xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 11c416e3)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57 
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65 
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72 
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77 
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 	HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86 
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 	"Use 'simple mode' rather than 'performant mode'");
91 
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x40700E11, "Smart Array 5300", &SA5A_access},
162 	{0x40800E11, "Smart Array 5i", &SA5B_access},
163 	{0x40820E11, "Smart Array 532", &SA5B_access},
164 	{0x40830E11, "Smart Array 5312", &SA5B_access},
165 	{0x409A0E11, "Smart Array 641", &SA5A_access},
166 	{0x409B0E11, "Smart Array 642", &SA5A_access},
167 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 	{0x40910E11, "Smart Array 6i", &SA5A_access},
170 	{0x3225103C, "Smart Array P600", &SA5A_access},
171 	{0x3223103C, "Smart Array P800", &SA5A_access},
172 	{0x3234103C, "Smart Array P400", &SA5A_access},
173 	{0x3235103C, "Smart Array P400i", &SA5A_access},
174 	{0x3211103C, "Smart Array E200i", &SA5A_access},
175 	{0x3212103C, "Smart Array E200", &SA5A_access},
176 	{0x3213103C, "Smart Array E200i", &SA5A_access},
177 	{0x3214103C, "Smart Array E200i", &SA5A_access},
178 	{0x3215103C, "Smart Array E200i", &SA5A_access},
179 	{0x3237103C, "Smart Array E500", &SA5A_access},
180 	{0x323D103C, "Smart Array P700m", &SA5A_access},
181 	{0x3241103C, "Smart Array P212", &SA5_access},
182 	{0x3243103C, "Smart Array P410", &SA5_access},
183 	{0x3245103C, "Smart Array P410i", &SA5_access},
184 	{0x3247103C, "Smart Array P411", &SA5_access},
185 	{0x3249103C, "Smart Array P812", &SA5_access},
186 	{0x324A103C, "Smart Array P712m", &SA5_access},
187 	{0x324B103C, "Smart Array P711m", &SA5_access},
188 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 	{0x3350103C, "Smart Array P222", &SA5_access},
190 	{0x3351103C, "Smart Array P420", &SA5_access},
191 	{0x3352103C, "Smart Array P421", &SA5_access},
192 	{0x3353103C, "Smart Array P822", &SA5_access},
193 	{0x3354103C, "Smart Array P420i", &SA5_access},
194 	{0x3355103C, "Smart Array P220i", &SA5_access},
195 	{0x3356103C, "Smart Array P721m", &SA5_access},
196 	{0x1920103C, "Smart Array P430i", &SA5_access},
197 	{0x1921103C, "Smart Array P830i", &SA5_access},
198 	{0x1922103C, "Smart Array P430", &SA5_access},
199 	{0x1923103C, "Smart Array P431", &SA5_access},
200 	{0x1924103C, "Smart Array P830", &SA5_access},
201 	{0x1925103C, "Smart Array P831", &SA5_access},
202 	{0x1926103C, "Smart Array P731m", &SA5_access},
203 	{0x1928103C, "Smart Array P230i", &SA5_access},
204 	{0x1929103C, "Smart Array P530", &SA5_access},
205 	{0x21BD103C, "Smart Array P244br", &SA5_access},
206 	{0x21BE103C, "Smart Array P741m", &SA5_access},
207 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210 	{0x21C2103C, "Smart Array P440", &SA5_access},
211 	{0x21C3103C, "Smart Array P441", &SA5_access},
212 	{0x21C4103C, "Smart Array", &SA5_access},
213 	{0x21C5103C, "Smart Array P841", &SA5_access},
214 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215 	{0x21C7103C, "Smart HBA H240", &SA5_access},
216 	{0x21C8103C, "Smart HBA H241", &SA5_access},
217 	{0x21C9103C, "Smart Array", &SA5_access},
218 	{0x21CA103C, "Smart Array P246br", &SA5_access},
219 	{0x21CB103C, "Smart Array P840", &SA5_access},
220 	{0x21CC103C, "Smart Array", &SA5_access},
221 	{0x21CD103C, "Smart Array", &SA5_access},
222 	{0x21CE103C, "Smart HBA", &SA5_access},
223 	{0x05809005, "SmartHBA-SA", &SA5_access},
224 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236 
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 			struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 		struct sas_rphy *rphy);
246 
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252 
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 		      void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 			       IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 				   BIG_IOCTL_Command_struct *ioc);
261 
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 	void __user *arg);
265 #endif
266 
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 					    struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274 	int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278 
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 	unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284 
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289 
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292 	struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294 	struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297 	int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303 			       u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305 				    unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307 				bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309 					   unsigned char lunaddr[],
310 					   int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312 				     int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327 	struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329 	unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332 			       struct hpsa_scsi_dev_t *dev,
333 			       unsigned char *scsi3addr);
334 
335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337 	unsigned long *priv = shost_priv(sdev->host);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343 	unsigned long *priv = shost_priv(sh);
344 	return (struct ctlr_info *) *priv;
345 }
346 
347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349 	return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351 
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 			u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 	struct scsi_sense_hdr sshdr;
357 	bool rc;
358 
359 	*sense_key = -1;
360 	*asc = -1;
361 	*ascq = -1;
362 
363 	if (sense_data_len < 1)
364 		return;
365 
366 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 	if (rc) {
368 		*sense_key = sshdr.sense_key;
369 		*asc = sshdr.asc;
370 		*ascq = sshdr.ascq;
371 	}
372 }
373 
374 static int check_for_unit_attention(struct ctlr_info *h,
375 	struct CommandList *c)
376 {
377 	u8 sense_key, asc, ascq;
378 	int sense_len;
379 
380 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 		sense_len = sizeof(c->err_info->SenseInfo);
382 	else
383 		sense_len = c->err_info->SenseLen;
384 
385 	decode_sense_data(c->err_info->SenseInfo, sense_len,
386 				&sense_key, &asc, &ascq);
387 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 		return 0;
389 
390 	switch (asc) {
391 	case STATE_CHANGED:
392 		dev_warn(&h->pdev->dev,
393 			"%s: a state change detected, command retried\n",
394 			h->devname);
395 		break;
396 	case LUN_FAILED:
397 		dev_warn(&h->pdev->dev,
398 			"%s: LUN failure detected\n", h->devname);
399 		break;
400 	case REPORT_LUNS_CHANGED:
401 		dev_warn(&h->pdev->dev,
402 			"%s: report LUN data changed\n", h->devname);
403 	/*
404 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 	 * target (array) devices.
406 	 */
407 		break;
408 	case POWER_OR_RESET:
409 		dev_warn(&h->pdev->dev,
410 			"%s: a power on or device reset detected\n",
411 			h->devname);
412 		break;
413 	case UNIT_ATTENTION_CLEARED:
414 		dev_warn(&h->pdev->dev,
415 			"%s: unit attention cleared by another initiator\n",
416 			h->devname);
417 		break;
418 	default:
419 		dev_warn(&h->pdev->dev,
420 			"%s: unknown unit attention detected\n",
421 			h->devname);
422 		break;
423 	}
424 	return 1;
425 }
426 
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 		return 0;
433 	dev_warn(&h->pdev->dev, HPSA "device busy");
434 	return 1;
435 }
436 
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439 		struct device_attribute *attr, char *buf)
440 {
441 	int ld;
442 	struct ctlr_info *h;
443 	struct Scsi_Host *shost = class_to_shost(dev);
444 
445 	h = shost_to_hba(shost);
446 	ld = lockup_detected(h);
447 
448 	return sprintf(buf, "ld=%d\n", ld);
449 }
450 
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 					 struct device_attribute *attr,
453 					 const char *buf, size_t count)
454 {
455 	int status, len;
456 	struct ctlr_info *h;
457 	struct Scsi_Host *shost = class_to_shost(dev);
458 	char tmpbuf[10];
459 
460 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 		return -EACCES;
462 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 	strncpy(tmpbuf, buf, len);
464 	tmpbuf[len] = '\0';
465 	if (sscanf(tmpbuf, "%d", &status) != 1)
466 		return -EINVAL;
467 	h = shost_to_hba(shost);
468 	h->acciopath_status = !!status;
469 	dev_warn(&h->pdev->dev,
470 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 		h->acciopath_status ? "enabled" : "disabled");
472 	return count;
473 }
474 
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 					 struct device_attribute *attr,
477 					 const char *buf, size_t count)
478 {
479 	int debug_level, len;
480 	struct ctlr_info *h;
481 	struct Scsi_Host *shost = class_to_shost(dev);
482 	char tmpbuf[10];
483 
484 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 		return -EACCES;
486 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 	strncpy(tmpbuf, buf, len);
488 	tmpbuf[len] = '\0';
489 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 		return -EINVAL;
491 	if (debug_level < 0)
492 		debug_level = 0;
493 	h = shost_to_hba(shost);
494 	h->raid_offload_debug = debug_level;
495 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 		h->raid_offload_debug);
497 	return count;
498 }
499 
500 static ssize_t host_store_rescan(struct device *dev,
501 				 struct device_attribute *attr,
502 				 const char *buf, size_t count)
503 {
504 	struct ctlr_info *h;
505 	struct Scsi_Host *shost = class_to_shost(dev);
506 	h = shost_to_hba(shost);
507 	hpsa_scan_start(h->scsi_host);
508 	return count;
509 }
510 
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513 	device->offload_enabled = 0;
514 	device->offload_to_be_enabled = 0;
515 }
516 
517 static ssize_t host_show_firmware_revision(struct device *dev,
518 	     struct device_attribute *attr, char *buf)
519 {
520 	struct ctlr_info *h;
521 	struct Scsi_Host *shost = class_to_shost(dev);
522 	unsigned char *fwrev;
523 
524 	h = shost_to_hba(shost);
525 	if (!h->hba_inquiry_data)
526 		return 0;
527 	fwrev = &h->hba_inquiry_data[32];
528 	return snprintf(buf, 20, "%c%c%c%c\n",
529 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531 
532 static ssize_t host_show_commands_outstanding(struct device *dev,
533 	     struct device_attribute *attr, char *buf)
534 {
535 	struct Scsi_Host *shost = class_to_shost(dev);
536 	struct ctlr_info *h = shost_to_hba(shost);
537 
538 	return snprintf(buf, 20, "%d\n",
539 			atomic_read(&h->commands_outstanding));
540 }
541 
542 static ssize_t host_show_transport_mode(struct device *dev,
543 	struct device_attribute *attr, char *buf)
544 {
545 	struct ctlr_info *h;
546 	struct Scsi_Host *shost = class_to_shost(dev);
547 
548 	h = shost_to_hba(shost);
549 	return snprintf(buf, 20, "%s\n",
550 		h->transMethod & CFGTBL_Trans_Performant ?
551 			"performant" : "simple");
552 }
553 
554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555 	struct device_attribute *attr, char *buf)
556 {
557 	struct ctlr_info *h;
558 	struct Scsi_Host *shost = class_to_shost(dev);
559 
560 	h = shost_to_hba(shost);
561 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
563 }
564 
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567 	0x324a103C, /* Smart Array P712m */
568 	0x324b103C, /* Smart Array P711m */
569 	0x3223103C, /* Smart Array P800 */
570 	0x3234103C, /* Smart Array P400 */
571 	0x3235103C, /* Smart Array P400i */
572 	0x3211103C, /* Smart Array E200i */
573 	0x3212103C, /* Smart Array E200 */
574 	0x3213103C, /* Smart Array E200i */
575 	0x3214103C, /* Smart Array E200i */
576 	0x3215103C, /* Smart Array E200i */
577 	0x3237103C, /* Smart Array E500 */
578 	0x323D103C, /* Smart Array P700m */
579 	0x40800E11, /* Smart Array 5i */
580 	0x409C0E11, /* Smart Array 6400 */
581 	0x409D0E11, /* Smart Array 6400 EM */
582 	0x40700E11, /* Smart Array 5300 */
583 	0x40820E11, /* Smart Array 532 */
584 	0x40830E11, /* Smart Array 5312 */
585 	0x409A0E11, /* Smart Array 641 */
586 	0x409B0E11, /* Smart Array 642 */
587 	0x40910E11, /* Smart Array 6i */
588 };
589 
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592 	0x40800E11, /* Smart Array 5i */
593 	0x40700E11, /* Smart Array 5300 */
594 	0x40820E11, /* Smart Array 532 */
595 	0x40830E11, /* Smart Array 5312 */
596 	0x409A0E11, /* Smart Array 641 */
597 	0x409B0E11, /* Smart Array 642 */
598 	0x40910E11, /* Smart Array 6i */
599 	/* Exclude 640x boards.  These are two pci devices in one slot
600 	 * which share a battery backed cache module.  One controls the
601 	 * cache, the other accesses the cache through the one that controls
602 	 * it.  If we reset the one controlling the cache, the other will
603 	 * likely not be happy.  Just forbid resetting this conjoined mess.
604 	 * The 640x isn't really supported by hpsa anyway.
605 	 */
606 	0x409C0E11, /* Smart Array 6400 */
607 	0x409D0E11, /* Smart Array 6400 EM */
608 };
609 
610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612 	int i;
613 
614 	for (i = 0; i < nelems; i++)
615 		if (a[i] == board_id)
616 			return 1;
617 	return 0;
618 }
619 
620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622 	return !board_id_in_array(unresettable_controller,
623 			ARRAY_SIZE(unresettable_controller), board_id);
624 }
625 
626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628 	return !board_id_in_array(soft_unresettable_controller,
629 			ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631 
632 static int ctlr_is_resettable(u32 board_id)
633 {
634 	return ctlr_is_hard_resettable(board_id) ||
635 		ctlr_is_soft_resettable(board_id);
636 }
637 
638 static ssize_t host_show_resettable(struct device *dev,
639 	struct device_attribute *attr, char *buf)
640 {
641 	struct ctlr_info *h;
642 	struct Scsi_Host *shost = class_to_shost(dev);
643 
644 	h = shost_to_hba(shost);
645 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647 
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650 	return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652 
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0	0
657 #define HPSA_RAID_4	1
658 #define HPSA_RAID_1	2	/* also used for RAID 10 */
659 #define HPSA_RAID_5	3	/* also used for RAID 50 */
660 #define HPSA_RAID_51	4
661 #define HPSA_RAID_6	5	/* also used for RAID 60 */
662 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665 
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668 	return !device->physical_device;
669 }
670 
671 static ssize_t raid_level_show(struct device *dev,
672 	     struct device_attribute *attr, char *buf)
673 {
674 	ssize_t l = 0;
675 	unsigned char rlevel;
676 	struct ctlr_info *h;
677 	struct scsi_device *sdev;
678 	struct hpsa_scsi_dev_t *hdev;
679 	unsigned long flags;
680 
681 	sdev = to_scsi_device(dev);
682 	h = sdev_to_hba(sdev);
683 	spin_lock_irqsave(&h->lock, flags);
684 	hdev = sdev->hostdata;
685 	if (!hdev) {
686 		spin_unlock_irqrestore(&h->lock, flags);
687 		return -ENODEV;
688 	}
689 
690 	/* Is this even a logical drive? */
691 	if (!is_logical_device(hdev)) {
692 		spin_unlock_irqrestore(&h->lock, flags);
693 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
694 		return l;
695 	}
696 
697 	rlevel = hdev->raid_level;
698 	spin_unlock_irqrestore(&h->lock, flags);
699 	if (rlevel > RAID_UNKNOWN)
700 		rlevel = RAID_UNKNOWN;
701 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702 	return l;
703 }
704 
705 static ssize_t lunid_show(struct device *dev,
706 	     struct device_attribute *attr, char *buf)
707 {
708 	struct ctlr_info *h;
709 	struct scsi_device *sdev;
710 	struct hpsa_scsi_dev_t *hdev;
711 	unsigned long flags;
712 	unsigned char lunid[8];
713 
714 	sdev = to_scsi_device(dev);
715 	h = sdev_to_hba(sdev);
716 	spin_lock_irqsave(&h->lock, flags);
717 	hdev = sdev->hostdata;
718 	if (!hdev) {
719 		spin_unlock_irqrestore(&h->lock, flags);
720 		return -ENODEV;
721 	}
722 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723 	spin_unlock_irqrestore(&h->lock, flags);
724 	return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726 
727 static ssize_t unique_id_show(struct device *dev,
728 	     struct device_attribute *attr, char *buf)
729 {
730 	struct ctlr_info *h;
731 	struct scsi_device *sdev;
732 	struct hpsa_scsi_dev_t *hdev;
733 	unsigned long flags;
734 	unsigned char sn[16];
735 
736 	sdev = to_scsi_device(dev);
737 	h = sdev_to_hba(sdev);
738 	spin_lock_irqsave(&h->lock, flags);
739 	hdev = sdev->hostdata;
740 	if (!hdev) {
741 		spin_unlock_irqrestore(&h->lock, flags);
742 		return -ENODEV;
743 	}
744 	memcpy(sn, hdev->device_id, sizeof(sn));
745 	spin_unlock_irqrestore(&h->lock, flags);
746 	return snprintf(buf, 16 * 2 + 2,
747 			"%02X%02X%02X%02X%02X%02X%02X%02X"
748 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
749 			sn[0], sn[1], sn[2], sn[3],
750 			sn[4], sn[5], sn[6], sn[7],
751 			sn[8], sn[9], sn[10], sn[11],
752 			sn[12], sn[13], sn[14], sn[15]);
753 }
754 
755 static ssize_t sas_address_show(struct device *dev,
756 	      struct device_attribute *attr, char *buf)
757 {
758 	struct ctlr_info *h;
759 	struct scsi_device *sdev;
760 	struct hpsa_scsi_dev_t *hdev;
761 	unsigned long flags;
762 	u64 sas_address;
763 
764 	sdev = to_scsi_device(dev);
765 	h = sdev_to_hba(sdev);
766 	spin_lock_irqsave(&h->lock, flags);
767 	hdev = sdev->hostdata;
768 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769 		spin_unlock_irqrestore(&h->lock, flags);
770 		return -ENODEV;
771 	}
772 	sas_address = hdev->sas_address;
773 	spin_unlock_irqrestore(&h->lock, flags);
774 
775 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777 
778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779 	     struct device_attribute *attr, char *buf)
780 {
781 	struct ctlr_info *h;
782 	struct scsi_device *sdev;
783 	struct hpsa_scsi_dev_t *hdev;
784 	unsigned long flags;
785 	int offload_enabled;
786 
787 	sdev = to_scsi_device(dev);
788 	h = sdev_to_hba(sdev);
789 	spin_lock_irqsave(&h->lock, flags);
790 	hdev = sdev->hostdata;
791 	if (!hdev) {
792 		spin_unlock_irqrestore(&h->lock, flags);
793 		return -ENODEV;
794 	}
795 	offload_enabled = hdev->offload_enabled;
796 	spin_unlock_irqrestore(&h->lock, flags);
797 
798 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799 		return snprintf(buf, 20, "%d\n", offload_enabled);
800 	else
801 		return snprintf(buf, 40, "%s\n",
802 				"Not applicable for a controller");
803 }
804 
805 #define MAX_PATHS 8
806 static ssize_t path_info_show(struct device *dev,
807 	     struct device_attribute *attr, char *buf)
808 {
809 	struct ctlr_info *h;
810 	struct scsi_device *sdev;
811 	struct hpsa_scsi_dev_t *hdev;
812 	unsigned long flags;
813 	int i;
814 	int output_len = 0;
815 	u8 box;
816 	u8 bay;
817 	u8 path_map_index = 0;
818 	char *active;
819 	unsigned char phys_connector[2];
820 
821 	sdev = to_scsi_device(dev);
822 	h = sdev_to_hba(sdev);
823 	spin_lock_irqsave(&h->devlock, flags);
824 	hdev = sdev->hostdata;
825 	if (!hdev) {
826 		spin_unlock_irqrestore(&h->devlock, flags);
827 		return -ENODEV;
828 	}
829 
830 	bay = hdev->bay;
831 	for (i = 0; i < MAX_PATHS; i++) {
832 		path_map_index = 1<<i;
833 		if (i == hdev->active_path_index)
834 			active = "Active";
835 		else if (hdev->path_map & path_map_index)
836 			active = "Inactive";
837 		else
838 			continue;
839 
840 		output_len += scnprintf(buf + output_len,
841 				PAGE_SIZE - output_len,
842 				"[%d:%d:%d:%d] %20.20s ",
843 				h->scsi_host->host_no,
844 				hdev->bus, hdev->target, hdev->lun,
845 				scsi_device_type(hdev->devtype));
846 
847 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848 			output_len += scnprintf(buf + output_len,
849 						PAGE_SIZE - output_len,
850 						"%s\n", active);
851 			continue;
852 		}
853 
854 		box = hdev->box[i];
855 		memcpy(&phys_connector, &hdev->phys_connector[i],
856 			sizeof(phys_connector));
857 		if (phys_connector[0] < '0')
858 			phys_connector[0] = '0';
859 		if (phys_connector[1] < '0')
860 			phys_connector[1] = '0';
861 		output_len += scnprintf(buf + output_len,
862 				PAGE_SIZE - output_len,
863 				"PORT: %.2s ",
864 				phys_connector);
865 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866 			hdev->expose_device) {
867 			if (box == 0 || box == 0xFF) {
868 				output_len += scnprintf(buf + output_len,
869 					PAGE_SIZE - output_len,
870 					"BAY: %hhu %s\n",
871 					bay, active);
872 			} else {
873 				output_len += scnprintf(buf + output_len,
874 					PAGE_SIZE - output_len,
875 					"BOX: %hhu BAY: %hhu %s\n",
876 					box, bay, active);
877 			}
878 		} else if (box != 0 && box != 0xFF) {
879 			output_len += scnprintf(buf + output_len,
880 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881 				box, active);
882 		} else
883 			output_len += scnprintf(buf + output_len,
884 				PAGE_SIZE - output_len, "%s\n", active);
885 	}
886 
887 	spin_unlock_irqrestore(&h->devlock, flags);
888 	return output_len;
889 }
890 
891 static ssize_t host_show_ctlr_num(struct device *dev,
892 	struct device_attribute *attr, char *buf)
893 {
894 	struct ctlr_info *h;
895 	struct Scsi_Host *shost = class_to_shost(dev);
896 
897 	h = shost_to_hba(shost);
898 	return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900 
901 static ssize_t host_show_legacy_board(struct device *dev,
902 	struct device_attribute *attr, char *buf)
903 {
904 	struct ctlr_info *h;
905 	struct Scsi_Host *shost = class_to_shost(dev);
906 
907 	h = shost_to_hba(shost);
908 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910 
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917 			host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920 		host_show_hp_ssd_smart_path_status,
921 		host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923 			host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925 	host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927 	host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929 	host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931 	host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933 	host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935 	host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937 	host_show_legacy_board, NULL);
938 
939 static struct device_attribute *hpsa_sdev_attrs[] = {
940 	&dev_attr_raid_level,
941 	&dev_attr_lunid,
942 	&dev_attr_unique_id,
943 	&dev_attr_hp_ssd_smart_path_enabled,
944 	&dev_attr_path_info,
945 	&dev_attr_sas_address,
946 	NULL,
947 };
948 
949 static struct device_attribute *hpsa_shost_attrs[] = {
950 	&dev_attr_rescan,
951 	&dev_attr_firmware_revision,
952 	&dev_attr_commands_outstanding,
953 	&dev_attr_transport_mode,
954 	&dev_attr_resettable,
955 	&dev_attr_hp_ssd_smart_path_status,
956 	&dev_attr_raid_offload_debug,
957 	&dev_attr_lockup_detected,
958 	&dev_attr_ctlr_num,
959 	&dev_attr_legacy_board,
960 	NULL,
961 };
962 
963 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
964 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
965 
966 static struct scsi_host_template hpsa_driver_template = {
967 	.module			= THIS_MODULE,
968 	.name			= HPSA,
969 	.proc_name		= HPSA,
970 	.queuecommand		= hpsa_scsi_queue_command,
971 	.scan_start		= hpsa_scan_start,
972 	.scan_finished		= hpsa_scan_finished,
973 	.change_queue_depth	= hpsa_change_queue_depth,
974 	.this_id		= -1,
975 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
976 	.ioctl			= hpsa_ioctl,
977 	.slave_alloc		= hpsa_slave_alloc,
978 	.slave_configure	= hpsa_slave_configure,
979 	.slave_destroy		= hpsa_slave_destroy,
980 #ifdef CONFIG_COMPAT
981 	.compat_ioctl		= hpsa_compat_ioctl,
982 #endif
983 	.sdev_attrs = hpsa_sdev_attrs,
984 	.shost_attrs = hpsa_shost_attrs,
985 	.max_sectors = 2048,
986 	.no_write_same = 1,
987 };
988 
989 static inline u32 next_command(struct ctlr_info *h, u8 q)
990 {
991 	u32 a;
992 	struct reply_queue_buffer *rq = &h->reply_queue[q];
993 
994 	if (h->transMethod & CFGTBL_Trans_io_accel1)
995 		return h->access.command_completed(h, q);
996 
997 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
998 		return h->access.command_completed(h, q);
999 
1000 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1001 		a = rq->head[rq->current_entry];
1002 		rq->current_entry++;
1003 		atomic_dec(&h->commands_outstanding);
1004 	} else {
1005 		a = FIFO_EMPTY;
1006 	}
1007 	/* Check for wraparound */
1008 	if (rq->current_entry == h->max_commands) {
1009 		rq->current_entry = 0;
1010 		rq->wraparound ^= 1;
1011 	}
1012 	return a;
1013 }
1014 
1015 /*
1016  * There are some special bits in the bus address of the
1017  * command that we have to set for the controller to know
1018  * how to process the command:
1019  *
1020  * Normal performant mode:
1021  * bit 0: 1 means performant mode, 0 means simple mode.
1022  * bits 1-3 = block fetch table entry
1023  * bits 4-6 = command type (== 0)
1024  *
1025  * ioaccel1 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-3 = block fetch table entry
1028  * bits 4-6 = command type (== 110)
1029  * (command type is needed because ioaccel1 mode
1030  * commands are submitted through the same register as normal
1031  * mode commands, so this is how the controller knows whether
1032  * the command is normal mode or ioaccel1 mode.)
1033  *
1034  * ioaccel2 mode:
1035  * bit 0 = "performant mode" bit.
1036  * bits 1-4 = block fetch table entry (note extra bit)
1037  * bits 4-6 = not needed, because ioaccel2 mode has
1038  * a separate special register for submitting commands.
1039  */
1040 
1041 /*
1042  * set_performant_mode: Modify the tag for cciss performant
1043  * set bit 0 for pull model, bits 3-1 for block fetch
1044  * register number
1045  */
1046 #define DEFAULT_REPLY_QUEUE (-1)
1047 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1048 					int reply_queue)
1049 {
1050 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1051 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1052 		if (unlikely(!h->msix_vectors))
1053 			return;
1054 		c->Header.ReplyQueue = reply_queue;
1055 	}
1056 }
1057 
1058 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1059 						struct CommandList *c,
1060 						int reply_queue)
1061 {
1062 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063 
1064 	/*
1065 	 * Tell the controller to post the reply to the queue for this
1066 	 * processor.  This seems to give the best I/O throughput.
1067 	 */
1068 	cp->ReplyQueue = reply_queue;
1069 	/*
1070 	 * Set the bits in the address sent down to include:
1071 	 *  - performant mode bit (bit 0)
1072 	 *  - pull count (bits 1-3)
1073 	 *  - command type (bits 4-6)
1074 	 */
1075 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1076 					IOACCEL1_BUSADDR_CMDTYPE;
1077 }
1078 
1079 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1080 						struct CommandList *c,
1081 						int reply_queue)
1082 {
1083 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1084 		&h->ioaccel2_cmd_pool[c->cmdindex];
1085 
1086 	/* Tell the controller to post the reply to the queue for this
1087 	 * processor.  This seems to give the best I/O throughput.
1088 	 */
1089 	cp->reply_queue = reply_queue;
1090 	/* Set the bits in the address sent down to include:
1091 	 *  - performant mode bit not used in ioaccel mode 2
1092 	 *  - pull count (bits 0-3)
1093 	 *  - command type isn't needed for ioaccel2
1094 	 */
1095 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1096 }
1097 
1098 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1099 						struct CommandList *c,
1100 						int reply_queue)
1101 {
1102 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1103 
1104 	/*
1105 	 * Tell the controller to post the reply to the queue for this
1106 	 * processor.  This seems to give the best I/O throughput.
1107 	 */
1108 	cp->reply_queue = reply_queue;
1109 	/*
1110 	 * Set the bits in the address sent down to include:
1111 	 *  - performant mode bit not used in ioaccel mode 2
1112 	 *  - pull count (bits 0-3)
1113 	 *  - command type isn't needed for ioaccel2
1114 	 */
1115 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1116 }
1117 
1118 static int is_firmware_flash_cmd(u8 *cdb)
1119 {
1120 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1121 }
1122 
1123 /*
1124  * During firmware flash, the heartbeat register may not update as frequently
1125  * as it should.  So we dial down lockup detection during firmware flash. and
1126  * dial it back up when firmware flash completes.
1127  */
1128 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1129 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1130 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1131 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1132 		struct CommandList *c)
1133 {
1134 	if (!is_firmware_flash_cmd(c->Request.CDB))
1135 		return;
1136 	atomic_inc(&h->firmware_flash_in_progress);
1137 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1138 }
1139 
1140 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1141 		struct CommandList *c)
1142 {
1143 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1144 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1145 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1146 }
1147 
1148 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1149 	struct CommandList *c, int reply_queue)
1150 {
1151 	dial_down_lockup_detection_during_fw_flash(h, c);
1152 	atomic_inc(&h->commands_outstanding);
1153 	if (c->device)
1154 		atomic_inc(&c->device->commands_outstanding);
1155 
1156 	reply_queue = h->reply_map[raw_smp_processor_id()];
1157 	switch (c->cmd_type) {
1158 	case CMD_IOACCEL1:
1159 		set_ioaccel1_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1161 		break;
1162 	case CMD_IOACCEL2:
1163 		set_ioaccel2_performant_mode(h, c, reply_queue);
1164 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1165 		break;
1166 	case IOACCEL2_TMF:
1167 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1168 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1169 		break;
1170 	default:
1171 		set_performant_mode(h, c, reply_queue);
1172 		h->access.submit_command(h, c);
1173 	}
1174 }
1175 
1176 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1177 {
1178 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1179 }
1180 
1181 static inline int is_hba_lunid(unsigned char scsi3addr[])
1182 {
1183 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1184 }
1185 
1186 static inline int is_scsi_rev_5(struct ctlr_info *h)
1187 {
1188 	if (!h->hba_inquiry_data)
1189 		return 0;
1190 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1191 		return 1;
1192 	return 0;
1193 }
1194 
1195 static int hpsa_find_target_lun(struct ctlr_info *h,
1196 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1197 {
1198 	/* finds an unused bus, target, lun for a new physical device
1199 	 * assumes h->devlock is held
1200 	 */
1201 	int i, found = 0;
1202 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1203 
1204 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1205 
1206 	for (i = 0; i < h->ndevices; i++) {
1207 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1208 			__set_bit(h->dev[i]->target, lun_taken);
1209 	}
1210 
1211 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1212 	if (i < HPSA_MAX_DEVICES) {
1213 		/* *bus = 1; */
1214 		*target = i;
1215 		*lun = 0;
1216 		found = 1;
1217 	}
1218 	return !found;
1219 }
1220 
1221 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1222 	struct hpsa_scsi_dev_t *dev, char *description)
1223 {
1224 #define LABEL_SIZE 25
1225 	char label[LABEL_SIZE];
1226 
1227 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1228 		return;
1229 
1230 	switch (dev->devtype) {
1231 	case TYPE_RAID:
1232 		snprintf(label, LABEL_SIZE, "controller");
1233 		break;
1234 	case TYPE_ENCLOSURE:
1235 		snprintf(label, LABEL_SIZE, "enclosure");
1236 		break;
1237 	case TYPE_DISK:
1238 	case TYPE_ZBC:
1239 		if (dev->external)
1240 			snprintf(label, LABEL_SIZE, "external");
1241 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1242 			snprintf(label, LABEL_SIZE, "%s",
1243 				raid_label[PHYSICAL_DRIVE]);
1244 		else
1245 			snprintf(label, LABEL_SIZE, "RAID-%s",
1246 				dev->raid_level > RAID_UNKNOWN ? "?" :
1247 				raid_label[dev->raid_level]);
1248 		break;
1249 	case TYPE_ROM:
1250 		snprintf(label, LABEL_SIZE, "rom");
1251 		break;
1252 	case TYPE_TAPE:
1253 		snprintf(label, LABEL_SIZE, "tape");
1254 		break;
1255 	case TYPE_MEDIUM_CHANGER:
1256 		snprintf(label, LABEL_SIZE, "changer");
1257 		break;
1258 	default:
1259 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1260 		break;
1261 	}
1262 
1263 	dev_printk(level, &h->pdev->dev,
1264 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1265 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1266 			description,
1267 			scsi_device_type(dev->devtype),
1268 			dev->vendor,
1269 			dev->model,
1270 			label,
1271 			dev->offload_config ? '+' : '-',
1272 			dev->offload_to_be_enabled ? '+' : '-',
1273 			dev->expose_device);
1274 }
1275 
1276 /* Add an entry into h->dev[] array. */
1277 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1278 		struct hpsa_scsi_dev_t *device,
1279 		struct hpsa_scsi_dev_t *added[], int *nadded)
1280 {
1281 	/* assumes h->devlock is held */
1282 	int n = h->ndevices;
1283 	int i;
1284 	unsigned char addr1[8], addr2[8];
1285 	struct hpsa_scsi_dev_t *sd;
1286 
1287 	if (n >= HPSA_MAX_DEVICES) {
1288 		dev_err(&h->pdev->dev, "too many devices, some will be "
1289 			"inaccessible.\n");
1290 		return -1;
1291 	}
1292 
1293 	/* physical devices do not have lun or target assigned until now. */
1294 	if (device->lun != -1)
1295 		/* Logical device, lun is already assigned. */
1296 		goto lun_assigned;
1297 
1298 	/* If this device a non-zero lun of a multi-lun device
1299 	 * byte 4 of the 8-byte LUN addr will contain the logical
1300 	 * unit no, zero otherwise.
1301 	 */
1302 	if (device->scsi3addr[4] == 0) {
1303 		/* This is not a non-zero lun of a multi-lun device */
1304 		if (hpsa_find_target_lun(h, device->scsi3addr,
1305 			device->bus, &device->target, &device->lun) != 0)
1306 			return -1;
1307 		goto lun_assigned;
1308 	}
1309 
1310 	/* This is a non-zero lun of a multi-lun device.
1311 	 * Search through our list and find the device which
1312 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1313 	 * Assign the same bus and target for this new LUN.
1314 	 * Use the logical unit number from the firmware.
1315 	 */
1316 	memcpy(addr1, device->scsi3addr, 8);
1317 	addr1[4] = 0;
1318 	addr1[5] = 0;
1319 	for (i = 0; i < n; i++) {
1320 		sd = h->dev[i];
1321 		memcpy(addr2, sd->scsi3addr, 8);
1322 		addr2[4] = 0;
1323 		addr2[5] = 0;
1324 		/* differ only in byte 4 and 5? */
1325 		if (memcmp(addr1, addr2, 8) == 0) {
1326 			device->bus = sd->bus;
1327 			device->target = sd->target;
1328 			device->lun = device->scsi3addr[4];
1329 			break;
1330 		}
1331 	}
1332 	if (device->lun == -1) {
1333 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1334 			" suspect firmware bug or unsupported hardware "
1335 			"configuration.\n");
1336 		return -1;
1337 	}
1338 
1339 lun_assigned:
1340 
1341 	h->dev[n] = device;
1342 	h->ndevices++;
1343 	added[*nadded] = device;
1344 	(*nadded)++;
1345 	hpsa_show_dev_msg(KERN_INFO, h, device,
1346 		device->expose_device ? "added" : "masked");
1347 	return 0;
1348 }
1349 
1350 /*
1351  * Called during a scan operation.
1352  *
1353  * Update an entry in h->dev[] array.
1354  */
1355 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1356 	int entry, struct hpsa_scsi_dev_t *new_entry)
1357 {
1358 	/* assumes h->devlock is held */
1359 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360 
1361 	/* Raid level changed. */
1362 	h->dev[entry]->raid_level = new_entry->raid_level;
1363 
1364 	/*
1365 	 * ioacccel_handle may have changed for a dual domain disk
1366 	 */
1367 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1368 
1369 	/* Raid offload parameters changed.  Careful about the ordering. */
1370 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1371 		/*
1372 		 * if drive is newly offload_enabled, we want to copy the
1373 		 * raid map data first.  If previously offload_enabled and
1374 		 * offload_config were set, raid map data had better be
1375 		 * the same as it was before. If raid map data has changed
1376 		 * then it had better be the case that
1377 		 * h->dev[entry]->offload_enabled is currently 0.
1378 		 */
1379 		h->dev[entry]->raid_map = new_entry->raid_map;
1380 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1381 	}
1382 	if (new_entry->offload_to_be_enabled) {
1383 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1385 	}
1386 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1387 	h->dev[entry]->offload_config = new_entry->offload_config;
1388 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1389 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1390 
1391 	/*
1392 	 * We can turn off ioaccel offload now, but need to delay turning
1393 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1394 	 * can't do that until all the devices are updated.
1395 	 */
1396 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1397 
1398 	/*
1399 	 * turn ioaccel off immediately if told to do so.
1400 	 */
1401 	if (!new_entry->offload_to_be_enabled)
1402 		h->dev[entry]->offload_enabled = 0;
1403 
1404 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1405 }
1406 
1407 /* Replace an entry from h->dev[] array. */
1408 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1409 	int entry, struct hpsa_scsi_dev_t *new_entry,
1410 	struct hpsa_scsi_dev_t *added[], int *nadded,
1411 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413 	/* assumes h->devlock is held */
1414 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1415 	removed[*nremoved] = h->dev[entry];
1416 	(*nremoved)++;
1417 
1418 	/*
1419 	 * New physical devices won't have target/lun assigned yet
1420 	 * so we need to preserve the values in the slot we are replacing.
1421 	 */
1422 	if (new_entry->target == -1) {
1423 		new_entry->target = h->dev[entry]->target;
1424 		new_entry->lun = h->dev[entry]->lun;
1425 	}
1426 
1427 	h->dev[entry] = new_entry;
1428 	added[*nadded] = new_entry;
1429 	(*nadded)++;
1430 
1431 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1432 }
1433 
1434 /* Remove an entry from h->dev[] array. */
1435 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1436 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1437 {
1438 	/* assumes h->devlock is held */
1439 	int i;
1440 	struct hpsa_scsi_dev_t *sd;
1441 
1442 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1443 
1444 	sd = h->dev[entry];
1445 	removed[*nremoved] = h->dev[entry];
1446 	(*nremoved)++;
1447 
1448 	for (i = entry; i < h->ndevices-1; i++)
1449 		h->dev[i] = h->dev[i+1];
1450 	h->ndevices--;
1451 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1452 }
1453 
1454 #define SCSI3ADDR_EQ(a, b) ( \
1455 	(a)[7] == (b)[7] && \
1456 	(a)[6] == (b)[6] && \
1457 	(a)[5] == (b)[5] && \
1458 	(a)[4] == (b)[4] && \
1459 	(a)[3] == (b)[3] && \
1460 	(a)[2] == (b)[2] && \
1461 	(a)[1] == (b)[1] && \
1462 	(a)[0] == (b)[0])
1463 
1464 static void fixup_botched_add(struct ctlr_info *h,
1465 	struct hpsa_scsi_dev_t *added)
1466 {
1467 	/* called when scsi_add_device fails in order to re-adjust
1468 	 * h->dev[] to match the mid layer's view.
1469 	 */
1470 	unsigned long flags;
1471 	int i, j;
1472 
1473 	spin_lock_irqsave(&h->lock, flags);
1474 	for (i = 0; i < h->ndevices; i++) {
1475 		if (h->dev[i] == added) {
1476 			for (j = i; j < h->ndevices-1; j++)
1477 				h->dev[j] = h->dev[j+1];
1478 			h->ndevices--;
1479 			break;
1480 		}
1481 	}
1482 	spin_unlock_irqrestore(&h->lock, flags);
1483 	kfree(added);
1484 }
1485 
1486 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1487 	struct hpsa_scsi_dev_t *dev2)
1488 {
1489 	/* we compare everything except lun and target as these
1490 	 * are not yet assigned.  Compare parts likely
1491 	 * to differ first
1492 	 */
1493 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1494 		sizeof(dev1->scsi3addr)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->device_id, dev2->device_id,
1497 		sizeof(dev1->device_id)) != 0)
1498 		return 0;
1499 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1500 		return 0;
1501 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1502 		return 0;
1503 	if (dev1->devtype != dev2->devtype)
1504 		return 0;
1505 	if (dev1->bus != dev2->bus)
1506 		return 0;
1507 	return 1;
1508 }
1509 
1510 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1511 	struct hpsa_scsi_dev_t *dev2)
1512 {
1513 	/* Device attributes that can change, but don't mean
1514 	 * that the device is a different device, nor that the OS
1515 	 * needs to be told anything about the change.
1516 	 */
1517 	if (dev1->raid_level != dev2->raid_level)
1518 		return 1;
1519 	if (dev1->offload_config != dev2->offload_config)
1520 		return 1;
1521 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1522 		return 1;
1523 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1524 		if (dev1->queue_depth != dev2->queue_depth)
1525 			return 1;
1526 	/*
1527 	 * This can happen for dual domain devices. An active
1528 	 * path change causes the ioaccel handle to change
1529 	 *
1530 	 * for example note the handle differences between p0 and p1
1531 	 * Device                    WWN               ,WWN hash,Handle
1532 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1533 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1534 	 */
1535 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1536 		return 1;
1537 	return 0;
1538 }
1539 
1540 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1541  * and return needle location in *index.  If scsi3addr matches, but not
1542  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1543  * location in *index.
1544  * In the case of a minor device attribute change, such as RAID level, just
1545  * return DEVICE_UPDATED, along with the updated device's location in index.
1546  * If needle not found, return DEVICE_NOT_FOUND.
1547  */
1548 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1549 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1550 	int *index)
1551 {
1552 	int i;
1553 #define DEVICE_NOT_FOUND 0
1554 #define DEVICE_CHANGED 1
1555 #define DEVICE_SAME 2
1556 #define DEVICE_UPDATED 3
1557 	if (needle == NULL)
1558 		return DEVICE_NOT_FOUND;
1559 
1560 	for (i = 0; i < haystack_size; i++) {
1561 		if (haystack[i] == NULL) /* previously removed. */
1562 			continue;
1563 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1564 			*index = i;
1565 			if (device_is_the_same(needle, haystack[i])) {
1566 				if (device_updated(needle, haystack[i]))
1567 					return DEVICE_UPDATED;
1568 				return DEVICE_SAME;
1569 			} else {
1570 				/* Keep offline devices offline */
1571 				if (needle->volume_offline)
1572 					return DEVICE_NOT_FOUND;
1573 				return DEVICE_CHANGED;
1574 			}
1575 		}
1576 	}
1577 	*index = -1;
1578 	return DEVICE_NOT_FOUND;
1579 }
1580 
1581 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1582 					unsigned char scsi3addr[])
1583 {
1584 	struct offline_device_entry *device;
1585 	unsigned long flags;
1586 
1587 	/* Check to see if device is already on the list */
1588 	spin_lock_irqsave(&h->offline_device_lock, flags);
1589 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1590 		if (memcmp(device->scsi3addr, scsi3addr,
1591 			sizeof(device->scsi3addr)) == 0) {
1592 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1593 			return;
1594 		}
1595 	}
1596 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597 
1598 	/* Device is not on the list, add it. */
1599 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1600 	if (!device)
1601 		return;
1602 
1603 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1604 	spin_lock_irqsave(&h->offline_device_lock, flags);
1605 	list_add_tail(&device->offline_list, &h->offline_device_list);
1606 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1607 }
1608 
1609 /* Print a message explaining various offline volume states */
1610 static void hpsa_show_volume_status(struct ctlr_info *h,
1611 	struct hpsa_scsi_dev_t *sd)
1612 {
1613 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1614 		dev_info(&h->pdev->dev,
1615 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1616 			h->scsi_host->host_no,
1617 			sd->bus, sd->target, sd->lun);
1618 	switch (sd->volume_offline) {
1619 	case HPSA_LV_OK:
1620 		break;
1621 	case HPSA_LV_UNDERGOING_ERASE:
1622 		dev_info(&h->pdev->dev,
1623 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1624 			h->scsi_host->host_no,
1625 			sd->bus, sd->target, sd->lun);
1626 		break;
1627 	case HPSA_LV_NOT_AVAILABLE:
1628 		dev_info(&h->pdev->dev,
1629 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1630 			h->scsi_host->host_no,
1631 			sd->bus, sd->target, sd->lun);
1632 		break;
1633 	case HPSA_LV_UNDERGOING_RPI:
1634 		dev_info(&h->pdev->dev,
1635 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1636 			h->scsi_host->host_no,
1637 			sd->bus, sd->target, sd->lun);
1638 		break;
1639 	case HPSA_LV_PENDING_RPI:
1640 		dev_info(&h->pdev->dev,
1641 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1642 			h->scsi_host->host_no,
1643 			sd->bus, sd->target, sd->lun);
1644 		break;
1645 	case HPSA_LV_ENCRYPTED_NO_KEY:
1646 		dev_info(&h->pdev->dev,
1647 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1648 			h->scsi_host->host_no,
1649 			sd->bus, sd->target, sd->lun);
1650 		break;
1651 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1652 		dev_info(&h->pdev->dev,
1653 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1654 			h->scsi_host->host_no,
1655 			sd->bus, sd->target, sd->lun);
1656 		break;
1657 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1658 		dev_info(&h->pdev->dev,
1659 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1660 			h->scsi_host->host_no,
1661 			sd->bus, sd->target, sd->lun);
1662 		break;
1663 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1664 		dev_info(&h->pdev->dev,
1665 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1666 			h->scsi_host->host_no,
1667 			sd->bus, sd->target, sd->lun);
1668 		break;
1669 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1670 		dev_info(&h->pdev->dev,
1671 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1672 			h->scsi_host->host_no,
1673 			sd->bus, sd->target, sd->lun);
1674 		break;
1675 	case HPSA_LV_PENDING_ENCRYPTION:
1676 		dev_info(&h->pdev->dev,
1677 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1678 			h->scsi_host->host_no,
1679 			sd->bus, sd->target, sd->lun);
1680 		break;
1681 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1682 		dev_info(&h->pdev->dev,
1683 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1684 			h->scsi_host->host_no,
1685 			sd->bus, sd->target, sd->lun);
1686 		break;
1687 	}
1688 }
1689 
1690 /*
1691  * Figure the list of physical drive pointers for a logical drive with
1692  * raid offload configured.
1693  */
1694 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1695 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1696 				struct hpsa_scsi_dev_t *logical_drive)
1697 {
1698 	struct raid_map_data *map = &logical_drive->raid_map;
1699 	struct raid_map_disk_data *dd = &map->data[0];
1700 	int i, j;
1701 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1702 				le16_to_cpu(map->metadata_disks_per_row);
1703 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1704 				le16_to_cpu(map->layout_map_count) *
1705 				total_disks_per_row;
1706 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1707 				total_disks_per_row;
1708 	int qdepth;
1709 
1710 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1711 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1712 
1713 	logical_drive->nphysical_disks = nraid_map_entries;
1714 
1715 	qdepth = 0;
1716 	for (i = 0; i < nraid_map_entries; i++) {
1717 		logical_drive->phys_disk[i] = NULL;
1718 		if (!logical_drive->offload_config)
1719 			continue;
1720 		for (j = 0; j < ndevices; j++) {
1721 			if (dev[j] == NULL)
1722 				continue;
1723 			if (dev[j]->devtype != TYPE_DISK &&
1724 			    dev[j]->devtype != TYPE_ZBC)
1725 				continue;
1726 			if (is_logical_device(dev[j]))
1727 				continue;
1728 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1729 				continue;
1730 
1731 			logical_drive->phys_disk[i] = dev[j];
1732 			if (i < nphys_disk)
1733 				qdepth = min(h->nr_cmds, qdepth +
1734 				    logical_drive->phys_disk[i]->queue_depth);
1735 			break;
1736 		}
1737 
1738 		/*
1739 		 * This can happen if a physical drive is removed and
1740 		 * the logical drive is degraded.  In that case, the RAID
1741 		 * map data will refer to a physical disk which isn't actually
1742 		 * present.  And in that case offload_enabled should already
1743 		 * be 0, but we'll turn it off here just in case
1744 		 */
1745 		if (!logical_drive->phys_disk[i]) {
1746 			dev_warn(&h->pdev->dev,
1747 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1748 				__func__,
1749 				h->scsi_host->host_no, logical_drive->bus,
1750 				logical_drive->target, logical_drive->lun);
1751 			hpsa_turn_off_ioaccel_for_device(logical_drive);
1752 			logical_drive->queue_depth = 8;
1753 		}
1754 	}
1755 	if (nraid_map_entries)
1756 		/*
1757 		 * This is correct for reads, too high for full stripe writes,
1758 		 * way too high for partial stripe writes
1759 		 */
1760 		logical_drive->queue_depth = qdepth;
1761 	else {
1762 		if (logical_drive->external)
1763 			logical_drive->queue_depth = EXTERNAL_QD;
1764 		else
1765 			logical_drive->queue_depth = h->nr_cmds;
1766 	}
1767 }
1768 
1769 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1770 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1771 {
1772 	int i;
1773 
1774 	for (i = 0; i < ndevices; i++) {
1775 		if (dev[i] == NULL)
1776 			continue;
1777 		if (dev[i]->devtype != TYPE_DISK &&
1778 		    dev[i]->devtype != TYPE_ZBC)
1779 			continue;
1780 		if (!is_logical_device(dev[i]))
1781 			continue;
1782 
1783 		/*
1784 		 * If offload is currently enabled, the RAID map and
1785 		 * phys_disk[] assignment *better* not be changing
1786 		 * because we would be changing ioaccel phsy_disk[] pointers
1787 		 * on a ioaccel volume processing I/O requests.
1788 		 *
1789 		 * If an ioaccel volume status changed, initially because it was
1790 		 * re-configured and thus underwent a transformation, or
1791 		 * a drive failed, we would have received a state change
1792 		 * request and ioaccel should have been turned off. When the
1793 		 * transformation completes, we get another state change
1794 		 * request to turn ioaccel back on. In this case, we need
1795 		 * to update the ioaccel information.
1796 		 *
1797 		 * Thus: If it is not currently enabled, but will be after
1798 		 * the scan completes, make sure the ioaccel pointers
1799 		 * are up to date.
1800 		 */
1801 
1802 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1803 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1804 	}
1805 }
1806 
1807 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1808 {
1809 	int rc = 0;
1810 
1811 	if (!h->scsi_host)
1812 		return 1;
1813 
1814 	if (is_logical_device(device)) /* RAID */
1815 		rc = scsi_add_device(h->scsi_host, device->bus,
1816 					device->target, device->lun);
1817 	else /* HBA */
1818 		rc = hpsa_add_sas_device(h->sas_host, device);
1819 
1820 	return rc;
1821 }
1822 
1823 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1824 						struct hpsa_scsi_dev_t *dev)
1825 {
1826 	int i;
1827 	int count = 0;
1828 
1829 	for (i = 0; i < h->nr_cmds; i++) {
1830 		struct CommandList *c = h->cmd_pool + i;
1831 		int refcount = atomic_inc_return(&c->refcount);
1832 
1833 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1834 				dev->scsi3addr)) {
1835 			unsigned long flags;
1836 
1837 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1838 			if (!hpsa_is_cmd_idle(c))
1839 				++count;
1840 			spin_unlock_irqrestore(&h->lock, flags);
1841 		}
1842 
1843 		cmd_free(h, c);
1844 	}
1845 
1846 	return count;
1847 }
1848 
1849 #define NUM_WAIT 20
1850 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1851 						struct hpsa_scsi_dev_t *device)
1852 {
1853 	int cmds = 0;
1854 	int waits = 0;
1855 	int num_wait = NUM_WAIT;
1856 
1857 	if (device->external)
1858 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1859 
1860 	while (1) {
1861 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1862 		if (cmds == 0)
1863 			break;
1864 		if (++waits > num_wait)
1865 			break;
1866 		msleep(1000);
1867 	}
1868 
1869 	if (waits > num_wait) {
1870 		dev_warn(&h->pdev->dev,
1871 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1872 			__func__,
1873 			h->scsi_host->host_no,
1874 			device->bus, device->target, device->lun, cmds);
1875 	}
1876 }
1877 
1878 static void hpsa_remove_device(struct ctlr_info *h,
1879 			struct hpsa_scsi_dev_t *device)
1880 {
1881 	struct scsi_device *sdev = NULL;
1882 
1883 	if (!h->scsi_host)
1884 		return;
1885 
1886 	/*
1887 	 * Allow for commands to drain
1888 	 */
1889 	device->removed = 1;
1890 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1891 
1892 	if (is_logical_device(device)) { /* RAID */
1893 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1894 						device->target, device->lun);
1895 		if (sdev) {
1896 			scsi_remove_device(sdev);
1897 			scsi_device_put(sdev);
1898 		} else {
1899 			/*
1900 			 * We don't expect to get here.  Future commands
1901 			 * to this device will get a selection timeout as
1902 			 * if the device were gone.
1903 			 */
1904 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1905 					"didn't find device for removal.");
1906 		}
1907 	} else { /* HBA */
1908 
1909 		hpsa_remove_sas_device(device);
1910 	}
1911 }
1912 
1913 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1914 	struct hpsa_scsi_dev_t *sd[], int nsds)
1915 {
1916 	/* sd contains scsi3 addresses and devtypes, and inquiry
1917 	 * data.  This function takes what's in sd to be the current
1918 	 * reality and updates h->dev[] to reflect that reality.
1919 	 */
1920 	int i, entry, device_change, changes = 0;
1921 	struct hpsa_scsi_dev_t *csd;
1922 	unsigned long flags;
1923 	struct hpsa_scsi_dev_t **added, **removed;
1924 	int nadded, nremoved;
1925 
1926 	/*
1927 	 * A reset can cause a device status to change
1928 	 * re-schedule the scan to see what happened.
1929 	 */
1930 	spin_lock_irqsave(&h->reset_lock, flags);
1931 	if (h->reset_in_progress) {
1932 		h->drv_req_rescan = 1;
1933 		spin_unlock_irqrestore(&h->reset_lock, flags);
1934 		return;
1935 	}
1936 	spin_unlock_irqrestore(&h->reset_lock, flags);
1937 
1938 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1939 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1940 
1941 	if (!added || !removed) {
1942 		dev_warn(&h->pdev->dev, "out of memory in "
1943 			"adjust_hpsa_scsi_table\n");
1944 		goto free_and_out;
1945 	}
1946 
1947 	spin_lock_irqsave(&h->devlock, flags);
1948 
1949 	/* find any devices in h->dev[] that are not in
1950 	 * sd[] and remove them from h->dev[], and for any
1951 	 * devices which have changed, remove the old device
1952 	 * info and add the new device info.
1953 	 * If minor device attributes change, just update
1954 	 * the existing device structure.
1955 	 */
1956 	i = 0;
1957 	nremoved = 0;
1958 	nadded = 0;
1959 	while (i < h->ndevices) {
1960 		csd = h->dev[i];
1961 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1962 		if (device_change == DEVICE_NOT_FOUND) {
1963 			changes++;
1964 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1965 			continue; /* remove ^^^, hence i not incremented */
1966 		} else if (device_change == DEVICE_CHANGED) {
1967 			changes++;
1968 			hpsa_scsi_replace_entry(h, i, sd[entry],
1969 				added, &nadded, removed, &nremoved);
1970 			/* Set it to NULL to prevent it from being freed
1971 			 * at the bottom of hpsa_update_scsi_devices()
1972 			 */
1973 			sd[entry] = NULL;
1974 		} else if (device_change == DEVICE_UPDATED) {
1975 			hpsa_scsi_update_entry(h, i, sd[entry]);
1976 		}
1977 		i++;
1978 	}
1979 
1980 	/* Now, make sure every device listed in sd[] is also
1981 	 * listed in h->dev[], adding them if they aren't found
1982 	 */
1983 
1984 	for (i = 0; i < nsds; i++) {
1985 		if (!sd[i]) /* if already added above. */
1986 			continue;
1987 
1988 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1989 		 * as the SCSI mid-layer does not handle such devices well.
1990 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1991 		 * at 160Hz, and prevents the system from coming up.
1992 		 */
1993 		if (sd[i]->volume_offline) {
1994 			hpsa_show_volume_status(h, sd[i]);
1995 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1996 			continue;
1997 		}
1998 
1999 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2000 					h->ndevices, &entry);
2001 		if (device_change == DEVICE_NOT_FOUND) {
2002 			changes++;
2003 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2004 				break;
2005 			sd[i] = NULL; /* prevent from being freed later. */
2006 		} else if (device_change == DEVICE_CHANGED) {
2007 			/* should never happen... */
2008 			changes++;
2009 			dev_warn(&h->pdev->dev,
2010 				"device unexpectedly changed.\n");
2011 			/* but if it does happen, we just ignore that device */
2012 		}
2013 	}
2014 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2015 
2016 	/*
2017 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2018 	 * any logical drives that need it enabled.
2019 	 *
2020 	 * The raid map should be current by now.
2021 	 *
2022 	 * We are updating the device list used for I/O requests.
2023 	 */
2024 	for (i = 0; i < h->ndevices; i++) {
2025 		if (h->dev[i] == NULL)
2026 			continue;
2027 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2028 	}
2029 
2030 	spin_unlock_irqrestore(&h->devlock, flags);
2031 
2032 	/* Monitor devices which are in one of several NOT READY states to be
2033 	 * brought online later. This must be done without holding h->devlock,
2034 	 * so don't touch h->dev[]
2035 	 */
2036 	for (i = 0; i < nsds; i++) {
2037 		if (!sd[i]) /* if already added above. */
2038 			continue;
2039 		if (sd[i]->volume_offline)
2040 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2041 	}
2042 
2043 	/* Don't notify scsi mid layer of any changes the first time through
2044 	 * (or if there are no changes) scsi_scan_host will do it later the
2045 	 * first time through.
2046 	 */
2047 	if (!changes)
2048 		goto free_and_out;
2049 
2050 	/* Notify scsi mid layer of any removed devices */
2051 	for (i = 0; i < nremoved; i++) {
2052 		if (removed[i] == NULL)
2053 			continue;
2054 		if (removed[i]->expose_device)
2055 			hpsa_remove_device(h, removed[i]);
2056 		kfree(removed[i]);
2057 		removed[i] = NULL;
2058 	}
2059 
2060 	/* Notify scsi mid layer of any added devices */
2061 	for (i = 0; i < nadded; i++) {
2062 		int rc = 0;
2063 
2064 		if (added[i] == NULL)
2065 			continue;
2066 		if (!(added[i]->expose_device))
2067 			continue;
2068 		rc = hpsa_add_device(h, added[i]);
2069 		if (!rc)
2070 			continue;
2071 		dev_warn(&h->pdev->dev,
2072 			"addition failed %d, device not added.", rc);
2073 		/* now we have to remove it from h->dev,
2074 		 * since it didn't get added to scsi mid layer
2075 		 */
2076 		fixup_botched_add(h, added[i]);
2077 		h->drv_req_rescan = 1;
2078 	}
2079 
2080 free_and_out:
2081 	kfree(added);
2082 	kfree(removed);
2083 }
2084 
2085 /*
2086  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2087  * Assume's h->devlock is held.
2088  */
2089 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2090 	int bus, int target, int lun)
2091 {
2092 	int i;
2093 	struct hpsa_scsi_dev_t *sd;
2094 
2095 	for (i = 0; i < h->ndevices; i++) {
2096 		sd = h->dev[i];
2097 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2098 			return sd;
2099 	}
2100 	return NULL;
2101 }
2102 
2103 static int hpsa_slave_alloc(struct scsi_device *sdev)
2104 {
2105 	struct hpsa_scsi_dev_t *sd = NULL;
2106 	unsigned long flags;
2107 	struct ctlr_info *h;
2108 
2109 	h = sdev_to_hba(sdev);
2110 	spin_lock_irqsave(&h->devlock, flags);
2111 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2112 		struct scsi_target *starget;
2113 		struct sas_rphy *rphy;
2114 
2115 		starget = scsi_target(sdev);
2116 		rphy = target_to_rphy(starget);
2117 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2118 		if (sd) {
2119 			sd->target = sdev_id(sdev);
2120 			sd->lun = sdev->lun;
2121 		}
2122 	}
2123 	if (!sd)
2124 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2125 					sdev_id(sdev), sdev->lun);
2126 
2127 	if (sd && sd->expose_device) {
2128 		atomic_set(&sd->ioaccel_cmds_out, 0);
2129 		sdev->hostdata = sd;
2130 	} else
2131 		sdev->hostdata = NULL;
2132 	spin_unlock_irqrestore(&h->devlock, flags);
2133 	return 0;
2134 }
2135 
2136 /* configure scsi device based on internal per-device structure */
2137 static int hpsa_slave_configure(struct scsi_device *sdev)
2138 {
2139 	struct hpsa_scsi_dev_t *sd;
2140 	int queue_depth;
2141 
2142 	sd = sdev->hostdata;
2143 	sdev->no_uld_attach = !sd || !sd->expose_device;
2144 
2145 	if (sd) {
2146 		sd->was_removed = 0;
2147 		if (sd->external) {
2148 			queue_depth = EXTERNAL_QD;
2149 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2150 			blk_queue_rq_timeout(sdev->request_queue,
2151 						HPSA_EH_PTRAID_TIMEOUT);
2152 		} else {
2153 			queue_depth = sd->queue_depth != 0 ?
2154 					sd->queue_depth : sdev->host->can_queue;
2155 		}
2156 	} else
2157 		queue_depth = sdev->host->can_queue;
2158 
2159 	scsi_change_queue_depth(sdev, queue_depth);
2160 
2161 	return 0;
2162 }
2163 
2164 static void hpsa_slave_destroy(struct scsi_device *sdev)
2165 {
2166 	struct hpsa_scsi_dev_t *hdev = NULL;
2167 
2168 	hdev = sdev->hostdata;
2169 
2170 	if (hdev)
2171 		hdev->was_removed = 1;
2172 }
2173 
2174 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2175 {
2176 	int i;
2177 
2178 	if (!h->ioaccel2_cmd_sg_list)
2179 		return;
2180 	for (i = 0; i < h->nr_cmds; i++) {
2181 		kfree(h->ioaccel2_cmd_sg_list[i]);
2182 		h->ioaccel2_cmd_sg_list[i] = NULL;
2183 	}
2184 	kfree(h->ioaccel2_cmd_sg_list);
2185 	h->ioaccel2_cmd_sg_list = NULL;
2186 }
2187 
2188 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2189 {
2190 	int i;
2191 
2192 	if (h->chainsize <= 0)
2193 		return 0;
2194 
2195 	h->ioaccel2_cmd_sg_list =
2196 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2197 					GFP_KERNEL);
2198 	if (!h->ioaccel2_cmd_sg_list)
2199 		return -ENOMEM;
2200 	for (i = 0; i < h->nr_cmds; i++) {
2201 		h->ioaccel2_cmd_sg_list[i] =
2202 			kmalloc_array(h->maxsgentries,
2203 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2204 				      GFP_KERNEL);
2205 		if (!h->ioaccel2_cmd_sg_list[i])
2206 			goto clean;
2207 	}
2208 	return 0;
2209 
2210 clean:
2211 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2212 	return -ENOMEM;
2213 }
2214 
2215 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2216 {
2217 	int i;
2218 
2219 	if (!h->cmd_sg_list)
2220 		return;
2221 	for (i = 0; i < h->nr_cmds; i++) {
2222 		kfree(h->cmd_sg_list[i]);
2223 		h->cmd_sg_list[i] = NULL;
2224 	}
2225 	kfree(h->cmd_sg_list);
2226 	h->cmd_sg_list = NULL;
2227 }
2228 
2229 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2230 {
2231 	int i;
2232 
2233 	if (h->chainsize <= 0)
2234 		return 0;
2235 
2236 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2237 				 GFP_KERNEL);
2238 	if (!h->cmd_sg_list)
2239 		return -ENOMEM;
2240 
2241 	for (i = 0; i < h->nr_cmds; i++) {
2242 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2243 						  sizeof(*h->cmd_sg_list[i]),
2244 						  GFP_KERNEL);
2245 		if (!h->cmd_sg_list[i])
2246 			goto clean;
2247 
2248 	}
2249 	return 0;
2250 
2251 clean:
2252 	hpsa_free_sg_chain_blocks(h);
2253 	return -ENOMEM;
2254 }
2255 
2256 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2257 	struct io_accel2_cmd *cp, struct CommandList *c)
2258 {
2259 	struct ioaccel2_sg_element *chain_block;
2260 	u64 temp64;
2261 	u32 chain_size;
2262 
2263 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2264 	chain_size = le32_to_cpu(cp->sg[0].length);
2265 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2266 				DMA_TO_DEVICE);
2267 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2268 		/* prevent subsequent unmapping */
2269 		cp->sg->address = 0;
2270 		return -1;
2271 	}
2272 	cp->sg->address = cpu_to_le64(temp64);
2273 	return 0;
2274 }
2275 
2276 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2277 	struct io_accel2_cmd *cp)
2278 {
2279 	struct ioaccel2_sg_element *chain_sg;
2280 	u64 temp64;
2281 	u32 chain_size;
2282 
2283 	chain_sg = cp->sg;
2284 	temp64 = le64_to_cpu(chain_sg->address);
2285 	chain_size = le32_to_cpu(cp->sg[0].length);
2286 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2287 }
2288 
2289 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2290 	struct CommandList *c)
2291 {
2292 	struct SGDescriptor *chain_sg, *chain_block;
2293 	u64 temp64;
2294 	u32 chain_len;
2295 
2296 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2297 	chain_block = h->cmd_sg_list[c->cmdindex];
2298 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2299 	chain_len = sizeof(*chain_sg) *
2300 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2301 	chain_sg->Len = cpu_to_le32(chain_len);
2302 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2303 				DMA_TO_DEVICE);
2304 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2305 		/* prevent subsequent unmapping */
2306 		chain_sg->Addr = cpu_to_le64(0);
2307 		return -1;
2308 	}
2309 	chain_sg->Addr = cpu_to_le64(temp64);
2310 	return 0;
2311 }
2312 
2313 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2314 	struct CommandList *c)
2315 {
2316 	struct SGDescriptor *chain_sg;
2317 
2318 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2319 		return;
2320 
2321 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2322 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2323 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2324 }
2325 
2326 
2327 /* Decode the various types of errors on ioaccel2 path.
2328  * Return 1 for any error that should generate a RAID path retry.
2329  * Return 0 for errors that don't require a RAID path retry.
2330  */
2331 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2332 					struct CommandList *c,
2333 					struct scsi_cmnd *cmd,
2334 					struct io_accel2_cmd *c2,
2335 					struct hpsa_scsi_dev_t *dev)
2336 {
2337 	int data_len;
2338 	int retry = 0;
2339 	u32 ioaccel2_resid = 0;
2340 
2341 	switch (c2->error_data.serv_response) {
2342 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2343 		switch (c2->error_data.status) {
2344 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2345 			if (cmd)
2346 				cmd->result = 0;
2347 			break;
2348 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2349 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2350 			if (c2->error_data.data_present !=
2351 					IOACCEL2_SENSE_DATA_PRESENT) {
2352 				memset(cmd->sense_buffer, 0,
2353 					SCSI_SENSE_BUFFERSIZE);
2354 				break;
2355 			}
2356 			/* copy the sense data */
2357 			data_len = c2->error_data.sense_data_len;
2358 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2359 				data_len = SCSI_SENSE_BUFFERSIZE;
2360 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2361 				data_len =
2362 					sizeof(c2->error_data.sense_data_buff);
2363 			memcpy(cmd->sense_buffer,
2364 				c2->error_data.sense_data_buff, data_len);
2365 			retry = 1;
2366 			break;
2367 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2368 			retry = 1;
2369 			break;
2370 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2371 			retry = 1;
2372 			break;
2373 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2374 			retry = 1;
2375 			break;
2376 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2377 			retry = 1;
2378 			break;
2379 		default:
2380 			retry = 1;
2381 			break;
2382 		}
2383 		break;
2384 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2385 		switch (c2->error_data.status) {
2386 		case IOACCEL2_STATUS_SR_IO_ERROR:
2387 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2388 		case IOACCEL2_STATUS_SR_OVERRUN:
2389 			retry = 1;
2390 			break;
2391 		case IOACCEL2_STATUS_SR_UNDERRUN:
2392 			cmd->result = (DID_OK << 16);		/* host byte */
2393 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2394 			ioaccel2_resid = get_unaligned_le32(
2395 						&c2->error_data.resid_cnt[0]);
2396 			scsi_set_resid(cmd, ioaccel2_resid);
2397 			break;
2398 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2399 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2400 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2401 			/*
2402 			 * Did an HBA disk disappear? We will eventually
2403 			 * get a state change event from the controller but
2404 			 * in the meantime, we need to tell the OS that the
2405 			 * HBA disk is no longer there and stop I/O
2406 			 * from going down. This allows the potential re-insert
2407 			 * of the disk to get the same device node.
2408 			 */
2409 			if (dev->physical_device && dev->expose_device) {
2410 				cmd->result = DID_NO_CONNECT << 16;
2411 				dev->removed = 1;
2412 				h->drv_req_rescan = 1;
2413 				dev_warn(&h->pdev->dev,
2414 					"%s: device is gone!\n", __func__);
2415 			} else
2416 				/*
2417 				 * Retry by sending down the RAID path.
2418 				 * We will get an event from ctlr to
2419 				 * trigger rescan regardless.
2420 				 */
2421 				retry = 1;
2422 			break;
2423 		default:
2424 			retry = 1;
2425 		}
2426 		break;
2427 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2428 		break;
2429 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2430 		break;
2431 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2432 		retry = 1;
2433 		break;
2434 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2435 		break;
2436 	default:
2437 		retry = 1;
2438 		break;
2439 	}
2440 
2441 	if (dev->in_reset)
2442 		retry = 0;
2443 
2444 	return retry;	/* retry on raid path? */
2445 }
2446 
2447 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2448 		struct CommandList *c)
2449 {
2450 	struct hpsa_scsi_dev_t *dev = c->device;
2451 
2452 	/*
2453 	 * Reset c->scsi_cmd here so that the reset handler will know
2454 	 * this command has completed.  Then, check to see if the handler is
2455 	 * waiting for this command, and, if so, wake it.
2456 	 */
2457 	c->scsi_cmd = SCSI_CMD_IDLE;
2458 	mb();	/* Declare command idle before checking for pending events. */
2459 	if (dev) {
2460 		atomic_dec(&dev->commands_outstanding);
2461 		if (dev->in_reset &&
2462 			atomic_read(&dev->commands_outstanding) <= 0)
2463 			wake_up_all(&h->event_sync_wait_queue);
2464 	}
2465 }
2466 
2467 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2468 				      struct CommandList *c)
2469 {
2470 	hpsa_cmd_resolve_events(h, c);
2471 	cmd_tagged_free(h, c);
2472 }
2473 
2474 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2475 		struct CommandList *c, struct scsi_cmnd *cmd)
2476 {
2477 	hpsa_cmd_resolve_and_free(h, c);
2478 	if (cmd && cmd->scsi_done)
2479 		cmd->scsi_done(cmd);
2480 }
2481 
2482 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2483 {
2484 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2485 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2486 }
2487 
2488 static void process_ioaccel2_completion(struct ctlr_info *h,
2489 		struct CommandList *c, struct scsi_cmnd *cmd,
2490 		struct hpsa_scsi_dev_t *dev)
2491 {
2492 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2493 
2494 	/* check for good status */
2495 	if (likely(c2->error_data.serv_response == 0 &&
2496 			c2->error_data.status == 0)) {
2497 		cmd->result = 0;
2498 		return hpsa_cmd_free_and_done(h, c, cmd);
2499 	}
2500 
2501 	/*
2502 	 * Any RAID offload error results in retry which will use
2503 	 * the normal I/O path so the controller can handle whatever is
2504 	 * wrong.
2505 	 */
2506 	if (is_logical_device(dev) &&
2507 		c2->error_data.serv_response ==
2508 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2509 		if (c2->error_data.status ==
2510 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2511 			hpsa_turn_off_ioaccel_for_device(dev);
2512 		}
2513 
2514 		if (dev->in_reset) {
2515 			cmd->result = DID_RESET << 16;
2516 			return hpsa_cmd_free_and_done(h, c, cmd);
2517 		}
2518 
2519 		return hpsa_retry_cmd(h, c);
2520 	}
2521 
2522 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2523 		return hpsa_retry_cmd(h, c);
2524 
2525 	return hpsa_cmd_free_and_done(h, c, cmd);
2526 }
2527 
2528 /* Returns 0 on success, < 0 otherwise. */
2529 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2530 					struct CommandList *cp)
2531 {
2532 	u8 tmf_status = cp->err_info->ScsiStatus;
2533 
2534 	switch (tmf_status) {
2535 	case CISS_TMF_COMPLETE:
2536 		/*
2537 		 * CISS_TMF_COMPLETE never happens, instead,
2538 		 * ei->CommandStatus == 0 for this case.
2539 		 */
2540 	case CISS_TMF_SUCCESS:
2541 		return 0;
2542 	case CISS_TMF_INVALID_FRAME:
2543 	case CISS_TMF_NOT_SUPPORTED:
2544 	case CISS_TMF_FAILED:
2545 	case CISS_TMF_WRONG_LUN:
2546 	case CISS_TMF_OVERLAPPED_TAG:
2547 		break;
2548 	default:
2549 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2550 				tmf_status);
2551 		break;
2552 	}
2553 	return -tmf_status;
2554 }
2555 
2556 static void complete_scsi_command(struct CommandList *cp)
2557 {
2558 	struct scsi_cmnd *cmd;
2559 	struct ctlr_info *h;
2560 	struct ErrorInfo *ei;
2561 	struct hpsa_scsi_dev_t *dev;
2562 	struct io_accel2_cmd *c2;
2563 
2564 	u8 sense_key;
2565 	u8 asc;      /* additional sense code */
2566 	u8 ascq;     /* additional sense code qualifier */
2567 	unsigned long sense_data_size;
2568 
2569 	ei = cp->err_info;
2570 	cmd = cp->scsi_cmd;
2571 	h = cp->h;
2572 
2573 	if (!cmd->device) {
2574 		cmd->result = DID_NO_CONNECT << 16;
2575 		return hpsa_cmd_free_and_done(h, cp, cmd);
2576 	}
2577 
2578 	dev = cmd->device->hostdata;
2579 	if (!dev) {
2580 		cmd->result = DID_NO_CONNECT << 16;
2581 		return hpsa_cmd_free_and_done(h, cp, cmd);
2582 	}
2583 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2584 
2585 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2586 	if ((cp->cmd_type == CMD_SCSI) &&
2587 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2588 		hpsa_unmap_sg_chain_block(h, cp);
2589 
2590 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2591 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2592 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2593 
2594 	cmd->result = (DID_OK << 16); 		/* host byte */
2595 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2596 
2597 	/* SCSI command has already been cleaned up in SML */
2598 	if (dev->was_removed) {
2599 		hpsa_cmd_resolve_and_free(h, cp);
2600 		return;
2601 	}
2602 
2603 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2604 		if (dev->physical_device && dev->expose_device &&
2605 			dev->removed) {
2606 			cmd->result = DID_NO_CONNECT << 16;
2607 			return hpsa_cmd_free_and_done(h, cp, cmd);
2608 		}
2609 		if (likely(cp->phys_disk != NULL))
2610 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2611 	}
2612 
2613 	/*
2614 	 * We check for lockup status here as it may be set for
2615 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2616 	 * fail_all_oustanding_cmds()
2617 	 */
2618 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2619 		/* DID_NO_CONNECT will prevent a retry */
2620 		cmd->result = DID_NO_CONNECT << 16;
2621 		return hpsa_cmd_free_and_done(h, cp, cmd);
2622 	}
2623 
2624 	if (cp->cmd_type == CMD_IOACCEL2)
2625 		return process_ioaccel2_completion(h, cp, cmd, dev);
2626 
2627 	scsi_set_resid(cmd, ei->ResidualCnt);
2628 	if (ei->CommandStatus == 0)
2629 		return hpsa_cmd_free_and_done(h, cp, cmd);
2630 
2631 	/* For I/O accelerator commands, copy over some fields to the normal
2632 	 * CISS header used below for error handling.
2633 	 */
2634 	if (cp->cmd_type == CMD_IOACCEL1) {
2635 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2636 		cp->Header.SGList = scsi_sg_count(cmd);
2637 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2638 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2639 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2640 		cp->Header.tag = c->tag;
2641 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2642 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2643 
2644 		/* Any RAID offload error results in retry which will use
2645 		 * the normal I/O path so the controller can handle whatever's
2646 		 * wrong.
2647 		 */
2648 		if (is_logical_device(dev)) {
2649 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2650 				dev->offload_enabled = 0;
2651 			return hpsa_retry_cmd(h, cp);
2652 		}
2653 	}
2654 
2655 	/* an error has occurred */
2656 	switch (ei->CommandStatus) {
2657 
2658 	case CMD_TARGET_STATUS:
2659 		cmd->result |= ei->ScsiStatus;
2660 		/* copy the sense data */
2661 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2662 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2663 		else
2664 			sense_data_size = sizeof(ei->SenseInfo);
2665 		if (ei->SenseLen < sense_data_size)
2666 			sense_data_size = ei->SenseLen;
2667 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2668 		if (ei->ScsiStatus)
2669 			decode_sense_data(ei->SenseInfo, sense_data_size,
2670 				&sense_key, &asc, &ascq);
2671 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2672 			switch (sense_key) {
2673 			case ABORTED_COMMAND:
2674 				cmd->result |= DID_SOFT_ERROR << 16;
2675 				break;
2676 			case UNIT_ATTENTION:
2677 				if (asc == 0x3F && ascq == 0x0E)
2678 					h->drv_req_rescan = 1;
2679 				break;
2680 			case ILLEGAL_REQUEST:
2681 				if (asc == 0x25 && ascq == 0x00) {
2682 					dev->removed = 1;
2683 					cmd->result = DID_NO_CONNECT << 16;
2684 				}
2685 				break;
2686 			}
2687 			break;
2688 		}
2689 		/* Problem was not a check condition
2690 		 * Pass it up to the upper layers...
2691 		 */
2692 		if (ei->ScsiStatus) {
2693 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2694 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2695 				"Returning result: 0x%x\n",
2696 				cp, ei->ScsiStatus,
2697 				sense_key, asc, ascq,
2698 				cmd->result);
2699 		} else {  /* scsi status is zero??? How??? */
2700 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2701 				"Returning no connection.\n", cp),
2702 
2703 			/* Ordinarily, this case should never happen,
2704 			 * but there is a bug in some released firmware
2705 			 * revisions that allows it to happen if, for
2706 			 * example, a 4100 backplane loses power and
2707 			 * the tape drive is in it.  We assume that
2708 			 * it's a fatal error of some kind because we
2709 			 * can't show that it wasn't. We will make it
2710 			 * look like selection timeout since that is
2711 			 * the most common reason for this to occur,
2712 			 * and it's severe enough.
2713 			 */
2714 
2715 			cmd->result = DID_NO_CONNECT << 16;
2716 		}
2717 		break;
2718 
2719 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2720 		break;
2721 	case CMD_DATA_OVERRUN:
2722 		dev_warn(&h->pdev->dev,
2723 			"CDB %16phN data overrun\n", cp->Request.CDB);
2724 		break;
2725 	case CMD_INVALID: {
2726 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2727 		print_cmd(cp); */
2728 		/* We get CMD_INVALID if you address a non-existent device
2729 		 * instead of a selection timeout (no response).  You will
2730 		 * see this if you yank out a drive, then try to access it.
2731 		 * This is kind of a shame because it means that any other
2732 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2733 		 * missing target. */
2734 		cmd->result = DID_NO_CONNECT << 16;
2735 	}
2736 		break;
2737 	case CMD_PROTOCOL_ERR:
2738 		cmd->result = DID_ERROR << 16;
2739 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2740 				cp->Request.CDB);
2741 		break;
2742 	case CMD_HARDWARE_ERR:
2743 		cmd->result = DID_ERROR << 16;
2744 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2745 			cp->Request.CDB);
2746 		break;
2747 	case CMD_CONNECTION_LOST:
2748 		cmd->result = DID_ERROR << 16;
2749 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2750 			cp->Request.CDB);
2751 		break;
2752 	case CMD_ABORTED:
2753 		cmd->result = DID_ABORT << 16;
2754 		break;
2755 	case CMD_ABORT_FAILED:
2756 		cmd->result = DID_ERROR << 16;
2757 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2758 			cp->Request.CDB);
2759 		break;
2760 	case CMD_UNSOLICITED_ABORT:
2761 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2762 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2763 			cp->Request.CDB);
2764 		break;
2765 	case CMD_TIMEOUT:
2766 		cmd->result = DID_TIME_OUT << 16;
2767 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2768 			cp->Request.CDB);
2769 		break;
2770 	case CMD_UNABORTABLE:
2771 		cmd->result = DID_ERROR << 16;
2772 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2773 		break;
2774 	case CMD_TMF_STATUS:
2775 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2776 			cmd->result = DID_ERROR << 16;
2777 		break;
2778 	case CMD_IOACCEL_DISABLED:
2779 		/* This only handles the direct pass-through case since RAID
2780 		 * offload is handled above.  Just attempt a retry.
2781 		 */
2782 		cmd->result = DID_SOFT_ERROR << 16;
2783 		dev_warn(&h->pdev->dev,
2784 				"cp %p had HP SSD Smart Path error\n", cp);
2785 		break;
2786 	default:
2787 		cmd->result = DID_ERROR << 16;
2788 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2789 				cp, ei->CommandStatus);
2790 	}
2791 
2792 	return hpsa_cmd_free_and_done(h, cp, cmd);
2793 }
2794 
2795 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2796 		int sg_used, enum dma_data_direction data_direction)
2797 {
2798 	int i;
2799 
2800 	for (i = 0; i < sg_used; i++)
2801 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2802 				le32_to_cpu(c->SG[i].Len),
2803 				data_direction);
2804 }
2805 
2806 static int hpsa_map_one(struct pci_dev *pdev,
2807 		struct CommandList *cp,
2808 		unsigned char *buf,
2809 		size_t buflen,
2810 		enum dma_data_direction data_direction)
2811 {
2812 	u64 addr64;
2813 
2814 	if (buflen == 0 || data_direction == DMA_NONE) {
2815 		cp->Header.SGList = 0;
2816 		cp->Header.SGTotal = cpu_to_le16(0);
2817 		return 0;
2818 	}
2819 
2820 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2821 	if (dma_mapping_error(&pdev->dev, addr64)) {
2822 		/* Prevent subsequent unmap of something never mapped */
2823 		cp->Header.SGList = 0;
2824 		cp->Header.SGTotal = cpu_to_le16(0);
2825 		return -1;
2826 	}
2827 	cp->SG[0].Addr = cpu_to_le64(addr64);
2828 	cp->SG[0].Len = cpu_to_le32(buflen);
2829 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2830 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2831 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2832 	return 0;
2833 }
2834 
2835 #define NO_TIMEOUT ((unsigned long) -1)
2836 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2837 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2838 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2839 {
2840 	DECLARE_COMPLETION_ONSTACK(wait);
2841 
2842 	c->waiting = &wait;
2843 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2844 	if (timeout_msecs == NO_TIMEOUT) {
2845 		/* TODO: get rid of this no-timeout thing */
2846 		wait_for_completion_io(&wait);
2847 		return IO_OK;
2848 	}
2849 	if (!wait_for_completion_io_timeout(&wait,
2850 					msecs_to_jiffies(timeout_msecs))) {
2851 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2852 		return -ETIMEDOUT;
2853 	}
2854 	return IO_OK;
2855 }
2856 
2857 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2858 				   int reply_queue, unsigned long timeout_msecs)
2859 {
2860 	if (unlikely(lockup_detected(h))) {
2861 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2862 		return IO_OK;
2863 	}
2864 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2865 }
2866 
2867 static u32 lockup_detected(struct ctlr_info *h)
2868 {
2869 	int cpu;
2870 	u32 rc, *lockup_detected;
2871 
2872 	cpu = get_cpu();
2873 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2874 	rc = *lockup_detected;
2875 	put_cpu();
2876 	return rc;
2877 }
2878 
2879 #define MAX_DRIVER_CMD_RETRIES 25
2880 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2881 		struct CommandList *c, enum dma_data_direction data_direction,
2882 		unsigned long timeout_msecs)
2883 {
2884 	int backoff_time = 10, retry_count = 0;
2885 	int rc;
2886 
2887 	do {
2888 		memset(c->err_info, 0, sizeof(*c->err_info));
2889 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2890 						  timeout_msecs);
2891 		if (rc)
2892 			break;
2893 		retry_count++;
2894 		if (retry_count > 3) {
2895 			msleep(backoff_time);
2896 			if (backoff_time < 1000)
2897 				backoff_time *= 2;
2898 		}
2899 	} while ((check_for_unit_attention(h, c) ||
2900 			check_for_busy(h, c)) &&
2901 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2902 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2903 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2904 		rc = -EIO;
2905 	return rc;
2906 }
2907 
2908 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2909 				struct CommandList *c)
2910 {
2911 	const u8 *cdb = c->Request.CDB;
2912 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2913 
2914 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2915 		 txt, lun, cdb);
2916 }
2917 
2918 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2919 			struct CommandList *cp)
2920 {
2921 	const struct ErrorInfo *ei = cp->err_info;
2922 	struct device *d = &cp->h->pdev->dev;
2923 	u8 sense_key, asc, ascq;
2924 	int sense_len;
2925 
2926 	switch (ei->CommandStatus) {
2927 	case CMD_TARGET_STATUS:
2928 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2929 			sense_len = sizeof(ei->SenseInfo);
2930 		else
2931 			sense_len = ei->SenseLen;
2932 		decode_sense_data(ei->SenseInfo, sense_len,
2933 					&sense_key, &asc, &ascq);
2934 		hpsa_print_cmd(h, "SCSI status", cp);
2935 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2936 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2937 				sense_key, asc, ascq);
2938 		else
2939 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2940 		if (ei->ScsiStatus == 0)
2941 			dev_warn(d, "SCSI status is abnormally zero.  "
2942 			"(probably indicates selection timeout "
2943 			"reported incorrectly due to a known "
2944 			"firmware bug, circa July, 2001.)\n");
2945 		break;
2946 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2947 		break;
2948 	case CMD_DATA_OVERRUN:
2949 		hpsa_print_cmd(h, "overrun condition", cp);
2950 		break;
2951 	case CMD_INVALID: {
2952 		/* controller unfortunately reports SCSI passthru's
2953 		 * to non-existent targets as invalid commands.
2954 		 */
2955 		hpsa_print_cmd(h, "invalid command", cp);
2956 		dev_warn(d, "probably means device no longer present\n");
2957 		}
2958 		break;
2959 	case CMD_PROTOCOL_ERR:
2960 		hpsa_print_cmd(h, "protocol error", cp);
2961 		break;
2962 	case CMD_HARDWARE_ERR:
2963 		hpsa_print_cmd(h, "hardware error", cp);
2964 		break;
2965 	case CMD_CONNECTION_LOST:
2966 		hpsa_print_cmd(h, "connection lost", cp);
2967 		break;
2968 	case CMD_ABORTED:
2969 		hpsa_print_cmd(h, "aborted", cp);
2970 		break;
2971 	case CMD_ABORT_FAILED:
2972 		hpsa_print_cmd(h, "abort failed", cp);
2973 		break;
2974 	case CMD_UNSOLICITED_ABORT:
2975 		hpsa_print_cmd(h, "unsolicited abort", cp);
2976 		break;
2977 	case CMD_TIMEOUT:
2978 		hpsa_print_cmd(h, "timed out", cp);
2979 		break;
2980 	case CMD_UNABORTABLE:
2981 		hpsa_print_cmd(h, "unabortable", cp);
2982 		break;
2983 	case CMD_CTLR_LOCKUP:
2984 		hpsa_print_cmd(h, "controller lockup detected", cp);
2985 		break;
2986 	default:
2987 		hpsa_print_cmd(h, "unknown status", cp);
2988 		dev_warn(d, "Unknown command status %x\n",
2989 				ei->CommandStatus);
2990 	}
2991 }
2992 
2993 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2994 					u8 page, u8 *buf, size_t bufsize)
2995 {
2996 	int rc = IO_OK;
2997 	struct CommandList *c;
2998 	struct ErrorInfo *ei;
2999 
3000 	c = cmd_alloc(h);
3001 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3002 			page, scsi3addr, TYPE_CMD)) {
3003 		rc = -1;
3004 		goto out;
3005 	}
3006 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3007 			NO_TIMEOUT);
3008 	if (rc)
3009 		goto out;
3010 	ei = c->err_info;
3011 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3012 		hpsa_scsi_interpret_error(h, c);
3013 		rc = -1;
3014 	}
3015 out:
3016 	cmd_free(h, c);
3017 	return rc;
3018 }
3019 
3020 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3021 						u8 *scsi3addr)
3022 {
3023 	u8 *buf;
3024 	u64 sa = 0;
3025 	int rc = 0;
3026 
3027 	buf = kzalloc(1024, GFP_KERNEL);
3028 	if (!buf)
3029 		return 0;
3030 
3031 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3032 					buf, 1024);
3033 
3034 	if (rc)
3035 		goto out;
3036 
3037 	sa = get_unaligned_be64(buf+12);
3038 
3039 out:
3040 	kfree(buf);
3041 	return sa;
3042 }
3043 
3044 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3045 			u16 page, unsigned char *buf,
3046 			unsigned char bufsize)
3047 {
3048 	int rc = IO_OK;
3049 	struct CommandList *c;
3050 	struct ErrorInfo *ei;
3051 
3052 	c = cmd_alloc(h);
3053 
3054 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3055 			page, scsi3addr, TYPE_CMD)) {
3056 		rc = -1;
3057 		goto out;
3058 	}
3059 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3060 			NO_TIMEOUT);
3061 	if (rc)
3062 		goto out;
3063 	ei = c->err_info;
3064 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3065 		hpsa_scsi_interpret_error(h, c);
3066 		rc = -1;
3067 	}
3068 out:
3069 	cmd_free(h, c);
3070 	return rc;
3071 }
3072 
3073 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3074 	u8 reset_type, int reply_queue)
3075 {
3076 	int rc = IO_OK;
3077 	struct CommandList *c;
3078 	struct ErrorInfo *ei;
3079 
3080 	c = cmd_alloc(h);
3081 	c->device = dev;
3082 
3083 	/* fill_cmd can't fail here, no data buffer to map. */
3084 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3085 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3086 	if (rc) {
3087 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3088 		goto out;
3089 	}
3090 	/* no unmap needed here because no data xfer. */
3091 
3092 	ei = c->err_info;
3093 	if (ei->CommandStatus != 0) {
3094 		hpsa_scsi_interpret_error(h, c);
3095 		rc = -1;
3096 	}
3097 out:
3098 	cmd_free(h, c);
3099 	return rc;
3100 }
3101 
3102 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3103 			       struct hpsa_scsi_dev_t *dev,
3104 			       unsigned char *scsi3addr)
3105 {
3106 	int i;
3107 	bool match = false;
3108 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3109 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3110 
3111 	if (hpsa_is_cmd_idle(c))
3112 		return false;
3113 
3114 	switch (c->cmd_type) {
3115 	case CMD_SCSI:
3116 	case CMD_IOCTL_PEND:
3117 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3118 				sizeof(c->Header.LUN.LunAddrBytes));
3119 		break;
3120 
3121 	case CMD_IOACCEL1:
3122 	case CMD_IOACCEL2:
3123 		if (c->phys_disk == dev) {
3124 			/* HBA mode match */
3125 			match = true;
3126 		} else {
3127 			/* Possible RAID mode -- check each phys dev. */
3128 			/* FIXME:  Do we need to take out a lock here?  If
3129 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3130 			 * instead. */
3131 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3132 				/* FIXME: an alternate test might be
3133 				 *
3134 				 * match = dev->phys_disk[i]->ioaccel_handle
3135 				 *              == c2->scsi_nexus;      */
3136 				match = dev->phys_disk[i] == c->phys_disk;
3137 			}
3138 		}
3139 		break;
3140 
3141 	case IOACCEL2_TMF:
3142 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3143 			match = dev->phys_disk[i]->ioaccel_handle ==
3144 					le32_to_cpu(ac->it_nexus);
3145 		}
3146 		break;
3147 
3148 	case 0:		/* The command is in the middle of being initialized. */
3149 		match = false;
3150 		break;
3151 
3152 	default:
3153 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3154 			c->cmd_type);
3155 		BUG();
3156 	}
3157 
3158 	return match;
3159 }
3160 
3161 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3162 	u8 reset_type, int reply_queue)
3163 {
3164 	int rc = 0;
3165 
3166 	/* We can really only handle one reset at a time */
3167 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3168 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3169 		return -EINTR;
3170 	}
3171 
3172 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3173 	if (!rc) {
3174 		/* incremented by sending the reset request */
3175 		atomic_dec(&dev->commands_outstanding);
3176 		wait_event(h->event_sync_wait_queue,
3177 			atomic_read(&dev->commands_outstanding) <= 0 ||
3178 			lockup_detected(h));
3179 	}
3180 
3181 	if (unlikely(lockup_detected(h))) {
3182 		dev_warn(&h->pdev->dev,
3183 			 "Controller lockup detected during reset wait\n");
3184 		rc = -ENODEV;
3185 	}
3186 
3187 	if (!rc)
3188 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3189 
3190 	mutex_unlock(&h->reset_mutex);
3191 	return rc;
3192 }
3193 
3194 static void hpsa_get_raid_level(struct ctlr_info *h,
3195 	unsigned char *scsi3addr, unsigned char *raid_level)
3196 {
3197 	int rc;
3198 	unsigned char *buf;
3199 
3200 	*raid_level = RAID_UNKNOWN;
3201 	buf = kzalloc(64, GFP_KERNEL);
3202 	if (!buf)
3203 		return;
3204 
3205 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3206 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3207 		goto exit;
3208 
3209 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3210 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3211 
3212 	if (rc == 0)
3213 		*raid_level = buf[8];
3214 	if (*raid_level > RAID_UNKNOWN)
3215 		*raid_level = RAID_UNKNOWN;
3216 exit:
3217 	kfree(buf);
3218 	return;
3219 }
3220 
3221 #define HPSA_MAP_DEBUG
3222 #ifdef HPSA_MAP_DEBUG
3223 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3224 				struct raid_map_data *map_buff)
3225 {
3226 	struct raid_map_disk_data *dd = &map_buff->data[0];
3227 	int map, row, col;
3228 	u16 map_cnt, row_cnt, disks_per_row;
3229 
3230 	if (rc != 0)
3231 		return;
3232 
3233 	/* Show details only if debugging has been activated. */
3234 	if (h->raid_offload_debug < 2)
3235 		return;
3236 
3237 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3238 				le32_to_cpu(map_buff->structure_size));
3239 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3240 			le32_to_cpu(map_buff->volume_blk_size));
3241 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3242 			le64_to_cpu(map_buff->volume_blk_cnt));
3243 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3244 			map_buff->phys_blk_shift);
3245 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3246 			map_buff->parity_rotation_shift);
3247 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3248 			le16_to_cpu(map_buff->strip_size));
3249 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3250 			le64_to_cpu(map_buff->disk_starting_blk));
3251 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3252 			le64_to_cpu(map_buff->disk_blk_cnt));
3253 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3254 			le16_to_cpu(map_buff->data_disks_per_row));
3255 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3256 			le16_to_cpu(map_buff->metadata_disks_per_row));
3257 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3258 			le16_to_cpu(map_buff->row_cnt));
3259 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3260 			le16_to_cpu(map_buff->layout_map_count));
3261 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3262 			le16_to_cpu(map_buff->flags));
3263 	dev_info(&h->pdev->dev, "encryption = %s\n",
3264 			le16_to_cpu(map_buff->flags) &
3265 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3266 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3267 			le16_to_cpu(map_buff->dekindex));
3268 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3269 	for (map = 0; map < map_cnt; map++) {
3270 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3271 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3272 		for (row = 0; row < row_cnt; row++) {
3273 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3274 			disks_per_row =
3275 				le16_to_cpu(map_buff->data_disks_per_row);
3276 			for (col = 0; col < disks_per_row; col++, dd++)
3277 				dev_info(&h->pdev->dev,
3278 					"    D%02u: h=0x%04x xor=%u,%u\n",
3279 					col, dd->ioaccel_handle,
3280 					dd->xor_mult[0], dd->xor_mult[1]);
3281 			disks_per_row =
3282 				le16_to_cpu(map_buff->metadata_disks_per_row);
3283 			for (col = 0; col < disks_per_row; col++, dd++)
3284 				dev_info(&h->pdev->dev,
3285 					"    M%02u: h=0x%04x xor=%u,%u\n",
3286 					col, dd->ioaccel_handle,
3287 					dd->xor_mult[0], dd->xor_mult[1]);
3288 		}
3289 	}
3290 }
3291 #else
3292 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3293 			__attribute__((unused)) int rc,
3294 			__attribute__((unused)) struct raid_map_data *map_buff)
3295 {
3296 }
3297 #endif
3298 
3299 static int hpsa_get_raid_map(struct ctlr_info *h,
3300 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3301 {
3302 	int rc = 0;
3303 	struct CommandList *c;
3304 	struct ErrorInfo *ei;
3305 
3306 	c = cmd_alloc(h);
3307 
3308 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3309 			sizeof(this_device->raid_map), 0,
3310 			scsi3addr, TYPE_CMD)) {
3311 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3312 		cmd_free(h, c);
3313 		return -1;
3314 	}
3315 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3316 			NO_TIMEOUT);
3317 	if (rc)
3318 		goto out;
3319 	ei = c->err_info;
3320 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3321 		hpsa_scsi_interpret_error(h, c);
3322 		rc = -1;
3323 		goto out;
3324 	}
3325 	cmd_free(h, c);
3326 
3327 	/* @todo in the future, dynamically allocate RAID map memory */
3328 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3329 				sizeof(this_device->raid_map)) {
3330 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3331 		rc = -1;
3332 	}
3333 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3334 	return rc;
3335 out:
3336 	cmd_free(h, c);
3337 	return rc;
3338 }
3339 
3340 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3341 		unsigned char scsi3addr[], u16 bmic_device_index,
3342 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3343 {
3344 	int rc = IO_OK;
3345 	struct CommandList *c;
3346 	struct ErrorInfo *ei;
3347 
3348 	c = cmd_alloc(h);
3349 
3350 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3351 		0, RAID_CTLR_LUNID, TYPE_CMD);
3352 	if (rc)
3353 		goto out;
3354 
3355 	c->Request.CDB[2] = bmic_device_index & 0xff;
3356 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3357 
3358 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3359 			NO_TIMEOUT);
3360 	if (rc)
3361 		goto out;
3362 	ei = c->err_info;
3363 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3364 		hpsa_scsi_interpret_error(h, c);
3365 		rc = -1;
3366 	}
3367 out:
3368 	cmd_free(h, c);
3369 	return rc;
3370 }
3371 
3372 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3373 	struct bmic_identify_controller *buf, size_t bufsize)
3374 {
3375 	int rc = IO_OK;
3376 	struct CommandList *c;
3377 	struct ErrorInfo *ei;
3378 
3379 	c = cmd_alloc(h);
3380 
3381 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3382 		0, RAID_CTLR_LUNID, TYPE_CMD);
3383 	if (rc)
3384 		goto out;
3385 
3386 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3387 			NO_TIMEOUT);
3388 	if (rc)
3389 		goto out;
3390 	ei = c->err_info;
3391 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3392 		hpsa_scsi_interpret_error(h, c);
3393 		rc = -1;
3394 	}
3395 out:
3396 	cmd_free(h, c);
3397 	return rc;
3398 }
3399 
3400 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3401 		unsigned char scsi3addr[], u16 bmic_device_index,
3402 		struct bmic_identify_physical_device *buf, size_t bufsize)
3403 {
3404 	int rc = IO_OK;
3405 	struct CommandList *c;
3406 	struct ErrorInfo *ei;
3407 
3408 	c = cmd_alloc(h);
3409 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3410 		0, RAID_CTLR_LUNID, TYPE_CMD);
3411 	if (rc)
3412 		goto out;
3413 
3414 	c->Request.CDB[2] = bmic_device_index & 0xff;
3415 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3416 
3417 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3418 						NO_TIMEOUT);
3419 	ei = c->err_info;
3420 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3421 		hpsa_scsi_interpret_error(h, c);
3422 		rc = -1;
3423 	}
3424 out:
3425 	cmd_free(h, c);
3426 
3427 	return rc;
3428 }
3429 
3430 /*
3431  * get enclosure information
3432  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3433  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3434  * Uses id_physical_device to determine the box_index.
3435  */
3436 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3437 			unsigned char *scsi3addr,
3438 			struct ReportExtendedLUNdata *rlep, int rle_index,
3439 			struct hpsa_scsi_dev_t *encl_dev)
3440 {
3441 	int rc = -1;
3442 	struct CommandList *c = NULL;
3443 	struct ErrorInfo *ei = NULL;
3444 	struct bmic_sense_storage_box_params *bssbp = NULL;
3445 	struct bmic_identify_physical_device *id_phys = NULL;
3446 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3447 	u16 bmic_device_index = 0;
3448 
3449 	encl_dev->eli =
3450 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3451 
3452 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3453 
3454 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3455 		rc = IO_OK;
3456 		goto out;
3457 	}
3458 
3459 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3460 		rc = IO_OK;
3461 		goto out;
3462 	}
3463 
3464 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3465 	if (!bssbp)
3466 		goto out;
3467 
3468 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3469 	if (!id_phys)
3470 		goto out;
3471 
3472 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3473 						id_phys, sizeof(*id_phys));
3474 	if (rc) {
3475 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3476 			__func__, encl_dev->external, bmic_device_index);
3477 		goto out;
3478 	}
3479 
3480 	c = cmd_alloc(h);
3481 
3482 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3483 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3484 
3485 	if (rc)
3486 		goto out;
3487 
3488 	if (id_phys->phys_connector[1] == 'E')
3489 		c->Request.CDB[5] = id_phys->box_index;
3490 	else
3491 		c->Request.CDB[5] = 0;
3492 
3493 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3494 						NO_TIMEOUT);
3495 	if (rc)
3496 		goto out;
3497 
3498 	ei = c->err_info;
3499 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3500 		rc = -1;
3501 		goto out;
3502 	}
3503 
3504 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3505 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3506 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3507 
3508 	rc = IO_OK;
3509 out:
3510 	kfree(bssbp);
3511 	kfree(id_phys);
3512 
3513 	if (c)
3514 		cmd_free(h, c);
3515 
3516 	if (rc != IO_OK)
3517 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3518 			"Error, could not get enclosure information");
3519 }
3520 
3521 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3522 						unsigned char *scsi3addr)
3523 {
3524 	struct ReportExtendedLUNdata *physdev;
3525 	u32 nphysicals;
3526 	u64 sa = 0;
3527 	int i;
3528 
3529 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3530 	if (!physdev)
3531 		return 0;
3532 
3533 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3534 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3535 		kfree(physdev);
3536 		return 0;
3537 	}
3538 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3539 
3540 	for (i = 0; i < nphysicals; i++)
3541 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3542 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3543 			break;
3544 		}
3545 
3546 	kfree(physdev);
3547 
3548 	return sa;
3549 }
3550 
3551 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3552 					struct hpsa_scsi_dev_t *dev)
3553 {
3554 	int rc;
3555 	u64 sa = 0;
3556 
3557 	if (is_hba_lunid(scsi3addr)) {
3558 		struct bmic_sense_subsystem_info *ssi;
3559 
3560 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3561 		if (!ssi)
3562 			return;
3563 
3564 		rc = hpsa_bmic_sense_subsystem_information(h,
3565 					scsi3addr, 0, ssi, sizeof(*ssi));
3566 		if (rc == 0) {
3567 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3568 			h->sas_address = sa;
3569 		}
3570 
3571 		kfree(ssi);
3572 	} else
3573 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3574 
3575 	dev->sas_address = sa;
3576 }
3577 
3578 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3579 	struct ReportExtendedLUNdata *physdev)
3580 {
3581 	u32 nphysicals;
3582 	int i;
3583 
3584 	if (h->discovery_polling)
3585 		return;
3586 
3587 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3588 
3589 	for (i = 0; i < nphysicals; i++) {
3590 		if (physdev->LUN[i].device_type ==
3591 			BMIC_DEVICE_TYPE_CONTROLLER
3592 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3593 			dev_info(&h->pdev->dev,
3594 				"External controller present, activate discovery polling and disable rld caching\n");
3595 			hpsa_disable_rld_caching(h);
3596 			h->discovery_polling = 1;
3597 			break;
3598 		}
3599 	}
3600 }
3601 
3602 /* Get a device id from inquiry page 0x83 */
3603 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3604 	unsigned char scsi3addr[], u8 page)
3605 {
3606 	int rc;
3607 	int i;
3608 	int pages;
3609 	unsigned char *buf, bufsize;
3610 
3611 	buf = kzalloc(256, GFP_KERNEL);
3612 	if (!buf)
3613 		return false;
3614 
3615 	/* Get the size of the page list first */
3616 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3617 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3618 				buf, HPSA_VPD_HEADER_SZ);
3619 	if (rc != 0)
3620 		goto exit_unsupported;
3621 	pages = buf[3];
3622 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3623 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3624 	else
3625 		bufsize = 255;
3626 
3627 	/* Get the whole VPD page list */
3628 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3629 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3630 				buf, bufsize);
3631 	if (rc != 0)
3632 		goto exit_unsupported;
3633 
3634 	pages = buf[3];
3635 	for (i = 1; i <= pages; i++)
3636 		if (buf[3 + i] == page)
3637 			goto exit_supported;
3638 exit_unsupported:
3639 	kfree(buf);
3640 	return false;
3641 exit_supported:
3642 	kfree(buf);
3643 	return true;
3644 }
3645 
3646 /*
3647  * Called during a scan operation.
3648  * Sets ioaccel status on the new device list, not the existing device list
3649  *
3650  * The device list used during I/O will be updated later in
3651  * adjust_hpsa_scsi_table.
3652  */
3653 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3654 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3655 {
3656 	int rc;
3657 	unsigned char *buf;
3658 	u8 ioaccel_status;
3659 
3660 	this_device->offload_config = 0;
3661 	this_device->offload_enabled = 0;
3662 	this_device->offload_to_be_enabled = 0;
3663 
3664 	buf = kzalloc(64, GFP_KERNEL);
3665 	if (!buf)
3666 		return;
3667 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3668 		goto out;
3669 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3670 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3671 	if (rc != 0)
3672 		goto out;
3673 
3674 #define IOACCEL_STATUS_BYTE 4
3675 #define OFFLOAD_CONFIGURED_BIT 0x01
3676 #define OFFLOAD_ENABLED_BIT 0x02
3677 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3678 	this_device->offload_config =
3679 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3680 	if (this_device->offload_config) {
3681 		bool offload_enabled =
3682 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3683 		/*
3684 		 * Check to see if offload can be enabled.
3685 		 */
3686 		if (offload_enabled) {
3687 			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3688 			if (rc) /* could not load raid_map */
3689 				goto out;
3690 			this_device->offload_to_be_enabled = 1;
3691 		}
3692 	}
3693 
3694 out:
3695 	kfree(buf);
3696 	return;
3697 }
3698 
3699 /* Get the device id from inquiry page 0x83 */
3700 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3701 	unsigned char *device_id, int index, int buflen)
3702 {
3703 	int rc;
3704 	unsigned char *buf;
3705 
3706 	/* Does controller have VPD for device id? */
3707 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3708 		return 1; /* not supported */
3709 
3710 	buf = kzalloc(64, GFP_KERNEL);
3711 	if (!buf)
3712 		return -ENOMEM;
3713 
3714 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3715 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3716 	if (rc == 0) {
3717 		if (buflen > 16)
3718 			buflen = 16;
3719 		memcpy(device_id, &buf[8], buflen);
3720 	}
3721 
3722 	kfree(buf);
3723 
3724 	return rc; /*0 - got id,  otherwise, didn't */
3725 }
3726 
3727 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3728 		void *buf, int bufsize,
3729 		int extended_response)
3730 {
3731 	int rc = IO_OK;
3732 	struct CommandList *c;
3733 	unsigned char scsi3addr[8];
3734 	struct ErrorInfo *ei;
3735 
3736 	c = cmd_alloc(h);
3737 
3738 	/* address the controller */
3739 	memset(scsi3addr, 0, sizeof(scsi3addr));
3740 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3741 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3742 		rc = -EAGAIN;
3743 		goto out;
3744 	}
3745 	if (extended_response)
3746 		c->Request.CDB[1] = extended_response;
3747 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3748 			NO_TIMEOUT);
3749 	if (rc)
3750 		goto out;
3751 	ei = c->err_info;
3752 	if (ei->CommandStatus != 0 &&
3753 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3754 		hpsa_scsi_interpret_error(h, c);
3755 		rc = -EIO;
3756 	} else {
3757 		struct ReportLUNdata *rld = buf;
3758 
3759 		if (rld->extended_response_flag != extended_response) {
3760 			if (!h->legacy_board) {
3761 				dev_err(&h->pdev->dev,
3762 					"report luns requested format %u, got %u\n",
3763 					extended_response,
3764 					rld->extended_response_flag);
3765 				rc = -EINVAL;
3766 			} else
3767 				rc = -EOPNOTSUPP;
3768 		}
3769 	}
3770 out:
3771 	cmd_free(h, c);
3772 	return rc;
3773 }
3774 
3775 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3776 		struct ReportExtendedLUNdata *buf, int bufsize)
3777 {
3778 	int rc;
3779 	struct ReportLUNdata *lbuf;
3780 
3781 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3782 				      HPSA_REPORT_PHYS_EXTENDED);
3783 	if (!rc || rc != -EOPNOTSUPP)
3784 		return rc;
3785 
3786 	/* REPORT PHYS EXTENDED is not supported */
3787 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3788 	if (!lbuf)
3789 		return -ENOMEM;
3790 
3791 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3792 	if (!rc) {
3793 		int i;
3794 		u32 nphys;
3795 
3796 		/* Copy ReportLUNdata header */
3797 		memcpy(buf, lbuf, 8);
3798 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3799 		for (i = 0; i < nphys; i++)
3800 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3801 	}
3802 	kfree(lbuf);
3803 	return rc;
3804 }
3805 
3806 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3807 		struct ReportLUNdata *buf, int bufsize)
3808 {
3809 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3810 }
3811 
3812 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3813 	int bus, int target, int lun)
3814 {
3815 	device->bus = bus;
3816 	device->target = target;
3817 	device->lun = lun;
3818 }
3819 
3820 /* Use VPD inquiry to get details of volume status */
3821 static int hpsa_get_volume_status(struct ctlr_info *h,
3822 					unsigned char scsi3addr[])
3823 {
3824 	int rc;
3825 	int status;
3826 	int size;
3827 	unsigned char *buf;
3828 
3829 	buf = kzalloc(64, GFP_KERNEL);
3830 	if (!buf)
3831 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3832 
3833 	/* Does controller have VPD for logical volume status? */
3834 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3835 		goto exit_failed;
3836 
3837 	/* Get the size of the VPD return buffer */
3838 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3839 					buf, HPSA_VPD_HEADER_SZ);
3840 	if (rc != 0)
3841 		goto exit_failed;
3842 	size = buf[3];
3843 
3844 	/* Now get the whole VPD buffer */
3845 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3846 					buf, size + HPSA_VPD_HEADER_SZ);
3847 	if (rc != 0)
3848 		goto exit_failed;
3849 	status = buf[4]; /* status byte */
3850 
3851 	kfree(buf);
3852 	return status;
3853 exit_failed:
3854 	kfree(buf);
3855 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3856 }
3857 
3858 /* Determine offline status of a volume.
3859  * Return either:
3860  *  0 (not offline)
3861  *  0xff (offline for unknown reasons)
3862  *  # (integer code indicating one of several NOT READY states
3863  *     describing why a volume is to be kept offline)
3864  */
3865 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3866 					unsigned char scsi3addr[])
3867 {
3868 	struct CommandList *c;
3869 	unsigned char *sense;
3870 	u8 sense_key, asc, ascq;
3871 	int sense_len;
3872 	int rc, ldstat = 0;
3873 	u16 cmd_status;
3874 	u8 scsi_status;
3875 #define ASC_LUN_NOT_READY 0x04
3876 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3877 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3878 
3879 	c = cmd_alloc(h);
3880 
3881 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3882 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3883 					NO_TIMEOUT);
3884 	if (rc) {
3885 		cmd_free(h, c);
3886 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3887 	}
3888 	sense = c->err_info->SenseInfo;
3889 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3890 		sense_len = sizeof(c->err_info->SenseInfo);
3891 	else
3892 		sense_len = c->err_info->SenseLen;
3893 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3894 	cmd_status = c->err_info->CommandStatus;
3895 	scsi_status = c->err_info->ScsiStatus;
3896 	cmd_free(h, c);
3897 
3898 	/* Determine the reason for not ready state */
3899 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3900 
3901 	/* Keep volume offline in certain cases: */
3902 	switch (ldstat) {
3903 	case HPSA_LV_FAILED:
3904 	case HPSA_LV_UNDERGOING_ERASE:
3905 	case HPSA_LV_NOT_AVAILABLE:
3906 	case HPSA_LV_UNDERGOING_RPI:
3907 	case HPSA_LV_PENDING_RPI:
3908 	case HPSA_LV_ENCRYPTED_NO_KEY:
3909 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3910 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3911 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3912 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3913 		return ldstat;
3914 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3915 		/* If VPD status page isn't available,
3916 		 * use ASC/ASCQ to determine state
3917 		 */
3918 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3919 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3920 			return ldstat;
3921 		break;
3922 	default:
3923 		break;
3924 	}
3925 	return HPSA_LV_OK;
3926 }
3927 
3928 static int hpsa_update_device_info(struct ctlr_info *h,
3929 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3930 	unsigned char *is_OBDR_device)
3931 {
3932 
3933 #define OBDR_SIG_OFFSET 43
3934 #define OBDR_TAPE_SIG "$DR-10"
3935 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3936 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3937 
3938 	unsigned char *inq_buff;
3939 	unsigned char *obdr_sig;
3940 	int rc = 0;
3941 
3942 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3943 	if (!inq_buff) {
3944 		rc = -ENOMEM;
3945 		goto bail_out;
3946 	}
3947 
3948 	/* Do an inquiry to the device to see what it is. */
3949 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3950 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3951 		dev_err(&h->pdev->dev,
3952 			"%s: inquiry failed, device will be skipped.\n",
3953 			__func__);
3954 		rc = HPSA_INQUIRY_FAILED;
3955 		goto bail_out;
3956 	}
3957 
3958 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3959 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3960 
3961 	this_device->devtype = (inq_buff[0] & 0x1f);
3962 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3963 	memcpy(this_device->vendor, &inq_buff[8],
3964 		sizeof(this_device->vendor));
3965 	memcpy(this_device->model, &inq_buff[16],
3966 		sizeof(this_device->model));
3967 	this_device->rev = inq_buff[2];
3968 	memset(this_device->device_id, 0,
3969 		sizeof(this_device->device_id));
3970 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3971 		sizeof(this_device->device_id)) < 0) {
3972 		dev_err(&h->pdev->dev,
3973 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3974 			h->ctlr, __func__,
3975 			h->scsi_host->host_no,
3976 			this_device->bus, this_device->target,
3977 			this_device->lun,
3978 			scsi_device_type(this_device->devtype),
3979 			this_device->model);
3980 		rc = HPSA_LV_FAILED;
3981 		goto bail_out;
3982 	}
3983 
3984 	if ((this_device->devtype == TYPE_DISK ||
3985 		this_device->devtype == TYPE_ZBC) &&
3986 		is_logical_dev_addr_mode(scsi3addr)) {
3987 		unsigned char volume_offline;
3988 
3989 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3990 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3991 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3992 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3993 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3994 		    h->legacy_board) {
3995 			/*
3996 			 * Legacy boards might not support volume status
3997 			 */
3998 			dev_info(&h->pdev->dev,
3999 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4000 				 this_device->target, this_device->lun);
4001 			volume_offline = 0;
4002 		}
4003 		this_device->volume_offline = volume_offline;
4004 		if (volume_offline == HPSA_LV_FAILED) {
4005 			rc = HPSA_LV_FAILED;
4006 			dev_err(&h->pdev->dev,
4007 				"%s: LV failed, device will be skipped.\n",
4008 				__func__);
4009 			goto bail_out;
4010 		}
4011 	} else {
4012 		this_device->raid_level = RAID_UNKNOWN;
4013 		this_device->offload_config = 0;
4014 		hpsa_turn_off_ioaccel_for_device(this_device);
4015 		this_device->hba_ioaccel_enabled = 0;
4016 		this_device->volume_offline = 0;
4017 		this_device->queue_depth = h->nr_cmds;
4018 	}
4019 
4020 	if (this_device->external)
4021 		this_device->queue_depth = EXTERNAL_QD;
4022 
4023 	if (is_OBDR_device) {
4024 		/* See if this is a One-Button-Disaster-Recovery device
4025 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4026 		 */
4027 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4028 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4029 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4030 						OBDR_SIG_LEN) == 0);
4031 	}
4032 	kfree(inq_buff);
4033 	return 0;
4034 
4035 bail_out:
4036 	kfree(inq_buff);
4037 	return rc;
4038 }
4039 
4040 /*
4041  * Helper function to assign bus, target, lun mapping of devices.
4042  * Logical drive target and lun are assigned at this time, but
4043  * physical device lun and target assignment are deferred (assigned
4044  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4045 */
4046 static void figure_bus_target_lun(struct ctlr_info *h,
4047 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4048 {
4049 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4050 
4051 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4052 		/* physical device, target and lun filled in later */
4053 		if (is_hba_lunid(lunaddrbytes)) {
4054 			int bus = HPSA_HBA_BUS;
4055 
4056 			if (!device->rev)
4057 				bus = HPSA_LEGACY_HBA_BUS;
4058 			hpsa_set_bus_target_lun(device,
4059 					bus, 0, lunid & 0x3fff);
4060 		} else
4061 			/* defer target, lun assignment for physical devices */
4062 			hpsa_set_bus_target_lun(device,
4063 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4064 		return;
4065 	}
4066 	/* It's a logical device */
4067 	if (device->external) {
4068 		hpsa_set_bus_target_lun(device,
4069 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4070 			lunid & 0x00ff);
4071 		return;
4072 	}
4073 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4074 				0, lunid & 0x3fff);
4075 }
4076 
4077 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4078 	int i, int nphysicals, int nlocal_logicals)
4079 {
4080 	/* In report logicals, local logicals are listed first,
4081 	* then any externals.
4082 	*/
4083 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4084 
4085 	if (i == raid_ctlr_position)
4086 		return 0;
4087 
4088 	if (i < logicals_start)
4089 		return 0;
4090 
4091 	/* i is in logicals range, but still within local logicals */
4092 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4093 		return 0;
4094 
4095 	return 1; /* it's an external lun */
4096 }
4097 
4098 /*
4099  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4100  * logdev.  The number of luns in physdev and logdev are returned in
4101  * *nphysicals and *nlogicals, respectively.
4102  * Returns 0 on success, -1 otherwise.
4103  */
4104 static int hpsa_gather_lun_info(struct ctlr_info *h,
4105 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4106 	struct ReportLUNdata *logdev, u32 *nlogicals)
4107 {
4108 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4109 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4110 		return -1;
4111 	}
4112 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4113 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4114 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4115 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4116 		*nphysicals = HPSA_MAX_PHYS_LUN;
4117 	}
4118 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4119 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4120 		return -1;
4121 	}
4122 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4123 	/* Reject Logicals in excess of our max capability. */
4124 	if (*nlogicals > HPSA_MAX_LUN) {
4125 		dev_warn(&h->pdev->dev,
4126 			"maximum logical LUNs (%d) exceeded.  "
4127 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4128 			*nlogicals - HPSA_MAX_LUN);
4129 		*nlogicals = HPSA_MAX_LUN;
4130 	}
4131 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4132 		dev_warn(&h->pdev->dev,
4133 			"maximum logical + physical LUNs (%d) exceeded. "
4134 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4135 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4136 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4137 	}
4138 	return 0;
4139 }
4140 
4141 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4142 	int i, int nphysicals, int nlogicals,
4143 	struct ReportExtendedLUNdata *physdev_list,
4144 	struct ReportLUNdata *logdev_list)
4145 {
4146 	/* Helper function, figure out where the LUN ID info is coming from
4147 	 * given index i, lists of physical and logical devices, where in
4148 	 * the list the raid controller is supposed to appear (first or last)
4149 	 */
4150 
4151 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4152 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4153 
4154 	if (i == raid_ctlr_position)
4155 		return RAID_CTLR_LUNID;
4156 
4157 	if (i < logicals_start)
4158 		return &physdev_list->LUN[i -
4159 				(raid_ctlr_position == 0)].lunid[0];
4160 
4161 	if (i < last_device)
4162 		return &logdev_list->LUN[i - nphysicals -
4163 			(raid_ctlr_position == 0)][0];
4164 	BUG();
4165 	return NULL;
4166 }
4167 
4168 /* get physical drive ioaccel handle and queue depth */
4169 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4170 		struct hpsa_scsi_dev_t *dev,
4171 		struct ReportExtendedLUNdata *rlep, int rle_index,
4172 		struct bmic_identify_physical_device *id_phys)
4173 {
4174 	int rc;
4175 	struct ext_report_lun_entry *rle;
4176 
4177 	rle = &rlep->LUN[rle_index];
4178 
4179 	dev->ioaccel_handle = rle->ioaccel_handle;
4180 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4181 		dev->hba_ioaccel_enabled = 1;
4182 	memset(id_phys, 0, sizeof(*id_phys));
4183 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4184 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4185 			sizeof(*id_phys));
4186 	if (!rc)
4187 		/* Reserve space for FW operations */
4188 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4189 #define DRIVE_QUEUE_DEPTH 7
4190 		dev->queue_depth =
4191 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4192 				DRIVE_CMDS_RESERVED_FOR_FW;
4193 	else
4194 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4195 }
4196 
4197 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4198 	struct ReportExtendedLUNdata *rlep, int rle_index,
4199 	struct bmic_identify_physical_device *id_phys)
4200 {
4201 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4202 
4203 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4204 		this_device->hba_ioaccel_enabled = 1;
4205 
4206 	memcpy(&this_device->active_path_index,
4207 		&id_phys->active_path_number,
4208 		sizeof(this_device->active_path_index));
4209 	memcpy(&this_device->path_map,
4210 		&id_phys->redundant_path_present_map,
4211 		sizeof(this_device->path_map));
4212 	memcpy(&this_device->box,
4213 		&id_phys->alternate_paths_phys_box_on_port,
4214 		sizeof(this_device->box));
4215 	memcpy(&this_device->phys_connector,
4216 		&id_phys->alternate_paths_phys_connector,
4217 		sizeof(this_device->phys_connector));
4218 	memcpy(&this_device->bay,
4219 		&id_phys->phys_bay_in_box,
4220 		sizeof(this_device->bay));
4221 }
4222 
4223 /* get number of local logical disks. */
4224 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4225 	struct bmic_identify_controller *id_ctlr,
4226 	u32 *nlocals)
4227 {
4228 	int rc;
4229 
4230 	if (!id_ctlr) {
4231 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4232 			__func__);
4233 		return -ENOMEM;
4234 	}
4235 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4236 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4237 	if (!rc)
4238 		if (id_ctlr->configured_logical_drive_count < 255)
4239 			*nlocals = id_ctlr->configured_logical_drive_count;
4240 		else
4241 			*nlocals = le16_to_cpu(
4242 					id_ctlr->extended_logical_unit_count);
4243 	else
4244 		*nlocals = -1;
4245 	return rc;
4246 }
4247 
4248 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4249 {
4250 	struct bmic_identify_physical_device *id_phys;
4251 	bool is_spare = false;
4252 	int rc;
4253 
4254 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4255 	if (!id_phys)
4256 		return false;
4257 
4258 	rc = hpsa_bmic_id_physical_device(h,
4259 					lunaddrbytes,
4260 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4261 					id_phys, sizeof(*id_phys));
4262 	if (rc == 0)
4263 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4264 
4265 	kfree(id_phys);
4266 	return is_spare;
4267 }
4268 
4269 #define RPL_DEV_FLAG_NON_DISK                           0x1
4270 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4271 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4272 
4273 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4274 
4275 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4276 				struct ext_report_lun_entry *rle)
4277 {
4278 	u8 device_flags;
4279 	u8 device_type;
4280 
4281 	if (!MASKED_DEVICE(lunaddrbytes))
4282 		return false;
4283 
4284 	device_flags = rle->device_flags;
4285 	device_type = rle->device_type;
4286 
4287 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4288 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4289 			return false;
4290 		return true;
4291 	}
4292 
4293 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4294 		return false;
4295 
4296 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4297 		return false;
4298 
4299 	/*
4300 	 * Spares may be spun down, we do not want to
4301 	 * do an Inquiry to a RAID set spare drive as
4302 	 * that would have them spun up, that is a
4303 	 * performance hit because I/O to the RAID device
4304 	 * stops while the spin up occurs which can take
4305 	 * over 50 seconds.
4306 	 */
4307 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4308 		return true;
4309 
4310 	return false;
4311 }
4312 
4313 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4314 {
4315 	/* the idea here is we could get notified
4316 	 * that some devices have changed, so we do a report
4317 	 * physical luns and report logical luns cmd, and adjust
4318 	 * our list of devices accordingly.
4319 	 *
4320 	 * The scsi3addr's of devices won't change so long as the
4321 	 * adapter is not reset.  That means we can rescan and
4322 	 * tell which devices we already know about, vs. new
4323 	 * devices, vs.  disappearing devices.
4324 	 */
4325 	struct ReportExtendedLUNdata *physdev_list = NULL;
4326 	struct ReportLUNdata *logdev_list = NULL;
4327 	struct bmic_identify_physical_device *id_phys = NULL;
4328 	struct bmic_identify_controller *id_ctlr = NULL;
4329 	u32 nphysicals = 0;
4330 	u32 nlogicals = 0;
4331 	u32 nlocal_logicals = 0;
4332 	u32 ndev_allocated = 0;
4333 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4334 	int ncurrent = 0;
4335 	int i, n_ext_target_devs, ndevs_to_allocate;
4336 	int raid_ctlr_position;
4337 	bool physical_device;
4338 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4339 
4340 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4341 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4342 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4343 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4344 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4345 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4346 
4347 	if (!currentsd || !physdev_list || !logdev_list ||
4348 		!tmpdevice || !id_phys || !id_ctlr) {
4349 		dev_err(&h->pdev->dev, "out of memory\n");
4350 		goto out;
4351 	}
4352 	memset(lunzerobits, 0, sizeof(lunzerobits));
4353 
4354 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4355 
4356 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4357 			logdev_list, &nlogicals)) {
4358 		h->drv_req_rescan = 1;
4359 		goto out;
4360 	}
4361 
4362 	/* Set number of local logicals (non PTRAID) */
4363 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4364 		dev_warn(&h->pdev->dev,
4365 			"%s: Can't determine number of local logical devices.\n",
4366 			__func__);
4367 	}
4368 
4369 	/* We might see up to the maximum number of logical and physical disks
4370 	 * plus external target devices, and a device for the local RAID
4371 	 * controller.
4372 	 */
4373 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4374 
4375 	hpsa_ext_ctrl_present(h, physdev_list);
4376 
4377 	/* Allocate the per device structures */
4378 	for (i = 0; i < ndevs_to_allocate; i++) {
4379 		if (i >= HPSA_MAX_DEVICES) {
4380 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4381 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4382 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4383 			break;
4384 		}
4385 
4386 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4387 		if (!currentsd[i]) {
4388 			h->drv_req_rescan = 1;
4389 			goto out;
4390 		}
4391 		ndev_allocated++;
4392 	}
4393 
4394 	if (is_scsi_rev_5(h))
4395 		raid_ctlr_position = 0;
4396 	else
4397 		raid_ctlr_position = nphysicals + nlogicals;
4398 
4399 	/* adjust our table of devices */
4400 	n_ext_target_devs = 0;
4401 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4402 		u8 *lunaddrbytes, is_OBDR = 0;
4403 		int rc = 0;
4404 		int phys_dev_index = i - (raid_ctlr_position == 0);
4405 		bool skip_device = false;
4406 
4407 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4408 
4409 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4410 
4411 		/* Figure out where the LUN ID info is coming from */
4412 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4413 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4414 
4415 		/* Determine if this is a lun from an external target array */
4416 		tmpdevice->external =
4417 			figure_external_status(h, raid_ctlr_position, i,
4418 						nphysicals, nlocal_logicals);
4419 
4420 		/*
4421 		 * Skip over some devices such as a spare.
4422 		 */
4423 		if (!tmpdevice->external && physical_device) {
4424 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4425 					&physdev_list->LUN[phys_dev_index]);
4426 			if (skip_device)
4427 				continue;
4428 		}
4429 
4430 		/* Get device type, vendor, model, device id, raid_map */
4431 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4432 							&is_OBDR);
4433 		if (rc == -ENOMEM) {
4434 			dev_warn(&h->pdev->dev,
4435 				"Out of memory, rescan deferred.\n");
4436 			h->drv_req_rescan = 1;
4437 			goto out;
4438 		}
4439 		if (rc) {
4440 			h->drv_req_rescan = 1;
4441 			continue;
4442 		}
4443 
4444 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4445 		this_device = currentsd[ncurrent];
4446 
4447 		*this_device = *tmpdevice;
4448 		this_device->physical_device = physical_device;
4449 
4450 		/*
4451 		 * Expose all devices except for physical devices that
4452 		 * are masked.
4453 		 */
4454 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4455 			this_device->expose_device = 0;
4456 		else
4457 			this_device->expose_device = 1;
4458 
4459 
4460 		/*
4461 		 * Get the SAS address for physical devices that are exposed.
4462 		 */
4463 		if (this_device->physical_device && this_device->expose_device)
4464 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4465 
4466 		switch (this_device->devtype) {
4467 		case TYPE_ROM:
4468 			/* We don't *really* support actual CD-ROM devices,
4469 			 * just "One Button Disaster Recovery" tape drive
4470 			 * which temporarily pretends to be a CD-ROM drive.
4471 			 * So we check that the device is really an OBDR tape
4472 			 * device by checking for "$DR-10" in bytes 43-48 of
4473 			 * the inquiry data.
4474 			 */
4475 			if (is_OBDR)
4476 				ncurrent++;
4477 			break;
4478 		case TYPE_DISK:
4479 		case TYPE_ZBC:
4480 			if (this_device->physical_device) {
4481 				/* The disk is in HBA mode. */
4482 				/* Never use RAID mapper in HBA mode. */
4483 				this_device->offload_enabled = 0;
4484 				hpsa_get_ioaccel_drive_info(h, this_device,
4485 					physdev_list, phys_dev_index, id_phys);
4486 				hpsa_get_path_info(this_device,
4487 					physdev_list, phys_dev_index, id_phys);
4488 			}
4489 			ncurrent++;
4490 			break;
4491 		case TYPE_TAPE:
4492 		case TYPE_MEDIUM_CHANGER:
4493 			ncurrent++;
4494 			break;
4495 		case TYPE_ENCLOSURE:
4496 			if (!this_device->external)
4497 				hpsa_get_enclosure_info(h, lunaddrbytes,
4498 						physdev_list, phys_dev_index,
4499 						this_device);
4500 			ncurrent++;
4501 			break;
4502 		case TYPE_RAID:
4503 			/* Only present the Smartarray HBA as a RAID controller.
4504 			 * If it's a RAID controller other than the HBA itself
4505 			 * (an external RAID controller, MSA500 or similar)
4506 			 * don't present it.
4507 			 */
4508 			if (!is_hba_lunid(lunaddrbytes))
4509 				break;
4510 			ncurrent++;
4511 			break;
4512 		default:
4513 			break;
4514 		}
4515 		if (ncurrent >= HPSA_MAX_DEVICES)
4516 			break;
4517 	}
4518 
4519 	if (h->sas_host == NULL) {
4520 		int rc = 0;
4521 
4522 		rc = hpsa_add_sas_host(h);
4523 		if (rc) {
4524 			dev_warn(&h->pdev->dev,
4525 				"Could not add sas host %d\n", rc);
4526 			goto out;
4527 		}
4528 	}
4529 
4530 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4531 out:
4532 	kfree(tmpdevice);
4533 	for (i = 0; i < ndev_allocated; i++)
4534 		kfree(currentsd[i]);
4535 	kfree(currentsd);
4536 	kfree(physdev_list);
4537 	kfree(logdev_list);
4538 	kfree(id_ctlr);
4539 	kfree(id_phys);
4540 }
4541 
4542 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4543 				   struct scatterlist *sg)
4544 {
4545 	u64 addr64 = (u64) sg_dma_address(sg);
4546 	unsigned int len = sg_dma_len(sg);
4547 
4548 	desc->Addr = cpu_to_le64(addr64);
4549 	desc->Len = cpu_to_le32(len);
4550 	desc->Ext = 0;
4551 }
4552 
4553 /*
4554  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4555  * dma mapping  and fills in the scatter gather entries of the
4556  * hpsa command, cp.
4557  */
4558 static int hpsa_scatter_gather(struct ctlr_info *h,
4559 		struct CommandList *cp,
4560 		struct scsi_cmnd *cmd)
4561 {
4562 	struct scatterlist *sg;
4563 	int use_sg, i, sg_limit, chained, last_sg;
4564 	struct SGDescriptor *curr_sg;
4565 
4566 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4567 
4568 	use_sg = scsi_dma_map(cmd);
4569 	if (use_sg < 0)
4570 		return use_sg;
4571 
4572 	if (!use_sg)
4573 		goto sglist_finished;
4574 
4575 	/*
4576 	 * If the number of entries is greater than the max for a single list,
4577 	 * then we have a chained list; we will set up all but one entry in the
4578 	 * first list (the last entry is saved for link information);
4579 	 * otherwise, we don't have a chained list and we'll set up at each of
4580 	 * the entries in the one list.
4581 	 */
4582 	curr_sg = cp->SG;
4583 	chained = use_sg > h->max_cmd_sg_entries;
4584 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4585 	last_sg = scsi_sg_count(cmd) - 1;
4586 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4587 		hpsa_set_sg_descriptor(curr_sg, sg);
4588 		curr_sg++;
4589 	}
4590 
4591 	if (chained) {
4592 		/*
4593 		 * Continue with the chained list.  Set curr_sg to the chained
4594 		 * list.  Modify the limit to the total count less the entries
4595 		 * we've already set up.  Resume the scan at the list entry
4596 		 * where the previous loop left off.
4597 		 */
4598 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4599 		sg_limit = use_sg - sg_limit;
4600 		for_each_sg(sg, sg, sg_limit, i) {
4601 			hpsa_set_sg_descriptor(curr_sg, sg);
4602 			curr_sg++;
4603 		}
4604 	}
4605 
4606 	/* Back the pointer up to the last entry and mark it as "last". */
4607 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4608 
4609 	if (use_sg + chained > h->maxSG)
4610 		h->maxSG = use_sg + chained;
4611 
4612 	if (chained) {
4613 		cp->Header.SGList = h->max_cmd_sg_entries;
4614 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4615 		if (hpsa_map_sg_chain_block(h, cp)) {
4616 			scsi_dma_unmap(cmd);
4617 			return -1;
4618 		}
4619 		return 0;
4620 	}
4621 
4622 sglist_finished:
4623 
4624 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4625 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4626 	return 0;
4627 }
4628 
4629 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4630 						u8 *cdb, int cdb_len,
4631 						const char *func)
4632 {
4633 	dev_warn(&h->pdev->dev,
4634 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4635 		 func, cdb_len, cdb);
4636 }
4637 
4638 #define IO_ACCEL_INELIGIBLE 1
4639 /* zero-length transfers trigger hardware errors. */
4640 static bool is_zero_length_transfer(u8 *cdb)
4641 {
4642 	u32 block_cnt;
4643 
4644 	/* Block zero-length transfer sizes on certain commands. */
4645 	switch (cdb[0]) {
4646 	case READ_10:
4647 	case WRITE_10:
4648 	case VERIFY:		/* 0x2F */
4649 	case WRITE_VERIFY:	/* 0x2E */
4650 		block_cnt = get_unaligned_be16(&cdb[7]);
4651 		break;
4652 	case READ_12:
4653 	case WRITE_12:
4654 	case VERIFY_12: /* 0xAF */
4655 	case WRITE_VERIFY_12:	/* 0xAE */
4656 		block_cnt = get_unaligned_be32(&cdb[6]);
4657 		break;
4658 	case READ_16:
4659 	case WRITE_16:
4660 	case VERIFY_16:		/* 0x8F */
4661 		block_cnt = get_unaligned_be32(&cdb[10]);
4662 		break;
4663 	default:
4664 		return false;
4665 	}
4666 
4667 	return block_cnt == 0;
4668 }
4669 
4670 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4671 {
4672 	int is_write = 0;
4673 	u32 block;
4674 	u32 block_cnt;
4675 
4676 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4677 	switch (cdb[0]) {
4678 	case WRITE_6:
4679 	case WRITE_12:
4680 		is_write = 1;
4681 		/* fall through */
4682 	case READ_6:
4683 	case READ_12:
4684 		if (*cdb_len == 6) {
4685 			block = (((cdb[1] & 0x1F) << 16) |
4686 				(cdb[2] << 8) |
4687 				cdb[3]);
4688 			block_cnt = cdb[4];
4689 			if (block_cnt == 0)
4690 				block_cnt = 256;
4691 		} else {
4692 			BUG_ON(*cdb_len != 12);
4693 			block = get_unaligned_be32(&cdb[2]);
4694 			block_cnt = get_unaligned_be32(&cdb[6]);
4695 		}
4696 		if (block_cnt > 0xffff)
4697 			return IO_ACCEL_INELIGIBLE;
4698 
4699 		cdb[0] = is_write ? WRITE_10 : READ_10;
4700 		cdb[1] = 0;
4701 		cdb[2] = (u8) (block >> 24);
4702 		cdb[3] = (u8) (block >> 16);
4703 		cdb[4] = (u8) (block >> 8);
4704 		cdb[5] = (u8) (block);
4705 		cdb[6] = 0;
4706 		cdb[7] = (u8) (block_cnt >> 8);
4707 		cdb[8] = (u8) (block_cnt);
4708 		cdb[9] = 0;
4709 		*cdb_len = 10;
4710 		break;
4711 	}
4712 	return 0;
4713 }
4714 
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718 {
4719 	struct scsi_cmnd *cmd = c->scsi_cmd;
4720 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721 	unsigned int len;
4722 	unsigned int total_len = 0;
4723 	struct scatterlist *sg;
4724 	u64 addr64;
4725 	int use_sg, i;
4726 	struct SGDescriptor *curr_sg;
4727 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728 
4729 	/* TODO: implement chaining support */
4730 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4732 		return IO_ACCEL_INELIGIBLE;
4733 	}
4734 
4735 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736 
4737 	if (is_zero_length_transfer(cdb)) {
4738 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4740 		return IO_ACCEL_INELIGIBLE;
4741 	}
4742 
4743 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4745 		return IO_ACCEL_INELIGIBLE;
4746 	}
4747 
4748 	c->cmd_type = CMD_IOACCEL1;
4749 
4750 	/* Adjust the DMA address to point to the accelerated command buffer */
4751 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752 				(c->cmdindex * sizeof(*cp));
4753 	BUG_ON(c->busaddr & 0x0000007F);
4754 
4755 	use_sg = scsi_dma_map(cmd);
4756 	if (use_sg < 0) {
4757 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4758 		return use_sg;
4759 	}
4760 
4761 	if (use_sg) {
4762 		curr_sg = cp->SG;
4763 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4764 			addr64 = (u64) sg_dma_address(sg);
4765 			len  = sg_dma_len(sg);
4766 			total_len += len;
4767 			curr_sg->Addr = cpu_to_le64(addr64);
4768 			curr_sg->Len = cpu_to_le32(len);
4769 			curr_sg->Ext = cpu_to_le32(0);
4770 			curr_sg++;
4771 		}
4772 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773 
4774 		switch (cmd->sc_data_direction) {
4775 		case DMA_TO_DEVICE:
4776 			control |= IOACCEL1_CONTROL_DATA_OUT;
4777 			break;
4778 		case DMA_FROM_DEVICE:
4779 			control |= IOACCEL1_CONTROL_DATA_IN;
4780 			break;
4781 		case DMA_NONE:
4782 			control |= IOACCEL1_CONTROL_NODATAXFER;
4783 			break;
4784 		default:
4785 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786 			cmd->sc_data_direction);
4787 			BUG();
4788 			break;
4789 		}
4790 	} else {
4791 		control |= IOACCEL1_CONTROL_NODATAXFER;
4792 	}
4793 
4794 	c->Header.SGList = use_sg;
4795 	/* Fill out the command structure to submit */
4796 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797 	cp->transfer_len = cpu_to_le32(total_len);
4798 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800 	cp->control = cpu_to_le32(control);
4801 	memcpy(cp->CDB, cdb, cdb_len);
4802 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4803 	/* Tag was already set at init time. */
4804 	enqueue_cmd_and_start_io(h, c);
4805 	return 0;
4806 }
4807 
4808 /*
4809  * Queue a command directly to a device behind the controller using the
4810  * I/O accelerator path.
4811  */
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813 	struct CommandList *c)
4814 {
4815 	struct scsi_cmnd *cmd = c->scsi_cmd;
4816 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817 
4818 	if (!dev)
4819 		return -1;
4820 
4821 	c->phys_disk = dev;
4822 
4823 	if (dev->in_reset)
4824 		return -1;
4825 
4826 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4827 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4828 }
4829 
4830 /*
4831  * Set encryption parameters for the ioaccel2 request
4832  */
4833 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4834 	struct CommandList *c, struct io_accel2_cmd *cp)
4835 {
4836 	struct scsi_cmnd *cmd = c->scsi_cmd;
4837 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4838 	struct raid_map_data *map = &dev->raid_map;
4839 	u64 first_block;
4840 
4841 	/* Are we doing encryption on this device */
4842 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4843 		return;
4844 	/* Set the data encryption key index. */
4845 	cp->dekindex = map->dekindex;
4846 
4847 	/* Set the encryption enable flag, encoded into direction field. */
4848 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4849 
4850 	/* Set encryption tweak values based on logical block address
4851 	 * If block size is 512, tweak value is LBA.
4852 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4853 	 */
4854 	switch (cmd->cmnd[0]) {
4855 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4856 	case READ_6:
4857 	case WRITE_6:
4858 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4859 				(cmd->cmnd[2] << 8) |
4860 				cmd->cmnd[3]);
4861 		break;
4862 	case WRITE_10:
4863 	case READ_10:
4864 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4865 	case WRITE_12:
4866 	case READ_12:
4867 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4868 		break;
4869 	case WRITE_16:
4870 	case READ_16:
4871 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4872 		break;
4873 	default:
4874 		dev_err(&h->pdev->dev,
4875 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4876 			__func__, cmd->cmnd[0]);
4877 		BUG();
4878 		break;
4879 	}
4880 
4881 	if (le32_to_cpu(map->volume_blk_size) != 512)
4882 		first_block = first_block *
4883 				le32_to_cpu(map->volume_blk_size)/512;
4884 
4885 	cp->tweak_lower = cpu_to_le32(first_block);
4886 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4887 }
4888 
4889 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4890 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4891 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4892 {
4893 	struct scsi_cmnd *cmd = c->scsi_cmd;
4894 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4895 	struct ioaccel2_sg_element *curr_sg;
4896 	int use_sg, i;
4897 	struct scatterlist *sg;
4898 	u64 addr64;
4899 	u32 len;
4900 	u32 total_len = 0;
4901 
4902 	if (!cmd->device)
4903 		return -1;
4904 
4905 	if (!cmd->device->hostdata)
4906 		return -1;
4907 
4908 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4909 
4910 	if (is_zero_length_transfer(cdb)) {
4911 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4912 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4913 		return IO_ACCEL_INELIGIBLE;
4914 	}
4915 
4916 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4917 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4918 		return IO_ACCEL_INELIGIBLE;
4919 	}
4920 
4921 	c->cmd_type = CMD_IOACCEL2;
4922 	/* Adjust the DMA address to point to the accelerated command buffer */
4923 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4924 				(c->cmdindex * sizeof(*cp));
4925 	BUG_ON(c->busaddr & 0x0000007F);
4926 
4927 	memset(cp, 0, sizeof(*cp));
4928 	cp->IU_type = IOACCEL2_IU_TYPE;
4929 
4930 	use_sg = scsi_dma_map(cmd);
4931 	if (use_sg < 0) {
4932 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4933 		return use_sg;
4934 	}
4935 
4936 	if (use_sg) {
4937 		curr_sg = cp->sg;
4938 		if (use_sg > h->ioaccel_maxsg) {
4939 			addr64 = le64_to_cpu(
4940 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4941 			curr_sg->address = cpu_to_le64(addr64);
4942 			curr_sg->length = 0;
4943 			curr_sg->reserved[0] = 0;
4944 			curr_sg->reserved[1] = 0;
4945 			curr_sg->reserved[2] = 0;
4946 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4947 
4948 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4949 		}
4950 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4951 			addr64 = (u64) sg_dma_address(sg);
4952 			len  = sg_dma_len(sg);
4953 			total_len += len;
4954 			curr_sg->address = cpu_to_le64(addr64);
4955 			curr_sg->length = cpu_to_le32(len);
4956 			curr_sg->reserved[0] = 0;
4957 			curr_sg->reserved[1] = 0;
4958 			curr_sg->reserved[2] = 0;
4959 			curr_sg->chain_indicator = 0;
4960 			curr_sg++;
4961 		}
4962 
4963 		/*
4964 		 * Set the last s/g element bit
4965 		 */
4966 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4967 
4968 		switch (cmd->sc_data_direction) {
4969 		case DMA_TO_DEVICE:
4970 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4972 			break;
4973 		case DMA_FROM_DEVICE:
4974 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4975 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4976 			break;
4977 		case DMA_NONE:
4978 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4979 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4980 			break;
4981 		default:
4982 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4983 				cmd->sc_data_direction);
4984 			BUG();
4985 			break;
4986 		}
4987 	} else {
4988 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4990 	}
4991 
4992 	/* Set encryption parameters, if necessary */
4993 	set_encrypt_ioaccel2(h, c, cp);
4994 
4995 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4996 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4997 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4998 
4999 	cp->data_len = cpu_to_le32(total_len);
5000 	cp->err_ptr = cpu_to_le64(c->busaddr +
5001 			offsetof(struct io_accel2_cmd, error_data));
5002 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5003 
5004 	/* fill in sg elements */
5005 	if (use_sg > h->ioaccel_maxsg) {
5006 		cp->sg_count = 1;
5007 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5008 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5009 			atomic_dec(&phys_disk->ioaccel_cmds_out);
5010 			scsi_dma_unmap(cmd);
5011 			return -1;
5012 		}
5013 	} else
5014 		cp->sg_count = (u8) use_sg;
5015 
5016 	if (phys_disk->in_reset) {
5017 		cmd->result = DID_RESET << 16;
5018 		return -1;
5019 	}
5020 
5021 	enqueue_cmd_and_start_io(h, c);
5022 	return 0;
5023 }
5024 
5025 /*
5026  * Queue a command to the correct I/O accelerator path.
5027  */
5028 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5029 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5030 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5031 {
5032 	if (!c->scsi_cmd->device)
5033 		return -1;
5034 
5035 	if (!c->scsi_cmd->device->hostdata)
5036 		return -1;
5037 
5038 	if (phys_disk->in_reset)
5039 		return -1;
5040 
5041 	/* Try to honor the device's queue depth */
5042 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5043 					phys_disk->queue_depth) {
5044 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5045 		return IO_ACCEL_INELIGIBLE;
5046 	}
5047 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5048 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5049 						cdb, cdb_len, scsi3addr,
5050 						phys_disk);
5051 	else
5052 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5053 						cdb, cdb_len, scsi3addr,
5054 						phys_disk);
5055 }
5056 
5057 static void raid_map_helper(struct raid_map_data *map,
5058 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5059 {
5060 	if (offload_to_mirror == 0)  {
5061 		/* use physical disk in the first mirrored group. */
5062 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5063 		return;
5064 	}
5065 	do {
5066 		/* determine mirror group that *map_index indicates */
5067 		*current_group = *map_index /
5068 			le16_to_cpu(map->data_disks_per_row);
5069 		if (offload_to_mirror == *current_group)
5070 			continue;
5071 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5072 			/* select map index from next group */
5073 			*map_index += le16_to_cpu(map->data_disks_per_row);
5074 			(*current_group)++;
5075 		} else {
5076 			/* select map index from first group */
5077 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5078 			*current_group = 0;
5079 		}
5080 	} while (offload_to_mirror != *current_group);
5081 }
5082 
5083 /*
5084  * Attempt to perform offload RAID mapping for a logical volume I/O.
5085  */
5086 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5087 	struct CommandList *c)
5088 {
5089 	struct scsi_cmnd *cmd = c->scsi_cmd;
5090 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5091 	struct raid_map_data *map = &dev->raid_map;
5092 	struct raid_map_disk_data *dd = &map->data[0];
5093 	int is_write = 0;
5094 	u32 map_index;
5095 	u64 first_block, last_block;
5096 	u32 block_cnt;
5097 	u32 blocks_per_row;
5098 	u64 first_row, last_row;
5099 	u32 first_row_offset, last_row_offset;
5100 	u32 first_column, last_column;
5101 	u64 r0_first_row, r0_last_row;
5102 	u32 r5or6_blocks_per_row;
5103 	u64 r5or6_first_row, r5or6_last_row;
5104 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5105 	u32 r5or6_first_column, r5or6_last_column;
5106 	u32 total_disks_per_row;
5107 	u32 stripesize;
5108 	u32 first_group, last_group, current_group;
5109 	u32 map_row;
5110 	u32 disk_handle;
5111 	u64 disk_block;
5112 	u32 disk_block_cnt;
5113 	u8 cdb[16];
5114 	u8 cdb_len;
5115 	u16 strip_size;
5116 #if BITS_PER_LONG == 32
5117 	u64 tmpdiv;
5118 #endif
5119 	int offload_to_mirror;
5120 
5121 	if (!dev)
5122 		return -1;
5123 
5124 	if (dev->in_reset)
5125 		return -1;
5126 
5127 	/* check for valid opcode, get LBA and block count */
5128 	switch (cmd->cmnd[0]) {
5129 	case WRITE_6:
5130 		is_write = 1;
5131 		/* fall through */
5132 	case READ_6:
5133 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5134 				(cmd->cmnd[2] << 8) |
5135 				cmd->cmnd[3]);
5136 		block_cnt = cmd->cmnd[4];
5137 		if (block_cnt == 0)
5138 			block_cnt = 256;
5139 		break;
5140 	case WRITE_10:
5141 		is_write = 1;
5142 		/* fall through */
5143 	case READ_10:
5144 		first_block =
5145 			(((u64) cmd->cmnd[2]) << 24) |
5146 			(((u64) cmd->cmnd[3]) << 16) |
5147 			(((u64) cmd->cmnd[4]) << 8) |
5148 			cmd->cmnd[5];
5149 		block_cnt =
5150 			(((u32) cmd->cmnd[7]) << 8) |
5151 			cmd->cmnd[8];
5152 		break;
5153 	case WRITE_12:
5154 		is_write = 1;
5155 		/* fall through */
5156 	case READ_12:
5157 		first_block =
5158 			(((u64) cmd->cmnd[2]) << 24) |
5159 			(((u64) cmd->cmnd[3]) << 16) |
5160 			(((u64) cmd->cmnd[4]) << 8) |
5161 			cmd->cmnd[5];
5162 		block_cnt =
5163 			(((u32) cmd->cmnd[6]) << 24) |
5164 			(((u32) cmd->cmnd[7]) << 16) |
5165 			(((u32) cmd->cmnd[8]) << 8) |
5166 		cmd->cmnd[9];
5167 		break;
5168 	case WRITE_16:
5169 		is_write = 1;
5170 		/* fall through */
5171 	case READ_16:
5172 		first_block =
5173 			(((u64) cmd->cmnd[2]) << 56) |
5174 			(((u64) cmd->cmnd[3]) << 48) |
5175 			(((u64) cmd->cmnd[4]) << 40) |
5176 			(((u64) cmd->cmnd[5]) << 32) |
5177 			(((u64) cmd->cmnd[6]) << 24) |
5178 			(((u64) cmd->cmnd[7]) << 16) |
5179 			(((u64) cmd->cmnd[8]) << 8) |
5180 			cmd->cmnd[9];
5181 		block_cnt =
5182 			(((u32) cmd->cmnd[10]) << 24) |
5183 			(((u32) cmd->cmnd[11]) << 16) |
5184 			(((u32) cmd->cmnd[12]) << 8) |
5185 			cmd->cmnd[13];
5186 		break;
5187 	default:
5188 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5189 	}
5190 	last_block = first_block + block_cnt - 1;
5191 
5192 	/* check for write to non-RAID-0 */
5193 	if (is_write && dev->raid_level != 0)
5194 		return IO_ACCEL_INELIGIBLE;
5195 
5196 	/* check for invalid block or wraparound */
5197 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5198 		last_block < first_block)
5199 		return IO_ACCEL_INELIGIBLE;
5200 
5201 	/* calculate stripe information for the request */
5202 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5203 				le16_to_cpu(map->strip_size);
5204 	strip_size = le16_to_cpu(map->strip_size);
5205 #if BITS_PER_LONG == 32
5206 	tmpdiv = first_block;
5207 	(void) do_div(tmpdiv, blocks_per_row);
5208 	first_row = tmpdiv;
5209 	tmpdiv = last_block;
5210 	(void) do_div(tmpdiv, blocks_per_row);
5211 	last_row = tmpdiv;
5212 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5213 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5214 	tmpdiv = first_row_offset;
5215 	(void) do_div(tmpdiv, strip_size);
5216 	first_column = tmpdiv;
5217 	tmpdiv = last_row_offset;
5218 	(void) do_div(tmpdiv, strip_size);
5219 	last_column = tmpdiv;
5220 #else
5221 	first_row = first_block / blocks_per_row;
5222 	last_row = last_block / blocks_per_row;
5223 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5224 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5225 	first_column = first_row_offset / strip_size;
5226 	last_column = last_row_offset / strip_size;
5227 #endif
5228 
5229 	/* if this isn't a single row/column then give to the controller */
5230 	if ((first_row != last_row) || (first_column != last_column))
5231 		return IO_ACCEL_INELIGIBLE;
5232 
5233 	/* proceeding with driver mapping */
5234 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5235 				le16_to_cpu(map->metadata_disks_per_row);
5236 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5237 				le16_to_cpu(map->row_cnt);
5238 	map_index = (map_row * total_disks_per_row) + first_column;
5239 
5240 	switch (dev->raid_level) {
5241 	case HPSA_RAID_0:
5242 		break; /* nothing special to do */
5243 	case HPSA_RAID_1:
5244 		/* Handles load balance across RAID 1 members.
5245 		 * (2-drive R1 and R10 with even # of drives.)
5246 		 * Appropriate for SSDs, not optimal for HDDs
5247 		 * Ensure we have the correct raid_map.
5248 		 */
5249 		if (le16_to_cpu(map->layout_map_count) != 2) {
5250 			hpsa_turn_off_ioaccel_for_device(dev);
5251 			return IO_ACCEL_INELIGIBLE;
5252 		}
5253 		if (dev->offload_to_mirror)
5254 			map_index += le16_to_cpu(map->data_disks_per_row);
5255 		dev->offload_to_mirror = !dev->offload_to_mirror;
5256 		break;
5257 	case HPSA_RAID_ADM:
5258 		/* Handles N-way mirrors  (R1-ADM)
5259 		 * and R10 with # of drives divisible by 3.)
5260 		 * Ensure we have the correct raid_map.
5261 		 */
5262 		if (le16_to_cpu(map->layout_map_count) != 3) {
5263 			hpsa_turn_off_ioaccel_for_device(dev);
5264 			return IO_ACCEL_INELIGIBLE;
5265 		}
5266 
5267 		offload_to_mirror = dev->offload_to_mirror;
5268 		raid_map_helper(map, offload_to_mirror,
5269 				&map_index, &current_group);
5270 		/* set mirror group to use next time */
5271 		offload_to_mirror =
5272 			(offload_to_mirror >=
5273 			le16_to_cpu(map->layout_map_count) - 1)
5274 			? 0 : offload_to_mirror + 1;
5275 		dev->offload_to_mirror = offload_to_mirror;
5276 		/* Avoid direct use of dev->offload_to_mirror within this
5277 		 * function since multiple threads might simultaneously
5278 		 * increment it beyond the range of dev->layout_map_count -1.
5279 		 */
5280 		break;
5281 	case HPSA_RAID_5:
5282 	case HPSA_RAID_6:
5283 		if (le16_to_cpu(map->layout_map_count) <= 1)
5284 			break;
5285 
5286 		/* Verify first and last block are in same RAID group */
5287 		r5or6_blocks_per_row =
5288 			le16_to_cpu(map->strip_size) *
5289 			le16_to_cpu(map->data_disks_per_row);
5290 		if (r5or6_blocks_per_row == 0) {
5291 			hpsa_turn_off_ioaccel_for_device(dev);
5292 			return IO_ACCEL_INELIGIBLE;
5293 		}
5294 		stripesize = r5or6_blocks_per_row *
5295 			le16_to_cpu(map->layout_map_count);
5296 #if BITS_PER_LONG == 32
5297 		tmpdiv = first_block;
5298 		first_group = do_div(tmpdiv, stripesize);
5299 		tmpdiv = first_group;
5300 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5301 		first_group = tmpdiv;
5302 		tmpdiv = last_block;
5303 		last_group = do_div(tmpdiv, stripesize);
5304 		tmpdiv = last_group;
5305 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5306 		last_group = tmpdiv;
5307 #else
5308 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5309 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5310 #endif
5311 		if (first_group != last_group)
5312 			return IO_ACCEL_INELIGIBLE;
5313 
5314 		/* Verify request is in a single row of RAID 5/6 */
5315 #if BITS_PER_LONG == 32
5316 		tmpdiv = first_block;
5317 		(void) do_div(tmpdiv, stripesize);
5318 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5319 		tmpdiv = last_block;
5320 		(void) do_div(tmpdiv, stripesize);
5321 		r5or6_last_row = r0_last_row = tmpdiv;
5322 #else
5323 		first_row = r5or6_first_row = r0_first_row =
5324 						first_block / stripesize;
5325 		r5or6_last_row = r0_last_row = last_block / stripesize;
5326 #endif
5327 		if (r5or6_first_row != r5or6_last_row)
5328 			return IO_ACCEL_INELIGIBLE;
5329 
5330 
5331 		/* Verify request is in a single column */
5332 #if BITS_PER_LONG == 32
5333 		tmpdiv = first_block;
5334 		first_row_offset = do_div(tmpdiv, stripesize);
5335 		tmpdiv = first_row_offset;
5336 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5337 		r5or6_first_row_offset = first_row_offset;
5338 		tmpdiv = last_block;
5339 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5340 		tmpdiv = r5or6_last_row_offset;
5341 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5342 		tmpdiv = r5or6_first_row_offset;
5343 		(void) do_div(tmpdiv, map->strip_size);
5344 		first_column = r5or6_first_column = tmpdiv;
5345 		tmpdiv = r5or6_last_row_offset;
5346 		(void) do_div(tmpdiv, map->strip_size);
5347 		r5or6_last_column = tmpdiv;
5348 #else
5349 		first_row_offset = r5or6_first_row_offset =
5350 			(u32)((first_block % stripesize) %
5351 						r5or6_blocks_per_row);
5352 
5353 		r5or6_last_row_offset =
5354 			(u32)((last_block % stripesize) %
5355 						r5or6_blocks_per_row);
5356 
5357 		first_column = r5or6_first_column =
5358 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5359 		r5or6_last_column =
5360 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5361 #endif
5362 		if (r5or6_first_column != r5or6_last_column)
5363 			return IO_ACCEL_INELIGIBLE;
5364 
5365 		/* Request is eligible */
5366 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5367 			le16_to_cpu(map->row_cnt);
5368 
5369 		map_index = (first_group *
5370 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5371 			(map_row * total_disks_per_row) + first_column;
5372 		break;
5373 	default:
5374 		return IO_ACCEL_INELIGIBLE;
5375 	}
5376 
5377 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5378 		return IO_ACCEL_INELIGIBLE;
5379 
5380 	c->phys_disk = dev->phys_disk[map_index];
5381 	if (!c->phys_disk)
5382 		return IO_ACCEL_INELIGIBLE;
5383 
5384 	disk_handle = dd[map_index].ioaccel_handle;
5385 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5386 			first_row * le16_to_cpu(map->strip_size) +
5387 			(first_row_offset - first_column *
5388 			le16_to_cpu(map->strip_size));
5389 	disk_block_cnt = block_cnt;
5390 
5391 	/* handle differing logical/physical block sizes */
5392 	if (map->phys_blk_shift) {
5393 		disk_block <<= map->phys_blk_shift;
5394 		disk_block_cnt <<= map->phys_blk_shift;
5395 	}
5396 	BUG_ON(disk_block_cnt > 0xffff);
5397 
5398 	/* build the new CDB for the physical disk I/O */
5399 	if (disk_block > 0xffffffff) {
5400 		cdb[0] = is_write ? WRITE_16 : READ_16;
5401 		cdb[1] = 0;
5402 		cdb[2] = (u8) (disk_block >> 56);
5403 		cdb[3] = (u8) (disk_block >> 48);
5404 		cdb[4] = (u8) (disk_block >> 40);
5405 		cdb[5] = (u8) (disk_block >> 32);
5406 		cdb[6] = (u8) (disk_block >> 24);
5407 		cdb[7] = (u8) (disk_block >> 16);
5408 		cdb[8] = (u8) (disk_block >> 8);
5409 		cdb[9] = (u8) (disk_block);
5410 		cdb[10] = (u8) (disk_block_cnt >> 24);
5411 		cdb[11] = (u8) (disk_block_cnt >> 16);
5412 		cdb[12] = (u8) (disk_block_cnt >> 8);
5413 		cdb[13] = (u8) (disk_block_cnt);
5414 		cdb[14] = 0;
5415 		cdb[15] = 0;
5416 		cdb_len = 16;
5417 	} else {
5418 		cdb[0] = is_write ? WRITE_10 : READ_10;
5419 		cdb[1] = 0;
5420 		cdb[2] = (u8) (disk_block >> 24);
5421 		cdb[3] = (u8) (disk_block >> 16);
5422 		cdb[4] = (u8) (disk_block >> 8);
5423 		cdb[5] = (u8) (disk_block);
5424 		cdb[6] = 0;
5425 		cdb[7] = (u8) (disk_block_cnt >> 8);
5426 		cdb[8] = (u8) (disk_block_cnt);
5427 		cdb[9] = 0;
5428 		cdb_len = 10;
5429 	}
5430 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5431 						dev->scsi3addr,
5432 						dev->phys_disk[map_index]);
5433 }
5434 
5435 /*
5436  * Submit commands down the "normal" RAID stack path
5437  * All callers to hpsa_ciss_submit must check lockup_detected
5438  * beforehand, before (opt.) and after calling cmd_alloc
5439  */
5440 static int hpsa_ciss_submit(struct ctlr_info *h,
5441 	struct CommandList *c, struct scsi_cmnd *cmd,
5442 	struct hpsa_scsi_dev_t *dev)
5443 {
5444 	cmd->host_scribble = (unsigned char *) c;
5445 	c->cmd_type = CMD_SCSI;
5446 	c->scsi_cmd = cmd;
5447 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5448 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5449 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5450 
5451 	/* Fill in the request block... */
5452 
5453 	c->Request.Timeout = 0;
5454 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5455 	c->Request.CDBLen = cmd->cmd_len;
5456 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5457 	switch (cmd->sc_data_direction) {
5458 	case DMA_TO_DEVICE:
5459 		c->Request.type_attr_dir =
5460 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5461 		break;
5462 	case DMA_FROM_DEVICE:
5463 		c->Request.type_attr_dir =
5464 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5465 		break;
5466 	case DMA_NONE:
5467 		c->Request.type_attr_dir =
5468 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5469 		break;
5470 	case DMA_BIDIRECTIONAL:
5471 		/* This can happen if a buggy application does a scsi passthru
5472 		 * and sets both inlen and outlen to non-zero. ( see
5473 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5474 		 */
5475 
5476 		c->Request.type_attr_dir =
5477 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5478 		/* This is technically wrong, and hpsa controllers should
5479 		 * reject it with CMD_INVALID, which is the most correct
5480 		 * response, but non-fibre backends appear to let it
5481 		 * slide by, and give the same results as if this field
5482 		 * were set correctly.  Either way is acceptable for
5483 		 * our purposes here.
5484 		 */
5485 
5486 		break;
5487 
5488 	default:
5489 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5490 			cmd->sc_data_direction);
5491 		BUG();
5492 		break;
5493 	}
5494 
5495 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5496 		hpsa_cmd_resolve_and_free(h, c);
5497 		return SCSI_MLQUEUE_HOST_BUSY;
5498 	}
5499 
5500 	if (dev->in_reset) {
5501 		hpsa_cmd_resolve_and_free(h, c);
5502 		return SCSI_MLQUEUE_HOST_BUSY;
5503 	}
5504 
5505 	c->device = dev;
5506 
5507 	enqueue_cmd_and_start_io(h, c);
5508 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5509 	return 0;
5510 }
5511 
5512 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5513 				struct CommandList *c)
5514 {
5515 	dma_addr_t cmd_dma_handle, err_dma_handle;
5516 
5517 	/* Zero out all of commandlist except the last field, refcount */
5518 	memset(c, 0, offsetof(struct CommandList, refcount));
5519 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5520 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5521 	c->err_info = h->errinfo_pool + index;
5522 	memset(c->err_info, 0, sizeof(*c->err_info));
5523 	err_dma_handle = h->errinfo_pool_dhandle
5524 	    + index * sizeof(*c->err_info);
5525 	c->cmdindex = index;
5526 	c->busaddr = (u32) cmd_dma_handle;
5527 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5528 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5529 	c->h = h;
5530 	c->scsi_cmd = SCSI_CMD_IDLE;
5531 }
5532 
5533 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5534 {
5535 	int i;
5536 
5537 	for (i = 0; i < h->nr_cmds; i++) {
5538 		struct CommandList *c = h->cmd_pool + i;
5539 
5540 		hpsa_cmd_init(h, i, c);
5541 		atomic_set(&c->refcount, 0);
5542 	}
5543 }
5544 
5545 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5546 				struct CommandList *c)
5547 {
5548 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5549 
5550 	BUG_ON(c->cmdindex != index);
5551 
5552 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5553 	memset(c->err_info, 0, sizeof(*c->err_info));
5554 	c->busaddr = (u32) cmd_dma_handle;
5555 }
5556 
5557 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5558 		struct CommandList *c, struct scsi_cmnd *cmd)
5559 {
5560 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5561 	int rc = IO_ACCEL_INELIGIBLE;
5562 
5563 	if (!dev)
5564 		return SCSI_MLQUEUE_HOST_BUSY;
5565 
5566 	if (dev->in_reset)
5567 		return SCSI_MLQUEUE_HOST_BUSY;
5568 
5569 	if (hpsa_simple_mode)
5570 		return IO_ACCEL_INELIGIBLE;
5571 
5572 	cmd->host_scribble = (unsigned char *) c;
5573 
5574 	if (dev->offload_enabled) {
5575 		hpsa_cmd_init(h, c->cmdindex, c);
5576 		c->cmd_type = CMD_SCSI;
5577 		c->scsi_cmd = cmd;
5578 		c->device = dev;
5579 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5580 		if (rc < 0)     /* scsi_dma_map failed. */
5581 			rc = SCSI_MLQUEUE_HOST_BUSY;
5582 	} else if (dev->hba_ioaccel_enabled) {
5583 		hpsa_cmd_init(h, c->cmdindex, c);
5584 		c->cmd_type = CMD_SCSI;
5585 		c->scsi_cmd = cmd;
5586 		c->device = dev;
5587 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5588 		if (rc < 0)     /* scsi_dma_map failed. */
5589 			rc = SCSI_MLQUEUE_HOST_BUSY;
5590 	}
5591 	return rc;
5592 }
5593 
5594 static void hpsa_command_resubmit_worker(struct work_struct *work)
5595 {
5596 	struct scsi_cmnd *cmd;
5597 	struct hpsa_scsi_dev_t *dev;
5598 	struct CommandList *c = container_of(work, struct CommandList, work);
5599 
5600 	cmd = c->scsi_cmd;
5601 	dev = cmd->device->hostdata;
5602 	if (!dev) {
5603 		cmd->result = DID_NO_CONNECT << 16;
5604 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5605 	}
5606 
5607 	if (dev->in_reset) {
5608 		cmd->result = DID_RESET << 16;
5609 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5610 	}
5611 
5612 	if (c->cmd_type == CMD_IOACCEL2) {
5613 		struct ctlr_info *h = c->h;
5614 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5615 		int rc;
5616 
5617 		if (c2->error_data.serv_response ==
5618 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5619 			rc = hpsa_ioaccel_submit(h, c, cmd);
5620 			if (rc == 0)
5621 				return;
5622 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5623 				/*
5624 				 * If we get here, it means dma mapping failed.
5625 				 * Try again via scsi mid layer, which will
5626 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5627 				 */
5628 				cmd->result = DID_IMM_RETRY << 16;
5629 				return hpsa_cmd_free_and_done(h, c, cmd);
5630 			}
5631 			/* else, fall thru and resubmit down CISS path */
5632 		}
5633 	}
5634 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5635 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5636 		/*
5637 		 * If we get here, it means dma mapping failed. Try
5638 		 * again via scsi mid layer, which will then get
5639 		 * SCSI_MLQUEUE_HOST_BUSY.
5640 		 *
5641 		 * hpsa_ciss_submit will have already freed c
5642 		 * if it encountered a dma mapping failure.
5643 		 */
5644 		cmd->result = DID_IMM_RETRY << 16;
5645 		cmd->scsi_done(cmd);
5646 	}
5647 }
5648 
5649 /* Running in struct Scsi_Host->host_lock less mode */
5650 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5651 {
5652 	struct ctlr_info *h;
5653 	struct hpsa_scsi_dev_t *dev;
5654 	struct CommandList *c;
5655 	int rc = 0;
5656 
5657 	/* Get the ptr to our adapter structure out of cmd->host. */
5658 	h = sdev_to_hba(cmd->device);
5659 
5660 	BUG_ON(cmd->request->tag < 0);
5661 
5662 	dev = cmd->device->hostdata;
5663 	if (!dev) {
5664 		cmd->result = DID_NO_CONNECT << 16;
5665 		cmd->scsi_done(cmd);
5666 		return 0;
5667 	}
5668 
5669 	if (dev->removed) {
5670 		cmd->result = DID_NO_CONNECT << 16;
5671 		cmd->scsi_done(cmd);
5672 		return 0;
5673 	}
5674 
5675 	if (unlikely(lockup_detected(h))) {
5676 		cmd->result = DID_NO_CONNECT << 16;
5677 		cmd->scsi_done(cmd);
5678 		return 0;
5679 	}
5680 
5681 	if (dev->in_reset)
5682 		return SCSI_MLQUEUE_DEVICE_BUSY;
5683 
5684 	c = cmd_tagged_alloc(h, cmd);
5685 	if (c == NULL)
5686 		return SCSI_MLQUEUE_DEVICE_BUSY;
5687 
5688 	/*
5689 	 * This is necessary because the SML doesn't zero out this field during
5690 	 * error recovery.
5691 	 */
5692 	cmd->result = 0;
5693 
5694 	/*
5695 	 * Call alternate submit routine for I/O accelerated commands.
5696 	 * Retries always go down the normal I/O path.
5697 	 */
5698 	if (likely(cmd->retries == 0 &&
5699 			!blk_rq_is_passthrough(cmd->request) &&
5700 			h->acciopath_status)) {
5701 		rc = hpsa_ioaccel_submit(h, c, cmd);
5702 		if (rc == 0)
5703 			return 0;
5704 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5705 			hpsa_cmd_resolve_and_free(h, c);
5706 			return SCSI_MLQUEUE_HOST_BUSY;
5707 		}
5708 	}
5709 	return hpsa_ciss_submit(h, c, cmd, dev);
5710 }
5711 
5712 static void hpsa_scan_complete(struct ctlr_info *h)
5713 {
5714 	unsigned long flags;
5715 
5716 	spin_lock_irqsave(&h->scan_lock, flags);
5717 	h->scan_finished = 1;
5718 	wake_up(&h->scan_wait_queue);
5719 	spin_unlock_irqrestore(&h->scan_lock, flags);
5720 }
5721 
5722 static void hpsa_scan_start(struct Scsi_Host *sh)
5723 {
5724 	struct ctlr_info *h = shost_to_hba(sh);
5725 	unsigned long flags;
5726 
5727 	/*
5728 	 * Don't let rescans be initiated on a controller known to be locked
5729 	 * up.  If the controller locks up *during* a rescan, that thread is
5730 	 * probably hosed, but at least we can prevent new rescan threads from
5731 	 * piling up on a locked up controller.
5732 	 */
5733 	if (unlikely(lockup_detected(h)))
5734 		return hpsa_scan_complete(h);
5735 
5736 	/*
5737 	 * If a scan is already waiting to run, no need to add another
5738 	 */
5739 	spin_lock_irqsave(&h->scan_lock, flags);
5740 	if (h->scan_waiting) {
5741 		spin_unlock_irqrestore(&h->scan_lock, flags);
5742 		return;
5743 	}
5744 
5745 	spin_unlock_irqrestore(&h->scan_lock, flags);
5746 
5747 	/* wait until any scan already in progress is finished. */
5748 	while (1) {
5749 		spin_lock_irqsave(&h->scan_lock, flags);
5750 		if (h->scan_finished)
5751 			break;
5752 		h->scan_waiting = 1;
5753 		spin_unlock_irqrestore(&h->scan_lock, flags);
5754 		wait_event(h->scan_wait_queue, h->scan_finished);
5755 		/* Note: We don't need to worry about a race between this
5756 		 * thread and driver unload because the midlayer will
5757 		 * have incremented the reference count, so unload won't
5758 		 * happen if we're in here.
5759 		 */
5760 	}
5761 	h->scan_finished = 0; /* mark scan as in progress */
5762 	h->scan_waiting = 0;
5763 	spin_unlock_irqrestore(&h->scan_lock, flags);
5764 
5765 	if (unlikely(lockup_detected(h)))
5766 		return hpsa_scan_complete(h);
5767 
5768 	/*
5769 	 * Do the scan after a reset completion
5770 	 */
5771 	spin_lock_irqsave(&h->reset_lock, flags);
5772 	if (h->reset_in_progress) {
5773 		h->drv_req_rescan = 1;
5774 		spin_unlock_irqrestore(&h->reset_lock, flags);
5775 		hpsa_scan_complete(h);
5776 		return;
5777 	}
5778 	spin_unlock_irqrestore(&h->reset_lock, flags);
5779 
5780 	hpsa_update_scsi_devices(h);
5781 
5782 	hpsa_scan_complete(h);
5783 }
5784 
5785 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5786 {
5787 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5788 
5789 	if (!logical_drive)
5790 		return -ENODEV;
5791 
5792 	if (qdepth < 1)
5793 		qdepth = 1;
5794 	else if (qdepth > logical_drive->queue_depth)
5795 		qdepth = logical_drive->queue_depth;
5796 
5797 	return scsi_change_queue_depth(sdev, qdepth);
5798 }
5799 
5800 static int hpsa_scan_finished(struct Scsi_Host *sh,
5801 	unsigned long elapsed_time)
5802 {
5803 	struct ctlr_info *h = shost_to_hba(sh);
5804 	unsigned long flags;
5805 	int finished;
5806 
5807 	spin_lock_irqsave(&h->scan_lock, flags);
5808 	finished = h->scan_finished;
5809 	spin_unlock_irqrestore(&h->scan_lock, flags);
5810 	return finished;
5811 }
5812 
5813 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5814 {
5815 	struct Scsi_Host *sh;
5816 
5817 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5818 	if (sh == NULL) {
5819 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5820 		return -ENOMEM;
5821 	}
5822 
5823 	sh->io_port = 0;
5824 	sh->n_io_port = 0;
5825 	sh->this_id = -1;
5826 	sh->max_channel = 3;
5827 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5828 	sh->max_lun = HPSA_MAX_LUN;
5829 	sh->max_id = HPSA_MAX_LUN;
5830 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5831 	sh->cmd_per_lun = sh->can_queue;
5832 	sh->sg_tablesize = h->maxsgentries;
5833 	sh->transportt = hpsa_sas_transport_template;
5834 	sh->hostdata[0] = (unsigned long) h;
5835 	sh->irq = pci_irq_vector(h->pdev, 0);
5836 	sh->unique_id = sh->irq;
5837 
5838 	h->scsi_host = sh;
5839 	return 0;
5840 }
5841 
5842 static int hpsa_scsi_add_host(struct ctlr_info *h)
5843 {
5844 	int rv;
5845 
5846 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5847 	if (rv) {
5848 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5849 		return rv;
5850 	}
5851 	scsi_scan_host(h->scsi_host);
5852 	return 0;
5853 }
5854 
5855 /*
5856  * The block layer has already gone to the trouble of picking out a unique,
5857  * small-integer tag for this request.  We use an offset from that value as
5858  * an index to select our command block.  (The offset allows us to reserve the
5859  * low-numbered entries for our own uses.)
5860  */
5861 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5862 {
5863 	int idx = scmd->request->tag;
5864 
5865 	if (idx < 0)
5866 		return idx;
5867 
5868 	/* Offset to leave space for internal cmds. */
5869 	return idx += HPSA_NRESERVED_CMDS;
5870 }
5871 
5872 /*
5873  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5874  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5875  */
5876 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5877 				struct CommandList *c, unsigned char lunaddr[],
5878 				int reply_queue)
5879 {
5880 	int rc;
5881 
5882 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5883 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5884 			NULL, 0, 0, lunaddr, TYPE_CMD);
5885 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5886 	if (rc)
5887 		return rc;
5888 	/* no unmap needed here because no data xfer. */
5889 
5890 	/* Check if the unit is already ready. */
5891 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5892 		return 0;
5893 
5894 	/*
5895 	 * The first command sent after reset will receive "unit attention" to
5896 	 * indicate that the LUN has been reset...this is actually what we're
5897 	 * looking for (but, success is good too).
5898 	 */
5899 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5900 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5901 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5902 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5903 		return 0;
5904 
5905 	return 1;
5906 }
5907 
5908 /*
5909  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5910  * returns zero when the unit is ready, and non-zero when giving up.
5911  */
5912 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5913 				struct CommandList *c,
5914 				unsigned char lunaddr[], int reply_queue)
5915 {
5916 	int rc;
5917 	int count = 0;
5918 	int waittime = 1; /* seconds */
5919 
5920 	/* Send test unit ready until device ready, or give up. */
5921 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5922 
5923 		/*
5924 		 * Wait for a bit.  do this first, because if we send
5925 		 * the TUR right away, the reset will just abort it.
5926 		 */
5927 		msleep(1000 * waittime);
5928 
5929 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5930 		if (!rc)
5931 			break;
5932 
5933 		/* Increase wait time with each try, up to a point. */
5934 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5935 			waittime *= 2;
5936 
5937 		dev_warn(&h->pdev->dev,
5938 			 "waiting %d secs for device to become ready.\n",
5939 			 waittime);
5940 	}
5941 
5942 	return rc;
5943 }
5944 
5945 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5946 					   unsigned char lunaddr[],
5947 					   int reply_queue)
5948 {
5949 	int first_queue;
5950 	int last_queue;
5951 	int rq;
5952 	int rc = 0;
5953 	struct CommandList *c;
5954 
5955 	c = cmd_alloc(h);
5956 
5957 	/*
5958 	 * If no specific reply queue was requested, then send the TUR
5959 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5960 	 * the loop exactly once using only the specified queue.
5961 	 */
5962 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5963 		first_queue = 0;
5964 		last_queue = h->nreply_queues - 1;
5965 	} else {
5966 		first_queue = reply_queue;
5967 		last_queue = reply_queue;
5968 	}
5969 
5970 	for (rq = first_queue; rq <= last_queue; rq++) {
5971 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5972 		if (rc)
5973 			break;
5974 	}
5975 
5976 	if (rc)
5977 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5978 	else
5979 		dev_warn(&h->pdev->dev, "device is ready.\n");
5980 
5981 	cmd_free(h, c);
5982 	return rc;
5983 }
5984 
5985 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5986  * complaining.  Doing a host- or bus-reset can't do anything good here.
5987  */
5988 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5989 {
5990 	int rc = SUCCESS;
5991 	int i;
5992 	struct ctlr_info *h;
5993 	struct hpsa_scsi_dev_t *dev = NULL;
5994 	u8 reset_type;
5995 	char msg[48];
5996 	unsigned long flags;
5997 
5998 	/* find the controller to which the command to be aborted was sent */
5999 	h = sdev_to_hba(scsicmd->device);
6000 	if (h == NULL) /* paranoia */
6001 		return FAILED;
6002 
6003 	spin_lock_irqsave(&h->reset_lock, flags);
6004 	h->reset_in_progress = 1;
6005 	spin_unlock_irqrestore(&h->reset_lock, flags);
6006 
6007 	if (lockup_detected(h)) {
6008 		rc = FAILED;
6009 		goto return_reset_status;
6010 	}
6011 
6012 	dev = scsicmd->device->hostdata;
6013 	if (!dev) {
6014 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6015 		rc = FAILED;
6016 		goto return_reset_status;
6017 	}
6018 
6019 	if (dev->devtype == TYPE_ENCLOSURE) {
6020 		rc = SUCCESS;
6021 		goto return_reset_status;
6022 	}
6023 
6024 	/* if controller locked up, we can guarantee command won't complete */
6025 	if (lockup_detected(h)) {
6026 		snprintf(msg, sizeof(msg),
6027 			 "cmd %d RESET FAILED, lockup detected",
6028 			 hpsa_get_cmd_index(scsicmd));
6029 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6030 		rc = FAILED;
6031 		goto return_reset_status;
6032 	}
6033 
6034 	/* this reset request might be the result of a lockup; check */
6035 	if (detect_controller_lockup(h)) {
6036 		snprintf(msg, sizeof(msg),
6037 			 "cmd %d RESET FAILED, new lockup detected",
6038 			 hpsa_get_cmd_index(scsicmd));
6039 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6040 		rc = FAILED;
6041 		goto return_reset_status;
6042 	}
6043 
6044 	/* Do not attempt on controller */
6045 	if (is_hba_lunid(dev->scsi3addr)) {
6046 		rc = SUCCESS;
6047 		goto return_reset_status;
6048 	}
6049 
6050 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6051 		reset_type = HPSA_DEVICE_RESET_MSG;
6052 	else
6053 		reset_type = HPSA_PHYS_TARGET_RESET;
6054 
6055 	sprintf(msg, "resetting %s",
6056 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6057 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6058 
6059 	/*
6060 	 * wait to see if any commands will complete before sending reset
6061 	 */
6062 	dev->in_reset = true; /* block any new cmds from OS for this device */
6063 	for (i = 0; i < 10; i++) {
6064 		if (atomic_read(&dev->commands_outstanding) > 0)
6065 			msleep(1000);
6066 		else
6067 			break;
6068 	}
6069 
6070 	/* send a reset to the SCSI LUN which the command was sent to */
6071 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6072 	if (rc == 0)
6073 		rc = SUCCESS;
6074 	else
6075 		rc = FAILED;
6076 
6077 	sprintf(msg, "reset %s %s",
6078 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6079 		rc == SUCCESS ? "completed successfully" : "failed");
6080 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6081 
6082 return_reset_status:
6083 	spin_lock_irqsave(&h->reset_lock, flags);
6084 	h->reset_in_progress = 0;
6085 	if (dev)
6086 		dev->in_reset = false;
6087 	spin_unlock_irqrestore(&h->reset_lock, flags);
6088 	return rc;
6089 }
6090 
6091 /*
6092  * For operations with an associated SCSI command, a command block is allocated
6093  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6094  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6095  * the complement, although cmd_free() may be called instead.
6096  */
6097 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6098 					    struct scsi_cmnd *scmd)
6099 {
6100 	int idx = hpsa_get_cmd_index(scmd);
6101 	struct CommandList *c = h->cmd_pool + idx;
6102 
6103 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6104 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6105 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6106 		/* The index value comes from the block layer, so if it's out of
6107 		 * bounds, it's probably not our bug.
6108 		 */
6109 		BUG();
6110 	}
6111 
6112 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6113 		/*
6114 		 * We expect that the SCSI layer will hand us a unique tag
6115 		 * value.  Thus, there should never be a collision here between
6116 		 * two requests...because if the selected command isn't idle
6117 		 * then someone is going to be very disappointed.
6118 		 */
6119 		if (idx != h->last_collision_tag) { /* Print once per tag */
6120 			dev_warn(&h->pdev->dev,
6121 				"%s: tag collision (tag=%d)\n", __func__, idx);
6122 			if (scmd)
6123 				scsi_print_command(scmd);
6124 			h->last_collision_tag = idx;
6125 		}
6126 		return NULL;
6127 	}
6128 
6129 	atomic_inc(&c->refcount);
6130 
6131 	hpsa_cmd_partial_init(h, idx, c);
6132 	return c;
6133 }
6134 
6135 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6136 {
6137 	/*
6138 	 * Release our reference to the block.  We don't need to do anything
6139 	 * else to free it, because it is accessed by index.
6140 	 */
6141 	(void)atomic_dec(&c->refcount);
6142 }
6143 
6144 /*
6145  * For operations that cannot sleep, a command block is allocated at init,
6146  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6147  * which ones are free or in use.  Lock must be held when calling this.
6148  * cmd_free() is the complement.
6149  * This function never gives up and returns NULL.  If it hangs,
6150  * another thread must call cmd_free() to free some tags.
6151  */
6152 
6153 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6154 {
6155 	struct CommandList *c;
6156 	int refcount, i;
6157 	int offset = 0;
6158 
6159 	/*
6160 	 * There is some *extremely* small but non-zero chance that that
6161 	 * multiple threads could get in here, and one thread could
6162 	 * be scanning through the list of bits looking for a free
6163 	 * one, but the free ones are always behind him, and other
6164 	 * threads sneak in behind him and eat them before he can
6165 	 * get to them, so that while there is always a free one, a
6166 	 * very unlucky thread might be starved anyway, never able to
6167 	 * beat the other threads.  In reality, this happens so
6168 	 * infrequently as to be indistinguishable from never.
6169 	 *
6170 	 * Note that we start allocating commands before the SCSI host structure
6171 	 * is initialized.  Since the search starts at bit zero, this
6172 	 * all works, since we have at least one command structure available;
6173 	 * however, it means that the structures with the low indexes have to be
6174 	 * reserved for driver-initiated requests, while requests from the block
6175 	 * layer will use the higher indexes.
6176 	 */
6177 
6178 	for (;;) {
6179 		i = find_next_zero_bit(h->cmd_pool_bits,
6180 					HPSA_NRESERVED_CMDS,
6181 					offset);
6182 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6183 			offset = 0;
6184 			continue;
6185 		}
6186 		c = h->cmd_pool + i;
6187 		refcount = atomic_inc_return(&c->refcount);
6188 		if (unlikely(refcount > 1)) {
6189 			cmd_free(h, c); /* already in use */
6190 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6191 			continue;
6192 		}
6193 		set_bit(i & (BITS_PER_LONG - 1),
6194 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6195 		break; /* it's ours now. */
6196 	}
6197 	hpsa_cmd_partial_init(h, i, c);
6198 	c->device = NULL;
6199 	return c;
6200 }
6201 
6202 /*
6203  * This is the complementary operation to cmd_alloc().  Note, however, in some
6204  * corner cases it may also be used to free blocks allocated by
6205  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6206  * the clear-bit is harmless.
6207  */
6208 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6209 {
6210 	if (atomic_dec_and_test(&c->refcount)) {
6211 		int i;
6212 
6213 		i = c - h->cmd_pool;
6214 		clear_bit(i & (BITS_PER_LONG - 1),
6215 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6216 	}
6217 }
6218 
6219 #ifdef CONFIG_COMPAT
6220 
6221 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6222 	void __user *arg)
6223 {
6224 	struct ctlr_info *h = sdev_to_hba(dev);
6225 	IOCTL32_Command_struct __user *arg32 = arg;
6226 	IOCTL_Command_struct arg64;
6227 	int err;
6228 	u32 cp;
6229 
6230 	if (!arg)
6231 		return -EINVAL;
6232 
6233 	memset(&arg64, 0, sizeof(arg64));
6234 	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6235 		return -EFAULT;
6236 	if (get_user(cp, &arg32->buf))
6237 		return -EFAULT;
6238 	arg64.buf = compat_ptr(cp);
6239 
6240 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6241 		return -EAGAIN;
6242 	err = hpsa_passthru_ioctl(h, &arg64);
6243 	atomic_inc(&h->passthru_cmds_avail);
6244 	if (err)
6245 		return err;
6246 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6247 			 sizeof(arg32->error_info)))
6248 		return -EFAULT;
6249 	return 0;
6250 }
6251 
6252 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6253 	unsigned int cmd, void __user *arg)
6254 {
6255 	struct ctlr_info *h = sdev_to_hba(dev);
6256 	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6257 	BIG_IOCTL_Command_struct arg64;
6258 	int err;
6259 	u32 cp;
6260 
6261 	if (!arg)
6262 		return -EINVAL;
6263 	memset(&arg64, 0, sizeof(arg64));
6264 	if (copy_from_user(&arg64, arg32,
6265 			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6266 		return -EFAULT;
6267 	if (get_user(cp, &arg32->buf))
6268 		return -EFAULT;
6269 	arg64.buf = compat_ptr(cp);
6270 
6271 	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6272 		return -EAGAIN;
6273 	err = hpsa_big_passthru_ioctl(h, &arg64);
6274 	atomic_inc(&h->passthru_cmds_avail);
6275 	if (err)
6276 		return err;
6277 	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6278 			 sizeof(arg32->error_info)))
6279 		return -EFAULT;
6280 	return 0;
6281 }
6282 
6283 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6284 			     void __user *arg)
6285 {
6286 	switch (cmd) {
6287 	case CCISS_GETPCIINFO:
6288 	case CCISS_GETINTINFO:
6289 	case CCISS_SETINTINFO:
6290 	case CCISS_GETNODENAME:
6291 	case CCISS_SETNODENAME:
6292 	case CCISS_GETHEARTBEAT:
6293 	case CCISS_GETBUSTYPES:
6294 	case CCISS_GETFIRMVER:
6295 	case CCISS_GETDRIVVER:
6296 	case CCISS_REVALIDVOLS:
6297 	case CCISS_DEREGDISK:
6298 	case CCISS_REGNEWDISK:
6299 	case CCISS_REGNEWD:
6300 	case CCISS_RESCANDISK:
6301 	case CCISS_GETLUNINFO:
6302 		return hpsa_ioctl(dev, cmd, arg);
6303 
6304 	case CCISS_PASSTHRU32:
6305 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6306 	case CCISS_BIG_PASSTHRU32:
6307 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6308 
6309 	default:
6310 		return -ENOIOCTLCMD;
6311 	}
6312 }
6313 #endif
6314 
6315 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6316 {
6317 	struct hpsa_pci_info pciinfo;
6318 
6319 	if (!argp)
6320 		return -EINVAL;
6321 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6322 	pciinfo.bus = h->pdev->bus->number;
6323 	pciinfo.dev_fn = h->pdev->devfn;
6324 	pciinfo.board_id = h->board_id;
6325 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6326 		return -EFAULT;
6327 	return 0;
6328 }
6329 
6330 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6331 {
6332 	DriverVer_type DriverVer;
6333 	unsigned char vmaj, vmin, vsubmin;
6334 	int rc;
6335 
6336 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6337 		&vmaj, &vmin, &vsubmin);
6338 	if (rc != 3) {
6339 		dev_info(&h->pdev->dev, "driver version string '%s' "
6340 			"unrecognized.", HPSA_DRIVER_VERSION);
6341 		vmaj = 0;
6342 		vmin = 0;
6343 		vsubmin = 0;
6344 	}
6345 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6346 	if (!argp)
6347 		return -EINVAL;
6348 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6349 		return -EFAULT;
6350 	return 0;
6351 }
6352 
6353 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6354 			       IOCTL_Command_struct *iocommand)
6355 {
6356 	struct CommandList *c;
6357 	char *buff = NULL;
6358 	u64 temp64;
6359 	int rc = 0;
6360 
6361 	if (!capable(CAP_SYS_RAWIO))
6362 		return -EPERM;
6363 	if ((iocommand->buf_size < 1) &&
6364 	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6365 		return -EINVAL;
6366 	}
6367 	if (iocommand->buf_size > 0) {
6368 		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6369 		if (buff == NULL)
6370 			return -ENOMEM;
6371 		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6372 			/* Copy the data into the buffer we created */
6373 			if (copy_from_user(buff, iocommand->buf,
6374 				iocommand->buf_size)) {
6375 				rc = -EFAULT;
6376 				goto out_kfree;
6377 			}
6378 		} else {
6379 			memset(buff, 0, iocommand->buf_size);
6380 		}
6381 	}
6382 	c = cmd_alloc(h);
6383 
6384 	/* Fill in the command type */
6385 	c->cmd_type = CMD_IOCTL_PEND;
6386 	c->scsi_cmd = SCSI_CMD_BUSY;
6387 	/* Fill in Command Header */
6388 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6389 	if (iocommand->buf_size > 0) {	/* buffer to fill */
6390 		c->Header.SGList = 1;
6391 		c->Header.SGTotal = cpu_to_le16(1);
6392 	} else	{ /* no buffers to fill */
6393 		c->Header.SGList = 0;
6394 		c->Header.SGTotal = cpu_to_le16(0);
6395 	}
6396 	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6397 
6398 	/* Fill in Request block */
6399 	memcpy(&c->Request, &iocommand->Request,
6400 		sizeof(c->Request));
6401 
6402 	/* Fill in the scatter gather information */
6403 	if (iocommand->buf_size > 0) {
6404 		temp64 = dma_map_single(&h->pdev->dev, buff,
6405 			iocommand->buf_size, DMA_BIDIRECTIONAL);
6406 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6407 			c->SG[0].Addr = cpu_to_le64(0);
6408 			c->SG[0].Len = cpu_to_le32(0);
6409 			rc = -ENOMEM;
6410 			goto out;
6411 		}
6412 		c->SG[0].Addr = cpu_to_le64(temp64);
6413 		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6414 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6415 	}
6416 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6417 					NO_TIMEOUT);
6418 	if (iocommand->buf_size > 0)
6419 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6420 	check_ioctl_unit_attention(h, c);
6421 	if (rc) {
6422 		rc = -EIO;
6423 		goto out;
6424 	}
6425 
6426 	/* Copy the error information out */
6427 	memcpy(&iocommand->error_info, c->err_info,
6428 		sizeof(iocommand->error_info));
6429 	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6430 		iocommand->buf_size > 0) {
6431 		/* Copy the data out of the buffer we created */
6432 		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6433 			rc = -EFAULT;
6434 			goto out;
6435 		}
6436 	}
6437 out:
6438 	cmd_free(h, c);
6439 out_kfree:
6440 	kfree(buff);
6441 	return rc;
6442 }
6443 
6444 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6445 				   BIG_IOCTL_Command_struct *ioc)
6446 {
6447 	struct CommandList *c;
6448 	unsigned char **buff = NULL;
6449 	int *buff_size = NULL;
6450 	u64 temp64;
6451 	BYTE sg_used = 0;
6452 	int status = 0;
6453 	u32 left;
6454 	u32 sz;
6455 	BYTE __user *data_ptr;
6456 
6457 	if (!capable(CAP_SYS_RAWIO))
6458 		return -EPERM;
6459 
6460 	if ((ioc->buf_size < 1) &&
6461 	    (ioc->Request.Type.Direction != XFER_NONE))
6462 		return -EINVAL;
6463 	/* Check kmalloc limits  using all SGs */
6464 	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6465 		return -EINVAL;
6466 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6467 		return -EINVAL;
6468 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6469 	if (!buff) {
6470 		status = -ENOMEM;
6471 		goto cleanup1;
6472 	}
6473 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6474 	if (!buff_size) {
6475 		status = -ENOMEM;
6476 		goto cleanup1;
6477 	}
6478 	left = ioc->buf_size;
6479 	data_ptr = ioc->buf;
6480 	while (left) {
6481 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6482 		buff_size[sg_used] = sz;
6483 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6484 		if (buff[sg_used] == NULL) {
6485 			status = -ENOMEM;
6486 			goto cleanup1;
6487 		}
6488 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6489 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6490 				status = -EFAULT;
6491 				goto cleanup1;
6492 			}
6493 		} else
6494 			memset(buff[sg_used], 0, sz);
6495 		left -= sz;
6496 		data_ptr += sz;
6497 		sg_used++;
6498 	}
6499 	c = cmd_alloc(h);
6500 
6501 	c->cmd_type = CMD_IOCTL_PEND;
6502 	c->scsi_cmd = SCSI_CMD_BUSY;
6503 	c->Header.ReplyQueue = 0;
6504 	c->Header.SGList = (u8) sg_used;
6505 	c->Header.SGTotal = cpu_to_le16(sg_used);
6506 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6507 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6508 	if (ioc->buf_size > 0) {
6509 		int i;
6510 		for (i = 0; i < sg_used; i++) {
6511 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6512 				    buff_size[i], DMA_BIDIRECTIONAL);
6513 			if (dma_mapping_error(&h->pdev->dev,
6514 							(dma_addr_t) temp64)) {
6515 				c->SG[i].Addr = cpu_to_le64(0);
6516 				c->SG[i].Len = cpu_to_le32(0);
6517 				hpsa_pci_unmap(h->pdev, c, i,
6518 					DMA_BIDIRECTIONAL);
6519 				status = -ENOMEM;
6520 				goto cleanup0;
6521 			}
6522 			c->SG[i].Addr = cpu_to_le64(temp64);
6523 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6524 			c->SG[i].Ext = cpu_to_le32(0);
6525 		}
6526 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6527 	}
6528 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6529 						NO_TIMEOUT);
6530 	if (sg_used)
6531 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6532 	check_ioctl_unit_attention(h, c);
6533 	if (status) {
6534 		status = -EIO;
6535 		goto cleanup0;
6536 	}
6537 
6538 	/* Copy the error information out */
6539 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6540 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6541 		int i;
6542 
6543 		/* Copy the data out of the buffer we created */
6544 		BYTE __user *ptr = ioc->buf;
6545 		for (i = 0; i < sg_used; i++) {
6546 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6547 				status = -EFAULT;
6548 				goto cleanup0;
6549 			}
6550 			ptr += buff_size[i];
6551 		}
6552 	}
6553 	status = 0;
6554 cleanup0:
6555 	cmd_free(h, c);
6556 cleanup1:
6557 	if (buff) {
6558 		int i;
6559 
6560 		for (i = 0; i < sg_used; i++)
6561 			kfree(buff[i]);
6562 		kfree(buff);
6563 	}
6564 	kfree(buff_size);
6565 	return status;
6566 }
6567 
6568 static void check_ioctl_unit_attention(struct ctlr_info *h,
6569 	struct CommandList *c)
6570 {
6571 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6572 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6573 		(void) check_for_unit_attention(h, c);
6574 }
6575 
6576 /*
6577  * ioctl
6578  */
6579 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6580 		      void __user *argp)
6581 {
6582 	struct ctlr_info *h = sdev_to_hba(dev);
6583 	int rc;
6584 
6585 	switch (cmd) {
6586 	case CCISS_DEREGDISK:
6587 	case CCISS_REGNEWDISK:
6588 	case CCISS_REGNEWD:
6589 		hpsa_scan_start(h->scsi_host);
6590 		return 0;
6591 	case CCISS_GETPCIINFO:
6592 		return hpsa_getpciinfo_ioctl(h, argp);
6593 	case CCISS_GETDRIVVER:
6594 		return hpsa_getdrivver_ioctl(h, argp);
6595 	case CCISS_PASSTHRU: {
6596 		IOCTL_Command_struct iocommand;
6597 
6598 		if (!argp)
6599 			return -EINVAL;
6600 		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6601 			return -EFAULT;
6602 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6603 			return -EAGAIN;
6604 		rc = hpsa_passthru_ioctl(h, &iocommand);
6605 		atomic_inc(&h->passthru_cmds_avail);
6606 		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6607 			rc = -EFAULT;
6608 		return rc;
6609 	}
6610 	case CCISS_BIG_PASSTHRU: {
6611 		BIG_IOCTL_Command_struct ioc;
6612 		if (!argp)
6613 			return -EINVAL;
6614 		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6615 			return -EFAULT;
6616 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6617 			return -EAGAIN;
6618 		rc = hpsa_big_passthru_ioctl(h, &ioc);
6619 		atomic_inc(&h->passthru_cmds_avail);
6620 		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6621 			rc = -EFAULT;
6622 		return rc;
6623 	}
6624 	default:
6625 		return -ENOTTY;
6626 	}
6627 }
6628 
6629 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6630 {
6631 	struct CommandList *c;
6632 
6633 	c = cmd_alloc(h);
6634 
6635 	/* fill_cmd can't fail here, no data buffer to map */
6636 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6637 		RAID_CTLR_LUNID, TYPE_MSG);
6638 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6639 	c->waiting = NULL;
6640 	enqueue_cmd_and_start_io(h, c);
6641 	/* Don't wait for completion, the reset won't complete.  Don't free
6642 	 * the command either.  This is the last command we will send before
6643 	 * re-initializing everything, so it doesn't matter and won't leak.
6644 	 */
6645 	return;
6646 }
6647 
6648 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6649 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6650 	int cmd_type)
6651 {
6652 	enum dma_data_direction dir = DMA_NONE;
6653 
6654 	c->cmd_type = CMD_IOCTL_PEND;
6655 	c->scsi_cmd = SCSI_CMD_BUSY;
6656 	c->Header.ReplyQueue = 0;
6657 	if (buff != NULL && size > 0) {
6658 		c->Header.SGList = 1;
6659 		c->Header.SGTotal = cpu_to_le16(1);
6660 	} else {
6661 		c->Header.SGList = 0;
6662 		c->Header.SGTotal = cpu_to_le16(0);
6663 	}
6664 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6665 
6666 	if (cmd_type == TYPE_CMD) {
6667 		switch (cmd) {
6668 		case HPSA_INQUIRY:
6669 			/* are we trying to read a vital product page */
6670 			if (page_code & VPD_PAGE) {
6671 				c->Request.CDB[1] = 0x01;
6672 				c->Request.CDB[2] = (page_code & 0xff);
6673 			}
6674 			c->Request.CDBLen = 6;
6675 			c->Request.type_attr_dir =
6676 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6677 			c->Request.Timeout = 0;
6678 			c->Request.CDB[0] = HPSA_INQUIRY;
6679 			c->Request.CDB[4] = size & 0xFF;
6680 			break;
6681 		case RECEIVE_DIAGNOSTIC:
6682 			c->Request.CDBLen = 6;
6683 			c->Request.type_attr_dir =
6684 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6685 			c->Request.Timeout = 0;
6686 			c->Request.CDB[0] = cmd;
6687 			c->Request.CDB[1] = 1;
6688 			c->Request.CDB[2] = 1;
6689 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6690 			c->Request.CDB[4] = size & 0xFF;
6691 			break;
6692 		case HPSA_REPORT_LOG:
6693 		case HPSA_REPORT_PHYS:
6694 			/* Talking to controller so It's a physical command
6695 			   mode = 00 target = 0.  Nothing to write.
6696 			 */
6697 			c->Request.CDBLen = 12;
6698 			c->Request.type_attr_dir =
6699 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6700 			c->Request.Timeout = 0;
6701 			c->Request.CDB[0] = cmd;
6702 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6703 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6704 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6705 			c->Request.CDB[9] = size & 0xFF;
6706 			break;
6707 		case BMIC_SENSE_DIAG_OPTIONS:
6708 			c->Request.CDBLen = 16;
6709 			c->Request.type_attr_dir =
6710 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6711 			c->Request.Timeout = 0;
6712 			/* Spec says this should be BMIC_WRITE */
6713 			c->Request.CDB[0] = BMIC_READ;
6714 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6715 			break;
6716 		case BMIC_SET_DIAG_OPTIONS:
6717 			c->Request.CDBLen = 16;
6718 			c->Request.type_attr_dir =
6719 					TYPE_ATTR_DIR(cmd_type,
6720 						ATTR_SIMPLE, XFER_WRITE);
6721 			c->Request.Timeout = 0;
6722 			c->Request.CDB[0] = BMIC_WRITE;
6723 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6724 			break;
6725 		case HPSA_CACHE_FLUSH:
6726 			c->Request.CDBLen = 12;
6727 			c->Request.type_attr_dir =
6728 					TYPE_ATTR_DIR(cmd_type,
6729 						ATTR_SIMPLE, XFER_WRITE);
6730 			c->Request.Timeout = 0;
6731 			c->Request.CDB[0] = BMIC_WRITE;
6732 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6733 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6734 			c->Request.CDB[8] = size & 0xFF;
6735 			break;
6736 		case TEST_UNIT_READY:
6737 			c->Request.CDBLen = 6;
6738 			c->Request.type_attr_dir =
6739 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6740 			c->Request.Timeout = 0;
6741 			break;
6742 		case HPSA_GET_RAID_MAP:
6743 			c->Request.CDBLen = 12;
6744 			c->Request.type_attr_dir =
6745 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6746 			c->Request.Timeout = 0;
6747 			c->Request.CDB[0] = HPSA_CISS_READ;
6748 			c->Request.CDB[1] = cmd;
6749 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6750 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6751 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6752 			c->Request.CDB[9] = size & 0xFF;
6753 			break;
6754 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6755 			c->Request.CDBLen = 10;
6756 			c->Request.type_attr_dir =
6757 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6758 			c->Request.Timeout = 0;
6759 			c->Request.CDB[0] = BMIC_READ;
6760 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6761 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6762 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6763 			break;
6764 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6765 			c->Request.CDBLen = 10;
6766 			c->Request.type_attr_dir =
6767 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6768 			c->Request.Timeout = 0;
6769 			c->Request.CDB[0] = BMIC_READ;
6770 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6771 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6772 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6773 			break;
6774 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6775 			c->Request.CDBLen = 10;
6776 			c->Request.type_attr_dir =
6777 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6778 			c->Request.Timeout = 0;
6779 			c->Request.CDB[0] = BMIC_READ;
6780 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6781 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6782 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6783 			break;
6784 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6785 			c->Request.CDBLen = 10;
6786 			c->Request.type_attr_dir =
6787 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6788 			c->Request.Timeout = 0;
6789 			c->Request.CDB[0] = BMIC_READ;
6790 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6791 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6792 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6793 			break;
6794 		case BMIC_IDENTIFY_CONTROLLER:
6795 			c->Request.CDBLen = 10;
6796 			c->Request.type_attr_dir =
6797 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6798 			c->Request.Timeout = 0;
6799 			c->Request.CDB[0] = BMIC_READ;
6800 			c->Request.CDB[1] = 0;
6801 			c->Request.CDB[2] = 0;
6802 			c->Request.CDB[3] = 0;
6803 			c->Request.CDB[4] = 0;
6804 			c->Request.CDB[5] = 0;
6805 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6806 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6807 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6808 			c->Request.CDB[9] = 0;
6809 			break;
6810 		default:
6811 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6812 			BUG();
6813 		}
6814 	} else if (cmd_type == TYPE_MSG) {
6815 		switch (cmd) {
6816 
6817 		case  HPSA_PHYS_TARGET_RESET:
6818 			c->Request.CDBLen = 16;
6819 			c->Request.type_attr_dir =
6820 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6821 			c->Request.Timeout = 0; /* Don't time out */
6822 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6823 			c->Request.CDB[0] = HPSA_RESET;
6824 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6825 			/* Physical target reset needs no control bytes 4-7*/
6826 			c->Request.CDB[4] = 0x00;
6827 			c->Request.CDB[5] = 0x00;
6828 			c->Request.CDB[6] = 0x00;
6829 			c->Request.CDB[7] = 0x00;
6830 			break;
6831 		case  HPSA_DEVICE_RESET_MSG:
6832 			c->Request.CDBLen = 16;
6833 			c->Request.type_attr_dir =
6834 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6835 			c->Request.Timeout = 0; /* Don't time out */
6836 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6837 			c->Request.CDB[0] =  cmd;
6838 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6839 			/* If bytes 4-7 are zero, it means reset the */
6840 			/* LunID device */
6841 			c->Request.CDB[4] = 0x00;
6842 			c->Request.CDB[5] = 0x00;
6843 			c->Request.CDB[6] = 0x00;
6844 			c->Request.CDB[7] = 0x00;
6845 			break;
6846 		default:
6847 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6848 				cmd);
6849 			BUG();
6850 		}
6851 	} else {
6852 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6853 		BUG();
6854 	}
6855 
6856 	switch (GET_DIR(c->Request.type_attr_dir)) {
6857 	case XFER_READ:
6858 		dir = DMA_FROM_DEVICE;
6859 		break;
6860 	case XFER_WRITE:
6861 		dir = DMA_TO_DEVICE;
6862 		break;
6863 	case XFER_NONE:
6864 		dir = DMA_NONE;
6865 		break;
6866 	default:
6867 		dir = DMA_BIDIRECTIONAL;
6868 	}
6869 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6870 		return -1;
6871 	return 0;
6872 }
6873 
6874 /*
6875  * Map (physical) PCI mem into (virtual) kernel space
6876  */
6877 static void __iomem *remap_pci_mem(ulong base, ulong size)
6878 {
6879 	ulong page_base = ((ulong) base) & PAGE_MASK;
6880 	ulong page_offs = ((ulong) base) - page_base;
6881 	void __iomem *page_remapped = ioremap(page_base,
6882 		page_offs + size);
6883 
6884 	return page_remapped ? (page_remapped + page_offs) : NULL;
6885 }
6886 
6887 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6888 {
6889 	return h->access.command_completed(h, q);
6890 }
6891 
6892 static inline bool interrupt_pending(struct ctlr_info *h)
6893 {
6894 	return h->access.intr_pending(h);
6895 }
6896 
6897 static inline long interrupt_not_for_us(struct ctlr_info *h)
6898 {
6899 	return (h->access.intr_pending(h) == 0) ||
6900 		(h->interrupts_enabled == 0);
6901 }
6902 
6903 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6904 	u32 raw_tag)
6905 {
6906 	if (unlikely(tag_index >= h->nr_cmds)) {
6907 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6908 		return 1;
6909 	}
6910 	return 0;
6911 }
6912 
6913 static inline void finish_cmd(struct CommandList *c)
6914 {
6915 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6916 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6917 			|| c->cmd_type == CMD_IOACCEL2))
6918 		complete_scsi_command(c);
6919 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6920 		complete(c->waiting);
6921 }
6922 
6923 /* process completion of an indexed ("direct lookup") command */
6924 static inline void process_indexed_cmd(struct ctlr_info *h,
6925 	u32 raw_tag)
6926 {
6927 	u32 tag_index;
6928 	struct CommandList *c;
6929 
6930 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6931 	if (!bad_tag(h, tag_index, raw_tag)) {
6932 		c = h->cmd_pool + tag_index;
6933 		finish_cmd(c);
6934 	}
6935 }
6936 
6937 /* Some controllers, like p400, will give us one interrupt
6938  * after a soft reset, even if we turned interrupts off.
6939  * Only need to check for this in the hpsa_xxx_discard_completions
6940  * functions.
6941  */
6942 static int ignore_bogus_interrupt(struct ctlr_info *h)
6943 {
6944 	if (likely(!reset_devices))
6945 		return 0;
6946 
6947 	if (likely(h->interrupts_enabled))
6948 		return 0;
6949 
6950 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6951 		"(known firmware bug.)  Ignoring.\n");
6952 
6953 	return 1;
6954 }
6955 
6956 /*
6957  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6958  * Relies on (h-q[x] == x) being true for x such that
6959  * 0 <= x < MAX_REPLY_QUEUES.
6960  */
6961 static struct ctlr_info *queue_to_hba(u8 *queue)
6962 {
6963 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6964 }
6965 
6966 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6967 {
6968 	struct ctlr_info *h = queue_to_hba(queue);
6969 	u8 q = *(u8 *) queue;
6970 	u32 raw_tag;
6971 
6972 	if (ignore_bogus_interrupt(h))
6973 		return IRQ_NONE;
6974 
6975 	if (interrupt_not_for_us(h))
6976 		return IRQ_NONE;
6977 	h->last_intr_timestamp = get_jiffies_64();
6978 	while (interrupt_pending(h)) {
6979 		raw_tag = get_next_completion(h, q);
6980 		while (raw_tag != FIFO_EMPTY)
6981 			raw_tag = next_command(h, q);
6982 	}
6983 	return IRQ_HANDLED;
6984 }
6985 
6986 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6987 {
6988 	struct ctlr_info *h = queue_to_hba(queue);
6989 	u32 raw_tag;
6990 	u8 q = *(u8 *) queue;
6991 
6992 	if (ignore_bogus_interrupt(h))
6993 		return IRQ_NONE;
6994 
6995 	h->last_intr_timestamp = get_jiffies_64();
6996 	raw_tag = get_next_completion(h, q);
6997 	while (raw_tag != FIFO_EMPTY)
6998 		raw_tag = next_command(h, q);
6999 	return IRQ_HANDLED;
7000 }
7001 
7002 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7003 {
7004 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7005 	u32 raw_tag;
7006 	u8 q = *(u8 *) queue;
7007 
7008 	if (interrupt_not_for_us(h))
7009 		return IRQ_NONE;
7010 	h->last_intr_timestamp = get_jiffies_64();
7011 	while (interrupt_pending(h)) {
7012 		raw_tag = get_next_completion(h, q);
7013 		while (raw_tag != FIFO_EMPTY) {
7014 			process_indexed_cmd(h, raw_tag);
7015 			raw_tag = next_command(h, q);
7016 		}
7017 	}
7018 	return IRQ_HANDLED;
7019 }
7020 
7021 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7022 {
7023 	struct ctlr_info *h = queue_to_hba(queue);
7024 	u32 raw_tag;
7025 	u8 q = *(u8 *) queue;
7026 
7027 	h->last_intr_timestamp = get_jiffies_64();
7028 	raw_tag = get_next_completion(h, q);
7029 	while (raw_tag != FIFO_EMPTY) {
7030 		process_indexed_cmd(h, raw_tag);
7031 		raw_tag = next_command(h, q);
7032 	}
7033 	return IRQ_HANDLED;
7034 }
7035 
7036 /* Send a message CDB to the firmware. Careful, this only works
7037  * in simple mode, not performant mode due to the tag lookup.
7038  * We only ever use this immediately after a controller reset.
7039  */
7040 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7041 			unsigned char type)
7042 {
7043 	struct Command {
7044 		struct CommandListHeader CommandHeader;
7045 		struct RequestBlock Request;
7046 		struct ErrDescriptor ErrorDescriptor;
7047 	};
7048 	struct Command *cmd;
7049 	static const size_t cmd_sz = sizeof(*cmd) +
7050 					sizeof(cmd->ErrorDescriptor);
7051 	dma_addr_t paddr64;
7052 	__le32 paddr32;
7053 	u32 tag;
7054 	void __iomem *vaddr;
7055 	int i, err;
7056 
7057 	vaddr = pci_ioremap_bar(pdev, 0);
7058 	if (vaddr == NULL)
7059 		return -ENOMEM;
7060 
7061 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7062 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7063 	 * memory.
7064 	 */
7065 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7066 	if (err) {
7067 		iounmap(vaddr);
7068 		return err;
7069 	}
7070 
7071 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7072 	if (cmd == NULL) {
7073 		iounmap(vaddr);
7074 		return -ENOMEM;
7075 	}
7076 
7077 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7078 	 * although there's no guarantee, we assume that the address is at
7079 	 * least 4-byte aligned (most likely, it's page-aligned).
7080 	 */
7081 	paddr32 = cpu_to_le32(paddr64);
7082 
7083 	cmd->CommandHeader.ReplyQueue = 0;
7084 	cmd->CommandHeader.SGList = 0;
7085 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7086 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7087 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7088 
7089 	cmd->Request.CDBLen = 16;
7090 	cmd->Request.type_attr_dir =
7091 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7092 	cmd->Request.Timeout = 0; /* Don't time out */
7093 	cmd->Request.CDB[0] = opcode;
7094 	cmd->Request.CDB[1] = type;
7095 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7096 	cmd->ErrorDescriptor.Addr =
7097 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7098 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7099 
7100 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7101 
7102 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7103 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7104 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7105 			break;
7106 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7107 	}
7108 
7109 	iounmap(vaddr);
7110 
7111 	/* we leak the DMA buffer here ... no choice since the controller could
7112 	 *  still complete the command.
7113 	 */
7114 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7115 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7116 			opcode, type);
7117 		return -ETIMEDOUT;
7118 	}
7119 
7120 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7121 
7122 	if (tag & HPSA_ERROR_BIT) {
7123 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7124 			opcode, type);
7125 		return -EIO;
7126 	}
7127 
7128 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7129 		opcode, type);
7130 	return 0;
7131 }
7132 
7133 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7134 
7135 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7136 	void __iomem *vaddr, u32 use_doorbell)
7137 {
7138 
7139 	if (use_doorbell) {
7140 		/* For everything after the P600, the PCI power state method
7141 		 * of resetting the controller doesn't work, so we have this
7142 		 * other way using the doorbell register.
7143 		 */
7144 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7145 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7146 
7147 		/* PMC hardware guys tell us we need a 10 second delay after
7148 		 * doorbell reset and before any attempt to talk to the board
7149 		 * at all to ensure that this actually works and doesn't fall
7150 		 * over in some weird corner cases.
7151 		 */
7152 		msleep(10000);
7153 	} else { /* Try to do it the PCI power state way */
7154 
7155 		/* Quoting from the Open CISS Specification: "The Power
7156 		 * Management Control/Status Register (CSR) controls the power
7157 		 * state of the device.  The normal operating state is D0,
7158 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7159 		 * the controller, place the interface device in D3 then to D0,
7160 		 * this causes a secondary PCI reset which will reset the
7161 		 * controller." */
7162 
7163 		int rc = 0;
7164 
7165 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7166 
7167 		/* enter the D3hot power management state */
7168 		rc = pci_set_power_state(pdev, PCI_D3hot);
7169 		if (rc)
7170 			return rc;
7171 
7172 		msleep(500);
7173 
7174 		/* enter the D0 power management state */
7175 		rc = pci_set_power_state(pdev, PCI_D0);
7176 		if (rc)
7177 			return rc;
7178 
7179 		/*
7180 		 * The P600 requires a small delay when changing states.
7181 		 * Otherwise we may think the board did not reset and we bail.
7182 		 * This for kdump only and is particular to the P600.
7183 		 */
7184 		msleep(500);
7185 	}
7186 	return 0;
7187 }
7188 
7189 static void init_driver_version(char *driver_version, int len)
7190 {
7191 	memset(driver_version, 0, len);
7192 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7193 }
7194 
7195 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7196 {
7197 	char *driver_version;
7198 	int i, size = sizeof(cfgtable->driver_version);
7199 
7200 	driver_version = kmalloc(size, GFP_KERNEL);
7201 	if (!driver_version)
7202 		return -ENOMEM;
7203 
7204 	init_driver_version(driver_version, size);
7205 	for (i = 0; i < size; i++)
7206 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7207 	kfree(driver_version);
7208 	return 0;
7209 }
7210 
7211 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7212 					  unsigned char *driver_ver)
7213 {
7214 	int i;
7215 
7216 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7217 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7218 }
7219 
7220 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7221 {
7222 
7223 	char *driver_ver, *old_driver_ver;
7224 	int rc, size = sizeof(cfgtable->driver_version);
7225 
7226 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7227 	if (!old_driver_ver)
7228 		return -ENOMEM;
7229 	driver_ver = old_driver_ver + size;
7230 
7231 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7232 	 * should have been changed, otherwise we know the reset failed.
7233 	 */
7234 	init_driver_version(old_driver_ver, size);
7235 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7236 	rc = !memcmp(driver_ver, old_driver_ver, size);
7237 	kfree(old_driver_ver);
7238 	return rc;
7239 }
7240 /* This does a hard reset of the controller using PCI power management
7241  * states or the using the doorbell register.
7242  */
7243 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7244 {
7245 	u64 cfg_offset;
7246 	u32 cfg_base_addr;
7247 	u64 cfg_base_addr_index;
7248 	void __iomem *vaddr;
7249 	unsigned long paddr;
7250 	u32 misc_fw_support;
7251 	int rc;
7252 	struct CfgTable __iomem *cfgtable;
7253 	u32 use_doorbell;
7254 	u16 command_register;
7255 
7256 	/* For controllers as old as the P600, this is very nearly
7257 	 * the same thing as
7258 	 *
7259 	 * pci_save_state(pci_dev);
7260 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7261 	 * pci_set_power_state(pci_dev, PCI_D0);
7262 	 * pci_restore_state(pci_dev);
7263 	 *
7264 	 * For controllers newer than the P600, the pci power state
7265 	 * method of resetting doesn't work so we have another way
7266 	 * using the doorbell register.
7267 	 */
7268 
7269 	if (!ctlr_is_resettable(board_id)) {
7270 		dev_warn(&pdev->dev, "Controller not resettable\n");
7271 		return -ENODEV;
7272 	}
7273 
7274 	/* if controller is soft- but not hard resettable... */
7275 	if (!ctlr_is_hard_resettable(board_id))
7276 		return -ENOTSUPP; /* try soft reset later. */
7277 
7278 	/* Save the PCI command register */
7279 	pci_read_config_word(pdev, 4, &command_register);
7280 	pci_save_state(pdev);
7281 
7282 	/* find the first memory BAR, so we can find the cfg table */
7283 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7284 	if (rc)
7285 		return rc;
7286 	vaddr = remap_pci_mem(paddr, 0x250);
7287 	if (!vaddr)
7288 		return -ENOMEM;
7289 
7290 	/* find cfgtable in order to check if reset via doorbell is supported */
7291 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7292 					&cfg_base_addr_index, &cfg_offset);
7293 	if (rc)
7294 		goto unmap_vaddr;
7295 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7296 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7297 	if (!cfgtable) {
7298 		rc = -ENOMEM;
7299 		goto unmap_vaddr;
7300 	}
7301 	rc = write_driver_ver_to_cfgtable(cfgtable);
7302 	if (rc)
7303 		goto unmap_cfgtable;
7304 
7305 	/* If reset via doorbell register is supported, use that.
7306 	 * There are two such methods.  Favor the newest method.
7307 	 */
7308 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7309 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7310 	if (use_doorbell) {
7311 		use_doorbell = DOORBELL_CTLR_RESET2;
7312 	} else {
7313 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7314 		if (use_doorbell) {
7315 			dev_warn(&pdev->dev,
7316 				"Soft reset not supported. Firmware update is required.\n");
7317 			rc = -ENOTSUPP; /* try soft reset */
7318 			goto unmap_cfgtable;
7319 		}
7320 	}
7321 
7322 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7323 	if (rc)
7324 		goto unmap_cfgtable;
7325 
7326 	pci_restore_state(pdev);
7327 	pci_write_config_word(pdev, 4, command_register);
7328 
7329 	/* Some devices (notably the HP Smart Array 5i Controller)
7330 	   need a little pause here */
7331 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7332 
7333 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7334 	if (rc) {
7335 		dev_warn(&pdev->dev,
7336 			"Failed waiting for board to become ready after hard reset\n");
7337 		goto unmap_cfgtable;
7338 	}
7339 
7340 	rc = controller_reset_failed(vaddr);
7341 	if (rc < 0)
7342 		goto unmap_cfgtable;
7343 	if (rc) {
7344 		dev_warn(&pdev->dev, "Unable to successfully reset "
7345 			"controller. Will try soft reset.\n");
7346 		rc = -ENOTSUPP;
7347 	} else {
7348 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7349 	}
7350 
7351 unmap_cfgtable:
7352 	iounmap(cfgtable);
7353 
7354 unmap_vaddr:
7355 	iounmap(vaddr);
7356 	return rc;
7357 }
7358 
7359 /*
7360  *  We cannot read the structure directly, for portability we must use
7361  *   the io functions.
7362  *   This is for debug only.
7363  */
7364 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7365 {
7366 #ifdef HPSA_DEBUG
7367 	int i;
7368 	char temp_name[17];
7369 
7370 	dev_info(dev, "Controller Configuration information\n");
7371 	dev_info(dev, "------------------------------------\n");
7372 	for (i = 0; i < 4; i++)
7373 		temp_name[i] = readb(&(tb->Signature[i]));
7374 	temp_name[4] = '\0';
7375 	dev_info(dev, "   Signature = %s\n", temp_name);
7376 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7377 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7378 	       readl(&(tb->TransportSupport)));
7379 	dev_info(dev, "   Transport methods active = 0x%x\n",
7380 	       readl(&(tb->TransportActive)));
7381 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7382 	       readl(&(tb->HostWrite.TransportRequest)));
7383 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7384 	       readl(&(tb->HostWrite.CoalIntDelay)));
7385 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7386 	       readl(&(tb->HostWrite.CoalIntCount)));
7387 	dev_info(dev, "   Max outstanding commands = %d\n",
7388 	       readl(&(tb->CmdsOutMax)));
7389 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7390 	for (i = 0; i < 16; i++)
7391 		temp_name[i] = readb(&(tb->ServerName[i]));
7392 	temp_name[16] = '\0';
7393 	dev_info(dev, "   Server Name = %s\n", temp_name);
7394 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7395 		readl(&(tb->HeartBeat)));
7396 #endif				/* HPSA_DEBUG */
7397 }
7398 
7399 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7400 {
7401 	int i, offset, mem_type, bar_type;
7402 
7403 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7404 		return 0;
7405 	offset = 0;
7406 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7407 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7408 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7409 			offset += 4;
7410 		else {
7411 			mem_type = pci_resource_flags(pdev, i) &
7412 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7413 			switch (mem_type) {
7414 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7415 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7416 				offset += 4;	/* 32 bit */
7417 				break;
7418 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7419 				offset += 8;
7420 				break;
7421 			default:	/* reserved in PCI 2.2 */
7422 				dev_warn(&pdev->dev,
7423 				       "base address is invalid\n");
7424 				return -1;
7425 				break;
7426 			}
7427 		}
7428 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7429 			return i + 1;
7430 	}
7431 	return -1;
7432 }
7433 
7434 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7435 {
7436 	pci_free_irq_vectors(h->pdev);
7437 	h->msix_vectors = 0;
7438 }
7439 
7440 static void hpsa_setup_reply_map(struct ctlr_info *h)
7441 {
7442 	const struct cpumask *mask;
7443 	unsigned int queue, cpu;
7444 
7445 	for (queue = 0; queue < h->msix_vectors; queue++) {
7446 		mask = pci_irq_get_affinity(h->pdev, queue);
7447 		if (!mask)
7448 			goto fallback;
7449 
7450 		for_each_cpu(cpu, mask)
7451 			h->reply_map[cpu] = queue;
7452 	}
7453 	return;
7454 
7455 fallback:
7456 	for_each_possible_cpu(cpu)
7457 		h->reply_map[cpu] = 0;
7458 }
7459 
7460 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7461  * controllers that are capable. If not, we use legacy INTx mode.
7462  */
7463 static int hpsa_interrupt_mode(struct ctlr_info *h)
7464 {
7465 	unsigned int flags = PCI_IRQ_LEGACY;
7466 	int ret;
7467 
7468 	/* Some boards advertise MSI but don't really support it */
7469 	switch (h->board_id) {
7470 	case 0x40700E11:
7471 	case 0x40800E11:
7472 	case 0x40820E11:
7473 	case 0x40830E11:
7474 		break;
7475 	default:
7476 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7477 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7478 		if (ret > 0) {
7479 			h->msix_vectors = ret;
7480 			return 0;
7481 		}
7482 
7483 		flags |= PCI_IRQ_MSI;
7484 		break;
7485 	}
7486 
7487 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7488 	if (ret < 0)
7489 		return ret;
7490 	return 0;
7491 }
7492 
7493 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7494 				bool *legacy_board)
7495 {
7496 	int i;
7497 	u32 subsystem_vendor_id, subsystem_device_id;
7498 
7499 	subsystem_vendor_id = pdev->subsystem_vendor;
7500 	subsystem_device_id = pdev->subsystem_device;
7501 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7502 		    subsystem_vendor_id;
7503 
7504 	if (legacy_board)
7505 		*legacy_board = false;
7506 	for (i = 0; i < ARRAY_SIZE(products); i++)
7507 		if (*board_id == products[i].board_id) {
7508 			if (products[i].access != &SA5A_access &&
7509 			    products[i].access != &SA5B_access)
7510 				return i;
7511 			dev_warn(&pdev->dev,
7512 				 "legacy board ID: 0x%08x\n",
7513 				 *board_id);
7514 			if (legacy_board)
7515 			    *legacy_board = true;
7516 			return i;
7517 		}
7518 
7519 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7520 	if (legacy_board)
7521 		*legacy_board = true;
7522 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7523 }
7524 
7525 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7526 				    unsigned long *memory_bar)
7527 {
7528 	int i;
7529 
7530 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7531 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7532 			/* addressing mode bits already removed */
7533 			*memory_bar = pci_resource_start(pdev, i);
7534 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7535 				*memory_bar);
7536 			return 0;
7537 		}
7538 	dev_warn(&pdev->dev, "no memory BAR found\n");
7539 	return -ENODEV;
7540 }
7541 
7542 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7543 				     int wait_for_ready)
7544 {
7545 	int i, iterations;
7546 	u32 scratchpad;
7547 	if (wait_for_ready)
7548 		iterations = HPSA_BOARD_READY_ITERATIONS;
7549 	else
7550 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7551 
7552 	for (i = 0; i < iterations; i++) {
7553 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7554 		if (wait_for_ready) {
7555 			if (scratchpad == HPSA_FIRMWARE_READY)
7556 				return 0;
7557 		} else {
7558 			if (scratchpad != HPSA_FIRMWARE_READY)
7559 				return 0;
7560 		}
7561 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7562 	}
7563 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7564 	return -ENODEV;
7565 }
7566 
7567 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7568 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7569 			       u64 *cfg_offset)
7570 {
7571 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7572 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7573 	*cfg_base_addr &= (u32) 0x0000ffff;
7574 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7575 	if (*cfg_base_addr_index == -1) {
7576 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7577 		return -ENODEV;
7578 	}
7579 	return 0;
7580 }
7581 
7582 static void hpsa_free_cfgtables(struct ctlr_info *h)
7583 {
7584 	if (h->transtable) {
7585 		iounmap(h->transtable);
7586 		h->transtable = NULL;
7587 	}
7588 	if (h->cfgtable) {
7589 		iounmap(h->cfgtable);
7590 		h->cfgtable = NULL;
7591 	}
7592 }
7593 
7594 /* Find and map CISS config table and transfer table
7595 + * several items must be unmapped (freed) later
7596 + * */
7597 static int hpsa_find_cfgtables(struct ctlr_info *h)
7598 {
7599 	u64 cfg_offset;
7600 	u32 cfg_base_addr;
7601 	u64 cfg_base_addr_index;
7602 	u32 trans_offset;
7603 	int rc;
7604 
7605 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7606 		&cfg_base_addr_index, &cfg_offset);
7607 	if (rc)
7608 		return rc;
7609 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7610 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7611 	if (!h->cfgtable) {
7612 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7613 		return -ENOMEM;
7614 	}
7615 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7616 	if (rc)
7617 		return rc;
7618 	/* Find performant mode table. */
7619 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7620 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7621 				cfg_base_addr_index)+cfg_offset+trans_offset,
7622 				sizeof(*h->transtable));
7623 	if (!h->transtable) {
7624 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7625 		hpsa_free_cfgtables(h);
7626 		return -ENOMEM;
7627 	}
7628 	return 0;
7629 }
7630 
7631 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7632 {
7633 #define MIN_MAX_COMMANDS 16
7634 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7635 
7636 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7637 
7638 	/* Limit commands in memory limited kdump scenario. */
7639 	if (reset_devices && h->max_commands > 32)
7640 		h->max_commands = 32;
7641 
7642 	if (h->max_commands < MIN_MAX_COMMANDS) {
7643 		dev_warn(&h->pdev->dev,
7644 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7645 			h->max_commands,
7646 			MIN_MAX_COMMANDS);
7647 		h->max_commands = MIN_MAX_COMMANDS;
7648 	}
7649 }
7650 
7651 /* If the controller reports that the total max sg entries is greater than 512,
7652  * then we know that chained SG blocks work.  (Original smart arrays did not
7653  * support chained SG blocks and would return zero for max sg entries.)
7654  */
7655 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7656 {
7657 	return h->maxsgentries > 512;
7658 }
7659 
7660 /* Interrogate the hardware for some limits:
7661  * max commands, max SG elements without chaining, and with chaining,
7662  * SG chain block size, etc.
7663  */
7664 static void hpsa_find_board_params(struct ctlr_info *h)
7665 {
7666 	hpsa_get_max_perf_mode_cmds(h);
7667 	h->nr_cmds = h->max_commands;
7668 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7669 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7670 	if (hpsa_supports_chained_sg_blocks(h)) {
7671 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7672 		h->max_cmd_sg_entries = 32;
7673 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7674 		h->maxsgentries--; /* save one for chain pointer */
7675 	} else {
7676 		/*
7677 		 * Original smart arrays supported at most 31 s/g entries
7678 		 * embedded inline in the command (trying to use more
7679 		 * would lock up the controller)
7680 		 */
7681 		h->max_cmd_sg_entries = 31;
7682 		h->maxsgentries = 31; /* default to traditional values */
7683 		h->chainsize = 0;
7684 	}
7685 
7686 	/* Find out what task management functions are supported and cache */
7687 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7688 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7689 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7690 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7691 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7692 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7693 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7694 }
7695 
7696 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7697 {
7698 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7699 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7700 		return false;
7701 	}
7702 	return true;
7703 }
7704 
7705 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7706 {
7707 	u32 driver_support;
7708 
7709 	driver_support = readl(&(h->cfgtable->driver_support));
7710 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7711 #ifdef CONFIG_X86
7712 	driver_support |= ENABLE_SCSI_PREFETCH;
7713 #endif
7714 	driver_support |= ENABLE_UNIT_ATTN;
7715 	writel(driver_support, &(h->cfgtable->driver_support));
7716 }
7717 
7718 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7719  * in a prefetch beyond physical memory.
7720  */
7721 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7722 {
7723 	u32 dma_prefetch;
7724 
7725 	if (h->board_id != 0x3225103C)
7726 		return;
7727 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7728 	dma_prefetch |= 0x8000;
7729 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7730 }
7731 
7732 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7733 {
7734 	int i;
7735 	u32 doorbell_value;
7736 	unsigned long flags;
7737 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7738 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7739 		spin_lock_irqsave(&h->lock, flags);
7740 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7741 		spin_unlock_irqrestore(&h->lock, flags);
7742 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7743 			goto done;
7744 		/* delay and try again */
7745 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7746 	}
7747 	return -ENODEV;
7748 done:
7749 	return 0;
7750 }
7751 
7752 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7753 {
7754 	int i;
7755 	u32 doorbell_value;
7756 	unsigned long flags;
7757 
7758 	/* under certain very rare conditions, this can take awhile.
7759 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7760 	 * as we enter this code.)
7761 	 */
7762 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7763 		if (h->remove_in_progress)
7764 			goto done;
7765 		spin_lock_irqsave(&h->lock, flags);
7766 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7767 		spin_unlock_irqrestore(&h->lock, flags);
7768 		if (!(doorbell_value & CFGTBL_ChangeReq))
7769 			goto done;
7770 		/* delay and try again */
7771 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7772 	}
7773 	return -ENODEV;
7774 done:
7775 	return 0;
7776 }
7777 
7778 /* return -ENODEV or other reason on error, 0 on success */
7779 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7780 {
7781 	u32 trans_support;
7782 
7783 	trans_support = readl(&(h->cfgtable->TransportSupport));
7784 	if (!(trans_support & SIMPLE_MODE))
7785 		return -ENOTSUPP;
7786 
7787 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7788 
7789 	/* Update the field, and then ring the doorbell */
7790 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7791 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7792 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7793 	if (hpsa_wait_for_mode_change_ack(h))
7794 		goto error;
7795 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7796 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7797 		goto error;
7798 	h->transMethod = CFGTBL_Trans_Simple;
7799 	return 0;
7800 error:
7801 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7802 	return -ENODEV;
7803 }
7804 
7805 /* free items allocated or mapped by hpsa_pci_init */
7806 static void hpsa_free_pci_init(struct ctlr_info *h)
7807 {
7808 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7809 	iounmap(h->vaddr);			/* pci_init 3 */
7810 	h->vaddr = NULL;
7811 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7812 	/*
7813 	 * call pci_disable_device before pci_release_regions per
7814 	 * Documentation/driver-api/pci/pci.rst
7815 	 */
7816 	pci_disable_device(h->pdev);		/* pci_init 1 */
7817 	pci_release_regions(h->pdev);		/* pci_init 2 */
7818 }
7819 
7820 /* several items must be freed later */
7821 static int hpsa_pci_init(struct ctlr_info *h)
7822 {
7823 	int prod_index, err;
7824 	bool legacy_board;
7825 
7826 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7827 	if (prod_index < 0)
7828 		return prod_index;
7829 	h->product_name = products[prod_index].product_name;
7830 	h->access = *(products[prod_index].access);
7831 	h->legacy_board = legacy_board;
7832 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7833 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7834 
7835 	err = pci_enable_device(h->pdev);
7836 	if (err) {
7837 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7838 		pci_disable_device(h->pdev);
7839 		return err;
7840 	}
7841 
7842 	err = pci_request_regions(h->pdev, HPSA);
7843 	if (err) {
7844 		dev_err(&h->pdev->dev,
7845 			"failed to obtain PCI resources\n");
7846 		pci_disable_device(h->pdev);
7847 		return err;
7848 	}
7849 
7850 	pci_set_master(h->pdev);
7851 
7852 	err = hpsa_interrupt_mode(h);
7853 	if (err)
7854 		goto clean1;
7855 
7856 	/* setup mapping between CPU and reply queue */
7857 	hpsa_setup_reply_map(h);
7858 
7859 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7860 	if (err)
7861 		goto clean2;	/* intmode+region, pci */
7862 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7863 	if (!h->vaddr) {
7864 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7865 		err = -ENOMEM;
7866 		goto clean2;	/* intmode+region, pci */
7867 	}
7868 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7869 	if (err)
7870 		goto clean3;	/* vaddr, intmode+region, pci */
7871 	err = hpsa_find_cfgtables(h);
7872 	if (err)
7873 		goto clean3;	/* vaddr, intmode+region, pci */
7874 	hpsa_find_board_params(h);
7875 
7876 	if (!hpsa_CISS_signature_present(h)) {
7877 		err = -ENODEV;
7878 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7879 	}
7880 	hpsa_set_driver_support_bits(h);
7881 	hpsa_p600_dma_prefetch_quirk(h);
7882 	err = hpsa_enter_simple_mode(h);
7883 	if (err)
7884 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7885 	return 0;
7886 
7887 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7888 	hpsa_free_cfgtables(h);
7889 clean3:	/* vaddr, intmode+region, pci */
7890 	iounmap(h->vaddr);
7891 	h->vaddr = NULL;
7892 clean2:	/* intmode+region, pci */
7893 	hpsa_disable_interrupt_mode(h);
7894 clean1:
7895 	/*
7896 	 * call pci_disable_device before pci_release_regions per
7897 	 * Documentation/driver-api/pci/pci.rst
7898 	 */
7899 	pci_disable_device(h->pdev);
7900 	pci_release_regions(h->pdev);
7901 	return err;
7902 }
7903 
7904 static void hpsa_hba_inquiry(struct ctlr_info *h)
7905 {
7906 	int rc;
7907 
7908 #define HBA_INQUIRY_BYTE_COUNT 64
7909 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7910 	if (!h->hba_inquiry_data)
7911 		return;
7912 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7913 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7914 	if (rc != 0) {
7915 		kfree(h->hba_inquiry_data);
7916 		h->hba_inquiry_data = NULL;
7917 	}
7918 }
7919 
7920 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7921 {
7922 	int rc, i;
7923 	void __iomem *vaddr;
7924 
7925 	if (!reset_devices)
7926 		return 0;
7927 
7928 	/* kdump kernel is loading, we don't know in which state is
7929 	 * the pci interface. The dev->enable_cnt is equal zero
7930 	 * so we call enable+disable, wait a while and switch it on.
7931 	 */
7932 	rc = pci_enable_device(pdev);
7933 	if (rc) {
7934 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7935 		return -ENODEV;
7936 	}
7937 	pci_disable_device(pdev);
7938 	msleep(260);			/* a randomly chosen number */
7939 	rc = pci_enable_device(pdev);
7940 	if (rc) {
7941 		dev_warn(&pdev->dev, "failed to enable device.\n");
7942 		return -ENODEV;
7943 	}
7944 
7945 	pci_set_master(pdev);
7946 
7947 	vaddr = pci_ioremap_bar(pdev, 0);
7948 	if (vaddr == NULL) {
7949 		rc = -ENOMEM;
7950 		goto out_disable;
7951 	}
7952 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7953 	iounmap(vaddr);
7954 
7955 	/* Reset the controller with a PCI power-cycle or via doorbell */
7956 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7957 
7958 	/* -ENOTSUPP here means we cannot reset the controller
7959 	 * but it's already (and still) up and running in
7960 	 * "performant mode".  Or, it might be 640x, which can't reset
7961 	 * due to concerns about shared bbwc between 6402/6404 pair.
7962 	 */
7963 	if (rc)
7964 		goto out_disable;
7965 
7966 	/* Now try to get the controller to respond to a no-op */
7967 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7968 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7969 		if (hpsa_noop(pdev) == 0)
7970 			break;
7971 		else
7972 			dev_warn(&pdev->dev, "no-op failed%s\n",
7973 					(i < 11 ? "; re-trying" : ""));
7974 	}
7975 
7976 out_disable:
7977 
7978 	pci_disable_device(pdev);
7979 	return rc;
7980 }
7981 
7982 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7983 {
7984 	kfree(h->cmd_pool_bits);
7985 	h->cmd_pool_bits = NULL;
7986 	if (h->cmd_pool) {
7987 		dma_free_coherent(&h->pdev->dev,
7988 				h->nr_cmds * sizeof(struct CommandList),
7989 				h->cmd_pool,
7990 				h->cmd_pool_dhandle);
7991 		h->cmd_pool = NULL;
7992 		h->cmd_pool_dhandle = 0;
7993 	}
7994 	if (h->errinfo_pool) {
7995 		dma_free_coherent(&h->pdev->dev,
7996 				h->nr_cmds * sizeof(struct ErrorInfo),
7997 				h->errinfo_pool,
7998 				h->errinfo_pool_dhandle);
7999 		h->errinfo_pool = NULL;
8000 		h->errinfo_pool_dhandle = 0;
8001 	}
8002 }
8003 
8004 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8005 {
8006 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8007 				   sizeof(unsigned long),
8008 				   GFP_KERNEL);
8009 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8010 		    h->nr_cmds * sizeof(*h->cmd_pool),
8011 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8012 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8013 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8014 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8015 	if ((h->cmd_pool_bits == NULL)
8016 	    || (h->cmd_pool == NULL)
8017 	    || (h->errinfo_pool == NULL)) {
8018 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8019 		goto clean_up;
8020 	}
8021 	hpsa_preinitialize_commands(h);
8022 	return 0;
8023 clean_up:
8024 	hpsa_free_cmd_pool(h);
8025 	return -ENOMEM;
8026 }
8027 
8028 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8029 static void hpsa_free_irqs(struct ctlr_info *h)
8030 {
8031 	int i;
8032 	int irq_vector = 0;
8033 
8034 	if (hpsa_simple_mode)
8035 		irq_vector = h->intr_mode;
8036 
8037 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8038 		/* Single reply queue, only one irq to free */
8039 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8040 				&h->q[h->intr_mode]);
8041 		h->q[h->intr_mode] = 0;
8042 		return;
8043 	}
8044 
8045 	for (i = 0; i < h->msix_vectors; i++) {
8046 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8047 		h->q[i] = 0;
8048 	}
8049 	for (; i < MAX_REPLY_QUEUES; i++)
8050 		h->q[i] = 0;
8051 }
8052 
8053 /* returns 0 on success; cleans up and returns -Enn on error */
8054 static int hpsa_request_irqs(struct ctlr_info *h,
8055 	irqreturn_t (*msixhandler)(int, void *),
8056 	irqreturn_t (*intxhandler)(int, void *))
8057 {
8058 	int rc, i;
8059 	int irq_vector = 0;
8060 
8061 	if (hpsa_simple_mode)
8062 		irq_vector = h->intr_mode;
8063 
8064 	/*
8065 	 * initialize h->q[x] = x so that interrupt handlers know which
8066 	 * queue to process.
8067 	 */
8068 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8069 		h->q[i] = (u8) i;
8070 
8071 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8072 		/* If performant mode and MSI-X, use multiple reply queues */
8073 		for (i = 0; i < h->msix_vectors; i++) {
8074 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8075 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8076 					0, h->intrname[i],
8077 					&h->q[i]);
8078 			if (rc) {
8079 				int j;
8080 
8081 				dev_err(&h->pdev->dev,
8082 					"failed to get irq %d for %s\n",
8083 				       pci_irq_vector(h->pdev, i), h->devname);
8084 				for (j = 0; j < i; j++) {
8085 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8086 					h->q[j] = 0;
8087 				}
8088 				for (; j < MAX_REPLY_QUEUES; j++)
8089 					h->q[j] = 0;
8090 				return rc;
8091 			}
8092 		}
8093 	} else {
8094 		/* Use single reply pool */
8095 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8096 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8097 				h->msix_vectors ? "x" : "");
8098 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8099 				msixhandler, 0,
8100 				h->intrname[0],
8101 				&h->q[h->intr_mode]);
8102 		} else {
8103 			sprintf(h->intrname[h->intr_mode],
8104 				"%s-intx", h->devname);
8105 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8106 				intxhandler, IRQF_SHARED,
8107 				h->intrname[0],
8108 				&h->q[h->intr_mode]);
8109 		}
8110 	}
8111 	if (rc) {
8112 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8113 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8114 		hpsa_free_irqs(h);
8115 		return -ENODEV;
8116 	}
8117 	return 0;
8118 }
8119 
8120 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8121 {
8122 	int rc;
8123 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8124 
8125 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8126 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8127 	if (rc) {
8128 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8129 		return rc;
8130 	}
8131 
8132 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8133 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8134 	if (rc) {
8135 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8136 			"after soft reset.\n");
8137 		return rc;
8138 	}
8139 
8140 	return 0;
8141 }
8142 
8143 static void hpsa_free_reply_queues(struct ctlr_info *h)
8144 {
8145 	int i;
8146 
8147 	for (i = 0; i < h->nreply_queues; i++) {
8148 		if (!h->reply_queue[i].head)
8149 			continue;
8150 		dma_free_coherent(&h->pdev->dev,
8151 					h->reply_queue_size,
8152 					h->reply_queue[i].head,
8153 					h->reply_queue[i].busaddr);
8154 		h->reply_queue[i].head = NULL;
8155 		h->reply_queue[i].busaddr = 0;
8156 	}
8157 	h->reply_queue_size = 0;
8158 }
8159 
8160 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8161 {
8162 	hpsa_free_performant_mode(h);		/* init_one 7 */
8163 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8164 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8165 	hpsa_free_irqs(h);			/* init_one 4 */
8166 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8167 	h->scsi_host = NULL;			/* init_one 3 */
8168 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8169 	free_percpu(h->lockup_detected);	/* init_one 2 */
8170 	h->lockup_detected = NULL;		/* init_one 2 */
8171 	if (h->resubmit_wq) {
8172 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8173 		h->resubmit_wq = NULL;
8174 	}
8175 	if (h->rescan_ctlr_wq) {
8176 		destroy_workqueue(h->rescan_ctlr_wq);
8177 		h->rescan_ctlr_wq = NULL;
8178 	}
8179 	if (h->monitor_ctlr_wq) {
8180 		destroy_workqueue(h->monitor_ctlr_wq);
8181 		h->monitor_ctlr_wq = NULL;
8182 	}
8183 
8184 	kfree(h);				/* init_one 1 */
8185 }
8186 
8187 /* Called when controller lockup detected. */
8188 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8189 {
8190 	int i, refcount;
8191 	struct CommandList *c;
8192 	int failcount = 0;
8193 
8194 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8195 	for (i = 0; i < h->nr_cmds; i++) {
8196 		c = h->cmd_pool + i;
8197 		refcount = atomic_inc_return(&c->refcount);
8198 		if (refcount > 1) {
8199 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8200 			finish_cmd(c);
8201 			atomic_dec(&h->commands_outstanding);
8202 			failcount++;
8203 		}
8204 		cmd_free(h, c);
8205 	}
8206 	dev_warn(&h->pdev->dev,
8207 		"failed %d commands in fail_all\n", failcount);
8208 }
8209 
8210 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8211 {
8212 	int cpu;
8213 
8214 	for_each_online_cpu(cpu) {
8215 		u32 *lockup_detected;
8216 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8217 		*lockup_detected = value;
8218 	}
8219 	wmb(); /* be sure the per-cpu variables are out to memory */
8220 }
8221 
8222 static void controller_lockup_detected(struct ctlr_info *h)
8223 {
8224 	unsigned long flags;
8225 	u32 lockup_detected;
8226 
8227 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8228 	spin_lock_irqsave(&h->lock, flags);
8229 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8230 	if (!lockup_detected) {
8231 		/* no heartbeat, but controller gave us a zero. */
8232 		dev_warn(&h->pdev->dev,
8233 			"lockup detected after %d but scratchpad register is zero\n",
8234 			h->heartbeat_sample_interval / HZ);
8235 		lockup_detected = 0xffffffff;
8236 	}
8237 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8238 	spin_unlock_irqrestore(&h->lock, flags);
8239 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8240 			lockup_detected, h->heartbeat_sample_interval / HZ);
8241 	if (lockup_detected == 0xffff0000) {
8242 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8243 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8244 	}
8245 	pci_disable_device(h->pdev);
8246 	fail_all_outstanding_cmds(h);
8247 }
8248 
8249 static int detect_controller_lockup(struct ctlr_info *h)
8250 {
8251 	u64 now;
8252 	u32 heartbeat;
8253 	unsigned long flags;
8254 
8255 	now = get_jiffies_64();
8256 	/* If we've received an interrupt recently, we're ok. */
8257 	if (time_after64(h->last_intr_timestamp +
8258 				(h->heartbeat_sample_interval), now))
8259 		return false;
8260 
8261 	/*
8262 	 * If we've already checked the heartbeat recently, we're ok.
8263 	 * This could happen if someone sends us a signal. We
8264 	 * otherwise don't care about signals in this thread.
8265 	 */
8266 	if (time_after64(h->last_heartbeat_timestamp +
8267 				(h->heartbeat_sample_interval), now))
8268 		return false;
8269 
8270 	/* If heartbeat has not changed since we last looked, we're not ok. */
8271 	spin_lock_irqsave(&h->lock, flags);
8272 	heartbeat = readl(&h->cfgtable->HeartBeat);
8273 	spin_unlock_irqrestore(&h->lock, flags);
8274 	if (h->last_heartbeat == heartbeat) {
8275 		controller_lockup_detected(h);
8276 		return true;
8277 	}
8278 
8279 	/* We're ok. */
8280 	h->last_heartbeat = heartbeat;
8281 	h->last_heartbeat_timestamp = now;
8282 	return false;
8283 }
8284 
8285 /*
8286  * Set ioaccel status for all ioaccel volumes.
8287  *
8288  * Called from monitor controller worker (hpsa_event_monitor_worker)
8289  *
8290  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8291  * transformation, so we will be turning off ioaccel for all volumes that
8292  * make up the Array.
8293  */
8294 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8295 {
8296 	int rc;
8297 	int i;
8298 	u8 ioaccel_status;
8299 	unsigned char *buf;
8300 	struct hpsa_scsi_dev_t *device;
8301 
8302 	if (!h)
8303 		return;
8304 
8305 	buf = kmalloc(64, GFP_KERNEL);
8306 	if (!buf)
8307 		return;
8308 
8309 	/*
8310 	 * Run through current device list used during I/O requests.
8311 	 */
8312 	for (i = 0; i < h->ndevices; i++) {
8313 		int offload_to_be_enabled = 0;
8314 		int offload_config = 0;
8315 
8316 		device = h->dev[i];
8317 
8318 		if (!device)
8319 			continue;
8320 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8321 						HPSA_VPD_LV_IOACCEL_STATUS))
8322 			continue;
8323 
8324 		memset(buf, 0, 64);
8325 
8326 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8327 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8328 					buf, 64);
8329 		if (rc != 0)
8330 			continue;
8331 
8332 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8333 
8334 		/*
8335 		 * Check if offload is still configured on
8336 		 */
8337 		offload_config =
8338 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8339 		/*
8340 		 * If offload is configured on, check to see if ioaccel
8341 		 * needs to be enabled.
8342 		 */
8343 		if (offload_config)
8344 			offload_to_be_enabled =
8345 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8346 
8347 		/*
8348 		 * If ioaccel is to be re-enabled, re-enable later during the
8349 		 * scan operation so the driver can get a fresh raidmap
8350 		 * before turning ioaccel back on.
8351 		 */
8352 		if (offload_to_be_enabled)
8353 			continue;
8354 
8355 		/*
8356 		 * Immediately turn off ioaccel for any volume the
8357 		 * controller tells us to. Some of the reasons could be:
8358 		 *    transformation - change to the LVs of an Array.
8359 		 *    degraded volume - component failure
8360 		 */
8361 		hpsa_turn_off_ioaccel_for_device(device);
8362 	}
8363 
8364 	kfree(buf);
8365 }
8366 
8367 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8368 {
8369 	char *event_type;
8370 
8371 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8372 		return;
8373 
8374 	/* Ask the controller to clear the events we're handling. */
8375 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8376 			| CFGTBL_Trans_io_accel2)) &&
8377 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8378 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8379 
8380 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8381 			event_type = "state change";
8382 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8383 			event_type = "configuration change";
8384 		/* Stop sending new RAID offload reqs via the IO accelerator */
8385 		scsi_block_requests(h->scsi_host);
8386 		hpsa_set_ioaccel_status(h);
8387 		hpsa_drain_accel_commands(h);
8388 		/* Set 'accelerator path config change' bit */
8389 		dev_warn(&h->pdev->dev,
8390 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8391 			h->events, event_type);
8392 		writel(h->events, &(h->cfgtable->clear_event_notify));
8393 		/* Set the "clear event notify field update" bit 6 */
8394 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8395 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8396 		hpsa_wait_for_clear_event_notify_ack(h);
8397 		scsi_unblock_requests(h->scsi_host);
8398 	} else {
8399 		/* Acknowledge controller notification events. */
8400 		writel(h->events, &(h->cfgtable->clear_event_notify));
8401 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8402 		hpsa_wait_for_clear_event_notify_ack(h);
8403 	}
8404 	return;
8405 }
8406 
8407 /* Check a register on the controller to see if there are configuration
8408  * changes (added/changed/removed logical drives, etc.) which mean that
8409  * we should rescan the controller for devices.
8410  * Also check flag for driver-initiated rescan.
8411  */
8412 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8413 {
8414 	if (h->drv_req_rescan) {
8415 		h->drv_req_rescan = 0;
8416 		return 1;
8417 	}
8418 
8419 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8420 		return 0;
8421 
8422 	h->events = readl(&(h->cfgtable->event_notify));
8423 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8424 }
8425 
8426 /*
8427  * Check if any of the offline devices have become ready
8428  */
8429 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8430 {
8431 	unsigned long flags;
8432 	struct offline_device_entry *d;
8433 	struct list_head *this, *tmp;
8434 
8435 	spin_lock_irqsave(&h->offline_device_lock, flags);
8436 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8437 		d = list_entry(this, struct offline_device_entry,
8438 				offline_list);
8439 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8440 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8441 			spin_lock_irqsave(&h->offline_device_lock, flags);
8442 			list_del(&d->offline_list);
8443 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8444 			return 1;
8445 		}
8446 		spin_lock_irqsave(&h->offline_device_lock, flags);
8447 	}
8448 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8449 	return 0;
8450 }
8451 
8452 static int hpsa_luns_changed(struct ctlr_info *h)
8453 {
8454 	int rc = 1; /* assume there are changes */
8455 	struct ReportLUNdata *logdev = NULL;
8456 
8457 	/* if we can't find out if lun data has changed,
8458 	 * assume that it has.
8459 	 */
8460 
8461 	if (!h->lastlogicals)
8462 		return rc;
8463 
8464 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8465 	if (!logdev)
8466 		return rc;
8467 
8468 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8469 		dev_warn(&h->pdev->dev,
8470 			"report luns failed, can't track lun changes.\n");
8471 		goto out;
8472 	}
8473 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8474 		dev_info(&h->pdev->dev,
8475 			"Lun changes detected.\n");
8476 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8477 		goto out;
8478 	} else
8479 		rc = 0; /* no changes detected. */
8480 out:
8481 	kfree(logdev);
8482 	return rc;
8483 }
8484 
8485 static void hpsa_perform_rescan(struct ctlr_info *h)
8486 {
8487 	struct Scsi_Host *sh = NULL;
8488 	unsigned long flags;
8489 
8490 	/*
8491 	 * Do the scan after the reset
8492 	 */
8493 	spin_lock_irqsave(&h->reset_lock, flags);
8494 	if (h->reset_in_progress) {
8495 		h->drv_req_rescan = 1;
8496 		spin_unlock_irqrestore(&h->reset_lock, flags);
8497 		return;
8498 	}
8499 	spin_unlock_irqrestore(&h->reset_lock, flags);
8500 
8501 	sh = scsi_host_get(h->scsi_host);
8502 	if (sh != NULL) {
8503 		hpsa_scan_start(sh);
8504 		scsi_host_put(sh);
8505 		h->drv_req_rescan = 0;
8506 	}
8507 }
8508 
8509 /*
8510  * watch for controller events
8511  */
8512 static void hpsa_event_monitor_worker(struct work_struct *work)
8513 {
8514 	struct ctlr_info *h = container_of(to_delayed_work(work),
8515 					struct ctlr_info, event_monitor_work);
8516 	unsigned long flags;
8517 
8518 	spin_lock_irqsave(&h->lock, flags);
8519 	if (h->remove_in_progress) {
8520 		spin_unlock_irqrestore(&h->lock, flags);
8521 		return;
8522 	}
8523 	spin_unlock_irqrestore(&h->lock, flags);
8524 
8525 	if (hpsa_ctlr_needs_rescan(h)) {
8526 		hpsa_ack_ctlr_events(h);
8527 		hpsa_perform_rescan(h);
8528 	}
8529 
8530 	spin_lock_irqsave(&h->lock, flags);
8531 	if (!h->remove_in_progress)
8532 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8533 				HPSA_EVENT_MONITOR_INTERVAL);
8534 	spin_unlock_irqrestore(&h->lock, flags);
8535 }
8536 
8537 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8538 {
8539 	unsigned long flags;
8540 	struct ctlr_info *h = container_of(to_delayed_work(work),
8541 					struct ctlr_info, rescan_ctlr_work);
8542 
8543 	spin_lock_irqsave(&h->lock, flags);
8544 	if (h->remove_in_progress) {
8545 		spin_unlock_irqrestore(&h->lock, flags);
8546 		return;
8547 	}
8548 	spin_unlock_irqrestore(&h->lock, flags);
8549 
8550 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8551 		hpsa_perform_rescan(h);
8552 	} else if (h->discovery_polling) {
8553 		if (hpsa_luns_changed(h)) {
8554 			dev_info(&h->pdev->dev,
8555 				"driver discovery polling rescan.\n");
8556 			hpsa_perform_rescan(h);
8557 		}
8558 	}
8559 	spin_lock_irqsave(&h->lock, flags);
8560 	if (!h->remove_in_progress)
8561 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8562 				h->heartbeat_sample_interval);
8563 	spin_unlock_irqrestore(&h->lock, flags);
8564 }
8565 
8566 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8567 {
8568 	unsigned long flags;
8569 	struct ctlr_info *h = container_of(to_delayed_work(work),
8570 					struct ctlr_info, monitor_ctlr_work);
8571 
8572 	detect_controller_lockup(h);
8573 	if (lockup_detected(h))
8574 		return;
8575 
8576 	spin_lock_irqsave(&h->lock, flags);
8577 	if (!h->remove_in_progress)
8578 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8579 				h->heartbeat_sample_interval);
8580 	spin_unlock_irqrestore(&h->lock, flags);
8581 }
8582 
8583 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8584 						char *name)
8585 {
8586 	struct workqueue_struct *wq = NULL;
8587 
8588 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8589 	if (!wq)
8590 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8591 
8592 	return wq;
8593 }
8594 
8595 static void hpda_free_ctlr_info(struct ctlr_info *h)
8596 {
8597 	kfree(h->reply_map);
8598 	kfree(h);
8599 }
8600 
8601 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8602 {
8603 	struct ctlr_info *h;
8604 
8605 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8606 	if (!h)
8607 		return NULL;
8608 
8609 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8610 	if (!h->reply_map) {
8611 		kfree(h);
8612 		return NULL;
8613 	}
8614 	return h;
8615 }
8616 
8617 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8618 {
8619 	int dac, rc;
8620 	struct ctlr_info *h;
8621 	int try_soft_reset = 0;
8622 	unsigned long flags;
8623 	u32 board_id;
8624 
8625 	if (number_of_controllers == 0)
8626 		printk(KERN_INFO DRIVER_NAME "\n");
8627 
8628 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8629 	if (rc < 0) {
8630 		dev_warn(&pdev->dev, "Board ID not found\n");
8631 		return rc;
8632 	}
8633 
8634 	rc = hpsa_init_reset_devices(pdev, board_id);
8635 	if (rc) {
8636 		if (rc != -ENOTSUPP)
8637 			return rc;
8638 		/* If the reset fails in a particular way (it has no way to do
8639 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8640 		 * a soft reset once we get the controller configured up to the
8641 		 * point that it can accept a command.
8642 		 */
8643 		try_soft_reset = 1;
8644 		rc = 0;
8645 	}
8646 
8647 reinit_after_soft_reset:
8648 
8649 	/* Command structures must be aligned on a 32-byte boundary because
8650 	 * the 5 lower bits of the address are used by the hardware. and by
8651 	 * the driver.  See comments in hpsa.h for more info.
8652 	 */
8653 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8654 	h = hpda_alloc_ctlr_info();
8655 	if (!h) {
8656 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8657 		return -ENOMEM;
8658 	}
8659 
8660 	h->pdev = pdev;
8661 
8662 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8663 	INIT_LIST_HEAD(&h->offline_device_list);
8664 	spin_lock_init(&h->lock);
8665 	spin_lock_init(&h->offline_device_lock);
8666 	spin_lock_init(&h->scan_lock);
8667 	spin_lock_init(&h->reset_lock);
8668 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8669 
8670 	/* Allocate and clear per-cpu variable lockup_detected */
8671 	h->lockup_detected = alloc_percpu(u32);
8672 	if (!h->lockup_detected) {
8673 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8674 		rc = -ENOMEM;
8675 		goto clean1;	/* aer/h */
8676 	}
8677 	set_lockup_detected_for_all_cpus(h, 0);
8678 
8679 	rc = hpsa_pci_init(h);
8680 	if (rc)
8681 		goto clean2;	/* lu, aer/h */
8682 
8683 	/* relies on h-> settings made by hpsa_pci_init, including
8684 	 * interrupt_mode h->intr */
8685 	rc = hpsa_scsi_host_alloc(h);
8686 	if (rc)
8687 		goto clean2_5;	/* pci, lu, aer/h */
8688 
8689 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8690 	h->ctlr = number_of_controllers;
8691 	number_of_controllers++;
8692 
8693 	/* configure PCI DMA stuff */
8694 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8695 	if (rc == 0) {
8696 		dac = 1;
8697 	} else {
8698 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8699 		if (rc == 0) {
8700 			dac = 0;
8701 		} else {
8702 			dev_err(&pdev->dev, "no suitable DMA available\n");
8703 			goto clean3;	/* shost, pci, lu, aer/h */
8704 		}
8705 	}
8706 
8707 	/* make sure the board interrupts are off */
8708 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8709 
8710 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8711 	if (rc)
8712 		goto clean3;	/* shost, pci, lu, aer/h */
8713 	rc = hpsa_alloc_cmd_pool(h);
8714 	if (rc)
8715 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8716 	rc = hpsa_alloc_sg_chain_blocks(h);
8717 	if (rc)
8718 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8719 	init_waitqueue_head(&h->scan_wait_queue);
8720 	init_waitqueue_head(&h->event_sync_wait_queue);
8721 	mutex_init(&h->reset_mutex);
8722 	h->scan_finished = 1; /* no scan currently in progress */
8723 	h->scan_waiting = 0;
8724 
8725 	pci_set_drvdata(pdev, h);
8726 	h->ndevices = 0;
8727 
8728 	spin_lock_init(&h->devlock);
8729 	rc = hpsa_put_ctlr_into_performant_mode(h);
8730 	if (rc)
8731 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8732 
8733 	/* create the resubmit workqueue */
8734 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8735 	if (!h->rescan_ctlr_wq) {
8736 		rc = -ENOMEM;
8737 		goto clean7;
8738 	}
8739 
8740 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8741 	if (!h->resubmit_wq) {
8742 		rc = -ENOMEM;
8743 		goto clean7;	/* aer/h */
8744 	}
8745 
8746 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8747 	if (!h->monitor_ctlr_wq) {
8748 		rc = -ENOMEM;
8749 		goto clean7;
8750 	}
8751 
8752 	/*
8753 	 * At this point, the controller is ready to take commands.
8754 	 * Now, if reset_devices and the hard reset didn't work, try
8755 	 * the soft reset and see if that works.
8756 	 */
8757 	if (try_soft_reset) {
8758 
8759 		/* This is kind of gross.  We may or may not get a completion
8760 		 * from the soft reset command, and if we do, then the value
8761 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8762 		 * after the reset throwing away any completions we get during
8763 		 * that time.  Unregister the interrupt handler and register
8764 		 * fake ones to scoop up any residual completions.
8765 		 */
8766 		spin_lock_irqsave(&h->lock, flags);
8767 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8768 		spin_unlock_irqrestore(&h->lock, flags);
8769 		hpsa_free_irqs(h);
8770 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8771 					hpsa_intx_discard_completions);
8772 		if (rc) {
8773 			dev_warn(&h->pdev->dev,
8774 				"Failed to request_irq after soft reset.\n");
8775 			/*
8776 			 * cannot goto clean7 or free_irqs will be called
8777 			 * again. Instead, do its work
8778 			 */
8779 			hpsa_free_performant_mode(h);	/* clean7 */
8780 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8781 			hpsa_free_cmd_pool(h);		/* clean5 */
8782 			/*
8783 			 * skip hpsa_free_irqs(h) clean4 since that
8784 			 * was just called before request_irqs failed
8785 			 */
8786 			goto clean3;
8787 		}
8788 
8789 		rc = hpsa_kdump_soft_reset(h);
8790 		if (rc)
8791 			/* Neither hard nor soft reset worked, we're hosed. */
8792 			goto clean7;
8793 
8794 		dev_info(&h->pdev->dev, "Board READY.\n");
8795 		dev_info(&h->pdev->dev,
8796 			"Waiting for stale completions to drain.\n");
8797 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8798 		msleep(10000);
8799 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8800 
8801 		rc = controller_reset_failed(h->cfgtable);
8802 		if (rc)
8803 			dev_info(&h->pdev->dev,
8804 				"Soft reset appears to have failed.\n");
8805 
8806 		/* since the controller's reset, we have to go back and re-init
8807 		 * everything.  Easiest to just forget what we've done and do it
8808 		 * all over again.
8809 		 */
8810 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8811 		try_soft_reset = 0;
8812 		if (rc)
8813 			/* don't goto clean, we already unallocated */
8814 			return -ENODEV;
8815 
8816 		goto reinit_after_soft_reset;
8817 	}
8818 
8819 	/* Enable Accelerated IO path at driver layer */
8820 	h->acciopath_status = 1;
8821 	/* Disable discovery polling.*/
8822 	h->discovery_polling = 0;
8823 
8824 
8825 	/* Turn the interrupts on so we can service requests */
8826 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8827 
8828 	hpsa_hba_inquiry(h);
8829 
8830 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8831 	if (!h->lastlogicals)
8832 		dev_info(&h->pdev->dev,
8833 			"Can't track change to report lun data\n");
8834 
8835 	/* hook into SCSI subsystem */
8836 	rc = hpsa_scsi_add_host(h);
8837 	if (rc)
8838 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8839 
8840 	/* Monitor the controller for firmware lockups */
8841 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8842 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8843 	schedule_delayed_work(&h->monitor_ctlr_work,
8844 				h->heartbeat_sample_interval);
8845 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8846 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8847 				h->heartbeat_sample_interval);
8848 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8849 	schedule_delayed_work(&h->event_monitor_work,
8850 				HPSA_EVENT_MONITOR_INTERVAL);
8851 	return 0;
8852 
8853 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8854 	hpsa_free_performant_mode(h);
8855 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8856 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8857 	hpsa_free_sg_chain_blocks(h);
8858 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8859 	hpsa_free_cmd_pool(h);
8860 clean4: /* irq, shost, pci, lu, aer/h */
8861 	hpsa_free_irqs(h);
8862 clean3: /* shost, pci, lu, aer/h */
8863 	scsi_host_put(h->scsi_host);
8864 	h->scsi_host = NULL;
8865 clean2_5: /* pci, lu, aer/h */
8866 	hpsa_free_pci_init(h);
8867 clean2: /* lu, aer/h */
8868 	if (h->lockup_detected) {
8869 		free_percpu(h->lockup_detected);
8870 		h->lockup_detected = NULL;
8871 	}
8872 clean1:	/* wq/aer/h */
8873 	if (h->resubmit_wq) {
8874 		destroy_workqueue(h->resubmit_wq);
8875 		h->resubmit_wq = NULL;
8876 	}
8877 	if (h->rescan_ctlr_wq) {
8878 		destroy_workqueue(h->rescan_ctlr_wq);
8879 		h->rescan_ctlr_wq = NULL;
8880 	}
8881 	if (h->monitor_ctlr_wq) {
8882 		destroy_workqueue(h->monitor_ctlr_wq);
8883 		h->monitor_ctlr_wq = NULL;
8884 	}
8885 	kfree(h);
8886 	return rc;
8887 }
8888 
8889 static void hpsa_flush_cache(struct ctlr_info *h)
8890 {
8891 	char *flush_buf;
8892 	struct CommandList *c;
8893 	int rc;
8894 
8895 	if (unlikely(lockup_detected(h)))
8896 		return;
8897 	flush_buf = kzalloc(4, GFP_KERNEL);
8898 	if (!flush_buf)
8899 		return;
8900 
8901 	c = cmd_alloc(h);
8902 
8903 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8904 		RAID_CTLR_LUNID, TYPE_CMD)) {
8905 		goto out;
8906 	}
8907 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8908 			DEFAULT_TIMEOUT);
8909 	if (rc)
8910 		goto out;
8911 	if (c->err_info->CommandStatus != 0)
8912 out:
8913 		dev_warn(&h->pdev->dev,
8914 			"error flushing cache on controller\n");
8915 	cmd_free(h, c);
8916 	kfree(flush_buf);
8917 }
8918 
8919 /* Make controller gather fresh report lun data each time we
8920  * send down a report luns request
8921  */
8922 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8923 {
8924 	u32 *options;
8925 	struct CommandList *c;
8926 	int rc;
8927 
8928 	/* Don't bother trying to set diag options if locked up */
8929 	if (unlikely(h->lockup_detected))
8930 		return;
8931 
8932 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8933 	if (!options)
8934 		return;
8935 
8936 	c = cmd_alloc(h);
8937 
8938 	/* first, get the current diag options settings */
8939 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8940 		RAID_CTLR_LUNID, TYPE_CMD))
8941 		goto errout;
8942 
8943 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8944 			NO_TIMEOUT);
8945 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8946 		goto errout;
8947 
8948 	/* Now, set the bit for disabling the RLD caching */
8949 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8950 
8951 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8952 		RAID_CTLR_LUNID, TYPE_CMD))
8953 		goto errout;
8954 
8955 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8956 			NO_TIMEOUT);
8957 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8958 		goto errout;
8959 
8960 	/* Now verify that it got set: */
8961 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8962 		RAID_CTLR_LUNID, TYPE_CMD))
8963 		goto errout;
8964 
8965 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8966 			NO_TIMEOUT);
8967 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8968 		goto errout;
8969 
8970 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8971 		goto out;
8972 
8973 errout:
8974 	dev_err(&h->pdev->dev,
8975 			"Error: failed to disable report lun data caching.\n");
8976 out:
8977 	cmd_free(h, c);
8978 	kfree(options);
8979 }
8980 
8981 static void __hpsa_shutdown(struct pci_dev *pdev)
8982 {
8983 	struct ctlr_info *h;
8984 
8985 	h = pci_get_drvdata(pdev);
8986 	/* Turn board interrupts off  and send the flush cache command
8987 	 * sendcmd will turn off interrupt, and send the flush...
8988 	 * To write all data in the battery backed cache to disks
8989 	 */
8990 	hpsa_flush_cache(h);
8991 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8992 	hpsa_free_irqs(h);			/* init_one 4 */
8993 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8994 }
8995 
8996 static void hpsa_shutdown(struct pci_dev *pdev)
8997 {
8998 	__hpsa_shutdown(pdev);
8999 	pci_disable_device(pdev);
9000 }
9001 
9002 static void hpsa_free_device_info(struct ctlr_info *h)
9003 {
9004 	int i;
9005 
9006 	for (i = 0; i < h->ndevices; i++) {
9007 		kfree(h->dev[i]);
9008 		h->dev[i] = NULL;
9009 	}
9010 }
9011 
9012 static void hpsa_remove_one(struct pci_dev *pdev)
9013 {
9014 	struct ctlr_info *h;
9015 	unsigned long flags;
9016 
9017 	if (pci_get_drvdata(pdev) == NULL) {
9018 		dev_err(&pdev->dev, "unable to remove device\n");
9019 		return;
9020 	}
9021 	h = pci_get_drvdata(pdev);
9022 
9023 	/* Get rid of any controller monitoring work items */
9024 	spin_lock_irqsave(&h->lock, flags);
9025 	h->remove_in_progress = 1;
9026 	spin_unlock_irqrestore(&h->lock, flags);
9027 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9028 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9029 	cancel_delayed_work_sync(&h->event_monitor_work);
9030 	destroy_workqueue(h->rescan_ctlr_wq);
9031 	destroy_workqueue(h->resubmit_wq);
9032 	destroy_workqueue(h->monitor_ctlr_wq);
9033 
9034 	hpsa_delete_sas_host(h);
9035 
9036 	/*
9037 	 * Call before disabling interrupts.
9038 	 * scsi_remove_host can trigger I/O operations especially
9039 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9040 	 * operations which cannot complete and will hang the system.
9041 	 */
9042 	if (h->scsi_host)
9043 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9044 	/* includes hpsa_free_irqs - init_one 4 */
9045 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9046 	__hpsa_shutdown(pdev);
9047 
9048 	hpsa_free_device_info(h);		/* scan */
9049 
9050 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9051 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9052 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9053 	hpsa_free_performant_mode(h);			/* init_one 7 */
9054 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9055 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9056 	kfree(h->lastlogicals);
9057 
9058 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9059 
9060 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9061 	h->scsi_host = NULL;				/* init_one 3 */
9062 
9063 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9064 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9065 
9066 	free_percpu(h->lockup_detected);		/* init_one 2 */
9067 	h->lockup_detected = NULL;			/* init_one 2 */
9068 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9069 
9070 	hpda_free_ctlr_info(h);				/* init_one 1 */
9071 }
9072 
9073 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9074 	__attribute__((unused)) pm_message_t state)
9075 {
9076 	return -ENOSYS;
9077 }
9078 
9079 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9080 {
9081 	return -ENOSYS;
9082 }
9083 
9084 static struct pci_driver hpsa_pci_driver = {
9085 	.name = HPSA,
9086 	.probe = hpsa_init_one,
9087 	.remove = hpsa_remove_one,
9088 	.id_table = hpsa_pci_device_id,	/* id_table */
9089 	.shutdown = hpsa_shutdown,
9090 	.suspend = hpsa_suspend,
9091 	.resume = hpsa_resume,
9092 };
9093 
9094 /* Fill in bucket_map[], given nsgs (the max number of
9095  * scatter gather elements supported) and bucket[],
9096  * which is an array of 8 integers.  The bucket[] array
9097  * contains 8 different DMA transfer sizes (in 16
9098  * byte increments) which the controller uses to fetch
9099  * commands.  This function fills in bucket_map[], which
9100  * maps a given number of scatter gather elements to one of
9101  * the 8 DMA transfer sizes.  The point of it is to allow the
9102  * controller to only do as much DMA as needed to fetch the
9103  * command, with the DMA transfer size encoded in the lower
9104  * bits of the command address.
9105  */
9106 static void  calc_bucket_map(int bucket[], int num_buckets,
9107 	int nsgs, int min_blocks, u32 *bucket_map)
9108 {
9109 	int i, j, b, size;
9110 
9111 	/* Note, bucket_map must have nsgs+1 entries. */
9112 	for (i = 0; i <= nsgs; i++) {
9113 		/* Compute size of a command with i SG entries */
9114 		size = i + min_blocks;
9115 		b = num_buckets; /* Assume the biggest bucket */
9116 		/* Find the bucket that is just big enough */
9117 		for (j = 0; j < num_buckets; j++) {
9118 			if (bucket[j] >= size) {
9119 				b = j;
9120 				break;
9121 			}
9122 		}
9123 		/* for a command with i SG entries, use bucket b. */
9124 		bucket_map[i] = b;
9125 	}
9126 }
9127 
9128 /*
9129  * return -ENODEV on err, 0 on success (or no action)
9130  * allocates numerous items that must be freed later
9131  */
9132 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9133 {
9134 	int i;
9135 	unsigned long register_value;
9136 	unsigned long transMethod = CFGTBL_Trans_Performant |
9137 			(trans_support & CFGTBL_Trans_use_short_tags) |
9138 				CFGTBL_Trans_enable_directed_msix |
9139 			(trans_support & (CFGTBL_Trans_io_accel1 |
9140 				CFGTBL_Trans_io_accel2));
9141 	struct access_method access = SA5_performant_access;
9142 
9143 	/* This is a bit complicated.  There are 8 registers on
9144 	 * the controller which we write to to tell it 8 different
9145 	 * sizes of commands which there may be.  It's a way of
9146 	 * reducing the DMA done to fetch each command.  Encoded into
9147 	 * each command's tag are 3 bits which communicate to the controller
9148 	 * which of the eight sizes that command fits within.  The size of
9149 	 * each command depends on how many scatter gather entries there are.
9150 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9151 	 * with the number of 16-byte blocks a command of that size requires.
9152 	 * The smallest command possible requires 5 such 16 byte blocks.
9153 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9154 	 * blocks.  Note, this only extends to the SG entries contained
9155 	 * within the command block, and does not extend to chained blocks
9156 	 * of SG elements.   bft[] contains the eight values we write to
9157 	 * the registers.  They are not evenly distributed, but have more
9158 	 * sizes for small commands, and fewer sizes for larger commands.
9159 	 */
9160 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9161 #define MIN_IOACCEL2_BFT_ENTRY 5
9162 #define HPSA_IOACCEL2_HEADER_SZ 4
9163 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9164 			13, 14, 15, 16, 17, 18, 19,
9165 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9166 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9167 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9168 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9169 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9170 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9171 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9172 	/*  5 = 1 s/g entry or 4k
9173 	 *  6 = 2 s/g entry or 8k
9174 	 *  8 = 4 s/g entry or 16k
9175 	 * 10 = 6 s/g entry or 24k
9176 	 */
9177 
9178 	/* If the controller supports either ioaccel method then
9179 	 * we can also use the RAID stack submit path that does not
9180 	 * perform the superfluous readl() after each command submission.
9181 	 */
9182 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9183 		access = SA5_performant_access_no_read;
9184 
9185 	/* Controller spec: zero out this buffer. */
9186 	for (i = 0; i < h->nreply_queues; i++)
9187 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9188 
9189 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9190 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9191 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9192 	for (i = 0; i < 8; i++)
9193 		writel(bft[i], &h->transtable->BlockFetch[i]);
9194 
9195 	/* size of controller ring buffer */
9196 	writel(h->max_commands, &h->transtable->RepQSize);
9197 	writel(h->nreply_queues, &h->transtable->RepQCount);
9198 	writel(0, &h->transtable->RepQCtrAddrLow32);
9199 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9200 
9201 	for (i = 0; i < h->nreply_queues; i++) {
9202 		writel(0, &h->transtable->RepQAddr[i].upper);
9203 		writel(h->reply_queue[i].busaddr,
9204 			&h->transtable->RepQAddr[i].lower);
9205 	}
9206 
9207 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9208 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9209 	/*
9210 	 * enable outbound interrupt coalescing in accelerator mode;
9211 	 */
9212 	if (trans_support & CFGTBL_Trans_io_accel1) {
9213 		access = SA5_ioaccel_mode1_access;
9214 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9215 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9216 	} else
9217 		if (trans_support & CFGTBL_Trans_io_accel2)
9218 			access = SA5_ioaccel_mode2_access;
9219 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9220 	if (hpsa_wait_for_mode_change_ack(h)) {
9221 		dev_err(&h->pdev->dev,
9222 			"performant mode problem - doorbell timeout\n");
9223 		return -ENODEV;
9224 	}
9225 	register_value = readl(&(h->cfgtable->TransportActive));
9226 	if (!(register_value & CFGTBL_Trans_Performant)) {
9227 		dev_err(&h->pdev->dev,
9228 			"performant mode problem - transport not active\n");
9229 		return -ENODEV;
9230 	}
9231 	/* Change the access methods to the performant access methods */
9232 	h->access = access;
9233 	h->transMethod = transMethod;
9234 
9235 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9236 		(trans_support & CFGTBL_Trans_io_accel2)))
9237 		return 0;
9238 
9239 	if (trans_support & CFGTBL_Trans_io_accel1) {
9240 		/* Set up I/O accelerator mode */
9241 		for (i = 0; i < h->nreply_queues; i++) {
9242 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9243 			h->reply_queue[i].current_entry =
9244 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9245 		}
9246 		bft[7] = h->ioaccel_maxsg + 8;
9247 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9248 				h->ioaccel1_blockFetchTable);
9249 
9250 		/* initialize all reply queue entries to unused */
9251 		for (i = 0; i < h->nreply_queues; i++)
9252 			memset(h->reply_queue[i].head,
9253 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9254 				h->reply_queue_size);
9255 
9256 		/* set all the constant fields in the accelerator command
9257 		 * frames once at init time to save CPU cycles later.
9258 		 */
9259 		for (i = 0; i < h->nr_cmds; i++) {
9260 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9261 
9262 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9263 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9264 					(i * sizeof(struct ErrorInfo)));
9265 			cp->err_info_len = sizeof(struct ErrorInfo);
9266 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9267 			cp->host_context_flags =
9268 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9269 			cp->timeout_sec = 0;
9270 			cp->ReplyQueue = 0;
9271 			cp->tag =
9272 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9273 			cp->host_addr =
9274 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9275 					(i * sizeof(struct io_accel1_cmd)));
9276 		}
9277 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9278 		u64 cfg_offset, cfg_base_addr_index;
9279 		u32 bft2_offset, cfg_base_addr;
9280 		int rc;
9281 
9282 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9283 			&cfg_base_addr_index, &cfg_offset);
9284 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9285 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9286 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9287 				4, h->ioaccel2_blockFetchTable);
9288 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9289 		BUILD_BUG_ON(offsetof(struct CfgTable,
9290 				io_accel_request_size_offset) != 0xb8);
9291 		h->ioaccel2_bft2_regs =
9292 			remap_pci_mem(pci_resource_start(h->pdev,
9293 					cfg_base_addr_index) +
9294 					cfg_offset + bft2_offset,
9295 					ARRAY_SIZE(bft2) *
9296 					sizeof(*h->ioaccel2_bft2_regs));
9297 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9298 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9299 	}
9300 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9301 	if (hpsa_wait_for_mode_change_ack(h)) {
9302 		dev_err(&h->pdev->dev,
9303 			"performant mode problem - enabling ioaccel mode\n");
9304 		return -ENODEV;
9305 	}
9306 	return 0;
9307 }
9308 
9309 /* Free ioaccel1 mode command blocks and block fetch table */
9310 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9311 {
9312 	if (h->ioaccel_cmd_pool) {
9313 		pci_free_consistent(h->pdev,
9314 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9315 			h->ioaccel_cmd_pool,
9316 			h->ioaccel_cmd_pool_dhandle);
9317 		h->ioaccel_cmd_pool = NULL;
9318 		h->ioaccel_cmd_pool_dhandle = 0;
9319 	}
9320 	kfree(h->ioaccel1_blockFetchTable);
9321 	h->ioaccel1_blockFetchTable = NULL;
9322 }
9323 
9324 /* Allocate ioaccel1 mode command blocks and block fetch table */
9325 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9326 {
9327 	h->ioaccel_maxsg =
9328 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9329 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9330 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9331 
9332 	/* Command structures must be aligned on a 128-byte boundary
9333 	 * because the 7 lower bits of the address are used by the
9334 	 * hardware.
9335 	 */
9336 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9337 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9338 	h->ioaccel_cmd_pool =
9339 		dma_alloc_coherent(&h->pdev->dev,
9340 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9341 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9342 
9343 	h->ioaccel1_blockFetchTable =
9344 		kmalloc(((h->ioaccel_maxsg + 1) *
9345 				sizeof(u32)), GFP_KERNEL);
9346 
9347 	if ((h->ioaccel_cmd_pool == NULL) ||
9348 		(h->ioaccel1_blockFetchTable == NULL))
9349 		goto clean_up;
9350 
9351 	memset(h->ioaccel_cmd_pool, 0,
9352 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9353 	return 0;
9354 
9355 clean_up:
9356 	hpsa_free_ioaccel1_cmd_and_bft(h);
9357 	return -ENOMEM;
9358 }
9359 
9360 /* Free ioaccel2 mode command blocks and block fetch table */
9361 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9362 {
9363 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9364 
9365 	if (h->ioaccel2_cmd_pool) {
9366 		pci_free_consistent(h->pdev,
9367 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9368 			h->ioaccel2_cmd_pool,
9369 			h->ioaccel2_cmd_pool_dhandle);
9370 		h->ioaccel2_cmd_pool = NULL;
9371 		h->ioaccel2_cmd_pool_dhandle = 0;
9372 	}
9373 	kfree(h->ioaccel2_blockFetchTable);
9374 	h->ioaccel2_blockFetchTable = NULL;
9375 }
9376 
9377 /* Allocate ioaccel2 mode command blocks and block fetch table */
9378 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9379 {
9380 	int rc;
9381 
9382 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9383 
9384 	h->ioaccel_maxsg =
9385 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9386 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9387 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9388 
9389 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9390 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9391 	h->ioaccel2_cmd_pool =
9392 		dma_alloc_coherent(&h->pdev->dev,
9393 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9394 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9395 
9396 	h->ioaccel2_blockFetchTable =
9397 		kmalloc(((h->ioaccel_maxsg + 1) *
9398 				sizeof(u32)), GFP_KERNEL);
9399 
9400 	if ((h->ioaccel2_cmd_pool == NULL) ||
9401 		(h->ioaccel2_blockFetchTable == NULL)) {
9402 		rc = -ENOMEM;
9403 		goto clean_up;
9404 	}
9405 
9406 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9407 	if (rc)
9408 		goto clean_up;
9409 
9410 	memset(h->ioaccel2_cmd_pool, 0,
9411 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9412 	return 0;
9413 
9414 clean_up:
9415 	hpsa_free_ioaccel2_cmd_and_bft(h);
9416 	return rc;
9417 }
9418 
9419 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9420 static void hpsa_free_performant_mode(struct ctlr_info *h)
9421 {
9422 	kfree(h->blockFetchTable);
9423 	h->blockFetchTable = NULL;
9424 	hpsa_free_reply_queues(h);
9425 	hpsa_free_ioaccel1_cmd_and_bft(h);
9426 	hpsa_free_ioaccel2_cmd_and_bft(h);
9427 }
9428 
9429 /* return -ENODEV on error, 0 on success (or no action)
9430  * allocates numerous items that must be freed later
9431  */
9432 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9433 {
9434 	u32 trans_support;
9435 	unsigned long transMethod = CFGTBL_Trans_Performant |
9436 					CFGTBL_Trans_use_short_tags;
9437 	int i, rc;
9438 
9439 	if (hpsa_simple_mode)
9440 		return 0;
9441 
9442 	trans_support = readl(&(h->cfgtable->TransportSupport));
9443 	if (!(trans_support & PERFORMANT_MODE))
9444 		return 0;
9445 
9446 	/* Check for I/O accelerator mode support */
9447 	if (trans_support & CFGTBL_Trans_io_accel1) {
9448 		transMethod |= CFGTBL_Trans_io_accel1 |
9449 				CFGTBL_Trans_enable_directed_msix;
9450 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9451 		if (rc)
9452 			return rc;
9453 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9454 		transMethod |= CFGTBL_Trans_io_accel2 |
9455 				CFGTBL_Trans_enable_directed_msix;
9456 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9457 		if (rc)
9458 			return rc;
9459 	}
9460 
9461 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9462 	hpsa_get_max_perf_mode_cmds(h);
9463 	/* Performant mode ring buffer and supporting data structures */
9464 	h->reply_queue_size = h->max_commands * sizeof(u64);
9465 
9466 	for (i = 0; i < h->nreply_queues; i++) {
9467 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9468 						h->reply_queue_size,
9469 						&h->reply_queue[i].busaddr,
9470 						GFP_KERNEL);
9471 		if (!h->reply_queue[i].head) {
9472 			rc = -ENOMEM;
9473 			goto clean1;	/* rq, ioaccel */
9474 		}
9475 		h->reply_queue[i].size = h->max_commands;
9476 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9477 		h->reply_queue[i].current_entry = 0;
9478 	}
9479 
9480 	/* Need a block fetch table for performant mode */
9481 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9482 				sizeof(u32)), GFP_KERNEL);
9483 	if (!h->blockFetchTable) {
9484 		rc = -ENOMEM;
9485 		goto clean1;	/* rq, ioaccel */
9486 	}
9487 
9488 	rc = hpsa_enter_performant_mode(h, trans_support);
9489 	if (rc)
9490 		goto clean2;	/* bft, rq, ioaccel */
9491 	return 0;
9492 
9493 clean2:	/* bft, rq, ioaccel */
9494 	kfree(h->blockFetchTable);
9495 	h->blockFetchTable = NULL;
9496 clean1:	/* rq, ioaccel */
9497 	hpsa_free_reply_queues(h);
9498 	hpsa_free_ioaccel1_cmd_and_bft(h);
9499 	hpsa_free_ioaccel2_cmd_and_bft(h);
9500 	return rc;
9501 }
9502 
9503 static int is_accelerated_cmd(struct CommandList *c)
9504 {
9505 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9506 }
9507 
9508 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9509 {
9510 	struct CommandList *c = NULL;
9511 	int i, accel_cmds_out;
9512 	int refcount;
9513 
9514 	do { /* wait for all outstanding ioaccel commands to drain out */
9515 		accel_cmds_out = 0;
9516 		for (i = 0; i < h->nr_cmds; i++) {
9517 			c = h->cmd_pool + i;
9518 			refcount = atomic_inc_return(&c->refcount);
9519 			if (refcount > 1) /* Command is allocated */
9520 				accel_cmds_out += is_accelerated_cmd(c);
9521 			cmd_free(h, c);
9522 		}
9523 		if (accel_cmds_out <= 0)
9524 			break;
9525 		msleep(100);
9526 	} while (1);
9527 }
9528 
9529 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9530 				struct hpsa_sas_port *hpsa_sas_port)
9531 {
9532 	struct hpsa_sas_phy *hpsa_sas_phy;
9533 	struct sas_phy *phy;
9534 
9535 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9536 	if (!hpsa_sas_phy)
9537 		return NULL;
9538 
9539 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9540 		hpsa_sas_port->next_phy_index);
9541 	if (!phy) {
9542 		kfree(hpsa_sas_phy);
9543 		return NULL;
9544 	}
9545 
9546 	hpsa_sas_port->next_phy_index++;
9547 	hpsa_sas_phy->phy = phy;
9548 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9549 
9550 	return hpsa_sas_phy;
9551 }
9552 
9553 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9554 {
9555 	struct sas_phy *phy = hpsa_sas_phy->phy;
9556 
9557 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9558 	if (hpsa_sas_phy->added_to_port)
9559 		list_del(&hpsa_sas_phy->phy_list_entry);
9560 	sas_phy_delete(phy);
9561 	kfree(hpsa_sas_phy);
9562 }
9563 
9564 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9565 {
9566 	int rc;
9567 	struct hpsa_sas_port *hpsa_sas_port;
9568 	struct sas_phy *phy;
9569 	struct sas_identify *identify;
9570 
9571 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9572 	phy = hpsa_sas_phy->phy;
9573 
9574 	identify = &phy->identify;
9575 	memset(identify, 0, sizeof(*identify));
9576 	identify->sas_address = hpsa_sas_port->sas_address;
9577 	identify->device_type = SAS_END_DEVICE;
9578 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9579 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9580 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9581 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9582 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9583 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9584 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9585 
9586 	rc = sas_phy_add(hpsa_sas_phy->phy);
9587 	if (rc)
9588 		return rc;
9589 
9590 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9591 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9592 			&hpsa_sas_port->phy_list_head);
9593 	hpsa_sas_phy->added_to_port = true;
9594 
9595 	return 0;
9596 }
9597 
9598 static int
9599 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9600 				struct sas_rphy *rphy)
9601 {
9602 	struct sas_identify *identify;
9603 
9604 	identify = &rphy->identify;
9605 	identify->sas_address = hpsa_sas_port->sas_address;
9606 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9607 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9608 
9609 	return sas_rphy_add(rphy);
9610 }
9611 
9612 static struct hpsa_sas_port
9613 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9614 				u64 sas_address)
9615 {
9616 	int rc;
9617 	struct hpsa_sas_port *hpsa_sas_port;
9618 	struct sas_port *port;
9619 
9620 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9621 	if (!hpsa_sas_port)
9622 		return NULL;
9623 
9624 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9625 	hpsa_sas_port->parent_node = hpsa_sas_node;
9626 
9627 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9628 	if (!port)
9629 		goto free_hpsa_port;
9630 
9631 	rc = sas_port_add(port);
9632 	if (rc)
9633 		goto free_sas_port;
9634 
9635 	hpsa_sas_port->port = port;
9636 	hpsa_sas_port->sas_address = sas_address;
9637 	list_add_tail(&hpsa_sas_port->port_list_entry,
9638 			&hpsa_sas_node->port_list_head);
9639 
9640 	return hpsa_sas_port;
9641 
9642 free_sas_port:
9643 	sas_port_free(port);
9644 free_hpsa_port:
9645 	kfree(hpsa_sas_port);
9646 
9647 	return NULL;
9648 }
9649 
9650 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9651 {
9652 	struct hpsa_sas_phy *hpsa_sas_phy;
9653 	struct hpsa_sas_phy *next;
9654 
9655 	list_for_each_entry_safe(hpsa_sas_phy, next,
9656 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9657 		hpsa_free_sas_phy(hpsa_sas_phy);
9658 
9659 	sas_port_delete(hpsa_sas_port->port);
9660 	list_del(&hpsa_sas_port->port_list_entry);
9661 	kfree(hpsa_sas_port);
9662 }
9663 
9664 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9665 {
9666 	struct hpsa_sas_node *hpsa_sas_node;
9667 
9668 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9669 	if (hpsa_sas_node) {
9670 		hpsa_sas_node->parent_dev = parent_dev;
9671 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9672 	}
9673 
9674 	return hpsa_sas_node;
9675 }
9676 
9677 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9678 {
9679 	struct hpsa_sas_port *hpsa_sas_port;
9680 	struct hpsa_sas_port *next;
9681 
9682 	if (!hpsa_sas_node)
9683 		return;
9684 
9685 	list_for_each_entry_safe(hpsa_sas_port, next,
9686 			&hpsa_sas_node->port_list_head, port_list_entry)
9687 		hpsa_free_sas_port(hpsa_sas_port);
9688 
9689 	kfree(hpsa_sas_node);
9690 }
9691 
9692 static struct hpsa_scsi_dev_t
9693 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9694 					struct sas_rphy *rphy)
9695 {
9696 	int i;
9697 	struct hpsa_scsi_dev_t *device;
9698 
9699 	for (i = 0; i < h->ndevices; i++) {
9700 		device = h->dev[i];
9701 		if (!device->sas_port)
9702 			continue;
9703 		if (device->sas_port->rphy == rphy)
9704 			return device;
9705 	}
9706 
9707 	return NULL;
9708 }
9709 
9710 static int hpsa_add_sas_host(struct ctlr_info *h)
9711 {
9712 	int rc;
9713 	struct device *parent_dev;
9714 	struct hpsa_sas_node *hpsa_sas_node;
9715 	struct hpsa_sas_port *hpsa_sas_port;
9716 	struct hpsa_sas_phy *hpsa_sas_phy;
9717 
9718 	parent_dev = &h->scsi_host->shost_dev;
9719 
9720 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9721 	if (!hpsa_sas_node)
9722 		return -ENOMEM;
9723 
9724 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9725 	if (!hpsa_sas_port) {
9726 		rc = -ENODEV;
9727 		goto free_sas_node;
9728 	}
9729 
9730 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9731 	if (!hpsa_sas_phy) {
9732 		rc = -ENODEV;
9733 		goto free_sas_port;
9734 	}
9735 
9736 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9737 	if (rc)
9738 		goto free_sas_phy;
9739 
9740 	h->sas_host = hpsa_sas_node;
9741 
9742 	return 0;
9743 
9744 free_sas_phy:
9745 	hpsa_free_sas_phy(hpsa_sas_phy);
9746 free_sas_port:
9747 	hpsa_free_sas_port(hpsa_sas_port);
9748 free_sas_node:
9749 	hpsa_free_sas_node(hpsa_sas_node);
9750 
9751 	return rc;
9752 }
9753 
9754 static void hpsa_delete_sas_host(struct ctlr_info *h)
9755 {
9756 	hpsa_free_sas_node(h->sas_host);
9757 }
9758 
9759 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9760 				struct hpsa_scsi_dev_t *device)
9761 {
9762 	int rc;
9763 	struct hpsa_sas_port *hpsa_sas_port;
9764 	struct sas_rphy *rphy;
9765 
9766 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9767 	if (!hpsa_sas_port)
9768 		return -ENOMEM;
9769 
9770 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9771 	if (!rphy) {
9772 		rc = -ENODEV;
9773 		goto free_sas_port;
9774 	}
9775 
9776 	hpsa_sas_port->rphy = rphy;
9777 	device->sas_port = hpsa_sas_port;
9778 
9779 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9780 	if (rc)
9781 		goto free_sas_port;
9782 
9783 	return 0;
9784 
9785 free_sas_port:
9786 	hpsa_free_sas_port(hpsa_sas_port);
9787 	device->sas_port = NULL;
9788 
9789 	return rc;
9790 }
9791 
9792 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9793 {
9794 	if (device->sas_port) {
9795 		hpsa_free_sas_port(device->sas_port);
9796 		device->sas_port = NULL;
9797 	}
9798 }
9799 
9800 static int
9801 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9802 {
9803 	return 0;
9804 }
9805 
9806 static int
9807 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9808 {
9809 	struct Scsi_Host *shost = phy_to_shost(rphy);
9810 	struct ctlr_info *h;
9811 	struct hpsa_scsi_dev_t *sd;
9812 
9813 	if (!shost)
9814 		return -ENXIO;
9815 
9816 	h = shost_to_hba(shost);
9817 
9818 	if (!h)
9819 		return -ENXIO;
9820 
9821 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9822 	if (!sd)
9823 		return -ENXIO;
9824 
9825 	*identifier = sd->eli;
9826 
9827 	return 0;
9828 }
9829 
9830 static int
9831 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9832 {
9833 	return -ENXIO;
9834 }
9835 
9836 static int
9837 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9838 {
9839 	return 0;
9840 }
9841 
9842 static int
9843 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9844 {
9845 	return 0;
9846 }
9847 
9848 static int
9849 hpsa_sas_phy_setup(struct sas_phy *phy)
9850 {
9851 	return 0;
9852 }
9853 
9854 static void
9855 hpsa_sas_phy_release(struct sas_phy *phy)
9856 {
9857 }
9858 
9859 static int
9860 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9861 {
9862 	return -EINVAL;
9863 }
9864 
9865 static struct sas_function_template hpsa_sas_transport_functions = {
9866 	.get_linkerrors = hpsa_sas_get_linkerrors,
9867 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9868 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9869 	.phy_reset = hpsa_sas_phy_reset,
9870 	.phy_enable = hpsa_sas_phy_enable,
9871 	.phy_setup = hpsa_sas_phy_setup,
9872 	.phy_release = hpsa_sas_phy_release,
9873 	.set_phy_speed = hpsa_sas_phy_speed,
9874 };
9875 
9876 /*
9877  *  This is it.  Register the PCI driver information for the cards we control
9878  *  the OS will call our registered routines when it finds one of our cards.
9879  */
9880 static int __init hpsa_init(void)
9881 {
9882 	int rc;
9883 
9884 	hpsa_sas_transport_template =
9885 		sas_attach_transport(&hpsa_sas_transport_functions);
9886 	if (!hpsa_sas_transport_template)
9887 		return -ENODEV;
9888 
9889 	rc = pci_register_driver(&hpsa_pci_driver);
9890 
9891 	if (rc)
9892 		sas_release_transport(hpsa_sas_transport_template);
9893 
9894 	return rc;
9895 }
9896 
9897 static void __exit hpsa_cleanup(void)
9898 {
9899 	pci_unregister_driver(&hpsa_pci_driver);
9900 	sas_release_transport(hpsa_sas_transport_template);
9901 }
9902 
9903 static void __attribute__((unused)) verify_offsets(void)
9904 {
9905 #define VERIFY_OFFSET(member, offset) \
9906 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9907 
9908 	VERIFY_OFFSET(structure_size, 0);
9909 	VERIFY_OFFSET(volume_blk_size, 4);
9910 	VERIFY_OFFSET(volume_blk_cnt, 8);
9911 	VERIFY_OFFSET(phys_blk_shift, 16);
9912 	VERIFY_OFFSET(parity_rotation_shift, 17);
9913 	VERIFY_OFFSET(strip_size, 18);
9914 	VERIFY_OFFSET(disk_starting_blk, 20);
9915 	VERIFY_OFFSET(disk_blk_cnt, 28);
9916 	VERIFY_OFFSET(data_disks_per_row, 36);
9917 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9918 	VERIFY_OFFSET(row_cnt, 40);
9919 	VERIFY_OFFSET(layout_map_count, 42);
9920 	VERIFY_OFFSET(flags, 44);
9921 	VERIFY_OFFSET(dekindex, 46);
9922 	/* VERIFY_OFFSET(reserved, 48 */
9923 	VERIFY_OFFSET(data, 64);
9924 
9925 #undef VERIFY_OFFSET
9926 
9927 #define VERIFY_OFFSET(member, offset) \
9928 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9929 
9930 	VERIFY_OFFSET(IU_type, 0);
9931 	VERIFY_OFFSET(direction, 1);
9932 	VERIFY_OFFSET(reply_queue, 2);
9933 	/* VERIFY_OFFSET(reserved1, 3);  */
9934 	VERIFY_OFFSET(scsi_nexus, 4);
9935 	VERIFY_OFFSET(Tag, 8);
9936 	VERIFY_OFFSET(cdb, 16);
9937 	VERIFY_OFFSET(cciss_lun, 32);
9938 	VERIFY_OFFSET(data_len, 40);
9939 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9940 	VERIFY_OFFSET(sg_count, 45);
9941 	/* VERIFY_OFFSET(reserved3 */
9942 	VERIFY_OFFSET(err_ptr, 48);
9943 	VERIFY_OFFSET(err_len, 56);
9944 	/* VERIFY_OFFSET(reserved4  */
9945 	VERIFY_OFFSET(sg, 64);
9946 
9947 #undef VERIFY_OFFSET
9948 
9949 #define VERIFY_OFFSET(member, offset) \
9950 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9951 
9952 	VERIFY_OFFSET(dev_handle, 0x00);
9953 	VERIFY_OFFSET(reserved1, 0x02);
9954 	VERIFY_OFFSET(function, 0x03);
9955 	VERIFY_OFFSET(reserved2, 0x04);
9956 	VERIFY_OFFSET(err_info, 0x0C);
9957 	VERIFY_OFFSET(reserved3, 0x10);
9958 	VERIFY_OFFSET(err_info_len, 0x12);
9959 	VERIFY_OFFSET(reserved4, 0x13);
9960 	VERIFY_OFFSET(sgl_offset, 0x14);
9961 	VERIFY_OFFSET(reserved5, 0x15);
9962 	VERIFY_OFFSET(transfer_len, 0x1C);
9963 	VERIFY_OFFSET(reserved6, 0x20);
9964 	VERIFY_OFFSET(io_flags, 0x24);
9965 	VERIFY_OFFSET(reserved7, 0x26);
9966 	VERIFY_OFFSET(LUN, 0x34);
9967 	VERIFY_OFFSET(control, 0x3C);
9968 	VERIFY_OFFSET(CDB, 0x40);
9969 	VERIFY_OFFSET(reserved8, 0x50);
9970 	VERIFY_OFFSET(host_context_flags, 0x60);
9971 	VERIFY_OFFSET(timeout_sec, 0x62);
9972 	VERIFY_OFFSET(ReplyQueue, 0x64);
9973 	VERIFY_OFFSET(reserved9, 0x65);
9974 	VERIFY_OFFSET(tag, 0x68);
9975 	VERIFY_OFFSET(host_addr, 0x70);
9976 	VERIFY_OFFSET(CISS_LUN, 0x78);
9977 	VERIFY_OFFSET(SG, 0x78 + 8);
9978 #undef VERIFY_OFFSET
9979 }
9980 
9981 module_init(hpsa_init);
9982 module_exit(hpsa_cleanup);
9983