up and returns -Enn on error */
7998 static int hpsa_request_irqs(struct ctlr_info *h,
7999 	irqreturn_t (*msixhandler)(int, void *),
8000 	irqreturn_t (*intxhandler)(int, void *))
8001 {
8002 	int rc, i;
8003 
8004 	/*
8005 	 * initialize h->q[x] = x so that interrupt handlers know which
8006 	 * queue to process.
8007 	 */
8008 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8009 		h->q[i] = (u8) i;
8010 
8011 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8012 		/* If performant mode and MSI-X, use multiple reply queues */
8013 		for (i = 0; i < h->msix_vectors; i++) {
8014 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8015 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8016 					0, h->intrname[i],
8017 					&h->q[i]);
8018 			if (rc) {
8019 				int j;
8020 
8021 				dev_err(&h->pdev->dev,
8022 					"failed to get irq %d for %s\n",
8023 				       pci_irq_vector(h->pdev, i), h->devname);
8024 				for (j = 0; j < i; j++) {
8025 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8026 					h->q[j] = 0;
8027 				}
8028 				for (; j < MAX_REPLY_QUEUES; j++)
8029 					h->q[j] = 0;
8030 				return rc;
8031 			}
8032 		}
8033 	} else {
8034 		/* Use single reply pool */
8035 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8036 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8037 				h->msix_vectors ? "x" : "");
8038 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8039 				msixhandler, 0,
8040 				h->intrname[0],
8041 				&h->q[h->intr_mode]);
8042 		} else {
8043 			sprintf(h->intrname[h->intr_mode],
8044 				"%s-intx", h->devname);
8045 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8046 				intxhandler, IRQF_SHARED,
8047 				h->intrname[0],
8048 				&h->q[h->intr_mode]);
8049 		}
8050 	}
8051 	if (rc) {
8052 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8053 		       pci_irq_vector(h->pdev, 0), h->devname);
8054 		hpsa_free_irqs(h);
8055 		return -ENODEV;
8056 	}
8057 	return 0;
8058 }
8059 
8060 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8061 {
8062 	int rc;
8063 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8064 
8065 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8066 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8067 	if (rc) {
8068 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8069 		return rc;
8070 	}
8071 
8072 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8073 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8074 	if (rc) {
8075 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8076 			"after soft reset.\n");
8077 		return rc;
8078 	}
8079 
8080 	return 0;
8081 }
8082 
8083 static void hpsa_free_reply_queues(struct ctlr_info *h)
8084 {
8085 	int i;
8086 
8087 	for (i = 0; i < h->nreply_queues; i++) {
8088 		if (!h->reply_queue[i].head)
8089 			continue;
8090 		dma_free_coherent(&h->pdev->dev,
8091 					h->reply_queue_size,
8092 					h->reply_queue[i].head,
8093 					h->reply_queue[i].busaddr);
8094 		h->reply_queue[i].head = NULL;
8095 		h->reply_queue[i].busaddr = 0;
8096 	}
8097 	h->reply_queue_size = 0;
8098 }
8099 
8100 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8101 {
8102 	hpsa_free_performant_mode(h);		/* init_one 7 */
8103 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8104 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8105 	hpsa_free_irqs(h);			/* init_one 4 */
8106 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8107 	h->scsi_host = NULL;			/* init_one 3 */
8108 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8109 	free_percpu(h->lockup_detected);	/* init_one 2 */
8110 	h->lockup_detected = NULL;		/* init_one 2 */
8111 	if (h->resubmit_wq) {
8112 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8113 		h->resubmit_wq = NULL;
8114 	}
8115 	if (h->rescan_ctlr_wq) {
8116 		destroy_workqueue(h->rescan_ctlr_wq);
8117 		h->rescan_ctlr_wq = NULL;
8118 	}
8119 	kfree(h);				/* init_one 1 */
8120 }
8121 
8122 /* Called when controller lockup detected. */
8123 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8124 {
8125 	int i, refcount;
8126 	struct CommandList *c;
8127 	int failcount = 0;
8128 
8129 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8130 	for (i = 0; i < h->nr_cmds; i++) {
8131 		c = h->cmd_pool + i;
8132 		refcount = atomic_inc_return(&c->refcount);
8133 		if (refcount > 1) {
8134 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8135 			finish_cmd(c);
8136 			atomic_dec(&h->commands_outstanding);
8137 			failcount++;
8138 		}
8139 		cmd_free(h, c);
8140 	}
8141 	dev_warn(&h->pdev->dev,
8142 		"failed %d commands in fail_all\n", failcount);
8143 }
8144 
8145 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8146 {
8147 	int cpu;
8148 
8149 	for_each_online_cpu(cpu) {
8150 		u32 *lockup_detected;
8151 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8152 		*lockup_detected = value;
8153 	}
8154 	wmb(); /* be sure the per-cpu variables are out to memory */
8155 }
8156 
8157 static void controller_lockup_detected(struct ctlr_info *h)
8158 {
8159 	unsigned long flags;
8160 	u32 lockup_detected;
8161 
8162 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8163 	spin_lock_irqsave(&h->lock, flags);
8164 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8165 	if (!lockup_detected) {
8166 		/* no heartbeat, but controller gave us a zero. */
8167 		dev_warn(&h->pdev->dev,
8168 			"lockup detected after %d but scratchpad register is zero\n",
8169 			h->heartbeat_sample_interval / HZ);
8170 		lockup_detected = 0xffffffff;
8171 	}
8172 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8173 	spin_unlock_irqrestore(&h->lock, flags);
8174 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8175 			lockup_detected, h->heartbeat_sample_interval / HZ);
8176 	if (lockup_detected == 0xffff0000) {
8177 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8178 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8179 	}
8180 	pci_disable_device(h->pdev);
8181 	fail_all_outstanding_cmds(h);
8182 }
8183 
8184 static int detect_controller_lockup(struct ctlr_info *h)
8185 {
8186 	u64 now;
8187 	u32 heartbeat;
8188 	unsigned long flags;
8189 
8190 	now = get_jiffies_64();
8191 	/* If we've received an interrupt recently, we're ok. */
8192 	if (time_after64(h->last_intr_timestamp +
8193 				(h->heartbeat_sample_interval), now))
8194 		return false;
8195 
8196 	/*
8197 	 * If we've already checked the heartbeat recently, we're ok.
8198 	 * This could happen if someone sends us a signal. We
8199 	 * otherwise don't care about signals in this thread.
8200 	 */
8201 	if (time_after64(h->last_heartbeat_timestamp +
8202 				(h->heartbeat_sample_interval), now))
8203 		return false;
8204 
8205 	/* If heartbeat has not changed since we last looked, we're not ok. */
8206 	spin_lock_irqsave(&h->lock, flags);
8207 	heartbeat = readl(&h->cfgtable->HeartBeat);
8208 	spin_unlock_irqrestore(&h->lock, flags);
8209 	if (h->last_heartbeat == heartbeat) {
8210 		controller_lockup_detected(h);
8211 		return true;
8212 	}
8213 
8214 	/* We're ok. */
8215 	h->last_heartbeat = heartbeat;
8216 	h->last_heartbeat_timestamp = now;
8217 	return false;
8218 }
8219 
8220 /*
8221  * Set ioaccel status for all ioaccel volumes.
8222  *
8223  * Called from monitor controller worker (hpsa_event_monitor_worker)
8224  *
8225  * A Volume (or Volumes that comprise an Array set may be undergoing a
8226  * transformation, so we will be turning off ioaccel for all volumes that
8227  * make up the Array.
8228  */
8229 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8230 {
8231 	int rc;
8232 	int i;
8233 	u8 ioaccel_status;
8234 	unsigned char *buf;
8235 	struct hpsa_scsi_dev_t *device;
8236 
8237 	if (!h)
8238 		return;
8239 
8240 	buf = kmalloc(64, GFP_KERNEL);
8241 	if (!buf)
8242 		return;
8243 
8244 	/*
8245 	 * Run through current device list used during I/O requests.
8246 	 */
8247 	for (i = 0; i < h->ndevices; i++) {
8248 		device = h->dev[i];
8249 
8250 		if (!device)
8251 			continue;
8252 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8253 						HPSA_VPD_LV_IOACCEL_STATUS))
8254 			continue;
8255 
8256 		memset(buf, 0, 64);
8257 
8258 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8259 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8260 					buf, 64);
8261 		if (rc != 0)
8262 			continue;
8263 
8264 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8265 		device->offload_config =
8266 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8267 		if (device->offload_config)
8268 			device->offload_to_be_enabled =
8269 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8270 
8271 		/*
8272 		 * Immediately turn off ioaccel for any volume the
8273 		 * controller tells us to. Some of the reasons could be:
8274 		 *    transformation - change to the LVs of an Array.
8275 		 *    degraded volume - component failure
8276 		 *
8277 		 * If ioaccel is to be re-enabled, re-enable later during the
8278 		 * scan operation so the driver can get a fresh raidmap
8279 		 * before turning ioaccel back on.
8280 		 *
8281 		 */
8282 		if (!device->offload_to_be_enabled)
8283 			device->offload_enabled = 0;
8284 	}
8285 
8286 	kfree(buf);
8287 }
8288 
8289 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8290 {
8291 	char *event_type;
8292 
8293 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8294 		return;
8295 
8296 	/* Ask the controller to clear the events we're handling. */
8297 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8298 			| CFGTBL_Trans_io_accel2)) &&
8299 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8300 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8301 
8302 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8303 			event_type = "state change";
8304 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8305 			event_type = "configuration change";
8306 		/* Stop sending new RAID offload reqs via the IO accelerator */
8307 		scsi_block_requests(h->scsi_host);
8308 		hpsa_set_ioaccel_status(h);
8309 		hpsa_drain_accel_commands(h);
8310 		/* Set 'accelerator path config change' bit */
8311 		dev_warn(&h->pdev->dev,
8312 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8313 			h->events, event_type);
8314 		writel(h->events, &(h->cfgtable->clear_event_notify));
8315 		/* Set the "clear event notify field update" bit 6 */
8316 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8317 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8318 		hpsa_wait_for_clear_event_notify_ack(h);
8319 		scsi_unblock_requests(h->scsi_host);
8320 	} else {
8321 		/* Acknowledge controller notification events. */
8322 		writel(h->events, &(h->cfgtable->clear_event_notify));
8323 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8324 		hpsa_wait_for_clear_event_notify_ack(h);
8325 	}
8326 	return;
8327 }
8328 
8329 /* Check a register on the controller to see if there are configuration
8330  * changes (added/changed/removed logical drives, etc.) which mean that
8331  * we should rescan the controller for devices.
8332  * Also check flag for driver-initiated rescan.
8333  */
8334 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8335 {
8336 	if (h->drv_req_rescan) {
8337 		h->drv_req_rescan = 0;
8338 		return 1;
8339 	}
8340 
8341 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8342 		return 0;
8343 
8344 	h->events = readl(&(h->cfgtable->event_notify));
8345 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8346 }
8347 
8348 /*
8349  * Check if any of the offline devices have become ready
8350  */
8351 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8352 {
8353 	unsigned long flags;
8354 	struct offline_device_entry *d;
8355 	struct list_head *this, *tmp;
8356 
8357 	spin_lock_irqsave(&h->offline_device_lock, flags);
8358 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8359 		d = list_entry(this, struct offline_device_entry,
8360 				offline_list);
8361 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8362 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8363 			spin_lock_irqsave(&h->offline_device_lock, flags);
8364 			list_del(&d->offline_list);
8365 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8366 			return 1;
8367 		}
8368 		spin_lock_irqsave(&h->offline_device_lock, flags);
8369 	}
8370 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8371 	return 0;
8372 }
8373 
8374 static int hpsa_luns_changed(struct ctlr_info *h)
8375 {
8376 	int rc = 1; /* assume there are changes */
8377 	struct ReportLUNdata *logdev = NULL;
8378 
8379 	/* if we can't find out if lun data has changed,
8380 	 * assume that it has.
8381 	 */
8382 
8383 	if (!h->lastlogicals)
8384 		return rc;
8385 
8386 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8387 	if (!logdev)
8388 		return rc;
8389 
8390 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8391 		dev_warn(&h->pdev->dev,
8392 			"report luns failed, can't track lun changes.\n");
8393 		goto out;
8394 	}
8395 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8396 		dev_info(&h->pdev->dev,
8397 			"Lun changes detected.\n");
8398 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8399 		goto out;
8400 	} else
8401 		rc = 0; /* no changes detected. */
8402 out:
8403 	kfree(logdev);
8404 	return rc;
8405 }
8406 
8407 static void hpsa_perform_rescan(struct ctlr_info *h)
8408 {
8409 	struct Scsi_Host *sh = NULL;
8410 	unsigned long flags;
8411 
8412 	/*
8413 	 * Do the scan after the reset
8414 	 */
8415 	spin_lock_irqsave(&h->reset_lock, flags);
8416 	if (h->reset_in_progress) {
8417 		h->drv_req_rescan = 1;
8418 		spin_unlock_irqrestore(&h->reset_lock, flags);
8419 		return;
8420 	}
8421 	spin_unlock_irqrestore(&h->reset_lock, flags);
8422 
8423 	sh = scsi_host_get(h->scsi_host);
8424 	if (sh != NULL) {
8425 		hpsa_scan_start(sh);
8426 		scsi_host_put(sh);
8427 		h->drv_req_rescan = 0;
8428 	}
8429 }
8430 
8431 /*
8432  * watch for controller events
8433  */
8434 static void hpsa_event_monitor_worker(struct work_struct *work)
8435 {
8436 	struct ctlr_info *h = container_of(to_delayed_work(work),
8437 					struct ctlr_info, event_monitor_work);
8438 	unsigned long flags;
8439 
8440 	spin_lock_irqsave(&h->lock, flags);
8441 	if (h->remove_in_progress) {
8442 		spin_unlock_irqrestore(&h->lock, flags);
8443 		return;
8444 	}
8445 	spin_unlock_irqrestore(&h->lock, flags);
8446 
8447 	if (hpsa_ctlr_needs_rescan(h)) {
8448 		hpsa_ack_ctlr_events(h);
8449 		hpsa_perform_rescan(h);
8450 	}
8451 
8452 	spin_lock_irqsave(&h->lock, flags);
8453 	if (!h->remove_in_progress)
8454 		schedule_delayed_work(&h->event_monitor_work,
8455 					HPSA_EVENT_MONITOR_INTERVAL);
8456 	spin_unlock_irqrestore(&h->lock, flags);
8457 }
8458 
8459 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8460 {
8461 	unsigned long flags;
8462 	struct ctlr_info *h = container_of(to_delayed_work(work),
8463 					struct ctlr_info, rescan_ctlr_work);
8464 
8465 	spin_lock_irqsave(&h->lock, flags);
8466 	if (h->remove_in_progress) {
8467 		spin_unlock_irqrestore(&h->lock, flags);
8468 		return;
8469 	}
8470 	spin_unlock_irqrestore(&h->lock, flags);
8471 
8472 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8473 		hpsa_perform_rescan(h);
8474 	} else if (h->discovery_polling) {
8475 		if (hpsa_luns_changed(h)) {
8476 			dev_info(&h->pdev->dev,
8477 				"driver discovery polling rescan.\n");
8478 			hpsa_perform_rescan(h);
8479 		}
8480 	}
8481 	spin_lock_irqsave(&h->lock, flags);
8482 	if (!h->remove_in_progress)
8483 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8484 				h->heartbeat_sample_interval);
8485 	spin_unlock_irqrestore(&h->lock, flags);
8486 }
8487 
8488 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8489 {
8490 	unsigned long flags;
8491 	struct ctlr_info *h = container_of(to_delayed_work(work),
8492 					struct ctlr_info, monitor_ctlr_work);
8493 
8494 	detect_controller_lockup(h);
8495 	if (lockup_detected(h))
8496 		return;
8497 
8498 	spin_lock_irqsave(&h->lock, flags);
8499 	if (!h->remove_in_progress)
8500 		schedule_delayed_work(&h->monitor_ctlr_work,
8501 				h->heartbeat_sample_interval);
8502 	spin_unlock_irqrestore(&h->lock, flags);
8503 }
8504 
8505 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8506 						char *name)
8507 {
8508 	struct workqueue_struct *wq = NULL;
8509 
8510 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8511 	if (!wq)
8512 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8513 
8514 	return wq;
8515 }
8516 
8517 static void hpda_free_ctlr_info(struct ctlr_info *h)
8518 {
8519 	kfree(h->reply_map);
8520 	kfree(h);
8521 }
8522 
8523 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8524 {
8525 	struct ctlr_info *h;
8526 
8527 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8528 	if (!h)
8529 		return NULL;
8530 
8531 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8532 	if (!h->reply_map) {
8533 		kfree(h);
8534 		return NULL;
8535 	}
8536 	return h;
8537 }
8538 
8539 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8540 {
8541 	int dac, rc;
8542 	struct ctlr_info *h;
8543 	int try_soft_reset = 0;
8544 	unsigned long flags;
8545 	u32 board_id;
8546 
8547 	if (number_of_controllers == 0)
8548 		printk(KERN_INFO DRIVER_NAME "\n");
8549 
8550 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8551 	if (rc < 0) {
8552 		dev_warn(&pdev->dev, "Board ID not found\n");
8553 		return rc;
8554 	}
8555 
8556 	rc = hpsa_init_reset_devices(pdev, board_id);
8557 	if (rc) {
8558 		if (rc != -ENOTSUPP)
8559 			return rc;
8560 		/* If the reset fails in a particular way (it has no way to do
8561 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8562 		 * a soft reset once we get the controller configured up to the
8563 		 * point that it can accept a command.
8564 		 */
8565 		try_soft_reset = 1;
8566 		rc = 0;
8567 	}
8568 
8569 reinit_after_soft_reset:
8570 
8571 	/* Command structures must be aligned on a 32-byte boundary because
8572 	 * the 5 lower bits of the address are used by the hardware. and by
8573 	 * the driver.  See comments in hpsa.h for more info.
8574 	 */
8575 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8576 	h = hpda_alloc_ctlr_info();
8577 	if (!h) {
8578 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8579 		return -ENOMEM;
8580 	}
8581 
8582 	h->pdev = pdev;
8583 
8584 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8585 	INIT_LIST_HEAD(&h->offline_device_list);
8586 	spin_lock_init(&h->lock);
8587 	spin_lock_init(&h->offline_device_lock);
8588 	spin_lock_init(&h->scan_lock);
8589 	spin_lock_init(&h->reset_lock);
8590 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8591 
8592 	/* Allocate and clear per-cpu variable lockup_detected */
8593 	h->lockup_detected = alloc_percpu(u32);
8594 	if (!h->lockup_detected) {
8595 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8596 		rc = -ENOMEM;
8597 		goto clean1;	/* aer/h */
8598 	}
8599 	set_lockup_detected_for_all_cpus(h, 0);
8600 
8601 	rc = hpsa_pci_init(h);
8602 	if (rc)
8603 		goto clean2;	/* lu, aer/h */
8604 
8605 	/* relies on h-> settings made by hpsa_pci_init, including
8606 	 * interrupt_mode h->intr */
8607 	rc = hpsa_scsi_host_alloc(h);
8608 	if (rc)
8609 		goto clean2_5;	/* pci, lu, aer/h */
8610 
8611 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8612 	h->ctlr = number_of_controllers;
8613 	number_of_controllers++;
8614 
8615 	/* configure PCI DMA stuff */
8616 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8617 	if (rc == 0) {
8618 		dac = 1;
8619 	} else {
8620 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8621 		if (rc == 0) {
8622 			dac = 0;
8623 		} else {
8624 			dev_err(&pdev->dev, "no suitable DMA available\n");
8625 			goto clean3;	/* shost, pci, lu, aer/h */
8626 		}
8627 	}
8628 
8629 	/* make sure the board interrupts are off */
8630 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8631 
8632 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8633 	if (rc)
8634 		goto clean3;	/* shost, pci, lu, aer/h */
8635 	rc = hpsa_alloc_cmd_pool(h);
8636 	if (rc)
8637 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8638 	rc = hpsa_alloc_sg_chain_blocks(h);
8639 	if (rc)
8640 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8641 	init_waitqueue_head(&h->scan_wait_queue);
8642 	init_waitqueue_head(&h->event_sync_wait_queue);
8643 	mutex_init(&h->reset_mutex);
8644 	h->scan_finished = 1; /* no scan currently in progress */
8645 	h->scan_waiting = 0;
8646 
8647 	pci_set_drvdata(pdev, h);
8648 	h->ndevices = 0;
8649 
8650 	spin_lock_init(&h->devlock);
8651 	rc = hpsa_put_ctlr_into_performant_mode(h);
8652 	if (rc)
8653 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8654 
8655 	/* create the resubmit workqueue */
8656 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8657 	if (!h->rescan_ctlr_wq) {
8658 		rc = -ENOMEM;
8659 		goto clean7;
8660 	}
8661 
8662 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8663 	if (!h->resubmit_wq) {
8664 		rc = -ENOMEM;
8665 		goto clean7;	/* aer/h */
8666 	}
8667 
8668 	/*
8669 	 * At this point, the controller is ready to take commands.
8670 	 * Now, if reset_devices and the hard reset didn't work, try
8671 	 * the soft reset and see if that works.
8672 	 */
8673 	if (try_soft_reset) {
8674 
8675 		/* This is kind of gross.  We may or may not get a completion
8676 		 * from the soft reset command, and if we do, then the value
8677 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8678 		 * after the reset throwing away any completions we get during
8679 		 * that time.  Unregister the interrupt handler and register
8680 		 * fake ones to scoop up any residual completions.
8681 		 */
8682 		spin_lock_irqsave(&h->lock, flags);
8683 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8684 		spin_unlock_irqrestore(&h->lock, flags);
8685 		hpsa_free_irqs(h);
8686 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8687 					hpsa_intx_discard_completions);
8688 		if (rc) {
8689 			dev_warn(&h->pdev->dev,
8690 				"Failed to request_irq after soft reset.\n");
8691 			/*
8692 			 * cannot goto clean7 or free_irqs will be called
8693 			 * again. Instead, do its work
8694 			 */
8695 			hpsa_free_performant_mode(h);	/* clean7 */
8696 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8697 			hpsa_free_cmd_pool(h);		/* clean5 */
8698 			/*
8699 			 * skip hpsa_free_irqs(h) clean4 since that
8700 			 * was just called before request_irqs failed
8701 			 */
8702 			goto clean3;
8703 		}
8704 
8705 		rc = hpsa_kdump_soft_reset(h);
8706 		if (rc)
8707 			/* Neither hard nor soft reset worked, we're hosed. */
8708 			goto clean7;
8709 
8710 		dev_info(&h->pdev->dev, "Board READY.\n");
8711 		dev_info(&h->pdev->dev,
8712 			"Waiting for stale completions to drain.\n");
8713 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8714 		msleep(10000);
8715 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8716 
8717 		rc = controller_reset_failed(h->cfgtable);
8718 		if (rc)
8719 			dev_info(&h->pdev->dev,
8720 				"Soft reset appears to have failed.\n");
8721 
8722 		/* since the controller's reset, we have to go back and re-init
8723 		 * everything.  Easiest to just forget what we've done and do it
8724 		 * all over again.
8725 		 */
8726 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8727 		try_soft_reset = 0;
8728 		if (rc)
8729 			/* don't goto clean, we already unallocated */
8730 			return -ENODEV;
8731 
8732 		goto reinit_after_soft_reset;
8733 	}
8734 
8735 	/* Enable Accelerated IO path at driver layer */
8736 	h->acciopath_status = 1;
8737 	/* Disable discovery polling.*/
8738 	h->discovery_polling = 0;
8739 
8740 
8741 	/* Turn the interrupts on so we can service requests */
8742 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8743 
8744 	hpsa_hba_inquiry(h);
8745 
8746 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8747 	if (!h->lastlogicals)
8748 		dev_info(&h->pdev->dev,
8749 			"Can't track change to report lun data\n");
8750 
8751 	/* hook into SCSI subsystem */
8752 	rc = hpsa_scsi_add_host(h);
8753 	if (rc)
8754 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8755 
8756 	/* Monitor the controller for firmware lockups */
8757 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8758 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8759 	schedule_delayed_work(&h->monitor_ctlr_work,
8760 				h->heartbeat_sample_interval);
8761 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8762 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8763 				h->heartbeat_sample_interval);
8764 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8765 	schedule_delayed_work(&h->event_monitor_work,
8766 				HPSA_EVENT_MONITOR_INTERVAL);
8767 	return 0;
8768 
8769 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8770 	hpsa_free_performant_mode(h);
8771 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8772 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8773 	hpsa_free_sg_chain_blocks(h);
8774 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8775 	hpsa_free_cmd_pool(h);
8776 clean4: /* irq, shost, pci, lu, aer/h */
8777 	hpsa_free_irqs(h);
8778 clean3: /* shost, pci, lu, aer/h */
8779 	scsi_host_put(h->scsi_host);
8780 	h->scsi_host = NULL;
8781 clean2_5: /* pci, lu, aer/h */
8782 	hpsa_free_pci_init(h);
8783 clean2: /* lu, aer/h */
8784 	if (h->lockup_detected) {
8785 		free_percpu(h->lockup_detected);
8786 		h->lockup_detected = NULL;
8787 	}
8788 clean1:	/* wq/aer/h */
8789 	if (h->resubmit_wq) {
8790 		destroy_workqueue(h->resubmit_wq);
8791 		h->resubmit_wq = NULL;
8792 	}
8793 	if (h->rescan_ctlr_wq) {
8794 		destroy_workqueue(h->rescan_ctlr_wq);
8795 		h->rescan_ctlr_wq = NULL;
8796 	}
8797 	kfree(h);
8798 	return rc;
8799 }
8800 
8801 static void hpsa_flush_cache(struct ctlr_info *h)
8802 {
8803 	char *flush_buf;
8804 	struct CommandList *c;
8805 	int rc;
8806 
8807 	if (unlikely(lockup_detected(h)))
8808 		return;
8809 	flush_buf = kzalloc(4, GFP_KERNEL);
8810 	if (!flush_buf)
8811 		return;
8812 
8813 	c = cmd_alloc(h);
8814 
8815 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8816 		RAID_CTLR_LUNID, TYPE_CMD)) {
8817 		goto out;
8818 	}
8819 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8820 			DEFAULT_TIMEOUT);
8821 	if (rc)
8822 		goto out;
8823 	if (c->err_info->CommandStatus != 0)
8824 out:
8825 		dev_warn(&h->pdev->dev,
8826 			"error flushing cache on controller\n");
8827 	cmd_free(h, c);
8828 	kfree(flush_buf);
8829 }
8830 
8831 /* Make controller gather fresh report lun data each time we
8832  * send down a report luns request
8833  */
8834 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8835 {
8836 	u32 *options;
8837 	struct CommandList *c;
8838 	int rc;
8839 
8840 	/* Don't bother trying to set diag options if locked up */
8841 	if (unlikely(h->lockup_detected))
8842 		return;
8843 
8844 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8845 	if (!options)
8846 		return;
8847 
8848 	c = cmd_alloc(h);
8849 
8850 	/* first, get the current diag options settings */
8851 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8852 		RAID_CTLR_LUNID, TYPE_CMD))
8853 		goto errout;
8854 
8855 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8856 			NO_TIMEOUT);
8857 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8858 		goto errout;
8859 
8860 	/* Now, set the bit for disabling the RLD caching */
8861 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8862 
8863 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8864 		RAID_CTLR_LUNID, TYPE_CMD))
8865 		goto errout;
8866 
8867 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8868 			NO_TIMEOUT);
8869 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8870 		goto errout;
8871 
8872 	/* Now verify that it got set: */
8873 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8874 		RAID_CTLR_LUNID, TYPE_CMD))
8875 		goto errout;
8876 
8877 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8878 			NO_TIMEOUT);
8879 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8880 		goto errout;
8881 
8882 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8883 		goto out;
8884 
8885 errout:
8886 	dev_err(&h->pdev->dev,
8887 			"Error: failed to disable report lun data caching.\n");
8888 out:
8889 	cmd_free(h, c);
8890 	kfree(options);
8891 }
8892 
8893 static void __hpsa_shutdown(struct pci_dev *pdev)
8894 {
8895 	struct ctlr_info *h;
8896 
8897 	h = pci_get_drvdata(pdev);
8898 	/* Turn board interrupts off  and send the flush cache command
8899 	 * sendcmd will turn off interrupt, and send the flush...
8900 	 * To write all data in the battery backed cache to disks
8901 	 */
8902 	hpsa_flush_cache(h);
8903 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8904 	hpsa_free_irqs(h);			/* init_one 4 */
8905 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8906 }
8907 
8908 static void hpsa_shutdown(struct pci_dev *pdev)
8909 {
8910 	__hpsa_shutdown(pdev);
8911 	pci_disable_device(pdev);
8912 }
8913 
8914 static void hpsa_free_device_info(struct ctlr_info *h)
8915 {
8916 	int i;
8917 
8918 	for (i = 0; i < h->ndevices; i++) {
8919 		kfree(h->dev[i]);
8920 		h->dev[i] = NULL;
8921 	}
8922 }
8923 
8924 static void hpsa_remove_one(struct pci_dev *pdev)
8925 {
8926 	struct ctlr_info *h;
8927 	unsigned long flags;
8928 
8929 	if (pci_get_drvdata(pdev) == NULL) {
8930 		dev_err(&pdev->dev, "unable to remove device\n");
8931 		return;
8932 	}
8933 	h = pci_get_drvdata(pdev);
8934 
8935 	/* Get rid of any controller monitoring work items */
8936 	spin_lock_irqsave(&h->lock, flags);
8937 	h->remove_in_progress = 1;
8938 	spin_unlock_irqrestore(&h->lock, flags);
8939 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8940 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8941 	cancel_delayed_work_sync(&h->event_monitor_work);
8942 	destroy_workqueue(h->rescan_ctlr_wq);
8943 	destroy_workqueue(h->resubmit_wq);
8944 
8945 	hpsa_delete_sas_host(h);
8946 
8947 	/*
8948 	 * Call before disabling interrupts.
8949 	 * scsi_remove_host can trigger I/O operations especially
8950 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8951 	 * operations which cannot complete and will hang the system.
8952 	 */
8953 	if (h->scsi_host)
8954 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8955 	/* includes hpsa_free_irqs - init_one 4 */
8956 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8957 	__hpsa_shutdown(pdev);
8958 
8959 	hpsa_free_device_info(h);		/* scan */
8960 
8961 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8962 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8963 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8964 	hpsa_free_performant_mode(h);			/* init_one 7 */
8965 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8966 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8967 	kfree(h->lastlogicals);
8968 
8969 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8970 
8971 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8972 	h->scsi_host = NULL;				/* init_one 3 */
8973 
8974 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8975 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8976 
8977 	free_percpu(h->lockup_detected);		/* init_one 2 */
8978 	h->lockup_detected = NULL;			/* init_one 2 */
8979 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8980 
8981 	hpda_free_ctlr_info(h);				/* init_one 1 */
8982 }
8983 
8984 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8985 	__attribute__((unused)) pm_message_t state)
8986 {
8987 	return -ENOSYS;
8988 }
8989 
8990 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8991 {
8992 	return -ENOSYS;
8993 }
8994 
8995 static struct pci_driver hpsa_pci_driver = {
8996 	.name = HPSA,
8997 	.probe = hpsa_init_one,
8998 	.remove = hpsa_remove_one,
8999 	.id_table = hpsa_pci_device_id,	/* id_table */
9000 	.shutdown = hpsa_shutdown,
9001 	.suspend = hpsa_suspend,
9002 	.resume = hpsa_resume,
9003 };
9004 
9005 /* Fill in bucket_map[], given nsgs (the max number of
9006  * scatter gather elements supported) and bucket[],
9007  * which is an array of 8 integers.  The bucket[] array
9008  * contains 8 different DMA transfer sizes (in 16
9009  * byte increments) which the controller uses to fetch
9010  * commands.  This function fills in bucket_map[], which
9011  * maps a given number of scatter gather elements to one of
9012  * the 8 DMA transfer sizes.  The point of it is to allow the
9013  * controller to only do as much DMA as needed to fetch the
9014  * command, with the DMA transfer size encoded in the lower
9015  * bits of the command address.
9016  */
9017 static void  calc_bucket_map(int bucket[], int num_buckets,
9018 	int nsgs, int min_blocks, u32 *bucket_map)
9019 {
9020 	int i, j, b, size;
9021 
9022 	/* Note, bucket_map must have nsgs+1 entries. */
9023 	for (i = 0; i <= nsgs; i++) {
9024 		/* Compute size of a command with i SG entries */
9025 		size = i + min_blocks;
9026 		b = num_buckets; /* Assume the biggest bucket */
9027 		/* Find the bucket that is just big enough */
9028 		for (j = 0; j < num_buckets; j++) {
9029 			if (bucket[j] >= size) {
9030 				b = j;
9031 				break;
9032 			}
9033 		}
9034 		/* for a command with i SG entries, use bucket b. */
9035 		bucket_map[i] = b;
9036 	}
9037 }
9038 
9039 /*
9040  * return -ENODEV on err, 0 on success (or no action)
9041  * allocates numerous items that must be freed later
9042  */
9043 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9044 {
9045 	int i;
9046 	unsigned long register_value;
9047 	unsigned long transMethod = CFGTBL_Trans_Performant |
9048 			(trans_support & CFGTBL_Trans_use_short_tags) |
9049 				CFGTBL_Trans_enable_directed_msix |
9050 			(trans_support & (CFGTBL_Trans_io_accel1 |
9051 				CFGTBL_Trans_io_accel2));
9052 	struct access_method access = SA5_performant_access;
9053 
9054 	/* This is a bit complicated.  There are 8 registers on
9055 	 * the controller which we write to to tell it 8 different
9056 	 * sizes of commands which there may be.  It's a way of
9057 	 * reducing the DMA done to fetch each command.  Encoded into
9058 	 * each command's tag are 3 bits which communicate to the controller
9059 	 * which of the eight sizes that command fits within.  The size of
9060 	 * each command depends on how many scatter gather entries there are.
9061 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9062 	 * with the number of 16-byte blocks a command of that size requires.
9063 	 * The smallest command possible requires 5 such 16 byte blocks.
9064 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9065 	 * blocks.  Note, this only extends to the SG entries contained
9066 	 * within the command block, and does not extend to chained blocks
9067 	 * of SG elements.   bft[] contains the eight values we write to
9068 	 * the registers.  They are not evenly distributed, but have more
9069 	 * sizes for small commands, and fewer sizes for larger commands.
9070 	 */
9071 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9072 #define MIN_IOACCEL2_BFT_ENTRY 5
9073 #define HPSA_IOACCEL2_HEADER_SZ 4
9074 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9075 			13, 14, 15, 16, 17, 18, 19,
9076 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9077 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9078 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9079 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9080 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9081 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9082 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9083 	/*  5 = 1 s/g entry or 4k
9084 	 *  6 = 2 s/g entry or 8k
9085 	 *  8 = 4 s/g entry or 16k
9086 	 * 10 = 6 s/g entry or 24k
9087 	 */
9088 
9089 	/* If the controller supports either ioaccel method then
9090 	 * we can also use the RAID stack submit path that does not
9091 	 * perform the superfluous readl() after each command submission.
9092 	 */
9093 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9094 		access = SA5_performant_access_no_read;
9095 
9096 	/* Controller spec: zero out this buffer. */
9097 	for (i = 0; i < h->nreply_queues; i++)
9098 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9099 
9100 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9101 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9102 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9103 	for (i = 0; i < 8; i++)
9104 		writel(bft[i], &h->transtable->BlockFetch[i]);
9105 
9106 	/* size of controller ring buffer */
9107 	writel(h->max_commands, &h->transtable->RepQSize);
9108 	writel(h->nreply_queues, &h->transtable->RepQCount);
9109 	writel(0, &h->transtable->RepQCtrAddrLow32);
9110 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9111 
9112 	for (i = 0; i < h->nreply_queues; i++) {
9113 		writel(0, &h->transtable->RepQAddr[i].upper);
9114 		writel(h->reply_queue[i].busaddr,
9115 			&h->transtable->RepQAddr[i].lower);
9116 	}
9117 
9118 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9119 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9120 	/*
9121 	 * enable outbound interrupt coalescing in accelerator mode;
9122 	 */
9123 	if (trans_support & CFGTBL_Trans_io_accel1) {
9124 		access = SA5_ioaccel_mode1_access;
9125 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9126 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9127 	} else
9128 		if (trans_support & CFGTBL_Trans_io_accel2)
9129 			access = SA5_ioaccel_mode2_access;
9130 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9131 	if (hpsa_wait_for_mode_change_ack(h)) {
9132 		dev_err(&h->pdev->dev,
9133 			"performant mode problem - doorbell timeout\n");
9134 		return -ENODEV;
9135 	}
9136 	register_value = readl(&(h->cfgtable->TransportActive));
9137 	if (!(register_value & CFGTBL_Trans_Performant)) {
9138 		dev_err(&h->pdev->dev,
9139 			"performant mode problem - transport not active\n");
9140 		return -ENODEV;
9141 	}
9142 	/* Change the access methods to the performant access methods */
9143 	h->access = access;
9144 	h->transMethod = transMethod;
9145 
9146 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9147 		(trans_support & CFGTBL_Trans_io_accel2)))
9148 		return 0;
9149 
9150 	if (trans_support & CFGTBL_Trans_io_accel1) {
9151 		/* Set up I/O accelerator mode */
9152 		for (i = 0; i < h->nreply_queues; i++) {
9153 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9154 			h->reply_queue[i].current_entry =
9155 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9156 		}
9157 		bft[7] = h->ioaccel_maxsg + 8;
9158 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9159 				h->ioaccel1_blockFetchTable);
9160 
9161 		/* initialize all reply queue entries to unused */
9162 		for (i = 0; i < h->nreply_queues; i++)
9163 			memset(h->reply_queue[i].head,
9164 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9165 				h->reply_queue_size);
9166 
9167 		/* set all the constant fields in the accelerator command
9168 		 * frames once at init time to save CPU cycles later.
9169 		 */
9170 		for (i = 0; i < h->nr_cmds; i++) {
9171 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9172 
9173 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9174 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9175 					(i * sizeof(struct ErrorInfo)));
9176 			cp->err_info_len = sizeof(struct ErrorInfo);
9177 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9178 			cp->host_context_flags =
9179 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9180 			cp->timeout_sec = 0;
9181 			cp->ReplyQueue = 0;
9182 			cp->tag =
9183 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9184 			cp->host_addr =
9185 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9186 					(i * sizeof(struct io_accel1_cmd)));
9187 		}
9188 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9189 		u64 cfg_offset, cfg_base_addr_index;
9190 		u32 bft2_offset, cfg_base_addr;
9191 		int rc;
9192 
9193 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9194 			&cfg_base_addr_index, &cfg_offset);
9195 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9196 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9197 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9198 				4, h->ioaccel2_blockFetchTable);
9199 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9200 		BUILD_BUG_ON(offsetof(struct CfgTable,
9201 				io_accel_request_size_offset) != 0xb8);
9202 		h->ioaccel2_bft2_regs =
9203 			remap_pci_mem(pci_resource_start(h->pdev,
9204 					cfg_base_addr_index) +
9205 					cfg_offset + bft2_offset,
9206 					ARRAY_SIZE(bft2) *
9207 					sizeof(*h->ioaccel2_bft2_regs));
9208 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9209 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9210 	}
9211 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9212 	if (hpsa_wait_for_mode_change_ack(h)) {
9213 		dev_err(&h->pdev->dev,
9214 			"performant mode problem - enabling ioaccel mode\n");
9215 		return -ENODEV;
9216 	}
9217 	return 0;
9218 }
9219 
9220 /* Free ioaccel1 mode command blocks and block fetch table */
9221 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9222 {
9223 	if (h->ioaccel_cmd_pool) {
9224 		pci_free_consistent(h->pdev,
9225 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9226 			h->ioaccel_cmd_pool,
9227 			h->ioaccel_cmd_pool_dhandle);
9228 		h->ioaccel_cmd_pool = NULL;
9229 		h->ioaccel_cmd_pool_dhandle = 0;
9230 	}
9231 	kfree(h->ioaccel1_blockFetchTable);
9232 	h->ioaccel1_blockFetchTable = NULL;
9233 }
9234 
9235 /* Allocate ioaccel1 mode command blocks and block fetch table */
9236 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9237 {
9238 	h->ioaccel_maxsg =
9239 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9240 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9241 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9242 
9243 	/* Command structures must be aligned on a 128-byte boundary
9244 	 * because the 7 lower bits of the address are used by the
9245 	 * hardware.
9246 	 */
9247 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9248 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9249 	h->ioaccel_cmd_pool =
9250 		dma_alloc_coherent(&h->pdev->dev,
9251 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9252 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9253 
9254 	h->ioaccel1_blockFetchTable =
9255 		kmalloc(((h->ioaccel_maxsg + 1) *
9256 				sizeof(u32)), GFP_KERNEL);
9257 
9258 	if ((h->ioaccel_cmd_pool == NULL) ||
9259 		(h->ioaccel1_blockFetchTable == NULL))
9260 		goto clean_up;
9261 
9262 	memset(h->ioaccel_cmd_pool, 0,
9263 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9264 	return 0;
9265 
9266 clean_up:
9267 	hpsa_free_ioaccel1_cmd_and_bft(h);
9268 	return -ENOMEM;
9269 }
9270 
9271 /* Free ioaccel2 mode command blocks and block fetch table */
9272 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9273 {
9274 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9275 
9276 	if (h->ioaccel2_cmd_pool) {
9277 		pci_free_consistent(h->pdev,
9278 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9279 			h->ioaccel2_cmd_pool,
9280 			h->ioaccel2_cmd_pool_dhandle);
9281 		h->ioaccel2_cmd_pool = NULL;
9282 		h->ioaccel2_cmd_pool_dhandle = 0;
9283 	}
9284 	kfree(h->ioaccel2_blockFetchTable);
9285 	h->ioaccel2_blockFetchTable = NULL;
9286 }
9287 
9288 /* Allocate ioaccel2 mode command blocks and block fetch table */
9289 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9290 {
9291 	int rc;
9292 
9293 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9294 
9295 	h->ioaccel_maxsg =
9296 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9297 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9298 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9299 
9300 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9301 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9302 	h->ioaccel2_cmd_pool =
9303 		dma_alloc_coherent(&h->pdev->dev,
9304 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9305 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9306 
9307 	h->ioaccel2_blockFetchTable =
9308 		kmalloc(((h->ioaccel_maxsg + 1) *
9309 				sizeof(u32)), GFP_KERNEL);
9310 
9311 	if ((h->ioaccel2_cmd_pool == NULL) ||
9312 		(h->ioaccel2_blockFetchTable == NULL)) {
9313 		rc = -ENOMEM;
9314 		goto clean_up;
9315 	}
9316 
9317 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9318 	if (rc)
9319 		goto clean_up;
9320 
9321 	memset(h->ioaccel2_cmd_pool, 0,
9322 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9323 	return 0;
9324 
9325 clean_up:
9326 	hpsa_free_ioaccel2_cmd_and_bft(h);
9327 	return rc;
9328 }
9329 
9330 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9331 static void hpsa_free_performant_mode(struct ctlr_info *h)
9332 {
9333 	kfree(h->blockFetchTable);
9334 	h->blockFetchTable = NULL;
9335 	hpsa_free_reply_queues(h);
9336 	hpsa_free_ioaccel1_cmd_and_bft(h);
9337 	hpsa_free_ioaccel2_cmd_and_bft(h);
9338 }
9339 
9340 /* return -ENODEV on error, 0 on success (or no action)
9341  * allocates numerous items that must be freed later
9342  */
9343 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9344 {
9345 	u32 trans_support;
9346 	unsigned long transMethod = CFGTBL_Trans_Performant |
9347 					CFGTBL_Trans_use_short_tags;
9348 	int i, rc;
9349 
9350 	if (hpsa_simple_mode)
9351 		return 0;
9352 
9353 	trans_support = readl(&(h->cfgtable->TransportSupport));
9354 	if (!(trans_support & PERFORMANT_MODE))
9355 		return 0;
9356 
9357 	/* Check for I/O accelerator mode support */
9358 	if (trans_support & CFGTBL_Trans_io_accel1) {
9359 		transMethod |= CFGTBL_Trans_io_accel1 |
9360 				CFGTBL_Trans_enable_directed_msix;
9361 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9362 		if (rc)
9363 			return rc;
9364 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9365 		transMethod |= CFGTBL_Trans_io_accel2 |
9366 				CFGTBL_Trans_enable_directed_msix;
9367 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9368 		if (rc)
9369 			return rc;
9370 	}
9371 
9372 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9373 	hpsa_get_max_perf_mode_cmds(h);
9374 	/* Performant mode ring buffer and supporting data structures */
9375 	h->reply_queue_size = h->max_commands * sizeof(u64);
9376 
9377 	for (i = 0; i < h->nreply_queues; i++) {
9378 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9379 						h->reply_queue_size,
9380 						&h->reply_queue[i].busaddr,
9381 						GFP_KERNEL);
9382 		if (!h->reply_queue[i].head) {
9383 			rc = -ENOMEM;
9384 			goto clean1;	/* rq, ioaccel */
9385 		}
9386 		h->reply_queue[i].size = h->max_commands;
9387 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9388 		h->reply_queue[i].current_entry = 0;
9389 	}
9390 
9391 	/* Need a block fetch table for performant mode */
9392 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9393 				sizeof(u32)), GFP_KERNEL);
9394 	if (!h->blockFetchTable) {
9395 		rc = -ENOMEM;
9396 		goto clean1;	/* rq, ioaccel */
9397 	}
9398 
9399 	rc = hpsa_enter_performant_mode(h, trans_support);
9400 	if (rc)
9401 		goto clean2;	/* bft, rq, ioaccel */
9402 	return 0;
9403 
9404 clean2:	/* bft, rq, ioaccel */
9405 	kfree(h->blockFetchTable);
9406 	h->blockFetchTable = NULL;
9407 clean1:	/* rq, ioaccel */
9408 	hpsa_free_reply_queues(h);
9409 	hpsa_free_ioaccel1_cmd_and_bft(h);
9410 	hpsa_free_ioaccel2_cmd_and_bft(h);
9411 	return rc;
9412 }
9413 
9414 static int is_accelerated_cmd(struct CommandList *c)
9415 {
9416 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9417 }
9418 
9419 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9420 {
9421 	struct CommandList *c = NULL;
9422 	int i, accel_cmds_out;
9423 	int refcount;
9424 
9425 	do { /* wait for all outstanding ioaccel commands to drain out */
9426 		accel_cmds_out = 0;
9427 		for (i = 0; i < h->nr_cmds; i++) {
9428 			c = h->cmd_pool + i;
9429 			refcount = atomic_inc_return(&c->refcount);
9430 			if (refcount > 1) /* Command is allocated */
9431 				accel_cmds_out += is_accelerated_cmd(c);
9432 			cmd_free(h, c);
9433 		}
9434 		if (accel_cmds_out <= 0)
9435 			break;
9436 		msleep(100);
9437 	} while (1);
9438 }
9439 
9440 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9441 				struct hpsa_sas_port *hpsa_sas_port)
9442 {
9443 	struct hpsa_sas_phy *hpsa_sas_phy;
9444 	struct sas_phy *phy;
9445 
9446 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9447 	if (!hpsa_sas_phy)
9448 		return NULL;
9449 
9450 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9451 		hpsa_sas_port->next_phy_index);
9452 	if (!phy) {
9453 		kfree(hpsa_sas_phy);
9454 		return NULL;
9455 	}
9456 
9457 	hpsa_sas_port->next_phy_index++;
9458 	hpsa_sas_phy->phy = phy;
9459 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9460 
9461 	return hpsa_sas_phy;
9462 }
9463 
9464 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9465 {
9466 	struct sas_phy *phy = hpsa_sas_phy->phy;
9467 
9468 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9469 	if (hpsa_sas_phy->added_to_port)
9470 		list_del(&hpsa_sas_phy->phy_list_entry);
9471 	sas_phy_delete(phy);
9472 	kfree(hpsa_sas_phy);
9473 }
9474 
9475 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9476 {
9477 	int rc;
9478 	struct hpsa_sas_port *hpsa_sas_port;
9479 	struct sas_phy *phy;
9480 	struct sas_identify *identify;
9481 
9482 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9483 	phy = hpsa_sas_phy->phy;
9484 
9485 	identify = &phy->identify;
9486 	memset(identify, 0, sizeof(*identify));
9487 	identify->sas_address = hpsa_sas_port->sas_address;
9488 	identify->device_type = SAS_END_DEVICE;
9489 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9490 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9491 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9492 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9493 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9494 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9495 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9496 
9497 	rc = sas_phy_add(hpsa_sas_phy->phy);
9498 	if (rc)
9499 		return rc;
9500 
9501 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9502 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9503 			&hpsa_sas_port->phy_list_head);
9504 	hpsa_sas_phy->added_to_port = true;
9505 
9506 	return 0;
9507 }
9508 
9509 static int
9510 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9511 				struct sas_rphy *rphy)
9512 {
9513 	struct sas_identify *identify;
9514 
9515 	identify = &rphy->identify;
9516 	identify->sas_address = hpsa_sas_port->sas_address;
9517 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9518 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9519 
9520 	return sas_rphy_add(rphy);
9521 }
9522 
9523 static struct hpsa_sas_port
9524 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9525 				u64 sas_address)
9526 {
9527 	int rc;
9528 	struct hpsa_sas_port *hpsa_sas_port;
9529 	struct sas_port *port;
9530 
9531 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9532 	if (!hpsa_sas_port)
9533 		return NULL;
9534 
9535 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9536 	hpsa_sas_port->parent_node = hpsa_sas_node;
9537 
9538 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9539 	if (!port)
9540 		goto free_hpsa_port;
9541 
9542 	rc = sas_port_add(port);
9543 	if (rc)
9544 		goto free_sas_port;
9545 
9546 	hpsa_sas_port->port = port;
9547 	hpsa_sas_port->sas_address = sas_address;
9548 	list_add_tail(&hpsa_sas_port->port_list_entry,
9549 			&hpsa_sas_node->port_list_head);
9550 
9551 	return hpsa_sas_port;
9552 
9553 free_sas_port:
9554 	sas_port_free(port);
9555 free_hpsa_port:
9556 	kfree(hpsa_sas_port);
9557 
9558 	return NULL;
9559 }
9560 
9561 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9562 {
9563 	struct hpsa_sas_phy *hpsa_sas_phy;
9564 	struct hpsa_sas_phy *next;
9565 
9566 	list_for_each_entry_safe(hpsa_sas_phy, next,
9567 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9568 		hpsa_free_sas_phy(hpsa_sas_phy);
9569 
9570 	sas_port_delete(hpsa_sas_port->port);
9571 	list_del(&hpsa_sas_port->port_list_entry);
9572 	kfree(hpsa_sas_port);
9573 }
9574 
9575 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9576 {
9577 	struct hpsa_sas_node *hpsa_sas_node;
9578 
9579 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9580 	if (hpsa_sas_node) {
9581 		hpsa_sas_node->parent_dev = parent_dev;
9582 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9583 	}
9584 
9585 	return hpsa_sas_node;
9586 }
9587 
9588 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9589 {
9590 	struct hpsa_sas_port *hpsa_sas_port;
9591 	struct hpsa_sas_port *next;
9592 
9593 	if (!hpsa_sas_node)
9594 		return;
9595 
9596 	list_for_each_entry_safe(hpsa_sas_port, next,
9597 			&hpsa_sas_node->port_list_head, port_list_entry)
9598 		hpsa_free_sas_port(hpsa_sas_port);
9599 
9600 	kfree(hpsa_sas_node);
9601 }
9602 
9603 static struct hpsa_scsi_dev_t
9604 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9605 					struct sas_rphy *rphy)
9606 {
9607 	int i;
9608 	struct hpsa_scsi_dev_t *device;
9609 
9610 	for (i = 0; i < h->ndevices; i++) {
9611 		device = h->dev[i];
9612 		if (!device->sas_port)
9613 			continue;
9614 		if (device->sas_port->rphy == rphy)
9615 			return device;
9616 	}
9617 
9618 	return NULL;
9619 }
9620 
9621 static int hpsa_add_sas_host(struct ctlr_info *h)
9622 {
9623 	int rc;
9624 	struct device *parent_dev;
9625 	struct hpsa_sas_node *hpsa_sas_node;
9626 	struct hpsa_sas_port *hpsa_sas_port;
9627 	struct hpsa_sas_phy *hpsa_sas_phy;
9628 
9629 	parent_dev = &h->scsi_host->shost_dev;
9630 
9631 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9632 	if (!hpsa_sas_node)
9633 		return -ENOMEM;
9634 
9635 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9636 	if (!hpsa_sas_port) {
9637 		rc = -ENODEV;
9638 		goto free_sas_node;
9639 	}
9640 
9641 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9642 	if (!hpsa_sas_phy) {
9643 		rc = -ENODEV;
9644 		goto free_sas_port;
9645 	}
9646 
9647 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9648 	if (rc)
9649 		goto free_sas_phy;
9650 
9651 	h->sas_host = hpsa_sas_node;
9652 
9653 	return 0;
9654 
9655 free_sas_phy:
9656 	hpsa_free_sas_phy(hpsa_sas_phy);
9657 free_sas_port:
9658 	hpsa_free_sas_port(hpsa_sas_port);
9659 free_sas_node:
9660 	hpsa_free_sas_node(hpsa_sas_node);
9661 
9662 	return rc;
9663 }
9664 
9665 static void hpsa_delete_sas_host(struct ctlr_info *h)
9666 {
9667 	hpsa_free_sas_node(h->sas_host);
9668 }
9669 
9670 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9671 				struct hpsa_scsi_dev_t *device)
9672 {
9673 	int rc;
9674 	struct hpsa_sas_port *hpsa_sas_port;
9675 	struct sas_rphy *rphy;
9676 
9677 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9678 	if (!hpsa_sas_port)
9679 		return -ENOMEM;
9680 
9681 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9682 	if (!rphy) {
9683 		rc = -ENODEV;
9684 		goto free_sas_port;
9685 	}
9686 
9687 	hpsa_sas_port->rphy = rphy;
9688 	device->sas_port = hpsa_sas_port;
9689 
9690 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9691 	if (rc)
9692 		goto free_sas_port;
9693 
9694 	return 0;
9695 
9696 free_sas_port:
9697 	hpsa_free_sas_port(hpsa_sas_port);
9698 	device->sas_port = NULL;
9699 
9700 	return rc;
9701 }
9702 
9703 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9704 {
9705 	if (device->sas_port) {
9706 		hpsa_free_sas_port(device->sas_port);
9707 		device->sas_port = NULL;
9708 	}
9709 }
9710 
9711 static int
9712 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9713 {
9714 	return 0;
9715 }
9716 
9717 static int
9718 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9719 {
9720 	struct Scsi_Host *shost = phy_to_shost(rphy);
9721 	struct ctlr_info *h;
9722 	struct hpsa_scsi_dev_t *sd;
9723 
9724 	if (!shost)
9725 		return -ENXIO;
9726 
9727 	h = shost_to_hba(shost);
9728 
9729 	if (!h)
9730 		return -ENXIO;
9731 
9732 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9733 	if (!sd)
9734 		return -ENXIO;
9735 
9736 	*identifier = sd->eli;
9737 
9738 	return 0;
9739 }
9740 
9741 static int
9742 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9743 {
9744 	return -ENXIO;
9745 }
9746 
9747 static int
9748 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9749 {
9750 	return 0;
9751 }
9752 
9753 static int
9754 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9755 {
9756 	return 0;
9757 }
9758 
9759 static int
9760 hpsa_sas_phy_setup(struct sas_phy *phy)
9761 {
9762 	return 0;
9763 }
9764 
9765 static void
9766 hpsa_sas_phy_release(struct sas_phy *phy)
9767 {
9768 }
9769 
9770 static int
9771 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9772 {
9773 	return -EINVAL;
9774 }
9775 
9776 static struct sas_function_template hpsa_sas_transport_functions = {
9777 	.get_linkerrors = hpsa_sas_get_linkerrors,
9778 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9779 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9780 	.phy_reset = hpsa_sas_phy_reset,
9781 	.phy_enable = hpsa_sas_phy_enable,
9782 	.phy_setup = hpsa_sas_phy_setup,
9783 	.phy_release = hpsa_sas_phy_release,
9784 	.set_phy_speed = hpsa_sas_phy_speed,
9785 };
9786 
9787 /*
9788  *  This is it.  Register the PCI driver information for the cards we control
9789  *  the OS will call our registered routines when it finds one of our cards.
9790  */
9791 static int __init hpsa_init(void)
9792 {
9793 	int rc;
9794 
9795 	hpsa_sas_transport_template =
9796 		sas_attach_transport(&hpsa_sas_transport_functions);
9797 	if (!hpsa_sas_transport_template)
9798 		return -ENODEV;
9799 
9800 	rc = pci_register_driver(&hpsa_pci_driver);
9801 
9802 	if (rc)
9803 		sas_release_transport(hpsa_sas_transport_template);
9804 
9805 	return rc;
9806 }
9807 
9808 static void __exit hpsa_cleanup(void)
9809 {
9810 	pci_unregister_driver(&hpsa_pci_driver);
9811 	sas_release_transport(hpsa_sas_transport_template);
9812 }
9813 
9814 static void __attribute__((unused)) verify_offsets(void)
9815 {
9816 #define VERIFY_OFFSET(member, offset) \
9817 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9818 
9819 	VERIFY_OFFSET(structure_size, 0);
9820 	VERIFY_OFFSET(volume_blk_size, 4);
9821 	VERIFY_OFFSET(volume_blk_cnt, 8);
9822 	VERIFY_OFFSET(phys_blk_shift, 16);
9823 	VERIFY_OFFSET(parity_rotation_shift, 17);
9824 	VERIFY_OFFSET(strip_size, 18);
9825 	VERIFY_OFFSET(disk_starting_blk, 20);
9826 	VERIFY_OFFSET(disk_blk_cnt, 28);
9827 	VERIFY_OFFSET(data_disks_per_row, 36);
9828 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9829 	VERIFY_OFFSET(row_cnt, 40);
9830 	VERIFY_OFFSET(layout_map_count, 42);
9831 	VERIFY_OFFSET(flags, 44);
9832 	VERIFY_OFFSET(dekindex, 46);
9833 	/* VERIFY_OFFSET(reserved, 48 */
9834 	VERIFY_OFFSET(data, 64);
9835 
9836 #undef VERIFY_OFFSET
9837 
9838 #define VERIFY_OFFSET(member, offset) \
9839 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9840 
9841 	VERIFY_OFFSET(IU_type, 0);
9842 	VERIFY_OFFSET(direction, 1);
9843 	VERIFY_OFFSET(reply_queue, 2);
9844 	/* VERIFY_OFFSET(reserved1, 3);  */
9845 	VERIFY_OFFSET(scsi_nexus, 4);
9846 	VERIFY_OFFSET(Tag, 8);
9847 	VERIFY_OFFSET(cdb, 16);
9848 	VERIFY_OFFSET(cciss_lun, 32);
9849 	VERIFY_OFFSET(data_len, 40);
9850 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9851 	VERIFY_OFFSET(sg_count, 45);
9852 	/* VERIFY_OFFSET(reserved3 */
9853 	VERIFY_OFFSET(err_ptr, 48);
9854 	VERIFY_OFFSET(err_len, 56);
9855 	/* VERIFY_OFFSET(reserved4  */
9856 	VERIFY_OFFSET(sg, 64);
9857 
9858 #undef VERIFY_OFFSET
9859 
9860 #define VERIFY_OFFSET(member, offset) \
9861 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9862 
9863 	VERIFY_OFFSET(dev_handle, 0x00);
9864 	VERIFY_OFFSET(reserved1, 0x02);
9865 	VERIFY_OFFSET(function, 0x03);
9866 	VERIFY_OFFSET(reserved2, 0x04);
9867 	VERIFY_OFFSET(err_info, 0x0C);
9868 	VERIFY_OFFSET(reserved3, 0x10);
9869 	VERIFY_OFFSET(err_info_len, 0x12);
9870 	VERIFY_OFFSET(reserved4, 0x13);
9871 	VERIFY_OFFSET(sgl_offset, 0x14);
9872 	VERIFY_OFFSET(reserved5, 0x15);
9873 	VERIFY_OFFSET(transfer_len, 0x1C);
9874 	VERIFY_OFFSET(reserved6, 0x20);
9875 	VERIFY_OFFSET(io_flags, 0x24);
9876 	VERIFY_OFFSET(reserved7, 0x26);
9877 	VERIFY_OFFSET(LUN, 0x34);
9878 	VERIFY_OFFSET(control, 0x3C);
9879 	VERIFY_OFFSET(CDB, 0x40);
9880 	VERIFY_OFFSET(reserved8, 0x50);
9881 	VERIFY_OFFSET(host_context_flags, 0x60);
9882 	VERIFY_OFFSET(timeout_sec, 0x62);
9883 	VERIFY_OFFSET(ReplyQueue, 0x64);
9884 	VERIFY_OFFSET(reserved9, 0x65);
9885 	VERIFY_OFFSET(tag, 0x68);
9886 	VERIFY_OFFSET(host_addr, 0x70);
9887 	VERIFY_OFFSET(CISS_LUN, 0x78);
9888 	VERIFY_OFFSET(SG, 0x78 + 8);
9889 #undef VERIFY_OFFSET
9890 }
9891 
9892 module_init(hpsa_init);
9893 module_exit(hpsa_cleanup);
9894