xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 0b0e1d6c)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 	"Use 'simple mode' rather than 'performant mode'");
81 
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
100 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 	{0,}
102 };
103 
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105 
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111 	{0x3241103C, "Smart Array P212", &SA5_access},
112 	{0x3243103C, "Smart Array P410", &SA5_access},
113 	{0x3245103C, "Smart Array P410i", &SA5_access},
114 	{0x3247103C, "Smart Array P411", &SA5_access},
115 	{0x3249103C, "Smart Array P812", &SA5_access},
116 	{0x324a103C, "Smart Array P712m", &SA5_access},
117 	{0x324b103C, "Smart Array P711m", &SA5_access},
118 	{0x3350103C, "Smart Array", &SA5_access},
119 	{0x3351103C, "Smart Array", &SA5_access},
120 	{0x3352103C, "Smart Array", &SA5_access},
121 	{0x3353103C, "Smart Array", &SA5_access},
122 	{0x3354103C, "Smart Array", &SA5_access},
123 	{0x3355103C, "Smart Array", &SA5_access},
124 	{0x3356103C, "Smart Array", &SA5_access},
125 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127 
128 static int number_of_controllers;
129 
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134 
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138 
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 	int cmd_type);
146 
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 	unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 	int qdepth, int reason);
153 
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157 
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 	struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 	struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 	int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 	u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 	unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 	void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178 
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181 	unsigned long *priv = shost_priv(sdev->host);
182 	return (struct ctlr_info *) *priv;
183 }
184 
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187 	unsigned long *priv = shost_priv(sh);
188 	return (struct ctlr_info *) *priv;
189 }
190 
191 static int check_for_unit_attention(struct ctlr_info *h,
192 	struct CommandList *c)
193 {
194 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 		return 0;
196 
197 	switch (c->err_info->SenseInfo[12]) {
198 	case STATE_CHANGED:
199 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 			"detected, command retried\n", h->ctlr);
201 		break;
202 	case LUN_FAILED:
203 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 			"detected, action required\n", h->ctlr);
205 		break;
206 	case REPORT_LUNS_CHANGED:
207 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 			"changed, action required\n", h->ctlr);
209 	/*
210 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211 	 */
212 		break;
213 	case POWER_OR_RESET:
214 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 			"or device reset detected\n", h->ctlr);
216 		break;
217 	case UNIT_ATTENTION_CLEARED:
218 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 		    "cleared by another initiator\n", h->ctlr);
220 		break;
221 	default:
222 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 			"unit attention detected\n", h->ctlr);
224 		break;
225 	}
226 	return 1;
227 }
228 
229 static ssize_t host_store_rescan(struct device *dev,
230 				 struct device_attribute *attr,
231 				 const char *buf, size_t count)
232 {
233 	struct ctlr_info *h;
234 	struct Scsi_Host *shost = class_to_shost(dev);
235 	h = shost_to_hba(shost);
236 	hpsa_scan_start(h->scsi_host);
237 	return count;
238 }
239 
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 	     struct device_attribute *attr, char *buf)
242 {
243 	struct ctlr_info *h;
244 	struct Scsi_Host *shost = class_to_shost(dev);
245 	unsigned char *fwrev;
246 
247 	h = shost_to_hba(shost);
248 	if (!h->hba_inquiry_data)
249 		return 0;
250 	fwrev = &h->hba_inquiry_data[32];
251 	return snprintf(buf, 20, "%c%c%c%c\n",
252 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254 
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 	     struct device_attribute *attr, char *buf)
257 {
258 	struct Scsi_Host *shost = class_to_shost(dev);
259 	struct ctlr_info *h = shost_to_hba(shost);
260 
261 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263 
264 static ssize_t host_show_transport_mode(struct device *dev,
265 	struct device_attribute *attr, char *buf)
266 {
267 	struct ctlr_info *h;
268 	struct Scsi_Host *shost = class_to_shost(dev);
269 
270 	h = shost_to_hba(shost);
271 	return snprintf(buf, 20, "%s\n",
272 		h->transMethod & CFGTBL_Trans_Performant ?
273 			"performant" : "simple");
274 }
275 
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 	0x324a103C, /* Smart Array P712m */
279 	0x324b103C, /* SmartArray P711m */
280 	0x3223103C, /* Smart Array P800 */
281 	0x3234103C, /* Smart Array P400 */
282 	0x3235103C, /* Smart Array P400i */
283 	0x3211103C, /* Smart Array E200i */
284 	0x3212103C, /* Smart Array E200 */
285 	0x3213103C, /* Smart Array E200i */
286 	0x3214103C, /* Smart Array E200i */
287 	0x3215103C, /* Smart Array E200i */
288 	0x3237103C, /* Smart Array E500 */
289 	0x323D103C, /* Smart Array P700m */
290 	0x409C0E11, /* Smart Array 6400 */
291 	0x409D0E11, /* Smart Array 6400 EM */
292 };
293 
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296 	/* Exclude 640x boards.  These are two pci devices in one slot
297 	 * which share a battery backed cache module.  One controls the
298 	 * cache, the other accesses the cache through the one that controls
299 	 * it.  If we reset the one controlling the cache, the other will
300 	 * likely not be happy.  Just forbid resetting this conjoined mess.
301 	 * The 640x isn't really supported by hpsa anyway.
302 	 */
303 	0x409C0E11, /* Smart Array 6400 */
304 	0x409D0E11, /* Smart Array 6400 EM */
305 };
306 
307 static int ctlr_is_hard_resettable(u32 board_id)
308 {
309 	int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312 		if (unresettable_controller[i] == board_id)
313 			return 0;
314 	return 1;
315 }
316 
317 static int ctlr_is_soft_resettable(u32 board_id)
318 {
319 	int i;
320 
321 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322 		if (soft_unresettable_controller[i] == board_id)
323 			return 0;
324 	return 1;
325 }
326 
327 static int ctlr_is_resettable(u32 board_id)
328 {
329 	return ctlr_is_hard_resettable(board_id) ||
330 		ctlr_is_soft_resettable(board_id);
331 }
332 
333 static ssize_t host_show_resettable(struct device *dev,
334 	struct device_attribute *attr, char *buf)
335 {
336 	struct ctlr_info *h;
337 	struct Scsi_Host *shost = class_to_shost(dev);
338 
339 	h = shost_to_hba(shost);
340 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
341 }
342 
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
344 {
345 	return (scsi3addr[3] & 0xC0) == 0x40;
346 }
347 
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349 	"UNKNOWN"
350 };
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
352 
353 static ssize_t raid_level_show(struct device *dev,
354 	     struct device_attribute *attr, char *buf)
355 {
356 	ssize_t l = 0;
357 	unsigned char rlevel;
358 	struct ctlr_info *h;
359 	struct scsi_device *sdev;
360 	struct hpsa_scsi_dev_t *hdev;
361 	unsigned long flags;
362 
363 	sdev = to_scsi_device(dev);
364 	h = sdev_to_hba(sdev);
365 	spin_lock_irqsave(&h->lock, flags);
366 	hdev = sdev->hostdata;
367 	if (!hdev) {
368 		spin_unlock_irqrestore(&h->lock, flags);
369 		return -ENODEV;
370 	}
371 
372 	/* Is this even a logical drive? */
373 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374 		spin_unlock_irqrestore(&h->lock, flags);
375 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
376 		return l;
377 	}
378 
379 	rlevel = hdev->raid_level;
380 	spin_unlock_irqrestore(&h->lock, flags);
381 	if (rlevel > RAID_UNKNOWN)
382 		rlevel = RAID_UNKNOWN;
383 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384 	return l;
385 }
386 
387 static ssize_t lunid_show(struct device *dev,
388 	     struct device_attribute *attr, char *buf)
389 {
390 	struct ctlr_info *h;
391 	struct scsi_device *sdev;
392 	struct hpsa_scsi_dev_t *hdev;
393 	unsigned long flags;
394 	unsigned char lunid[8];
395 
396 	sdev = to_scsi_device(dev);
397 	h = sdev_to_hba(sdev);
398 	spin_lock_irqsave(&h->lock, flags);
399 	hdev = sdev->hostdata;
400 	if (!hdev) {
401 		spin_unlock_irqrestore(&h->lock, flags);
402 		return -ENODEV;
403 	}
404 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405 	spin_unlock_irqrestore(&h->lock, flags);
406 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407 		lunid[0], lunid[1], lunid[2], lunid[3],
408 		lunid[4], lunid[5], lunid[6], lunid[7]);
409 }
410 
411 static ssize_t unique_id_show(struct device *dev,
412 	     struct device_attribute *attr, char *buf)
413 {
414 	struct ctlr_info *h;
415 	struct scsi_device *sdev;
416 	struct hpsa_scsi_dev_t *hdev;
417 	unsigned long flags;
418 	unsigned char sn[16];
419 
420 	sdev = to_scsi_device(dev);
421 	h = sdev_to_hba(sdev);
422 	spin_lock_irqsave(&h->lock, flags);
423 	hdev = sdev->hostdata;
424 	if (!hdev) {
425 		spin_unlock_irqrestore(&h->lock, flags);
426 		return -ENODEV;
427 	}
428 	memcpy(sn, hdev->device_id, sizeof(sn));
429 	spin_unlock_irqrestore(&h->lock, flags);
430 	return snprintf(buf, 16 * 2 + 2,
431 			"%02X%02X%02X%02X%02X%02X%02X%02X"
432 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
433 			sn[0], sn[1], sn[2], sn[3],
434 			sn[4], sn[5], sn[6], sn[7],
435 			sn[8], sn[9], sn[10], sn[11],
436 			sn[12], sn[13], sn[14], sn[15]);
437 }
438 
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444 	host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446 	host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448 	host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450 	host_show_resettable, NULL);
451 
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453 	&dev_attr_raid_level,
454 	&dev_attr_lunid,
455 	&dev_attr_unique_id,
456 	NULL,
457 };
458 
459 static struct device_attribute *hpsa_shost_attrs[] = {
460 	&dev_attr_rescan,
461 	&dev_attr_firmware_revision,
462 	&dev_attr_commands_outstanding,
463 	&dev_attr_transport_mode,
464 	&dev_attr_resettable,
465 	NULL,
466 };
467 
468 static struct scsi_host_template hpsa_driver_template = {
469 	.module			= THIS_MODULE,
470 	.name			= "hpsa",
471 	.proc_name		= "hpsa",
472 	.queuecommand		= hpsa_scsi_queue_command,
473 	.scan_start		= hpsa_scan_start,
474 	.scan_finished		= hpsa_scan_finished,
475 	.change_queue_depth	= hpsa_change_queue_depth,
476 	.this_id		= -1,
477 	.use_clustering		= ENABLE_CLUSTERING,
478 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
479 	.ioctl			= hpsa_ioctl,
480 	.slave_alloc		= hpsa_slave_alloc,
481 	.slave_destroy		= hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483 	.compat_ioctl		= hpsa_compat_ioctl,
484 #endif
485 	.sdev_attrs = hpsa_sdev_attrs,
486 	.shost_attrs = hpsa_shost_attrs,
487 };
488 
489 
490 /* Enqueuing and dequeuing functions for cmdlists. */
491 static inline void addQ(struct list_head *list, struct CommandList *c)
492 {
493 	list_add_tail(&c->list, list);
494 }
495 
496 static inline u32 next_command(struct ctlr_info *h)
497 {
498 	u32 a;
499 
500 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
501 		return h->access.command_completed(h);
502 
503 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
504 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
505 		(h->reply_pool_head)++;
506 		h->commands_outstanding--;
507 	} else {
508 		a = FIFO_EMPTY;
509 	}
510 	/* Check for wraparound */
511 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
512 		h->reply_pool_head = h->reply_pool;
513 		h->reply_pool_wraparound ^= 1;
514 	}
515 	return a;
516 }
517 
518 /* set_performant_mode: Modify the tag for cciss performant
519  * set bit 0 for pull model, bits 3-1 for block fetch
520  * register number
521  */
522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
523 {
524 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
525 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
526 }
527 
528 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
529 	struct CommandList *c)
530 {
531 	unsigned long flags;
532 
533 	set_performant_mode(h, c);
534 	spin_lock_irqsave(&h->lock, flags);
535 	addQ(&h->reqQ, c);
536 	h->Qdepth++;
537 	start_io(h);
538 	spin_unlock_irqrestore(&h->lock, flags);
539 }
540 
541 static inline void removeQ(struct CommandList *c)
542 {
543 	if (WARN_ON(list_empty(&c->list)))
544 		return;
545 	list_del_init(&c->list);
546 }
547 
548 static inline int is_hba_lunid(unsigned char scsi3addr[])
549 {
550 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
551 }
552 
553 static inline int is_scsi_rev_5(struct ctlr_info *h)
554 {
555 	if (!h->hba_inquiry_data)
556 		return 0;
557 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
558 		return 1;
559 	return 0;
560 }
561 
562 static int hpsa_find_target_lun(struct ctlr_info *h,
563 	unsigned char scsi3addr[], int bus, int *target, int *lun)
564 {
565 	/* finds an unused bus, target, lun for a new physical device
566 	 * assumes h->devlock is held
567 	 */
568 	int i, found = 0;
569 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
570 
571 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
572 
573 	for (i = 0; i < h->ndevices; i++) {
574 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
575 			set_bit(h->dev[i]->target, lun_taken);
576 	}
577 
578 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
579 		if (!test_bit(i, lun_taken)) {
580 			/* *bus = 1; */
581 			*target = i;
582 			*lun = 0;
583 			found = 1;
584 			break;
585 		}
586 	}
587 	return !found;
588 }
589 
590 /* Add an entry into h->dev[] array. */
591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
592 		struct hpsa_scsi_dev_t *device,
593 		struct hpsa_scsi_dev_t *added[], int *nadded)
594 {
595 	/* assumes h->devlock is held */
596 	int n = h->ndevices;
597 	int i;
598 	unsigned char addr1[8], addr2[8];
599 	struct hpsa_scsi_dev_t *sd;
600 
601 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
602 		dev_err(&h->pdev->dev, "too many devices, some will be "
603 			"inaccessible.\n");
604 		return -1;
605 	}
606 
607 	/* physical devices do not have lun or target assigned until now. */
608 	if (device->lun != -1)
609 		/* Logical device, lun is already assigned. */
610 		goto lun_assigned;
611 
612 	/* If this device a non-zero lun of a multi-lun device
613 	 * byte 4 of the 8-byte LUN addr will contain the logical
614 	 * unit no, zero otherise.
615 	 */
616 	if (device->scsi3addr[4] == 0) {
617 		/* This is not a non-zero lun of a multi-lun device */
618 		if (hpsa_find_target_lun(h, device->scsi3addr,
619 			device->bus, &device->target, &device->lun) != 0)
620 			return -1;
621 		goto lun_assigned;
622 	}
623 
624 	/* This is a non-zero lun of a multi-lun device.
625 	 * Search through our list and find the device which
626 	 * has the same 8 byte LUN address, excepting byte 4.
627 	 * Assign the same bus and target for this new LUN.
628 	 * Use the logical unit number from the firmware.
629 	 */
630 	memcpy(addr1, device->scsi3addr, 8);
631 	addr1[4] = 0;
632 	for (i = 0; i < n; i++) {
633 		sd = h->dev[i];
634 		memcpy(addr2, sd->scsi3addr, 8);
635 		addr2[4] = 0;
636 		/* differ only in byte 4? */
637 		if (memcmp(addr1, addr2, 8) == 0) {
638 			device->bus = sd->bus;
639 			device->target = sd->target;
640 			device->lun = device->scsi3addr[4];
641 			break;
642 		}
643 	}
644 	if (device->lun == -1) {
645 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
646 			" suspect firmware bug or unsupported hardware "
647 			"configuration.\n");
648 			return -1;
649 	}
650 
651 lun_assigned:
652 
653 	h->dev[n] = device;
654 	h->ndevices++;
655 	added[*nadded] = device;
656 	(*nadded)++;
657 
658 	/* initially, (before registering with scsi layer) we don't
659 	 * know our hostno and we don't want to print anything first
660 	 * time anyway (the scsi layer's inquiries will show that info)
661 	 */
662 	/* if (hostno != -1) */
663 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
664 			scsi_device_type(device->devtype), hostno,
665 			device->bus, device->target, device->lun);
666 	return 0;
667 }
668 
669 /* Replace an entry from h->dev[] array. */
670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
671 	int entry, struct hpsa_scsi_dev_t *new_entry,
672 	struct hpsa_scsi_dev_t *added[], int *nadded,
673 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
674 {
675 	/* assumes h->devlock is held */
676 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677 	removed[*nremoved] = h->dev[entry];
678 	(*nremoved)++;
679 	h->dev[entry] = new_entry;
680 	added[*nadded] = new_entry;
681 	(*nadded)++;
682 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
683 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
684 			new_entry->target, new_entry->lun);
685 }
686 
687 /* Remove an entry from h->dev[] array. */
688 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
689 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
690 {
691 	/* assumes h->devlock is held */
692 	int i;
693 	struct hpsa_scsi_dev_t *sd;
694 
695 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
696 
697 	sd = h->dev[entry];
698 	removed[*nremoved] = h->dev[entry];
699 	(*nremoved)++;
700 
701 	for (i = entry; i < h->ndevices-1; i++)
702 		h->dev[i] = h->dev[i+1];
703 	h->ndevices--;
704 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
705 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
706 		sd->lun);
707 }
708 
709 #define SCSI3ADDR_EQ(a, b) ( \
710 	(a)[7] == (b)[7] && \
711 	(a)[6] == (b)[6] && \
712 	(a)[5] == (b)[5] && \
713 	(a)[4] == (b)[4] && \
714 	(a)[3] == (b)[3] && \
715 	(a)[2] == (b)[2] && \
716 	(a)[1] == (b)[1] && \
717 	(a)[0] == (b)[0])
718 
719 static void fixup_botched_add(struct ctlr_info *h,
720 	struct hpsa_scsi_dev_t *added)
721 {
722 	/* called when scsi_add_device fails in order to re-adjust
723 	 * h->dev[] to match the mid layer's view.
724 	 */
725 	unsigned long flags;
726 	int i, j;
727 
728 	spin_lock_irqsave(&h->lock, flags);
729 	for (i = 0; i < h->ndevices; i++) {
730 		if (h->dev[i] == added) {
731 			for (j = i; j < h->ndevices-1; j++)
732 				h->dev[j] = h->dev[j+1];
733 			h->ndevices--;
734 			break;
735 		}
736 	}
737 	spin_unlock_irqrestore(&h->lock, flags);
738 	kfree(added);
739 }
740 
741 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
742 	struct hpsa_scsi_dev_t *dev2)
743 {
744 	/* we compare everything except lun and target as these
745 	 * are not yet assigned.  Compare parts likely
746 	 * to differ first
747 	 */
748 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
749 		sizeof(dev1->scsi3addr)) != 0)
750 		return 0;
751 	if (memcmp(dev1->device_id, dev2->device_id,
752 		sizeof(dev1->device_id)) != 0)
753 		return 0;
754 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
755 		return 0;
756 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
757 		return 0;
758 	if (dev1->devtype != dev2->devtype)
759 		return 0;
760 	if (dev1->bus != dev2->bus)
761 		return 0;
762 	return 1;
763 }
764 
765 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
766  * and return needle location in *index.  If scsi3addr matches, but not
767  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
768  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
769  */
770 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
771 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
772 	int *index)
773 {
774 	int i;
775 #define DEVICE_NOT_FOUND 0
776 #define DEVICE_CHANGED 1
777 #define DEVICE_SAME 2
778 	for (i = 0; i < haystack_size; i++) {
779 		if (haystack[i] == NULL) /* previously removed. */
780 			continue;
781 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
782 			*index = i;
783 			if (device_is_the_same(needle, haystack[i]))
784 				return DEVICE_SAME;
785 			else
786 				return DEVICE_CHANGED;
787 		}
788 	}
789 	*index = -1;
790 	return DEVICE_NOT_FOUND;
791 }
792 
793 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
794 	struct hpsa_scsi_dev_t *sd[], int nsds)
795 {
796 	/* sd contains scsi3 addresses and devtypes, and inquiry
797 	 * data.  This function takes what's in sd to be the current
798 	 * reality and updates h->dev[] to reflect that reality.
799 	 */
800 	int i, entry, device_change, changes = 0;
801 	struct hpsa_scsi_dev_t *csd;
802 	unsigned long flags;
803 	struct hpsa_scsi_dev_t **added, **removed;
804 	int nadded, nremoved;
805 	struct Scsi_Host *sh = NULL;
806 
807 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
808 		GFP_KERNEL);
809 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
810 		GFP_KERNEL);
811 
812 	if (!added || !removed) {
813 		dev_warn(&h->pdev->dev, "out of memory in "
814 			"adjust_hpsa_scsi_table\n");
815 		goto free_and_out;
816 	}
817 
818 	spin_lock_irqsave(&h->devlock, flags);
819 
820 	/* find any devices in h->dev[] that are not in
821 	 * sd[] and remove them from h->dev[], and for any
822 	 * devices which have changed, remove the old device
823 	 * info and add the new device info.
824 	 */
825 	i = 0;
826 	nremoved = 0;
827 	nadded = 0;
828 	while (i < h->ndevices) {
829 		csd = h->dev[i];
830 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
831 		if (device_change == DEVICE_NOT_FOUND) {
832 			changes++;
833 			hpsa_scsi_remove_entry(h, hostno, i,
834 				removed, &nremoved);
835 			continue; /* remove ^^^, hence i not incremented */
836 		} else if (device_change == DEVICE_CHANGED) {
837 			changes++;
838 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
839 				added, &nadded, removed, &nremoved);
840 			/* Set it to NULL to prevent it from being freed
841 			 * at the bottom of hpsa_update_scsi_devices()
842 			 */
843 			sd[entry] = NULL;
844 		}
845 		i++;
846 	}
847 
848 	/* Now, make sure every device listed in sd[] is also
849 	 * listed in h->dev[], adding them if they aren't found
850 	 */
851 
852 	for (i = 0; i < nsds; i++) {
853 		if (!sd[i]) /* if already added above. */
854 			continue;
855 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
856 					h->ndevices, &entry);
857 		if (device_change == DEVICE_NOT_FOUND) {
858 			changes++;
859 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
860 				added, &nadded) != 0)
861 				break;
862 			sd[i] = NULL; /* prevent from being freed later. */
863 		} else if (device_change == DEVICE_CHANGED) {
864 			/* should never happen... */
865 			changes++;
866 			dev_warn(&h->pdev->dev,
867 				"device unexpectedly changed.\n");
868 			/* but if it does happen, we just ignore that device */
869 		}
870 	}
871 	spin_unlock_irqrestore(&h->devlock, flags);
872 
873 	/* Don't notify scsi mid layer of any changes the first time through
874 	 * (or if there are no changes) scsi_scan_host will do it later the
875 	 * first time through.
876 	 */
877 	if (hostno == -1 || !changes)
878 		goto free_and_out;
879 
880 	sh = h->scsi_host;
881 	/* Notify scsi mid layer of any removed devices */
882 	for (i = 0; i < nremoved; i++) {
883 		struct scsi_device *sdev =
884 			scsi_device_lookup(sh, removed[i]->bus,
885 				removed[i]->target, removed[i]->lun);
886 		if (sdev != NULL) {
887 			scsi_remove_device(sdev);
888 			scsi_device_put(sdev);
889 		} else {
890 			/* We don't expect to get here.
891 			 * future cmds to this device will get selection
892 			 * timeout as if the device was gone.
893 			 */
894 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
895 				" for removal.", hostno, removed[i]->bus,
896 				removed[i]->target, removed[i]->lun);
897 		}
898 		kfree(removed[i]);
899 		removed[i] = NULL;
900 	}
901 
902 	/* Notify scsi mid layer of any added devices */
903 	for (i = 0; i < nadded; i++) {
904 		if (scsi_add_device(sh, added[i]->bus,
905 			added[i]->target, added[i]->lun) == 0)
906 			continue;
907 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
908 			"device not added.\n", hostno, added[i]->bus,
909 			added[i]->target, added[i]->lun);
910 		/* now we have to remove it from h->dev,
911 		 * since it didn't get added to scsi mid layer
912 		 */
913 		fixup_botched_add(h, added[i]);
914 	}
915 
916 free_and_out:
917 	kfree(added);
918 	kfree(removed);
919 }
920 
921 /*
922  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
923  * Assume's h->devlock is held.
924  */
925 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
926 	int bus, int target, int lun)
927 {
928 	int i;
929 	struct hpsa_scsi_dev_t *sd;
930 
931 	for (i = 0; i < h->ndevices; i++) {
932 		sd = h->dev[i];
933 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
934 			return sd;
935 	}
936 	return NULL;
937 }
938 
939 /* link sdev->hostdata to our per-device structure. */
940 static int hpsa_slave_alloc(struct scsi_device *sdev)
941 {
942 	struct hpsa_scsi_dev_t *sd;
943 	unsigned long flags;
944 	struct ctlr_info *h;
945 
946 	h = sdev_to_hba(sdev);
947 	spin_lock_irqsave(&h->devlock, flags);
948 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
949 		sdev_id(sdev), sdev->lun);
950 	if (sd != NULL)
951 		sdev->hostdata = sd;
952 	spin_unlock_irqrestore(&h->devlock, flags);
953 	return 0;
954 }
955 
956 static void hpsa_slave_destroy(struct scsi_device *sdev)
957 {
958 	/* nothing to do. */
959 }
960 
961 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
962 {
963 	int i;
964 
965 	if (!h->cmd_sg_list)
966 		return;
967 	for (i = 0; i < h->nr_cmds; i++) {
968 		kfree(h->cmd_sg_list[i]);
969 		h->cmd_sg_list[i] = NULL;
970 	}
971 	kfree(h->cmd_sg_list);
972 	h->cmd_sg_list = NULL;
973 }
974 
975 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
976 {
977 	int i;
978 
979 	if (h->chainsize <= 0)
980 		return 0;
981 
982 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
983 				GFP_KERNEL);
984 	if (!h->cmd_sg_list)
985 		return -ENOMEM;
986 	for (i = 0; i < h->nr_cmds; i++) {
987 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
988 						h->chainsize, GFP_KERNEL);
989 		if (!h->cmd_sg_list[i])
990 			goto clean;
991 	}
992 	return 0;
993 
994 clean:
995 	hpsa_free_sg_chain_blocks(h);
996 	return -ENOMEM;
997 }
998 
999 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1000 	struct CommandList *c)
1001 {
1002 	struct SGDescriptor *chain_sg, *chain_block;
1003 	u64 temp64;
1004 
1005 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1006 	chain_block = h->cmd_sg_list[c->cmdindex];
1007 	chain_sg->Ext = HPSA_SG_CHAIN;
1008 	chain_sg->Len = sizeof(*chain_sg) *
1009 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1010 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1011 				PCI_DMA_TODEVICE);
1012 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1013 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1014 }
1015 
1016 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1017 	struct CommandList *c)
1018 {
1019 	struct SGDescriptor *chain_sg;
1020 	union u64bit temp64;
1021 
1022 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1023 		return;
1024 
1025 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1026 	temp64.val32.lower = chain_sg->Addr.lower;
1027 	temp64.val32.upper = chain_sg->Addr.upper;
1028 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1029 }
1030 
1031 static void complete_scsi_command(struct CommandList *cp)
1032 {
1033 	struct scsi_cmnd *cmd;
1034 	struct ctlr_info *h;
1035 	struct ErrorInfo *ei;
1036 
1037 	unsigned char sense_key;
1038 	unsigned char asc;      /* additional sense code */
1039 	unsigned char ascq;     /* additional sense code qualifier */
1040 	unsigned long sense_data_size;
1041 
1042 	ei = cp->err_info;
1043 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1044 	h = cp->h;
1045 
1046 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1047 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1048 		hpsa_unmap_sg_chain_block(h, cp);
1049 
1050 	cmd->result = (DID_OK << 16); 		/* host byte */
1051 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1052 	cmd->result |= ei->ScsiStatus;
1053 
1054 	/* copy the sense data whether we need to or not. */
1055 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1056 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1057 	else
1058 		sense_data_size = sizeof(ei->SenseInfo);
1059 	if (ei->SenseLen < sense_data_size)
1060 		sense_data_size = ei->SenseLen;
1061 
1062 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1063 	scsi_set_resid(cmd, ei->ResidualCnt);
1064 
1065 	if (ei->CommandStatus == 0) {
1066 		cmd->scsi_done(cmd);
1067 		cmd_free(h, cp);
1068 		return;
1069 	}
1070 
1071 	/* an error has occurred */
1072 	switch (ei->CommandStatus) {
1073 
1074 	case CMD_TARGET_STATUS:
1075 		if (ei->ScsiStatus) {
1076 			/* Get sense key */
1077 			sense_key = 0xf & ei->SenseInfo[2];
1078 			/* Get additional sense code */
1079 			asc = ei->SenseInfo[12];
1080 			/* Get addition sense code qualifier */
1081 			ascq = ei->SenseInfo[13];
1082 		}
1083 
1084 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1085 			if (check_for_unit_attention(h, cp)) {
1086 				cmd->result = DID_SOFT_ERROR << 16;
1087 				break;
1088 			}
1089 			if (sense_key == ILLEGAL_REQUEST) {
1090 				/*
1091 				 * SCSI REPORT_LUNS is commonly unsupported on
1092 				 * Smart Array.  Suppress noisy complaint.
1093 				 */
1094 				if (cp->Request.CDB[0] == REPORT_LUNS)
1095 					break;
1096 
1097 				/* If ASC/ASCQ indicate Logical Unit
1098 				 * Not Supported condition,
1099 				 */
1100 				if ((asc == 0x25) && (ascq == 0x0)) {
1101 					dev_warn(&h->pdev->dev, "cp %p "
1102 						"has check condition\n", cp);
1103 					break;
1104 				}
1105 			}
1106 
1107 			if (sense_key == NOT_READY) {
1108 				/* If Sense is Not Ready, Logical Unit
1109 				 * Not ready, Manual Intervention
1110 				 * required
1111 				 */
1112 				if ((asc == 0x04) && (ascq == 0x03)) {
1113 					dev_warn(&h->pdev->dev, "cp %p "
1114 						"has check condition: unit "
1115 						"not ready, manual "
1116 						"intervention required\n", cp);
1117 					break;
1118 				}
1119 			}
1120 			if (sense_key == ABORTED_COMMAND) {
1121 				/* Aborted command is retryable */
1122 				dev_warn(&h->pdev->dev, "cp %p "
1123 					"has check condition: aborted command: "
1124 					"ASC: 0x%x, ASCQ: 0x%x\n",
1125 					cp, asc, ascq);
1126 				cmd->result = DID_SOFT_ERROR << 16;
1127 				break;
1128 			}
1129 			/* Must be some other type of check condition */
1130 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1131 					"unknown type: "
1132 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1133 					"Returning result: 0x%x, "
1134 					"cmd=[%02x %02x %02x %02x %02x "
1135 					"%02x %02x %02x %02x %02x %02x "
1136 					"%02x %02x %02x %02x %02x]\n",
1137 					cp, sense_key, asc, ascq,
1138 					cmd->result,
1139 					cmd->cmnd[0], cmd->cmnd[1],
1140 					cmd->cmnd[2], cmd->cmnd[3],
1141 					cmd->cmnd[4], cmd->cmnd[5],
1142 					cmd->cmnd[6], cmd->cmnd[7],
1143 					cmd->cmnd[8], cmd->cmnd[9],
1144 					cmd->cmnd[10], cmd->cmnd[11],
1145 					cmd->cmnd[12], cmd->cmnd[13],
1146 					cmd->cmnd[14], cmd->cmnd[15]);
1147 			break;
1148 		}
1149 
1150 
1151 		/* Problem was not a check condition
1152 		 * Pass it up to the upper layers...
1153 		 */
1154 		if (ei->ScsiStatus) {
1155 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1156 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1157 				"Returning result: 0x%x\n",
1158 				cp, ei->ScsiStatus,
1159 				sense_key, asc, ascq,
1160 				cmd->result);
1161 		} else {  /* scsi status is zero??? How??? */
1162 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1163 				"Returning no connection.\n", cp),
1164 
1165 			/* Ordinarily, this case should never happen,
1166 			 * but there is a bug in some released firmware
1167 			 * revisions that allows it to happen if, for
1168 			 * example, a 4100 backplane loses power and
1169 			 * the tape drive is in it.  We assume that
1170 			 * it's a fatal error of some kind because we
1171 			 * can't show that it wasn't. We will make it
1172 			 * look like selection timeout since that is
1173 			 * the most common reason for this to occur,
1174 			 * and it's severe enough.
1175 			 */
1176 
1177 			cmd->result = DID_NO_CONNECT << 16;
1178 		}
1179 		break;
1180 
1181 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1182 		break;
1183 	case CMD_DATA_OVERRUN:
1184 		dev_warn(&h->pdev->dev, "cp %p has"
1185 			" completed with data overrun "
1186 			"reported\n", cp);
1187 		break;
1188 	case CMD_INVALID: {
1189 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1190 		print_cmd(cp); */
1191 		/* We get CMD_INVALID if you address a non-existent device
1192 		 * instead of a selection timeout (no response).  You will
1193 		 * see this if you yank out a drive, then try to access it.
1194 		 * This is kind of a shame because it means that any other
1195 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1196 		 * missing target. */
1197 		cmd->result = DID_NO_CONNECT << 16;
1198 	}
1199 		break;
1200 	case CMD_PROTOCOL_ERR:
1201 		dev_warn(&h->pdev->dev, "cp %p has "
1202 			"protocol error \n", cp);
1203 		break;
1204 	case CMD_HARDWARE_ERR:
1205 		cmd->result = DID_ERROR << 16;
1206 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1207 		break;
1208 	case CMD_CONNECTION_LOST:
1209 		cmd->result = DID_ERROR << 16;
1210 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1211 		break;
1212 	case CMD_ABORTED:
1213 		cmd->result = DID_ABORT << 16;
1214 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1215 				cp, ei->ScsiStatus);
1216 		break;
1217 	case CMD_ABORT_FAILED:
1218 		cmd->result = DID_ERROR << 16;
1219 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1220 		break;
1221 	case CMD_UNSOLICITED_ABORT:
1222 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1223 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1224 			"abort\n", cp);
1225 		break;
1226 	case CMD_TIMEOUT:
1227 		cmd->result = DID_TIME_OUT << 16;
1228 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1229 		break;
1230 	case CMD_UNABORTABLE:
1231 		cmd->result = DID_ERROR << 16;
1232 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1233 		break;
1234 	default:
1235 		cmd->result = DID_ERROR << 16;
1236 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1237 				cp, ei->CommandStatus);
1238 	}
1239 	cmd->scsi_done(cmd);
1240 	cmd_free(h, cp);
1241 }
1242 
1243 static int hpsa_scsi_detect(struct ctlr_info *h)
1244 {
1245 	struct Scsi_Host *sh;
1246 	int error;
1247 
1248 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1249 	if (sh == NULL)
1250 		goto fail;
1251 
1252 	sh->io_port = 0;
1253 	sh->n_io_port = 0;
1254 	sh->this_id = -1;
1255 	sh->max_channel = 3;
1256 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1257 	sh->max_lun = HPSA_MAX_LUN;
1258 	sh->max_id = HPSA_MAX_LUN;
1259 	sh->can_queue = h->nr_cmds;
1260 	sh->cmd_per_lun = h->nr_cmds;
1261 	sh->sg_tablesize = h->maxsgentries;
1262 	h->scsi_host = sh;
1263 	sh->hostdata[0] = (unsigned long) h;
1264 	sh->irq = h->intr[h->intr_mode];
1265 	sh->unique_id = sh->irq;
1266 	error = scsi_add_host(sh, &h->pdev->dev);
1267 	if (error)
1268 		goto fail_host_put;
1269 	scsi_scan_host(sh);
1270 	return 0;
1271 
1272  fail_host_put:
1273 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1274 		" failed for controller %d\n", h->ctlr);
1275 	scsi_host_put(sh);
1276 	return error;
1277  fail:
1278 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1279 		" failed for controller %d\n", h->ctlr);
1280 	return -ENOMEM;
1281 }
1282 
1283 static void hpsa_pci_unmap(struct pci_dev *pdev,
1284 	struct CommandList *c, int sg_used, int data_direction)
1285 {
1286 	int i;
1287 	union u64bit addr64;
1288 
1289 	for (i = 0; i < sg_used; i++) {
1290 		addr64.val32.lower = c->SG[i].Addr.lower;
1291 		addr64.val32.upper = c->SG[i].Addr.upper;
1292 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1293 			data_direction);
1294 	}
1295 }
1296 
1297 static void hpsa_map_one(struct pci_dev *pdev,
1298 		struct CommandList *cp,
1299 		unsigned char *buf,
1300 		size_t buflen,
1301 		int data_direction)
1302 {
1303 	u64 addr64;
1304 
1305 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1306 		cp->Header.SGList = 0;
1307 		cp->Header.SGTotal = 0;
1308 		return;
1309 	}
1310 
1311 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1312 	cp->SG[0].Addr.lower =
1313 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1314 	cp->SG[0].Addr.upper =
1315 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1316 	cp->SG[0].Len = buflen;
1317 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1318 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1319 }
1320 
1321 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1322 	struct CommandList *c)
1323 {
1324 	DECLARE_COMPLETION_ONSTACK(wait);
1325 
1326 	c->waiting = &wait;
1327 	enqueue_cmd_and_start_io(h, c);
1328 	wait_for_completion(&wait);
1329 }
1330 
1331 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1332 	struct CommandList *c, int data_direction)
1333 {
1334 	int retry_count = 0;
1335 
1336 	do {
1337 		memset(c->err_info, 0, sizeof(*c->err_info));
1338 		hpsa_scsi_do_simple_cmd_core(h, c);
1339 		retry_count++;
1340 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1341 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1342 }
1343 
1344 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1345 {
1346 	struct ErrorInfo *ei;
1347 	struct device *d = &cp->h->pdev->dev;
1348 
1349 	ei = cp->err_info;
1350 	switch (ei->CommandStatus) {
1351 	case CMD_TARGET_STATUS:
1352 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1353 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1354 				ei->ScsiStatus);
1355 		if (ei->ScsiStatus == 0)
1356 			dev_warn(d, "SCSI status is abnormally zero.  "
1357 			"(probably indicates selection timeout "
1358 			"reported incorrectly due to a known "
1359 			"firmware bug, circa July, 2001.)\n");
1360 		break;
1361 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1362 			dev_info(d, "UNDERRUN\n");
1363 		break;
1364 	case CMD_DATA_OVERRUN:
1365 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1366 		break;
1367 	case CMD_INVALID: {
1368 		/* controller unfortunately reports SCSI passthru's
1369 		 * to non-existent targets as invalid commands.
1370 		 */
1371 		dev_warn(d, "cp %p is reported invalid (probably means "
1372 			"target device no longer present)\n", cp);
1373 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1374 		print_cmd(cp);  */
1375 		}
1376 		break;
1377 	case CMD_PROTOCOL_ERR:
1378 		dev_warn(d, "cp %p has protocol error \n", cp);
1379 		break;
1380 	case CMD_HARDWARE_ERR:
1381 		/* cmd->result = DID_ERROR << 16; */
1382 		dev_warn(d, "cp %p had hardware error\n", cp);
1383 		break;
1384 	case CMD_CONNECTION_LOST:
1385 		dev_warn(d, "cp %p had connection lost\n", cp);
1386 		break;
1387 	case CMD_ABORTED:
1388 		dev_warn(d, "cp %p was aborted\n", cp);
1389 		break;
1390 	case CMD_ABORT_FAILED:
1391 		dev_warn(d, "cp %p reports abort failed\n", cp);
1392 		break;
1393 	case CMD_UNSOLICITED_ABORT:
1394 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1395 		break;
1396 	case CMD_TIMEOUT:
1397 		dev_warn(d, "cp %p timed out\n", cp);
1398 		break;
1399 	case CMD_UNABORTABLE:
1400 		dev_warn(d, "Command unabortable\n");
1401 		break;
1402 	default:
1403 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1404 				ei->CommandStatus);
1405 	}
1406 }
1407 
1408 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1409 			unsigned char page, unsigned char *buf,
1410 			unsigned char bufsize)
1411 {
1412 	int rc = IO_OK;
1413 	struct CommandList *c;
1414 	struct ErrorInfo *ei;
1415 
1416 	c = cmd_special_alloc(h);
1417 
1418 	if (c == NULL) {			/* trouble... */
1419 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1420 		return -ENOMEM;
1421 	}
1422 
1423 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1424 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1425 	ei = c->err_info;
1426 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1427 		hpsa_scsi_interpret_error(c);
1428 		rc = -1;
1429 	}
1430 	cmd_special_free(h, c);
1431 	return rc;
1432 }
1433 
1434 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1435 {
1436 	int rc = IO_OK;
1437 	struct CommandList *c;
1438 	struct ErrorInfo *ei;
1439 
1440 	c = cmd_special_alloc(h);
1441 
1442 	if (c == NULL) {			/* trouble... */
1443 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1444 		return -ENOMEM;
1445 	}
1446 
1447 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1448 	hpsa_scsi_do_simple_cmd_core(h, c);
1449 	/* no unmap needed here because no data xfer. */
1450 
1451 	ei = c->err_info;
1452 	if (ei->CommandStatus != 0) {
1453 		hpsa_scsi_interpret_error(c);
1454 		rc = -1;
1455 	}
1456 	cmd_special_free(h, c);
1457 	return rc;
1458 }
1459 
1460 static void hpsa_get_raid_level(struct ctlr_info *h,
1461 	unsigned char *scsi3addr, unsigned char *raid_level)
1462 {
1463 	int rc;
1464 	unsigned char *buf;
1465 
1466 	*raid_level = RAID_UNKNOWN;
1467 	buf = kzalloc(64, GFP_KERNEL);
1468 	if (!buf)
1469 		return;
1470 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1471 	if (rc == 0)
1472 		*raid_level = buf[8];
1473 	if (*raid_level > RAID_UNKNOWN)
1474 		*raid_level = RAID_UNKNOWN;
1475 	kfree(buf);
1476 	return;
1477 }
1478 
1479 /* Get the device id from inquiry page 0x83 */
1480 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1481 	unsigned char *device_id, int buflen)
1482 {
1483 	int rc;
1484 	unsigned char *buf;
1485 
1486 	if (buflen > 16)
1487 		buflen = 16;
1488 	buf = kzalloc(64, GFP_KERNEL);
1489 	if (!buf)
1490 		return -1;
1491 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1492 	if (rc == 0)
1493 		memcpy(device_id, &buf[8], buflen);
1494 	kfree(buf);
1495 	return rc != 0;
1496 }
1497 
1498 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1499 		struct ReportLUNdata *buf, int bufsize,
1500 		int extended_response)
1501 {
1502 	int rc = IO_OK;
1503 	struct CommandList *c;
1504 	unsigned char scsi3addr[8];
1505 	struct ErrorInfo *ei;
1506 
1507 	c = cmd_special_alloc(h);
1508 	if (c == NULL) {			/* trouble... */
1509 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1510 		return -1;
1511 	}
1512 	/* address the controller */
1513 	memset(scsi3addr, 0, sizeof(scsi3addr));
1514 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1515 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1516 	if (extended_response)
1517 		c->Request.CDB[1] = extended_response;
1518 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1519 	ei = c->err_info;
1520 	if (ei->CommandStatus != 0 &&
1521 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1522 		hpsa_scsi_interpret_error(c);
1523 		rc = -1;
1524 	}
1525 	cmd_special_free(h, c);
1526 	return rc;
1527 }
1528 
1529 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1530 		struct ReportLUNdata *buf,
1531 		int bufsize, int extended_response)
1532 {
1533 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1534 }
1535 
1536 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1537 		struct ReportLUNdata *buf, int bufsize)
1538 {
1539 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1540 }
1541 
1542 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1543 	int bus, int target, int lun)
1544 {
1545 	device->bus = bus;
1546 	device->target = target;
1547 	device->lun = lun;
1548 }
1549 
1550 static int hpsa_update_device_info(struct ctlr_info *h,
1551 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1552 	unsigned char *is_OBDR_device)
1553 {
1554 
1555 #define OBDR_SIG_OFFSET 43
1556 #define OBDR_TAPE_SIG "$DR-10"
1557 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1558 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1559 
1560 	unsigned char *inq_buff;
1561 	unsigned char *obdr_sig;
1562 
1563 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1564 	if (!inq_buff)
1565 		goto bail_out;
1566 
1567 	/* Do an inquiry to the device to see what it is. */
1568 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1569 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1570 		/* Inquiry failed (msg printed already) */
1571 		dev_err(&h->pdev->dev,
1572 			"hpsa_update_device_info: inquiry failed\n");
1573 		goto bail_out;
1574 	}
1575 
1576 	this_device->devtype = (inq_buff[0] & 0x1f);
1577 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1578 	memcpy(this_device->vendor, &inq_buff[8],
1579 		sizeof(this_device->vendor));
1580 	memcpy(this_device->model, &inq_buff[16],
1581 		sizeof(this_device->model));
1582 	memset(this_device->device_id, 0,
1583 		sizeof(this_device->device_id));
1584 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1585 		sizeof(this_device->device_id));
1586 
1587 	if (this_device->devtype == TYPE_DISK &&
1588 		is_logical_dev_addr_mode(scsi3addr))
1589 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1590 	else
1591 		this_device->raid_level = RAID_UNKNOWN;
1592 
1593 	if (is_OBDR_device) {
1594 		/* See if this is a One-Button-Disaster-Recovery device
1595 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1596 		 */
1597 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1598 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1599 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1600 						OBDR_SIG_LEN) == 0);
1601 	}
1602 
1603 	kfree(inq_buff);
1604 	return 0;
1605 
1606 bail_out:
1607 	kfree(inq_buff);
1608 	return 1;
1609 }
1610 
1611 static unsigned char *msa2xxx_model[] = {
1612 	"MSA2012",
1613 	"MSA2024",
1614 	"MSA2312",
1615 	"MSA2324",
1616 	"P2000 G3 SAS",
1617 	NULL,
1618 };
1619 
1620 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1621 {
1622 	int i;
1623 
1624 	for (i = 0; msa2xxx_model[i]; i++)
1625 		if (strncmp(device->model, msa2xxx_model[i],
1626 			strlen(msa2xxx_model[i])) == 0)
1627 			return 1;
1628 	return 0;
1629 }
1630 
1631 /* Helper function to assign bus, target, lun mapping of devices.
1632  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1633  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1634  * Logical drive target and lun are assigned at this time, but
1635  * physical device lun and target assignment are deferred (assigned
1636  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1637  */
1638 static void figure_bus_target_lun(struct ctlr_info *h,
1639 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1640 	struct hpsa_scsi_dev_t *device)
1641 {
1642 	u32 lunid;
1643 
1644 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1645 		/* logical device */
1646 		if (unlikely(is_scsi_rev_5(h))) {
1647 			/* p1210m, logical drives lun assignments
1648 			 * match SCSI REPORT LUNS data.
1649 			 */
1650 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1651 			*bus = 0;
1652 			*target = 0;
1653 			*lun = (lunid & 0x3fff) + 1;
1654 		} else {
1655 			/* not p1210m... */
1656 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1657 			if (is_msa2xxx(h, device)) {
1658 				/* msa2xxx way, put logicals on bus 1
1659 				 * and match target/lun numbers box
1660 				 * reports.
1661 				 */
1662 				*bus = 1;
1663 				*target = (lunid >> 16) & 0x3fff;
1664 				*lun = lunid & 0x00ff;
1665 			} else {
1666 				/* Traditional smart array way. */
1667 				*bus = 0;
1668 				*lun = 0;
1669 				*target = lunid & 0x3fff;
1670 			}
1671 		}
1672 	} else {
1673 		/* physical device */
1674 		if (is_hba_lunid(lunaddrbytes))
1675 			if (unlikely(is_scsi_rev_5(h))) {
1676 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1677 				*target = 0;
1678 				*lun = 0;
1679 				return;
1680 			} else
1681 				*bus = 3; /* traditional smartarray */
1682 		else
1683 			*bus = 2; /* physical disk */
1684 		*target = -1;
1685 		*lun = -1; /* we will fill these in later. */
1686 	}
1687 }
1688 
1689 /*
1690  * If there is no lun 0 on a target, linux won't find any devices.
1691  * For the MSA2xxx boxes, we have to manually detect the enclosure
1692  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1693  * it for some reason.  *tmpdevice is the target we're adding,
1694  * this_device is a pointer into the current element of currentsd[]
1695  * that we're building up in update_scsi_devices(), below.
1696  * lunzerobits is a bitmap that tracks which targets already have a
1697  * lun 0 assigned.
1698  * Returns 1 if an enclosure was added, 0 if not.
1699  */
1700 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1701 	struct hpsa_scsi_dev_t *tmpdevice,
1702 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1703 	int bus, int target, int lun, unsigned long lunzerobits[],
1704 	int *nmsa2xxx_enclosures)
1705 {
1706 	unsigned char scsi3addr[8];
1707 
1708 	if (test_bit(target, lunzerobits))
1709 		return 0; /* There is already a lun 0 on this target. */
1710 
1711 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1712 		return 0; /* It's the logical targets that may lack lun 0. */
1713 
1714 	if (!is_msa2xxx(h, tmpdevice))
1715 		return 0; /* It's only the MSA2xxx that have this problem. */
1716 
1717 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1718 		return 0;
1719 
1720 	memset(scsi3addr, 0, 8);
1721 	scsi3addr[3] = target;
1722 	if (is_hba_lunid(scsi3addr))
1723 		return 0; /* Don't add the RAID controller here. */
1724 
1725 	if (is_scsi_rev_5(h))
1726 		return 0; /* p1210m doesn't need to do this. */
1727 
1728 #define MAX_MSA2XXX_ENCLOSURES 32
1729 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1730 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1731 			"enclosures exceeded.  Check your hardware "
1732 			"configuration.");
1733 		return 0;
1734 	}
1735 
1736 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1737 		return 0;
1738 	(*nmsa2xxx_enclosures)++;
1739 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1740 	set_bit(target, lunzerobits);
1741 	return 1;
1742 }
1743 
1744 /*
1745  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1746  * logdev.  The number of luns in physdev and logdev are returned in
1747  * *nphysicals and *nlogicals, respectively.
1748  * Returns 0 on success, -1 otherwise.
1749  */
1750 static int hpsa_gather_lun_info(struct ctlr_info *h,
1751 	int reportlunsize,
1752 	struct ReportLUNdata *physdev, u32 *nphysicals,
1753 	struct ReportLUNdata *logdev, u32 *nlogicals)
1754 {
1755 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1756 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1757 		return -1;
1758 	}
1759 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1760 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1761 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1762 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1763 			*nphysicals - HPSA_MAX_PHYS_LUN);
1764 		*nphysicals = HPSA_MAX_PHYS_LUN;
1765 	}
1766 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1767 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1768 		return -1;
1769 	}
1770 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1771 	/* Reject Logicals in excess of our max capability. */
1772 	if (*nlogicals > HPSA_MAX_LUN) {
1773 		dev_warn(&h->pdev->dev,
1774 			"maximum logical LUNs (%d) exceeded.  "
1775 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1776 			*nlogicals - HPSA_MAX_LUN);
1777 			*nlogicals = HPSA_MAX_LUN;
1778 	}
1779 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1780 		dev_warn(&h->pdev->dev,
1781 			"maximum logical + physical LUNs (%d) exceeded. "
1782 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1783 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1784 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1785 	}
1786 	return 0;
1787 }
1788 
1789 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1790 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1791 	struct ReportLUNdata *logdev_list)
1792 {
1793 	/* Helper function, figure out where the LUN ID info is coming from
1794 	 * given index i, lists of physical and logical devices, where in
1795 	 * the list the raid controller is supposed to appear (first or last)
1796 	 */
1797 
1798 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1799 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1800 
1801 	if (i == raid_ctlr_position)
1802 		return RAID_CTLR_LUNID;
1803 
1804 	if (i < logicals_start)
1805 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1806 
1807 	if (i < last_device)
1808 		return &logdev_list->LUN[i - nphysicals -
1809 			(raid_ctlr_position == 0)][0];
1810 	BUG();
1811 	return NULL;
1812 }
1813 
1814 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1815 {
1816 	/* the idea here is we could get notified
1817 	 * that some devices have changed, so we do a report
1818 	 * physical luns and report logical luns cmd, and adjust
1819 	 * our list of devices accordingly.
1820 	 *
1821 	 * The scsi3addr's of devices won't change so long as the
1822 	 * adapter is not reset.  That means we can rescan and
1823 	 * tell which devices we already know about, vs. new
1824 	 * devices, vs.  disappearing devices.
1825 	 */
1826 	struct ReportLUNdata *physdev_list = NULL;
1827 	struct ReportLUNdata *logdev_list = NULL;
1828 	u32 nphysicals = 0;
1829 	u32 nlogicals = 0;
1830 	u32 ndev_allocated = 0;
1831 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1832 	int ncurrent = 0;
1833 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1834 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1835 	int bus, target, lun;
1836 	int raid_ctlr_position;
1837 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1838 
1839 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1840 		GFP_KERNEL);
1841 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1842 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1843 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1844 
1845 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1846 		dev_err(&h->pdev->dev, "out of memory\n");
1847 		goto out;
1848 	}
1849 	memset(lunzerobits, 0, sizeof(lunzerobits));
1850 
1851 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1852 			logdev_list, &nlogicals))
1853 		goto out;
1854 
1855 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1856 	 * but each of them 4 times through different paths.  The plus 1
1857 	 * is for the RAID controller.
1858 	 */
1859 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1860 
1861 	/* Allocate the per device structures */
1862 	for (i = 0; i < ndevs_to_allocate; i++) {
1863 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1864 		if (!currentsd[i]) {
1865 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1866 				__FILE__, __LINE__);
1867 			goto out;
1868 		}
1869 		ndev_allocated++;
1870 	}
1871 
1872 	if (unlikely(is_scsi_rev_5(h)))
1873 		raid_ctlr_position = 0;
1874 	else
1875 		raid_ctlr_position = nphysicals + nlogicals;
1876 
1877 	/* adjust our table of devices */
1878 	nmsa2xxx_enclosures = 0;
1879 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1880 		u8 *lunaddrbytes, is_OBDR = 0;
1881 
1882 		/* Figure out where the LUN ID info is coming from */
1883 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1884 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1885 		/* skip masked physical devices. */
1886 		if (lunaddrbytes[3] & 0xC0 &&
1887 			i < nphysicals + (raid_ctlr_position == 0))
1888 			continue;
1889 
1890 		/* Get device type, vendor, model, device id */
1891 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1892 							&is_OBDR))
1893 			continue; /* skip it if we can't talk to it. */
1894 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1895 			tmpdevice);
1896 		this_device = currentsd[ncurrent];
1897 
1898 		/*
1899 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1900 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1901 		 * is nonetheless an enclosure device there.  We have to
1902 		 * present that otherwise linux won't find anything if
1903 		 * there is no lun 0.
1904 		 */
1905 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1906 				lunaddrbytes, bus, target, lun, lunzerobits,
1907 				&nmsa2xxx_enclosures)) {
1908 			ncurrent++;
1909 			this_device = currentsd[ncurrent];
1910 		}
1911 
1912 		*this_device = *tmpdevice;
1913 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1914 
1915 		switch (this_device->devtype) {
1916 		case TYPE_ROM:
1917 			/* We don't *really* support actual CD-ROM devices,
1918 			 * just "One Button Disaster Recovery" tape drive
1919 			 * which temporarily pretends to be a CD-ROM drive.
1920 			 * So we check that the device is really an OBDR tape
1921 			 * device by checking for "$DR-10" in bytes 43-48 of
1922 			 * the inquiry data.
1923 			 */
1924 			if (is_OBDR)
1925 				ncurrent++;
1926 			break;
1927 		case TYPE_DISK:
1928 			if (i < nphysicals)
1929 				break;
1930 			ncurrent++;
1931 			break;
1932 		case TYPE_TAPE:
1933 		case TYPE_MEDIUM_CHANGER:
1934 			ncurrent++;
1935 			break;
1936 		case TYPE_RAID:
1937 			/* Only present the Smartarray HBA as a RAID controller.
1938 			 * If it's a RAID controller other than the HBA itself
1939 			 * (an external RAID controller, MSA500 or similar)
1940 			 * don't present it.
1941 			 */
1942 			if (!is_hba_lunid(lunaddrbytes))
1943 				break;
1944 			ncurrent++;
1945 			break;
1946 		default:
1947 			break;
1948 		}
1949 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1950 			break;
1951 	}
1952 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1953 out:
1954 	kfree(tmpdevice);
1955 	for (i = 0; i < ndev_allocated; i++)
1956 		kfree(currentsd[i]);
1957 	kfree(currentsd);
1958 	kfree(physdev_list);
1959 	kfree(logdev_list);
1960 }
1961 
1962 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1963  * dma mapping  and fills in the scatter gather entries of the
1964  * hpsa command, cp.
1965  */
1966 static int hpsa_scatter_gather(struct ctlr_info *h,
1967 		struct CommandList *cp,
1968 		struct scsi_cmnd *cmd)
1969 {
1970 	unsigned int len;
1971 	struct scatterlist *sg;
1972 	u64 addr64;
1973 	int use_sg, i, sg_index, chained;
1974 	struct SGDescriptor *curr_sg;
1975 
1976 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1977 
1978 	use_sg = scsi_dma_map(cmd);
1979 	if (use_sg < 0)
1980 		return use_sg;
1981 
1982 	if (!use_sg)
1983 		goto sglist_finished;
1984 
1985 	curr_sg = cp->SG;
1986 	chained = 0;
1987 	sg_index = 0;
1988 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1989 		if (i == h->max_cmd_sg_entries - 1 &&
1990 			use_sg > h->max_cmd_sg_entries) {
1991 			chained = 1;
1992 			curr_sg = h->cmd_sg_list[cp->cmdindex];
1993 			sg_index = 0;
1994 		}
1995 		addr64 = (u64) sg_dma_address(sg);
1996 		len  = sg_dma_len(sg);
1997 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1998 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1999 		curr_sg->Len = len;
2000 		curr_sg->Ext = 0;  /* we are not chaining */
2001 		curr_sg++;
2002 	}
2003 
2004 	if (use_sg + chained > h->maxSG)
2005 		h->maxSG = use_sg + chained;
2006 
2007 	if (chained) {
2008 		cp->Header.SGList = h->max_cmd_sg_entries;
2009 		cp->Header.SGTotal = (u16) (use_sg + 1);
2010 		hpsa_map_sg_chain_block(h, cp);
2011 		return 0;
2012 	}
2013 
2014 sglist_finished:
2015 
2016 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2017 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2018 	return 0;
2019 }
2020 
2021 
2022 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2023 	void (*done)(struct scsi_cmnd *))
2024 {
2025 	struct ctlr_info *h;
2026 	struct hpsa_scsi_dev_t *dev;
2027 	unsigned char scsi3addr[8];
2028 	struct CommandList *c;
2029 	unsigned long flags;
2030 
2031 	/* Get the ptr to our adapter structure out of cmd->host. */
2032 	h = sdev_to_hba(cmd->device);
2033 	dev = cmd->device->hostdata;
2034 	if (!dev) {
2035 		cmd->result = DID_NO_CONNECT << 16;
2036 		done(cmd);
2037 		return 0;
2038 	}
2039 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2040 
2041 	/* Need a lock as this is being allocated from the pool */
2042 	spin_lock_irqsave(&h->lock, flags);
2043 	c = cmd_alloc(h);
2044 	spin_unlock_irqrestore(&h->lock, flags);
2045 	if (c == NULL) {			/* trouble... */
2046 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2047 		return SCSI_MLQUEUE_HOST_BUSY;
2048 	}
2049 
2050 	/* Fill in the command list header */
2051 
2052 	cmd->scsi_done = done;    /* save this for use by completion code */
2053 
2054 	/* save c in case we have to abort it  */
2055 	cmd->host_scribble = (unsigned char *) c;
2056 
2057 	c->cmd_type = CMD_SCSI;
2058 	c->scsi_cmd = cmd;
2059 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2060 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2061 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2062 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2063 
2064 	/* Fill in the request block... */
2065 
2066 	c->Request.Timeout = 0;
2067 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2068 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2069 	c->Request.CDBLen = cmd->cmd_len;
2070 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2071 	c->Request.Type.Type = TYPE_CMD;
2072 	c->Request.Type.Attribute = ATTR_SIMPLE;
2073 	switch (cmd->sc_data_direction) {
2074 	case DMA_TO_DEVICE:
2075 		c->Request.Type.Direction = XFER_WRITE;
2076 		break;
2077 	case DMA_FROM_DEVICE:
2078 		c->Request.Type.Direction = XFER_READ;
2079 		break;
2080 	case DMA_NONE:
2081 		c->Request.Type.Direction = XFER_NONE;
2082 		break;
2083 	case DMA_BIDIRECTIONAL:
2084 		/* This can happen if a buggy application does a scsi passthru
2085 		 * and sets both inlen and outlen to non-zero. ( see
2086 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2087 		 */
2088 
2089 		c->Request.Type.Direction = XFER_RSVD;
2090 		/* This is technically wrong, and hpsa controllers should
2091 		 * reject it with CMD_INVALID, which is the most correct
2092 		 * response, but non-fibre backends appear to let it
2093 		 * slide by, and give the same results as if this field
2094 		 * were set correctly.  Either way is acceptable for
2095 		 * our purposes here.
2096 		 */
2097 
2098 		break;
2099 
2100 	default:
2101 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2102 			cmd->sc_data_direction);
2103 		BUG();
2104 		break;
2105 	}
2106 
2107 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2108 		cmd_free(h, c);
2109 		return SCSI_MLQUEUE_HOST_BUSY;
2110 	}
2111 	enqueue_cmd_and_start_io(h, c);
2112 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2113 	return 0;
2114 }
2115 
2116 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2117 
2118 static void hpsa_scan_start(struct Scsi_Host *sh)
2119 {
2120 	struct ctlr_info *h = shost_to_hba(sh);
2121 	unsigned long flags;
2122 
2123 	/* wait until any scan already in progress is finished. */
2124 	while (1) {
2125 		spin_lock_irqsave(&h->scan_lock, flags);
2126 		if (h->scan_finished)
2127 			break;
2128 		spin_unlock_irqrestore(&h->scan_lock, flags);
2129 		wait_event(h->scan_wait_queue, h->scan_finished);
2130 		/* Note: We don't need to worry about a race between this
2131 		 * thread and driver unload because the midlayer will
2132 		 * have incremented the reference count, so unload won't
2133 		 * happen if we're in here.
2134 		 */
2135 	}
2136 	h->scan_finished = 0; /* mark scan as in progress */
2137 	spin_unlock_irqrestore(&h->scan_lock, flags);
2138 
2139 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2140 
2141 	spin_lock_irqsave(&h->scan_lock, flags);
2142 	h->scan_finished = 1; /* mark scan as finished. */
2143 	wake_up_all(&h->scan_wait_queue);
2144 	spin_unlock_irqrestore(&h->scan_lock, flags);
2145 }
2146 
2147 static int hpsa_scan_finished(struct Scsi_Host *sh,
2148 	unsigned long elapsed_time)
2149 {
2150 	struct ctlr_info *h = shost_to_hba(sh);
2151 	unsigned long flags;
2152 	int finished;
2153 
2154 	spin_lock_irqsave(&h->scan_lock, flags);
2155 	finished = h->scan_finished;
2156 	spin_unlock_irqrestore(&h->scan_lock, flags);
2157 	return finished;
2158 }
2159 
2160 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2161 	int qdepth, int reason)
2162 {
2163 	struct ctlr_info *h = sdev_to_hba(sdev);
2164 
2165 	if (reason != SCSI_QDEPTH_DEFAULT)
2166 		return -ENOTSUPP;
2167 
2168 	if (qdepth < 1)
2169 		qdepth = 1;
2170 	else
2171 		if (qdepth > h->nr_cmds)
2172 			qdepth = h->nr_cmds;
2173 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2174 	return sdev->queue_depth;
2175 }
2176 
2177 static void hpsa_unregister_scsi(struct ctlr_info *h)
2178 {
2179 	/* we are being forcibly unloaded, and may not refuse. */
2180 	scsi_remove_host(h->scsi_host);
2181 	scsi_host_put(h->scsi_host);
2182 	h->scsi_host = NULL;
2183 }
2184 
2185 static int hpsa_register_scsi(struct ctlr_info *h)
2186 {
2187 	int rc;
2188 
2189 	rc = hpsa_scsi_detect(h);
2190 	if (rc != 0)
2191 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2192 			" hpsa_scsi_detect(), rc is %d\n", rc);
2193 	return rc;
2194 }
2195 
2196 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2197 	unsigned char lunaddr[])
2198 {
2199 	int rc = 0;
2200 	int count = 0;
2201 	int waittime = 1; /* seconds */
2202 	struct CommandList *c;
2203 
2204 	c = cmd_special_alloc(h);
2205 	if (!c) {
2206 		dev_warn(&h->pdev->dev, "out of memory in "
2207 			"wait_for_device_to_become_ready.\n");
2208 		return IO_ERROR;
2209 	}
2210 
2211 	/* Send test unit ready until device ready, or give up. */
2212 	while (count < HPSA_TUR_RETRY_LIMIT) {
2213 
2214 		/* Wait for a bit.  do this first, because if we send
2215 		 * the TUR right away, the reset will just abort it.
2216 		 */
2217 		msleep(1000 * waittime);
2218 		count++;
2219 
2220 		/* Increase wait time with each try, up to a point. */
2221 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2222 			waittime = waittime * 2;
2223 
2224 		/* Send the Test Unit Ready */
2225 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2226 		hpsa_scsi_do_simple_cmd_core(h, c);
2227 		/* no unmap needed here because no data xfer. */
2228 
2229 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2230 			break;
2231 
2232 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2233 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2234 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2235 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2236 			break;
2237 
2238 		dev_warn(&h->pdev->dev, "waiting %d secs "
2239 			"for device to become ready.\n", waittime);
2240 		rc = 1; /* device not ready. */
2241 	}
2242 
2243 	if (rc)
2244 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2245 	else
2246 		dev_warn(&h->pdev->dev, "device is ready.\n");
2247 
2248 	cmd_special_free(h, c);
2249 	return rc;
2250 }
2251 
2252 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2253  * complaining.  Doing a host- or bus-reset can't do anything good here.
2254  */
2255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2256 {
2257 	int rc;
2258 	struct ctlr_info *h;
2259 	struct hpsa_scsi_dev_t *dev;
2260 
2261 	/* find the controller to which the command to be aborted was sent */
2262 	h = sdev_to_hba(scsicmd->device);
2263 	if (h == NULL) /* paranoia */
2264 		return FAILED;
2265 	dev = scsicmd->device->hostdata;
2266 	if (!dev) {
2267 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2268 			"device lookup failed.\n");
2269 		return FAILED;
2270 	}
2271 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2272 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2273 	/* send a reset to the SCSI LUN which the command was sent to */
2274 	rc = hpsa_send_reset(h, dev->scsi3addr);
2275 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2276 		return SUCCESS;
2277 
2278 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2279 	return FAILED;
2280 }
2281 
2282 /*
2283  * For operations that cannot sleep, a command block is allocated at init,
2284  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2285  * which ones are free or in use.  Lock must be held when calling this.
2286  * cmd_free() is the complement.
2287  */
2288 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2289 {
2290 	struct CommandList *c;
2291 	int i;
2292 	union u64bit temp64;
2293 	dma_addr_t cmd_dma_handle, err_dma_handle;
2294 
2295 	do {
2296 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2297 		if (i == h->nr_cmds)
2298 			return NULL;
2299 	} while (test_and_set_bit
2300 		 (i & (BITS_PER_LONG - 1),
2301 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2302 	c = h->cmd_pool + i;
2303 	memset(c, 0, sizeof(*c));
2304 	cmd_dma_handle = h->cmd_pool_dhandle
2305 	    + i * sizeof(*c);
2306 	c->err_info = h->errinfo_pool + i;
2307 	memset(c->err_info, 0, sizeof(*c->err_info));
2308 	err_dma_handle = h->errinfo_pool_dhandle
2309 	    + i * sizeof(*c->err_info);
2310 	h->nr_allocs++;
2311 
2312 	c->cmdindex = i;
2313 
2314 	INIT_LIST_HEAD(&c->list);
2315 	c->busaddr = (u32) cmd_dma_handle;
2316 	temp64.val = (u64) err_dma_handle;
2317 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2318 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2319 	c->ErrDesc.Len = sizeof(*c->err_info);
2320 
2321 	c->h = h;
2322 	return c;
2323 }
2324 
2325 /* For operations that can wait for kmalloc to possibly sleep,
2326  * this routine can be called. Lock need not be held to call
2327  * cmd_special_alloc. cmd_special_free() is the complement.
2328  */
2329 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2330 {
2331 	struct CommandList *c;
2332 	union u64bit temp64;
2333 	dma_addr_t cmd_dma_handle, err_dma_handle;
2334 
2335 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2336 	if (c == NULL)
2337 		return NULL;
2338 	memset(c, 0, sizeof(*c));
2339 
2340 	c->cmdindex = -1;
2341 
2342 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2343 		    &err_dma_handle);
2344 
2345 	if (c->err_info == NULL) {
2346 		pci_free_consistent(h->pdev,
2347 			sizeof(*c), c, cmd_dma_handle);
2348 		return NULL;
2349 	}
2350 	memset(c->err_info, 0, sizeof(*c->err_info));
2351 
2352 	INIT_LIST_HEAD(&c->list);
2353 	c->busaddr = (u32) cmd_dma_handle;
2354 	temp64.val = (u64) err_dma_handle;
2355 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2356 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2357 	c->ErrDesc.Len = sizeof(*c->err_info);
2358 
2359 	c->h = h;
2360 	return c;
2361 }
2362 
2363 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2364 {
2365 	int i;
2366 
2367 	i = c - h->cmd_pool;
2368 	clear_bit(i & (BITS_PER_LONG - 1),
2369 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2370 	h->nr_frees++;
2371 }
2372 
2373 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2374 {
2375 	union u64bit temp64;
2376 
2377 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2378 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2379 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2380 			    c->err_info, (dma_addr_t) temp64.val);
2381 	pci_free_consistent(h->pdev, sizeof(*c),
2382 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2383 }
2384 
2385 #ifdef CONFIG_COMPAT
2386 
2387 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2388 {
2389 	IOCTL32_Command_struct __user *arg32 =
2390 	    (IOCTL32_Command_struct __user *) arg;
2391 	IOCTL_Command_struct arg64;
2392 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2393 	int err;
2394 	u32 cp;
2395 
2396 	memset(&arg64, 0, sizeof(arg64));
2397 	err = 0;
2398 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2399 			   sizeof(arg64.LUN_info));
2400 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2401 			   sizeof(arg64.Request));
2402 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2403 			   sizeof(arg64.error_info));
2404 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2405 	err |= get_user(cp, &arg32->buf);
2406 	arg64.buf = compat_ptr(cp);
2407 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2408 
2409 	if (err)
2410 		return -EFAULT;
2411 
2412 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2413 	if (err)
2414 		return err;
2415 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2416 			 sizeof(arg32->error_info));
2417 	if (err)
2418 		return -EFAULT;
2419 	return err;
2420 }
2421 
2422 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2423 	int cmd, void *arg)
2424 {
2425 	BIG_IOCTL32_Command_struct __user *arg32 =
2426 	    (BIG_IOCTL32_Command_struct __user *) arg;
2427 	BIG_IOCTL_Command_struct arg64;
2428 	BIG_IOCTL_Command_struct __user *p =
2429 	    compat_alloc_user_space(sizeof(arg64));
2430 	int err;
2431 	u32 cp;
2432 
2433 	memset(&arg64, 0, sizeof(arg64));
2434 	err = 0;
2435 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2436 			   sizeof(arg64.LUN_info));
2437 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2438 			   sizeof(arg64.Request));
2439 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2440 			   sizeof(arg64.error_info));
2441 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2442 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2443 	err |= get_user(cp, &arg32->buf);
2444 	arg64.buf = compat_ptr(cp);
2445 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2446 
2447 	if (err)
2448 		return -EFAULT;
2449 
2450 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2451 	if (err)
2452 		return err;
2453 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2454 			 sizeof(arg32->error_info));
2455 	if (err)
2456 		return -EFAULT;
2457 	return err;
2458 }
2459 
2460 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2461 {
2462 	switch (cmd) {
2463 	case CCISS_GETPCIINFO:
2464 	case CCISS_GETINTINFO:
2465 	case CCISS_SETINTINFO:
2466 	case CCISS_GETNODENAME:
2467 	case CCISS_SETNODENAME:
2468 	case CCISS_GETHEARTBEAT:
2469 	case CCISS_GETBUSTYPES:
2470 	case CCISS_GETFIRMVER:
2471 	case CCISS_GETDRIVVER:
2472 	case CCISS_REVALIDVOLS:
2473 	case CCISS_DEREGDISK:
2474 	case CCISS_REGNEWDISK:
2475 	case CCISS_REGNEWD:
2476 	case CCISS_RESCANDISK:
2477 	case CCISS_GETLUNINFO:
2478 		return hpsa_ioctl(dev, cmd, arg);
2479 
2480 	case CCISS_PASSTHRU32:
2481 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2482 	case CCISS_BIG_PASSTHRU32:
2483 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2484 
2485 	default:
2486 		return -ENOIOCTLCMD;
2487 	}
2488 }
2489 #endif
2490 
2491 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2492 {
2493 	struct hpsa_pci_info pciinfo;
2494 
2495 	if (!argp)
2496 		return -EINVAL;
2497 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2498 	pciinfo.bus = h->pdev->bus->number;
2499 	pciinfo.dev_fn = h->pdev->devfn;
2500 	pciinfo.board_id = h->board_id;
2501 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2502 		return -EFAULT;
2503 	return 0;
2504 }
2505 
2506 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2507 {
2508 	DriverVer_type DriverVer;
2509 	unsigned char vmaj, vmin, vsubmin;
2510 	int rc;
2511 
2512 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2513 		&vmaj, &vmin, &vsubmin);
2514 	if (rc != 3) {
2515 		dev_info(&h->pdev->dev, "driver version string '%s' "
2516 			"unrecognized.", HPSA_DRIVER_VERSION);
2517 		vmaj = 0;
2518 		vmin = 0;
2519 		vsubmin = 0;
2520 	}
2521 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2522 	if (!argp)
2523 		return -EINVAL;
2524 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2525 		return -EFAULT;
2526 	return 0;
2527 }
2528 
2529 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2530 {
2531 	IOCTL_Command_struct iocommand;
2532 	struct CommandList *c;
2533 	char *buff = NULL;
2534 	union u64bit temp64;
2535 
2536 	if (!argp)
2537 		return -EINVAL;
2538 	if (!capable(CAP_SYS_RAWIO))
2539 		return -EPERM;
2540 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2541 		return -EFAULT;
2542 	if ((iocommand.buf_size < 1) &&
2543 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2544 		return -EINVAL;
2545 	}
2546 	if (iocommand.buf_size > 0) {
2547 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2548 		if (buff == NULL)
2549 			return -EFAULT;
2550 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2551 			/* Copy the data into the buffer we created */
2552 			if (copy_from_user(buff, iocommand.buf,
2553 				iocommand.buf_size)) {
2554 				kfree(buff);
2555 				return -EFAULT;
2556 			}
2557 		} else {
2558 			memset(buff, 0, iocommand.buf_size);
2559 		}
2560 	}
2561 	c = cmd_special_alloc(h);
2562 	if (c == NULL) {
2563 		kfree(buff);
2564 		return -ENOMEM;
2565 	}
2566 	/* Fill in the command type */
2567 	c->cmd_type = CMD_IOCTL_PEND;
2568 	/* Fill in Command Header */
2569 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2570 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2571 		c->Header.SGList = 1;
2572 		c->Header.SGTotal = 1;
2573 	} else	{ /* no buffers to fill */
2574 		c->Header.SGList = 0;
2575 		c->Header.SGTotal = 0;
2576 	}
2577 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2578 	/* use the kernel address the cmd block for tag */
2579 	c->Header.Tag.lower = c->busaddr;
2580 
2581 	/* Fill in Request block */
2582 	memcpy(&c->Request, &iocommand.Request,
2583 		sizeof(c->Request));
2584 
2585 	/* Fill in the scatter gather information */
2586 	if (iocommand.buf_size > 0) {
2587 		temp64.val = pci_map_single(h->pdev, buff,
2588 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2589 		c->SG[0].Addr.lower = temp64.val32.lower;
2590 		c->SG[0].Addr.upper = temp64.val32.upper;
2591 		c->SG[0].Len = iocommand.buf_size;
2592 		c->SG[0].Ext = 0; /* we are not chaining*/
2593 	}
2594 	hpsa_scsi_do_simple_cmd_core(h, c);
2595 	if (iocommand.buf_size > 0)
2596 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2597 	check_ioctl_unit_attention(h, c);
2598 
2599 	/* Copy the error information out */
2600 	memcpy(&iocommand.error_info, c->err_info,
2601 		sizeof(iocommand.error_info));
2602 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2603 		kfree(buff);
2604 		cmd_special_free(h, c);
2605 		return -EFAULT;
2606 	}
2607 	if (iocommand.Request.Type.Direction == XFER_READ &&
2608 		iocommand.buf_size > 0) {
2609 		/* Copy the data out of the buffer we created */
2610 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2611 			kfree(buff);
2612 			cmd_special_free(h, c);
2613 			return -EFAULT;
2614 		}
2615 	}
2616 	kfree(buff);
2617 	cmd_special_free(h, c);
2618 	return 0;
2619 }
2620 
2621 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2622 {
2623 	BIG_IOCTL_Command_struct *ioc;
2624 	struct CommandList *c;
2625 	unsigned char **buff = NULL;
2626 	int *buff_size = NULL;
2627 	union u64bit temp64;
2628 	BYTE sg_used = 0;
2629 	int status = 0;
2630 	int i;
2631 	u32 left;
2632 	u32 sz;
2633 	BYTE __user *data_ptr;
2634 
2635 	if (!argp)
2636 		return -EINVAL;
2637 	if (!capable(CAP_SYS_RAWIO))
2638 		return -EPERM;
2639 	ioc = (BIG_IOCTL_Command_struct *)
2640 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2641 	if (!ioc) {
2642 		status = -ENOMEM;
2643 		goto cleanup1;
2644 	}
2645 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2646 		status = -EFAULT;
2647 		goto cleanup1;
2648 	}
2649 	if ((ioc->buf_size < 1) &&
2650 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2651 		status = -EINVAL;
2652 		goto cleanup1;
2653 	}
2654 	/* Check kmalloc limits  using all SGs */
2655 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2656 		status = -EINVAL;
2657 		goto cleanup1;
2658 	}
2659 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2660 		status = -EINVAL;
2661 		goto cleanup1;
2662 	}
2663 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2664 	if (!buff) {
2665 		status = -ENOMEM;
2666 		goto cleanup1;
2667 	}
2668 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2669 	if (!buff_size) {
2670 		status = -ENOMEM;
2671 		goto cleanup1;
2672 	}
2673 	left = ioc->buf_size;
2674 	data_ptr = ioc->buf;
2675 	while (left) {
2676 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2677 		buff_size[sg_used] = sz;
2678 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2679 		if (buff[sg_used] == NULL) {
2680 			status = -ENOMEM;
2681 			goto cleanup1;
2682 		}
2683 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2684 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2685 				status = -ENOMEM;
2686 				goto cleanup1;
2687 			}
2688 		} else
2689 			memset(buff[sg_used], 0, sz);
2690 		left -= sz;
2691 		data_ptr += sz;
2692 		sg_used++;
2693 	}
2694 	c = cmd_special_alloc(h);
2695 	if (c == NULL) {
2696 		status = -ENOMEM;
2697 		goto cleanup1;
2698 	}
2699 	c->cmd_type = CMD_IOCTL_PEND;
2700 	c->Header.ReplyQueue = 0;
2701 	c->Header.SGList = c->Header.SGTotal = sg_used;
2702 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2703 	c->Header.Tag.lower = c->busaddr;
2704 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2705 	if (ioc->buf_size > 0) {
2706 		int i;
2707 		for (i = 0; i < sg_used; i++) {
2708 			temp64.val = pci_map_single(h->pdev, buff[i],
2709 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2710 			c->SG[i].Addr.lower = temp64.val32.lower;
2711 			c->SG[i].Addr.upper = temp64.val32.upper;
2712 			c->SG[i].Len = buff_size[i];
2713 			/* we are not chaining */
2714 			c->SG[i].Ext = 0;
2715 		}
2716 	}
2717 	hpsa_scsi_do_simple_cmd_core(h, c);
2718 	if (sg_used)
2719 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2720 	check_ioctl_unit_attention(h, c);
2721 	/* Copy the error information out */
2722 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2723 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2724 		cmd_special_free(h, c);
2725 		status = -EFAULT;
2726 		goto cleanup1;
2727 	}
2728 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2729 		/* Copy the data out of the buffer we created */
2730 		BYTE __user *ptr = ioc->buf;
2731 		for (i = 0; i < sg_used; i++) {
2732 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2733 				cmd_special_free(h, c);
2734 				status = -EFAULT;
2735 				goto cleanup1;
2736 			}
2737 			ptr += buff_size[i];
2738 		}
2739 	}
2740 	cmd_special_free(h, c);
2741 	status = 0;
2742 cleanup1:
2743 	if (buff) {
2744 		for (i = 0; i < sg_used; i++)
2745 			kfree(buff[i]);
2746 		kfree(buff);
2747 	}
2748 	kfree(buff_size);
2749 	kfree(ioc);
2750 	return status;
2751 }
2752 
2753 static void check_ioctl_unit_attention(struct ctlr_info *h,
2754 	struct CommandList *c)
2755 {
2756 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2757 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2758 		(void) check_for_unit_attention(h, c);
2759 }
2760 /*
2761  * ioctl
2762  */
2763 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2764 {
2765 	struct ctlr_info *h;
2766 	void __user *argp = (void __user *)arg;
2767 
2768 	h = sdev_to_hba(dev);
2769 
2770 	switch (cmd) {
2771 	case CCISS_DEREGDISK:
2772 	case CCISS_REGNEWDISK:
2773 	case CCISS_REGNEWD:
2774 		hpsa_scan_start(h->scsi_host);
2775 		return 0;
2776 	case CCISS_GETPCIINFO:
2777 		return hpsa_getpciinfo_ioctl(h, argp);
2778 	case CCISS_GETDRIVVER:
2779 		return hpsa_getdrivver_ioctl(h, argp);
2780 	case CCISS_PASSTHRU:
2781 		return hpsa_passthru_ioctl(h, argp);
2782 	case CCISS_BIG_PASSTHRU:
2783 		return hpsa_big_passthru_ioctl(h, argp);
2784 	default:
2785 		return -ENOTTY;
2786 	}
2787 }
2788 
2789 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2790 	unsigned char *scsi3addr, u8 reset_type)
2791 {
2792 	struct CommandList *c;
2793 
2794 	c = cmd_alloc(h);
2795 	if (!c)
2796 		return -ENOMEM;
2797 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2798 		RAID_CTLR_LUNID, TYPE_MSG);
2799 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2800 	c->waiting = NULL;
2801 	enqueue_cmd_and_start_io(h, c);
2802 	/* Don't wait for completion, the reset won't complete.  Don't free
2803 	 * the command either.  This is the last command we will send before
2804 	 * re-initializing everything, so it doesn't matter and won't leak.
2805 	 */
2806 	return 0;
2807 }
2808 
2809 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2810 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2811 	int cmd_type)
2812 {
2813 	int pci_dir = XFER_NONE;
2814 
2815 	c->cmd_type = CMD_IOCTL_PEND;
2816 	c->Header.ReplyQueue = 0;
2817 	if (buff != NULL && size > 0) {
2818 		c->Header.SGList = 1;
2819 		c->Header.SGTotal = 1;
2820 	} else {
2821 		c->Header.SGList = 0;
2822 		c->Header.SGTotal = 0;
2823 	}
2824 	c->Header.Tag.lower = c->busaddr;
2825 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2826 
2827 	c->Request.Type.Type = cmd_type;
2828 	if (cmd_type == TYPE_CMD) {
2829 		switch (cmd) {
2830 		case HPSA_INQUIRY:
2831 			/* are we trying to read a vital product page */
2832 			if (page_code != 0) {
2833 				c->Request.CDB[1] = 0x01;
2834 				c->Request.CDB[2] = page_code;
2835 			}
2836 			c->Request.CDBLen = 6;
2837 			c->Request.Type.Attribute = ATTR_SIMPLE;
2838 			c->Request.Type.Direction = XFER_READ;
2839 			c->Request.Timeout = 0;
2840 			c->Request.CDB[0] = HPSA_INQUIRY;
2841 			c->Request.CDB[4] = size & 0xFF;
2842 			break;
2843 		case HPSA_REPORT_LOG:
2844 		case HPSA_REPORT_PHYS:
2845 			/* Talking to controller so It's a physical command
2846 			   mode = 00 target = 0.  Nothing to write.
2847 			 */
2848 			c->Request.CDBLen = 12;
2849 			c->Request.Type.Attribute = ATTR_SIMPLE;
2850 			c->Request.Type.Direction = XFER_READ;
2851 			c->Request.Timeout = 0;
2852 			c->Request.CDB[0] = cmd;
2853 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2854 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2855 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2856 			c->Request.CDB[9] = size & 0xFF;
2857 			break;
2858 		case HPSA_CACHE_FLUSH:
2859 			c->Request.CDBLen = 12;
2860 			c->Request.Type.Attribute = ATTR_SIMPLE;
2861 			c->Request.Type.Direction = XFER_WRITE;
2862 			c->Request.Timeout = 0;
2863 			c->Request.CDB[0] = BMIC_WRITE;
2864 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2865 			break;
2866 		case TEST_UNIT_READY:
2867 			c->Request.CDBLen = 6;
2868 			c->Request.Type.Attribute = ATTR_SIMPLE;
2869 			c->Request.Type.Direction = XFER_NONE;
2870 			c->Request.Timeout = 0;
2871 			break;
2872 		default:
2873 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2874 			BUG();
2875 			return;
2876 		}
2877 	} else if (cmd_type == TYPE_MSG) {
2878 		switch (cmd) {
2879 
2880 		case  HPSA_DEVICE_RESET_MSG:
2881 			c->Request.CDBLen = 16;
2882 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2883 			c->Request.Type.Attribute = ATTR_SIMPLE;
2884 			c->Request.Type.Direction = XFER_NONE;
2885 			c->Request.Timeout = 0; /* Don't time out */
2886 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2887 			c->Request.CDB[0] =  cmd;
2888 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2889 			/* If bytes 4-7 are zero, it means reset the */
2890 			/* LunID device */
2891 			c->Request.CDB[4] = 0x00;
2892 			c->Request.CDB[5] = 0x00;
2893 			c->Request.CDB[6] = 0x00;
2894 			c->Request.CDB[7] = 0x00;
2895 		break;
2896 
2897 		default:
2898 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2899 				cmd);
2900 			BUG();
2901 		}
2902 	} else {
2903 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2904 		BUG();
2905 	}
2906 
2907 	switch (c->Request.Type.Direction) {
2908 	case XFER_READ:
2909 		pci_dir = PCI_DMA_FROMDEVICE;
2910 		break;
2911 	case XFER_WRITE:
2912 		pci_dir = PCI_DMA_TODEVICE;
2913 		break;
2914 	case XFER_NONE:
2915 		pci_dir = PCI_DMA_NONE;
2916 		break;
2917 	default:
2918 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2919 	}
2920 
2921 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2922 
2923 	return;
2924 }
2925 
2926 /*
2927  * Map (physical) PCI mem into (virtual) kernel space
2928  */
2929 static void __iomem *remap_pci_mem(ulong base, ulong size)
2930 {
2931 	ulong page_base = ((ulong) base) & PAGE_MASK;
2932 	ulong page_offs = ((ulong) base) - page_base;
2933 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2934 
2935 	return page_remapped ? (page_remapped + page_offs) : NULL;
2936 }
2937 
2938 /* Takes cmds off the submission queue and sends them to the hardware,
2939  * then puts them on the queue of cmds waiting for completion.
2940  */
2941 static void start_io(struct ctlr_info *h)
2942 {
2943 	struct CommandList *c;
2944 
2945 	while (!list_empty(&h->reqQ)) {
2946 		c = list_entry(h->reqQ.next, struct CommandList, list);
2947 		/* can't do anything if fifo is full */
2948 		if ((h->access.fifo_full(h))) {
2949 			dev_warn(&h->pdev->dev, "fifo full\n");
2950 			break;
2951 		}
2952 
2953 		/* Get the first entry from the Request Q */
2954 		removeQ(c);
2955 		h->Qdepth--;
2956 
2957 		/* Tell the controller execute command */
2958 		h->access.submit_command(h, c);
2959 
2960 		/* Put job onto the completed Q */
2961 		addQ(&h->cmpQ, c);
2962 	}
2963 }
2964 
2965 static inline unsigned long get_next_completion(struct ctlr_info *h)
2966 {
2967 	return h->access.command_completed(h);
2968 }
2969 
2970 static inline bool interrupt_pending(struct ctlr_info *h)
2971 {
2972 	return h->access.intr_pending(h);
2973 }
2974 
2975 static inline long interrupt_not_for_us(struct ctlr_info *h)
2976 {
2977 	return (h->access.intr_pending(h) == 0) ||
2978 		(h->interrupts_enabled == 0);
2979 }
2980 
2981 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2982 	u32 raw_tag)
2983 {
2984 	if (unlikely(tag_index >= h->nr_cmds)) {
2985 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2986 		return 1;
2987 	}
2988 	return 0;
2989 }
2990 
2991 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2992 {
2993 	removeQ(c);
2994 	if (likely(c->cmd_type == CMD_SCSI))
2995 		complete_scsi_command(c);
2996 	else if (c->cmd_type == CMD_IOCTL_PEND)
2997 		complete(c->waiting);
2998 }
2999 
3000 static inline u32 hpsa_tag_contains_index(u32 tag)
3001 {
3002 	return tag & DIRECT_LOOKUP_BIT;
3003 }
3004 
3005 static inline u32 hpsa_tag_to_index(u32 tag)
3006 {
3007 	return tag >> DIRECT_LOOKUP_SHIFT;
3008 }
3009 
3010 
3011 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3012 {
3013 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3014 #define HPSA_SIMPLE_ERROR_BITS 0x03
3015 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3016 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3017 	return tag & ~HPSA_PERF_ERROR_BITS;
3018 }
3019 
3020 /* process completion of an indexed ("direct lookup") command */
3021 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3022 	u32 raw_tag)
3023 {
3024 	u32 tag_index;
3025 	struct CommandList *c;
3026 
3027 	tag_index = hpsa_tag_to_index(raw_tag);
3028 	if (bad_tag(h, tag_index, raw_tag))
3029 		return next_command(h);
3030 	c = h->cmd_pool + tag_index;
3031 	finish_cmd(c, raw_tag);
3032 	return next_command(h);
3033 }
3034 
3035 /* process completion of a non-indexed command */
3036 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3037 	u32 raw_tag)
3038 {
3039 	u32 tag;
3040 	struct CommandList *c = NULL;
3041 
3042 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3043 	list_for_each_entry(c, &h->cmpQ, list) {
3044 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3045 			finish_cmd(c, raw_tag);
3046 			return next_command(h);
3047 		}
3048 	}
3049 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3050 	return next_command(h);
3051 }
3052 
3053 /* Some controllers, like p400, will give us one interrupt
3054  * after a soft reset, even if we turned interrupts off.
3055  * Only need to check for this in the hpsa_xxx_discard_completions
3056  * functions.
3057  */
3058 static int ignore_bogus_interrupt(struct ctlr_info *h)
3059 {
3060 	if (likely(!reset_devices))
3061 		return 0;
3062 
3063 	if (likely(h->interrupts_enabled))
3064 		return 0;
3065 
3066 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3067 		"(known firmware bug.)  Ignoring.\n");
3068 
3069 	return 1;
3070 }
3071 
3072 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3073 {
3074 	struct ctlr_info *h = dev_id;
3075 	unsigned long flags;
3076 	u32 raw_tag;
3077 
3078 	if (ignore_bogus_interrupt(h))
3079 		return IRQ_NONE;
3080 
3081 	if (interrupt_not_for_us(h))
3082 		return IRQ_NONE;
3083 	spin_lock_irqsave(&h->lock, flags);
3084 	while (interrupt_pending(h)) {
3085 		raw_tag = get_next_completion(h);
3086 		while (raw_tag != FIFO_EMPTY)
3087 			raw_tag = next_command(h);
3088 	}
3089 	spin_unlock_irqrestore(&h->lock, flags);
3090 	return IRQ_HANDLED;
3091 }
3092 
3093 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3094 {
3095 	struct ctlr_info *h = dev_id;
3096 	unsigned long flags;
3097 	u32 raw_tag;
3098 
3099 	if (ignore_bogus_interrupt(h))
3100 		return IRQ_NONE;
3101 
3102 	spin_lock_irqsave(&h->lock, flags);
3103 	raw_tag = get_next_completion(h);
3104 	while (raw_tag != FIFO_EMPTY)
3105 		raw_tag = next_command(h);
3106 	spin_unlock_irqrestore(&h->lock, flags);
3107 	return IRQ_HANDLED;
3108 }
3109 
3110 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3111 {
3112 	struct ctlr_info *h = dev_id;
3113 	unsigned long flags;
3114 	u32 raw_tag;
3115 
3116 	if (interrupt_not_for_us(h))
3117 		return IRQ_NONE;
3118 	spin_lock_irqsave(&h->lock, flags);
3119 	while (interrupt_pending(h)) {
3120 		raw_tag = get_next_completion(h);
3121 		while (raw_tag != FIFO_EMPTY) {
3122 			if (hpsa_tag_contains_index(raw_tag))
3123 				raw_tag = process_indexed_cmd(h, raw_tag);
3124 			else
3125 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3126 		}
3127 	}
3128 	spin_unlock_irqrestore(&h->lock, flags);
3129 	return IRQ_HANDLED;
3130 }
3131 
3132 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3133 {
3134 	struct ctlr_info *h = dev_id;
3135 	unsigned long flags;
3136 	u32 raw_tag;
3137 
3138 	spin_lock_irqsave(&h->lock, flags);
3139 	raw_tag = get_next_completion(h);
3140 	while (raw_tag != FIFO_EMPTY) {
3141 		if (hpsa_tag_contains_index(raw_tag))
3142 			raw_tag = process_indexed_cmd(h, raw_tag);
3143 		else
3144 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3145 	}
3146 	spin_unlock_irqrestore(&h->lock, flags);
3147 	return IRQ_HANDLED;
3148 }
3149 
3150 /* Send a message CDB to the firmware. Careful, this only works
3151  * in simple mode, not performant mode due to the tag lookup.
3152  * We only ever use this immediately after a controller reset.
3153  */
3154 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3155 						unsigned char type)
3156 {
3157 	struct Command {
3158 		struct CommandListHeader CommandHeader;
3159 		struct RequestBlock Request;
3160 		struct ErrDescriptor ErrorDescriptor;
3161 	};
3162 	struct Command *cmd;
3163 	static const size_t cmd_sz = sizeof(*cmd) +
3164 					sizeof(cmd->ErrorDescriptor);
3165 	dma_addr_t paddr64;
3166 	uint32_t paddr32, tag;
3167 	void __iomem *vaddr;
3168 	int i, err;
3169 
3170 	vaddr = pci_ioremap_bar(pdev, 0);
3171 	if (vaddr == NULL)
3172 		return -ENOMEM;
3173 
3174 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3175 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3176 	 * memory.
3177 	 */
3178 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3179 	if (err) {
3180 		iounmap(vaddr);
3181 		return -ENOMEM;
3182 	}
3183 
3184 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3185 	if (cmd == NULL) {
3186 		iounmap(vaddr);
3187 		return -ENOMEM;
3188 	}
3189 
3190 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3191 	 * although there's no guarantee, we assume that the address is at
3192 	 * least 4-byte aligned (most likely, it's page-aligned).
3193 	 */
3194 	paddr32 = paddr64;
3195 
3196 	cmd->CommandHeader.ReplyQueue = 0;
3197 	cmd->CommandHeader.SGList = 0;
3198 	cmd->CommandHeader.SGTotal = 0;
3199 	cmd->CommandHeader.Tag.lower = paddr32;
3200 	cmd->CommandHeader.Tag.upper = 0;
3201 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3202 
3203 	cmd->Request.CDBLen = 16;
3204 	cmd->Request.Type.Type = TYPE_MSG;
3205 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3206 	cmd->Request.Type.Direction = XFER_NONE;
3207 	cmd->Request.Timeout = 0; /* Don't time out */
3208 	cmd->Request.CDB[0] = opcode;
3209 	cmd->Request.CDB[1] = type;
3210 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3211 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3212 	cmd->ErrorDescriptor.Addr.upper = 0;
3213 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3214 
3215 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3216 
3217 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3218 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3219 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3220 			break;
3221 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3222 	}
3223 
3224 	iounmap(vaddr);
3225 
3226 	/* we leak the DMA buffer here ... no choice since the controller could
3227 	 *  still complete the command.
3228 	 */
3229 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3230 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3231 			opcode, type);
3232 		return -ETIMEDOUT;
3233 	}
3234 
3235 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3236 
3237 	if (tag & HPSA_ERROR_BIT) {
3238 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3239 			opcode, type);
3240 		return -EIO;
3241 	}
3242 
3243 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3244 		opcode, type);
3245 	return 0;
3246 }
3247 
3248 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3249 
3250 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3251 	void * __iomem vaddr, u32 use_doorbell)
3252 {
3253 	u16 pmcsr;
3254 	int pos;
3255 
3256 	if (use_doorbell) {
3257 		/* For everything after the P600, the PCI power state method
3258 		 * of resetting the controller doesn't work, so we have this
3259 		 * other way using the doorbell register.
3260 		 */
3261 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3262 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3263 	} else { /* Try to do it the PCI power state way */
3264 
3265 		/* Quoting from the Open CISS Specification: "The Power
3266 		 * Management Control/Status Register (CSR) controls the power
3267 		 * state of the device.  The normal operating state is D0,
3268 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3269 		 * the controller, place the interface device in D3 then to D0,
3270 		 * this causes a secondary PCI reset which will reset the
3271 		 * controller." */
3272 
3273 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3274 		if (pos == 0) {
3275 			dev_err(&pdev->dev,
3276 				"hpsa_reset_controller: "
3277 				"PCI PM not supported\n");
3278 			return -ENODEV;
3279 		}
3280 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3281 		/* enter the D3hot power management state */
3282 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3283 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3284 		pmcsr |= PCI_D3hot;
3285 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3286 
3287 		msleep(500);
3288 
3289 		/* enter the D0 power management state */
3290 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3291 		pmcsr |= PCI_D0;
3292 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3293 	}
3294 	return 0;
3295 }
3296 
3297 static __devinit void init_driver_version(char *driver_version, int len)
3298 {
3299 	memset(driver_version, 0, len);
3300 	strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3301 }
3302 
3303 static __devinit int write_driver_ver_to_cfgtable(
3304 	struct CfgTable __iomem *cfgtable)
3305 {
3306 	char *driver_version;
3307 	int i, size = sizeof(cfgtable->driver_version);
3308 
3309 	driver_version = kmalloc(size, GFP_KERNEL);
3310 	if (!driver_version)
3311 		return -ENOMEM;
3312 
3313 	init_driver_version(driver_version, size);
3314 	for (i = 0; i < size; i++)
3315 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3316 	kfree(driver_version);
3317 	return 0;
3318 }
3319 
3320 static __devinit void read_driver_ver_from_cfgtable(
3321 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3322 {
3323 	int i;
3324 
3325 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3326 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3327 }
3328 
3329 static __devinit int controller_reset_failed(
3330 	struct CfgTable __iomem *cfgtable)
3331 {
3332 
3333 	char *driver_ver, *old_driver_ver;
3334 	int rc, size = sizeof(cfgtable->driver_version);
3335 
3336 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3337 	if (!old_driver_ver)
3338 		return -ENOMEM;
3339 	driver_ver = old_driver_ver + size;
3340 
3341 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3342 	 * should have been changed, otherwise we know the reset failed.
3343 	 */
3344 	init_driver_version(old_driver_ver, size);
3345 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3346 	rc = !memcmp(driver_ver, old_driver_ver, size);
3347 	kfree(old_driver_ver);
3348 	return rc;
3349 }
3350 /* This does a hard reset of the controller using PCI power management
3351  * states or the using the doorbell register.
3352  */
3353 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3354 {
3355 	u64 cfg_offset;
3356 	u32 cfg_base_addr;
3357 	u64 cfg_base_addr_index;
3358 	void __iomem *vaddr;
3359 	unsigned long paddr;
3360 	u32 misc_fw_support;
3361 	int rc;
3362 	struct CfgTable __iomem *cfgtable;
3363 	u32 use_doorbell;
3364 	u32 board_id;
3365 	u16 command_register;
3366 
3367 	/* For controllers as old as the P600, this is very nearly
3368 	 * the same thing as
3369 	 *
3370 	 * pci_save_state(pci_dev);
3371 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3372 	 * pci_set_power_state(pci_dev, PCI_D0);
3373 	 * pci_restore_state(pci_dev);
3374 	 *
3375 	 * For controllers newer than the P600, the pci power state
3376 	 * method of resetting doesn't work so we have another way
3377 	 * using the doorbell register.
3378 	 */
3379 
3380 	rc = hpsa_lookup_board_id(pdev, &board_id);
3381 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3382 		dev_warn(&pdev->dev, "Not resetting device.\n");
3383 		return -ENODEV;
3384 	}
3385 
3386 	/* if controller is soft- but not hard resettable... */
3387 	if (!ctlr_is_hard_resettable(board_id))
3388 		return -ENOTSUPP; /* try soft reset later. */
3389 
3390 	/* Save the PCI command register */
3391 	pci_read_config_word(pdev, 4, &command_register);
3392 	/* Turn the board off.  This is so that later pci_restore_state()
3393 	 * won't turn the board on before the rest of config space is ready.
3394 	 */
3395 	pci_disable_device(pdev);
3396 	pci_save_state(pdev);
3397 
3398 	/* find the first memory BAR, so we can find the cfg table */
3399 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3400 	if (rc)
3401 		return rc;
3402 	vaddr = remap_pci_mem(paddr, 0x250);
3403 	if (!vaddr)
3404 		return -ENOMEM;
3405 
3406 	/* find cfgtable in order to check if reset via doorbell is supported */
3407 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3408 					&cfg_base_addr_index, &cfg_offset);
3409 	if (rc)
3410 		goto unmap_vaddr;
3411 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3412 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3413 	if (!cfgtable) {
3414 		rc = -ENOMEM;
3415 		goto unmap_vaddr;
3416 	}
3417 	rc = write_driver_ver_to_cfgtable(cfgtable);
3418 	if (rc)
3419 		goto unmap_vaddr;
3420 
3421 	/* If reset via doorbell register is supported, use that.
3422 	 * There are two such methods.  Favor the newest method.
3423 	 */
3424 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3425 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3426 	if (use_doorbell) {
3427 		use_doorbell = DOORBELL_CTLR_RESET2;
3428 	} else {
3429 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3430 		if (use_doorbell) {
3431 			dev_warn(&pdev->dev, "Controller claims that "
3432 				"'Bit 2 doorbell reset' is "
3433 				"supported, but not 'bit 5 doorbell reset'.  "
3434 				"Firmware update is recommended.\n");
3435 			rc = -ENOTSUPP; /* try soft reset */
3436 			goto unmap_cfgtable;
3437 		}
3438 	}
3439 
3440 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3441 	if (rc)
3442 		goto unmap_cfgtable;
3443 
3444 	pci_restore_state(pdev);
3445 	rc = pci_enable_device(pdev);
3446 	if (rc) {
3447 		dev_warn(&pdev->dev, "failed to enable device.\n");
3448 		goto unmap_cfgtable;
3449 	}
3450 	pci_write_config_word(pdev, 4, command_register);
3451 
3452 	/* Some devices (notably the HP Smart Array 5i Controller)
3453 	   need a little pause here */
3454 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3455 
3456 	/* Wait for board to become not ready, then ready. */
3457 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3458 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3459 	if (rc) {
3460 		dev_warn(&pdev->dev,
3461 			"failed waiting for board to reset."
3462 			" Will try soft reset.\n");
3463 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3464 		goto unmap_cfgtable;
3465 	}
3466 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3467 	if (rc) {
3468 		dev_warn(&pdev->dev,
3469 			"failed waiting for board to become ready "
3470 			"after hard reset\n");
3471 		goto unmap_cfgtable;
3472 	}
3473 
3474 	rc = controller_reset_failed(vaddr);
3475 	if (rc < 0)
3476 		goto unmap_cfgtable;
3477 	if (rc) {
3478 		dev_warn(&pdev->dev, "Unable to successfully reset "
3479 			"controller. Will try soft reset.\n");
3480 		rc = -ENOTSUPP;
3481 	} else {
3482 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3483 	}
3484 
3485 unmap_cfgtable:
3486 	iounmap(cfgtable);
3487 
3488 unmap_vaddr:
3489 	iounmap(vaddr);
3490 	return rc;
3491 }
3492 
3493 /*
3494  *  We cannot read the structure directly, for portability we must use
3495  *   the io functions.
3496  *   This is for debug only.
3497  */
3498 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3499 {
3500 #ifdef HPSA_DEBUG
3501 	int i;
3502 	char temp_name[17];
3503 
3504 	dev_info(dev, "Controller Configuration information\n");
3505 	dev_info(dev, "------------------------------------\n");
3506 	for (i = 0; i < 4; i++)
3507 		temp_name[i] = readb(&(tb->Signature[i]));
3508 	temp_name[4] = '\0';
3509 	dev_info(dev, "   Signature = %s\n", temp_name);
3510 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3511 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3512 	       readl(&(tb->TransportSupport)));
3513 	dev_info(dev, "   Transport methods active = 0x%x\n",
3514 	       readl(&(tb->TransportActive)));
3515 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3516 	       readl(&(tb->HostWrite.TransportRequest)));
3517 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3518 	       readl(&(tb->HostWrite.CoalIntDelay)));
3519 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3520 	       readl(&(tb->HostWrite.CoalIntCount)));
3521 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3522 	       readl(&(tb->CmdsOutMax)));
3523 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3524 	for (i = 0; i < 16; i++)
3525 		temp_name[i] = readb(&(tb->ServerName[i]));
3526 	temp_name[16] = '\0';
3527 	dev_info(dev, "   Server Name = %s\n", temp_name);
3528 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3529 		readl(&(tb->HeartBeat)));
3530 #endif				/* HPSA_DEBUG */
3531 }
3532 
3533 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3534 {
3535 	int i, offset, mem_type, bar_type;
3536 
3537 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3538 		return 0;
3539 	offset = 0;
3540 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3541 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3542 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3543 			offset += 4;
3544 		else {
3545 			mem_type = pci_resource_flags(pdev, i) &
3546 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3547 			switch (mem_type) {
3548 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3549 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3550 				offset += 4;	/* 32 bit */
3551 				break;
3552 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3553 				offset += 8;
3554 				break;
3555 			default:	/* reserved in PCI 2.2 */
3556 				dev_warn(&pdev->dev,
3557 				       "base address is invalid\n");
3558 				return -1;
3559 				break;
3560 			}
3561 		}
3562 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3563 			return i + 1;
3564 	}
3565 	return -1;
3566 }
3567 
3568 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3569  * controllers that are capable. If not, we use IO-APIC mode.
3570  */
3571 
3572 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3573 {
3574 #ifdef CONFIG_PCI_MSI
3575 	int err;
3576 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3577 	{0, 2}, {0, 3}
3578 	};
3579 
3580 	/* Some boards advertise MSI but don't really support it */
3581 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3582 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3583 		goto default_int_mode;
3584 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3585 		dev_info(&h->pdev->dev, "MSIX\n");
3586 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3587 		if (!err) {
3588 			h->intr[0] = hpsa_msix_entries[0].vector;
3589 			h->intr[1] = hpsa_msix_entries[1].vector;
3590 			h->intr[2] = hpsa_msix_entries[2].vector;
3591 			h->intr[3] = hpsa_msix_entries[3].vector;
3592 			h->msix_vector = 1;
3593 			return;
3594 		}
3595 		if (err > 0) {
3596 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3597 			       "available\n", err);
3598 			goto default_int_mode;
3599 		} else {
3600 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3601 			       err);
3602 			goto default_int_mode;
3603 		}
3604 	}
3605 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3606 		dev_info(&h->pdev->dev, "MSI\n");
3607 		if (!pci_enable_msi(h->pdev))
3608 			h->msi_vector = 1;
3609 		else
3610 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3611 	}
3612 default_int_mode:
3613 #endif				/* CONFIG_PCI_MSI */
3614 	/* if we get here we're going to use the default interrupt mode */
3615 	h->intr[h->intr_mode] = h->pdev->irq;
3616 }
3617 
3618 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3619 {
3620 	int i;
3621 	u32 subsystem_vendor_id, subsystem_device_id;
3622 
3623 	subsystem_vendor_id = pdev->subsystem_vendor;
3624 	subsystem_device_id = pdev->subsystem_device;
3625 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3626 		    subsystem_vendor_id;
3627 
3628 	for (i = 0; i < ARRAY_SIZE(products); i++)
3629 		if (*board_id == products[i].board_id)
3630 			return i;
3631 
3632 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3633 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3634 		!hpsa_allow_any) {
3635 		dev_warn(&pdev->dev, "unrecognized board ID: "
3636 			"0x%08x, ignoring.\n", *board_id);
3637 			return -ENODEV;
3638 	}
3639 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3640 }
3641 
3642 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3643 {
3644 	u16 command;
3645 
3646 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3647 	return ((command & PCI_COMMAND_MEMORY) == 0);
3648 }
3649 
3650 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3651 	unsigned long *memory_bar)
3652 {
3653 	int i;
3654 
3655 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3656 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3657 			/* addressing mode bits already removed */
3658 			*memory_bar = pci_resource_start(pdev, i);
3659 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3660 				*memory_bar);
3661 			return 0;
3662 		}
3663 	dev_warn(&pdev->dev, "no memory BAR found\n");
3664 	return -ENODEV;
3665 }
3666 
3667 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3668 	void __iomem *vaddr, int wait_for_ready)
3669 {
3670 	int i, iterations;
3671 	u32 scratchpad;
3672 	if (wait_for_ready)
3673 		iterations = HPSA_BOARD_READY_ITERATIONS;
3674 	else
3675 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3676 
3677 	for (i = 0; i < iterations; i++) {
3678 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3679 		if (wait_for_ready) {
3680 			if (scratchpad == HPSA_FIRMWARE_READY)
3681 				return 0;
3682 		} else {
3683 			if (scratchpad != HPSA_FIRMWARE_READY)
3684 				return 0;
3685 		}
3686 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3687 	}
3688 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3689 	return -ENODEV;
3690 }
3691 
3692 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3693 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3694 	u64 *cfg_offset)
3695 {
3696 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3697 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3698 	*cfg_base_addr &= (u32) 0x0000ffff;
3699 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3700 	if (*cfg_base_addr_index == -1) {
3701 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3702 		return -ENODEV;
3703 	}
3704 	return 0;
3705 }
3706 
3707 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3708 {
3709 	u64 cfg_offset;
3710 	u32 cfg_base_addr;
3711 	u64 cfg_base_addr_index;
3712 	u32 trans_offset;
3713 	int rc;
3714 
3715 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3716 		&cfg_base_addr_index, &cfg_offset);
3717 	if (rc)
3718 		return rc;
3719 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3720 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3721 	if (!h->cfgtable)
3722 		return -ENOMEM;
3723 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3724 	if (rc)
3725 		return rc;
3726 	/* Find performant mode table. */
3727 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3728 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3729 				cfg_base_addr_index)+cfg_offset+trans_offset,
3730 				sizeof(*h->transtable));
3731 	if (!h->transtable)
3732 		return -ENOMEM;
3733 	return 0;
3734 }
3735 
3736 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3737 {
3738 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3739 
3740 	/* Limit commands in memory limited kdump scenario. */
3741 	if (reset_devices && h->max_commands > 32)
3742 		h->max_commands = 32;
3743 
3744 	if (h->max_commands < 16) {
3745 		dev_warn(&h->pdev->dev, "Controller reports "
3746 			"max supported commands of %d, an obvious lie. "
3747 			"Using 16.  Ensure that firmware is up to date.\n",
3748 			h->max_commands);
3749 		h->max_commands = 16;
3750 	}
3751 }
3752 
3753 /* Interrogate the hardware for some limits:
3754  * max commands, max SG elements without chaining, and with chaining,
3755  * SG chain block size, etc.
3756  */
3757 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3758 {
3759 	hpsa_get_max_perf_mode_cmds(h);
3760 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3761 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3762 	/*
3763 	 * Limit in-command s/g elements to 32 save dma'able memory.
3764 	 * Howvever spec says if 0, use 31
3765 	 */
3766 	h->max_cmd_sg_entries = 31;
3767 	if (h->maxsgentries > 512) {
3768 		h->max_cmd_sg_entries = 32;
3769 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3770 		h->maxsgentries--; /* save one for chain pointer */
3771 	} else {
3772 		h->maxsgentries = 31; /* default to traditional values */
3773 		h->chainsize = 0;
3774 	}
3775 }
3776 
3777 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3778 {
3779 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3780 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3781 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3782 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3783 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3784 		return false;
3785 	}
3786 	return true;
3787 }
3788 
3789 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3790 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3791 {
3792 #ifdef CONFIG_X86
3793 	u32 prefetch;
3794 
3795 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3796 	prefetch |= 0x100;
3797 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3798 #endif
3799 }
3800 
3801 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3802  * in a prefetch beyond physical memory.
3803  */
3804 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3805 {
3806 	u32 dma_prefetch;
3807 
3808 	if (h->board_id != 0x3225103C)
3809 		return;
3810 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3811 	dma_prefetch |= 0x8000;
3812 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3813 }
3814 
3815 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3816 {
3817 	int i;
3818 	u32 doorbell_value;
3819 	unsigned long flags;
3820 
3821 	/* under certain very rare conditions, this can take awhile.
3822 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3823 	 * as we enter this code.)
3824 	 */
3825 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3826 		spin_lock_irqsave(&h->lock, flags);
3827 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3828 		spin_unlock_irqrestore(&h->lock, flags);
3829 		if (!(doorbell_value & CFGTBL_ChangeReq))
3830 			break;
3831 		/* delay and try again */
3832 		usleep_range(10000, 20000);
3833 	}
3834 }
3835 
3836 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3837 {
3838 	u32 trans_support;
3839 
3840 	trans_support = readl(&(h->cfgtable->TransportSupport));
3841 	if (!(trans_support & SIMPLE_MODE))
3842 		return -ENOTSUPP;
3843 
3844 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3845 	/* Update the field, and then ring the doorbell */
3846 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3847 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3848 	hpsa_wait_for_mode_change_ack(h);
3849 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3850 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3851 		dev_warn(&h->pdev->dev,
3852 			"unable to get board into simple mode\n");
3853 		return -ENODEV;
3854 	}
3855 	h->transMethod = CFGTBL_Trans_Simple;
3856 	return 0;
3857 }
3858 
3859 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3860 {
3861 	int prod_index, err;
3862 
3863 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3864 	if (prod_index < 0)
3865 		return -ENODEV;
3866 	h->product_name = products[prod_index].product_name;
3867 	h->access = *(products[prod_index].access);
3868 
3869 	if (hpsa_board_disabled(h->pdev)) {
3870 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3871 		return -ENODEV;
3872 	}
3873 	err = pci_enable_device(h->pdev);
3874 	if (err) {
3875 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3876 		return err;
3877 	}
3878 
3879 	err = pci_request_regions(h->pdev, "hpsa");
3880 	if (err) {
3881 		dev_err(&h->pdev->dev,
3882 			"cannot obtain PCI resources, aborting\n");
3883 		return err;
3884 	}
3885 	hpsa_interrupt_mode(h);
3886 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3887 	if (err)
3888 		goto err_out_free_res;
3889 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3890 	if (!h->vaddr) {
3891 		err = -ENOMEM;
3892 		goto err_out_free_res;
3893 	}
3894 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3895 	if (err)
3896 		goto err_out_free_res;
3897 	err = hpsa_find_cfgtables(h);
3898 	if (err)
3899 		goto err_out_free_res;
3900 	hpsa_find_board_params(h);
3901 
3902 	if (!hpsa_CISS_signature_present(h)) {
3903 		err = -ENODEV;
3904 		goto err_out_free_res;
3905 	}
3906 	hpsa_enable_scsi_prefetch(h);
3907 	hpsa_p600_dma_prefetch_quirk(h);
3908 	err = hpsa_enter_simple_mode(h);
3909 	if (err)
3910 		goto err_out_free_res;
3911 	return 0;
3912 
3913 err_out_free_res:
3914 	if (h->transtable)
3915 		iounmap(h->transtable);
3916 	if (h->cfgtable)
3917 		iounmap(h->cfgtable);
3918 	if (h->vaddr)
3919 		iounmap(h->vaddr);
3920 	/*
3921 	 * Deliberately omit pci_disable_device(): it does something nasty to
3922 	 * Smart Array controllers that pci_enable_device does not undo
3923 	 */
3924 	pci_release_regions(h->pdev);
3925 	return err;
3926 }
3927 
3928 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3929 {
3930 	int rc;
3931 
3932 #define HBA_INQUIRY_BYTE_COUNT 64
3933 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3934 	if (!h->hba_inquiry_data)
3935 		return;
3936 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3937 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3938 	if (rc != 0) {
3939 		kfree(h->hba_inquiry_data);
3940 		h->hba_inquiry_data = NULL;
3941 	}
3942 }
3943 
3944 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3945 {
3946 	int rc, i;
3947 
3948 	if (!reset_devices)
3949 		return 0;
3950 
3951 	/* Reset the controller with a PCI power-cycle or via doorbell */
3952 	rc = hpsa_kdump_hard_reset_controller(pdev);
3953 
3954 	/* -ENOTSUPP here means we cannot reset the controller
3955 	 * but it's already (and still) up and running in
3956 	 * "performant mode".  Or, it might be 640x, which can't reset
3957 	 * due to concerns about shared bbwc between 6402/6404 pair.
3958 	 */
3959 	if (rc == -ENOTSUPP)
3960 		return rc; /* just try to do the kdump anyhow. */
3961 	if (rc)
3962 		return -ENODEV;
3963 
3964 	/* Now try to get the controller to respond to a no-op */
3965 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3966 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3967 		if (hpsa_noop(pdev) == 0)
3968 			break;
3969 		else
3970 			dev_warn(&pdev->dev, "no-op failed%s\n",
3971 					(i < 11 ? "; re-trying" : ""));
3972 	}
3973 	return 0;
3974 }
3975 
3976 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3977 {
3978 	h->cmd_pool_bits = kzalloc(
3979 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3980 		sizeof(unsigned long), GFP_KERNEL);
3981 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3982 		    h->nr_cmds * sizeof(*h->cmd_pool),
3983 		    &(h->cmd_pool_dhandle));
3984 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3985 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3986 		    &(h->errinfo_pool_dhandle));
3987 	if ((h->cmd_pool_bits == NULL)
3988 	    || (h->cmd_pool == NULL)
3989 	    || (h->errinfo_pool == NULL)) {
3990 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3991 		return -ENOMEM;
3992 	}
3993 	return 0;
3994 }
3995 
3996 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3997 {
3998 	kfree(h->cmd_pool_bits);
3999 	if (h->cmd_pool)
4000 		pci_free_consistent(h->pdev,
4001 			    h->nr_cmds * sizeof(struct CommandList),
4002 			    h->cmd_pool, h->cmd_pool_dhandle);
4003 	if (h->errinfo_pool)
4004 		pci_free_consistent(h->pdev,
4005 			    h->nr_cmds * sizeof(struct ErrorInfo),
4006 			    h->errinfo_pool,
4007 			    h->errinfo_pool_dhandle);
4008 }
4009 
4010 static int hpsa_request_irq(struct ctlr_info *h,
4011 	irqreturn_t (*msixhandler)(int, void *),
4012 	irqreturn_t (*intxhandler)(int, void *))
4013 {
4014 	int rc;
4015 
4016 	if (h->msix_vector || h->msi_vector)
4017 		rc = request_irq(h->intr[h->intr_mode], msixhandler,
4018 				IRQF_DISABLED, h->devname, h);
4019 	else
4020 		rc = request_irq(h->intr[h->intr_mode], intxhandler,
4021 				IRQF_DISABLED, h->devname, h);
4022 	if (rc) {
4023 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4024 		       h->intr[h->intr_mode], h->devname);
4025 		return -ENODEV;
4026 	}
4027 	return 0;
4028 }
4029 
4030 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4031 {
4032 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4033 		HPSA_RESET_TYPE_CONTROLLER)) {
4034 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4035 		return -EIO;
4036 	}
4037 
4038 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4039 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4040 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4041 		return -1;
4042 	}
4043 
4044 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4045 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4046 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4047 			"after soft reset.\n");
4048 		return -1;
4049 	}
4050 
4051 	return 0;
4052 }
4053 
4054 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4055 {
4056 	free_irq(h->intr[h->intr_mode], h);
4057 #ifdef CONFIG_PCI_MSI
4058 	if (h->msix_vector)
4059 		pci_disable_msix(h->pdev);
4060 	else if (h->msi_vector)
4061 		pci_disable_msi(h->pdev);
4062 #endif /* CONFIG_PCI_MSI */
4063 	hpsa_free_sg_chain_blocks(h);
4064 	hpsa_free_cmd_pool(h);
4065 	kfree(h->blockFetchTable);
4066 	pci_free_consistent(h->pdev, h->reply_pool_size,
4067 		h->reply_pool, h->reply_pool_dhandle);
4068 	if (h->vaddr)
4069 		iounmap(h->vaddr);
4070 	if (h->transtable)
4071 		iounmap(h->transtable);
4072 	if (h->cfgtable)
4073 		iounmap(h->cfgtable);
4074 	pci_release_regions(h->pdev);
4075 	kfree(h);
4076 }
4077 
4078 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4079 				    const struct pci_device_id *ent)
4080 {
4081 	int dac, rc;
4082 	struct ctlr_info *h;
4083 	int try_soft_reset = 0;
4084 	unsigned long flags;
4085 
4086 	if (number_of_controllers == 0)
4087 		printk(KERN_INFO DRIVER_NAME "\n");
4088 
4089 	rc = hpsa_init_reset_devices(pdev);
4090 	if (rc) {
4091 		if (rc != -ENOTSUPP)
4092 			return rc;
4093 		/* If the reset fails in a particular way (it has no way to do
4094 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4095 		 * a soft reset once we get the controller configured up to the
4096 		 * point that it can accept a command.
4097 		 */
4098 		try_soft_reset = 1;
4099 		rc = 0;
4100 	}
4101 
4102 reinit_after_soft_reset:
4103 
4104 	/* Command structures must be aligned on a 32-byte boundary because
4105 	 * the 5 lower bits of the address are used by the hardware. and by
4106 	 * the driver.  See comments in hpsa.h for more info.
4107 	 */
4108 #define COMMANDLIST_ALIGNMENT 32
4109 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4110 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4111 	if (!h)
4112 		return -ENOMEM;
4113 
4114 	h->pdev = pdev;
4115 	h->busy_initializing = 1;
4116 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4117 	INIT_LIST_HEAD(&h->cmpQ);
4118 	INIT_LIST_HEAD(&h->reqQ);
4119 	spin_lock_init(&h->lock);
4120 	spin_lock_init(&h->scan_lock);
4121 	rc = hpsa_pci_init(h);
4122 	if (rc != 0)
4123 		goto clean1;
4124 
4125 	sprintf(h->devname, "hpsa%d", number_of_controllers);
4126 	h->ctlr = number_of_controllers;
4127 	number_of_controllers++;
4128 
4129 	/* configure PCI DMA stuff */
4130 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4131 	if (rc == 0) {
4132 		dac = 1;
4133 	} else {
4134 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4135 		if (rc == 0) {
4136 			dac = 0;
4137 		} else {
4138 			dev_err(&pdev->dev, "no suitable DMA available\n");
4139 			goto clean1;
4140 		}
4141 	}
4142 
4143 	/* make sure the board interrupts are off */
4144 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4145 
4146 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4147 		goto clean2;
4148 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4149 	       h->devname, pdev->device,
4150 	       h->intr[h->intr_mode], dac ? "" : " not");
4151 	if (hpsa_allocate_cmd_pool(h))
4152 		goto clean4;
4153 	if (hpsa_allocate_sg_chain_blocks(h))
4154 		goto clean4;
4155 	init_waitqueue_head(&h->scan_wait_queue);
4156 	h->scan_finished = 1; /* no scan currently in progress */
4157 
4158 	pci_set_drvdata(pdev, h);
4159 	h->ndevices = 0;
4160 	h->scsi_host = NULL;
4161 	spin_lock_init(&h->devlock);
4162 	hpsa_put_ctlr_into_performant_mode(h);
4163 
4164 	/* At this point, the controller is ready to take commands.
4165 	 * Now, if reset_devices and the hard reset didn't work, try
4166 	 * the soft reset and see if that works.
4167 	 */
4168 	if (try_soft_reset) {
4169 
4170 		/* This is kind of gross.  We may or may not get a completion
4171 		 * from the soft reset command, and if we do, then the value
4172 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4173 		 * after the reset throwing away any completions we get during
4174 		 * that time.  Unregister the interrupt handler and register
4175 		 * fake ones to scoop up any residual completions.
4176 		 */
4177 		spin_lock_irqsave(&h->lock, flags);
4178 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4179 		spin_unlock_irqrestore(&h->lock, flags);
4180 		free_irq(h->intr[h->intr_mode], h);
4181 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4182 					hpsa_intx_discard_completions);
4183 		if (rc) {
4184 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4185 				"soft reset.\n");
4186 			goto clean4;
4187 		}
4188 
4189 		rc = hpsa_kdump_soft_reset(h);
4190 		if (rc)
4191 			/* Neither hard nor soft reset worked, we're hosed. */
4192 			goto clean4;
4193 
4194 		dev_info(&h->pdev->dev, "Board READY.\n");
4195 		dev_info(&h->pdev->dev,
4196 			"Waiting for stale completions to drain.\n");
4197 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4198 		msleep(10000);
4199 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4200 
4201 		rc = controller_reset_failed(h->cfgtable);
4202 		if (rc)
4203 			dev_info(&h->pdev->dev,
4204 				"Soft reset appears to have failed.\n");
4205 
4206 		/* since the controller's reset, we have to go back and re-init
4207 		 * everything.  Easiest to just forget what we've done and do it
4208 		 * all over again.
4209 		 */
4210 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4211 		try_soft_reset = 0;
4212 		if (rc)
4213 			/* don't go to clean4, we already unallocated */
4214 			return -ENODEV;
4215 
4216 		goto reinit_after_soft_reset;
4217 	}
4218 
4219 	/* Turn the interrupts on so we can service requests */
4220 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4221 
4222 	hpsa_hba_inquiry(h);
4223 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4224 	h->busy_initializing = 0;
4225 	return 1;
4226 
4227 clean4:
4228 	hpsa_free_sg_chain_blocks(h);
4229 	hpsa_free_cmd_pool(h);
4230 	free_irq(h->intr[h->intr_mode], h);
4231 clean2:
4232 clean1:
4233 	h->busy_initializing = 0;
4234 	kfree(h);
4235 	return rc;
4236 }
4237 
4238 static void hpsa_flush_cache(struct ctlr_info *h)
4239 {
4240 	char *flush_buf;
4241 	struct CommandList *c;
4242 
4243 	flush_buf = kzalloc(4, GFP_KERNEL);
4244 	if (!flush_buf)
4245 		return;
4246 
4247 	c = cmd_special_alloc(h);
4248 	if (!c) {
4249 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4250 		goto out_of_memory;
4251 	}
4252 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4253 		RAID_CTLR_LUNID, TYPE_CMD);
4254 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4255 	if (c->err_info->CommandStatus != 0)
4256 		dev_warn(&h->pdev->dev,
4257 			"error flushing cache on controller\n");
4258 	cmd_special_free(h, c);
4259 out_of_memory:
4260 	kfree(flush_buf);
4261 }
4262 
4263 static void hpsa_shutdown(struct pci_dev *pdev)
4264 {
4265 	struct ctlr_info *h;
4266 
4267 	h = pci_get_drvdata(pdev);
4268 	/* Turn board interrupts off  and send the flush cache command
4269 	 * sendcmd will turn off interrupt, and send the flush...
4270 	 * To write all data in the battery backed cache to disks
4271 	 */
4272 	hpsa_flush_cache(h);
4273 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4274 	free_irq(h->intr[h->intr_mode], h);
4275 #ifdef CONFIG_PCI_MSI
4276 	if (h->msix_vector)
4277 		pci_disable_msix(h->pdev);
4278 	else if (h->msi_vector)
4279 		pci_disable_msi(h->pdev);
4280 #endif				/* CONFIG_PCI_MSI */
4281 }
4282 
4283 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4284 {
4285 	struct ctlr_info *h;
4286 
4287 	if (pci_get_drvdata(pdev) == NULL) {
4288 		dev_err(&pdev->dev, "unable to remove device \n");
4289 		return;
4290 	}
4291 	h = pci_get_drvdata(pdev);
4292 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4293 	hpsa_shutdown(pdev);
4294 	iounmap(h->vaddr);
4295 	iounmap(h->transtable);
4296 	iounmap(h->cfgtable);
4297 	hpsa_free_sg_chain_blocks(h);
4298 	pci_free_consistent(h->pdev,
4299 		h->nr_cmds * sizeof(struct CommandList),
4300 		h->cmd_pool, h->cmd_pool_dhandle);
4301 	pci_free_consistent(h->pdev,
4302 		h->nr_cmds * sizeof(struct ErrorInfo),
4303 		h->errinfo_pool, h->errinfo_pool_dhandle);
4304 	pci_free_consistent(h->pdev, h->reply_pool_size,
4305 		h->reply_pool, h->reply_pool_dhandle);
4306 	kfree(h->cmd_pool_bits);
4307 	kfree(h->blockFetchTable);
4308 	kfree(h->hba_inquiry_data);
4309 	/*
4310 	 * Deliberately omit pci_disable_device(): it does something nasty to
4311 	 * Smart Array controllers that pci_enable_device does not undo
4312 	 */
4313 	pci_release_regions(pdev);
4314 	pci_set_drvdata(pdev, NULL);
4315 	kfree(h);
4316 }
4317 
4318 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4319 	__attribute__((unused)) pm_message_t state)
4320 {
4321 	return -ENOSYS;
4322 }
4323 
4324 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4325 {
4326 	return -ENOSYS;
4327 }
4328 
4329 static struct pci_driver hpsa_pci_driver = {
4330 	.name = "hpsa",
4331 	.probe = hpsa_init_one,
4332 	.remove = __devexit_p(hpsa_remove_one),
4333 	.id_table = hpsa_pci_device_id,	/* id_table */
4334 	.shutdown = hpsa_shutdown,
4335 	.suspend = hpsa_suspend,
4336 	.resume = hpsa_resume,
4337 };
4338 
4339 /* Fill in bucket_map[], given nsgs (the max number of
4340  * scatter gather elements supported) and bucket[],
4341  * which is an array of 8 integers.  The bucket[] array
4342  * contains 8 different DMA transfer sizes (in 16
4343  * byte increments) which the controller uses to fetch
4344  * commands.  This function fills in bucket_map[], which
4345  * maps a given number of scatter gather elements to one of
4346  * the 8 DMA transfer sizes.  The point of it is to allow the
4347  * controller to only do as much DMA as needed to fetch the
4348  * command, with the DMA transfer size encoded in the lower
4349  * bits of the command address.
4350  */
4351 static void  calc_bucket_map(int bucket[], int num_buckets,
4352 	int nsgs, int *bucket_map)
4353 {
4354 	int i, j, b, size;
4355 
4356 	/* even a command with 0 SGs requires 4 blocks */
4357 #define MINIMUM_TRANSFER_BLOCKS 4
4358 #define NUM_BUCKETS 8
4359 	/* Note, bucket_map must have nsgs+1 entries. */
4360 	for (i = 0; i <= nsgs; i++) {
4361 		/* Compute size of a command with i SG entries */
4362 		size = i + MINIMUM_TRANSFER_BLOCKS;
4363 		b = num_buckets; /* Assume the biggest bucket */
4364 		/* Find the bucket that is just big enough */
4365 		for (j = 0; j < 8; j++) {
4366 			if (bucket[j] >= size) {
4367 				b = j;
4368 				break;
4369 			}
4370 		}
4371 		/* for a command with i SG entries, use bucket b. */
4372 		bucket_map[i] = b;
4373 	}
4374 }
4375 
4376 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4377 	u32 use_short_tags)
4378 {
4379 	int i;
4380 	unsigned long register_value;
4381 
4382 	/* This is a bit complicated.  There are 8 registers on
4383 	 * the controller which we write to to tell it 8 different
4384 	 * sizes of commands which there may be.  It's a way of
4385 	 * reducing the DMA done to fetch each command.  Encoded into
4386 	 * each command's tag are 3 bits which communicate to the controller
4387 	 * which of the eight sizes that command fits within.  The size of
4388 	 * each command depends on how many scatter gather entries there are.
4389 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4390 	 * with the number of 16-byte blocks a command of that size requires.
4391 	 * The smallest command possible requires 5 such 16 byte blocks.
4392 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4393 	 * blocks.  Note, this only extends to the SG entries contained
4394 	 * within the command block, and does not extend to chained blocks
4395 	 * of SG elements.   bft[] contains the eight values we write to
4396 	 * the registers.  They are not evenly distributed, but have more
4397 	 * sizes for small commands, and fewer sizes for larger commands.
4398 	 */
4399 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4400 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4401 	/*  5 = 1 s/g entry or 4k
4402 	 *  6 = 2 s/g entry or 8k
4403 	 *  8 = 4 s/g entry or 16k
4404 	 * 10 = 6 s/g entry or 24k
4405 	 */
4406 
4407 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4408 
4409 	/* Controller spec: zero out this buffer. */
4410 	memset(h->reply_pool, 0, h->reply_pool_size);
4411 	h->reply_pool_head = h->reply_pool;
4412 
4413 	bft[7] = h->max_sg_entries + 4;
4414 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4415 	for (i = 0; i < 8; i++)
4416 		writel(bft[i], &h->transtable->BlockFetch[i]);
4417 
4418 	/* size of controller ring buffer */
4419 	writel(h->max_commands, &h->transtable->RepQSize);
4420 	writel(1, &h->transtable->RepQCount);
4421 	writel(0, &h->transtable->RepQCtrAddrLow32);
4422 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4423 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4424 	writel(0, &h->transtable->RepQAddr0High32);
4425 	writel(CFGTBL_Trans_Performant | use_short_tags,
4426 		&(h->cfgtable->HostWrite.TransportRequest));
4427 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4428 	hpsa_wait_for_mode_change_ack(h);
4429 	register_value = readl(&(h->cfgtable->TransportActive));
4430 	if (!(register_value & CFGTBL_Trans_Performant)) {
4431 		dev_warn(&h->pdev->dev, "unable to get board into"
4432 					" performant mode\n");
4433 		return;
4434 	}
4435 	/* Change the access methods to the performant access methods */
4436 	h->access = SA5_performant_access;
4437 	h->transMethod = CFGTBL_Trans_Performant;
4438 }
4439 
4440 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4441 {
4442 	u32 trans_support;
4443 
4444 	if (hpsa_simple_mode)
4445 		return;
4446 
4447 	trans_support = readl(&(h->cfgtable->TransportSupport));
4448 	if (!(trans_support & PERFORMANT_MODE))
4449 		return;
4450 
4451 	hpsa_get_max_perf_mode_cmds(h);
4452 	h->max_sg_entries = 32;
4453 	/* Performant mode ring buffer and supporting data structures */
4454 	h->reply_pool_size = h->max_commands * sizeof(u64);
4455 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4456 				&(h->reply_pool_dhandle));
4457 
4458 	/* Need a block fetch table for performant mode */
4459 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4460 				sizeof(u32)), GFP_KERNEL);
4461 
4462 	if ((h->reply_pool == NULL)
4463 		|| (h->blockFetchTable == NULL))
4464 		goto clean_up;
4465 
4466 	hpsa_enter_performant_mode(h,
4467 		trans_support & CFGTBL_Trans_use_short_tags);
4468 
4469 	return;
4470 
4471 clean_up:
4472 	if (h->reply_pool)
4473 		pci_free_consistent(h->pdev, h->reply_pool_size,
4474 			h->reply_pool, h->reply_pool_dhandle);
4475 	kfree(h->blockFetchTable);
4476 }
4477 
4478 /*
4479  *  This is it.  Register the PCI driver information for the cards we control
4480  *  the OS will call our registered routines when it finds one of our cards.
4481  */
4482 static int __init hpsa_init(void)
4483 {
4484 	return pci_register_driver(&hpsa_pci_driver);
4485 }
4486 
4487 static void __exit hpsa_cleanup(void)
4488 {
4489 	pci_unregister_driver(&hpsa_pci_driver);
4490 }
4491 
4492 module_init(hpsa_init);
4493 module_exit(hpsa_cleanup);
4494