xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255 
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 	void __user *arg);
259 #endif
260 
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 					    struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 	int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272 
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 	unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278 
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283 
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 	struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 	int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 			       u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 				    unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 				bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 					   unsigned char lunaddr[],
304 					   int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 				     int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 	struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 	unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 			       struct hpsa_scsi_dev_t *dev,
327 			       unsigned char *scsi3addr);
328 
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 	unsigned long *priv = shost_priv(sdev->host);
332 	return (struct ctlr_info *) *priv;
333 }
334 
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 	unsigned long *priv = shost_priv(sh);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 	return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345 
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 	return c->reset_pending;
349 }
350 
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 			u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 	struct scsi_sense_hdr sshdr;
356 	bool rc;
357 
358 	*sense_key = -1;
359 	*asc = -1;
360 	*ascq = -1;
361 
362 	if (sense_data_len < 1)
363 		return;
364 
365 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 	if (rc) {
367 		*sense_key = sshdr.sense_key;
368 		*asc = sshdr.asc;
369 		*ascq = sshdr.ascq;
370 	}
371 }
372 
373 static int check_for_unit_attention(struct ctlr_info *h,
374 	struct CommandList *c)
375 {
376 	u8 sense_key, asc, ascq;
377 	int sense_len;
378 
379 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 		sense_len = sizeof(c->err_info->SenseInfo);
381 	else
382 		sense_len = c->err_info->SenseLen;
383 
384 	decode_sense_data(c->err_info->SenseInfo, sense_len,
385 				&sense_key, &asc, &ascq);
386 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 		return 0;
388 
389 	switch (asc) {
390 	case STATE_CHANGED:
391 		dev_warn(&h->pdev->dev,
392 			"%s: a state change detected, command retried\n",
393 			h->devname);
394 		break;
395 	case LUN_FAILED:
396 		dev_warn(&h->pdev->dev,
397 			"%s: LUN failure detected\n", h->devname);
398 		break;
399 	case REPORT_LUNS_CHANGED:
400 		dev_warn(&h->pdev->dev,
401 			"%s: report LUN data changed\n", h->devname);
402 	/*
403 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 	 * target (array) devices.
405 	 */
406 		break;
407 	case POWER_OR_RESET:
408 		dev_warn(&h->pdev->dev,
409 			"%s: a power on or device reset detected\n",
410 			h->devname);
411 		break;
412 	case UNIT_ATTENTION_CLEARED:
413 		dev_warn(&h->pdev->dev,
414 			"%s: unit attention cleared by another initiator\n",
415 			h->devname);
416 		break;
417 	default:
418 		dev_warn(&h->pdev->dev,
419 			"%s: unknown unit attention detected\n",
420 			h->devname);
421 		break;
422 	}
423 	return 1;
424 }
425 
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 		return 0;
432 	dev_warn(&h->pdev->dev, HPSA "device busy");
433 	return 1;
434 }
435 
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 		struct device_attribute *attr, char *buf)
439 {
440 	int ld;
441 	struct ctlr_info *h;
442 	struct Scsi_Host *shost = class_to_shost(dev);
443 
444 	h = shost_to_hba(shost);
445 	ld = lockup_detected(h);
446 
447 	return sprintf(buf, "ld=%d\n", ld);
448 }
449 
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 					 struct device_attribute *attr,
452 					 const char *buf, size_t count)
453 {
454 	int status, len;
455 	struct ctlr_info *h;
456 	struct Scsi_Host *shost = class_to_shost(dev);
457 	char tmpbuf[10];
458 
459 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 		return -EACCES;
461 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 	strncpy(tmpbuf, buf, len);
463 	tmpbuf[len] = '\0';
464 	if (sscanf(tmpbuf, "%d", &status) != 1)
465 		return -EINVAL;
466 	h = shost_to_hba(shost);
467 	h->acciopath_status = !!status;
468 	dev_warn(&h->pdev->dev,
469 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 		h->acciopath_status ? "enabled" : "disabled");
471 	return count;
472 }
473 
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 					 struct device_attribute *attr,
476 					 const char *buf, size_t count)
477 {
478 	int debug_level, len;
479 	struct ctlr_info *h;
480 	struct Scsi_Host *shost = class_to_shost(dev);
481 	char tmpbuf[10];
482 
483 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 		return -EACCES;
485 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 	strncpy(tmpbuf, buf, len);
487 	tmpbuf[len] = '\0';
488 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 		return -EINVAL;
490 	if (debug_level < 0)
491 		debug_level = 0;
492 	h = shost_to_hba(shost);
493 	h->raid_offload_debug = debug_level;
494 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 		h->raid_offload_debug);
496 	return count;
497 }
498 
499 static ssize_t host_store_rescan(struct device *dev,
500 				 struct device_attribute *attr,
501 				 const char *buf, size_t count)
502 {
503 	struct ctlr_info *h;
504 	struct Scsi_Host *shost = class_to_shost(dev);
505 	h = shost_to_hba(shost);
506 	hpsa_scan_start(h->scsi_host);
507 	return count;
508 }
509 
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 
791 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792 		return snprintf(buf, 20, "%d\n", offload_enabled);
793 	else
794 		return snprintf(buf, 40, "%s\n",
795 				"Not applicable for a controller");
796 }
797 
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800 	     struct device_attribute *attr, char *buf)
801 {
802 	struct ctlr_info *h;
803 	struct scsi_device *sdev;
804 	struct hpsa_scsi_dev_t *hdev;
805 	unsigned long flags;
806 	int i;
807 	int output_len = 0;
808 	u8 box;
809 	u8 bay;
810 	u8 path_map_index = 0;
811 	char *active;
812 	unsigned char phys_connector[2];
813 
814 	sdev = to_scsi_device(dev);
815 	h = sdev_to_hba(sdev);
816 	spin_lock_irqsave(&h->devlock, flags);
817 	hdev = sdev->hostdata;
818 	if (!hdev) {
819 		spin_unlock_irqrestore(&h->devlock, flags);
820 		return -ENODEV;
821 	}
822 
823 	bay = hdev->bay;
824 	for (i = 0; i < MAX_PATHS; i++) {
825 		path_map_index = 1<<i;
826 		if (i == hdev->active_path_index)
827 			active = "Active";
828 		else if (hdev->path_map & path_map_index)
829 			active = "Inactive";
830 		else
831 			continue;
832 
833 		output_len += scnprintf(buf + output_len,
834 				PAGE_SIZE - output_len,
835 				"[%d:%d:%d:%d] %20.20s ",
836 				h->scsi_host->host_no,
837 				hdev->bus, hdev->target, hdev->lun,
838 				scsi_device_type(hdev->devtype));
839 
840 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841 			output_len += scnprintf(buf + output_len,
842 						PAGE_SIZE - output_len,
843 						"%s\n", active);
844 			continue;
845 		}
846 
847 		box = hdev->box[i];
848 		memcpy(&phys_connector, &hdev->phys_connector[i],
849 			sizeof(phys_connector));
850 		if (phys_connector[0] < '0')
851 			phys_connector[0] = '0';
852 		if (phys_connector[1] < '0')
853 			phys_connector[1] = '0';
854 		output_len += scnprintf(buf + output_len,
855 				PAGE_SIZE - output_len,
856 				"PORT: %.2s ",
857 				phys_connector);
858 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859 			hdev->expose_device) {
860 			if (box == 0 || box == 0xFF) {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BAY: %hhu %s\n",
864 					bay, active);
865 			} else {
866 				output_len += scnprintf(buf + output_len,
867 					PAGE_SIZE - output_len,
868 					"BOX: %hhu BAY: %hhu %s\n",
869 					box, bay, active);
870 			}
871 		} else if (box != 0 && box != 0xFF) {
872 			output_len += scnprintf(buf + output_len,
873 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 				box, active);
875 		} else
876 			output_len += scnprintf(buf + output_len,
877 				PAGE_SIZE - output_len, "%s\n", active);
878 	}
879 
880 	spin_unlock_irqrestore(&h->devlock, flags);
881 	return output_len;
882 }
883 
884 static ssize_t host_show_ctlr_num(struct device *dev,
885 	struct device_attribute *attr, char *buf)
886 {
887 	struct ctlr_info *h;
888 	struct Scsi_Host *shost = class_to_shost(dev);
889 
890 	h = shost_to_hba(shost);
891 	return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893 
894 static ssize_t host_show_legacy_board(struct device *dev,
895 	struct device_attribute *attr, char *buf)
896 {
897 	struct ctlr_info *h;
898 	struct Scsi_Host *shost = class_to_shost(dev);
899 
900 	h = shost_to_hba(shost);
901 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903 
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910 			host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913 		host_show_hp_ssd_smart_path_status,
914 		host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916 			host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918 	host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920 	host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922 	host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924 	host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926 	host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928 	host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930 	host_show_legacy_board, NULL);
931 
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933 	&dev_attr_raid_level,
934 	&dev_attr_lunid,
935 	&dev_attr_unique_id,
936 	&dev_attr_hp_ssd_smart_path_enabled,
937 	&dev_attr_path_info,
938 	&dev_attr_sas_address,
939 	NULL,
940 };
941 
942 static struct device_attribute *hpsa_shost_attrs[] = {
943 	&dev_attr_rescan,
944 	&dev_attr_firmware_revision,
945 	&dev_attr_commands_outstanding,
946 	&dev_attr_transport_mode,
947 	&dev_attr_resettable,
948 	&dev_attr_hp_ssd_smart_path_status,
949 	&dev_attr_raid_offload_debug,
950 	&dev_attr_lockup_detected,
951 	&dev_attr_ctlr_num,
952 	&dev_attr_legacy_board,
953 	NULL,
954 };
955 
956 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
958 
959 static struct scsi_host_template hpsa_driver_template = {
960 	.module			= THIS_MODULE,
961 	.name			= HPSA,
962 	.proc_name		= HPSA,
963 	.queuecommand		= hpsa_scsi_queue_command,
964 	.scan_start		= hpsa_scan_start,
965 	.scan_finished		= hpsa_scan_finished,
966 	.change_queue_depth	= hpsa_change_queue_depth,
967 	.this_id		= -1,
968 	.use_clustering		= ENABLE_CLUSTERING,
969 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
970 	.ioctl			= hpsa_ioctl,
971 	.slave_alloc		= hpsa_slave_alloc,
972 	.slave_configure	= hpsa_slave_configure,
973 	.slave_destroy		= hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975 	.compat_ioctl		= hpsa_compat_ioctl,
976 #endif
977 	.sdev_attrs = hpsa_sdev_attrs,
978 	.shost_attrs = hpsa_shost_attrs,
979 	.max_sectors = 2048,
980 	.no_write_same = 1,
981 };
982 
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985 	u32 a;
986 	struct reply_queue_buffer *rq = &h->reply_queue[q];
987 
988 	if (h->transMethod & CFGTBL_Trans_io_accel1)
989 		return h->access.command_completed(h, q);
990 
991 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992 		return h->access.command_completed(h, q);
993 
994 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995 		a = rq->head[rq->current_entry];
996 		rq->current_entry++;
997 		atomic_dec(&h->commands_outstanding);
998 	} else {
999 		a = FIFO_EMPTY;
1000 	}
1001 	/* Check for wraparound */
1002 	if (rq->current_entry == h->max_commands) {
1003 		rq->current_entry = 0;
1004 		rq->wraparound ^= 1;
1005 	}
1006 	return a;
1007 }
1008 
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034 
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042 					int reply_queue)
1043 {
1044 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046 		if (unlikely(!h->msix_vectors))
1047 			return;
1048 		c->Header.ReplyQueue = reply_queue;
1049 	}
1050 }
1051 
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053 						struct CommandList *c,
1054 						int reply_queue)
1055 {
1056 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057 
1058 	/*
1059 	 * Tell the controller to post the reply to the queue for this
1060 	 * processor.  This seems to give the best I/O throughput.
1061 	 */
1062 	cp->ReplyQueue = reply_queue;
1063 	/*
1064 	 * Set the bits in the address sent down to include:
1065 	 *  - performant mode bit (bit 0)
1066 	 *  - pull count (bits 1-3)
1067 	 *  - command type (bits 4-6)
1068 	 */
1069 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070 					IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072 
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074 						struct CommandList *c,
1075 						int reply_queue)
1076 {
1077 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078 		&h->ioaccel2_cmd_pool[c->cmdindex];
1079 
1080 	/* Tell the controller to post the reply to the queue for this
1081 	 * processor.  This seems to give the best I/O throughput.
1082 	 */
1083 	cp->reply_queue = reply_queue;
1084 	/* Set the bits in the address sent down to include:
1085 	 *  - performant mode bit not used in ioaccel mode 2
1086 	 *  - pull count (bits 0-3)
1087 	 *  - command type isn't needed for ioaccel2
1088 	 */
1089 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091 
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093 						struct CommandList *c,
1094 						int reply_queue)
1095 {
1096 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097 
1098 	/*
1099 	 * Tell the controller to post the reply to the queue for this
1100 	 * processor.  This seems to give the best I/O throughput.
1101 	 */
1102 	cp->reply_queue = reply_queue;
1103 	/*
1104 	 * Set the bits in the address sent down to include:
1105 	 *  - performant mode bit not used in ioaccel mode 2
1106 	 *  - pull count (bits 0-3)
1107 	 *  - command type isn't needed for ioaccel2
1108 	 */
1109 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111 
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116 
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126 		struct CommandList *c)
1127 {
1128 	if (!is_firmware_flash_cmd(c->Request.CDB))
1129 		return;
1130 	atomic_inc(&h->firmware_flash_in_progress);
1131 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133 
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135 		struct CommandList *c)
1136 {
1137 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1138 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1139 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141 
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143 	struct CommandList *c, int reply_queue)
1144 {
1145 	dial_down_lockup_detection_during_fw_flash(h, c);
1146 	atomic_inc(&h->commands_outstanding);
1147 
1148 	reply_queue = h->reply_map[raw_smp_processor_id()];
1149 	switch (c->cmd_type) {
1150 	case CMD_IOACCEL1:
1151 		set_ioaccel1_performant_mode(h, c, reply_queue);
1152 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153 		break;
1154 	case CMD_IOACCEL2:
1155 		set_ioaccel2_performant_mode(h, c, reply_queue);
1156 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157 		break;
1158 	case IOACCEL2_TMF:
1159 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161 		break;
1162 	default:
1163 		set_performant_mode(h, c, reply_queue);
1164 		h->access.submit_command(h, c);
1165 	}
1166 }
1167 
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170 	if (unlikely(hpsa_is_pending_event(c)))
1171 		return finish_cmd(c);
1172 
1173 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175 
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180 
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183 	if (!h->hba_inquiry_data)
1184 		return 0;
1185 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186 		return 1;
1187 	return 0;
1188 }
1189 
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193 	/* finds an unused bus, target, lun for a new physical device
1194 	 * assumes h->devlock is held
1195 	 */
1196 	int i, found = 0;
1197 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198 
1199 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200 
1201 	for (i = 0; i < h->ndevices; i++) {
1202 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203 			__set_bit(h->dev[i]->target, lun_taken);
1204 	}
1205 
1206 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207 	if (i < HPSA_MAX_DEVICES) {
1208 		/* *bus = 1; */
1209 		*target = i;
1210 		*lun = 0;
1211 		found = 1;
1212 	}
1213 	return !found;
1214 }
1215 
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217 	struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220 	char label[LABEL_SIZE];
1221 
1222 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223 		return;
1224 
1225 	switch (dev->devtype) {
1226 	case TYPE_RAID:
1227 		snprintf(label, LABEL_SIZE, "controller");
1228 		break;
1229 	case TYPE_ENCLOSURE:
1230 		snprintf(label, LABEL_SIZE, "enclosure");
1231 		break;
1232 	case TYPE_DISK:
1233 	case TYPE_ZBC:
1234 		if (dev->external)
1235 			snprintf(label, LABEL_SIZE, "external");
1236 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237 			snprintf(label, LABEL_SIZE, "%s",
1238 				raid_label[PHYSICAL_DRIVE]);
1239 		else
1240 			snprintf(label, LABEL_SIZE, "RAID-%s",
1241 				dev->raid_level > RAID_UNKNOWN ? "?" :
1242 				raid_label[dev->raid_level]);
1243 		break;
1244 	case TYPE_ROM:
1245 		snprintf(label, LABEL_SIZE, "rom");
1246 		break;
1247 	case TYPE_TAPE:
1248 		snprintf(label, LABEL_SIZE, "tape");
1249 		break;
1250 	case TYPE_MEDIUM_CHANGER:
1251 		snprintf(label, LABEL_SIZE, "changer");
1252 		break;
1253 	default:
1254 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1255 		break;
1256 	}
1257 
1258 	dev_printk(level, &h->pdev->dev,
1259 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261 			description,
1262 			scsi_device_type(dev->devtype),
1263 			dev->vendor,
1264 			dev->model,
1265 			label,
1266 			dev->offload_config ? '+' : '-',
1267 			dev->offload_to_be_enabled ? '+' : '-',
1268 			dev->expose_device);
1269 }
1270 
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273 		struct hpsa_scsi_dev_t *device,
1274 		struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276 	/* assumes h->devlock is held */
1277 	int n = h->ndevices;
1278 	int i;
1279 	unsigned char addr1[8], addr2[8];
1280 	struct hpsa_scsi_dev_t *sd;
1281 
1282 	if (n >= HPSA_MAX_DEVICES) {
1283 		dev_err(&h->pdev->dev, "too many devices, some will be "
1284 			"inaccessible.\n");
1285 		return -1;
1286 	}
1287 
1288 	/* physical devices do not have lun or target assigned until now. */
1289 	if (device->lun != -1)
1290 		/* Logical device, lun is already assigned. */
1291 		goto lun_assigned;
1292 
1293 	/* If this device a non-zero lun of a multi-lun device
1294 	 * byte 4 of the 8-byte LUN addr will contain the logical
1295 	 * unit no, zero otherwise.
1296 	 */
1297 	if (device->scsi3addr[4] == 0) {
1298 		/* This is not a non-zero lun of a multi-lun device */
1299 		if (hpsa_find_target_lun(h, device->scsi3addr,
1300 			device->bus, &device->target, &device->lun) != 0)
1301 			return -1;
1302 		goto lun_assigned;
1303 	}
1304 
1305 	/* This is a non-zero lun of a multi-lun device.
1306 	 * Search through our list and find the device which
1307 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 	 * Assign the same bus and target for this new LUN.
1309 	 * Use the logical unit number from the firmware.
1310 	 */
1311 	memcpy(addr1, device->scsi3addr, 8);
1312 	addr1[4] = 0;
1313 	addr1[5] = 0;
1314 	for (i = 0; i < n; i++) {
1315 		sd = h->dev[i];
1316 		memcpy(addr2, sd->scsi3addr, 8);
1317 		addr2[4] = 0;
1318 		addr2[5] = 0;
1319 		/* differ only in byte 4 and 5? */
1320 		if (memcmp(addr1, addr2, 8) == 0) {
1321 			device->bus = sd->bus;
1322 			device->target = sd->target;
1323 			device->lun = device->scsi3addr[4];
1324 			break;
1325 		}
1326 	}
1327 	if (device->lun == -1) {
1328 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329 			" suspect firmware bug or unsupported hardware "
1330 			"configuration.\n");
1331 			return -1;
1332 	}
1333 
1334 lun_assigned:
1335 
1336 	h->dev[n] = device;
1337 	h->ndevices++;
1338 	added[*nadded] = device;
1339 	(*nadded)++;
1340 	hpsa_show_dev_msg(KERN_INFO, h, device,
1341 		device->expose_device ? "added" : "masked");
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351 	int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353 	/* assumes h->devlock is held */
1354 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355 
1356 	/* Raid level changed. */
1357 	h->dev[entry]->raid_level = new_entry->raid_level;
1358 
1359 	/*
1360 	 * ioacccel_handle may have changed for a dual domain disk
1361 	 */
1362 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363 
1364 	/* Raid offload parameters changed.  Careful about the ordering. */
1365 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366 		/*
1367 		 * if drive is newly offload_enabled, we want to copy the
1368 		 * raid map data first.  If previously offload_enabled and
1369 		 * offload_config were set, raid map data had better be
1370 		 * the same as it was before. If raid map data has changed
1371 		 * then it had better be the case that
1372 		 * h->dev[entry]->offload_enabled is currently 0.
1373 		 */
1374 		h->dev[entry]->raid_map = new_entry->raid_map;
1375 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 	}
1377 	if (new_entry->offload_to_be_enabled) {
1378 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 	}
1381 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 	h->dev[entry]->offload_config = new_entry->offload_config;
1383 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385 
1386 	/*
1387 	 * We can turn off ioaccel offload now, but need to delay turning
1388 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 	 * can't do that until all the devices are updated.
1390 	 */
1391 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392 
1393 	/*
1394 	 * turn ioaccel off immediately if told to do so.
1395 	 */
1396 	if (!new_entry->offload_to_be_enabled)
1397 		h->dev[entry]->offload_enabled = 0;
1398 
1399 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401 
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404 	int entry, struct hpsa_scsi_dev_t *new_entry,
1405 	struct hpsa_scsi_dev_t *added[], int *nadded,
1406 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408 	/* assumes h->devlock is held */
1409 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410 	removed[*nremoved] = h->dev[entry];
1411 	(*nremoved)++;
1412 
1413 	/*
1414 	 * New physical devices won't have target/lun assigned yet
1415 	 * so we need to preserve the values in the slot we are replacing.
1416 	 */
1417 	if (new_entry->target == -1) {
1418 		new_entry->target = h->dev[entry]->target;
1419 		new_entry->lun = h->dev[entry]->lun;
1420 	}
1421 
1422 	h->dev[entry] = new_entry;
1423 	added[*nadded] = new_entry;
1424 	(*nadded)++;
1425 
1426 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428 
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 	/* assumes h->devlock is held */
1434 	int i;
1435 	struct hpsa_scsi_dev_t *sd;
1436 
1437 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438 
1439 	sd = h->dev[entry];
1440 	removed[*nremoved] = h->dev[entry];
1441 	(*nremoved)++;
1442 
1443 	for (i = entry; i < h->ndevices-1; i++)
1444 		h->dev[i] = h->dev[i+1];
1445 	h->ndevices--;
1446 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448 
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 	(a)[7] == (b)[7] && \
1451 	(a)[6] == (b)[6] && \
1452 	(a)[5] == (b)[5] && \
1453 	(a)[4] == (b)[4] && \
1454 	(a)[3] == (b)[3] && \
1455 	(a)[2] == (b)[2] && \
1456 	(a)[1] == (b)[1] && \
1457 	(a)[0] == (b)[0])
1458 
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 	struct hpsa_scsi_dev_t *added)
1461 {
1462 	/* called when scsi_add_device fails in order to re-adjust
1463 	 * h->dev[] to match the mid layer's view.
1464 	 */
1465 	unsigned long flags;
1466 	int i, j;
1467 
1468 	spin_lock_irqsave(&h->lock, flags);
1469 	for (i = 0; i < h->ndevices; i++) {
1470 		if (h->dev[i] == added) {
1471 			for (j = i; j < h->ndevices-1; j++)
1472 				h->dev[j] = h->dev[j+1];
1473 			h->ndevices--;
1474 			break;
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&h->lock, flags);
1478 	kfree(added);
1479 }
1480 
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* we compare everything except lun and target as these
1485 	 * are not yet assigned.  Compare parts likely
1486 	 * to differ first
1487 	 */
1488 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 		sizeof(dev1->scsi3addr)) != 0)
1490 		return 0;
1491 	if (memcmp(dev1->device_id, dev2->device_id,
1492 		sizeof(dev1->device_id)) != 0)
1493 		return 0;
1494 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 		return 0;
1498 	if (dev1->devtype != dev2->devtype)
1499 		return 0;
1500 	if (dev1->bus != dev2->bus)
1501 		return 0;
1502 	return 1;
1503 }
1504 
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 	struct hpsa_scsi_dev_t *dev2)
1507 {
1508 	/* Device attributes that can change, but don't mean
1509 	 * that the device is a different device, nor that the OS
1510 	 * needs to be told anything about the change.
1511 	 */
1512 	if (dev1->raid_level != dev2->raid_level)
1513 		return 1;
1514 	if (dev1->offload_config != dev2->offload_config)
1515 		return 1;
1516 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517 		return 1;
1518 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 		if (dev1->queue_depth != dev2->queue_depth)
1520 			return 1;
1521 	/*
1522 	 * This can happen for dual domain devices. An active
1523 	 * path change causes the ioaccel handle to change
1524 	 *
1525 	 * for example note the handle differences between p0 and p1
1526 	 * Device                    WWN               ,WWN hash,Handle
1527 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529 	 */
1530 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531 		return 1;
1532 	return 0;
1533 }
1534 
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545 	int *index)
1546 {
1547 	int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552 	if (needle == NULL)
1553 		return DEVICE_NOT_FOUND;
1554 
1555 	for (i = 0; i < haystack_size; i++) {
1556 		if (haystack[i] == NULL) /* previously removed. */
1557 			continue;
1558 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559 			*index = i;
1560 			if (device_is_the_same(needle, haystack[i])) {
1561 				if (device_updated(needle, haystack[i]))
1562 					return DEVICE_UPDATED;
1563 				return DEVICE_SAME;
1564 			} else {
1565 				/* Keep offline devices offline */
1566 				if (needle->volume_offline)
1567 					return DEVICE_NOT_FOUND;
1568 				return DEVICE_CHANGED;
1569 			}
1570 		}
1571 	}
1572 	*index = -1;
1573 	return DEVICE_NOT_FOUND;
1574 }
1575 
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577 					unsigned char scsi3addr[])
1578 {
1579 	struct offline_device_entry *device;
1580 	unsigned long flags;
1581 
1582 	/* Check to see if device is already on the list */
1583 	spin_lock_irqsave(&h->offline_device_lock, flags);
1584 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585 		if (memcmp(device->scsi3addr, scsi3addr,
1586 			sizeof(device->scsi3addr)) == 0) {
1587 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 			return;
1589 		}
1590 	}
1591 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592 
1593 	/* Device is not on the list, add it. */
1594 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1595 	if (!device)
1596 		return;
1597 
1598 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599 	spin_lock_irqsave(&h->offline_device_lock, flags);
1600 	list_add_tail(&device->offline_list, &h->offline_device_list);
1601 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603 
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606 	struct hpsa_scsi_dev_t *sd)
1607 {
1608 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609 		dev_info(&h->pdev->dev,
1610 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 			h->scsi_host->host_no,
1612 			sd->bus, sd->target, sd->lun);
1613 	switch (sd->volume_offline) {
1614 	case HPSA_LV_OK:
1615 		break;
1616 	case HPSA_LV_UNDERGOING_ERASE:
1617 		dev_info(&h->pdev->dev,
1618 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 			h->scsi_host->host_no,
1620 			sd->bus, sd->target, sd->lun);
1621 		break;
1622 	case HPSA_LV_NOT_AVAILABLE:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_UNDERGOING_RPI:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_PENDING_RPI:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_ENCRYPTED_NO_KEY:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1653 		dev_info(&h->pdev->dev,
1654 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 			h->scsi_host->host_no,
1656 			sd->bus, sd->target, sd->lun);
1657 		break;
1658 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659 		dev_info(&h->pdev->dev,
1660 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 			h->scsi_host->host_no,
1662 			sd->bus, sd->target, sd->lun);
1663 		break;
1664 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665 		dev_info(&h->pdev->dev,
1666 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 			h->scsi_host->host_no,
1668 			sd->bus, sd->target, sd->lun);
1669 		break;
1670 	case HPSA_LV_PENDING_ENCRYPTION:
1671 		dev_info(&h->pdev->dev,
1672 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 			h->scsi_host->host_no,
1674 			sd->bus, sd->target, sd->lun);
1675 		break;
1676 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677 		dev_info(&h->pdev->dev,
1678 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 			h->scsi_host->host_no,
1680 			sd->bus, sd->target, sd->lun);
1681 		break;
1682 	}
1683 }
1684 
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1691 				struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693 	struct raid_map_data *map = &logical_drive->raid_map;
1694 	struct raid_map_disk_data *dd = &map->data[0];
1695 	int i, j;
1696 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697 				le16_to_cpu(map->metadata_disks_per_row);
1698 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699 				le16_to_cpu(map->layout_map_count) *
1700 				total_disks_per_row;
1701 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702 				total_disks_per_row;
1703 	int qdepth;
1704 
1705 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707 
1708 	logical_drive->nphysical_disks = nraid_map_entries;
1709 
1710 	qdepth = 0;
1711 	for (i = 0; i < nraid_map_entries; i++) {
1712 		logical_drive->phys_disk[i] = NULL;
1713 		if (!logical_drive->offload_config)
1714 			continue;
1715 		for (j = 0; j < ndevices; j++) {
1716 			if (dev[j] == NULL)
1717 				continue;
1718 			if (dev[j]->devtype != TYPE_DISK &&
1719 			    dev[j]->devtype != TYPE_ZBC)
1720 				continue;
1721 			if (is_logical_device(dev[j]))
1722 				continue;
1723 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724 				continue;
1725 
1726 			logical_drive->phys_disk[i] = dev[j];
1727 			if (i < nphys_disk)
1728 				qdepth = min(h->nr_cmds, qdepth +
1729 				    logical_drive->phys_disk[i]->queue_depth);
1730 			break;
1731 		}
1732 
1733 		/*
1734 		 * This can happen if a physical drive is removed and
1735 		 * the logical drive is degraded.  In that case, the RAID
1736 		 * map data will refer to a physical disk which isn't actually
1737 		 * present.  And in that case offload_enabled should already
1738 		 * be 0, but we'll turn it off here just in case
1739 		 */
1740 		if (!logical_drive->phys_disk[i]) {
1741 			dev_warn(&h->pdev->dev,
1742 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743 				__func__,
1744 				h->scsi_host->host_no, logical_drive->bus,
1745 				logical_drive->target, logical_drive->lun);
1746 			logical_drive->offload_enabled = 0;
1747 			logical_drive->offload_to_be_enabled = 0;
1748 			logical_drive->queue_depth = 8;
1749 		}
1750 	}
1751 	if (nraid_map_entries)
1752 		/*
1753 		 * This is correct for reads, too high for full stripe writes,
1754 		 * way too high for partial stripe writes
1755 		 */
1756 		logical_drive->queue_depth = qdepth;
1757 	else {
1758 		if (logical_drive->external)
1759 			logical_drive->queue_depth = EXTERNAL_QD;
1760 		else
1761 			logical_drive->queue_depth = h->nr_cmds;
1762 	}
1763 }
1764 
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768 	int i;
1769 
1770 	for (i = 0; i < ndevices; i++) {
1771 		if (dev[i] == NULL)
1772 			continue;
1773 		if (dev[i]->devtype != TYPE_DISK &&
1774 		    dev[i]->devtype != TYPE_ZBC)
1775 			continue;
1776 		if (!is_logical_device(dev[i]))
1777 			continue;
1778 
1779 		/*
1780 		 * If offload is currently enabled, the RAID map and
1781 		 * phys_disk[] assignment *better* not be changing
1782 		 * because we would be changing ioaccel phsy_disk[] pointers
1783 		 * on a ioaccel volume processing I/O requests.
1784 		 *
1785 		 * If an ioaccel volume status changed, initially because it was
1786 		 * re-configured and thus underwent a transformation, or
1787 		 * a drive failed, we would have received a state change
1788 		 * request and ioaccel should have been turned off. When the
1789 		 * transformation completes, we get another state change
1790 		 * request to turn ioaccel back on. In this case, we need
1791 		 * to update the ioaccel information.
1792 		 *
1793 		 * Thus: If it is not currently enabled, but will be after
1794 		 * the scan completes, make sure the ioaccel pointers
1795 		 * are up to date.
1796 		 */
1797 
1798 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800 	}
1801 }
1802 
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805 	int rc = 0;
1806 
1807 	if (!h->scsi_host)
1808 		return 1;
1809 
1810 	if (is_logical_device(device)) /* RAID */
1811 		rc = scsi_add_device(h->scsi_host, device->bus,
1812 					device->target, device->lun);
1813 	else /* HBA */
1814 		rc = hpsa_add_sas_device(h->sas_host, device);
1815 
1816 	return rc;
1817 }
1818 
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820 						struct hpsa_scsi_dev_t *dev)
1821 {
1822 	int i;
1823 	int count = 0;
1824 
1825 	for (i = 0; i < h->nr_cmds; i++) {
1826 		struct CommandList *c = h->cmd_pool + i;
1827 		int refcount = atomic_inc_return(&c->refcount);
1828 
1829 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830 				dev->scsi3addr)) {
1831 			unsigned long flags;
1832 
1833 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1834 			if (!hpsa_is_cmd_idle(c))
1835 				++count;
1836 			spin_unlock_irqrestore(&h->lock, flags);
1837 		}
1838 
1839 		cmd_free(h, c);
1840 	}
1841 
1842 	return count;
1843 }
1844 
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846 						struct hpsa_scsi_dev_t *device)
1847 {
1848 	int cmds = 0;
1849 	int waits = 0;
1850 
1851 	while (1) {
1852 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853 		if (cmds == 0)
1854 			break;
1855 		if (++waits > 20)
1856 			break;
1857 		msleep(1000);
1858 	}
1859 
1860 	if (waits > 20)
1861 		dev_warn(&h->pdev->dev,
1862 			"%s: removing device with %d outstanding commands!\n",
1863 			__func__, cmds);
1864 }
1865 
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867 			struct hpsa_scsi_dev_t *device)
1868 {
1869 	struct scsi_device *sdev = NULL;
1870 
1871 	if (!h->scsi_host)
1872 		return;
1873 
1874 	/*
1875 	 * Allow for commands to drain
1876 	 */
1877 	device->removed = 1;
1878 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879 
1880 	if (is_logical_device(device)) { /* RAID */
1881 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882 						device->target, device->lun);
1883 		if (sdev) {
1884 			scsi_remove_device(sdev);
1885 			scsi_device_put(sdev);
1886 		} else {
1887 			/*
1888 			 * We don't expect to get here.  Future commands
1889 			 * to this device will get a selection timeout as
1890 			 * if the device were gone.
1891 			 */
1892 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1893 					"didn't find device for removal.");
1894 		}
1895 	} else { /* HBA */
1896 
1897 		hpsa_remove_sas_device(device);
1898 	}
1899 }
1900 
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902 	struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904 	/* sd contains scsi3 addresses and devtypes, and inquiry
1905 	 * data.  This function takes what's in sd to be the current
1906 	 * reality and updates h->dev[] to reflect that reality.
1907 	 */
1908 	int i, entry, device_change, changes = 0;
1909 	struct hpsa_scsi_dev_t *csd;
1910 	unsigned long flags;
1911 	struct hpsa_scsi_dev_t **added, **removed;
1912 	int nadded, nremoved;
1913 
1914 	/*
1915 	 * A reset can cause a device status to change
1916 	 * re-schedule the scan to see what happened.
1917 	 */
1918 	spin_lock_irqsave(&h->reset_lock, flags);
1919 	if (h->reset_in_progress) {
1920 		h->drv_req_rescan = 1;
1921 		spin_unlock_irqrestore(&h->reset_lock, flags);
1922 		return;
1923 	}
1924 	spin_unlock_irqrestore(&h->reset_lock, flags);
1925 
1926 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928 
1929 	if (!added || !removed) {
1930 		dev_warn(&h->pdev->dev, "out of memory in "
1931 			"adjust_hpsa_scsi_table\n");
1932 		goto free_and_out;
1933 	}
1934 
1935 	spin_lock_irqsave(&h->devlock, flags);
1936 
1937 	/* find any devices in h->dev[] that are not in
1938 	 * sd[] and remove them from h->dev[], and for any
1939 	 * devices which have changed, remove the old device
1940 	 * info and add the new device info.
1941 	 * If minor device attributes change, just update
1942 	 * the existing device structure.
1943 	 */
1944 	i = 0;
1945 	nremoved = 0;
1946 	nadded = 0;
1947 	while (i < h->ndevices) {
1948 		csd = h->dev[i];
1949 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950 		if (device_change == DEVICE_NOT_FOUND) {
1951 			changes++;
1952 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953 			continue; /* remove ^^^, hence i not incremented */
1954 		} else if (device_change == DEVICE_CHANGED) {
1955 			changes++;
1956 			hpsa_scsi_replace_entry(h, i, sd[entry],
1957 				added, &nadded, removed, &nremoved);
1958 			/* Set it to NULL to prevent it from being freed
1959 			 * at the bottom of hpsa_update_scsi_devices()
1960 			 */
1961 			sd[entry] = NULL;
1962 		} else if (device_change == DEVICE_UPDATED) {
1963 			hpsa_scsi_update_entry(h, i, sd[entry]);
1964 		}
1965 		i++;
1966 	}
1967 
1968 	/* Now, make sure every device listed in sd[] is also
1969 	 * listed in h->dev[], adding them if they aren't found
1970 	 */
1971 
1972 	for (i = 0; i < nsds; i++) {
1973 		if (!sd[i]) /* if already added above. */
1974 			continue;
1975 
1976 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 		 * as the SCSI mid-layer does not handle such devices well.
1978 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 		 * at 160Hz, and prevents the system from coming up.
1980 		 */
1981 		if (sd[i]->volume_offline) {
1982 			hpsa_show_volume_status(h, sd[i]);
1983 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984 			continue;
1985 		}
1986 
1987 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988 					h->ndevices, &entry);
1989 		if (device_change == DEVICE_NOT_FOUND) {
1990 			changes++;
1991 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992 				break;
1993 			sd[i] = NULL; /* prevent from being freed later. */
1994 		} else if (device_change == DEVICE_CHANGED) {
1995 			/* should never happen... */
1996 			changes++;
1997 			dev_warn(&h->pdev->dev,
1998 				"device unexpectedly changed.\n");
1999 			/* but if it does happen, we just ignore that device */
2000 		}
2001 	}
2002 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003 
2004 	/*
2005 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 	 * any logical drives that need it enabled.
2007 	 *
2008 	 * The raid map should be current by now.
2009 	 *
2010 	 * We are updating the device list used for I/O requests.
2011 	 */
2012 	for (i = 0; i < h->ndevices; i++) {
2013 		if (h->dev[i] == NULL)
2014 			continue;
2015 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016 	}
2017 
2018 	spin_unlock_irqrestore(&h->devlock, flags);
2019 
2020 	/* Monitor devices which are in one of several NOT READY states to be
2021 	 * brought online later. This must be done without holding h->devlock,
2022 	 * so don't touch h->dev[]
2023 	 */
2024 	for (i = 0; i < nsds; i++) {
2025 		if (!sd[i]) /* if already added above. */
2026 			continue;
2027 		if (sd[i]->volume_offline)
2028 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029 	}
2030 
2031 	/* Don't notify scsi mid layer of any changes the first time through
2032 	 * (or if there are no changes) scsi_scan_host will do it later the
2033 	 * first time through.
2034 	 */
2035 	if (!changes)
2036 		goto free_and_out;
2037 
2038 	/* Notify scsi mid layer of any removed devices */
2039 	for (i = 0; i < nremoved; i++) {
2040 		if (removed[i] == NULL)
2041 			continue;
2042 		if (removed[i]->expose_device)
2043 			hpsa_remove_device(h, removed[i]);
2044 		kfree(removed[i]);
2045 		removed[i] = NULL;
2046 	}
2047 
2048 	/* Notify scsi mid layer of any added devices */
2049 	for (i = 0; i < nadded; i++) {
2050 		int rc = 0;
2051 
2052 		if (added[i] == NULL)
2053 			continue;
2054 		if (!(added[i]->expose_device))
2055 			continue;
2056 		rc = hpsa_add_device(h, added[i]);
2057 		if (!rc)
2058 			continue;
2059 		dev_warn(&h->pdev->dev,
2060 			"addition failed %d, device not added.", rc);
2061 		/* now we have to remove it from h->dev,
2062 		 * since it didn't get added to scsi mid layer
2063 		 */
2064 		fixup_botched_add(h, added[i]);
2065 		h->drv_req_rescan = 1;
2066 	}
2067 
2068 free_and_out:
2069 	kfree(added);
2070 	kfree(removed);
2071 }
2072 
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078 	int bus, int target, int lun)
2079 {
2080 	int i;
2081 	struct hpsa_scsi_dev_t *sd;
2082 
2083 	for (i = 0; i < h->ndevices; i++) {
2084 		sd = h->dev[i];
2085 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086 			return sd;
2087 	}
2088 	return NULL;
2089 }
2090 
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093 	struct hpsa_scsi_dev_t *sd = NULL;
2094 	unsigned long flags;
2095 	struct ctlr_info *h;
2096 
2097 	h = sdev_to_hba(sdev);
2098 	spin_lock_irqsave(&h->devlock, flags);
2099 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100 		struct scsi_target *starget;
2101 		struct sas_rphy *rphy;
2102 
2103 		starget = scsi_target(sdev);
2104 		rphy = target_to_rphy(starget);
2105 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106 		if (sd) {
2107 			sd->target = sdev_id(sdev);
2108 			sd->lun = sdev->lun;
2109 		}
2110 	}
2111 	if (!sd)
2112 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113 					sdev_id(sdev), sdev->lun);
2114 
2115 	if (sd && sd->expose_device) {
2116 		atomic_set(&sd->ioaccel_cmds_out, 0);
2117 		sdev->hostdata = sd;
2118 	} else
2119 		sdev->hostdata = NULL;
2120 	spin_unlock_irqrestore(&h->devlock, flags);
2121 	return 0;
2122 }
2123 
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127 	struct hpsa_scsi_dev_t *sd;
2128 	int queue_depth;
2129 
2130 	sd = sdev->hostdata;
2131 	sdev->no_uld_attach = !sd || !sd->expose_device;
2132 
2133 	if (sd) {
2134 		if (sd->external)
2135 			queue_depth = EXTERNAL_QD;
2136 		else
2137 			queue_depth = sd->queue_depth != 0 ?
2138 					sd->queue_depth : sdev->host->can_queue;
2139 	} else
2140 		queue_depth = sdev->host->can_queue;
2141 
2142 	scsi_change_queue_depth(sdev, queue_depth);
2143 
2144 	return 0;
2145 }
2146 
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149 	/* nothing to do. */
2150 }
2151 
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154 	int i;
2155 
2156 	if (!h->ioaccel2_cmd_sg_list)
2157 		return;
2158 	for (i = 0; i < h->nr_cmds; i++) {
2159 		kfree(h->ioaccel2_cmd_sg_list[i]);
2160 		h->ioaccel2_cmd_sg_list[i] = NULL;
2161 	}
2162 	kfree(h->ioaccel2_cmd_sg_list);
2163 	h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165 
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168 	int i;
2169 
2170 	if (h->chainsize <= 0)
2171 		return 0;
2172 
2173 	h->ioaccel2_cmd_sg_list =
2174 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175 					GFP_KERNEL);
2176 	if (!h->ioaccel2_cmd_sg_list)
2177 		return -ENOMEM;
2178 	for (i = 0; i < h->nr_cmds; i++) {
2179 		h->ioaccel2_cmd_sg_list[i] =
2180 			kmalloc_array(h->maxsgentries,
2181 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182 				      GFP_KERNEL);
2183 		if (!h->ioaccel2_cmd_sg_list[i])
2184 			goto clean;
2185 	}
2186 	return 0;
2187 
2188 clean:
2189 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2190 	return -ENOMEM;
2191 }
2192 
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195 	int i;
2196 
2197 	if (!h->cmd_sg_list)
2198 		return;
2199 	for (i = 0; i < h->nr_cmds; i++) {
2200 		kfree(h->cmd_sg_list[i]);
2201 		h->cmd_sg_list[i] = NULL;
2202 	}
2203 	kfree(h->cmd_sg_list);
2204 	h->cmd_sg_list = NULL;
2205 }
2206 
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209 	int i;
2210 
2211 	if (h->chainsize <= 0)
2212 		return 0;
2213 
2214 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215 				 GFP_KERNEL);
2216 	if (!h->cmd_sg_list)
2217 		return -ENOMEM;
2218 
2219 	for (i = 0; i < h->nr_cmds; i++) {
2220 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221 						  sizeof(*h->cmd_sg_list[i]),
2222 						  GFP_KERNEL);
2223 		if (!h->cmd_sg_list[i])
2224 			goto clean;
2225 
2226 	}
2227 	return 0;
2228 
2229 clean:
2230 	hpsa_free_sg_chain_blocks(h);
2231 	return -ENOMEM;
2232 }
2233 
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235 	struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237 	struct ioaccel2_sg_element *chain_block;
2238 	u64 temp64;
2239 	u32 chain_size;
2240 
2241 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242 	chain_size = le32_to_cpu(cp->sg[0].length);
2243 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2244 				DMA_TO_DEVICE);
2245 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246 		/* prevent subsequent unmapping */
2247 		cp->sg->address = 0;
2248 		return -1;
2249 	}
2250 	cp->sg->address = cpu_to_le64(temp64);
2251 	return 0;
2252 }
2253 
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255 	struct io_accel2_cmd *cp)
2256 {
2257 	struct ioaccel2_sg_element *chain_sg;
2258 	u64 temp64;
2259 	u32 chain_size;
2260 
2261 	chain_sg = cp->sg;
2262 	temp64 = le64_to_cpu(chain_sg->address);
2263 	chain_size = le32_to_cpu(cp->sg[0].length);
2264 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2265 }
2266 
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268 	struct CommandList *c)
2269 {
2270 	struct SGDescriptor *chain_sg, *chain_block;
2271 	u64 temp64;
2272 	u32 chain_len;
2273 
2274 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275 	chain_block = h->cmd_sg_list[c->cmdindex];
2276 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277 	chain_len = sizeof(*chain_sg) *
2278 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279 	chain_sg->Len = cpu_to_le32(chain_len);
2280 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2281 				DMA_TO_DEVICE);
2282 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283 		/* prevent subsequent unmapping */
2284 		chain_sg->Addr = cpu_to_le64(0);
2285 		return -1;
2286 	}
2287 	chain_sg->Addr = cpu_to_le64(temp64);
2288 	return 0;
2289 }
2290 
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292 	struct CommandList *c)
2293 {
2294 	struct SGDescriptor *chain_sg;
2295 
2296 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297 		return;
2298 
2299 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2301 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2302 }
2303 
2304 
2305 /* Decode the various types of errors on ioaccel2 path.
2306  * Return 1 for any error that should generate a RAID path retry.
2307  * Return 0 for errors that don't require a RAID path retry.
2308  */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310 					struct CommandList *c,
2311 					struct scsi_cmnd *cmd,
2312 					struct io_accel2_cmd *c2,
2313 					struct hpsa_scsi_dev_t *dev)
2314 {
2315 	int data_len;
2316 	int retry = 0;
2317 	u32 ioaccel2_resid = 0;
2318 
2319 	switch (c2->error_data.serv_response) {
2320 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321 		switch (c2->error_data.status) {
2322 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323 			break;
2324 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2326 			if (c2->error_data.data_present !=
2327 					IOACCEL2_SENSE_DATA_PRESENT) {
2328 				memset(cmd->sense_buffer, 0,
2329 					SCSI_SENSE_BUFFERSIZE);
2330 				break;
2331 			}
2332 			/* copy the sense data */
2333 			data_len = c2->error_data.sense_data_len;
2334 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2335 				data_len = SCSI_SENSE_BUFFERSIZE;
2336 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2337 				data_len =
2338 					sizeof(c2->error_data.sense_data_buff);
2339 			memcpy(cmd->sense_buffer,
2340 				c2->error_data.sense_data_buff, data_len);
2341 			retry = 1;
2342 			break;
2343 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344 			retry = 1;
2345 			break;
2346 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347 			retry = 1;
2348 			break;
2349 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350 			retry = 1;
2351 			break;
2352 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353 			retry = 1;
2354 			break;
2355 		default:
2356 			retry = 1;
2357 			break;
2358 		}
2359 		break;
2360 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2361 		switch (c2->error_data.status) {
2362 		case IOACCEL2_STATUS_SR_IO_ERROR:
2363 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2364 		case IOACCEL2_STATUS_SR_OVERRUN:
2365 			retry = 1;
2366 			break;
2367 		case IOACCEL2_STATUS_SR_UNDERRUN:
2368 			cmd->result = (DID_OK << 16);		/* host byte */
2369 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2370 			ioaccel2_resid = get_unaligned_le32(
2371 						&c2->error_data.resid_cnt[0]);
2372 			scsi_set_resid(cmd, ioaccel2_resid);
2373 			break;
2374 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377 			/*
2378 			 * Did an HBA disk disappear? We will eventually
2379 			 * get a state change event from the controller but
2380 			 * in the meantime, we need to tell the OS that the
2381 			 * HBA disk is no longer there and stop I/O
2382 			 * from going down. This allows the potential re-insert
2383 			 * of the disk to get the same device node.
2384 			 */
2385 			if (dev->physical_device && dev->expose_device) {
2386 				cmd->result = DID_NO_CONNECT << 16;
2387 				dev->removed = 1;
2388 				h->drv_req_rescan = 1;
2389 				dev_warn(&h->pdev->dev,
2390 					"%s: device is gone!\n", __func__);
2391 			} else
2392 				/*
2393 				 * Retry by sending down the RAID path.
2394 				 * We will get an event from ctlr to
2395 				 * trigger rescan regardless.
2396 				 */
2397 				retry = 1;
2398 			break;
2399 		default:
2400 			retry = 1;
2401 		}
2402 		break;
2403 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404 		break;
2405 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406 		break;
2407 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408 		retry = 1;
2409 		break;
2410 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411 		break;
2412 	default:
2413 		retry = 1;
2414 		break;
2415 	}
2416 
2417 	return retry;	/* retry on raid path? */
2418 }
2419 
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421 		struct CommandList *c)
2422 {
2423 	bool do_wake = false;
2424 
2425 	/*
2426 	 * Reset c->scsi_cmd here so that the reset handler will know
2427 	 * this command has completed.  Then, check to see if the handler is
2428 	 * waiting for this command, and, if so, wake it.
2429 	 */
2430 	c->scsi_cmd = SCSI_CMD_IDLE;
2431 	mb();	/* Declare command idle before checking for pending events. */
2432 	if (c->reset_pending) {
2433 		unsigned long flags;
2434 		struct hpsa_scsi_dev_t *dev;
2435 
2436 		/*
2437 		 * There appears to be a reset pending; lock the lock and
2438 		 * reconfirm.  If so, then decrement the count of outstanding
2439 		 * commands and wake the reset command if this is the last one.
2440 		 */
2441 		spin_lock_irqsave(&h->lock, flags);
2442 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2443 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444 			do_wake = true;
2445 		c->reset_pending = NULL;
2446 		spin_unlock_irqrestore(&h->lock, flags);
2447 	}
2448 
2449 	if (do_wake)
2450 		wake_up_all(&h->event_sync_wait_queue);
2451 }
2452 
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454 				      struct CommandList *c)
2455 {
2456 	hpsa_cmd_resolve_events(h, c);
2457 	cmd_tagged_free(h, c);
2458 }
2459 
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461 		struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463 	hpsa_cmd_resolve_and_free(h, c);
2464 	if (cmd && cmd->scsi_done)
2465 		cmd->scsi_done(cmd);
2466 }
2467 
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473 
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475 		struct CommandList *c, struct scsi_cmnd *cmd,
2476 		struct hpsa_scsi_dev_t *dev)
2477 {
2478 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479 
2480 	/* check for good status */
2481 	if (likely(c2->error_data.serv_response == 0 &&
2482 			c2->error_data.status == 0))
2483 		return hpsa_cmd_free_and_done(h, c, cmd);
2484 
2485 	/*
2486 	 * Any RAID offload error results in retry which will use
2487 	 * the normal I/O path so the controller can handle whatever is
2488 	 * wrong.
2489 	 */
2490 	if (is_logical_device(dev) &&
2491 		c2->error_data.serv_response ==
2492 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2493 		if (c2->error_data.status ==
2494 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495 			dev->offload_enabled = 0;
2496 			dev->offload_to_be_enabled = 0;
2497 		}
2498 
2499 		return hpsa_retry_cmd(h, c);
2500 	}
2501 
2502 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503 		return hpsa_retry_cmd(h, c);
2504 
2505 	return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507 
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510 					struct CommandList *cp)
2511 {
2512 	u8 tmf_status = cp->err_info->ScsiStatus;
2513 
2514 	switch (tmf_status) {
2515 	case CISS_TMF_COMPLETE:
2516 		/*
2517 		 * CISS_TMF_COMPLETE never happens, instead,
2518 		 * ei->CommandStatus == 0 for this case.
2519 		 */
2520 	case CISS_TMF_SUCCESS:
2521 		return 0;
2522 	case CISS_TMF_INVALID_FRAME:
2523 	case CISS_TMF_NOT_SUPPORTED:
2524 	case CISS_TMF_FAILED:
2525 	case CISS_TMF_WRONG_LUN:
2526 	case CISS_TMF_OVERLAPPED_TAG:
2527 		break;
2528 	default:
2529 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530 				tmf_status);
2531 		break;
2532 	}
2533 	return -tmf_status;
2534 }
2535 
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538 	struct scsi_cmnd *cmd;
2539 	struct ctlr_info *h;
2540 	struct ErrorInfo *ei;
2541 	struct hpsa_scsi_dev_t *dev;
2542 	struct io_accel2_cmd *c2;
2543 
2544 	u8 sense_key;
2545 	u8 asc;      /* additional sense code */
2546 	u8 ascq;     /* additional sense code qualifier */
2547 	unsigned long sense_data_size;
2548 
2549 	ei = cp->err_info;
2550 	cmd = cp->scsi_cmd;
2551 	h = cp->h;
2552 
2553 	if (!cmd->device) {
2554 		cmd->result = DID_NO_CONNECT << 16;
2555 		return hpsa_cmd_free_and_done(h, cp, cmd);
2556 	}
2557 
2558 	dev = cmd->device->hostdata;
2559 	if (!dev) {
2560 		cmd->result = DID_NO_CONNECT << 16;
2561 		return hpsa_cmd_free_and_done(h, cp, cmd);
2562 	}
2563 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564 
2565 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566 	if ((cp->cmd_type == CMD_SCSI) &&
2567 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568 		hpsa_unmap_sg_chain_block(h, cp);
2569 
2570 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2571 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573 
2574 	cmd->result = (DID_OK << 16); 		/* host byte */
2575 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2576 
2577 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578 		if (dev->physical_device && dev->expose_device &&
2579 			dev->removed) {
2580 			cmd->result = DID_NO_CONNECT << 16;
2581 			return hpsa_cmd_free_and_done(h, cp, cmd);
2582 		}
2583 		if (likely(cp->phys_disk != NULL))
2584 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585 	}
2586 
2587 	/*
2588 	 * We check for lockup status here as it may be set for
2589 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590 	 * fail_all_oustanding_cmds()
2591 	 */
2592 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593 		/* DID_NO_CONNECT will prevent a retry */
2594 		cmd->result = DID_NO_CONNECT << 16;
2595 		return hpsa_cmd_free_and_done(h, cp, cmd);
2596 	}
2597 
2598 	if ((unlikely(hpsa_is_pending_event(cp))))
2599 		if (cp->reset_pending)
2600 			return hpsa_cmd_free_and_done(h, cp, cmd);
2601 
2602 	if (cp->cmd_type == CMD_IOACCEL2)
2603 		return process_ioaccel2_completion(h, cp, cmd, dev);
2604 
2605 	scsi_set_resid(cmd, ei->ResidualCnt);
2606 	if (ei->CommandStatus == 0)
2607 		return hpsa_cmd_free_and_done(h, cp, cmd);
2608 
2609 	/* For I/O accelerator commands, copy over some fields to the normal
2610 	 * CISS header used below for error handling.
2611 	 */
2612 	if (cp->cmd_type == CMD_IOACCEL1) {
2613 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614 		cp->Header.SGList = scsi_sg_count(cmd);
2615 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618 		cp->Header.tag = c->tag;
2619 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621 
2622 		/* Any RAID offload error results in retry which will use
2623 		 * the normal I/O path so the controller can handle whatever's
2624 		 * wrong.
2625 		 */
2626 		if (is_logical_device(dev)) {
2627 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628 				dev->offload_enabled = 0;
2629 			return hpsa_retry_cmd(h, cp);
2630 		}
2631 	}
2632 
2633 	/* an error has occurred */
2634 	switch (ei->CommandStatus) {
2635 
2636 	case CMD_TARGET_STATUS:
2637 		cmd->result |= ei->ScsiStatus;
2638 		/* copy the sense data */
2639 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641 		else
2642 			sense_data_size = sizeof(ei->SenseInfo);
2643 		if (ei->SenseLen < sense_data_size)
2644 			sense_data_size = ei->SenseLen;
2645 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646 		if (ei->ScsiStatus)
2647 			decode_sense_data(ei->SenseInfo, sense_data_size,
2648 				&sense_key, &asc, &ascq);
2649 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650 			if (sense_key == ABORTED_COMMAND) {
2651 				cmd->result |= DID_SOFT_ERROR << 16;
2652 				break;
2653 			}
2654 			break;
2655 		}
2656 		/* Problem was not a check condition
2657 		 * Pass it up to the upper layers...
2658 		 */
2659 		if (ei->ScsiStatus) {
2660 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2661 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2662 				"Returning result: 0x%x\n",
2663 				cp, ei->ScsiStatus,
2664 				sense_key, asc, ascq,
2665 				cmd->result);
2666 		} else {  /* scsi status is zero??? How??? */
2667 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2668 				"Returning no connection.\n", cp),
2669 
2670 			/* Ordinarily, this case should never happen,
2671 			 * but there is a bug in some released firmware
2672 			 * revisions that allows it to happen if, for
2673 			 * example, a 4100 backplane loses power and
2674 			 * the tape drive is in it.  We assume that
2675 			 * it's a fatal error of some kind because we
2676 			 * can't show that it wasn't. We will make it
2677 			 * look like selection timeout since that is
2678 			 * the most common reason for this to occur,
2679 			 * and it's severe enough.
2680 			 */
2681 
2682 			cmd->result = DID_NO_CONNECT << 16;
2683 		}
2684 		break;
2685 
2686 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2687 		break;
2688 	case CMD_DATA_OVERRUN:
2689 		dev_warn(&h->pdev->dev,
2690 			"CDB %16phN data overrun\n", cp->Request.CDB);
2691 		break;
2692 	case CMD_INVALID: {
2693 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2694 		print_cmd(cp); */
2695 		/* We get CMD_INVALID if you address a non-existent device
2696 		 * instead of a selection timeout (no response).  You will
2697 		 * see this if you yank out a drive, then try to access it.
2698 		 * This is kind of a shame because it means that any other
2699 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2700 		 * missing target. */
2701 		cmd->result = DID_NO_CONNECT << 16;
2702 	}
2703 		break;
2704 	case CMD_PROTOCOL_ERR:
2705 		cmd->result = DID_ERROR << 16;
2706 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2707 				cp->Request.CDB);
2708 		break;
2709 	case CMD_HARDWARE_ERR:
2710 		cmd->result = DID_ERROR << 16;
2711 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2712 			cp->Request.CDB);
2713 		break;
2714 	case CMD_CONNECTION_LOST:
2715 		cmd->result = DID_ERROR << 16;
2716 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2717 			cp->Request.CDB);
2718 		break;
2719 	case CMD_ABORTED:
2720 		cmd->result = DID_ABORT << 16;
2721 		break;
2722 	case CMD_ABORT_FAILED:
2723 		cmd->result = DID_ERROR << 16;
2724 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2725 			cp->Request.CDB);
2726 		break;
2727 	case CMD_UNSOLICITED_ABORT:
2728 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2729 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2730 			cp->Request.CDB);
2731 		break;
2732 	case CMD_TIMEOUT:
2733 		cmd->result = DID_TIME_OUT << 16;
2734 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2735 			cp->Request.CDB);
2736 		break;
2737 	case CMD_UNABORTABLE:
2738 		cmd->result = DID_ERROR << 16;
2739 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2740 		break;
2741 	case CMD_TMF_STATUS:
2742 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2743 			cmd->result = DID_ERROR << 16;
2744 		break;
2745 	case CMD_IOACCEL_DISABLED:
2746 		/* This only handles the direct pass-through case since RAID
2747 		 * offload is handled above.  Just attempt a retry.
2748 		 */
2749 		cmd->result = DID_SOFT_ERROR << 16;
2750 		dev_warn(&h->pdev->dev,
2751 				"cp %p had HP SSD Smart Path error\n", cp);
2752 		break;
2753 	default:
2754 		cmd->result = DID_ERROR << 16;
2755 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2756 				cp, ei->CommandStatus);
2757 	}
2758 
2759 	return hpsa_cmd_free_and_done(h, cp, cmd);
2760 }
2761 
2762 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2763 		int sg_used, enum dma_data_direction data_direction)
2764 {
2765 	int i;
2766 
2767 	for (i = 0; i < sg_used; i++)
2768 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2769 				le32_to_cpu(c->SG[i].Len),
2770 				data_direction);
2771 }
2772 
2773 static int hpsa_map_one(struct pci_dev *pdev,
2774 		struct CommandList *cp,
2775 		unsigned char *buf,
2776 		size_t buflen,
2777 		enum dma_data_direction data_direction)
2778 {
2779 	u64 addr64;
2780 
2781 	if (buflen == 0 || data_direction == DMA_NONE) {
2782 		cp->Header.SGList = 0;
2783 		cp->Header.SGTotal = cpu_to_le16(0);
2784 		return 0;
2785 	}
2786 
2787 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2788 	if (dma_mapping_error(&pdev->dev, addr64)) {
2789 		/* Prevent subsequent unmap of something never mapped */
2790 		cp->Header.SGList = 0;
2791 		cp->Header.SGTotal = cpu_to_le16(0);
2792 		return -1;
2793 	}
2794 	cp->SG[0].Addr = cpu_to_le64(addr64);
2795 	cp->SG[0].Len = cpu_to_le32(buflen);
2796 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2797 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2798 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2799 	return 0;
2800 }
2801 
2802 #define NO_TIMEOUT ((unsigned long) -1)
2803 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2804 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2805 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2806 {
2807 	DECLARE_COMPLETION_ONSTACK(wait);
2808 
2809 	c->waiting = &wait;
2810 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2811 	if (timeout_msecs == NO_TIMEOUT) {
2812 		/* TODO: get rid of this no-timeout thing */
2813 		wait_for_completion_io(&wait);
2814 		return IO_OK;
2815 	}
2816 	if (!wait_for_completion_io_timeout(&wait,
2817 					msecs_to_jiffies(timeout_msecs))) {
2818 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2819 		return -ETIMEDOUT;
2820 	}
2821 	return IO_OK;
2822 }
2823 
2824 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2825 				   int reply_queue, unsigned long timeout_msecs)
2826 {
2827 	if (unlikely(lockup_detected(h))) {
2828 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2829 		return IO_OK;
2830 	}
2831 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2832 }
2833 
2834 static u32 lockup_detected(struct ctlr_info *h)
2835 {
2836 	int cpu;
2837 	u32 rc, *lockup_detected;
2838 
2839 	cpu = get_cpu();
2840 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2841 	rc = *lockup_detected;
2842 	put_cpu();
2843 	return rc;
2844 }
2845 
2846 #define MAX_DRIVER_CMD_RETRIES 25
2847 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2848 		struct CommandList *c, enum dma_data_direction data_direction,
2849 		unsigned long timeout_msecs)
2850 {
2851 	int backoff_time = 10, retry_count = 0;
2852 	int rc;
2853 
2854 	do {
2855 		memset(c->err_info, 0, sizeof(*c->err_info));
2856 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2857 						  timeout_msecs);
2858 		if (rc)
2859 			break;
2860 		retry_count++;
2861 		if (retry_count > 3) {
2862 			msleep(backoff_time);
2863 			if (backoff_time < 1000)
2864 				backoff_time *= 2;
2865 		}
2866 	} while ((check_for_unit_attention(h, c) ||
2867 			check_for_busy(h, c)) &&
2868 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2869 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2870 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2871 		rc = -EIO;
2872 	return rc;
2873 }
2874 
2875 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2876 				struct CommandList *c)
2877 {
2878 	const u8 *cdb = c->Request.CDB;
2879 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2880 
2881 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2882 		 txt, lun, cdb);
2883 }
2884 
2885 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2886 			struct CommandList *cp)
2887 {
2888 	const struct ErrorInfo *ei = cp->err_info;
2889 	struct device *d = &cp->h->pdev->dev;
2890 	u8 sense_key, asc, ascq;
2891 	int sense_len;
2892 
2893 	switch (ei->CommandStatus) {
2894 	case CMD_TARGET_STATUS:
2895 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2896 			sense_len = sizeof(ei->SenseInfo);
2897 		else
2898 			sense_len = ei->SenseLen;
2899 		decode_sense_data(ei->SenseInfo, sense_len,
2900 					&sense_key, &asc, &ascq);
2901 		hpsa_print_cmd(h, "SCSI status", cp);
2902 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2903 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2904 				sense_key, asc, ascq);
2905 		else
2906 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2907 		if (ei->ScsiStatus == 0)
2908 			dev_warn(d, "SCSI status is abnormally zero.  "
2909 			"(probably indicates selection timeout "
2910 			"reported incorrectly due to a known "
2911 			"firmware bug, circa July, 2001.)\n");
2912 		break;
2913 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2914 		break;
2915 	case CMD_DATA_OVERRUN:
2916 		hpsa_print_cmd(h, "overrun condition", cp);
2917 		break;
2918 	case CMD_INVALID: {
2919 		/* controller unfortunately reports SCSI passthru's
2920 		 * to non-existent targets as invalid commands.
2921 		 */
2922 		hpsa_print_cmd(h, "invalid command", cp);
2923 		dev_warn(d, "probably means device no longer present\n");
2924 		}
2925 		break;
2926 	case CMD_PROTOCOL_ERR:
2927 		hpsa_print_cmd(h, "protocol error", cp);
2928 		break;
2929 	case CMD_HARDWARE_ERR:
2930 		hpsa_print_cmd(h, "hardware error", cp);
2931 		break;
2932 	case CMD_CONNECTION_LOST:
2933 		hpsa_print_cmd(h, "connection lost", cp);
2934 		break;
2935 	case CMD_ABORTED:
2936 		hpsa_print_cmd(h, "aborted", cp);
2937 		break;
2938 	case CMD_ABORT_FAILED:
2939 		hpsa_print_cmd(h, "abort failed", cp);
2940 		break;
2941 	case CMD_UNSOLICITED_ABORT:
2942 		hpsa_print_cmd(h, "unsolicited abort", cp);
2943 		break;
2944 	case CMD_TIMEOUT:
2945 		hpsa_print_cmd(h, "timed out", cp);
2946 		break;
2947 	case CMD_UNABORTABLE:
2948 		hpsa_print_cmd(h, "unabortable", cp);
2949 		break;
2950 	case CMD_CTLR_LOCKUP:
2951 		hpsa_print_cmd(h, "controller lockup detected", cp);
2952 		break;
2953 	default:
2954 		hpsa_print_cmd(h, "unknown status", cp);
2955 		dev_warn(d, "Unknown command status %x\n",
2956 				ei->CommandStatus);
2957 	}
2958 }
2959 
2960 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2961 					u8 page, u8 *buf, size_t bufsize)
2962 {
2963 	int rc = IO_OK;
2964 	struct CommandList *c;
2965 	struct ErrorInfo *ei;
2966 
2967 	c = cmd_alloc(h);
2968 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2969 			page, scsi3addr, TYPE_CMD)) {
2970 		rc = -1;
2971 		goto out;
2972 	}
2973 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2974 			NO_TIMEOUT);
2975 	if (rc)
2976 		goto out;
2977 	ei = c->err_info;
2978 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2979 		hpsa_scsi_interpret_error(h, c);
2980 		rc = -1;
2981 	}
2982 out:
2983 	cmd_free(h, c);
2984 	return rc;
2985 }
2986 
2987 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2988 						u8 *scsi3addr)
2989 {
2990 	u8 *buf;
2991 	u64 sa = 0;
2992 	int rc = 0;
2993 
2994 	buf = kzalloc(1024, GFP_KERNEL);
2995 	if (!buf)
2996 		return 0;
2997 
2998 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2999 					buf, 1024);
3000 
3001 	if (rc)
3002 		goto out;
3003 
3004 	sa = get_unaligned_be64(buf+12);
3005 
3006 out:
3007 	kfree(buf);
3008 	return sa;
3009 }
3010 
3011 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3012 			u16 page, unsigned char *buf,
3013 			unsigned char bufsize)
3014 {
3015 	int rc = IO_OK;
3016 	struct CommandList *c;
3017 	struct ErrorInfo *ei;
3018 
3019 	c = cmd_alloc(h);
3020 
3021 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3022 			page, scsi3addr, TYPE_CMD)) {
3023 		rc = -1;
3024 		goto out;
3025 	}
3026 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3027 			NO_TIMEOUT);
3028 	if (rc)
3029 		goto out;
3030 	ei = c->err_info;
3031 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3032 		hpsa_scsi_interpret_error(h, c);
3033 		rc = -1;
3034 	}
3035 out:
3036 	cmd_free(h, c);
3037 	return rc;
3038 }
3039 
3040 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3041 	u8 reset_type, int reply_queue)
3042 {
3043 	int rc = IO_OK;
3044 	struct CommandList *c;
3045 	struct ErrorInfo *ei;
3046 
3047 	c = cmd_alloc(h);
3048 
3049 
3050 	/* fill_cmd can't fail here, no data buffer to map. */
3051 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3052 			scsi3addr, TYPE_MSG);
3053 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3054 	if (rc) {
3055 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3056 		goto out;
3057 	}
3058 	/* no unmap needed here because no data xfer. */
3059 
3060 	ei = c->err_info;
3061 	if (ei->CommandStatus != 0) {
3062 		hpsa_scsi_interpret_error(h, c);
3063 		rc = -1;
3064 	}
3065 out:
3066 	cmd_free(h, c);
3067 	return rc;
3068 }
3069 
3070 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3071 			       struct hpsa_scsi_dev_t *dev,
3072 			       unsigned char *scsi3addr)
3073 {
3074 	int i;
3075 	bool match = false;
3076 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3077 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3078 
3079 	if (hpsa_is_cmd_idle(c))
3080 		return false;
3081 
3082 	switch (c->cmd_type) {
3083 	case CMD_SCSI:
3084 	case CMD_IOCTL_PEND:
3085 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3086 				sizeof(c->Header.LUN.LunAddrBytes));
3087 		break;
3088 
3089 	case CMD_IOACCEL1:
3090 	case CMD_IOACCEL2:
3091 		if (c->phys_disk == dev) {
3092 			/* HBA mode match */
3093 			match = true;
3094 		} else {
3095 			/* Possible RAID mode -- check each phys dev. */
3096 			/* FIXME:  Do we need to take out a lock here?  If
3097 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3098 			 * instead. */
3099 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3100 				/* FIXME: an alternate test might be
3101 				 *
3102 				 * match = dev->phys_disk[i]->ioaccel_handle
3103 				 *              == c2->scsi_nexus;      */
3104 				match = dev->phys_disk[i] == c->phys_disk;
3105 			}
3106 		}
3107 		break;
3108 
3109 	case IOACCEL2_TMF:
3110 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3111 			match = dev->phys_disk[i]->ioaccel_handle ==
3112 					le32_to_cpu(ac->it_nexus);
3113 		}
3114 		break;
3115 
3116 	case 0:		/* The command is in the middle of being initialized. */
3117 		match = false;
3118 		break;
3119 
3120 	default:
3121 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3122 			c->cmd_type);
3123 		BUG();
3124 	}
3125 
3126 	return match;
3127 }
3128 
3129 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3130 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3131 {
3132 	int i;
3133 	int rc = 0;
3134 
3135 	/* We can really only handle one reset at a time */
3136 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3137 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3138 		return -EINTR;
3139 	}
3140 
3141 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3142 
3143 	for (i = 0; i < h->nr_cmds; i++) {
3144 		struct CommandList *c = h->cmd_pool + i;
3145 		int refcount = atomic_inc_return(&c->refcount);
3146 
3147 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3148 			unsigned long flags;
3149 
3150 			/*
3151 			 * Mark the target command as having a reset pending,
3152 			 * then lock a lock so that the command cannot complete
3153 			 * while we're considering it.  If the command is not
3154 			 * idle then count it; otherwise revoke the event.
3155 			 */
3156 			c->reset_pending = dev;
3157 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3158 			if (!hpsa_is_cmd_idle(c))
3159 				atomic_inc(&dev->reset_cmds_out);
3160 			else
3161 				c->reset_pending = NULL;
3162 			spin_unlock_irqrestore(&h->lock, flags);
3163 		}
3164 
3165 		cmd_free(h, c);
3166 	}
3167 
3168 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3169 	if (!rc)
3170 		wait_event(h->event_sync_wait_queue,
3171 			atomic_read(&dev->reset_cmds_out) == 0 ||
3172 			lockup_detected(h));
3173 
3174 	if (unlikely(lockup_detected(h))) {
3175 		dev_warn(&h->pdev->dev,
3176 			 "Controller lockup detected during reset wait\n");
3177 		rc = -ENODEV;
3178 	}
3179 
3180 	if (unlikely(rc))
3181 		atomic_set(&dev->reset_cmds_out, 0);
3182 	else
3183 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3184 
3185 	mutex_unlock(&h->reset_mutex);
3186 	return rc;
3187 }
3188 
3189 static void hpsa_get_raid_level(struct ctlr_info *h,
3190 	unsigned char *scsi3addr, unsigned char *raid_level)
3191 {
3192 	int rc;
3193 	unsigned char *buf;
3194 
3195 	*raid_level = RAID_UNKNOWN;
3196 	buf = kzalloc(64, GFP_KERNEL);
3197 	if (!buf)
3198 		return;
3199 
3200 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3201 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3202 		goto exit;
3203 
3204 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3205 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3206 
3207 	if (rc == 0)
3208 		*raid_level = buf[8];
3209 	if (*raid_level > RAID_UNKNOWN)
3210 		*raid_level = RAID_UNKNOWN;
3211 exit:
3212 	kfree(buf);
3213 	return;
3214 }
3215 
3216 #define HPSA_MAP_DEBUG
3217 #ifdef HPSA_MAP_DEBUG
3218 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3219 				struct raid_map_data *map_buff)
3220 {
3221 	struct raid_map_disk_data *dd = &map_buff->data[0];
3222 	int map, row, col;
3223 	u16 map_cnt, row_cnt, disks_per_row;
3224 
3225 	if (rc != 0)
3226 		return;
3227 
3228 	/* Show details only if debugging has been activated. */
3229 	if (h->raid_offload_debug < 2)
3230 		return;
3231 
3232 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3233 				le32_to_cpu(map_buff->structure_size));
3234 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3235 			le32_to_cpu(map_buff->volume_blk_size));
3236 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3237 			le64_to_cpu(map_buff->volume_blk_cnt));
3238 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3239 			map_buff->phys_blk_shift);
3240 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3241 			map_buff->parity_rotation_shift);
3242 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3243 			le16_to_cpu(map_buff->strip_size));
3244 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3245 			le64_to_cpu(map_buff->disk_starting_blk));
3246 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3247 			le64_to_cpu(map_buff->disk_blk_cnt));
3248 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3249 			le16_to_cpu(map_buff->data_disks_per_row));
3250 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3251 			le16_to_cpu(map_buff->metadata_disks_per_row));
3252 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3253 			le16_to_cpu(map_buff->row_cnt));
3254 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3255 			le16_to_cpu(map_buff->layout_map_count));
3256 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3257 			le16_to_cpu(map_buff->flags));
3258 	dev_info(&h->pdev->dev, "encryption = %s\n",
3259 			le16_to_cpu(map_buff->flags) &
3260 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3261 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3262 			le16_to_cpu(map_buff->dekindex));
3263 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3264 	for (map = 0; map < map_cnt; map++) {
3265 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3266 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3267 		for (row = 0; row < row_cnt; row++) {
3268 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3269 			disks_per_row =
3270 				le16_to_cpu(map_buff->data_disks_per_row);
3271 			for (col = 0; col < disks_per_row; col++, dd++)
3272 				dev_info(&h->pdev->dev,
3273 					"    D%02u: h=0x%04x xor=%u,%u\n",
3274 					col, dd->ioaccel_handle,
3275 					dd->xor_mult[0], dd->xor_mult[1]);
3276 			disks_per_row =
3277 				le16_to_cpu(map_buff->metadata_disks_per_row);
3278 			for (col = 0; col < disks_per_row; col++, dd++)
3279 				dev_info(&h->pdev->dev,
3280 					"    M%02u: h=0x%04x xor=%u,%u\n",
3281 					col, dd->ioaccel_handle,
3282 					dd->xor_mult[0], dd->xor_mult[1]);
3283 		}
3284 	}
3285 }
3286 #else
3287 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3288 			__attribute__((unused)) int rc,
3289 			__attribute__((unused)) struct raid_map_data *map_buff)
3290 {
3291 }
3292 #endif
3293 
3294 static int hpsa_get_raid_map(struct ctlr_info *h,
3295 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3296 {
3297 	int rc = 0;
3298 	struct CommandList *c;
3299 	struct ErrorInfo *ei;
3300 
3301 	c = cmd_alloc(h);
3302 
3303 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3304 			sizeof(this_device->raid_map), 0,
3305 			scsi3addr, TYPE_CMD)) {
3306 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3307 		cmd_free(h, c);
3308 		return -1;
3309 	}
3310 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3311 			NO_TIMEOUT);
3312 	if (rc)
3313 		goto out;
3314 	ei = c->err_info;
3315 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3316 		hpsa_scsi_interpret_error(h, c);
3317 		rc = -1;
3318 		goto out;
3319 	}
3320 	cmd_free(h, c);
3321 
3322 	/* @todo in the future, dynamically allocate RAID map memory */
3323 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3324 				sizeof(this_device->raid_map)) {
3325 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3326 		rc = -1;
3327 	}
3328 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3329 	return rc;
3330 out:
3331 	cmd_free(h, c);
3332 	return rc;
3333 }
3334 
3335 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3336 		unsigned char scsi3addr[], u16 bmic_device_index,
3337 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3338 {
3339 	int rc = IO_OK;
3340 	struct CommandList *c;
3341 	struct ErrorInfo *ei;
3342 
3343 	c = cmd_alloc(h);
3344 
3345 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3346 		0, RAID_CTLR_LUNID, TYPE_CMD);
3347 	if (rc)
3348 		goto out;
3349 
3350 	c->Request.CDB[2] = bmic_device_index & 0xff;
3351 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3352 
3353 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3354 			NO_TIMEOUT);
3355 	if (rc)
3356 		goto out;
3357 	ei = c->err_info;
3358 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3359 		hpsa_scsi_interpret_error(h, c);
3360 		rc = -1;
3361 	}
3362 out:
3363 	cmd_free(h, c);
3364 	return rc;
3365 }
3366 
3367 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3368 	struct bmic_identify_controller *buf, size_t bufsize)
3369 {
3370 	int rc = IO_OK;
3371 	struct CommandList *c;
3372 	struct ErrorInfo *ei;
3373 
3374 	c = cmd_alloc(h);
3375 
3376 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3377 		0, RAID_CTLR_LUNID, TYPE_CMD);
3378 	if (rc)
3379 		goto out;
3380 
3381 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3382 			NO_TIMEOUT);
3383 	if (rc)
3384 		goto out;
3385 	ei = c->err_info;
3386 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3387 		hpsa_scsi_interpret_error(h, c);
3388 		rc = -1;
3389 	}
3390 out:
3391 	cmd_free(h, c);
3392 	return rc;
3393 }
3394 
3395 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3396 		unsigned char scsi3addr[], u16 bmic_device_index,
3397 		struct bmic_identify_physical_device *buf, size_t bufsize)
3398 {
3399 	int rc = IO_OK;
3400 	struct CommandList *c;
3401 	struct ErrorInfo *ei;
3402 
3403 	c = cmd_alloc(h);
3404 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3405 		0, RAID_CTLR_LUNID, TYPE_CMD);
3406 	if (rc)
3407 		goto out;
3408 
3409 	c->Request.CDB[2] = bmic_device_index & 0xff;
3410 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3411 
3412 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3413 						NO_TIMEOUT);
3414 	ei = c->err_info;
3415 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3416 		hpsa_scsi_interpret_error(h, c);
3417 		rc = -1;
3418 	}
3419 out:
3420 	cmd_free(h, c);
3421 
3422 	return rc;
3423 }
3424 
3425 /*
3426  * get enclosure information
3427  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3428  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3429  * Uses id_physical_device to determine the box_index.
3430  */
3431 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3432 			unsigned char *scsi3addr,
3433 			struct ReportExtendedLUNdata *rlep, int rle_index,
3434 			struct hpsa_scsi_dev_t *encl_dev)
3435 {
3436 	int rc = -1;
3437 	struct CommandList *c = NULL;
3438 	struct ErrorInfo *ei = NULL;
3439 	struct bmic_sense_storage_box_params *bssbp = NULL;
3440 	struct bmic_identify_physical_device *id_phys = NULL;
3441 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3442 	u16 bmic_device_index = 0;
3443 
3444 	encl_dev->eli =
3445 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3446 
3447 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3448 
3449 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3450 		rc = IO_OK;
3451 		goto out;
3452 	}
3453 
3454 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3455 		rc = IO_OK;
3456 		goto out;
3457 	}
3458 
3459 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3460 	if (!bssbp)
3461 		goto out;
3462 
3463 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3464 	if (!id_phys)
3465 		goto out;
3466 
3467 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3468 						id_phys, sizeof(*id_phys));
3469 	if (rc) {
3470 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3471 			__func__, encl_dev->external, bmic_device_index);
3472 		goto out;
3473 	}
3474 
3475 	c = cmd_alloc(h);
3476 
3477 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3478 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3479 
3480 	if (rc)
3481 		goto out;
3482 
3483 	if (id_phys->phys_connector[1] == 'E')
3484 		c->Request.CDB[5] = id_phys->box_index;
3485 	else
3486 		c->Request.CDB[5] = 0;
3487 
3488 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3489 						NO_TIMEOUT);
3490 	if (rc)
3491 		goto out;
3492 
3493 	ei = c->err_info;
3494 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3495 		rc = -1;
3496 		goto out;
3497 	}
3498 
3499 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3500 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3501 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3502 
3503 	rc = IO_OK;
3504 out:
3505 	kfree(bssbp);
3506 	kfree(id_phys);
3507 
3508 	if (c)
3509 		cmd_free(h, c);
3510 
3511 	if (rc != IO_OK)
3512 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3513 			"Error, could not get enclosure information");
3514 }
3515 
3516 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3517 						unsigned char *scsi3addr)
3518 {
3519 	struct ReportExtendedLUNdata *physdev;
3520 	u32 nphysicals;
3521 	u64 sa = 0;
3522 	int i;
3523 
3524 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3525 	if (!physdev)
3526 		return 0;
3527 
3528 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3529 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3530 		kfree(physdev);
3531 		return 0;
3532 	}
3533 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3534 
3535 	for (i = 0; i < nphysicals; i++)
3536 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3537 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3538 			break;
3539 		}
3540 
3541 	kfree(physdev);
3542 
3543 	return sa;
3544 }
3545 
3546 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3547 					struct hpsa_scsi_dev_t *dev)
3548 {
3549 	int rc;
3550 	u64 sa = 0;
3551 
3552 	if (is_hba_lunid(scsi3addr)) {
3553 		struct bmic_sense_subsystem_info *ssi;
3554 
3555 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3556 		if (!ssi)
3557 			return;
3558 
3559 		rc = hpsa_bmic_sense_subsystem_information(h,
3560 					scsi3addr, 0, ssi, sizeof(*ssi));
3561 		if (rc == 0) {
3562 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3563 			h->sas_address = sa;
3564 		}
3565 
3566 		kfree(ssi);
3567 	} else
3568 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3569 
3570 	dev->sas_address = sa;
3571 }
3572 
3573 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3574 	struct ReportExtendedLUNdata *physdev)
3575 {
3576 	u32 nphysicals;
3577 	int i;
3578 
3579 	if (h->discovery_polling)
3580 		return;
3581 
3582 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3583 
3584 	for (i = 0; i < nphysicals; i++) {
3585 		if (physdev->LUN[i].device_type ==
3586 			BMIC_DEVICE_TYPE_CONTROLLER
3587 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3588 			dev_info(&h->pdev->dev,
3589 				"External controller present, activate discovery polling and disable rld caching\n");
3590 			hpsa_disable_rld_caching(h);
3591 			h->discovery_polling = 1;
3592 			break;
3593 		}
3594 	}
3595 }
3596 
3597 /* Get a device id from inquiry page 0x83 */
3598 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3599 	unsigned char scsi3addr[], u8 page)
3600 {
3601 	int rc;
3602 	int i;
3603 	int pages;
3604 	unsigned char *buf, bufsize;
3605 
3606 	buf = kzalloc(256, GFP_KERNEL);
3607 	if (!buf)
3608 		return false;
3609 
3610 	/* Get the size of the page list first */
3611 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3612 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3613 				buf, HPSA_VPD_HEADER_SZ);
3614 	if (rc != 0)
3615 		goto exit_unsupported;
3616 	pages = buf[3];
3617 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3618 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3619 	else
3620 		bufsize = 255;
3621 
3622 	/* Get the whole VPD page list */
3623 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3624 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3625 				buf, bufsize);
3626 	if (rc != 0)
3627 		goto exit_unsupported;
3628 
3629 	pages = buf[3];
3630 	for (i = 1; i <= pages; i++)
3631 		if (buf[3 + i] == page)
3632 			goto exit_supported;
3633 exit_unsupported:
3634 	kfree(buf);
3635 	return false;
3636 exit_supported:
3637 	kfree(buf);
3638 	return true;
3639 }
3640 
3641 /*
3642  * Called during a scan operation.
3643  * Sets ioaccel status on the new device list, not the existing device list
3644  *
3645  * The device list used during I/O will be updated later in
3646  * adjust_hpsa_scsi_table.
3647  */
3648 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3649 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3650 {
3651 	int rc;
3652 	unsigned char *buf;
3653 	u8 ioaccel_status;
3654 
3655 	this_device->offload_config = 0;
3656 	this_device->offload_enabled = 0;
3657 	this_device->offload_to_be_enabled = 0;
3658 
3659 	buf = kzalloc(64, GFP_KERNEL);
3660 	if (!buf)
3661 		return;
3662 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3663 		goto out;
3664 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3665 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3666 	if (rc != 0)
3667 		goto out;
3668 
3669 #define IOACCEL_STATUS_BYTE 4
3670 #define OFFLOAD_CONFIGURED_BIT 0x01
3671 #define OFFLOAD_ENABLED_BIT 0x02
3672 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3673 	this_device->offload_config =
3674 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3675 	if (this_device->offload_config) {
3676 		this_device->offload_to_be_enabled =
3677 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3678 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3679 			this_device->offload_to_be_enabled = 0;
3680 	}
3681 
3682 out:
3683 	kfree(buf);
3684 	return;
3685 }
3686 
3687 /* Get the device id from inquiry page 0x83 */
3688 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3689 	unsigned char *device_id, int index, int buflen)
3690 {
3691 	int rc;
3692 	unsigned char *buf;
3693 
3694 	/* Does controller have VPD for device id? */
3695 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3696 		return 1; /* not supported */
3697 
3698 	buf = kzalloc(64, GFP_KERNEL);
3699 	if (!buf)
3700 		return -ENOMEM;
3701 
3702 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3703 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3704 	if (rc == 0) {
3705 		if (buflen > 16)
3706 			buflen = 16;
3707 		memcpy(device_id, &buf[8], buflen);
3708 	}
3709 
3710 	kfree(buf);
3711 
3712 	return rc; /*0 - got id,  otherwise, didn't */
3713 }
3714 
3715 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3716 		void *buf, int bufsize,
3717 		int extended_response)
3718 {
3719 	int rc = IO_OK;
3720 	struct CommandList *c;
3721 	unsigned char scsi3addr[8];
3722 	struct ErrorInfo *ei;
3723 
3724 	c = cmd_alloc(h);
3725 
3726 	/* address the controller */
3727 	memset(scsi3addr, 0, sizeof(scsi3addr));
3728 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3729 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3730 		rc = -EAGAIN;
3731 		goto out;
3732 	}
3733 	if (extended_response)
3734 		c->Request.CDB[1] = extended_response;
3735 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3736 			NO_TIMEOUT);
3737 	if (rc)
3738 		goto out;
3739 	ei = c->err_info;
3740 	if (ei->CommandStatus != 0 &&
3741 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3742 		hpsa_scsi_interpret_error(h, c);
3743 		rc = -EIO;
3744 	} else {
3745 		struct ReportLUNdata *rld = buf;
3746 
3747 		if (rld->extended_response_flag != extended_response) {
3748 			if (!h->legacy_board) {
3749 				dev_err(&h->pdev->dev,
3750 					"report luns requested format %u, got %u\n",
3751 					extended_response,
3752 					rld->extended_response_flag);
3753 				rc = -EINVAL;
3754 			} else
3755 				rc = -EOPNOTSUPP;
3756 		}
3757 	}
3758 out:
3759 	cmd_free(h, c);
3760 	return rc;
3761 }
3762 
3763 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3764 		struct ReportExtendedLUNdata *buf, int bufsize)
3765 {
3766 	int rc;
3767 	struct ReportLUNdata *lbuf;
3768 
3769 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3770 				      HPSA_REPORT_PHYS_EXTENDED);
3771 	if (!rc || rc != -EOPNOTSUPP)
3772 		return rc;
3773 
3774 	/* REPORT PHYS EXTENDED is not supported */
3775 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3776 	if (!lbuf)
3777 		return -ENOMEM;
3778 
3779 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3780 	if (!rc) {
3781 		int i;
3782 		u32 nphys;
3783 
3784 		/* Copy ReportLUNdata header */
3785 		memcpy(buf, lbuf, 8);
3786 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3787 		for (i = 0; i < nphys; i++)
3788 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3789 	}
3790 	kfree(lbuf);
3791 	return rc;
3792 }
3793 
3794 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3795 		struct ReportLUNdata *buf, int bufsize)
3796 {
3797 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3798 }
3799 
3800 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3801 	int bus, int target, int lun)
3802 {
3803 	device->bus = bus;
3804 	device->target = target;
3805 	device->lun = lun;
3806 }
3807 
3808 /* Use VPD inquiry to get details of volume status */
3809 static int hpsa_get_volume_status(struct ctlr_info *h,
3810 					unsigned char scsi3addr[])
3811 {
3812 	int rc;
3813 	int status;
3814 	int size;
3815 	unsigned char *buf;
3816 
3817 	buf = kzalloc(64, GFP_KERNEL);
3818 	if (!buf)
3819 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3820 
3821 	/* Does controller have VPD for logical volume status? */
3822 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3823 		goto exit_failed;
3824 
3825 	/* Get the size of the VPD return buffer */
3826 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3827 					buf, HPSA_VPD_HEADER_SZ);
3828 	if (rc != 0)
3829 		goto exit_failed;
3830 	size = buf[3];
3831 
3832 	/* Now get the whole VPD buffer */
3833 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3834 					buf, size + HPSA_VPD_HEADER_SZ);
3835 	if (rc != 0)
3836 		goto exit_failed;
3837 	status = buf[4]; /* status byte */
3838 
3839 	kfree(buf);
3840 	return status;
3841 exit_failed:
3842 	kfree(buf);
3843 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3844 }
3845 
3846 /* Determine offline status of a volume.
3847  * Return either:
3848  *  0 (not offline)
3849  *  0xff (offline for unknown reasons)
3850  *  # (integer code indicating one of several NOT READY states
3851  *     describing why a volume is to be kept offline)
3852  */
3853 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3854 					unsigned char scsi3addr[])
3855 {
3856 	struct CommandList *c;
3857 	unsigned char *sense;
3858 	u8 sense_key, asc, ascq;
3859 	int sense_len;
3860 	int rc, ldstat = 0;
3861 	u16 cmd_status;
3862 	u8 scsi_status;
3863 #define ASC_LUN_NOT_READY 0x04
3864 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3865 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3866 
3867 	c = cmd_alloc(h);
3868 
3869 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3870 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3871 					NO_TIMEOUT);
3872 	if (rc) {
3873 		cmd_free(h, c);
3874 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3875 	}
3876 	sense = c->err_info->SenseInfo;
3877 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3878 		sense_len = sizeof(c->err_info->SenseInfo);
3879 	else
3880 		sense_len = c->err_info->SenseLen;
3881 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3882 	cmd_status = c->err_info->CommandStatus;
3883 	scsi_status = c->err_info->ScsiStatus;
3884 	cmd_free(h, c);
3885 
3886 	/* Determine the reason for not ready state */
3887 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3888 
3889 	/* Keep volume offline in certain cases: */
3890 	switch (ldstat) {
3891 	case HPSA_LV_FAILED:
3892 	case HPSA_LV_UNDERGOING_ERASE:
3893 	case HPSA_LV_NOT_AVAILABLE:
3894 	case HPSA_LV_UNDERGOING_RPI:
3895 	case HPSA_LV_PENDING_RPI:
3896 	case HPSA_LV_ENCRYPTED_NO_KEY:
3897 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3898 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3899 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3900 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3901 		return ldstat;
3902 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3903 		/* If VPD status page isn't available,
3904 		 * use ASC/ASCQ to determine state
3905 		 */
3906 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3907 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3908 			return ldstat;
3909 		break;
3910 	default:
3911 		break;
3912 	}
3913 	return HPSA_LV_OK;
3914 }
3915 
3916 static int hpsa_update_device_info(struct ctlr_info *h,
3917 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3918 	unsigned char *is_OBDR_device)
3919 {
3920 
3921 #define OBDR_SIG_OFFSET 43
3922 #define OBDR_TAPE_SIG "$DR-10"
3923 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3924 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3925 
3926 	unsigned char *inq_buff;
3927 	unsigned char *obdr_sig;
3928 	int rc = 0;
3929 
3930 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3931 	if (!inq_buff) {
3932 		rc = -ENOMEM;
3933 		goto bail_out;
3934 	}
3935 
3936 	/* Do an inquiry to the device to see what it is. */
3937 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3938 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3939 		dev_err(&h->pdev->dev,
3940 			"%s: inquiry failed, device will be skipped.\n",
3941 			__func__);
3942 		rc = HPSA_INQUIRY_FAILED;
3943 		goto bail_out;
3944 	}
3945 
3946 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3947 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3948 
3949 	this_device->devtype = (inq_buff[0] & 0x1f);
3950 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3951 	memcpy(this_device->vendor, &inq_buff[8],
3952 		sizeof(this_device->vendor));
3953 	memcpy(this_device->model, &inq_buff[16],
3954 		sizeof(this_device->model));
3955 	this_device->rev = inq_buff[2];
3956 	memset(this_device->device_id, 0,
3957 		sizeof(this_device->device_id));
3958 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3959 		sizeof(this_device->device_id)) < 0)
3960 		dev_err(&h->pdev->dev,
3961 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3962 			h->ctlr, __func__,
3963 			h->scsi_host->host_no,
3964 			this_device->target, this_device->lun,
3965 			scsi_device_type(this_device->devtype),
3966 			this_device->model);
3967 
3968 	if ((this_device->devtype == TYPE_DISK ||
3969 		this_device->devtype == TYPE_ZBC) &&
3970 		is_logical_dev_addr_mode(scsi3addr)) {
3971 		unsigned char volume_offline;
3972 
3973 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3974 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3975 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3976 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3977 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3978 		    h->legacy_board) {
3979 			/*
3980 			 * Legacy boards might not support volume status
3981 			 */
3982 			dev_info(&h->pdev->dev,
3983 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3984 				 this_device->target, this_device->lun);
3985 			volume_offline = 0;
3986 		}
3987 		this_device->volume_offline = volume_offline;
3988 		if (volume_offline == HPSA_LV_FAILED) {
3989 			rc = HPSA_LV_FAILED;
3990 			dev_err(&h->pdev->dev,
3991 				"%s: LV failed, device will be skipped.\n",
3992 				__func__);
3993 			goto bail_out;
3994 		}
3995 	} else {
3996 		this_device->raid_level = RAID_UNKNOWN;
3997 		this_device->offload_config = 0;
3998 		this_device->offload_enabled = 0;
3999 		this_device->offload_to_be_enabled = 0;
4000 		this_device->hba_ioaccel_enabled = 0;
4001 		this_device->volume_offline = 0;
4002 		this_device->queue_depth = h->nr_cmds;
4003 	}
4004 
4005 	if (this_device->external)
4006 		this_device->queue_depth = EXTERNAL_QD;
4007 
4008 	if (is_OBDR_device) {
4009 		/* See if this is a One-Button-Disaster-Recovery device
4010 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4011 		 */
4012 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4013 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4014 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4015 						OBDR_SIG_LEN) == 0);
4016 	}
4017 	kfree(inq_buff);
4018 	return 0;
4019 
4020 bail_out:
4021 	kfree(inq_buff);
4022 	return rc;
4023 }
4024 
4025 /*
4026  * Helper function to assign bus, target, lun mapping of devices.
4027  * Logical drive target and lun are assigned at this time, but
4028  * physical device lun and target assignment are deferred (assigned
4029  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4030 */
4031 static void figure_bus_target_lun(struct ctlr_info *h,
4032 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4033 {
4034 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4035 
4036 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4037 		/* physical device, target and lun filled in later */
4038 		if (is_hba_lunid(lunaddrbytes)) {
4039 			int bus = HPSA_HBA_BUS;
4040 
4041 			if (!device->rev)
4042 				bus = HPSA_LEGACY_HBA_BUS;
4043 			hpsa_set_bus_target_lun(device,
4044 					bus, 0, lunid & 0x3fff);
4045 		} else
4046 			/* defer target, lun assignment for physical devices */
4047 			hpsa_set_bus_target_lun(device,
4048 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4049 		return;
4050 	}
4051 	/* It's a logical device */
4052 	if (device->external) {
4053 		hpsa_set_bus_target_lun(device,
4054 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4055 			lunid & 0x00ff);
4056 		return;
4057 	}
4058 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4059 				0, lunid & 0x3fff);
4060 }
4061 
4062 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4063 	int i, int nphysicals, int nlocal_logicals)
4064 {
4065 	/* In report logicals, local logicals are listed first,
4066 	* then any externals.
4067 	*/
4068 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4069 
4070 	if (i == raid_ctlr_position)
4071 		return 0;
4072 
4073 	if (i < logicals_start)
4074 		return 0;
4075 
4076 	/* i is in logicals range, but still within local logicals */
4077 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4078 		return 0;
4079 
4080 	return 1; /* it's an external lun */
4081 }
4082 
4083 /*
4084  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4085  * logdev.  The number of luns in physdev and logdev are returned in
4086  * *nphysicals and *nlogicals, respectively.
4087  * Returns 0 on success, -1 otherwise.
4088  */
4089 static int hpsa_gather_lun_info(struct ctlr_info *h,
4090 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4091 	struct ReportLUNdata *logdev, u32 *nlogicals)
4092 {
4093 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4094 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4095 		return -1;
4096 	}
4097 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4098 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4099 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4100 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4101 		*nphysicals = HPSA_MAX_PHYS_LUN;
4102 	}
4103 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4104 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4105 		return -1;
4106 	}
4107 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4108 	/* Reject Logicals in excess of our max capability. */
4109 	if (*nlogicals > HPSA_MAX_LUN) {
4110 		dev_warn(&h->pdev->dev,
4111 			"maximum logical LUNs (%d) exceeded.  "
4112 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4113 			*nlogicals - HPSA_MAX_LUN);
4114 			*nlogicals = HPSA_MAX_LUN;
4115 	}
4116 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4117 		dev_warn(&h->pdev->dev,
4118 			"maximum logical + physical LUNs (%d) exceeded. "
4119 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4120 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4121 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4122 	}
4123 	return 0;
4124 }
4125 
4126 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4127 	int i, int nphysicals, int nlogicals,
4128 	struct ReportExtendedLUNdata *physdev_list,
4129 	struct ReportLUNdata *logdev_list)
4130 {
4131 	/* Helper function, figure out where the LUN ID info is coming from
4132 	 * given index i, lists of physical and logical devices, where in
4133 	 * the list the raid controller is supposed to appear (first or last)
4134 	 */
4135 
4136 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4137 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4138 
4139 	if (i == raid_ctlr_position)
4140 		return RAID_CTLR_LUNID;
4141 
4142 	if (i < logicals_start)
4143 		return &physdev_list->LUN[i -
4144 				(raid_ctlr_position == 0)].lunid[0];
4145 
4146 	if (i < last_device)
4147 		return &logdev_list->LUN[i - nphysicals -
4148 			(raid_ctlr_position == 0)][0];
4149 	BUG();
4150 	return NULL;
4151 }
4152 
4153 /* get physical drive ioaccel handle and queue depth */
4154 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4155 		struct hpsa_scsi_dev_t *dev,
4156 		struct ReportExtendedLUNdata *rlep, int rle_index,
4157 		struct bmic_identify_physical_device *id_phys)
4158 {
4159 	int rc;
4160 	struct ext_report_lun_entry *rle;
4161 
4162 	rle = &rlep->LUN[rle_index];
4163 
4164 	dev->ioaccel_handle = rle->ioaccel_handle;
4165 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4166 		dev->hba_ioaccel_enabled = 1;
4167 	memset(id_phys, 0, sizeof(*id_phys));
4168 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4169 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4170 			sizeof(*id_phys));
4171 	if (!rc)
4172 		/* Reserve space for FW operations */
4173 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4174 #define DRIVE_QUEUE_DEPTH 7
4175 		dev->queue_depth =
4176 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4177 				DRIVE_CMDS_RESERVED_FOR_FW;
4178 	else
4179 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4180 }
4181 
4182 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4183 	struct ReportExtendedLUNdata *rlep, int rle_index,
4184 	struct bmic_identify_physical_device *id_phys)
4185 {
4186 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4187 
4188 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4189 		this_device->hba_ioaccel_enabled = 1;
4190 
4191 	memcpy(&this_device->active_path_index,
4192 		&id_phys->active_path_number,
4193 		sizeof(this_device->active_path_index));
4194 	memcpy(&this_device->path_map,
4195 		&id_phys->redundant_path_present_map,
4196 		sizeof(this_device->path_map));
4197 	memcpy(&this_device->box,
4198 		&id_phys->alternate_paths_phys_box_on_port,
4199 		sizeof(this_device->box));
4200 	memcpy(&this_device->phys_connector,
4201 		&id_phys->alternate_paths_phys_connector,
4202 		sizeof(this_device->phys_connector));
4203 	memcpy(&this_device->bay,
4204 		&id_phys->phys_bay_in_box,
4205 		sizeof(this_device->bay));
4206 }
4207 
4208 /* get number of local logical disks. */
4209 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4210 	struct bmic_identify_controller *id_ctlr,
4211 	u32 *nlocals)
4212 {
4213 	int rc;
4214 
4215 	if (!id_ctlr) {
4216 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4217 			__func__);
4218 		return -ENOMEM;
4219 	}
4220 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4221 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4222 	if (!rc)
4223 		if (id_ctlr->configured_logical_drive_count < 255)
4224 			*nlocals = id_ctlr->configured_logical_drive_count;
4225 		else
4226 			*nlocals = le16_to_cpu(
4227 					id_ctlr->extended_logical_unit_count);
4228 	else
4229 		*nlocals = -1;
4230 	return rc;
4231 }
4232 
4233 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4234 {
4235 	struct bmic_identify_physical_device *id_phys;
4236 	bool is_spare = false;
4237 	int rc;
4238 
4239 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4240 	if (!id_phys)
4241 		return false;
4242 
4243 	rc = hpsa_bmic_id_physical_device(h,
4244 					lunaddrbytes,
4245 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4246 					id_phys, sizeof(*id_phys));
4247 	if (rc == 0)
4248 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4249 
4250 	kfree(id_phys);
4251 	return is_spare;
4252 }
4253 
4254 #define RPL_DEV_FLAG_NON_DISK                           0x1
4255 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4256 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4257 
4258 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4259 
4260 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4261 				struct ext_report_lun_entry *rle)
4262 {
4263 	u8 device_flags;
4264 	u8 device_type;
4265 
4266 	if (!MASKED_DEVICE(lunaddrbytes))
4267 		return false;
4268 
4269 	device_flags = rle->device_flags;
4270 	device_type = rle->device_type;
4271 
4272 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4273 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4274 			return false;
4275 		return true;
4276 	}
4277 
4278 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4279 		return false;
4280 
4281 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4282 		return false;
4283 
4284 	/*
4285 	 * Spares may be spun down, we do not want to
4286 	 * do an Inquiry to a RAID set spare drive as
4287 	 * that would have them spun up, that is a
4288 	 * performance hit because I/O to the RAID device
4289 	 * stops while the spin up occurs which can take
4290 	 * over 50 seconds.
4291 	 */
4292 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4293 		return true;
4294 
4295 	return false;
4296 }
4297 
4298 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4299 {
4300 	/* the idea here is we could get notified
4301 	 * that some devices have changed, so we do a report
4302 	 * physical luns and report logical luns cmd, and adjust
4303 	 * our list of devices accordingly.
4304 	 *
4305 	 * The scsi3addr's of devices won't change so long as the
4306 	 * adapter is not reset.  That means we can rescan and
4307 	 * tell which devices we already know about, vs. new
4308 	 * devices, vs.  disappearing devices.
4309 	 */
4310 	struct ReportExtendedLUNdata *physdev_list = NULL;
4311 	struct ReportLUNdata *logdev_list = NULL;
4312 	struct bmic_identify_physical_device *id_phys = NULL;
4313 	struct bmic_identify_controller *id_ctlr = NULL;
4314 	u32 nphysicals = 0;
4315 	u32 nlogicals = 0;
4316 	u32 nlocal_logicals = 0;
4317 	u32 ndev_allocated = 0;
4318 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4319 	int ncurrent = 0;
4320 	int i, n_ext_target_devs, ndevs_to_allocate;
4321 	int raid_ctlr_position;
4322 	bool physical_device;
4323 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4324 
4325 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4326 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4327 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4328 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4329 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4330 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4331 
4332 	if (!currentsd || !physdev_list || !logdev_list ||
4333 		!tmpdevice || !id_phys || !id_ctlr) {
4334 		dev_err(&h->pdev->dev, "out of memory\n");
4335 		goto out;
4336 	}
4337 	memset(lunzerobits, 0, sizeof(lunzerobits));
4338 
4339 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4340 
4341 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4342 			logdev_list, &nlogicals)) {
4343 		h->drv_req_rescan = 1;
4344 		goto out;
4345 	}
4346 
4347 	/* Set number of local logicals (non PTRAID) */
4348 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4349 		dev_warn(&h->pdev->dev,
4350 			"%s: Can't determine number of local logical devices.\n",
4351 			__func__);
4352 	}
4353 
4354 	/* We might see up to the maximum number of logical and physical disks
4355 	 * plus external target devices, and a device for the local RAID
4356 	 * controller.
4357 	 */
4358 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4359 
4360 	hpsa_ext_ctrl_present(h, physdev_list);
4361 
4362 	/* Allocate the per device structures */
4363 	for (i = 0; i < ndevs_to_allocate; i++) {
4364 		if (i >= HPSA_MAX_DEVICES) {
4365 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4366 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4367 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4368 			break;
4369 		}
4370 
4371 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4372 		if (!currentsd[i]) {
4373 			h->drv_req_rescan = 1;
4374 			goto out;
4375 		}
4376 		ndev_allocated++;
4377 	}
4378 
4379 	if (is_scsi_rev_5(h))
4380 		raid_ctlr_position = 0;
4381 	else
4382 		raid_ctlr_position = nphysicals + nlogicals;
4383 
4384 	/* adjust our table of devices */
4385 	n_ext_target_devs = 0;
4386 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4387 		u8 *lunaddrbytes, is_OBDR = 0;
4388 		int rc = 0;
4389 		int phys_dev_index = i - (raid_ctlr_position == 0);
4390 		bool skip_device = false;
4391 
4392 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4393 
4394 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4395 
4396 		/* Figure out where the LUN ID info is coming from */
4397 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4398 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4399 
4400 		/* Determine if this is a lun from an external target array */
4401 		tmpdevice->external =
4402 			figure_external_status(h, raid_ctlr_position, i,
4403 						nphysicals, nlocal_logicals);
4404 
4405 		/*
4406 		 * Skip over some devices such as a spare.
4407 		 */
4408 		if (!tmpdevice->external && physical_device) {
4409 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4410 					&physdev_list->LUN[phys_dev_index]);
4411 			if (skip_device)
4412 				continue;
4413 		}
4414 
4415 		/* Get device type, vendor, model, device id, raid_map */
4416 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4417 							&is_OBDR);
4418 		if (rc == -ENOMEM) {
4419 			dev_warn(&h->pdev->dev,
4420 				"Out of memory, rescan deferred.\n");
4421 			h->drv_req_rescan = 1;
4422 			goto out;
4423 		}
4424 		if (rc) {
4425 			h->drv_req_rescan = 1;
4426 			continue;
4427 		}
4428 
4429 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4430 		this_device = currentsd[ncurrent];
4431 
4432 		*this_device = *tmpdevice;
4433 		this_device->physical_device = physical_device;
4434 
4435 		/*
4436 		 * Expose all devices except for physical devices that
4437 		 * are masked.
4438 		 */
4439 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4440 			this_device->expose_device = 0;
4441 		else
4442 			this_device->expose_device = 1;
4443 
4444 
4445 		/*
4446 		 * Get the SAS address for physical devices that are exposed.
4447 		 */
4448 		if (this_device->physical_device && this_device->expose_device)
4449 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4450 
4451 		switch (this_device->devtype) {
4452 		case TYPE_ROM:
4453 			/* We don't *really* support actual CD-ROM devices,
4454 			 * just "One Button Disaster Recovery" tape drive
4455 			 * which temporarily pretends to be a CD-ROM drive.
4456 			 * So we check that the device is really an OBDR tape
4457 			 * device by checking for "$DR-10" in bytes 43-48 of
4458 			 * the inquiry data.
4459 			 */
4460 			if (is_OBDR)
4461 				ncurrent++;
4462 			break;
4463 		case TYPE_DISK:
4464 		case TYPE_ZBC:
4465 			if (this_device->physical_device) {
4466 				/* The disk is in HBA mode. */
4467 				/* Never use RAID mapper in HBA mode. */
4468 				this_device->offload_enabled = 0;
4469 				hpsa_get_ioaccel_drive_info(h, this_device,
4470 					physdev_list, phys_dev_index, id_phys);
4471 				hpsa_get_path_info(this_device,
4472 					physdev_list, phys_dev_index, id_phys);
4473 			}
4474 			ncurrent++;
4475 			break;
4476 		case TYPE_TAPE:
4477 		case TYPE_MEDIUM_CHANGER:
4478 			ncurrent++;
4479 			break;
4480 		case TYPE_ENCLOSURE:
4481 			if (!this_device->external)
4482 				hpsa_get_enclosure_info(h, lunaddrbytes,
4483 						physdev_list, phys_dev_index,
4484 						this_device);
4485 			ncurrent++;
4486 			break;
4487 		case TYPE_RAID:
4488 			/* Only present the Smartarray HBA as a RAID controller.
4489 			 * If it's a RAID controller other than the HBA itself
4490 			 * (an external RAID controller, MSA500 or similar)
4491 			 * don't present it.
4492 			 */
4493 			if (!is_hba_lunid(lunaddrbytes))
4494 				break;
4495 			ncurrent++;
4496 			break;
4497 		default:
4498 			break;
4499 		}
4500 		if (ncurrent >= HPSA_MAX_DEVICES)
4501 			break;
4502 	}
4503 
4504 	if (h->sas_host == NULL) {
4505 		int rc = 0;
4506 
4507 		rc = hpsa_add_sas_host(h);
4508 		if (rc) {
4509 			dev_warn(&h->pdev->dev,
4510 				"Could not add sas host %d\n", rc);
4511 			goto out;
4512 		}
4513 	}
4514 
4515 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4516 out:
4517 	kfree(tmpdevice);
4518 	for (i = 0; i < ndev_allocated; i++)
4519 		kfree(currentsd[i]);
4520 	kfree(currentsd);
4521 	kfree(physdev_list);
4522 	kfree(logdev_list);
4523 	kfree(id_ctlr);
4524 	kfree(id_phys);
4525 }
4526 
4527 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4528 				   struct scatterlist *sg)
4529 {
4530 	u64 addr64 = (u64) sg_dma_address(sg);
4531 	unsigned int len = sg_dma_len(sg);
4532 
4533 	desc->Addr = cpu_to_le64(addr64);
4534 	desc->Len = cpu_to_le32(len);
4535 	desc->Ext = 0;
4536 }
4537 
4538 /*
4539  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4540  * dma mapping  and fills in the scatter gather entries of the
4541  * hpsa command, cp.
4542  */
4543 static int hpsa_scatter_gather(struct ctlr_info *h,
4544 		struct CommandList *cp,
4545 		struct scsi_cmnd *cmd)
4546 {
4547 	struct scatterlist *sg;
4548 	int use_sg, i, sg_limit, chained, last_sg;
4549 	struct SGDescriptor *curr_sg;
4550 
4551 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4552 
4553 	use_sg = scsi_dma_map(cmd);
4554 	if (use_sg < 0)
4555 		return use_sg;
4556 
4557 	if (!use_sg)
4558 		goto sglist_finished;
4559 
4560 	/*
4561 	 * If the number of entries is greater than the max for a single list,
4562 	 * then we have a chained list; we will set up all but one entry in the
4563 	 * first list (the last entry is saved for link information);
4564 	 * otherwise, we don't have a chained list and we'll set up at each of
4565 	 * the entries in the one list.
4566 	 */
4567 	curr_sg = cp->SG;
4568 	chained = use_sg > h->max_cmd_sg_entries;
4569 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4570 	last_sg = scsi_sg_count(cmd) - 1;
4571 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4572 		hpsa_set_sg_descriptor(curr_sg, sg);
4573 		curr_sg++;
4574 	}
4575 
4576 	if (chained) {
4577 		/*
4578 		 * Continue with the chained list.  Set curr_sg to the chained
4579 		 * list.  Modify the limit to the total count less the entries
4580 		 * we've already set up.  Resume the scan at the list entry
4581 		 * where the previous loop left off.
4582 		 */
4583 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4584 		sg_limit = use_sg - sg_limit;
4585 		for_each_sg(sg, sg, sg_limit, i) {
4586 			hpsa_set_sg_descriptor(curr_sg, sg);
4587 			curr_sg++;
4588 		}
4589 	}
4590 
4591 	/* Back the pointer up to the last entry and mark it as "last". */
4592 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4593 
4594 	if (use_sg + chained > h->maxSG)
4595 		h->maxSG = use_sg + chained;
4596 
4597 	if (chained) {
4598 		cp->Header.SGList = h->max_cmd_sg_entries;
4599 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4600 		if (hpsa_map_sg_chain_block(h, cp)) {
4601 			scsi_dma_unmap(cmd);
4602 			return -1;
4603 		}
4604 		return 0;
4605 	}
4606 
4607 sglist_finished:
4608 
4609 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4610 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4611 	return 0;
4612 }
4613 
4614 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4615 						u8 *cdb, int cdb_len,
4616 						const char *func)
4617 {
4618 	dev_warn(&h->pdev->dev,
4619 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4620 		 func, cdb_len, cdb);
4621 }
4622 
4623 #define IO_ACCEL_INELIGIBLE 1
4624 /* zero-length transfers trigger hardware errors. */
4625 static bool is_zero_length_transfer(u8 *cdb)
4626 {
4627 	u32 block_cnt;
4628 
4629 	/* Block zero-length transfer sizes on certain commands. */
4630 	switch (cdb[0]) {
4631 	case READ_10:
4632 	case WRITE_10:
4633 	case VERIFY:		/* 0x2F */
4634 	case WRITE_VERIFY:	/* 0x2E */
4635 		block_cnt = get_unaligned_be16(&cdb[7]);
4636 		break;
4637 	case READ_12:
4638 	case WRITE_12:
4639 	case VERIFY_12: /* 0xAF */
4640 	case WRITE_VERIFY_12:	/* 0xAE */
4641 		block_cnt = get_unaligned_be32(&cdb[6]);
4642 		break;
4643 	case READ_16:
4644 	case WRITE_16:
4645 	case VERIFY_16:		/* 0x8F */
4646 		block_cnt = get_unaligned_be32(&cdb[10]);
4647 		break;
4648 	default:
4649 		return false;
4650 	}
4651 
4652 	return block_cnt == 0;
4653 }
4654 
4655 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4656 {
4657 	int is_write = 0;
4658 	u32 block;
4659 	u32 block_cnt;
4660 
4661 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4662 	switch (cdb[0]) {
4663 	case WRITE_6:
4664 	case WRITE_12:
4665 		is_write = 1;
4666 	case READ_6:
4667 	case READ_12:
4668 		if (*cdb_len == 6) {
4669 			block = (((cdb[1] & 0x1F) << 16) |
4670 				(cdb[2] << 8) |
4671 				cdb[3]);
4672 			block_cnt = cdb[4];
4673 			if (block_cnt == 0)
4674 				block_cnt = 256;
4675 		} else {
4676 			BUG_ON(*cdb_len != 12);
4677 			block = get_unaligned_be32(&cdb[2]);
4678 			block_cnt = get_unaligned_be32(&cdb[6]);
4679 		}
4680 		if (block_cnt > 0xffff)
4681 			return IO_ACCEL_INELIGIBLE;
4682 
4683 		cdb[0] = is_write ? WRITE_10 : READ_10;
4684 		cdb[1] = 0;
4685 		cdb[2] = (u8) (block >> 24);
4686 		cdb[3] = (u8) (block >> 16);
4687 		cdb[4] = (u8) (block >> 8);
4688 		cdb[5] = (u8) (block);
4689 		cdb[6] = 0;
4690 		cdb[7] = (u8) (block_cnt >> 8);
4691 		cdb[8] = (u8) (block_cnt);
4692 		cdb[9] = 0;
4693 		*cdb_len = 10;
4694 		break;
4695 	}
4696 	return 0;
4697 }
4698 
4699 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4700 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4701 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4702 {
4703 	struct scsi_cmnd *cmd = c->scsi_cmd;
4704 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4705 	unsigned int len;
4706 	unsigned int total_len = 0;
4707 	struct scatterlist *sg;
4708 	u64 addr64;
4709 	int use_sg, i;
4710 	struct SGDescriptor *curr_sg;
4711 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4712 
4713 	/* TODO: implement chaining support */
4714 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4715 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4716 		return IO_ACCEL_INELIGIBLE;
4717 	}
4718 
4719 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4720 
4721 	if (is_zero_length_transfer(cdb)) {
4722 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4723 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4724 		return IO_ACCEL_INELIGIBLE;
4725 	}
4726 
4727 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4728 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4729 		return IO_ACCEL_INELIGIBLE;
4730 	}
4731 
4732 	c->cmd_type = CMD_IOACCEL1;
4733 
4734 	/* Adjust the DMA address to point to the accelerated command buffer */
4735 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4736 				(c->cmdindex * sizeof(*cp));
4737 	BUG_ON(c->busaddr & 0x0000007F);
4738 
4739 	use_sg = scsi_dma_map(cmd);
4740 	if (use_sg < 0) {
4741 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4742 		return use_sg;
4743 	}
4744 
4745 	if (use_sg) {
4746 		curr_sg = cp->SG;
4747 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4748 			addr64 = (u64) sg_dma_address(sg);
4749 			len  = sg_dma_len(sg);
4750 			total_len += len;
4751 			curr_sg->Addr = cpu_to_le64(addr64);
4752 			curr_sg->Len = cpu_to_le32(len);
4753 			curr_sg->Ext = cpu_to_le32(0);
4754 			curr_sg++;
4755 		}
4756 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4757 
4758 		switch (cmd->sc_data_direction) {
4759 		case DMA_TO_DEVICE:
4760 			control |= IOACCEL1_CONTROL_DATA_OUT;
4761 			break;
4762 		case DMA_FROM_DEVICE:
4763 			control |= IOACCEL1_CONTROL_DATA_IN;
4764 			break;
4765 		case DMA_NONE:
4766 			control |= IOACCEL1_CONTROL_NODATAXFER;
4767 			break;
4768 		default:
4769 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4770 			cmd->sc_data_direction);
4771 			BUG();
4772 			break;
4773 		}
4774 	} else {
4775 		control |= IOACCEL1_CONTROL_NODATAXFER;
4776 	}
4777 
4778 	c->Header.SGList = use_sg;
4779 	/* Fill out the command structure to submit */
4780 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4781 	cp->transfer_len = cpu_to_le32(total_len);
4782 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4783 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4784 	cp->control = cpu_to_le32(control);
4785 	memcpy(cp->CDB, cdb, cdb_len);
4786 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4787 	/* Tag was already set at init time. */
4788 	enqueue_cmd_and_start_io(h, c);
4789 	return 0;
4790 }
4791 
4792 /*
4793  * Queue a command directly to a device behind the controller using the
4794  * I/O accelerator path.
4795  */
4796 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4797 	struct CommandList *c)
4798 {
4799 	struct scsi_cmnd *cmd = c->scsi_cmd;
4800 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4801 
4802 	if (!dev)
4803 		return -1;
4804 
4805 	c->phys_disk = dev;
4806 
4807 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4808 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4809 }
4810 
4811 /*
4812  * Set encryption parameters for the ioaccel2 request
4813  */
4814 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4815 	struct CommandList *c, struct io_accel2_cmd *cp)
4816 {
4817 	struct scsi_cmnd *cmd = c->scsi_cmd;
4818 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4819 	struct raid_map_data *map = &dev->raid_map;
4820 	u64 first_block;
4821 
4822 	/* Are we doing encryption on this device */
4823 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4824 		return;
4825 	/* Set the data encryption key index. */
4826 	cp->dekindex = map->dekindex;
4827 
4828 	/* Set the encryption enable flag, encoded into direction field. */
4829 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4830 
4831 	/* Set encryption tweak values based on logical block address
4832 	 * If block size is 512, tweak value is LBA.
4833 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4834 	 */
4835 	switch (cmd->cmnd[0]) {
4836 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4837 	case READ_6:
4838 	case WRITE_6:
4839 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4840 				(cmd->cmnd[2] << 8) |
4841 				cmd->cmnd[3]);
4842 		break;
4843 	case WRITE_10:
4844 	case READ_10:
4845 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4846 	case WRITE_12:
4847 	case READ_12:
4848 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4849 		break;
4850 	case WRITE_16:
4851 	case READ_16:
4852 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4853 		break;
4854 	default:
4855 		dev_err(&h->pdev->dev,
4856 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4857 			__func__, cmd->cmnd[0]);
4858 		BUG();
4859 		break;
4860 	}
4861 
4862 	if (le32_to_cpu(map->volume_blk_size) != 512)
4863 		first_block = first_block *
4864 				le32_to_cpu(map->volume_blk_size)/512;
4865 
4866 	cp->tweak_lower = cpu_to_le32(first_block);
4867 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4868 }
4869 
4870 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4871 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4872 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4873 {
4874 	struct scsi_cmnd *cmd = c->scsi_cmd;
4875 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4876 	struct ioaccel2_sg_element *curr_sg;
4877 	int use_sg, i;
4878 	struct scatterlist *sg;
4879 	u64 addr64;
4880 	u32 len;
4881 	u32 total_len = 0;
4882 
4883 	if (!cmd->device)
4884 		return -1;
4885 
4886 	if (!cmd->device->hostdata)
4887 		return -1;
4888 
4889 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4890 
4891 	if (is_zero_length_transfer(cdb)) {
4892 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4893 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4894 		return IO_ACCEL_INELIGIBLE;
4895 	}
4896 
4897 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4898 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4899 		return IO_ACCEL_INELIGIBLE;
4900 	}
4901 
4902 	c->cmd_type = CMD_IOACCEL2;
4903 	/* Adjust the DMA address to point to the accelerated command buffer */
4904 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4905 				(c->cmdindex * sizeof(*cp));
4906 	BUG_ON(c->busaddr & 0x0000007F);
4907 
4908 	memset(cp, 0, sizeof(*cp));
4909 	cp->IU_type = IOACCEL2_IU_TYPE;
4910 
4911 	use_sg = scsi_dma_map(cmd);
4912 	if (use_sg < 0) {
4913 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4914 		return use_sg;
4915 	}
4916 
4917 	if (use_sg) {
4918 		curr_sg = cp->sg;
4919 		if (use_sg > h->ioaccel_maxsg) {
4920 			addr64 = le64_to_cpu(
4921 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4922 			curr_sg->address = cpu_to_le64(addr64);
4923 			curr_sg->length = 0;
4924 			curr_sg->reserved[0] = 0;
4925 			curr_sg->reserved[1] = 0;
4926 			curr_sg->reserved[2] = 0;
4927 			curr_sg->chain_indicator = 0x80;
4928 
4929 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4930 		}
4931 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4932 			addr64 = (u64) sg_dma_address(sg);
4933 			len  = sg_dma_len(sg);
4934 			total_len += len;
4935 			curr_sg->address = cpu_to_le64(addr64);
4936 			curr_sg->length = cpu_to_le32(len);
4937 			curr_sg->reserved[0] = 0;
4938 			curr_sg->reserved[1] = 0;
4939 			curr_sg->reserved[2] = 0;
4940 			curr_sg->chain_indicator = 0;
4941 			curr_sg++;
4942 		}
4943 
4944 		switch (cmd->sc_data_direction) {
4945 		case DMA_TO_DEVICE:
4946 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4947 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4948 			break;
4949 		case DMA_FROM_DEVICE:
4950 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4951 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4952 			break;
4953 		case DMA_NONE:
4954 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4955 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4956 			break;
4957 		default:
4958 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4959 				cmd->sc_data_direction);
4960 			BUG();
4961 			break;
4962 		}
4963 	} else {
4964 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4965 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4966 	}
4967 
4968 	/* Set encryption parameters, if necessary */
4969 	set_encrypt_ioaccel2(h, c, cp);
4970 
4971 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4972 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4973 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4974 
4975 	cp->data_len = cpu_to_le32(total_len);
4976 	cp->err_ptr = cpu_to_le64(c->busaddr +
4977 			offsetof(struct io_accel2_cmd, error_data));
4978 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4979 
4980 	/* fill in sg elements */
4981 	if (use_sg > h->ioaccel_maxsg) {
4982 		cp->sg_count = 1;
4983 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4984 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4985 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4986 			scsi_dma_unmap(cmd);
4987 			return -1;
4988 		}
4989 	} else
4990 		cp->sg_count = (u8) use_sg;
4991 
4992 	enqueue_cmd_and_start_io(h, c);
4993 	return 0;
4994 }
4995 
4996 /*
4997  * Queue a command to the correct I/O accelerator path.
4998  */
4999 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5000 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5001 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5002 {
5003 	if (!c->scsi_cmd->device)
5004 		return -1;
5005 
5006 	if (!c->scsi_cmd->device->hostdata)
5007 		return -1;
5008 
5009 	/* Try to honor the device's queue depth */
5010 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5011 					phys_disk->queue_depth) {
5012 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5013 		return IO_ACCEL_INELIGIBLE;
5014 	}
5015 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5016 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5017 						cdb, cdb_len, scsi3addr,
5018 						phys_disk);
5019 	else
5020 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5021 						cdb, cdb_len, scsi3addr,
5022 						phys_disk);
5023 }
5024 
5025 static void raid_map_helper(struct raid_map_data *map,
5026 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5027 {
5028 	if (offload_to_mirror == 0)  {
5029 		/* use physical disk in the first mirrored group. */
5030 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5031 		return;
5032 	}
5033 	do {
5034 		/* determine mirror group that *map_index indicates */
5035 		*current_group = *map_index /
5036 			le16_to_cpu(map->data_disks_per_row);
5037 		if (offload_to_mirror == *current_group)
5038 			continue;
5039 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5040 			/* select map index from next group */
5041 			*map_index += le16_to_cpu(map->data_disks_per_row);
5042 			(*current_group)++;
5043 		} else {
5044 			/* select map index from first group */
5045 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5046 			*current_group = 0;
5047 		}
5048 	} while (offload_to_mirror != *current_group);
5049 }
5050 
5051 /*
5052  * Attempt to perform offload RAID mapping for a logical volume I/O.
5053  */
5054 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5055 	struct CommandList *c)
5056 {
5057 	struct scsi_cmnd *cmd = c->scsi_cmd;
5058 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5059 	struct raid_map_data *map = &dev->raid_map;
5060 	struct raid_map_disk_data *dd = &map->data[0];
5061 	int is_write = 0;
5062 	u32 map_index;
5063 	u64 first_block, last_block;
5064 	u32 block_cnt;
5065 	u32 blocks_per_row;
5066 	u64 first_row, last_row;
5067 	u32 first_row_offset, last_row_offset;
5068 	u32 first_column, last_column;
5069 	u64 r0_first_row, r0_last_row;
5070 	u32 r5or6_blocks_per_row;
5071 	u64 r5or6_first_row, r5or6_last_row;
5072 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5073 	u32 r5or6_first_column, r5or6_last_column;
5074 	u32 total_disks_per_row;
5075 	u32 stripesize;
5076 	u32 first_group, last_group, current_group;
5077 	u32 map_row;
5078 	u32 disk_handle;
5079 	u64 disk_block;
5080 	u32 disk_block_cnt;
5081 	u8 cdb[16];
5082 	u8 cdb_len;
5083 	u16 strip_size;
5084 #if BITS_PER_LONG == 32
5085 	u64 tmpdiv;
5086 #endif
5087 	int offload_to_mirror;
5088 
5089 	if (!dev)
5090 		return -1;
5091 
5092 	/* check for valid opcode, get LBA and block count */
5093 	switch (cmd->cmnd[0]) {
5094 	case WRITE_6:
5095 		is_write = 1;
5096 	case READ_6:
5097 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5098 				(cmd->cmnd[2] << 8) |
5099 				cmd->cmnd[3]);
5100 		block_cnt = cmd->cmnd[4];
5101 		if (block_cnt == 0)
5102 			block_cnt = 256;
5103 		break;
5104 	case WRITE_10:
5105 		is_write = 1;
5106 	case READ_10:
5107 		first_block =
5108 			(((u64) cmd->cmnd[2]) << 24) |
5109 			(((u64) cmd->cmnd[3]) << 16) |
5110 			(((u64) cmd->cmnd[4]) << 8) |
5111 			cmd->cmnd[5];
5112 		block_cnt =
5113 			(((u32) cmd->cmnd[7]) << 8) |
5114 			cmd->cmnd[8];
5115 		break;
5116 	case WRITE_12:
5117 		is_write = 1;
5118 	case READ_12:
5119 		first_block =
5120 			(((u64) cmd->cmnd[2]) << 24) |
5121 			(((u64) cmd->cmnd[3]) << 16) |
5122 			(((u64) cmd->cmnd[4]) << 8) |
5123 			cmd->cmnd[5];
5124 		block_cnt =
5125 			(((u32) cmd->cmnd[6]) << 24) |
5126 			(((u32) cmd->cmnd[7]) << 16) |
5127 			(((u32) cmd->cmnd[8]) << 8) |
5128 		cmd->cmnd[9];
5129 		break;
5130 	case WRITE_16:
5131 		is_write = 1;
5132 	case READ_16:
5133 		first_block =
5134 			(((u64) cmd->cmnd[2]) << 56) |
5135 			(((u64) cmd->cmnd[3]) << 48) |
5136 			(((u64) cmd->cmnd[4]) << 40) |
5137 			(((u64) cmd->cmnd[5]) << 32) |
5138 			(((u64) cmd->cmnd[6]) << 24) |
5139 			(((u64) cmd->cmnd[7]) << 16) |
5140 			(((u64) cmd->cmnd[8]) << 8) |
5141 			cmd->cmnd[9];
5142 		block_cnt =
5143 			(((u32) cmd->cmnd[10]) << 24) |
5144 			(((u32) cmd->cmnd[11]) << 16) |
5145 			(((u32) cmd->cmnd[12]) << 8) |
5146 			cmd->cmnd[13];
5147 		break;
5148 	default:
5149 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5150 	}
5151 	last_block = first_block + block_cnt - 1;
5152 
5153 	/* check for write to non-RAID-0 */
5154 	if (is_write && dev->raid_level != 0)
5155 		return IO_ACCEL_INELIGIBLE;
5156 
5157 	/* check for invalid block or wraparound */
5158 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5159 		last_block < first_block)
5160 		return IO_ACCEL_INELIGIBLE;
5161 
5162 	/* calculate stripe information for the request */
5163 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5164 				le16_to_cpu(map->strip_size);
5165 	strip_size = le16_to_cpu(map->strip_size);
5166 #if BITS_PER_LONG == 32
5167 	tmpdiv = first_block;
5168 	(void) do_div(tmpdiv, blocks_per_row);
5169 	first_row = tmpdiv;
5170 	tmpdiv = last_block;
5171 	(void) do_div(tmpdiv, blocks_per_row);
5172 	last_row = tmpdiv;
5173 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5174 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5175 	tmpdiv = first_row_offset;
5176 	(void) do_div(tmpdiv, strip_size);
5177 	first_column = tmpdiv;
5178 	tmpdiv = last_row_offset;
5179 	(void) do_div(tmpdiv, strip_size);
5180 	last_column = tmpdiv;
5181 #else
5182 	first_row = first_block / blocks_per_row;
5183 	last_row = last_block / blocks_per_row;
5184 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5185 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5186 	first_column = first_row_offset / strip_size;
5187 	last_column = last_row_offset / strip_size;
5188 #endif
5189 
5190 	/* if this isn't a single row/column then give to the controller */
5191 	if ((first_row != last_row) || (first_column != last_column))
5192 		return IO_ACCEL_INELIGIBLE;
5193 
5194 	/* proceeding with driver mapping */
5195 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5196 				le16_to_cpu(map->metadata_disks_per_row);
5197 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5198 				le16_to_cpu(map->row_cnt);
5199 	map_index = (map_row * total_disks_per_row) + first_column;
5200 
5201 	switch (dev->raid_level) {
5202 	case HPSA_RAID_0:
5203 		break; /* nothing special to do */
5204 	case HPSA_RAID_1:
5205 		/* Handles load balance across RAID 1 members.
5206 		 * (2-drive R1 and R10 with even # of drives.)
5207 		 * Appropriate for SSDs, not optimal for HDDs
5208 		 */
5209 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5210 		if (dev->offload_to_mirror)
5211 			map_index += le16_to_cpu(map->data_disks_per_row);
5212 		dev->offload_to_mirror = !dev->offload_to_mirror;
5213 		break;
5214 	case HPSA_RAID_ADM:
5215 		/* Handles N-way mirrors  (R1-ADM)
5216 		 * and R10 with # of drives divisible by 3.)
5217 		 */
5218 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5219 
5220 		offload_to_mirror = dev->offload_to_mirror;
5221 		raid_map_helper(map, offload_to_mirror,
5222 				&map_index, &current_group);
5223 		/* set mirror group to use next time */
5224 		offload_to_mirror =
5225 			(offload_to_mirror >=
5226 			le16_to_cpu(map->layout_map_count) - 1)
5227 			? 0 : offload_to_mirror + 1;
5228 		dev->offload_to_mirror = offload_to_mirror;
5229 		/* Avoid direct use of dev->offload_to_mirror within this
5230 		 * function since multiple threads might simultaneously
5231 		 * increment it beyond the range of dev->layout_map_count -1.
5232 		 */
5233 		break;
5234 	case HPSA_RAID_5:
5235 	case HPSA_RAID_6:
5236 		if (le16_to_cpu(map->layout_map_count) <= 1)
5237 			break;
5238 
5239 		/* Verify first and last block are in same RAID group */
5240 		r5or6_blocks_per_row =
5241 			le16_to_cpu(map->strip_size) *
5242 			le16_to_cpu(map->data_disks_per_row);
5243 		BUG_ON(r5or6_blocks_per_row == 0);
5244 		stripesize = r5or6_blocks_per_row *
5245 			le16_to_cpu(map->layout_map_count);
5246 #if BITS_PER_LONG == 32
5247 		tmpdiv = first_block;
5248 		first_group = do_div(tmpdiv, stripesize);
5249 		tmpdiv = first_group;
5250 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5251 		first_group = tmpdiv;
5252 		tmpdiv = last_block;
5253 		last_group = do_div(tmpdiv, stripesize);
5254 		tmpdiv = last_group;
5255 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5256 		last_group = tmpdiv;
5257 #else
5258 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5259 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5260 #endif
5261 		if (first_group != last_group)
5262 			return IO_ACCEL_INELIGIBLE;
5263 
5264 		/* Verify request is in a single row of RAID 5/6 */
5265 #if BITS_PER_LONG == 32
5266 		tmpdiv = first_block;
5267 		(void) do_div(tmpdiv, stripesize);
5268 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5269 		tmpdiv = last_block;
5270 		(void) do_div(tmpdiv, stripesize);
5271 		r5or6_last_row = r0_last_row = tmpdiv;
5272 #else
5273 		first_row = r5or6_first_row = r0_first_row =
5274 						first_block / stripesize;
5275 		r5or6_last_row = r0_last_row = last_block / stripesize;
5276 #endif
5277 		if (r5or6_first_row != r5or6_last_row)
5278 			return IO_ACCEL_INELIGIBLE;
5279 
5280 
5281 		/* Verify request is in a single column */
5282 #if BITS_PER_LONG == 32
5283 		tmpdiv = first_block;
5284 		first_row_offset = do_div(tmpdiv, stripesize);
5285 		tmpdiv = first_row_offset;
5286 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5287 		r5or6_first_row_offset = first_row_offset;
5288 		tmpdiv = last_block;
5289 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5290 		tmpdiv = r5or6_last_row_offset;
5291 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5292 		tmpdiv = r5or6_first_row_offset;
5293 		(void) do_div(tmpdiv, map->strip_size);
5294 		first_column = r5or6_first_column = tmpdiv;
5295 		tmpdiv = r5or6_last_row_offset;
5296 		(void) do_div(tmpdiv, map->strip_size);
5297 		r5or6_last_column = tmpdiv;
5298 #else
5299 		first_row_offset = r5or6_first_row_offset =
5300 			(u32)((first_block % stripesize) %
5301 						r5or6_blocks_per_row);
5302 
5303 		r5or6_last_row_offset =
5304 			(u32)((last_block % stripesize) %
5305 						r5or6_blocks_per_row);
5306 
5307 		first_column = r5or6_first_column =
5308 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5309 		r5or6_last_column =
5310 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5311 #endif
5312 		if (r5or6_first_column != r5or6_last_column)
5313 			return IO_ACCEL_INELIGIBLE;
5314 
5315 		/* Request is eligible */
5316 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5317 			le16_to_cpu(map->row_cnt);
5318 
5319 		map_index = (first_group *
5320 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5321 			(map_row * total_disks_per_row) + first_column;
5322 		break;
5323 	default:
5324 		return IO_ACCEL_INELIGIBLE;
5325 	}
5326 
5327 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5328 		return IO_ACCEL_INELIGIBLE;
5329 
5330 	c->phys_disk = dev->phys_disk[map_index];
5331 	if (!c->phys_disk)
5332 		return IO_ACCEL_INELIGIBLE;
5333 
5334 	disk_handle = dd[map_index].ioaccel_handle;
5335 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5336 			first_row * le16_to_cpu(map->strip_size) +
5337 			(first_row_offset - first_column *
5338 			le16_to_cpu(map->strip_size));
5339 	disk_block_cnt = block_cnt;
5340 
5341 	/* handle differing logical/physical block sizes */
5342 	if (map->phys_blk_shift) {
5343 		disk_block <<= map->phys_blk_shift;
5344 		disk_block_cnt <<= map->phys_blk_shift;
5345 	}
5346 	BUG_ON(disk_block_cnt > 0xffff);
5347 
5348 	/* build the new CDB for the physical disk I/O */
5349 	if (disk_block > 0xffffffff) {
5350 		cdb[0] = is_write ? WRITE_16 : READ_16;
5351 		cdb[1] = 0;
5352 		cdb[2] = (u8) (disk_block >> 56);
5353 		cdb[3] = (u8) (disk_block >> 48);
5354 		cdb[4] = (u8) (disk_block >> 40);
5355 		cdb[5] = (u8) (disk_block >> 32);
5356 		cdb[6] = (u8) (disk_block >> 24);
5357 		cdb[7] = (u8) (disk_block >> 16);
5358 		cdb[8] = (u8) (disk_block >> 8);
5359 		cdb[9] = (u8) (disk_block);
5360 		cdb[10] = (u8) (disk_block_cnt >> 24);
5361 		cdb[11] = (u8) (disk_block_cnt >> 16);
5362 		cdb[12] = (u8) (disk_block_cnt >> 8);
5363 		cdb[13] = (u8) (disk_block_cnt);
5364 		cdb[14] = 0;
5365 		cdb[15] = 0;
5366 		cdb_len = 16;
5367 	} else {
5368 		cdb[0] = is_write ? WRITE_10 : READ_10;
5369 		cdb[1] = 0;
5370 		cdb[2] = (u8) (disk_block >> 24);
5371 		cdb[3] = (u8) (disk_block >> 16);
5372 		cdb[4] = (u8) (disk_block >> 8);
5373 		cdb[5] = (u8) (disk_block);
5374 		cdb[6] = 0;
5375 		cdb[7] = (u8) (disk_block_cnt >> 8);
5376 		cdb[8] = (u8) (disk_block_cnt);
5377 		cdb[9] = 0;
5378 		cdb_len = 10;
5379 	}
5380 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5381 						dev->scsi3addr,
5382 						dev->phys_disk[map_index]);
5383 }
5384 
5385 /*
5386  * Submit commands down the "normal" RAID stack path
5387  * All callers to hpsa_ciss_submit must check lockup_detected
5388  * beforehand, before (opt.) and after calling cmd_alloc
5389  */
5390 static int hpsa_ciss_submit(struct ctlr_info *h,
5391 	struct CommandList *c, struct scsi_cmnd *cmd,
5392 	unsigned char scsi3addr[])
5393 {
5394 	cmd->host_scribble = (unsigned char *) c;
5395 	c->cmd_type = CMD_SCSI;
5396 	c->scsi_cmd = cmd;
5397 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5398 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5399 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5400 
5401 	/* Fill in the request block... */
5402 
5403 	c->Request.Timeout = 0;
5404 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5405 	c->Request.CDBLen = cmd->cmd_len;
5406 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5407 	switch (cmd->sc_data_direction) {
5408 	case DMA_TO_DEVICE:
5409 		c->Request.type_attr_dir =
5410 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5411 		break;
5412 	case DMA_FROM_DEVICE:
5413 		c->Request.type_attr_dir =
5414 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5415 		break;
5416 	case DMA_NONE:
5417 		c->Request.type_attr_dir =
5418 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5419 		break;
5420 	case DMA_BIDIRECTIONAL:
5421 		/* This can happen if a buggy application does a scsi passthru
5422 		 * and sets both inlen and outlen to non-zero. ( see
5423 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5424 		 */
5425 
5426 		c->Request.type_attr_dir =
5427 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5428 		/* This is technically wrong, and hpsa controllers should
5429 		 * reject it with CMD_INVALID, which is the most correct
5430 		 * response, but non-fibre backends appear to let it
5431 		 * slide by, and give the same results as if this field
5432 		 * were set correctly.  Either way is acceptable for
5433 		 * our purposes here.
5434 		 */
5435 
5436 		break;
5437 
5438 	default:
5439 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5440 			cmd->sc_data_direction);
5441 		BUG();
5442 		break;
5443 	}
5444 
5445 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5446 		hpsa_cmd_resolve_and_free(h, c);
5447 		return SCSI_MLQUEUE_HOST_BUSY;
5448 	}
5449 	enqueue_cmd_and_start_io(h, c);
5450 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5451 	return 0;
5452 }
5453 
5454 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5455 				struct CommandList *c)
5456 {
5457 	dma_addr_t cmd_dma_handle, err_dma_handle;
5458 
5459 	/* Zero out all of commandlist except the last field, refcount */
5460 	memset(c, 0, offsetof(struct CommandList, refcount));
5461 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5462 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5463 	c->err_info = h->errinfo_pool + index;
5464 	memset(c->err_info, 0, sizeof(*c->err_info));
5465 	err_dma_handle = h->errinfo_pool_dhandle
5466 	    + index * sizeof(*c->err_info);
5467 	c->cmdindex = index;
5468 	c->busaddr = (u32) cmd_dma_handle;
5469 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5470 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5471 	c->h = h;
5472 	c->scsi_cmd = SCSI_CMD_IDLE;
5473 }
5474 
5475 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5476 {
5477 	int i;
5478 
5479 	for (i = 0; i < h->nr_cmds; i++) {
5480 		struct CommandList *c = h->cmd_pool + i;
5481 
5482 		hpsa_cmd_init(h, i, c);
5483 		atomic_set(&c->refcount, 0);
5484 	}
5485 }
5486 
5487 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5488 				struct CommandList *c)
5489 {
5490 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5491 
5492 	BUG_ON(c->cmdindex != index);
5493 
5494 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5495 	memset(c->err_info, 0, sizeof(*c->err_info));
5496 	c->busaddr = (u32) cmd_dma_handle;
5497 }
5498 
5499 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5500 		struct CommandList *c, struct scsi_cmnd *cmd,
5501 		unsigned char *scsi3addr)
5502 {
5503 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5504 	int rc = IO_ACCEL_INELIGIBLE;
5505 
5506 	if (!dev)
5507 		return SCSI_MLQUEUE_HOST_BUSY;
5508 
5509 	cmd->host_scribble = (unsigned char *) c;
5510 
5511 	if (dev->offload_enabled) {
5512 		hpsa_cmd_init(h, c->cmdindex, c);
5513 		c->cmd_type = CMD_SCSI;
5514 		c->scsi_cmd = cmd;
5515 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5516 		if (rc < 0)     /* scsi_dma_map failed. */
5517 			rc = SCSI_MLQUEUE_HOST_BUSY;
5518 	} else if (dev->hba_ioaccel_enabled) {
5519 		hpsa_cmd_init(h, c->cmdindex, c);
5520 		c->cmd_type = CMD_SCSI;
5521 		c->scsi_cmd = cmd;
5522 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5523 		if (rc < 0)     /* scsi_dma_map failed. */
5524 			rc = SCSI_MLQUEUE_HOST_BUSY;
5525 	}
5526 	return rc;
5527 }
5528 
5529 static void hpsa_command_resubmit_worker(struct work_struct *work)
5530 {
5531 	struct scsi_cmnd *cmd;
5532 	struct hpsa_scsi_dev_t *dev;
5533 	struct CommandList *c = container_of(work, struct CommandList, work);
5534 
5535 	cmd = c->scsi_cmd;
5536 	dev = cmd->device->hostdata;
5537 	if (!dev) {
5538 		cmd->result = DID_NO_CONNECT << 16;
5539 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5540 	}
5541 	if (c->reset_pending)
5542 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5543 	if (c->cmd_type == CMD_IOACCEL2) {
5544 		struct ctlr_info *h = c->h;
5545 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5546 		int rc;
5547 
5548 		if (c2->error_data.serv_response ==
5549 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5550 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5551 			if (rc == 0)
5552 				return;
5553 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5554 				/*
5555 				 * If we get here, it means dma mapping failed.
5556 				 * Try again via scsi mid layer, which will
5557 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5558 				 */
5559 				cmd->result = DID_IMM_RETRY << 16;
5560 				return hpsa_cmd_free_and_done(h, c, cmd);
5561 			}
5562 			/* else, fall thru and resubmit down CISS path */
5563 		}
5564 	}
5565 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5566 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5567 		/*
5568 		 * If we get here, it means dma mapping failed. Try
5569 		 * again via scsi mid layer, which will then get
5570 		 * SCSI_MLQUEUE_HOST_BUSY.
5571 		 *
5572 		 * hpsa_ciss_submit will have already freed c
5573 		 * if it encountered a dma mapping failure.
5574 		 */
5575 		cmd->result = DID_IMM_RETRY << 16;
5576 		cmd->scsi_done(cmd);
5577 	}
5578 }
5579 
5580 /* Running in struct Scsi_Host->host_lock less mode */
5581 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5582 {
5583 	struct ctlr_info *h;
5584 	struct hpsa_scsi_dev_t *dev;
5585 	unsigned char scsi3addr[8];
5586 	struct CommandList *c;
5587 	int rc = 0;
5588 
5589 	/* Get the ptr to our adapter structure out of cmd->host. */
5590 	h = sdev_to_hba(cmd->device);
5591 
5592 	BUG_ON(cmd->request->tag < 0);
5593 
5594 	dev = cmd->device->hostdata;
5595 	if (!dev) {
5596 		cmd->result = DID_NO_CONNECT << 16;
5597 		cmd->scsi_done(cmd);
5598 		return 0;
5599 	}
5600 
5601 	if (dev->removed) {
5602 		cmd->result = DID_NO_CONNECT << 16;
5603 		cmd->scsi_done(cmd);
5604 		return 0;
5605 	}
5606 
5607 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5608 
5609 	if (unlikely(lockup_detected(h))) {
5610 		cmd->result = DID_NO_CONNECT << 16;
5611 		cmd->scsi_done(cmd);
5612 		return 0;
5613 	}
5614 	c = cmd_tagged_alloc(h, cmd);
5615 
5616 	/*
5617 	 * Call alternate submit routine for I/O accelerated commands.
5618 	 * Retries always go down the normal I/O path.
5619 	 */
5620 	if (likely(cmd->retries == 0 &&
5621 			!blk_rq_is_passthrough(cmd->request) &&
5622 			h->acciopath_status)) {
5623 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5624 		if (rc == 0)
5625 			return 0;
5626 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5627 			hpsa_cmd_resolve_and_free(h, c);
5628 			return SCSI_MLQUEUE_HOST_BUSY;
5629 		}
5630 	}
5631 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5632 }
5633 
5634 static void hpsa_scan_complete(struct ctlr_info *h)
5635 {
5636 	unsigned long flags;
5637 
5638 	spin_lock_irqsave(&h->scan_lock, flags);
5639 	h->scan_finished = 1;
5640 	wake_up(&h->scan_wait_queue);
5641 	spin_unlock_irqrestore(&h->scan_lock, flags);
5642 }
5643 
5644 static void hpsa_scan_start(struct Scsi_Host *sh)
5645 {
5646 	struct ctlr_info *h = shost_to_hba(sh);
5647 	unsigned long flags;
5648 
5649 	/*
5650 	 * Don't let rescans be initiated on a controller known to be locked
5651 	 * up.  If the controller locks up *during* a rescan, that thread is
5652 	 * probably hosed, but at least we can prevent new rescan threads from
5653 	 * piling up on a locked up controller.
5654 	 */
5655 	if (unlikely(lockup_detected(h)))
5656 		return hpsa_scan_complete(h);
5657 
5658 	/*
5659 	 * If a scan is already waiting to run, no need to add another
5660 	 */
5661 	spin_lock_irqsave(&h->scan_lock, flags);
5662 	if (h->scan_waiting) {
5663 		spin_unlock_irqrestore(&h->scan_lock, flags);
5664 		return;
5665 	}
5666 
5667 	spin_unlock_irqrestore(&h->scan_lock, flags);
5668 
5669 	/* wait until any scan already in progress is finished. */
5670 	while (1) {
5671 		spin_lock_irqsave(&h->scan_lock, flags);
5672 		if (h->scan_finished)
5673 			break;
5674 		h->scan_waiting = 1;
5675 		spin_unlock_irqrestore(&h->scan_lock, flags);
5676 		wait_event(h->scan_wait_queue, h->scan_finished);
5677 		/* Note: We don't need to worry about a race between this
5678 		 * thread and driver unload because the midlayer will
5679 		 * have incremented the reference count, so unload won't
5680 		 * happen if we're in here.
5681 		 */
5682 	}
5683 	h->scan_finished = 0; /* mark scan as in progress */
5684 	h->scan_waiting = 0;
5685 	spin_unlock_irqrestore(&h->scan_lock, flags);
5686 
5687 	if (unlikely(lockup_detected(h)))
5688 		return hpsa_scan_complete(h);
5689 
5690 	/*
5691 	 * Do the scan after a reset completion
5692 	 */
5693 	spin_lock_irqsave(&h->reset_lock, flags);
5694 	if (h->reset_in_progress) {
5695 		h->drv_req_rescan = 1;
5696 		spin_unlock_irqrestore(&h->reset_lock, flags);
5697 		hpsa_scan_complete(h);
5698 		return;
5699 	}
5700 	spin_unlock_irqrestore(&h->reset_lock, flags);
5701 
5702 	hpsa_update_scsi_devices(h);
5703 
5704 	hpsa_scan_complete(h);
5705 }
5706 
5707 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5708 {
5709 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5710 
5711 	if (!logical_drive)
5712 		return -ENODEV;
5713 
5714 	if (qdepth < 1)
5715 		qdepth = 1;
5716 	else if (qdepth > logical_drive->queue_depth)
5717 		qdepth = logical_drive->queue_depth;
5718 
5719 	return scsi_change_queue_depth(sdev, qdepth);
5720 }
5721 
5722 static int hpsa_scan_finished(struct Scsi_Host *sh,
5723 	unsigned long elapsed_time)
5724 {
5725 	struct ctlr_info *h = shost_to_hba(sh);
5726 	unsigned long flags;
5727 	int finished;
5728 
5729 	spin_lock_irqsave(&h->scan_lock, flags);
5730 	finished = h->scan_finished;
5731 	spin_unlock_irqrestore(&h->scan_lock, flags);
5732 	return finished;
5733 }
5734 
5735 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5736 {
5737 	struct Scsi_Host *sh;
5738 
5739 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5740 	if (sh == NULL) {
5741 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5742 		return -ENOMEM;
5743 	}
5744 
5745 	sh->io_port = 0;
5746 	sh->n_io_port = 0;
5747 	sh->this_id = -1;
5748 	sh->max_channel = 3;
5749 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5750 	sh->max_lun = HPSA_MAX_LUN;
5751 	sh->max_id = HPSA_MAX_LUN;
5752 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5753 	sh->cmd_per_lun = sh->can_queue;
5754 	sh->sg_tablesize = h->maxsgentries;
5755 	sh->transportt = hpsa_sas_transport_template;
5756 	sh->hostdata[0] = (unsigned long) h;
5757 	sh->irq = pci_irq_vector(h->pdev, 0);
5758 	sh->unique_id = sh->irq;
5759 
5760 	h->scsi_host = sh;
5761 	return 0;
5762 }
5763 
5764 static int hpsa_scsi_add_host(struct ctlr_info *h)
5765 {
5766 	int rv;
5767 
5768 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5769 	if (rv) {
5770 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5771 		return rv;
5772 	}
5773 	scsi_scan_host(h->scsi_host);
5774 	return 0;
5775 }
5776 
5777 /*
5778  * The block layer has already gone to the trouble of picking out a unique,
5779  * small-integer tag for this request.  We use an offset from that value as
5780  * an index to select our command block.  (The offset allows us to reserve the
5781  * low-numbered entries for our own uses.)
5782  */
5783 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5784 {
5785 	int idx = scmd->request->tag;
5786 
5787 	if (idx < 0)
5788 		return idx;
5789 
5790 	/* Offset to leave space for internal cmds. */
5791 	return idx += HPSA_NRESERVED_CMDS;
5792 }
5793 
5794 /*
5795  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5796  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5797  */
5798 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5799 				struct CommandList *c, unsigned char lunaddr[],
5800 				int reply_queue)
5801 {
5802 	int rc;
5803 
5804 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5805 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5806 			NULL, 0, 0, lunaddr, TYPE_CMD);
5807 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5808 	if (rc)
5809 		return rc;
5810 	/* no unmap needed here because no data xfer. */
5811 
5812 	/* Check if the unit is already ready. */
5813 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5814 		return 0;
5815 
5816 	/*
5817 	 * The first command sent after reset will receive "unit attention" to
5818 	 * indicate that the LUN has been reset...this is actually what we're
5819 	 * looking for (but, success is good too).
5820 	 */
5821 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5822 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5823 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5824 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5825 		return 0;
5826 
5827 	return 1;
5828 }
5829 
5830 /*
5831  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5832  * returns zero when the unit is ready, and non-zero when giving up.
5833  */
5834 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5835 				struct CommandList *c,
5836 				unsigned char lunaddr[], int reply_queue)
5837 {
5838 	int rc;
5839 	int count = 0;
5840 	int waittime = 1; /* seconds */
5841 
5842 	/* Send test unit ready until device ready, or give up. */
5843 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5844 
5845 		/*
5846 		 * Wait for a bit.  do this first, because if we send
5847 		 * the TUR right away, the reset will just abort it.
5848 		 */
5849 		msleep(1000 * waittime);
5850 
5851 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5852 		if (!rc)
5853 			break;
5854 
5855 		/* Increase wait time with each try, up to a point. */
5856 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5857 			waittime *= 2;
5858 
5859 		dev_warn(&h->pdev->dev,
5860 			 "waiting %d secs for device to become ready.\n",
5861 			 waittime);
5862 	}
5863 
5864 	return rc;
5865 }
5866 
5867 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5868 					   unsigned char lunaddr[],
5869 					   int reply_queue)
5870 {
5871 	int first_queue;
5872 	int last_queue;
5873 	int rq;
5874 	int rc = 0;
5875 	struct CommandList *c;
5876 
5877 	c = cmd_alloc(h);
5878 
5879 	/*
5880 	 * If no specific reply queue was requested, then send the TUR
5881 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5882 	 * the loop exactly once using only the specified queue.
5883 	 */
5884 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5885 		first_queue = 0;
5886 		last_queue = h->nreply_queues - 1;
5887 	} else {
5888 		first_queue = reply_queue;
5889 		last_queue = reply_queue;
5890 	}
5891 
5892 	for (rq = first_queue; rq <= last_queue; rq++) {
5893 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5894 		if (rc)
5895 			break;
5896 	}
5897 
5898 	if (rc)
5899 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5900 	else
5901 		dev_warn(&h->pdev->dev, "device is ready.\n");
5902 
5903 	cmd_free(h, c);
5904 	return rc;
5905 }
5906 
5907 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5908  * complaining.  Doing a host- or bus-reset can't do anything good here.
5909  */
5910 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5911 {
5912 	int rc = SUCCESS;
5913 	struct ctlr_info *h;
5914 	struct hpsa_scsi_dev_t *dev;
5915 	u8 reset_type;
5916 	char msg[48];
5917 	unsigned long flags;
5918 
5919 	/* find the controller to which the command to be aborted was sent */
5920 	h = sdev_to_hba(scsicmd->device);
5921 	if (h == NULL) /* paranoia */
5922 		return FAILED;
5923 
5924 	spin_lock_irqsave(&h->reset_lock, flags);
5925 	h->reset_in_progress = 1;
5926 	spin_unlock_irqrestore(&h->reset_lock, flags);
5927 
5928 	if (lockup_detected(h)) {
5929 		rc = FAILED;
5930 		goto return_reset_status;
5931 	}
5932 
5933 	dev = scsicmd->device->hostdata;
5934 	if (!dev) {
5935 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5936 		rc = FAILED;
5937 		goto return_reset_status;
5938 	}
5939 
5940 	if (dev->devtype == TYPE_ENCLOSURE) {
5941 		rc = SUCCESS;
5942 		goto return_reset_status;
5943 	}
5944 
5945 	/* if controller locked up, we can guarantee command won't complete */
5946 	if (lockup_detected(h)) {
5947 		snprintf(msg, sizeof(msg),
5948 			 "cmd %d RESET FAILED, lockup detected",
5949 			 hpsa_get_cmd_index(scsicmd));
5950 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5951 		rc = FAILED;
5952 		goto return_reset_status;
5953 	}
5954 
5955 	/* this reset request might be the result of a lockup; check */
5956 	if (detect_controller_lockup(h)) {
5957 		snprintf(msg, sizeof(msg),
5958 			 "cmd %d RESET FAILED, new lockup detected",
5959 			 hpsa_get_cmd_index(scsicmd));
5960 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5961 		rc = FAILED;
5962 		goto return_reset_status;
5963 	}
5964 
5965 	/* Do not attempt on controller */
5966 	if (is_hba_lunid(dev->scsi3addr)) {
5967 		rc = SUCCESS;
5968 		goto return_reset_status;
5969 	}
5970 
5971 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5972 		reset_type = HPSA_DEVICE_RESET_MSG;
5973 	else
5974 		reset_type = HPSA_PHYS_TARGET_RESET;
5975 
5976 	sprintf(msg, "resetting %s",
5977 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5978 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5979 
5980 	/* send a reset to the SCSI LUN which the command was sent to */
5981 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5982 			   DEFAULT_REPLY_QUEUE);
5983 	if (rc == 0)
5984 		rc = SUCCESS;
5985 	else
5986 		rc = FAILED;
5987 
5988 	sprintf(msg, "reset %s %s",
5989 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5990 		rc == SUCCESS ? "completed successfully" : "failed");
5991 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5992 
5993 return_reset_status:
5994 	spin_lock_irqsave(&h->reset_lock, flags);
5995 	h->reset_in_progress = 0;
5996 	spin_unlock_irqrestore(&h->reset_lock, flags);
5997 	return rc;
5998 }
5999 
6000 /*
6001  * For operations with an associated SCSI command, a command block is allocated
6002  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6003  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6004  * the complement, although cmd_free() may be called instead.
6005  */
6006 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6007 					    struct scsi_cmnd *scmd)
6008 {
6009 	int idx = hpsa_get_cmd_index(scmd);
6010 	struct CommandList *c = h->cmd_pool + idx;
6011 
6012 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6013 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6014 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6015 		/* The index value comes from the block layer, so if it's out of
6016 		 * bounds, it's probably not our bug.
6017 		 */
6018 		BUG();
6019 	}
6020 
6021 	atomic_inc(&c->refcount);
6022 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6023 		/*
6024 		 * We expect that the SCSI layer will hand us a unique tag
6025 		 * value.  Thus, there should never be a collision here between
6026 		 * two requests...because if the selected command isn't idle
6027 		 * then someone is going to be very disappointed.
6028 		 */
6029 		dev_err(&h->pdev->dev,
6030 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6031 			idx);
6032 		if (c->scsi_cmd != NULL)
6033 			scsi_print_command(c->scsi_cmd);
6034 		scsi_print_command(scmd);
6035 	}
6036 
6037 	hpsa_cmd_partial_init(h, idx, c);
6038 	return c;
6039 }
6040 
6041 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6042 {
6043 	/*
6044 	 * Release our reference to the block.  We don't need to do anything
6045 	 * else to free it, because it is accessed by index.
6046 	 */
6047 	(void)atomic_dec(&c->refcount);
6048 }
6049 
6050 /*
6051  * For operations that cannot sleep, a command block is allocated at init,
6052  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6053  * which ones are free or in use.  Lock must be held when calling this.
6054  * cmd_free() is the complement.
6055  * This function never gives up and returns NULL.  If it hangs,
6056  * another thread must call cmd_free() to free some tags.
6057  */
6058 
6059 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6060 {
6061 	struct CommandList *c;
6062 	int refcount, i;
6063 	int offset = 0;
6064 
6065 	/*
6066 	 * There is some *extremely* small but non-zero chance that that
6067 	 * multiple threads could get in here, and one thread could
6068 	 * be scanning through the list of bits looking for a free
6069 	 * one, but the free ones are always behind him, and other
6070 	 * threads sneak in behind him and eat them before he can
6071 	 * get to them, so that while there is always a free one, a
6072 	 * very unlucky thread might be starved anyway, never able to
6073 	 * beat the other threads.  In reality, this happens so
6074 	 * infrequently as to be indistinguishable from never.
6075 	 *
6076 	 * Note that we start allocating commands before the SCSI host structure
6077 	 * is initialized.  Since the search starts at bit zero, this
6078 	 * all works, since we have at least one command structure available;
6079 	 * however, it means that the structures with the low indexes have to be
6080 	 * reserved for driver-initiated requests, while requests from the block
6081 	 * layer will use the higher indexes.
6082 	 */
6083 
6084 	for (;;) {
6085 		i = find_next_zero_bit(h->cmd_pool_bits,
6086 					HPSA_NRESERVED_CMDS,
6087 					offset);
6088 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6089 			offset = 0;
6090 			continue;
6091 		}
6092 		c = h->cmd_pool + i;
6093 		refcount = atomic_inc_return(&c->refcount);
6094 		if (unlikely(refcount > 1)) {
6095 			cmd_free(h, c); /* already in use */
6096 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6097 			continue;
6098 		}
6099 		set_bit(i & (BITS_PER_LONG - 1),
6100 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6101 		break; /* it's ours now. */
6102 	}
6103 	hpsa_cmd_partial_init(h, i, c);
6104 	return c;
6105 }
6106 
6107 /*
6108  * This is the complementary operation to cmd_alloc().  Note, however, in some
6109  * corner cases it may also be used to free blocks allocated by
6110  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6111  * the clear-bit is harmless.
6112  */
6113 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6114 {
6115 	if (atomic_dec_and_test(&c->refcount)) {
6116 		int i;
6117 
6118 		i = c - h->cmd_pool;
6119 		clear_bit(i & (BITS_PER_LONG - 1),
6120 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6121 	}
6122 }
6123 
6124 #ifdef CONFIG_COMPAT
6125 
6126 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6127 	void __user *arg)
6128 {
6129 	IOCTL32_Command_struct __user *arg32 =
6130 	    (IOCTL32_Command_struct __user *) arg;
6131 	IOCTL_Command_struct arg64;
6132 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6133 	int err;
6134 	u32 cp;
6135 
6136 	memset(&arg64, 0, sizeof(arg64));
6137 	err = 0;
6138 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6139 			   sizeof(arg64.LUN_info));
6140 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6141 			   sizeof(arg64.Request));
6142 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6143 			   sizeof(arg64.error_info));
6144 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6145 	err |= get_user(cp, &arg32->buf);
6146 	arg64.buf = compat_ptr(cp);
6147 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6148 
6149 	if (err)
6150 		return -EFAULT;
6151 
6152 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6153 	if (err)
6154 		return err;
6155 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6156 			 sizeof(arg32->error_info));
6157 	if (err)
6158 		return -EFAULT;
6159 	return err;
6160 }
6161 
6162 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6163 	int cmd, void __user *arg)
6164 {
6165 	BIG_IOCTL32_Command_struct __user *arg32 =
6166 	    (BIG_IOCTL32_Command_struct __user *) arg;
6167 	BIG_IOCTL_Command_struct arg64;
6168 	BIG_IOCTL_Command_struct __user *p =
6169 	    compat_alloc_user_space(sizeof(arg64));
6170 	int err;
6171 	u32 cp;
6172 
6173 	memset(&arg64, 0, sizeof(arg64));
6174 	err = 0;
6175 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6176 			   sizeof(arg64.LUN_info));
6177 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6178 			   sizeof(arg64.Request));
6179 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6180 			   sizeof(arg64.error_info));
6181 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6182 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6183 	err |= get_user(cp, &arg32->buf);
6184 	arg64.buf = compat_ptr(cp);
6185 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6186 
6187 	if (err)
6188 		return -EFAULT;
6189 
6190 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6191 	if (err)
6192 		return err;
6193 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6194 			 sizeof(arg32->error_info));
6195 	if (err)
6196 		return -EFAULT;
6197 	return err;
6198 }
6199 
6200 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6201 {
6202 	switch (cmd) {
6203 	case CCISS_GETPCIINFO:
6204 	case CCISS_GETINTINFO:
6205 	case CCISS_SETINTINFO:
6206 	case CCISS_GETNODENAME:
6207 	case CCISS_SETNODENAME:
6208 	case CCISS_GETHEARTBEAT:
6209 	case CCISS_GETBUSTYPES:
6210 	case CCISS_GETFIRMVER:
6211 	case CCISS_GETDRIVVER:
6212 	case CCISS_REVALIDVOLS:
6213 	case CCISS_DEREGDISK:
6214 	case CCISS_REGNEWDISK:
6215 	case CCISS_REGNEWD:
6216 	case CCISS_RESCANDISK:
6217 	case CCISS_GETLUNINFO:
6218 		return hpsa_ioctl(dev, cmd, arg);
6219 
6220 	case CCISS_PASSTHRU32:
6221 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6222 	case CCISS_BIG_PASSTHRU32:
6223 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6224 
6225 	default:
6226 		return -ENOIOCTLCMD;
6227 	}
6228 }
6229 #endif
6230 
6231 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6232 {
6233 	struct hpsa_pci_info pciinfo;
6234 
6235 	if (!argp)
6236 		return -EINVAL;
6237 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6238 	pciinfo.bus = h->pdev->bus->number;
6239 	pciinfo.dev_fn = h->pdev->devfn;
6240 	pciinfo.board_id = h->board_id;
6241 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6242 		return -EFAULT;
6243 	return 0;
6244 }
6245 
6246 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6247 {
6248 	DriverVer_type DriverVer;
6249 	unsigned char vmaj, vmin, vsubmin;
6250 	int rc;
6251 
6252 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6253 		&vmaj, &vmin, &vsubmin);
6254 	if (rc != 3) {
6255 		dev_info(&h->pdev->dev, "driver version string '%s' "
6256 			"unrecognized.", HPSA_DRIVER_VERSION);
6257 		vmaj = 0;
6258 		vmin = 0;
6259 		vsubmin = 0;
6260 	}
6261 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6262 	if (!argp)
6263 		return -EINVAL;
6264 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6265 		return -EFAULT;
6266 	return 0;
6267 }
6268 
6269 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6270 {
6271 	IOCTL_Command_struct iocommand;
6272 	struct CommandList *c;
6273 	char *buff = NULL;
6274 	u64 temp64;
6275 	int rc = 0;
6276 
6277 	if (!argp)
6278 		return -EINVAL;
6279 	if (!capable(CAP_SYS_RAWIO))
6280 		return -EPERM;
6281 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6282 		return -EFAULT;
6283 	if ((iocommand.buf_size < 1) &&
6284 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6285 		return -EINVAL;
6286 	}
6287 	if (iocommand.buf_size > 0) {
6288 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6289 		if (buff == NULL)
6290 			return -ENOMEM;
6291 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6292 			/* Copy the data into the buffer we created */
6293 			if (copy_from_user(buff, iocommand.buf,
6294 				iocommand.buf_size)) {
6295 				rc = -EFAULT;
6296 				goto out_kfree;
6297 			}
6298 		} else {
6299 			memset(buff, 0, iocommand.buf_size);
6300 		}
6301 	}
6302 	c = cmd_alloc(h);
6303 
6304 	/* Fill in the command type */
6305 	c->cmd_type = CMD_IOCTL_PEND;
6306 	c->scsi_cmd = SCSI_CMD_BUSY;
6307 	/* Fill in Command Header */
6308 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6309 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6310 		c->Header.SGList = 1;
6311 		c->Header.SGTotal = cpu_to_le16(1);
6312 	} else	{ /* no buffers to fill */
6313 		c->Header.SGList = 0;
6314 		c->Header.SGTotal = cpu_to_le16(0);
6315 	}
6316 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6317 
6318 	/* Fill in Request block */
6319 	memcpy(&c->Request, &iocommand.Request,
6320 		sizeof(c->Request));
6321 
6322 	/* Fill in the scatter gather information */
6323 	if (iocommand.buf_size > 0) {
6324 		temp64 = dma_map_single(&h->pdev->dev, buff,
6325 			iocommand.buf_size, DMA_BIDIRECTIONAL);
6326 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6327 			c->SG[0].Addr = cpu_to_le64(0);
6328 			c->SG[0].Len = cpu_to_le32(0);
6329 			rc = -ENOMEM;
6330 			goto out;
6331 		}
6332 		c->SG[0].Addr = cpu_to_le64(temp64);
6333 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6334 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6335 	}
6336 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6337 					NO_TIMEOUT);
6338 	if (iocommand.buf_size > 0)
6339 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6340 	check_ioctl_unit_attention(h, c);
6341 	if (rc) {
6342 		rc = -EIO;
6343 		goto out;
6344 	}
6345 
6346 	/* Copy the error information out */
6347 	memcpy(&iocommand.error_info, c->err_info,
6348 		sizeof(iocommand.error_info));
6349 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6350 		rc = -EFAULT;
6351 		goto out;
6352 	}
6353 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6354 		iocommand.buf_size > 0) {
6355 		/* Copy the data out of the buffer we created */
6356 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6357 			rc = -EFAULT;
6358 			goto out;
6359 		}
6360 	}
6361 out:
6362 	cmd_free(h, c);
6363 out_kfree:
6364 	kfree(buff);
6365 	return rc;
6366 }
6367 
6368 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6369 {
6370 	BIG_IOCTL_Command_struct *ioc;
6371 	struct CommandList *c;
6372 	unsigned char **buff = NULL;
6373 	int *buff_size = NULL;
6374 	u64 temp64;
6375 	BYTE sg_used = 0;
6376 	int status = 0;
6377 	u32 left;
6378 	u32 sz;
6379 	BYTE __user *data_ptr;
6380 
6381 	if (!argp)
6382 		return -EINVAL;
6383 	if (!capable(CAP_SYS_RAWIO))
6384 		return -EPERM;
6385 	ioc = vmemdup_user(argp, sizeof(*ioc));
6386 	if (IS_ERR(ioc)) {
6387 		status = PTR_ERR(ioc);
6388 		goto cleanup1;
6389 	}
6390 	if ((ioc->buf_size < 1) &&
6391 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6392 		status = -EINVAL;
6393 		goto cleanup1;
6394 	}
6395 	/* Check kmalloc limits  using all SGs */
6396 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6397 		status = -EINVAL;
6398 		goto cleanup1;
6399 	}
6400 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6401 		status = -EINVAL;
6402 		goto cleanup1;
6403 	}
6404 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6405 	if (!buff) {
6406 		status = -ENOMEM;
6407 		goto cleanup1;
6408 	}
6409 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6410 	if (!buff_size) {
6411 		status = -ENOMEM;
6412 		goto cleanup1;
6413 	}
6414 	left = ioc->buf_size;
6415 	data_ptr = ioc->buf;
6416 	while (left) {
6417 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6418 		buff_size[sg_used] = sz;
6419 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6420 		if (buff[sg_used] == NULL) {
6421 			status = -ENOMEM;
6422 			goto cleanup1;
6423 		}
6424 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6425 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6426 				status = -EFAULT;
6427 				goto cleanup1;
6428 			}
6429 		} else
6430 			memset(buff[sg_used], 0, sz);
6431 		left -= sz;
6432 		data_ptr += sz;
6433 		sg_used++;
6434 	}
6435 	c = cmd_alloc(h);
6436 
6437 	c->cmd_type = CMD_IOCTL_PEND;
6438 	c->scsi_cmd = SCSI_CMD_BUSY;
6439 	c->Header.ReplyQueue = 0;
6440 	c->Header.SGList = (u8) sg_used;
6441 	c->Header.SGTotal = cpu_to_le16(sg_used);
6442 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6443 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6444 	if (ioc->buf_size > 0) {
6445 		int i;
6446 		for (i = 0; i < sg_used; i++) {
6447 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6448 				    buff_size[i], DMA_BIDIRECTIONAL);
6449 			if (dma_mapping_error(&h->pdev->dev,
6450 							(dma_addr_t) temp64)) {
6451 				c->SG[i].Addr = cpu_to_le64(0);
6452 				c->SG[i].Len = cpu_to_le32(0);
6453 				hpsa_pci_unmap(h->pdev, c, i,
6454 					DMA_BIDIRECTIONAL);
6455 				status = -ENOMEM;
6456 				goto cleanup0;
6457 			}
6458 			c->SG[i].Addr = cpu_to_le64(temp64);
6459 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6460 			c->SG[i].Ext = cpu_to_le32(0);
6461 		}
6462 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6463 	}
6464 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6465 						NO_TIMEOUT);
6466 	if (sg_used)
6467 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6468 	check_ioctl_unit_attention(h, c);
6469 	if (status) {
6470 		status = -EIO;
6471 		goto cleanup0;
6472 	}
6473 
6474 	/* Copy the error information out */
6475 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6476 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6477 		status = -EFAULT;
6478 		goto cleanup0;
6479 	}
6480 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6481 		int i;
6482 
6483 		/* Copy the data out of the buffer we created */
6484 		BYTE __user *ptr = ioc->buf;
6485 		for (i = 0; i < sg_used; i++) {
6486 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6487 				status = -EFAULT;
6488 				goto cleanup0;
6489 			}
6490 			ptr += buff_size[i];
6491 		}
6492 	}
6493 	status = 0;
6494 cleanup0:
6495 	cmd_free(h, c);
6496 cleanup1:
6497 	if (buff) {
6498 		int i;
6499 
6500 		for (i = 0; i < sg_used; i++)
6501 			kfree(buff[i]);
6502 		kfree(buff);
6503 	}
6504 	kfree(buff_size);
6505 	kvfree(ioc);
6506 	return status;
6507 }
6508 
6509 static void check_ioctl_unit_attention(struct ctlr_info *h,
6510 	struct CommandList *c)
6511 {
6512 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6513 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6514 		(void) check_for_unit_attention(h, c);
6515 }
6516 
6517 /*
6518  * ioctl
6519  */
6520 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6521 {
6522 	struct ctlr_info *h;
6523 	void __user *argp = (void __user *)arg;
6524 	int rc;
6525 
6526 	h = sdev_to_hba(dev);
6527 
6528 	switch (cmd) {
6529 	case CCISS_DEREGDISK:
6530 	case CCISS_REGNEWDISK:
6531 	case CCISS_REGNEWD:
6532 		hpsa_scan_start(h->scsi_host);
6533 		return 0;
6534 	case CCISS_GETPCIINFO:
6535 		return hpsa_getpciinfo_ioctl(h, argp);
6536 	case CCISS_GETDRIVVER:
6537 		return hpsa_getdrivver_ioctl(h, argp);
6538 	case CCISS_PASSTHRU:
6539 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6540 			return -EAGAIN;
6541 		rc = hpsa_passthru_ioctl(h, argp);
6542 		atomic_inc(&h->passthru_cmds_avail);
6543 		return rc;
6544 	case CCISS_BIG_PASSTHRU:
6545 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6546 			return -EAGAIN;
6547 		rc = hpsa_big_passthru_ioctl(h, argp);
6548 		atomic_inc(&h->passthru_cmds_avail);
6549 		return rc;
6550 	default:
6551 		return -ENOTTY;
6552 	}
6553 }
6554 
6555 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6556 				u8 reset_type)
6557 {
6558 	struct CommandList *c;
6559 
6560 	c = cmd_alloc(h);
6561 
6562 	/* fill_cmd can't fail here, no data buffer to map */
6563 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6564 		RAID_CTLR_LUNID, TYPE_MSG);
6565 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6566 	c->waiting = NULL;
6567 	enqueue_cmd_and_start_io(h, c);
6568 	/* Don't wait for completion, the reset won't complete.  Don't free
6569 	 * the command either.  This is the last command we will send before
6570 	 * re-initializing everything, so it doesn't matter and won't leak.
6571 	 */
6572 	return;
6573 }
6574 
6575 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6576 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6577 	int cmd_type)
6578 {
6579 	enum dma_data_direction dir = DMA_NONE;
6580 
6581 	c->cmd_type = CMD_IOCTL_PEND;
6582 	c->scsi_cmd = SCSI_CMD_BUSY;
6583 	c->Header.ReplyQueue = 0;
6584 	if (buff != NULL && size > 0) {
6585 		c->Header.SGList = 1;
6586 		c->Header.SGTotal = cpu_to_le16(1);
6587 	} else {
6588 		c->Header.SGList = 0;
6589 		c->Header.SGTotal = cpu_to_le16(0);
6590 	}
6591 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6592 
6593 	if (cmd_type == TYPE_CMD) {
6594 		switch (cmd) {
6595 		case HPSA_INQUIRY:
6596 			/* are we trying to read a vital product page */
6597 			if (page_code & VPD_PAGE) {
6598 				c->Request.CDB[1] = 0x01;
6599 				c->Request.CDB[2] = (page_code & 0xff);
6600 			}
6601 			c->Request.CDBLen = 6;
6602 			c->Request.type_attr_dir =
6603 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6604 			c->Request.Timeout = 0;
6605 			c->Request.CDB[0] = HPSA_INQUIRY;
6606 			c->Request.CDB[4] = size & 0xFF;
6607 			break;
6608 		case RECEIVE_DIAGNOSTIC:
6609 			c->Request.CDBLen = 6;
6610 			c->Request.type_attr_dir =
6611 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6612 			c->Request.Timeout = 0;
6613 			c->Request.CDB[0] = cmd;
6614 			c->Request.CDB[1] = 1;
6615 			c->Request.CDB[2] = 1;
6616 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6617 			c->Request.CDB[4] = size & 0xFF;
6618 			break;
6619 		case HPSA_REPORT_LOG:
6620 		case HPSA_REPORT_PHYS:
6621 			/* Talking to controller so It's a physical command
6622 			   mode = 00 target = 0.  Nothing to write.
6623 			 */
6624 			c->Request.CDBLen = 12;
6625 			c->Request.type_attr_dir =
6626 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6627 			c->Request.Timeout = 0;
6628 			c->Request.CDB[0] = cmd;
6629 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6630 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6631 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6632 			c->Request.CDB[9] = size & 0xFF;
6633 			break;
6634 		case BMIC_SENSE_DIAG_OPTIONS:
6635 			c->Request.CDBLen = 16;
6636 			c->Request.type_attr_dir =
6637 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6638 			c->Request.Timeout = 0;
6639 			/* Spec says this should be BMIC_WRITE */
6640 			c->Request.CDB[0] = BMIC_READ;
6641 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6642 			break;
6643 		case BMIC_SET_DIAG_OPTIONS:
6644 			c->Request.CDBLen = 16;
6645 			c->Request.type_attr_dir =
6646 					TYPE_ATTR_DIR(cmd_type,
6647 						ATTR_SIMPLE, XFER_WRITE);
6648 			c->Request.Timeout = 0;
6649 			c->Request.CDB[0] = BMIC_WRITE;
6650 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6651 			break;
6652 		case HPSA_CACHE_FLUSH:
6653 			c->Request.CDBLen = 12;
6654 			c->Request.type_attr_dir =
6655 					TYPE_ATTR_DIR(cmd_type,
6656 						ATTR_SIMPLE, XFER_WRITE);
6657 			c->Request.Timeout = 0;
6658 			c->Request.CDB[0] = BMIC_WRITE;
6659 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6660 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6661 			c->Request.CDB[8] = size & 0xFF;
6662 			break;
6663 		case TEST_UNIT_READY:
6664 			c->Request.CDBLen = 6;
6665 			c->Request.type_attr_dir =
6666 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6667 			c->Request.Timeout = 0;
6668 			break;
6669 		case HPSA_GET_RAID_MAP:
6670 			c->Request.CDBLen = 12;
6671 			c->Request.type_attr_dir =
6672 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6673 			c->Request.Timeout = 0;
6674 			c->Request.CDB[0] = HPSA_CISS_READ;
6675 			c->Request.CDB[1] = cmd;
6676 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6677 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6678 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6679 			c->Request.CDB[9] = size & 0xFF;
6680 			break;
6681 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6682 			c->Request.CDBLen = 10;
6683 			c->Request.type_attr_dir =
6684 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6685 			c->Request.Timeout = 0;
6686 			c->Request.CDB[0] = BMIC_READ;
6687 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6688 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6689 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6690 			break;
6691 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6692 			c->Request.CDBLen = 10;
6693 			c->Request.type_attr_dir =
6694 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6695 			c->Request.Timeout = 0;
6696 			c->Request.CDB[0] = BMIC_READ;
6697 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6698 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6699 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6700 			break;
6701 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6702 			c->Request.CDBLen = 10;
6703 			c->Request.type_attr_dir =
6704 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6705 			c->Request.Timeout = 0;
6706 			c->Request.CDB[0] = BMIC_READ;
6707 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6708 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6709 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6710 			break;
6711 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6712 			c->Request.CDBLen = 10;
6713 			c->Request.type_attr_dir =
6714 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6715 			c->Request.Timeout = 0;
6716 			c->Request.CDB[0] = BMIC_READ;
6717 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6718 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6719 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6720 			break;
6721 		case BMIC_IDENTIFY_CONTROLLER:
6722 			c->Request.CDBLen = 10;
6723 			c->Request.type_attr_dir =
6724 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725 			c->Request.Timeout = 0;
6726 			c->Request.CDB[0] = BMIC_READ;
6727 			c->Request.CDB[1] = 0;
6728 			c->Request.CDB[2] = 0;
6729 			c->Request.CDB[3] = 0;
6730 			c->Request.CDB[4] = 0;
6731 			c->Request.CDB[5] = 0;
6732 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6733 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6734 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6735 			c->Request.CDB[9] = 0;
6736 			break;
6737 		default:
6738 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6739 			BUG();
6740 		}
6741 	} else if (cmd_type == TYPE_MSG) {
6742 		switch (cmd) {
6743 
6744 		case  HPSA_PHYS_TARGET_RESET:
6745 			c->Request.CDBLen = 16;
6746 			c->Request.type_attr_dir =
6747 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6748 			c->Request.Timeout = 0; /* Don't time out */
6749 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6750 			c->Request.CDB[0] = HPSA_RESET;
6751 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6752 			/* Physical target reset needs no control bytes 4-7*/
6753 			c->Request.CDB[4] = 0x00;
6754 			c->Request.CDB[5] = 0x00;
6755 			c->Request.CDB[6] = 0x00;
6756 			c->Request.CDB[7] = 0x00;
6757 			break;
6758 		case  HPSA_DEVICE_RESET_MSG:
6759 			c->Request.CDBLen = 16;
6760 			c->Request.type_attr_dir =
6761 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6762 			c->Request.Timeout = 0; /* Don't time out */
6763 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6764 			c->Request.CDB[0] =  cmd;
6765 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6766 			/* If bytes 4-7 are zero, it means reset the */
6767 			/* LunID device */
6768 			c->Request.CDB[4] = 0x00;
6769 			c->Request.CDB[5] = 0x00;
6770 			c->Request.CDB[6] = 0x00;
6771 			c->Request.CDB[7] = 0x00;
6772 			break;
6773 		default:
6774 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6775 				cmd);
6776 			BUG();
6777 		}
6778 	} else {
6779 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6780 		BUG();
6781 	}
6782 
6783 	switch (GET_DIR(c->Request.type_attr_dir)) {
6784 	case XFER_READ:
6785 		dir = DMA_FROM_DEVICE;
6786 		break;
6787 	case XFER_WRITE:
6788 		dir = DMA_TO_DEVICE;
6789 		break;
6790 	case XFER_NONE:
6791 		dir = DMA_NONE;
6792 		break;
6793 	default:
6794 		dir = DMA_BIDIRECTIONAL;
6795 	}
6796 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6797 		return -1;
6798 	return 0;
6799 }
6800 
6801 /*
6802  * Map (physical) PCI mem into (virtual) kernel space
6803  */
6804 static void __iomem *remap_pci_mem(ulong base, ulong size)
6805 {
6806 	ulong page_base = ((ulong) base) & PAGE_MASK;
6807 	ulong page_offs = ((ulong) base) - page_base;
6808 	void __iomem *page_remapped = ioremap_nocache(page_base,
6809 		page_offs + size);
6810 
6811 	return page_remapped ? (page_remapped + page_offs) : NULL;
6812 }
6813 
6814 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6815 {
6816 	return h->access.command_completed(h, q);
6817 }
6818 
6819 static inline bool interrupt_pending(struct ctlr_info *h)
6820 {
6821 	return h->access.intr_pending(h);
6822 }
6823 
6824 static inline long interrupt_not_for_us(struct ctlr_info *h)
6825 {
6826 	return (h->access.intr_pending(h) == 0) ||
6827 		(h->interrupts_enabled == 0);
6828 }
6829 
6830 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6831 	u32 raw_tag)
6832 {
6833 	if (unlikely(tag_index >= h->nr_cmds)) {
6834 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6835 		return 1;
6836 	}
6837 	return 0;
6838 }
6839 
6840 static inline void finish_cmd(struct CommandList *c)
6841 {
6842 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6843 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6844 			|| c->cmd_type == CMD_IOACCEL2))
6845 		complete_scsi_command(c);
6846 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6847 		complete(c->waiting);
6848 }
6849 
6850 /* process completion of an indexed ("direct lookup") command */
6851 static inline void process_indexed_cmd(struct ctlr_info *h,
6852 	u32 raw_tag)
6853 {
6854 	u32 tag_index;
6855 	struct CommandList *c;
6856 
6857 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6858 	if (!bad_tag(h, tag_index, raw_tag)) {
6859 		c = h->cmd_pool + tag_index;
6860 		finish_cmd(c);
6861 	}
6862 }
6863 
6864 /* Some controllers, like p400, will give us one interrupt
6865  * after a soft reset, even if we turned interrupts off.
6866  * Only need to check for this in the hpsa_xxx_discard_completions
6867  * functions.
6868  */
6869 static int ignore_bogus_interrupt(struct ctlr_info *h)
6870 {
6871 	if (likely(!reset_devices))
6872 		return 0;
6873 
6874 	if (likely(h->interrupts_enabled))
6875 		return 0;
6876 
6877 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6878 		"(known firmware bug.)  Ignoring.\n");
6879 
6880 	return 1;
6881 }
6882 
6883 /*
6884  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6885  * Relies on (h-q[x] == x) being true for x such that
6886  * 0 <= x < MAX_REPLY_QUEUES.
6887  */
6888 static struct ctlr_info *queue_to_hba(u8 *queue)
6889 {
6890 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6891 }
6892 
6893 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6894 {
6895 	struct ctlr_info *h = queue_to_hba(queue);
6896 	u8 q = *(u8 *) queue;
6897 	u32 raw_tag;
6898 
6899 	if (ignore_bogus_interrupt(h))
6900 		return IRQ_NONE;
6901 
6902 	if (interrupt_not_for_us(h))
6903 		return IRQ_NONE;
6904 	h->last_intr_timestamp = get_jiffies_64();
6905 	while (interrupt_pending(h)) {
6906 		raw_tag = get_next_completion(h, q);
6907 		while (raw_tag != FIFO_EMPTY)
6908 			raw_tag = next_command(h, q);
6909 	}
6910 	return IRQ_HANDLED;
6911 }
6912 
6913 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6914 {
6915 	struct ctlr_info *h = queue_to_hba(queue);
6916 	u32 raw_tag;
6917 	u8 q = *(u8 *) queue;
6918 
6919 	if (ignore_bogus_interrupt(h))
6920 		return IRQ_NONE;
6921 
6922 	h->last_intr_timestamp = get_jiffies_64();
6923 	raw_tag = get_next_completion(h, q);
6924 	while (raw_tag != FIFO_EMPTY)
6925 		raw_tag = next_command(h, q);
6926 	return IRQ_HANDLED;
6927 }
6928 
6929 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6930 {
6931 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6932 	u32 raw_tag;
6933 	u8 q = *(u8 *) queue;
6934 
6935 	if (interrupt_not_for_us(h))
6936 		return IRQ_NONE;
6937 	h->last_intr_timestamp = get_jiffies_64();
6938 	while (interrupt_pending(h)) {
6939 		raw_tag = get_next_completion(h, q);
6940 		while (raw_tag != FIFO_EMPTY) {
6941 			process_indexed_cmd(h, raw_tag);
6942 			raw_tag = next_command(h, q);
6943 		}
6944 	}
6945 	return IRQ_HANDLED;
6946 }
6947 
6948 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6949 {
6950 	struct ctlr_info *h = queue_to_hba(queue);
6951 	u32 raw_tag;
6952 	u8 q = *(u8 *) queue;
6953 
6954 	h->last_intr_timestamp = get_jiffies_64();
6955 	raw_tag = get_next_completion(h, q);
6956 	while (raw_tag != FIFO_EMPTY) {
6957 		process_indexed_cmd(h, raw_tag);
6958 		raw_tag = next_command(h, q);
6959 	}
6960 	return IRQ_HANDLED;
6961 }
6962 
6963 /* Send a message CDB to the firmware. Careful, this only works
6964  * in simple mode, not performant mode due to the tag lookup.
6965  * We only ever use this immediately after a controller reset.
6966  */
6967 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6968 			unsigned char type)
6969 {
6970 	struct Command {
6971 		struct CommandListHeader CommandHeader;
6972 		struct RequestBlock Request;
6973 		struct ErrDescriptor ErrorDescriptor;
6974 	};
6975 	struct Command *cmd;
6976 	static const size_t cmd_sz = sizeof(*cmd) +
6977 					sizeof(cmd->ErrorDescriptor);
6978 	dma_addr_t paddr64;
6979 	__le32 paddr32;
6980 	u32 tag;
6981 	void __iomem *vaddr;
6982 	int i, err;
6983 
6984 	vaddr = pci_ioremap_bar(pdev, 0);
6985 	if (vaddr == NULL)
6986 		return -ENOMEM;
6987 
6988 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6989 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6990 	 * memory.
6991 	 */
6992 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
6993 	if (err) {
6994 		iounmap(vaddr);
6995 		return err;
6996 	}
6997 
6998 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
6999 	if (cmd == NULL) {
7000 		iounmap(vaddr);
7001 		return -ENOMEM;
7002 	}
7003 
7004 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7005 	 * although there's no guarantee, we assume that the address is at
7006 	 * least 4-byte aligned (most likely, it's page-aligned).
7007 	 */
7008 	paddr32 = cpu_to_le32(paddr64);
7009 
7010 	cmd->CommandHeader.ReplyQueue = 0;
7011 	cmd->CommandHeader.SGList = 0;
7012 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7013 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7014 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7015 
7016 	cmd->Request.CDBLen = 16;
7017 	cmd->Request.type_attr_dir =
7018 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7019 	cmd->Request.Timeout = 0; /* Don't time out */
7020 	cmd->Request.CDB[0] = opcode;
7021 	cmd->Request.CDB[1] = type;
7022 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7023 	cmd->ErrorDescriptor.Addr =
7024 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7025 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7026 
7027 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7028 
7029 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7030 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7031 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7032 			break;
7033 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7034 	}
7035 
7036 	iounmap(vaddr);
7037 
7038 	/* we leak the DMA buffer here ... no choice since the controller could
7039 	 *  still complete the command.
7040 	 */
7041 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7042 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7043 			opcode, type);
7044 		return -ETIMEDOUT;
7045 	}
7046 
7047 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7048 
7049 	if (tag & HPSA_ERROR_BIT) {
7050 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7051 			opcode, type);
7052 		return -EIO;
7053 	}
7054 
7055 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7056 		opcode, type);
7057 	return 0;
7058 }
7059 
7060 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7061 
7062 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7063 	void __iomem *vaddr, u32 use_doorbell)
7064 {
7065 
7066 	if (use_doorbell) {
7067 		/* For everything after the P600, the PCI power state method
7068 		 * of resetting the controller doesn't work, so we have this
7069 		 * other way using the doorbell register.
7070 		 */
7071 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7072 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7073 
7074 		/* PMC hardware guys tell us we need a 10 second delay after
7075 		 * doorbell reset and before any attempt to talk to the board
7076 		 * at all to ensure that this actually works and doesn't fall
7077 		 * over in some weird corner cases.
7078 		 */
7079 		msleep(10000);
7080 	} else { /* Try to do it the PCI power state way */
7081 
7082 		/* Quoting from the Open CISS Specification: "The Power
7083 		 * Management Control/Status Register (CSR) controls the power
7084 		 * state of the device.  The normal operating state is D0,
7085 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7086 		 * the controller, place the interface device in D3 then to D0,
7087 		 * this causes a secondary PCI reset which will reset the
7088 		 * controller." */
7089 
7090 		int rc = 0;
7091 
7092 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7093 
7094 		/* enter the D3hot power management state */
7095 		rc = pci_set_power_state(pdev, PCI_D3hot);
7096 		if (rc)
7097 			return rc;
7098 
7099 		msleep(500);
7100 
7101 		/* enter the D0 power management state */
7102 		rc = pci_set_power_state(pdev, PCI_D0);
7103 		if (rc)
7104 			return rc;
7105 
7106 		/*
7107 		 * The P600 requires a small delay when changing states.
7108 		 * Otherwise we may think the board did not reset and we bail.
7109 		 * This for kdump only and is particular to the P600.
7110 		 */
7111 		msleep(500);
7112 	}
7113 	return 0;
7114 }
7115 
7116 static void init_driver_version(char *driver_version, int len)
7117 {
7118 	memset(driver_version, 0, len);
7119 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7120 }
7121 
7122 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7123 {
7124 	char *driver_version;
7125 	int i, size = sizeof(cfgtable->driver_version);
7126 
7127 	driver_version = kmalloc(size, GFP_KERNEL);
7128 	if (!driver_version)
7129 		return -ENOMEM;
7130 
7131 	init_driver_version(driver_version, size);
7132 	for (i = 0; i < size; i++)
7133 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7134 	kfree(driver_version);
7135 	return 0;
7136 }
7137 
7138 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7139 					  unsigned char *driver_ver)
7140 {
7141 	int i;
7142 
7143 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7144 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7145 }
7146 
7147 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7148 {
7149 
7150 	char *driver_ver, *old_driver_ver;
7151 	int rc, size = sizeof(cfgtable->driver_version);
7152 
7153 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7154 	if (!old_driver_ver)
7155 		return -ENOMEM;
7156 	driver_ver = old_driver_ver + size;
7157 
7158 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7159 	 * should have been changed, otherwise we know the reset failed.
7160 	 */
7161 	init_driver_version(old_driver_ver, size);
7162 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7163 	rc = !memcmp(driver_ver, old_driver_ver, size);
7164 	kfree(old_driver_ver);
7165 	return rc;
7166 }
7167 /* This does a hard reset of the controller using PCI power management
7168  * states or the using the doorbell register.
7169  */
7170 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7171 {
7172 	u64 cfg_offset;
7173 	u32 cfg_base_addr;
7174 	u64 cfg_base_addr_index;
7175 	void __iomem *vaddr;
7176 	unsigned long paddr;
7177 	u32 misc_fw_support;
7178 	int rc;
7179 	struct CfgTable __iomem *cfgtable;
7180 	u32 use_doorbell;
7181 	u16 command_register;
7182 
7183 	/* For controllers as old as the P600, this is very nearly
7184 	 * the same thing as
7185 	 *
7186 	 * pci_save_state(pci_dev);
7187 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7188 	 * pci_set_power_state(pci_dev, PCI_D0);
7189 	 * pci_restore_state(pci_dev);
7190 	 *
7191 	 * For controllers newer than the P600, the pci power state
7192 	 * method of resetting doesn't work so we have another way
7193 	 * using the doorbell register.
7194 	 */
7195 
7196 	if (!ctlr_is_resettable(board_id)) {
7197 		dev_warn(&pdev->dev, "Controller not resettable\n");
7198 		return -ENODEV;
7199 	}
7200 
7201 	/* if controller is soft- but not hard resettable... */
7202 	if (!ctlr_is_hard_resettable(board_id))
7203 		return -ENOTSUPP; /* try soft reset later. */
7204 
7205 	/* Save the PCI command register */
7206 	pci_read_config_word(pdev, 4, &command_register);
7207 	pci_save_state(pdev);
7208 
7209 	/* find the first memory BAR, so we can find the cfg table */
7210 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7211 	if (rc)
7212 		return rc;
7213 	vaddr = remap_pci_mem(paddr, 0x250);
7214 	if (!vaddr)
7215 		return -ENOMEM;
7216 
7217 	/* find cfgtable in order to check if reset via doorbell is supported */
7218 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7219 					&cfg_base_addr_index, &cfg_offset);
7220 	if (rc)
7221 		goto unmap_vaddr;
7222 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7223 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7224 	if (!cfgtable) {
7225 		rc = -ENOMEM;
7226 		goto unmap_vaddr;
7227 	}
7228 	rc = write_driver_ver_to_cfgtable(cfgtable);
7229 	if (rc)
7230 		goto unmap_cfgtable;
7231 
7232 	/* If reset via doorbell register is supported, use that.
7233 	 * There are two such methods.  Favor the newest method.
7234 	 */
7235 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7236 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7237 	if (use_doorbell) {
7238 		use_doorbell = DOORBELL_CTLR_RESET2;
7239 	} else {
7240 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7241 		if (use_doorbell) {
7242 			dev_warn(&pdev->dev,
7243 				"Soft reset not supported. Firmware update is required.\n");
7244 			rc = -ENOTSUPP; /* try soft reset */
7245 			goto unmap_cfgtable;
7246 		}
7247 	}
7248 
7249 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7250 	if (rc)
7251 		goto unmap_cfgtable;
7252 
7253 	pci_restore_state(pdev);
7254 	pci_write_config_word(pdev, 4, command_register);
7255 
7256 	/* Some devices (notably the HP Smart Array 5i Controller)
7257 	   need a little pause here */
7258 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7259 
7260 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7261 	if (rc) {
7262 		dev_warn(&pdev->dev,
7263 			"Failed waiting for board to become ready after hard reset\n");
7264 		goto unmap_cfgtable;
7265 	}
7266 
7267 	rc = controller_reset_failed(vaddr);
7268 	if (rc < 0)
7269 		goto unmap_cfgtable;
7270 	if (rc) {
7271 		dev_warn(&pdev->dev, "Unable to successfully reset "
7272 			"controller. Will try soft reset.\n");
7273 		rc = -ENOTSUPP;
7274 	} else {
7275 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7276 	}
7277 
7278 unmap_cfgtable:
7279 	iounmap(cfgtable);
7280 
7281 unmap_vaddr:
7282 	iounmap(vaddr);
7283 	return rc;
7284 }
7285 
7286 /*
7287  *  We cannot read the structure directly, for portability we must use
7288  *   the io functions.
7289  *   This is for debug only.
7290  */
7291 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7292 {
7293 #ifdef HPSA_DEBUG
7294 	int i;
7295 	char temp_name[17];
7296 
7297 	dev_info(dev, "Controller Configuration information\n");
7298 	dev_info(dev, "------------------------------------\n");
7299 	for (i = 0; i < 4; i++)
7300 		temp_name[i] = readb(&(tb->Signature[i]));
7301 	temp_name[4] = '\0';
7302 	dev_info(dev, "   Signature = %s\n", temp_name);
7303 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7304 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7305 	       readl(&(tb->TransportSupport)));
7306 	dev_info(dev, "   Transport methods active = 0x%x\n",
7307 	       readl(&(tb->TransportActive)));
7308 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7309 	       readl(&(tb->HostWrite.TransportRequest)));
7310 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7311 	       readl(&(tb->HostWrite.CoalIntDelay)));
7312 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7313 	       readl(&(tb->HostWrite.CoalIntCount)));
7314 	dev_info(dev, "   Max outstanding commands = %d\n",
7315 	       readl(&(tb->CmdsOutMax)));
7316 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7317 	for (i = 0; i < 16; i++)
7318 		temp_name[i] = readb(&(tb->ServerName[i]));
7319 	temp_name[16] = '\0';
7320 	dev_info(dev, "   Server Name = %s\n", temp_name);
7321 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7322 		readl(&(tb->HeartBeat)));
7323 #endif				/* HPSA_DEBUG */
7324 }
7325 
7326 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7327 {
7328 	int i, offset, mem_type, bar_type;
7329 
7330 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7331 		return 0;
7332 	offset = 0;
7333 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7334 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7335 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7336 			offset += 4;
7337 		else {
7338 			mem_type = pci_resource_flags(pdev, i) &
7339 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7340 			switch (mem_type) {
7341 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7342 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7343 				offset += 4;	/* 32 bit */
7344 				break;
7345 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7346 				offset += 8;
7347 				break;
7348 			default:	/* reserved in PCI 2.2 */
7349 				dev_warn(&pdev->dev,
7350 				       "base address is invalid\n");
7351 				return -1;
7352 				break;
7353 			}
7354 		}
7355 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7356 			return i + 1;
7357 	}
7358 	return -1;
7359 }
7360 
7361 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7362 {
7363 	pci_free_irq_vectors(h->pdev);
7364 	h->msix_vectors = 0;
7365 }
7366 
7367 static void hpsa_setup_reply_map(struct ctlr_info *h)
7368 {
7369 	const struct cpumask *mask;
7370 	unsigned int queue, cpu;
7371 
7372 	for (queue = 0; queue < h->msix_vectors; queue++) {
7373 		mask = pci_irq_get_affinity(h->pdev, queue);
7374 		if (!mask)
7375 			goto fallback;
7376 
7377 		for_each_cpu(cpu, mask)
7378 			h->reply_map[cpu] = queue;
7379 	}
7380 	return;
7381 
7382 fallback:
7383 	for_each_possible_cpu(cpu)
7384 		h->reply_map[cpu] = 0;
7385 }
7386 
7387 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7388  * controllers that are capable. If not, we use legacy INTx mode.
7389  */
7390 static int hpsa_interrupt_mode(struct ctlr_info *h)
7391 {
7392 	unsigned int flags = PCI_IRQ_LEGACY;
7393 	int ret;
7394 
7395 	/* Some boards advertise MSI but don't really support it */
7396 	switch (h->board_id) {
7397 	case 0x40700E11:
7398 	case 0x40800E11:
7399 	case 0x40820E11:
7400 	case 0x40830E11:
7401 		break;
7402 	default:
7403 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7404 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7405 		if (ret > 0) {
7406 			h->msix_vectors = ret;
7407 			return 0;
7408 		}
7409 
7410 		flags |= PCI_IRQ_MSI;
7411 		break;
7412 	}
7413 
7414 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7415 	if (ret < 0)
7416 		return ret;
7417 	return 0;
7418 }
7419 
7420 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7421 				bool *legacy_board)
7422 {
7423 	int i;
7424 	u32 subsystem_vendor_id, subsystem_device_id;
7425 
7426 	subsystem_vendor_id = pdev->subsystem_vendor;
7427 	subsystem_device_id = pdev->subsystem_device;
7428 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7429 		    subsystem_vendor_id;
7430 
7431 	if (legacy_board)
7432 		*legacy_board = false;
7433 	for (i = 0; i < ARRAY_SIZE(products); i++)
7434 		if (*board_id == products[i].board_id) {
7435 			if (products[i].access != &SA5A_access &&
7436 			    products[i].access != &SA5B_access)
7437 				return i;
7438 			dev_warn(&pdev->dev,
7439 				 "legacy board ID: 0x%08x\n",
7440 				 *board_id);
7441 			if (legacy_board)
7442 			    *legacy_board = true;
7443 			return i;
7444 		}
7445 
7446 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7447 	if (legacy_board)
7448 		*legacy_board = true;
7449 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7450 }
7451 
7452 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7453 				    unsigned long *memory_bar)
7454 {
7455 	int i;
7456 
7457 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7458 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7459 			/* addressing mode bits already removed */
7460 			*memory_bar = pci_resource_start(pdev, i);
7461 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7462 				*memory_bar);
7463 			return 0;
7464 		}
7465 	dev_warn(&pdev->dev, "no memory BAR found\n");
7466 	return -ENODEV;
7467 }
7468 
7469 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7470 				     int wait_for_ready)
7471 {
7472 	int i, iterations;
7473 	u32 scratchpad;
7474 	if (wait_for_ready)
7475 		iterations = HPSA_BOARD_READY_ITERATIONS;
7476 	else
7477 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7478 
7479 	for (i = 0; i < iterations; i++) {
7480 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7481 		if (wait_for_ready) {
7482 			if (scratchpad == HPSA_FIRMWARE_READY)
7483 				return 0;
7484 		} else {
7485 			if (scratchpad != HPSA_FIRMWARE_READY)
7486 				return 0;
7487 		}
7488 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7489 	}
7490 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7491 	return -ENODEV;
7492 }
7493 
7494 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7495 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7496 			       u64 *cfg_offset)
7497 {
7498 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7499 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7500 	*cfg_base_addr &= (u32) 0x0000ffff;
7501 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7502 	if (*cfg_base_addr_index == -1) {
7503 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7504 		return -ENODEV;
7505 	}
7506 	return 0;
7507 }
7508 
7509 static void hpsa_free_cfgtables(struct ctlr_info *h)
7510 {
7511 	if (h->transtable) {
7512 		iounmap(h->transtable);
7513 		h->transtable = NULL;
7514 	}
7515 	if (h->cfgtable) {
7516 		iounmap(h->cfgtable);
7517 		h->cfgtable = NULL;
7518 	}
7519 }
7520 
7521 /* Find and map CISS config table and transfer table
7522 + * several items must be unmapped (freed) later
7523 + * */
7524 static int hpsa_find_cfgtables(struct ctlr_info *h)
7525 {
7526 	u64 cfg_offset;
7527 	u32 cfg_base_addr;
7528 	u64 cfg_base_addr_index;
7529 	u32 trans_offset;
7530 	int rc;
7531 
7532 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7533 		&cfg_base_addr_index, &cfg_offset);
7534 	if (rc)
7535 		return rc;
7536 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7537 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7538 	if (!h->cfgtable) {
7539 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7540 		return -ENOMEM;
7541 	}
7542 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7543 	if (rc)
7544 		return rc;
7545 	/* Find performant mode table. */
7546 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7547 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7548 				cfg_base_addr_index)+cfg_offset+trans_offset,
7549 				sizeof(*h->transtable));
7550 	if (!h->transtable) {
7551 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7552 		hpsa_free_cfgtables(h);
7553 		return -ENOMEM;
7554 	}
7555 	return 0;
7556 }
7557 
7558 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7559 {
7560 #define MIN_MAX_COMMANDS 16
7561 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7562 
7563 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7564 
7565 	/* Limit commands in memory limited kdump scenario. */
7566 	if (reset_devices && h->max_commands > 32)
7567 		h->max_commands = 32;
7568 
7569 	if (h->max_commands < MIN_MAX_COMMANDS) {
7570 		dev_warn(&h->pdev->dev,
7571 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7572 			h->max_commands,
7573 			MIN_MAX_COMMANDS);
7574 		h->max_commands = MIN_MAX_COMMANDS;
7575 	}
7576 }
7577 
7578 /* If the controller reports that the total max sg entries is greater than 512,
7579  * then we know that chained SG blocks work.  (Original smart arrays did not
7580  * support chained SG blocks and would return zero for max sg entries.)
7581  */
7582 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7583 {
7584 	return h->maxsgentries > 512;
7585 }
7586 
7587 /* Interrogate the hardware for some limits:
7588  * max commands, max SG elements without chaining, and with chaining,
7589  * SG chain block size, etc.
7590  */
7591 static void hpsa_find_board_params(struct ctlr_info *h)
7592 {
7593 	hpsa_get_max_perf_mode_cmds(h);
7594 	h->nr_cmds = h->max_commands;
7595 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7596 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7597 	if (hpsa_supports_chained_sg_blocks(h)) {
7598 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7599 		h->max_cmd_sg_entries = 32;
7600 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7601 		h->maxsgentries--; /* save one for chain pointer */
7602 	} else {
7603 		/*
7604 		 * Original smart arrays supported at most 31 s/g entries
7605 		 * embedded inline in the command (trying to use more
7606 		 * would lock up the controller)
7607 		 */
7608 		h->max_cmd_sg_entries = 31;
7609 		h->maxsgentries = 31; /* default to traditional values */
7610 		h->chainsize = 0;
7611 	}
7612 
7613 	/* Find out what task management functions are supported and cache */
7614 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7615 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7616 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7617 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7618 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7619 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7620 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7621 }
7622 
7623 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7624 {
7625 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7626 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7627 		return false;
7628 	}
7629 	return true;
7630 }
7631 
7632 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7633 {
7634 	u32 driver_support;
7635 
7636 	driver_support = readl(&(h->cfgtable->driver_support));
7637 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7638 #ifdef CONFIG_X86
7639 	driver_support |= ENABLE_SCSI_PREFETCH;
7640 #endif
7641 	driver_support |= ENABLE_UNIT_ATTN;
7642 	writel(driver_support, &(h->cfgtable->driver_support));
7643 }
7644 
7645 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7646  * in a prefetch beyond physical memory.
7647  */
7648 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7649 {
7650 	u32 dma_prefetch;
7651 
7652 	if (h->board_id != 0x3225103C)
7653 		return;
7654 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7655 	dma_prefetch |= 0x8000;
7656 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7657 }
7658 
7659 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7660 {
7661 	int i;
7662 	u32 doorbell_value;
7663 	unsigned long flags;
7664 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7665 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7666 		spin_lock_irqsave(&h->lock, flags);
7667 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7668 		spin_unlock_irqrestore(&h->lock, flags);
7669 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7670 			goto done;
7671 		/* delay and try again */
7672 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7673 	}
7674 	return -ENODEV;
7675 done:
7676 	return 0;
7677 }
7678 
7679 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7680 {
7681 	int i;
7682 	u32 doorbell_value;
7683 	unsigned long flags;
7684 
7685 	/* under certain very rare conditions, this can take awhile.
7686 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7687 	 * as we enter this code.)
7688 	 */
7689 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7690 		if (h->remove_in_progress)
7691 			goto done;
7692 		spin_lock_irqsave(&h->lock, flags);
7693 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7694 		spin_unlock_irqrestore(&h->lock, flags);
7695 		if (!(doorbell_value & CFGTBL_ChangeReq))
7696 			goto done;
7697 		/* delay and try again */
7698 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7699 	}
7700 	return -ENODEV;
7701 done:
7702 	return 0;
7703 }
7704 
7705 /* return -ENODEV or other reason on error, 0 on success */
7706 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7707 {
7708 	u32 trans_support;
7709 
7710 	trans_support = readl(&(h->cfgtable->TransportSupport));
7711 	if (!(trans_support & SIMPLE_MODE))
7712 		return -ENOTSUPP;
7713 
7714 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7715 
7716 	/* Update the field, and then ring the doorbell */
7717 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7718 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7719 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7720 	if (hpsa_wait_for_mode_change_ack(h))
7721 		goto error;
7722 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7723 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7724 		goto error;
7725 	h->transMethod = CFGTBL_Trans_Simple;
7726 	return 0;
7727 error:
7728 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7729 	return -ENODEV;
7730 }
7731 
7732 /* free items allocated or mapped by hpsa_pci_init */
7733 static void hpsa_free_pci_init(struct ctlr_info *h)
7734 {
7735 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7736 	iounmap(h->vaddr);			/* pci_init 3 */
7737 	h->vaddr = NULL;
7738 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7739 	/*
7740 	 * call pci_disable_device before pci_release_regions per
7741 	 * Documentation/PCI/pci.txt
7742 	 */
7743 	pci_disable_device(h->pdev);		/* pci_init 1 */
7744 	pci_release_regions(h->pdev);		/* pci_init 2 */
7745 }
7746 
7747 /* several items must be freed later */
7748 static int hpsa_pci_init(struct ctlr_info *h)
7749 {
7750 	int prod_index, err;
7751 	bool legacy_board;
7752 
7753 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7754 	if (prod_index < 0)
7755 		return prod_index;
7756 	h->product_name = products[prod_index].product_name;
7757 	h->access = *(products[prod_index].access);
7758 	h->legacy_board = legacy_board;
7759 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7760 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7761 
7762 	err = pci_enable_device(h->pdev);
7763 	if (err) {
7764 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7765 		pci_disable_device(h->pdev);
7766 		return err;
7767 	}
7768 
7769 	err = pci_request_regions(h->pdev, HPSA);
7770 	if (err) {
7771 		dev_err(&h->pdev->dev,
7772 			"failed to obtain PCI resources\n");
7773 		pci_disable_device(h->pdev);
7774 		return err;
7775 	}
7776 
7777 	pci_set_master(h->pdev);
7778 
7779 	err = hpsa_interrupt_mode(h);
7780 	if (err)
7781 		goto clean1;
7782 
7783 	/* setup mapping between CPU and reply queue */
7784 	hpsa_setup_reply_map(h);
7785 
7786 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7787 	if (err)
7788 		goto clean2;	/* intmode+region, pci */
7789 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7790 	if (!h->vaddr) {
7791 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7792 		err = -ENOMEM;
7793 		goto clean2;	/* intmode+region, pci */
7794 	}
7795 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7796 	if (err)
7797 		goto clean3;	/* vaddr, intmode+region, pci */
7798 	err = hpsa_find_cfgtables(h);
7799 	if (err)
7800 		goto clean3;	/* vaddr, intmode+region, pci */
7801 	hpsa_find_board_params(h);
7802 
7803 	if (!hpsa_CISS_signature_present(h)) {
7804 		err = -ENODEV;
7805 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7806 	}
7807 	hpsa_set_driver_support_bits(h);
7808 	hpsa_p600_dma_prefetch_quirk(h);
7809 	err = hpsa_enter_simple_mode(h);
7810 	if (err)
7811 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7812 	return 0;
7813 
7814 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7815 	hpsa_free_cfgtables(h);
7816 clean3:	/* vaddr, intmode+region, pci */
7817 	iounmap(h->vaddr);
7818 	h->vaddr = NULL;
7819 clean2:	/* intmode+region, pci */
7820 	hpsa_disable_interrupt_mode(h);
7821 clean1:
7822 	/*
7823 	 * call pci_disable_device before pci_release_regions per
7824 	 * Documentation/PCI/pci.txt
7825 	 */
7826 	pci_disable_device(h->pdev);
7827 	pci_release_regions(h->pdev);
7828 	return err;
7829 }
7830 
7831 static void hpsa_hba_inquiry(struct ctlr_info *h)
7832 {
7833 	int rc;
7834 
7835 #define HBA_INQUIRY_BYTE_COUNT 64
7836 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7837 	if (!h->hba_inquiry_data)
7838 		return;
7839 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7840 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7841 	if (rc != 0) {
7842 		kfree(h->hba_inquiry_data);
7843 		h->hba_inquiry_data = NULL;
7844 	}
7845 }
7846 
7847 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7848 {
7849 	int rc, i;
7850 	void __iomem *vaddr;
7851 
7852 	if (!reset_devices)
7853 		return 0;
7854 
7855 	/* kdump kernel is loading, we don't know in which state is
7856 	 * the pci interface. The dev->enable_cnt is equal zero
7857 	 * so we call enable+disable, wait a while and switch it on.
7858 	 */
7859 	rc = pci_enable_device(pdev);
7860 	if (rc) {
7861 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7862 		return -ENODEV;
7863 	}
7864 	pci_disable_device(pdev);
7865 	msleep(260);			/* a randomly chosen number */
7866 	rc = pci_enable_device(pdev);
7867 	if (rc) {
7868 		dev_warn(&pdev->dev, "failed to enable device.\n");
7869 		return -ENODEV;
7870 	}
7871 
7872 	pci_set_master(pdev);
7873 
7874 	vaddr = pci_ioremap_bar(pdev, 0);
7875 	if (vaddr == NULL) {
7876 		rc = -ENOMEM;
7877 		goto out_disable;
7878 	}
7879 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7880 	iounmap(vaddr);
7881 
7882 	/* Reset the controller with a PCI power-cycle or via doorbell */
7883 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7884 
7885 	/* -ENOTSUPP here means we cannot reset the controller
7886 	 * but it's already (and still) up and running in
7887 	 * "performant mode".  Or, it might be 640x, which can't reset
7888 	 * due to concerns about shared bbwc between 6402/6404 pair.
7889 	 */
7890 	if (rc)
7891 		goto out_disable;
7892 
7893 	/* Now try to get the controller to respond to a no-op */
7894 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7895 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7896 		if (hpsa_noop(pdev) == 0)
7897 			break;
7898 		else
7899 			dev_warn(&pdev->dev, "no-op failed%s\n",
7900 					(i < 11 ? "; re-trying" : ""));
7901 	}
7902 
7903 out_disable:
7904 
7905 	pci_disable_device(pdev);
7906 	return rc;
7907 }
7908 
7909 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7910 {
7911 	kfree(h->cmd_pool_bits);
7912 	h->cmd_pool_bits = NULL;
7913 	if (h->cmd_pool) {
7914 		dma_free_coherent(&h->pdev->dev,
7915 				h->nr_cmds * sizeof(struct CommandList),
7916 				h->cmd_pool,
7917 				h->cmd_pool_dhandle);
7918 		h->cmd_pool = NULL;
7919 		h->cmd_pool_dhandle = 0;
7920 	}
7921 	if (h->errinfo_pool) {
7922 		dma_free_coherent(&h->pdev->dev,
7923 				h->nr_cmds * sizeof(struct ErrorInfo),
7924 				h->errinfo_pool,
7925 				h->errinfo_pool_dhandle);
7926 		h->errinfo_pool = NULL;
7927 		h->errinfo_pool_dhandle = 0;
7928 	}
7929 }
7930 
7931 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7932 {
7933 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7934 				   sizeof(unsigned long),
7935 				   GFP_KERNEL);
7936 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7937 		    h->nr_cmds * sizeof(*h->cmd_pool),
7938 		    &h->cmd_pool_dhandle, GFP_KERNEL);
7939 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
7940 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7941 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
7942 	if ((h->cmd_pool_bits == NULL)
7943 	    || (h->cmd_pool == NULL)
7944 	    || (h->errinfo_pool == NULL)) {
7945 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7946 		goto clean_up;
7947 	}
7948 	hpsa_preinitialize_commands(h);
7949 	return 0;
7950 clean_up:
7951 	hpsa_free_cmd_pool(h);
7952 	return -ENOMEM;
7953 }
7954 
7955 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7956 static void hpsa_free_irqs(struct ctlr_info *h)
7957 {
7958 	int i;
7959 
7960 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7961 		/* Single reply queue, only one irq to free */
7962 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7963 		h->q[h->intr_mode] = 0;
7964 		return;
7965 	}
7966 
7967 	for (i = 0; i < h->msix_vectors; i++) {
7968 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7969 		h->q[i] = 0;
7970 	}
7971 	for (; i < MAX_REPLY_QUEUES; i++)
7972 		h->q[i] = 0;
7973 }
7974 
7975 /* returns 0 on success; cleans up and returns -Enn on error */
7976 static int hpsa_request_irqs(struct ctlr_info *h,
7977 	irqreturn_t (*msixhandler)(int, void *),
7978 	irqreturn_t (*intxhandler)(int, void *))
7979 {
7980 	int rc, i;
7981 
7982 	/*
7983 	 * initialize h->q[x] = x so that interrupt handlers know which
7984 	 * queue to process.
7985 	 */
7986 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7987 		h->q[i] = (u8) i;
7988 
7989 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7990 		/* If performant mode and MSI-X, use multiple reply queues */
7991 		for (i = 0; i < h->msix_vectors; i++) {
7992 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7993 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7994 					0, h->intrname[i],
7995 					&h->q[i]);
7996 			if (rc) {
7997 				int j;
7998 
7999 				dev_err(&h->pdev->dev,
8000 					"failed to get irq %d for %s\n",
8001 				       pci_irq_vector(h->pdev, i), h->devname);
8002 				for (j = 0; j < i; j++) {
8003 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8004 					h->q[j] = 0;
8005 				}
8006 				for (; j < MAX_REPLY_QUEUES; j++)
8007 					h->q[j] = 0;
8008 				return rc;
8009 			}
8010 		}
8011 	} else {
8012 		/* Use single reply pool */
8013 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8014 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8015 				h->msix_vectors ? "x" : "");
8016 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8017 				msixhandler, 0,
8018 				h->intrname[0],
8019 				&h->q[h->intr_mode]);
8020 		} else {
8021 			sprintf(h->intrname[h->intr_mode],
8022 				"%s-intx", h->devname);
8023 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8024 				intxhandler, IRQF_SHARED,
8025 				h->intrname[0],
8026 				&h->q[h->intr_mode]);
8027 		}
8028 	}
8029 	if (rc) {
8030 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8031 		       pci_irq_vector(h->pdev, 0), h->devname);
8032 		hpsa_free_irqs(h);
8033 		return -ENODEV;
8034 	}
8035 	return 0;
8036 }
8037 
8038 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8039 {
8040 	int rc;
8041 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8042 
8043 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8044 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8045 	if (rc) {
8046 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8047 		return rc;
8048 	}
8049 
8050 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8051 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8052 	if (rc) {
8053 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8054 			"after soft reset.\n");
8055 		return rc;
8056 	}
8057 
8058 	return 0;
8059 }
8060 
8061 static void hpsa_free_reply_queues(struct ctlr_info *h)
8062 {
8063 	int i;
8064 
8065 	for (i = 0; i < h->nreply_queues; i++) {
8066 		if (!h->reply_queue[i].head)
8067 			continue;
8068 		dma_free_coherent(&h->pdev->dev,
8069 					h->reply_queue_size,
8070 					h->reply_queue[i].head,
8071 					h->reply_queue[i].busaddr);
8072 		h->reply_queue[i].head = NULL;
8073 		h->reply_queue[i].busaddr = 0;
8074 	}
8075 	h->reply_queue_size = 0;
8076 }
8077 
8078 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8079 {
8080 	hpsa_free_performant_mode(h);		/* init_one 7 */
8081 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8082 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8083 	hpsa_free_irqs(h);			/* init_one 4 */
8084 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8085 	h->scsi_host = NULL;			/* init_one 3 */
8086 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8087 	free_percpu(h->lockup_detected);	/* init_one 2 */
8088 	h->lockup_detected = NULL;		/* init_one 2 */
8089 	if (h->resubmit_wq) {
8090 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8091 		h->resubmit_wq = NULL;
8092 	}
8093 	if (h->rescan_ctlr_wq) {
8094 		destroy_workqueue(h->rescan_ctlr_wq);
8095 		h->rescan_ctlr_wq = NULL;
8096 	}
8097 	kfree(h);				/* init_one 1 */
8098 }
8099 
8100 /* Called when controller lockup detected. */
8101 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8102 {
8103 	int i, refcount;
8104 	struct CommandList *c;
8105 	int failcount = 0;
8106 
8107 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8108 	for (i = 0; i < h->nr_cmds; i++) {
8109 		c = h->cmd_pool + i;
8110 		refcount = atomic_inc_return(&c->refcount);
8111 		if (refcount > 1) {
8112 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8113 			finish_cmd(c);
8114 			atomic_dec(&h->commands_outstanding);
8115 			failcount++;
8116 		}
8117 		cmd_free(h, c);
8118 	}
8119 	dev_warn(&h->pdev->dev,
8120 		"failed %d commands in fail_all\n", failcount);
8121 }
8122 
8123 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8124 {
8125 	int cpu;
8126 
8127 	for_each_online_cpu(cpu) {
8128 		u32 *lockup_detected;
8129 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8130 		*lockup_detected = value;
8131 	}
8132 	wmb(); /* be sure the per-cpu variables are out to memory */
8133 }
8134 
8135 static void controller_lockup_detected(struct ctlr_info *h)
8136 {
8137 	unsigned long flags;
8138 	u32 lockup_detected;
8139 
8140 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8141 	spin_lock_irqsave(&h->lock, flags);
8142 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8143 	if (!lockup_detected) {
8144 		/* no heartbeat, but controller gave us a zero. */
8145 		dev_warn(&h->pdev->dev,
8146 			"lockup detected after %d but scratchpad register is zero\n",
8147 			h->heartbeat_sample_interval / HZ);
8148 		lockup_detected = 0xffffffff;
8149 	}
8150 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8151 	spin_unlock_irqrestore(&h->lock, flags);
8152 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8153 			lockup_detected, h->heartbeat_sample_interval / HZ);
8154 	if (lockup_detected == 0xffff0000) {
8155 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8156 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8157 	}
8158 	pci_disable_device(h->pdev);
8159 	fail_all_outstanding_cmds(h);
8160 }
8161 
8162 static int detect_controller_lockup(struct ctlr_info *h)
8163 {
8164 	u64 now;
8165 	u32 heartbeat;
8166 	unsigned long flags;
8167 
8168 	now = get_jiffies_64();
8169 	/* If we've received an interrupt recently, we're ok. */
8170 	if (time_after64(h->last_intr_timestamp +
8171 				(h->heartbeat_sample_interval), now))
8172 		return false;
8173 
8174 	/*
8175 	 * If we've already checked the heartbeat recently, we're ok.
8176 	 * This could happen if someone sends us a signal. We
8177 	 * otherwise don't care about signals in this thread.
8178 	 */
8179 	if (time_after64(h->last_heartbeat_timestamp +
8180 				(h->heartbeat_sample_interval), now))
8181 		return false;
8182 
8183 	/* If heartbeat has not changed since we last looked, we're not ok. */
8184 	spin_lock_irqsave(&h->lock, flags);
8185 	heartbeat = readl(&h->cfgtable->HeartBeat);
8186 	spin_unlock_irqrestore(&h->lock, flags);
8187 	if (h->last_heartbeat == heartbeat) {
8188 		controller_lockup_detected(h);
8189 		return true;
8190 	}
8191 
8192 	/* We're ok. */
8193 	h->last_heartbeat = heartbeat;
8194 	h->last_heartbeat_timestamp = now;
8195 	return false;
8196 }
8197 
8198 /*
8199  * Set ioaccel status for all ioaccel volumes.
8200  *
8201  * Called from monitor controller worker (hpsa_event_monitor_worker)
8202  *
8203  * A Volume (or Volumes that comprise an Array set may be undergoing a
8204  * transformation, so we will be turning off ioaccel for all volumes that
8205  * make up the Array.
8206  */
8207 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8208 {
8209 	int rc;
8210 	int i;
8211 	u8 ioaccel_status;
8212 	unsigned char *buf;
8213 	struct hpsa_scsi_dev_t *device;
8214 
8215 	if (!h)
8216 		return;
8217 
8218 	buf = kmalloc(64, GFP_KERNEL);
8219 	if (!buf)
8220 		return;
8221 
8222 	/*
8223 	 * Run through current device list used during I/O requests.
8224 	 */
8225 	for (i = 0; i < h->ndevices; i++) {
8226 		device = h->dev[i];
8227 
8228 		if (!device)
8229 			continue;
8230 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8231 						HPSA_VPD_LV_IOACCEL_STATUS))
8232 			continue;
8233 
8234 		memset(buf, 0, 64);
8235 
8236 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8237 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8238 					buf, 64);
8239 		if (rc != 0)
8240 			continue;
8241 
8242 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8243 		device->offload_config =
8244 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8245 		if (device->offload_config)
8246 			device->offload_to_be_enabled =
8247 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8248 
8249 		/*
8250 		 * Immediately turn off ioaccel for any volume the
8251 		 * controller tells us to. Some of the reasons could be:
8252 		 *    transformation - change to the LVs of an Array.
8253 		 *    degraded volume - component failure
8254 		 *
8255 		 * If ioaccel is to be re-enabled, re-enable later during the
8256 		 * scan operation so the driver can get a fresh raidmap
8257 		 * before turning ioaccel back on.
8258 		 *
8259 		 */
8260 		if (!device->offload_to_be_enabled)
8261 			device->offload_enabled = 0;
8262 	}
8263 
8264 	kfree(buf);
8265 }
8266 
8267 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8268 {
8269 	char *event_type;
8270 
8271 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8272 		return;
8273 
8274 	/* Ask the controller to clear the events we're handling. */
8275 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8276 			| CFGTBL_Trans_io_accel2)) &&
8277 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8278 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8279 
8280 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8281 			event_type = "state change";
8282 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8283 			event_type = "configuration change";
8284 		/* Stop sending new RAID offload reqs via the IO accelerator */
8285 		scsi_block_requests(h->scsi_host);
8286 		hpsa_set_ioaccel_status(h);
8287 		hpsa_drain_accel_commands(h);
8288 		/* Set 'accelerator path config change' bit */
8289 		dev_warn(&h->pdev->dev,
8290 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8291 			h->events, event_type);
8292 		writel(h->events, &(h->cfgtable->clear_event_notify));
8293 		/* Set the "clear event notify field update" bit 6 */
8294 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8295 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8296 		hpsa_wait_for_clear_event_notify_ack(h);
8297 		scsi_unblock_requests(h->scsi_host);
8298 	} else {
8299 		/* Acknowledge controller notification events. */
8300 		writel(h->events, &(h->cfgtable->clear_event_notify));
8301 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8302 		hpsa_wait_for_clear_event_notify_ack(h);
8303 	}
8304 	return;
8305 }
8306 
8307 /* Check a register on the controller to see if there are configuration
8308  * changes (added/changed/removed logical drives, etc.) which mean that
8309  * we should rescan the controller for devices.
8310  * Also check flag for driver-initiated rescan.
8311  */
8312 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8313 {
8314 	if (h->drv_req_rescan) {
8315 		h->drv_req_rescan = 0;
8316 		return 1;
8317 	}
8318 
8319 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8320 		return 0;
8321 
8322 	h->events = readl(&(h->cfgtable->event_notify));
8323 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8324 }
8325 
8326 /*
8327  * Check if any of the offline devices have become ready
8328  */
8329 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8330 {
8331 	unsigned long flags;
8332 	struct offline_device_entry *d;
8333 	struct list_head *this, *tmp;
8334 
8335 	spin_lock_irqsave(&h->offline_device_lock, flags);
8336 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8337 		d = list_entry(this, struct offline_device_entry,
8338 				offline_list);
8339 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8340 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8341 			spin_lock_irqsave(&h->offline_device_lock, flags);
8342 			list_del(&d->offline_list);
8343 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8344 			return 1;
8345 		}
8346 		spin_lock_irqsave(&h->offline_device_lock, flags);
8347 	}
8348 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8349 	return 0;
8350 }
8351 
8352 static int hpsa_luns_changed(struct ctlr_info *h)
8353 {
8354 	int rc = 1; /* assume there are changes */
8355 	struct ReportLUNdata *logdev = NULL;
8356 
8357 	/* if we can't find out if lun data has changed,
8358 	 * assume that it has.
8359 	 */
8360 
8361 	if (!h->lastlogicals)
8362 		return rc;
8363 
8364 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8365 	if (!logdev)
8366 		return rc;
8367 
8368 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8369 		dev_warn(&h->pdev->dev,
8370 			"report luns failed, can't track lun changes.\n");
8371 		goto out;
8372 	}
8373 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8374 		dev_info(&h->pdev->dev,
8375 			"Lun changes detected.\n");
8376 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8377 		goto out;
8378 	} else
8379 		rc = 0; /* no changes detected. */
8380 out:
8381 	kfree(logdev);
8382 	return rc;
8383 }
8384 
8385 static void hpsa_perform_rescan(struct ctlr_info *h)
8386 {
8387 	struct Scsi_Host *sh = NULL;
8388 	unsigned long flags;
8389 
8390 	/*
8391 	 * Do the scan after the reset
8392 	 */
8393 	spin_lock_irqsave(&h->reset_lock, flags);
8394 	if (h->reset_in_progress) {
8395 		h->drv_req_rescan = 1;
8396 		spin_unlock_irqrestore(&h->reset_lock, flags);
8397 		return;
8398 	}
8399 	spin_unlock_irqrestore(&h->reset_lock, flags);
8400 
8401 	sh = scsi_host_get(h->scsi_host);
8402 	if (sh != NULL) {
8403 		hpsa_scan_start(sh);
8404 		scsi_host_put(sh);
8405 		h->drv_req_rescan = 0;
8406 	}
8407 }
8408 
8409 /*
8410  * watch for controller events
8411  */
8412 static void hpsa_event_monitor_worker(struct work_struct *work)
8413 {
8414 	struct ctlr_info *h = container_of(to_delayed_work(work),
8415 					struct ctlr_info, event_monitor_work);
8416 	unsigned long flags;
8417 
8418 	spin_lock_irqsave(&h->lock, flags);
8419 	if (h->remove_in_progress) {
8420 		spin_unlock_irqrestore(&h->lock, flags);
8421 		return;
8422 	}
8423 	spin_unlock_irqrestore(&h->lock, flags);
8424 
8425 	if (hpsa_ctlr_needs_rescan(h)) {
8426 		hpsa_ack_ctlr_events(h);
8427 		hpsa_perform_rescan(h);
8428 	}
8429 
8430 	spin_lock_irqsave(&h->lock, flags);
8431 	if (!h->remove_in_progress)
8432 		schedule_delayed_work(&h->event_monitor_work,
8433 					HPSA_EVENT_MONITOR_INTERVAL);
8434 	spin_unlock_irqrestore(&h->lock, flags);
8435 }
8436 
8437 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8438 {
8439 	unsigned long flags;
8440 	struct ctlr_info *h = container_of(to_delayed_work(work),
8441 					struct ctlr_info, rescan_ctlr_work);
8442 
8443 	spin_lock_irqsave(&h->lock, flags);
8444 	if (h->remove_in_progress) {
8445 		spin_unlock_irqrestore(&h->lock, flags);
8446 		return;
8447 	}
8448 	spin_unlock_irqrestore(&h->lock, flags);
8449 
8450 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8451 		hpsa_perform_rescan(h);
8452 	} else if (h->discovery_polling) {
8453 		if (hpsa_luns_changed(h)) {
8454 			dev_info(&h->pdev->dev,
8455 				"driver discovery polling rescan.\n");
8456 			hpsa_perform_rescan(h);
8457 		}
8458 	}
8459 	spin_lock_irqsave(&h->lock, flags);
8460 	if (!h->remove_in_progress)
8461 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8462 				h->heartbeat_sample_interval);
8463 	spin_unlock_irqrestore(&h->lock, flags);
8464 }
8465 
8466 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8467 {
8468 	unsigned long flags;
8469 	struct ctlr_info *h = container_of(to_delayed_work(work),
8470 					struct ctlr_info, monitor_ctlr_work);
8471 
8472 	detect_controller_lockup(h);
8473 	if (lockup_detected(h))
8474 		return;
8475 
8476 	spin_lock_irqsave(&h->lock, flags);
8477 	if (!h->remove_in_progress)
8478 		schedule_delayed_work(&h->monitor_ctlr_work,
8479 				h->heartbeat_sample_interval);
8480 	spin_unlock_irqrestore(&h->lock, flags);
8481 }
8482 
8483 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8484 						char *name)
8485 {
8486 	struct workqueue_struct *wq = NULL;
8487 
8488 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8489 	if (!wq)
8490 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8491 
8492 	return wq;
8493 }
8494 
8495 static void hpda_free_ctlr_info(struct ctlr_info *h)
8496 {
8497 	kfree(h->reply_map);
8498 	kfree(h);
8499 }
8500 
8501 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8502 {
8503 	struct ctlr_info *h;
8504 
8505 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8506 	if (!h)
8507 		return NULL;
8508 
8509 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8510 	if (!h->reply_map) {
8511 		kfree(h);
8512 		return NULL;
8513 	}
8514 	return h;
8515 }
8516 
8517 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8518 {
8519 	int dac, rc;
8520 	struct ctlr_info *h;
8521 	int try_soft_reset = 0;
8522 	unsigned long flags;
8523 	u32 board_id;
8524 
8525 	if (number_of_controllers == 0)
8526 		printk(KERN_INFO DRIVER_NAME "\n");
8527 
8528 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8529 	if (rc < 0) {
8530 		dev_warn(&pdev->dev, "Board ID not found\n");
8531 		return rc;
8532 	}
8533 
8534 	rc = hpsa_init_reset_devices(pdev, board_id);
8535 	if (rc) {
8536 		if (rc != -ENOTSUPP)
8537 			return rc;
8538 		/* If the reset fails in a particular way (it has no way to do
8539 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8540 		 * a soft reset once we get the controller configured up to the
8541 		 * point that it can accept a command.
8542 		 */
8543 		try_soft_reset = 1;
8544 		rc = 0;
8545 	}
8546 
8547 reinit_after_soft_reset:
8548 
8549 	/* Command structures must be aligned on a 32-byte boundary because
8550 	 * the 5 lower bits of the address are used by the hardware. and by
8551 	 * the driver.  See comments in hpsa.h for more info.
8552 	 */
8553 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8554 	h = hpda_alloc_ctlr_info();
8555 	if (!h) {
8556 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8557 		return -ENOMEM;
8558 	}
8559 
8560 	h->pdev = pdev;
8561 
8562 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8563 	INIT_LIST_HEAD(&h->offline_device_list);
8564 	spin_lock_init(&h->lock);
8565 	spin_lock_init(&h->offline_device_lock);
8566 	spin_lock_init(&h->scan_lock);
8567 	spin_lock_init(&h->reset_lock);
8568 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8569 
8570 	/* Allocate and clear per-cpu variable lockup_detected */
8571 	h->lockup_detected = alloc_percpu(u32);
8572 	if (!h->lockup_detected) {
8573 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8574 		rc = -ENOMEM;
8575 		goto clean1;	/* aer/h */
8576 	}
8577 	set_lockup_detected_for_all_cpus(h, 0);
8578 
8579 	rc = hpsa_pci_init(h);
8580 	if (rc)
8581 		goto clean2;	/* lu, aer/h */
8582 
8583 	/* relies on h-> settings made by hpsa_pci_init, including
8584 	 * interrupt_mode h->intr */
8585 	rc = hpsa_scsi_host_alloc(h);
8586 	if (rc)
8587 		goto clean2_5;	/* pci, lu, aer/h */
8588 
8589 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8590 	h->ctlr = number_of_controllers;
8591 	number_of_controllers++;
8592 
8593 	/* configure PCI DMA stuff */
8594 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8595 	if (rc == 0) {
8596 		dac = 1;
8597 	} else {
8598 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8599 		if (rc == 0) {
8600 			dac = 0;
8601 		} else {
8602 			dev_err(&pdev->dev, "no suitable DMA available\n");
8603 			goto clean3;	/* shost, pci, lu, aer/h */
8604 		}
8605 	}
8606 
8607 	/* make sure the board interrupts are off */
8608 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8609 
8610 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8611 	if (rc)
8612 		goto clean3;	/* shost, pci, lu, aer/h */
8613 	rc = hpsa_alloc_cmd_pool(h);
8614 	if (rc)
8615 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8616 	rc = hpsa_alloc_sg_chain_blocks(h);
8617 	if (rc)
8618 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8619 	init_waitqueue_head(&h->scan_wait_queue);
8620 	init_waitqueue_head(&h->event_sync_wait_queue);
8621 	mutex_init(&h->reset_mutex);
8622 	h->scan_finished = 1; /* no scan currently in progress */
8623 	h->scan_waiting = 0;
8624 
8625 	pci_set_drvdata(pdev, h);
8626 	h->ndevices = 0;
8627 
8628 	spin_lock_init(&h->devlock);
8629 	rc = hpsa_put_ctlr_into_performant_mode(h);
8630 	if (rc)
8631 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8632 
8633 	/* create the resubmit workqueue */
8634 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8635 	if (!h->rescan_ctlr_wq) {
8636 		rc = -ENOMEM;
8637 		goto clean7;
8638 	}
8639 
8640 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8641 	if (!h->resubmit_wq) {
8642 		rc = -ENOMEM;
8643 		goto clean7;	/* aer/h */
8644 	}
8645 
8646 	/*
8647 	 * At this point, the controller is ready to take commands.
8648 	 * Now, if reset_devices and the hard reset didn't work, try
8649 	 * the soft reset and see if that works.
8650 	 */
8651 	if (try_soft_reset) {
8652 
8653 		/* This is kind of gross.  We may or may not get a completion
8654 		 * from the soft reset command, and if we do, then the value
8655 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8656 		 * after the reset throwing away any completions we get during
8657 		 * that time.  Unregister the interrupt handler and register
8658 		 * fake ones to scoop up any residual completions.
8659 		 */
8660 		spin_lock_irqsave(&h->lock, flags);
8661 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8662 		spin_unlock_irqrestore(&h->lock, flags);
8663 		hpsa_free_irqs(h);
8664 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8665 					hpsa_intx_discard_completions);
8666 		if (rc) {
8667 			dev_warn(&h->pdev->dev,
8668 				"Failed to request_irq after soft reset.\n");
8669 			/*
8670 			 * cannot goto clean7 or free_irqs will be called
8671 			 * again. Instead, do its work
8672 			 */
8673 			hpsa_free_performant_mode(h);	/* clean7 */
8674 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8675 			hpsa_free_cmd_pool(h);		/* clean5 */
8676 			/*
8677 			 * skip hpsa_free_irqs(h) clean4 since that
8678 			 * was just called before request_irqs failed
8679 			 */
8680 			goto clean3;
8681 		}
8682 
8683 		rc = hpsa_kdump_soft_reset(h);
8684 		if (rc)
8685 			/* Neither hard nor soft reset worked, we're hosed. */
8686 			goto clean7;
8687 
8688 		dev_info(&h->pdev->dev, "Board READY.\n");
8689 		dev_info(&h->pdev->dev,
8690 			"Waiting for stale completions to drain.\n");
8691 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8692 		msleep(10000);
8693 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8694 
8695 		rc = controller_reset_failed(h->cfgtable);
8696 		if (rc)
8697 			dev_info(&h->pdev->dev,
8698 				"Soft reset appears to have failed.\n");
8699 
8700 		/* since the controller's reset, we have to go back and re-init
8701 		 * everything.  Easiest to just forget what we've done and do it
8702 		 * all over again.
8703 		 */
8704 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8705 		try_soft_reset = 0;
8706 		if (rc)
8707 			/* don't goto clean, we already unallocated */
8708 			return -ENODEV;
8709 
8710 		goto reinit_after_soft_reset;
8711 	}
8712 
8713 	/* Enable Accelerated IO path at driver layer */
8714 	h->acciopath_status = 1;
8715 	/* Disable discovery polling.*/
8716 	h->discovery_polling = 0;
8717 
8718 
8719 	/* Turn the interrupts on so we can service requests */
8720 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8721 
8722 	hpsa_hba_inquiry(h);
8723 
8724 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8725 	if (!h->lastlogicals)
8726 		dev_info(&h->pdev->dev,
8727 			"Can't track change to report lun data\n");
8728 
8729 	/* hook into SCSI subsystem */
8730 	rc = hpsa_scsi_add_host(h);
8731 	if (rc)
8732 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8733 
8734 	/* Monitor the controller for firmware lockups */
8735 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8736 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8737 	schedule_delayed_work(&h->monitor_ctlr_work,
8738 				h->heartbeat_sample_interval);
8739 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8740 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8741 				h->heartbeat_sample_interval);
8742 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8743 	schedule_delayed_work(&h->event_monitor_work,
8744 				HPSA_EVENT_MONITOR_INTERVAL);
8745 	return 0;
8746 
8747 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8748 	hpsa_free_performant_mode(h);
8749 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8750 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8751 	hpsa_free_sg_chain_blocks(h);
8752 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8753 	hpsa_free_cmd_pool(h);
8754 clean4: /* irq, shost, pci, lu, aer/h */
8755 	hpsa_free_irqs(h);
8756 clean3: /* shost, pci, lu, aer/h */
8757 	scsi_host_put(h->scsi_host);
8758 	h->scsi_host = NULL;
8759 clean2_5: /* pci, lu, aer/h */
8760 	hpsa_free_pci_init(h);
8761 clean2: /* lu, aer/h */
8762 	if (h->lockup_detected) {
8763 		free_percpu(h->lockup_detected);
8764 		h->lockup_detected = NULL;
8765 	}
8766 clean1:	/* wq/aer/h */
8767 	if (h->resubmit_wq) {
8768 		destroy_workqueue(h->resubmit_wq);
8769 		h->resubmit_wq = NULL;
8770 	}
8771 	if (h->rescan_ctlr_wq) {
8772 		destroy_workqueue(h->rescan_ctlr_wq);
8773 		h->rescan_ctlr_wq = NULL;
8774 	}
8775 	kfree(h);
8776 	return rc;
8777 }
8778 
8779 static void hpsa_flush_cache(struct ctlr_info *h)
8780 {
8781 	char *flush_buf;
8782 	struct CommandList *c;
8783 	int rc;
8784 
8785 	if (unlikely(lockup_detected(h)))
8786 		return;
8787 	flush_buf = kzalloc(4, GFP_KERNEL);
8788 	if (!flush_buf)
8789 		return;
8790 
8791 	c = cmd_alloc(h);
8792 
8793 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8794 		RAID_CTLR_LUNID, TYPE_CMD)) {
8795 		goto out;
8796 	}
8797 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8798 			DEFAULT_TIMEOUT);
8799 	if (rc)
8800 		goto out;
8801 	if (c->err_info->CommandStatus != 0)
8802 out:
8803 		dev_warn(&h->pdev->dev,
8804 			"error flushing cache on controller\n");
8805 	cmd_free(h, c);
8806 	kfree(flush_buf);
8807 }
8808 
8809 /* Make controller gather fresh report lun data each time we
8810  * send down a report luns request
8811  */
8812 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8813 {
8814 	u32 *options;
8815 	struct CommandList *c;
8816 	int rc;
8817 
8818 	/* Don't bother trying to set diag options if locked up */
8819 	if (unlikely(h->lockup_detected))
8820 		return;
8821 
8822 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8823 	if (!options)
8824 		return;
8825 
8826 	c = cmd_alloc(h);
8827 
8828 	/* first, get the current diag options settings */
8829 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8830 		RAID_CTLR_LUNID, TYPE_CMD))
8831 		goto errout;
8832 
8833 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8834 			NO_TIMEOUT);
8835 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8836 		goto errout;
8837 
8838 	/* Now, set the bit for disabling the RLD caching */
8839 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8840 
8841 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8842 		RAID_CTLR_LUNID, TYPE_CMD))
8843 		goto errout;
8844 
8845 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8846 			NO_TIMEOUT);
8847 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8848 		goto errout;
8849 
8850 	/* Now verify that it got set: */
8851 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8852 		RAID_CTLR_LUNID, TYPE_CMD))
8853 		goto errout;
8854 
8855 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8856 			NO_TIMEOUT);
8857 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8858 		goto errout;
8859 
8860 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8861 		goto out;
8862 
8863 errout:
8864 	dev_err(&h->pdev->dev,
8865 			"Error: failed to disable report lun data caching.\n");
8866 out:
8867 	cmd_free(h, c);
8868 	kfree(options);
8869 }
8870 
8871 static void __hpsa_shutdown(struct pci_dev *pdev)
8872 {
8873 	struct ctlr_info *h;
8874 
8875 	h = pci_get_drvdata(pdev);
8876 	/* Turn board interrupts off  and send the flush cache command
8877 	 * sendcmd will turn off interrupt, and send the flush...
8878 	 * To write all data in the battery backed cache to disks
8879 	 */
8880 	hpsa_flush_cache(h);
8881 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8882 	hpsa_free_irqs(h);			/* init_one 4 */
8883 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8884 }
8885 
8886 static void hpsa_shutdown(struct pci_dev *pdev)
8887 {
8888 	__hpsa_shutdown(pdev);
8889 	pci_disable_device(pdev);
8890 }
8891 
8892 static void hpsa_free_device_info(struct ctlr_info *h)
8893 {
8894 	int i;
8895 
8896 	for (i = 0; i < h->ndevices; i++) {
8897 		kfree(h->dev[i]);
8898 		h->dev[i] = NULL;
8899 	}
8900 }
8901 
8902 static void hpsa_remove_one(struct pci_dev *pdev)
8903 {
8904 	struct ctlr_info *h;
8905 	unsigned long flags;
8906 
8907 	if (pci_get_drvdata(pdev) == NULL) {
8908 		dev_err(&pdev->dev, "unable to remove device\n");
8909 		return;
8910 	}
8911 	h = pci_get_drvdata(pdev);
8912 
8913 	/* Get rid of any controller monitoring work items */
8914 	spin_lock_irqsave(&h->lock, flags);
8915 	h->remove_in_progress = 1;
8916 	spin_unlock_irqrestore(&h->lock, flags);
8917 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8918 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8919 	cancel_delayed_work_sync(&h->event_monitor_work);
8920 	destroy_workqueue(h->rescan_ctlr_wq);
8921 	destroy_workqueue(h->resubmit_wq);
8922 
8923 	hpsa_delete_sas_host(h);
8924 
8925 	/*
8926 	 * Call before disabling interrupts.
8927 	 * scsi_remove_host can trigger I/O operations especially
8928 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8929 	 * operations which cannot complete and will hang the system.
8930 	 */
8931 	if (h->scsi_host)
8932 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8933 	/* includes hpsa_free_irqs - init_one 4 */
8934 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8935 	__hpsa_shutdown(pdev);
8936 
8937 	hpsa_free_device_info(h);		/* scan */
8938 
8939 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8940 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8941 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8942 	hpsa_free_performant_mode(h);			/* init_one 7 */
8943 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8944 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8945 	kfree(h->lastlogicals);
8946 
8947 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8948 
8949 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8950 	h->scsi_host = NULL;				/* init_one 3 */
8951 
8952 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8953 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8954 
8955 	free_percpu(h->lockup_detected);		/* init_one 2 */
8956 	h->lockup_detected = NULL;			/* init_one 2 */
8957 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8958 
8959 	hpda_free_ctlr_info(h);				/* init_one 1 */
8960 }
8961 
8962 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8963 	__attribute__((unused)) pm_message_t state)
8964 {
8965 	return -ENOSYS;
8966 }
8967 
8968 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8969 {
8970 	return -ENOSYS;
8971 }
8972 
8973 static struct pci_driver hpsa_pci_driver = {
8974 	.name = HPSA,
8975 	.probe = hpsa_init_one,
8976 	.remove = hpsa_remove_one,
8977 	.id_table = hpsa_pci_device_id,	/* id_table */
8978 	.shutdown = hpsa_shutdown,
8979 	.suspend = hpsa_suspend,
8980 	.resume = hpsa_resume,
8981 };
8982 
8983 /* Fill in bucket_map[], given nsgs (the max number of
8984  * scatter gather elements supported) and bucket[],
8985  * which is an array of 8 integers.  The bucket[] array
8986  * contains 8 different DMA transfer sizes (in 16
8987  * byte increments) which the controller uses to fetch
8988  * commands.  This function fills in bucket_map[], which
8989  * maps a given number of scatter gather elements to one of
8990  * the 8 DMA transfer sizes.  The point of it is to allow the
8991  * controller to only do as much DMA as needed to fetch the
8992  * command, with the DMA transfer size encoded in the lower
8993  * bits of the command address.
8994  */
8995 static void  calc_bucket_map(int bucket[], int num_buckets,
8996 	int nsgs, int min_blocks, u32 *bucket_map)
8997 {
8998 	int i, j, b, size;
8999 
9000 	/* Note, bucket_map must have nsgs+1 entries. */
9001 	for (i = 0; i <= nsgs; i++) {
9002 		/* Compute size of a command with i SG entries */
9003 		size = i + min_blocks;
9004 		b = num_buckets; /* Assume the biggest bucket */
9005 		/* Find the bucket that is just big enough */
9006 		for (j = 0; j < num_buckets; j++) {
9007 			if (bucket[j] >= size) {
9008 				b = j;
9009 				break;
9010 			}
9011 		}
9012 		/* for a command with i SG entries, use bucket b. */
9013 		bucket_map[i] = b;
9014 	}
9015 }
9016 
9017 /*
9018  * return -ENODEV on err, 0 on success (or no action)
9019  * allocates numerous items that must be freed later
9020  */
9021 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9022 {
9023 	int i;
9024 	unsigned long register_value;
9025 	unsigned long transMethod = CFGTBL_Trans_Performant |
9026 			(trans_support & CFGTBL_Trans_use_short_tags) |
9027 				CFGTBL_Trans_enable_directed_msix |
9028 			(trans_support & (CFGTBL_Trans_io_accel1 |
9029 				CFGTBL_Trans_io_accel2));
9030 	struct access_method access = SA5_performant_access;
9031 
9032 	/* This is a bit complicated.  There are 8 registers on
9033 	 * the controller which we write to to tell it 8 different
9034 	 * sizes of commands which there may be.  It's a way of
9035 	 * reducing the DMA done to fetch each command.  Encoded into
9036 	 * each command's tag are 3 bits which communicate to the controller
9037 	 * which of the eight sizes that command fits within.  The size of
9038 	 * each command depends on how many scatter gather entries there are.
9039 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9040 	 * with the number of 16-byte blocks a command of that size requires.
9041 	 * The smallest command possible requires 5 such 16 byte blocks.
9042 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9043 	 * blocks.  Note, this only extends to the SG entries contained
9044 	 * within the command block, and does not extend to chained blocks
9045 	 * of SG elements.   bft[] contains the eight values we write to
9046 	 * the registers.  They are not evenly distributed, but have more
9047 	 * sizes for small commands, and fewer sizes for larger commands.
9048 	 */
9049 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9050 #define MIN_IOACCEL2_BFT_ENTRY 5
9051 #define HPSA_IOACCEL2_HEADER_SZ 4
9052 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9053 			13, 14, 15, 16, 17, 18, 19,
9054 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9055 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9056 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9057 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9058 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9059 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9060 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9061 	/*  5 = 1 s/g entry or 4k
9062 	 *  6 = 2 s/g entry or 8k
9063 	 *  8 = 4 s/g entry or 16k
9064 	 * 10 = 6 s/g entry or 24k
9065 	 */
9066 
9067 	/* If the controller supports either ioaccel method then
9068 	 * we can also use the RAID stack submit path that does not
9069 	 * perform the superfluous readl() after each command submission.
9070 	 */
9071 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9072 		access = SA5_performant_access_no_read;
9073 
9074 	/* Controller spec: zero out this buffer. */
9075 	for (i = 0; i < h->nreply_queues; i++)
9076 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9077 
9078 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9079 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9080 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9081 	for (i = 0; i < 8; i++)
9082 		writel(bft[i], &h->transtable->BlockFetch[i]);
9083 
9084 	/* size of controller ring buffer */
9085 	writel(h->max_commands, &h->transtable->RepQSize);
9086 	writel(h->nreply_queues, &h->transtable->RepQCount);
9087 	writel(0, &h->transtable->RepQCtrAddrLow32);
9088 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9089 
9090 	for (i = 0; i < h->nreply_queues; i++) {
9091 		writel(0, &h->transtable->RepQAddr[i].upper);
9092 		writel(h->reply_queue[i].busaddr,
9093 			&h->transtable->RepQAddr[i].lower);
9094 	}
9095 
9096 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9097 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9098 	/*
9099 	 * enable outbound interrupt coalescing in accelerator mode;
9100 	 */
9101 	if (trans_support & CFGTBL_Trans_io_accel1) {
9102 		access = SA5_ioaccel_mode1_access;
9103 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9104 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9105 	} else
9106 		if (trans_support & CFGTBL_Trans_io_accel2)
9107 			access = SA5_ioaccel_mode2_access;
9108 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9109 	if (hpsa_wait_for_mode_change_ack(h)) {
9110 		dev_err(&h->pdev->dev,
9111 			"performant mode problem - doorbell timeout\n");
9112 		return -ENODEV;
9113 	}
9114 	register_value = readl(&(h->cfgtable->TransportActive));
9115 	if (!(register_value & CFGTBL_Trans_Performant)) {
9116 		dev_err(&h->pdev->dev,
9117 			"performant mode problem - transport not active\n");
9118 		return -ENODEV;
9119 	}
9120 	/* Change the access methods to the performant access methods */
9121 	h->access = access;
9122 	h->transMethod = transMethod;
9123 
9124 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9125 		(trans_support & CFGTBL_Trans_io_accel2)))
9126 		return 0;
9127 
9128 	if (trans_support & CFGTBL_Trans_io_accel1) {
9129 		/* Set up I/O accelerator mode */
9130 		for (i = 0; i < h->nreply_queues; i++) {
9131 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9132 			h->reply_queue[i].current_entry =
9133 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9134 		}
9135 		bft[7] = h->ioaccel_maxsg + 8;
9136 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9137 				h->ioaccel1_blockFetchTable);
9138 
9139 		/* initialize all reply queue entries to unused */
9140 		for (i = 0; i < h->nreply_queues; i++)
9141 			memset(h->reply_queue[i].head,
9142 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9143 				h->reply_queue_size);
9144 
9145 		/* set all the constant fields in the accelerator command
9146 		 * frames once at init time to save CPU cycles later.
9147 		 */
9148 		for (i = 0; i < h->nr_cmds; i++) {
9149 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9150 
9151 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9152 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9153 					(i * sizeof(struct ErrorInfo)));
9154 			cp->err_info_len = sizeof(struct ErrorInfo);
9155 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9156 			cp->host_context_flags =
9157 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9158 			cp->timeout_sec = 0;
9159 			cp->ReplyQueue = 0;
9160 			cp->tag =
9161 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9162 			cp->host_addr =
9163 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9164 					(i * sizeof(struct io_accel1_cmd)));
9165 		}
9166 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9167 		u64 cfg_offset, cfg_base_addr_index;
9168 		u32 bft2_offset, cfg_base_addr;
9169 		int rc;
9170 
9171 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9172 			&cfg_base_addr_index, &cfg_offset);
9173 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9174 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9175 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9176 				4, h->ioaccel2_blockFetchTable);
9177 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9178 		BUILD_BUG_ON(offsetof(struct CfgTable,
9179 				io_accel_request_size_offset) != 0xb8);
9180 		h->ioaccel2_bft2_regs =
9181 			remap_pci_mem(pci_resource_start(h->pdev,
9182 					cfg_base_addr_index) +
9183 					cfg_offset + bft2_offset,
9184 					ARRAY_SIZE(bft2) *
9185 					sizeof(*h->ioaccel2_bft2_regs));
9186 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9187 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9188 	}
9189 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9190 	if (hpsa_wait_for_mode_change_ack(h)) {
9191 		dev_err(&h->pdev->dev,
9192 			"performant mode problem - enabling ioaccel mode\n");
9193 		return -ENODEV;
9194 	}
9195 	return 0;
9196 }
9197 
9198 /* Free ioaccel1 mode command blocks and block fetch table */
9199 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9200 {
9201 	if (h->ioaccel_cmd_pool) {
9202 		pci_free_consistent(h->pdev,
9203 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9204 			h->ioaccel_cmd_pool,
9205 			h->ioaccel_cmd_pool_dhandle);
9206 		h->ioaccel_cmd_pool = NULL;
9207 		h->ioaccel_cmd_pool_dhandle = 0;
9208 	}
9209 	kfree(h->ioaccel1_blockFetchTable);
9210 	h->ioaccel1_blockFetchTable = NULL;
9211 }
9212 
9213 /* Allocate ioaccel1 mode command blocks and block fetch table */
9214 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9215 {
9216 	h->ioaccel_maxsg =
9217 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9218 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9219 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9220 
9221 	/* Command structures must be aligned on a 128-byte boundary
9222 	 * because the 7 lower bits of the address are used by the
9223 	 * hardware.
9224 	 */
9225 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9226 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9227 	h->ioaccel_cmd_pool =
9228 		dma_alloc_coherent(&h->pdev->dev,
9229 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9230 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9231 
9232 	h->ioaccel1_blockFetchTable =
9233 		kmalloc(((h->ioaccel_maxsg + 1) *
9234 				sizeof(u32)), GFP_KERNEL);
9235 
9236 	if ((h->ioaccel_cmd_pool == NULL) ||
9237 		(h->ioaccel1_blockFetchTable == NULL))
9238 		goto clean_up;
9239 
9240 	memset(h->ioaccel_cmd_pool, 0,
9241 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9242 	return 0;
9243 
9244 clean_up:
9245 	hpsa_free_ioaccel1_cmd_and_bft(h);
9246 	return -ENOMEM;
9247 }
9248 
9249 /* Free ioaccel2 mode command blocks and block fetch table */
9250 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9251 {
9252 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9253 
9254 	if (h->ioaccel2_cmd_pool) {
9255 		pci_free_consistent(h->pdev,
9256 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9257 			h->ioaccel2_cmd_pool,
9258 			h->ioaccel2_cmd_pool_dhandle);
9259 		h->ioaccel2_cmd_pool = NULL;
9260 		h->ioaccel2_cmd_pool_dhandle = 0;
9261 	}
9262 	kfree(h->ioaccel2_blockFetchTable);
9263 	h->ioaccel2_blockFetchTable = NULL;
9264 }
9265 
9266 /* Allocate ioaccel2 mode command blocks and block fetch table */
9267 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9268 {
9269 	int rc;
9270 
9271 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9272 
9273 	h->ioaccel_maxsg =
9274 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9275 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9276 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9277 
9278 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9279 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9280 	h->ioaccel2_cmd_pool =
9281 		dma_alloc_coherent(&h->pdev->dev,
9282 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9283 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9284 
9285 	h->ioaccel2_blockFetchTable =
9286 		kmalloc(((h->ioaccel_maxsg + 1) *
9287 				sizeof(u32)), GFP_KERNEL);
9288 
9289 	if ((h->ioaccel2_cmd_pool == NULL) ||
9290 		(h->ioaccel2_blockFetchTable == NULL)) {
9291 		rc = -ENOMEM;
9292 		goto clean_up;
9293 	}
9294 
9295 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9296 	if (rc)
9297 		goto clean_up;
9298 
9299 	memset(h->ioaccel2_cmd_pool, 0,
9300 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9301 	return 0;
9302 
9303 clean_up:
9304 	hpsa_free_ioaccel2_cmd_and_bft(h);
9305 	return rc;
9306 }
9307 
9308 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9309 static void hpsa_free_performant_mode(struct ctlr_info *h)
9310 {
9311 	kfree(h->blockFetchTable);
9312 	h->blockFetchTable = NULL;
9313 	hpsa_free_reply_queues(h);
9314 	hpsa_free_ioaccel1_cmd_and_bft(h);
9315 	hpsa_free_ioaccel2_cmd_and_bft(h);
9316 }
9317 
9318 /* return -ENODEV on error, 0 on success (or no action)
9319  * allocates numerous items that must be freed later
9320  */
9321 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9322 {
9323 	u32 trans_support;
9324 	unsigned long transMethod = CFGTBL_Trans_Performant |
9325 					CFGTBL_Trans_use_short_tags;
9326 	int i, rc;
9327 
9328 	if (hpsa_simple_mode)
9329 		return 0;
9330 
9331 	trans_support = readl(&(h->cfgtable->TransportSupport));
9332 	if (!(trans_support & PERFORMANT_MODE))
9333 		return 0;
9334 
9335 	/* Check for I/O accelerator mode support */
9336 	if (trans_support & CFGTBL_Trans_io_accel1) {
9337 		transMethod |= CFGTBL_Trans_io_accel1 |
9338 				CFGTBL_Trans_enable_directed_msix;
9339 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9340 		if (rc)
9341 			return rc;
9342 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9343 		transMethod |= CFGTBL_Trans_io_accel2 |
9344 				CFGTBL_Trans_enable_directed_msix;
9345 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9346 		if (rc)
9347 			return rc;
9348 	}
9349 
9350 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9351 	hpsa_get_max_perf_mode_cmds(h);
9352 	/* Performant mode ring buffer and supporting data structures */
9353 	h->reply_queue_size = h->max_commands * sizeof(u64);
9354 
9355 	for (i = 0; i < h->nreply_queues; i++) {
9356 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9357 						h->reply_queue_size,
9358 						&h->reply_queue[i].busaddr,
9359 						GFP_KERNEL);
9360 		if (!h->reply_queue[i].head) {
9361 			rc = -ENOMEM;
9362 			goto clean1;	/* rq, ioaccel */
9363 		}
9364 		h->reply_queue[i].size = h->max_commands;
9365 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9366 		h->reply_queue[i].current_entry = 0;
9367 	}
9368 
9369 	/* Need a block fetch table for performant mode */
9370 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9371 				sizeof(u32)), GFP_KERNEL);
9372 	if (!h->blockFetchTable) {
9373 		rc = -ENOMEM;
9374 		goto clean1;	/* rq, ioaccel */
9375 	}
9376 
9377 	rc = hpsa_enter_performant_mode(h, trans_support);
9378 	if (rc)
9379 		goto clean2;	/* bft, rq, ioaccel */
9380 	return 0;
9381 
9382 clean2:	/* bft, rq, ioaccel */
9383 	kfree(h->blockFetchTable);
9384 	h->blockFetchTable = NULL;
9385 clean1:	/* rq, ioaccel */
9386 	hpsa_free_reply_queues(h);
9387 	hpsa_free_ioaccel1_cmd_and_bft(h);
9388 	hpsa_free_ioaccel2_cmd_and_bft(h);
9389 	return rc;
9390 }
9391 
9392 static int is_accelerated_cmd(struct CommandList *c)
9393 {
9394 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9395 }
9396 
9397 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9398 {
9399 	struct CommandList *c = NULL;
9400 	int i, accel_cmds_out;
9401 	int refcount;
9402 
9403 	do { /* wait for all outstanding ioaccel commands to drain out */
9404 		accel_cmds_out = 0;
9405 		for (i = 0; i < h->nr_cmds; i++) {
9406 			c = h->cmd_pool + i;
9407 			refcount = atomic_inc_return(&c->refcount);
9408 			if (refcount > 1) /* Command is allocated */
9409 				accel_cmds_out += is_accelerated_cmd(c);
9410 			cmd_free(h, c);
9411 		}
9412 		if (accel_cmds_out <= 0)
9413 			break;
9414 		msleep(100);
9415 	} while (1);
9416 }
9417 
9418 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9419 				struct hpsa_sas_port *hpsa_sas_port)
9420 {
9421 	struct hpsa_sas_phy *hpsa_sas_phy;
9422 	struct sas_phy *phy;
9423 
9424 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9425 	if (!hpsa_sas_phy)
9426 		return NULL;
9427 
9428 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9429 		hpsa_sas_port->next_phy_index);
9430 	if (!phy) {
9431 		kfree(hpsa_sas_phy);
9432 		return NULL;
9433 	}
9434 
9435 	hpsa_sas_port->next_phy_index++;
9436 	hpsa_sas_phy->phy = phy;
9437 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9438 
9439 	return hpsa_sas_phy;
9440 }
9441 
9442 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9443 {
9444 	struct sas_phy *phy = hpsa_sas_phy->phy;
9445 
9446 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9447 	if (hpsa_sas_phy->added_to_port)
9448 		list_del(&hpsa_sas_phy->phy_list_entry);
9449 	sas_phy_delete(phy);
9450 	kfree(hpsa_sas_phy);
9451 }
9452 
9453 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9454 {
9455 	int rc;
9456 	struct hpsa_sas_port *hpsa_sas_port;
9457 	struct sas_phy *phy;
9458 	struct sas_identify *identify;
9459 
9460 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9461 	phy = hpsa_sas_phy->phy;
9462 
9463 	identify = &phy->identify;
9464 	memset(identify, 0, sizeof(*identify));
9465 	identify->sas_address = hpsa_sas_port->sas_address;
9466 	identify->device_type = SAS_END_DEVICE;
9467 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9468 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9469 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9470 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9471 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9472 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9473 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9474 
9475 	rc = sas_phy_add(hpsa_sas_phy->phy);
9476 	if (rc)
9477 		return rc;
9478 
9479 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9480 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9481 			&hpsa_sas_port->phy_list_head);
9482 	hpsa_sas_phy->added_to_port = true;
9483 
9484 	return 0;
9485 }
9486 
9487 static int
9488 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9489 				struct sas_rphy *rphy)
9490 {
9491 	struct sas_identify *identify;
9492 
9493 	identify = &rphy->identify;
9494 	identify->sas_address = hpsa_sas_port->sas_address;
9495 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9496 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9497 
9498 	return sas_rphy_add(rphy);
9499 }
9500 
9501 static struct hpsa_sas_port
9502 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9503 				u64 sas_address)
9504 {
9505 	int rc;
9506 	struct hpsa_sas_port *hpsa_sas_port;
9507 	struct sas_port *port;
9508 
9509 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9510 	if (!hpsa_sas_port)
9511 		return NULL;
9512 
9513 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9514 	hpsa_sas_port->parent_node = hpsa_sas_node;
9515 
9516 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9517 	if (!port)
9518 		goto free_hpsa_port;
9519 
9520 	rc = sas_port_add(port);
9521 	if (rc)
9522 		goto free_sas_port;
9523 
9524 	hpsa_sas_port->port = port;
9525 	hpsa_sas_port->sas_address = sas_address;
9526 	list_add_tail(&hpsa_sas_port->port_list_entry,
9527 			&hpsa_sas_node->port_list_head);
9528 
9529 	return hpsa_sas_port;
9530 
9531 free_sas_port:
9532 	sas_port_free(port);
9533 free_hpsa_port:
9534 	kfree(hpsa_sas_port);
9535 
9536 	return NULL;
9537 }
9538 
9539 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9540 {
9541 	struct hpsa_sas_phy *hpsa_sas_phy;
9542 	struct hpsa_sas_phy *next;
9543 
9544 	list_for_each_entry_safe(hpsa_sas_phy, next,
9545 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9546 		hpsa_free_sas_phy(hpsa_sas_phy);
9547 
9548 	sas_port_delete(hpsa_sas_port->port);
9549 	list_del(&hpsa_sas_port->port_list_entry);
9550 	kfree(hpsa_sas_port);
9551 }
9552 
9553 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9554 {
9555 	struct hpsa_sas_node *hpsa_sas_node;
9556 
9557 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9558 	if (hpsa_sas_node) {
9559 		hpsa_sas_node->parent_dev = parent_dev;
9560 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9561 	}
9562 
9563 	return hpsa_sas_node;
9564 }
9565 
9566 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9567 {
9568 	struct hpsa_sas_port *hpsa_sas_port;
9569 	struct hpsa_sas_port *next;
9570 
9571 	if (!hpsa_sas_node)
9572 		return;
9573 
9574 	list_for_each_entry_safe(hpsa_sas_port, next,
9575 			&hpsa_sas_node->port_list_head, port_list_entry)
9576 		hpsa_free_sas_port(hpsa_sas_port);
9577 
9578 	kfree(hpsa_sas_node);
9579 }
9580 
9581 static struct hpsa_scsi_dev_t
9582 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9583 					struct sas_rphy *rphy)
9584 {
9585 	int i;
9586 	struct hpsa_scsi_dev_t *device;
9587 
9588 	for (i = 0; i < h->ndevices; i++) {
9589 		device = h->dev[i];
9590 		if (!device->sas_port)
9591 			continue;
9592 		if (device->sas_port->rphy == rphy)
9593 			return device;
9594 	}
9595 
9596 	return NULL;
9597 }
9598 
9599 static int hpsa_add_sas_host(struct ctlr_info *h)
9600 {
9601 	int rc;
9602 	struct device *parent_dev;
9603 	struct hpsa_sas_node *hpsa_sas_node;
9604 	struct hpsa_sas_port *hpsa_sas_port;
9605 	struct hpsa_sas_phy *hpsa_sas_phy;
9606 
9607 	parent_dev = &h->scsi_host->shost_dev;
9608 
9609 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9610 	if (!hpsa_sas_node)
9611 		return -ENOMEM;
9612 
9613 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9614 	if (!hpsa_sas_port) {
9615 		rc = -ENODEV;
9616 		goto free_sas_node;
9617 	}
9618 
9619 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9620 	if (!hpsa_sas_phy) {
9621 		rc = -ENODEV;
9622 		goto free_sas_port;
9623 	}
9624 
9625 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9626 	if (rc)
9627 		goto free_sas_phy;
9628 
9629 	h->sas_host = hpsa_sas_node;
9630 
9631 	return 0;
9632 
9633 free_sas_phy:
9634 	hpsa_free_sas_phy(hpsa_sas_phy);
9635 free_sas_port:
9636 	hpsa_free_sas_port(hpsa_sas_port);
9637 free_sas_node:
9638 	hpsa_free_sas_node(hpsa_sas_node);
9639 
9640 	return rc;
9641 }
9642 
9643 static void hpsa_delete_sas_host(struct ctlr_info *h)
9644 {
9645 	hpsa_free_sas_node(h->sas_host);
9646 }
9647 
9648 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9649 				struct hpsa_scsi_dev_t *device)
9650 {
9651 	int rc;
9652 	struct hpsa_sas_port *hpsa_sas_port;
9653 	struct sas_rphy *rphy;
9654 
9655 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9656 	if (!hpsa_sas_port)
9657 		return -ENOMEM;
9658 
9659 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9660 	if (!rphy) {
9661 		rc = -ENODEV;
9662 		goto free_sas_port;
9663 	}
9664 
9665 	hpsa_sas_port->rphy = rphy;
9666 	device->sas_port = hpsa_sas_port;
9667 
9668 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9669 	if (rc)
9670 		goto free_sas_port;
9671 
9672 	return 0;
9673 
9674 free_sas_port:
9675 	hpsa_free_sas_port(hpsa_sas_port);
9676 	device->sas_port = NULL;
9677 
9678 	return rc;
9679 }
9680 
9681 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9682 {
9683 	if (device->sas_port) {
9684 		hpsa_free_sas_port(device->sas_port);
9685 		device->sas_port = NULL;
9686 	}
9687 }
9688 
9689 static int
9690 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9691 {
9692 	return 0;
9693 }
9694 
9695 static int
9696 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9697 {
9698 	struct Scsi_Host *shost = phy_to_shost(rphy);
9699 	struct ctlr_info *h;
9700 	struct hpsa_scsi_dev_t *sd;
9701 
9702 	if (!shost)
9703 		return -ENXIO;
9704 
9705 	h = shost_to_hba(shost);
9706 
9707 	if (!h)
9708 		return -ENXIO;
9709 
9710 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9711 	if (!sd)
9712 		return -ENXIO;
9713 
9714 	*identifier = sd->eli;
9715 
9716 	return 0;
9717 }
9718 
9719 static int
9720 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9721 {
9722 	return -ENXIO;
9723 }
9724 
9725 static int
9726 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9727 {
9728 	return 0;
9729 }
9730 
9731 static int
9732 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9733 {
9734 	return 0;
9735 }
9736 
9737 static int
9738 hpsa_sas_phy_setup(struct sas_phy *phy)
9739 {
9740 	return 0;
9741 }
9742 
9743 static void
9744 hpsa_sas_phy_release(struct sas_phy *phy)
9745 {
9746 }
9747 
9748 static int
9749 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9750 {
9751 	return -EINVAL;
9752 }
9753 
9754 static struct sas_function_template hpsa_sas_transport_functions = {
9755 	.get_linkerrors = hpsa_sas_get_linkerrors,
9756 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9757 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9758 	.phy_reset = hpsa_sas_phy_reset,
9759 	.phy_enable = hpsa_sas_phy_enable,
9760 	.phy_setup = hpsa_sas_phy_setup,
9761 	.phy_release = hpsa_sas_phy_release,
9762 	.set_phy_speed = hpsa_sas_phy_speed,
9763 };
9764 
9765 /*
9766  *  This is it.  Register the PCI driver information for the cards we control
9767  *  the OS will call our registered routines when it finds one of our cards.
9768  */
9769 static int __init hpsa_init(void)
9770 {
9771 	int rc;
9772 
9773 	hpsa_sas_transport_template =
9774 		sas_attach_transport(&hpsa_sas_transport_functions);
9775 	if (!hpsa_sas_transport_template)
9776 		return -ENODEV;
9777 
9778 	rc = pci_register_driver(&hpsa_pci_driver);
9779 
9780 	if (rc)
9781 		sas_release_transport(hpsa_sas_transport_template);
9782 
9783 	return rc;
9784 }
9785 
9786 static void __exit hpsa_cleanup(void)
9787 {
9788 	pci_unregister_driver(&hpsa_pci_driver);
9789 	sas_release_transport(hpsa_sas_transport_template);
9790 }
9791 
9792 static void __attribute__((unused)) verify_offsets(void)
9793 {
9794 #define VERIFY_OFFSET(member, offset) \
9795 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9796 
9797 	VERIFY_OFFSET(structure_size, 0);
9798 	VERIFY_OFFSET(volume_blk_size, 4);
9799 	VERIFY_OFFSET(volume_blk_cnt, 8);
9800 	VERIFY_OFFSET(phys_blk_shift, 16);
9801 	VERIFY_OFFSET(parity_rotation_shift, 17);
9802 	VERIFY_OFFSET(strip_size, 18);
9803 	VERIFY_OFFSET(disk_starting_blk, 20);
9804 	VERIFY_OFFSET(disk_blk_cnt, 28);
9805 	VERIFY_OFFSET(data_disks_per_row, 36);
9806 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9807 	VERIFY_OFFSET(row_cnt, 40);
9808 	VERIFY_OFFSET(layout_map_count, 42);
9809 	VERIFY_OFFSET(flags, 44);
9810 	VERIFY_OFFSET(dekindex, 46);
9811 	/* VERIFY_OFFSET(reserved, 48 */
9812 	VERIFY_OFFSET(data, 64);
9813 
9814 #undef VERIFY_OFFSET
9815 
9816 #define VERIFY_OFFSET(member, offset) \
9817 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9818 
9819 	VERIFY_OFFSET(IU_type, 0);
9820 	VERIFY_OFFSET(direction, 1);
9821 	VERIFY_OFFSET(reply_queue, 2);
9822 	/* VERIFY_OFFSET(reserved1, 3);  */
9823 	VERIFY_OFFSET(scsi_nexus, 4);
9824 	VERIFY_OFFSET(Tag, 8);
9825 	VERIFY_OFFSET(cdb, 16);
9826 	VERIFY_OFFSET(cciss_lun, 32);
9827 	VERIFY_OFFSET(data_len, 40);
9828 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9829 	VERIFY_OFFSET(sg_count, 45);
9830 	/* VERIFY_OFFSET(reserved3 */
9831 	VERIFY_OFFSET(err_ptr, 48);
9832 	VERIFY_OFFSET(err_len, 56);
9833 	/* VERIFY_OFFSET(reserved4  */
9834 	VERIFY_OFFSET(sg, 64);
9835 
9836 #undef VERIFY_OFFSET
9837 
9838 #define VERIFY_OFFSET(member, offset) \
9839 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9840 
9841 	VERIFY_OFFSET(dev_handle, 0x00);
9842 	VERIFY_OFFSET(reserved1, 0x02);
9843 	VERIFY_OFFSET(function, 0x03);
9844 	VERIFY_OFFSET(reserved2, 0x04);
9845 	VERIFY_OFFSET(err_info, 0x0C);
9846 	VERIFY_OFFSET(reserved3, 0x10);
9847 	VERIFY_OFFSET(err_info_len, 0x12);
9848 	VERIFY_OFFSET(reserved4, 0x13);
9849 	VERIFY_OFFSET(sgl_offset, 0x14);
9850 	VERIFY_OFFSET(reserved5, 0x15);
9851 	VERIFY_OFFSET(transfer_len, 0x1C);
9852 	VERIFY_OFFSET(reserved6, 0x20);
9853 	VERIFY_OFFSET(io_flags, 0x24);
9854 	VERIFY_OFFSET(reserved7, 0x26);
9855 	VERIFY_OFFSET(LUN, 0x34);
9856 	VERIFY_OFFSET(control, 0x3C);
9857 	VERIFY_OFFSET(CDB, 0x40);
9858 	VERIFY_OFFSET(reserved8, 0x50);
9859 	VERIFY_OFFSET(host_context_flags, 0x60);
9860 	VERIFY_OFFSET(timeout_sec, 0x62);
9861 	VERIFY_OFFSET(ReplyQueue, 0x64);
9862 	VERIFY_OFFSET(reserved9, 0x65);
9863 	VERIFY_OFFSET(tag, 0x68);
9864 	VERIFY_OFFSET(host_addr, 0x70);
9865 	VERIFY_OFFSET(CISS_LUN, 0x78);
9866 	VERIFY_OFFSET(SG, 0x78 + 8);
9867 #undef VERIFY_OFFSET
9868 }
9869 
9870 module_init(hpsa_init);
9871 module_exit(hpsa_cleanup);
9872