1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/pci-aspm.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/delay.h> 30 #include <linux/fs.h> 31 #include <linux/timer.h> 32 #include <linux/seq_file.h> 33 #include <linux/init.h> 34 #include <linux/spinlock.h> 35 #include <linux/compat.h> 36 #include <linux/blktrace_api.h> 37 #include <linux/uaccess.h> 38 #include <linux/io.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/completion.h> 41 #include <linux/moduleparam.h> 42 #include <scsi/scsi.h> 43 #include <scsi/scsi_cmnd.h> 44 #include <scsi/scsi_device.h> 45 #include <scsi/scsi_host.h> 46 #include <scsi/scsi_tcq.h> 47 #include <linux/cciss_ioctl.h> 48 #include <linux/string.h> 49 #include <linux/bitmap.h> 50 #include <linux/atomic.h> 51 #include <linux/kthread.h> 52 #include <linux/jiffies.h> 53 #include "hpsa_cmd.h" 54 #include "hpsa.h" 55 56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 57 #define HPSA_DRIVER_VERSION "2.0.2-1" 58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 59 #define HPSA "hpsa" 60 61 /* How long to wait (in milliseconds) for board to go into simple mode */ 62 #define MAX_CONFIG_WAIT 30000 63 #define MAX_IOCTL_CONFIG_WAIT 1000 64 65 /*define how many times we will try a command because of bus resets */ 66 #define MAX_CMD_RETRIES 3 67 68 /* Embedded module documentation macros - see modules.h */ 69 MODULE_AUTHOR("Hewlett-Packard Company"); 70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 71 HPSA_DRIVER_VERSION); 72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 73 MODULE_VERSION(HPSA_DRIVER_VERSION); 74 MODULE_LICENSE("GPL"); 75 76 static int hpsa_allow_any; 77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 78 MODULE_PARM_DESC(hpsa_allow_any, 79 "Allow hpsa driver to access unknown HP Smart Array hardware"); 80 static int hpsa_simple_mode; 81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 82 MODULE_PARM_DESC(hpsa_simple_mode, 83 "Use 'simple mode' rather than 'performant mode'"); 84 85 /* define the PCI info for the cards we can control */ 86 static const struct pci_device_id hpsa_pci_device_id[] = { 87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, 93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1920}, 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, 105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, 106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, 107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925}, 108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, 109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, 110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x334d}, 111 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 112 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 113 {0,} 114 }; 115 116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 117 118 /* board_id = Subsystem Device ID & Vendor ID 119 * product = Marketing Name for the board 120 * access = Address of the struct of function pointers 121 */ 122 static struct board_type products[] = { 123 {0x3241103C, "Smart Array P212", &SA5_access}, 124 {0x3243103C, "Smart Array P410", &SA5_access}, 125 {0x3245103C, "Smart Array P410i", &SA5_access}, 126 {0x3247103C, "Smart Array P411", &SA5_access}, 127 {0x3249103C, "Smart Array P812", &SA5_access}, 128 {0x324a103C, "Smart Array P712m", &SA5_access}, 129 {0x324b103C, "Smart Array P711m", &SA5_access}, 130 {0x3350103C, "Smart Array P222", &SA5_access}, 131 {0x3351103C, "Smart Array P420", &SA5_access}, 132 {0x3352103C, "Smart Array P421", &SA5_access}, 133 {0x3353103C, "Smart Array P822", &SA5_access}, 134 {0x3354103C, "Smart Array P420i", &SA5_access}, 135 {0x3355103C, "Smart Array P220i", &SA5_access}, 136 {0x3356103C, "Smart Array P721m", &SA5_access}, 137 {0x1920103C, "Smart Array", &SA5_access}, 138 {0x1921103C, "Smart Array", &SA5_access}, 139 {0x1922103C, "Smart Array", &SA5_access}, 140 {0x1923103C, "Smart Array", &SA5_access}, 141 {0x1924103C, "Smart Array", &SA5_access}, 142 {0x1925103C, "Smart Array", &SA5_access}, 143 {0x1926103C, "Smart Array", &SA5_access}, 144 {0x1928103C, "Smart Array", &SA5_access}, 145 {0x334d103C, "Smart Array P822se", &SA5_access}, 146 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 147 }; 148 149 static int number_of_controllers; 150 151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list); 152 static spinlock_t lockup_detector_lock; 153 static struct task_struct *hpsa_lockup_detector; 154 155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); 158 static void start_io(struct ctlr_info *h); 159 160 #ifdef CONFIG_COMPAT 161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); 162 #endif 163 164 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); 166 static struct CommandList *cmd_alloc(struct ctlr_info *h); 167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h); 168 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 169 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 170 int cmd_type); 171 172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 173 static void hpsa_scan_start(struct Scsi_Host *); 174 static int hpsa_scan_finished(struct Scsi_Host *sh, 175 unsigned long elapsed_time); 176 static int hpsa_change_queue_depth(struct scsi_device *sdev, 177 int qdepth, int reason); 178 179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); 181 static int hpsa_slave_alloc(struct scsi_device *sdev); 182 static void hpsa_slave_destroy(struct scsi_device *sdev); 183 184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 185 static int check_for_unit_attention(struct ctlr_info *h, 186 struct CommandList *c); 187 static void check_ioctl_unit_attention(struct ctlr_info *h, 188 struct CommandList *c); 189 /* performant mode helper functions */ 190 static void calc_bucket_map(int *bucket, int num_buckets, 191 int nsgs, int *bucket_map); 192 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 193 static inline u32 next_command(struct ctlr_info *h, u8 q); 194 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 195 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 196 u64 *cfg_offset); 197 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 198 unsigned long *memory_bar); 199 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); 200 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, 201 void __iomem *vaddr, int wait_for_ready); 202 static inline void finish_cmd(struct CommandList *c); 203 #define BOARD_NOT_READY 0 204 #define BOARD_READY 1 205 206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 207 { 208 unsigned long *priv = shost_priv(sdev->host); 209 return (struct ctlr_info *) *priv; 210 } 211 212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 213 { 214 unsigned long *priv = shost_priv(sh); 215 return (struct ctlr_info *) *priv; 216 } 217 218 static int check_for_unit_attention(struct ctlr_info *h, 219 struct CommandList *c) 220 { 221 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 222 return 0; 223 224 switch (c->err_info->SenseInfo[12]) { 225 case STATE_CHANGED: 226 dev_warn(&h->pdev->dev, HPSA "%d: a state change " 227 "detected, command retried\n", h->ctlr); 228 break; 229 case LUN_FAILED: 230 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure " 231 "detected, action required\n", h->ctlr); 232 break; 233 case REPORT_LUNS_CHANGED: 234 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data " 235 "changed, action required\n", h->ctlr); 236 /* 237 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external 238 * target (array) devices. 239 */ 240 break; 241 case POWER_OR_RESET: 242 dev_warn(&h->pdev->dev, HPSA "%d: a power on " 243 "or device reset detected\n", h->ctlr); 244 break; 245 case UNIT_ATTENTION_CLEARED: 246 dev_warn(&h->pdev->dev, HPSA "%d: unit attention " 247 "cleared by another initiator\n", h->ctlr); 248 break; 249 default: 250 dev_warn(&h->pdev->dev, HPSA "%d: unknown " 251 "unit attention detected\n", h->ctlr); 252 break; 253 } 254 return 1; 255 } 256 257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c) 258 { 259 if (c->err_info->CommandStatus != CMD_TARGET_STATUS || 260 (c->err_info->ScsiStatus != SAM_STAT_BUSY && 261 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) 262 return 0; 263 dev_warn(&h->pdev->dev, HPSA "device busy"); 264 return 1; 265 } 266 267 static ssize_t host_store_rescan(struct device *dev, 268 struct device_attribute *attr, 269 const char *buf, size_t count) 270 { 271 struct ctlr_info *h; 272 struct Scsi_Host *shost = class_to_shost(dev); 273 h = shost_to_hba(shost); 274 hpsa_scan_start(h->scsi_host); 275 return count; 276 } 277 278 static ssize_t host_show_firmware_revision(struct device *dev, 279 struct device_attribute *attr, char *buf) 280 { 281 struct ctlr_info *h; 282 struct Scsi_Host *shost = class_to_shost(dev); 283 unsigned char *fwrev; 284 285 h = shost_to_hba(shost); 286 if (!h->hba_inquiry_data) 287 return 0; 288 fwrev = &h->hba_inquiry_data[32]; 289 return snprintf(buf, 20, "%c%c%c%c\n", 290 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 291 } 292 293 static ssize_t host_show_commands_outstanding(struct device *dev, 294 struct device_attribute *attr, char *buf) 295 { 296 struct Scsi_Host *shost = class_to_shost(dev); 297 struct ctlr_info *h = shost_to_hba(shost); 298 299 return snprintf(buf, 20, "%d\n", h->commands_outstanding); 300 } 301 302 static ssize_t host_show_transport_mode(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct ctlr_info *h; 306 struct Scsi_Host *shost = class_to_shost(dev); 307 308 h = shost_to_hba(shost); 309 return snprintf(buf, 20, "%s\n", 310 h->transMethod & CFGTBL_Trans_Performant ? 311 "performant" : "simple"); 312 } 313 314 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 315 static u32 unresettable_controller[] = { 316 0x324a103C, /* Smart Array P712m */ 317 0x324b103C, /* SmartArray P711m */ 318 0x3223103C, /* Smart Array P800 */ 319 0x3234103C, /* Smart Array P400 */ 320 0x3235103C, /* Smart Array P400i */ 321 0x3211103C, /* Smart Array E200i */ 322 0x3212103C, /* Smart Array E200 */ 323 0x3213103C, /* Smart Array E200i */ 324 0x3214103C, /* Smart Array E200i */ 325 0x3215103C, /* Smart Array E200i */ 326 0x3237103C, /* Smart Array E500 */ 327 0x323D103C, /* Smart Array P700m */ 328 0x40800E11, /* Smart Array 5i */ 329 0x409C0E11, /* Smart Array 6400 */ 330 0x409D0E11, /* Smart Array 6400 EM */ 331 0x40700E11, /* Smart Array 5300 */ 332 0x40820E11, /* Smart Array 532 */ 333 0x40830E11, /* Smart Array 5312 */ 334 0x409A0E11, /* Smart Array 641 */ 335 0x409B0E11, /* Smart Array 642 */ 336 0x40910E11, /* Smart Array 6i */ 337 }; 338 339 /* List of controllers which cannot even be soft reset */ 340 static u32 soft_unresettable_controller[] = { 341 0x40800E11, /* Smart Array 5i */ 342 0x40700E11, /* Smart Array 5300 */ 343 0x40820E11, /* Smart Array 532 */ 344 0x40830E11, /* Smart Array 5312 */ 345 0x409A0E11, /* Smart Array 641 */ 346 0x409B0E11, /* Smart Array 642 */ 347 0x40910E11, /* Smart Array 6i */ 348 /* Exclude 640x boards. These are two pci devices in one slot 349 * which share a battery backed cache module. One controls the 350 * cache, the other accesses the cache through the one that controls 351 * it. If we reset the one controlling the cache, the other will 352 * likely not be happy. Just forbid resetting this conjoined mess. 353 * The 640x isn't really supported by hpsa anyway. 354 */ 355 0x409C0E11, /* Smart Array 6400 */ 356 0x409D0E11, /* Smart Array 6400 EM */ 357 }; 358 359 static int ctlr_is_hard_resettable(u32 board_id) 360 { 361 int i; 362 363 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) 364 if (unresettable_controller[i] == board_id) 365 return 0; 366 return 1; 367 } 368 369 static int ctlr_is_soft_resettable(u32 board_id) 370 { 371 int i; 372 373 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) 374 if (soft_unresettable_controller[i] == board_id) 375 return 0; 376 return 1; 377 } 378 379 static int ctlr_is_resettable(u32 board_id) 380 { 381 return ctlr_is_hard_resettable(board_id) || 382 ctlr_is_soft_resettable(board_id); 383 } 384 385 static ssize_t host_show_resettable(struct device *dev, 386 struct device_attribute *attr, char *buf) 387 { 388 struct ctlr_info *h; 389 struct Scsi_Host *shost = class_to_shost(dev); 390 391 h = shost_to_hba(shost); 392 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 393 } 394 395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 396 { 397 return (scsi3addr[3] & 0xC0) == 0x40; 398 } 399 400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", 401 "1(ADM)", "UNKNOWN" 402 }; 403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 404 405 static ssize_t raid_level_show(struct device *dev, 406 struct device_attribute *attr, char *buf) 407 { 408 ssize_t l = 0; 409 unsigned char rlevel; 410 struct ctlr_info *h; 411 struct scsi_device *sdev; 412 struct hpsa_scsi_dev_t *hdev; 413 unsigned long flags; 414 415 sdev = to_scsi_device(dev); 416 h = sdev_to_hba(sdev); 417 spin_lock_irqsave(&h->lock, flags); 418 hdev = sdev->hostdata; 419 if (!hdev) { 420 spin_unlock_irqrestore(&h->lock, flags); 421 return -ENODEV; 422 } 423 424 /* Is this even a logical drive? */ 425 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 426 spin_unlock_irqrestore(&h->lock, flags); 427 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 428 return l; 429 } 430 431 rlevel = hdev->raid_level; 432 spin_unlock_irqrestore(&h->lock, flags); 433 if (rlevel > RAID_UNKNOWN) 434 rlevel = RAID_UNKNOWN; 435 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 436 return l; 437 } 438 439 static ssize_t lunid_show(struct device *dev, 440 struct device_attribute *attr, char *buf) 441 { 442 struct ctlr_info *h; 443 struct scsi_device *sdev; 444 struct hpsa_scsi_dev_t *hdev; 445 unsigned long flags; 446 unsigned char lunid[8]; 447 448 sdev = to_scsi_device(dev); 449 h = sdev_to_hba(sdev); 450 spin_lock_irqsave(&h->lock, flags); 451 hdev = sdev->hostdata; 452 if (!hdev) { 453 spin_unlock_irqrestore(&h->lock, flags); 454 return -ENODEV; 455 } 456 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 457 spin_unlock_irqrestore(&h->lock, flags); 458 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 459 lunid[0], lunid[1], lunid[2], lunid[3], 460 lunid[4], lunid[5], lunid[6], lunid[7]); 461 } 462 463 static ssize_t unique_id_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct ctlr_info *h; 467 struct scsi_device *sdev; 468 struct hpsa_scsi_dev_t *hdev; 469 unsigned long flags; 470 unsigned char sn[16]; 471 472 sdev = to_scsi_device(dev); 473 h = sdev_to_hba(sdev); 474 spin_lock_irqsave(&h->lock, flags); 475 hdev = sdev->hostdata; 476 if (!hdev) { 477 spin_unlock_irqrestore(&h->lock, flags); 478 return -ENODEV; 479 } 480 memcpy(sn, hdev->device_id, sizeof(sn)); 481 spin_unlock_irqrestore(&h->lock, flags); 482 return snprintf(buf, 16 * 2 + 2, 483 "%02X%02X%02X%02X%02X%02X%02X%02X" 484 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 485 sn[0], sn[1], sn[2], sn[3], 486 sn[4], sn[5], sn[6], sn[7], 487 sn[8], sn[9], sn[10], sn[11], 488 sn[12], sn[13], sn[14], sn[15]); 489 } 490 491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 495 static DEVICE_ATTR(firmware_revision, S_IRUGO, 496 host_show_firmware_revision, NULL); 497 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 498 host_show_commands_outstanding, NULL); 499 static DEVICE_ATTR(transport_mode, S_IRUGO, 500 host_show_transport_mode, NULL); 501 static DEVICE_ATTR(resettable, S_IRUGO, 502 host_show_resettable, NULL); 503 504 static struct device_attribute *hpsa_sdev_attrs[] = { 505 &dev_attr_raid_level, 506 &dev_attr_lunid, 507 &dev_attr_unique_id, 508 NULL, 509 }; 510 511 static struct device_attribute *hpsa_shost_attrs[] = { 512 &dev_attr_rescan, 513 &dev_attr_firmware_revision, 514 &dev_attr_commands_outstanding, 515 &dev_attr_transport_mode, 516 &dev_attr_resettable, 517 NULL, 518 }; 519 520 static struct scsi_host_template hpsa_driver_template = { 521 .module = THIS_MODULE, 522 .name = HPSA, 523 .proc_name = HPSA, 524 .queuecommand = hpsa_scsi_queue_command, 525 .scan_start = hpsa_scan_start, 526 .scan_finished = hpsa_scan_finished, 527 .change_queue_depth = hpsa_change_queue_depth, 528 .this_id = -1, 529 .use_clustering = ENABLE_CLUSTERING, 530 .eh_abort_handler = hpsa_eh_abort_handler, 531 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 532 .ioctl = hpsa_ioctl, 533 .slave_alloc = hpsa_slave_alloc, 534 .slave_destroy = hpsa_slave_destroy, 535 #ifdef CONFIG_COMPAT 536 .compat_ioctl = hpsa_compat_ioctl, 537 #endif 538 .sdev_attrs = hpsa_sdev_attrs, 539 .shost_attrs = hpsa_shost_attrs, 540 .max_sectors = 8192, 541 }; 542 543 544 /* Enqueuing and dequeuing functions for cmdlists. */ 545 static inline void addQ(struct list_head *list, struct CommandList *c) 546 { 547 list_add_tail(&c->list, list); 548 } 549 550 static inline u32 next_command(struct ctlr_info *h, u8 q) 551 { 552 u32 a; 553 struct reply_pool *rq = &h->reply_queue[q]; 554 unsigned long flags; 555 556 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 557 return h->access.command_completed(h, q); 558 559 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { 560 a = rq->head[rq->current_entry]; 561 rq->current_entry++; 562 spin_lock_irqsave(&h->lock, flags); 563 h->commands_outstanding--; 564 spin_unlock_irqrestore(&h->lock, flags); 565 } else { 566 a = FIFO_EMPTY; 567 } 568 /* Check for wraparound */ 569 if (rq->current_entry == h->max_commands) { 570 rq->current_entry = 0; 571 rq->wraparound ^= 1; 572 } 573 return a; 574 } 575 576 /* set_performant_mode: Modify the tag for cciss performant 577 * set bit 0 for pull model, bits 3-1 for block fetch 578 * register number 579 */ 580 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) 581 { 582 if (likely(h->transMethod & CFGTBL_Trans_Performant)) { 583 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 584 if (likely(h->msix_vector)) 585 c->Header.ReplyQueue = 586 smp_processor_id() % h->nreply_queues; 587 } 588 } 589 590 static int is_firmware_flash_cmd(u8 *cdb) 591 { 592 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; 593 } 594 595 /* 596 * During firmware flash, the heartbeat register may not update as frequently 597 * as it should. So we dial down lockup detection during firmware flash. and 598 * dial it back up when firmware flash completes. 599 */ 600 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) 601 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) 602 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, 603 struct CommandList *c) 604 { 605 if (!is_firmware_flash_cmd(c->Request.CDB)) 606 return; 607 atomic_inc(&h->firmware_flash_in_progress); 608 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; 609 } 610 611 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, 612 struct CommandList *c) 613 { 614 if (is_firmware_flash_cmd(c->Request.CDB) && 615 atomic_dec_and_test(&h->firmware_flash_in_progress)) 616 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 617 } 618 619 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 620 struct CommandList *c) 621 { 622 unsigned long flags; 623 624 set_performant_mode(h, c); 625 dial_down_lockup_detection_during_fw_flash(h, c); 626 spin_lock_irqsave(&h->lock, flags); 627 addQ(&h->reqQ, c); 628 h->Qdepth++; 629 spin_unlock_irqrestore(&h->lock, flags); 630 start_io(h); 631 } 632 633 static inline void removeQ(struct CommandList *c) 634 { 635 if (WARN_ON(list_empty(&c->list))) 636 return; 637 list_del_init(&c->list); 638 } 639 640 static inline int is_hba_lunid(unsigned char scsi3addr[]) 641 { 642 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 643 } 644 645 static inline int is_scsi_rev_5(struct ctlr_info *h) 646 { 647 if (!h->hba_inquiry_data) 648 return 0; 649 if ((h->hba_inquiry_data[2] & 0x07) == 5) 650 return 1; 651 return 0; 652 } 653 654 static int hpsa_find_target_lun(struct ctlr_info *h, 655 unsigned char scsi3addr[], int bus, int *target, int *lun) 656 { 657 /* finds an unused bus, target, lun for a new physical device 658 * assumes h->devlock is held 659 */ 660 int i, found = 0; 661 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); 662 663 bitmap_zero(lun_taken, HPSA_MAX_DEVICES); 664 665 for (i = 0; i < h->ndevices; i++) { 666 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 667 __set_bit(h->dev[i]->target, lun_taken); 668 } 669 670 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); 671 if (i < HPSA_MAX_DEVICES) { 672 /* *bus = 1; */ 673 *target = i; 674 *lun = 0; 675 found = 1; 676 } 677 return !found; 678 } 679 680 /* Add an entry into h->dev[] array. */ 681 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 682 struct hpsa_scsi_dev_t *device, 683 struct hpsa_scsi_dev_t *added[], int *nadded) 684 { 685 /* assumes h->devlock is held */ 686 int n = h->ndevices; 687 int i; 688 unsigned char addr1[8], addr2[8]; 689 struct hpsa_scsi_dev_t *sd; 690 691 if (n >= HPSA_MAX_DEVICES) { 692 dev_err(&h->pdev->dev, "too many devices, some will be " 693 "inaccessible.\n"); 694 return -1; 695 } 696 697 /* physical devices do not have lun or target assigned until now. */ 698 if (device->lun != -1) 699 /* Logical device, lun is already assigned. */ 700 goto lun_assigned; 701 702 /* If this device a non-zero lun of a multi-lun device 703 * byte 4 of the 8-byte LUN addr will contain the logical 704 * unit no, zero otherise. 705 */ 706 if (device->scsi3addr[4] == 0) { 707 /* This is not a non-zero lun of a multi-lun device */ 708 if (hpsa_find_target_lun(h, device->scsi3addr, 709 device->bus, &device->target, &device->lun) != 0) 710 return -1; 711 goto lun_assigned; 712 } 713 714 /* This is a non-zero lun of a multi-lun device. 715 * Search through our list and find the device which 716 * has the same 8 byte LUN address, excepting byte 4. 717 * Assign the same bus and target for this new LUN. 718 * Use the logical unit number from the firmware. 719 */ 720 memcpy(addr1, device->scsi3addr, 8); 721 addr1[4] = 0; 722 for (i = 0; i < n; i++) { 723 sd = h->dev[i]; 724 memcpy(addr2, sd->scsi3addr, 8); 725 addr2[4] = 0; 726 /* differ only in byte 4? */ 727 if (memcmp(addr1, addr2, 8) == 0) { 728 device->bus = sd->bus; 729 device->target = sd->target; 730 device->lun = device->scsi3addr[4]; 731 break; 732 } 733 } 734 if (device->lun == -1) { 735 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 736 " suspect firmware bug or unsupported hardware " 737 "configuration.\n"); 738 return -1; 739 } 740 741 lun_assigned: 742 743 h->dev[n] = device; 744 h->ndevices++; 745 added[*nadded] = device; 746 (*nadded)++; 747 748 /* initially, (before registering with scsi layer) we don't 749 * know our hostno and we don't want to print anything first 750 * time anyway (the scsi layer's inquiries will show that info) 751 */ 752 /* if (hostno != -1) */ 753 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 754 scsi_device_type(device->devtype), hostno, 755 device->bus, device->target, device->lun); 756 return 0; 757 } 758 759 /* Update an entry in h->dev[] array. */ 760 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno, 761 int entry, struct hpsa_scsi_dev_t *new_entry) 762 { 763 /* assumes h->devlock is held */ 764 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 765 766 /* Raid level changed. */ 767 h->dev[entry]->raid_level = new_entry->raid_level; 768 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n", 769 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 770 new_entry->target, new_entry->lun); 771 } 772 773 /* Replace an entry from h->dev[] array. */ 774 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 775 int entry, struct hpsa_scsi_dev_t *new_entry, 776 struct hpsa_scsi_dev_t *added[], int *nadded, 777 struct hpsa_scsi_dev_t *removed[], int *nremoved) 778 { 779 /* assumes h->devlock is held */ 780 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 781 removed[*nremoved] = h->dev[entry]; 782 (*nremoved)++; 783 784 /* 785 * New physical devices won't have target/lun assigned yet 786 * so we need to preserve the values in the slot we are replacing. 787 */ 788 if (new_entry->target == -1) { 789 new_entry->target = h->dev[entry]->target; 790 new_entry->lun = h->dev[entry]->lun; 791 } 792 793 h->dev[entry] = new_entry; 794 added[*nadded] = new_entry; 795 (*nadded)++; 796 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", 797 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 798 new_entry->target, new_entry->lun); 799 } 800 801 /* Remove an entry from h->dev[] array. */ 802 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 803 struct hpsa_scsi_dev_t *removed[], int *nremoved) 804 { 805 /* assumes h->devlock is held */ 806 int i; 807 struct hpsa_scsi_dev_t *sd; 808 809 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 810 811 sd = h->dev[entry]; 812 removed[*nremoved] = h->dev[entry]; 813 (*nremoved)++; 814 815 for (i = entry; i < h->ndevices-1; i++) 816 h->dev[i] = h->dev[i+1]; 817 h->ndevices--; 818 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 819 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 820 sd->lun); 821 } 822 823 #define SCSI3ADDR_EQ(a, b) ( \ 824 (a)[7] == (b)[7] && \ 825 (a)[6] == (b)[6] && \ 826 (a)[5] == (b)[5] && \ 827 (a)[4] == (b)[4] && \ 828 (a)[3] == (b)[3] && \ 829 (a)[2] == (b)[2] && \ 830 (a)[1] == (b)[1] && \ 831 (a)[0] == (b)[0]) 832 833 static void fixup_botched_add(struct ctlr_info *h, 834 struct hpsa_scsi_dev_t *added) 835 { 836 /* called when scsi_add_device fails in order to re-adjust 837 * h->dev[] to match the mid layer's view. 838 */ 839 unsigned long flags; 840 int i, j; 841 842 spin_lock_irqsave(&h->lock, flags); 843 for (i = 0; i < h->ndevices; i++) { 844 if (h->dev[i] == added) { 845 for (j = i; j < h->ndevices-1; j++) 846 h->dev[j] = h->dev[j+1]; 847 h->ndevices--; 848 break; 849 } 850 } 851 spin_unlock_irqrestore(&h->lock, flags); 852 kfree(added); 853 } 854 855 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 856 struct hpsa_scsi_dev_t *dev2) 857 { 858 /* we compare everything except lun and target as these 859 * are not yet assigned. Compare parts likely 860 * to differ first 861 */ 862 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 863 sizeof(dev1->scsi3addr)) != 0) 864 return 0; 865 if (memcmp(dev1->device_id, dev2->device_id, 866 sizeof(dev1->device_id)) != 0) 867 return 0; 868 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 869 return 0; 870 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 871 return 0; 872 if (dev1->devtype != dev2->devtype) 873 return 0; 874 if (dev1->bus != dev2->bus) 875 return 0; 876 return 1; 877 } 878 879 static inline int device_updated(struct hpsa_scsi_dev_t *dev1, 880 struct hpsa_scsi_dev_t *dev2) 881 { 882 /* Device attributes that can change, but don't mean 883 * that the device is a different device, nor that the OS 884 * needs to be told anything about the change. 885 */ 886 if (dev1->raid_level != dev2->raid_level) 887 return 1; 888 return 0; 889 } 890 891 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 892 * and return needle location in *index. If scsi3addr matches, but not 893 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 894 * location in *index. 895 * In the case of a minor device attribute change, such as RAID level, just 896 * return DEVICE_UPDATED, along with the updated device's location in index. 897 * If needle not found, return DEVICE_NOT_FOUND. 898 */ 899 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 900 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 901 int *index) 902 { 903 int i; 904 #define DEVICE_NOT_FOUND 0 905 #define DEVICE_CHANGED 1 906 #define DEVICE_SAME 2 907 #define DEVICE_UPDATED 3 908 for (i = 0; i < haystack_size; i++) { 909 if (haystack[i] == NULL) /* previously removed. */ 910 continue; 911 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 912 *index = i; 913 if (device_is_the_same(needle, haystack[i])) { 914 if (device_updated(needle, haystack[i])) 915 return DEVICE_UPDATED; 916 return DEVICE_SAME; 917 } else { 918 return DEVICE_CHANGED; 919 } 920 } 921 } 922 *index = -1; 923 return DEVICE_NOT_FOUND; 924 } 925 926 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 927 struct hpsa_scsi_dev_t *sd[], int nsds) 928 { 929 /* sd contains scsi3 addresses and devtypes, and inquiry 930 * data. This function takes what's in sd to be the current 931 * reality and updates h->dev[] to reflect that reality. 932 */ 933 int i, entry, device_change, changes = 0; 934 struct hpsa_scsi_dev_t *csd; 935 unsigned long flags; 936 struct hpsa_scsi_dev_t **added, **removed; 937 int nadded, nremoved; 938 struct Scsi_Host *sh = NULL; 939 940 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); 941 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); 942 943 if (!added || !removed) { 944 dev_warn(&h->pdev->dev, "out of memory in " 945 "adjust_hpsa_scsi_table\n"); 946 goto free_and_out; 947 } 948 949 spin_lock_irqsave(&h->devlock, flags); 950 951 /* find any devices in h->dev[] that are not in 952 * sd[] and remove them from h->dev[], and for any 953 * devices which have changed, remove the old device 954 * info and add the new device info. 955 * If minor device attributes change, just update 956 * the existing device structure. 957 */ 958 i = 0; 959 nremoved = 0; 960 nadded = 0; 961 while (i < h->ndevices) { 962 csd = h->dev[i]; 963 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 964 if (device_change == DEVICE_NOT_FOUND) { 965 changes++; 966 hpsa_scsi_remove_entry(h, hostno, i, 967 removed, &nremoved); 968 continue; /* remove ^^^, hence i not incremented */ 969 } else if (device_change == DEVICE_CHANGED) { 970 changes++; 971 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 972 added, &nadded, removed, &nremoved); 973 /* Set it to NULL to prevent it from being freed 974 * at the bottom of hpsa_update_scsi_devices() 975 */ 976 sd[entry] = NULL; 977 } else if (device_change == DEVICE_UPDATED) { 978 hpsa_scsi_update_entry(h, hostno, i, sd[entry]); 979 } 980 i++; 981 } 982 983 /* Now, make sure every device listed in sd[] is also 984 * listed in h->dev[], adding them if they aren't found 985 */ 986 987 for (i = 0; i < nsds; i++) { 988 if (!sd[i]) /* if already added above. */ 989 continue; 990 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 991 h->ndevices, &entry); 992 if (device_change == DEVICE_NOT_FOUND) { 993 changes++; 994 if (hpsa_scsi_add_entry(h, hostno, sd[i], 995 added, &nadded) != 0) 996 break; 997 sd[i] = NULL; /* prevent from being freed later. */ 998 } else if (device_change == DEVICE_CHANGED) { 999 /* should never happen... */ 1000 changes++; 1001 dev_warn(&h->pdev->dev, 1002 "device unexpectedly changed.\n"); 1003 /* but if it does happen, we just ignore that device */ 1004 } 1005 } 1006 spin_unlock_irqrestore(&h->devlock, flags); 1007 1008 /* Don't notify scsi mid layer of any changes the first time through 1009 * (or if there are no changes) scsi_scan_host will do it later the 1010 * first time through. 1011 */ 1012 if (hostno == -1 || !changes) 1013 goto free_and_out; 1014 1015 sh = h->scsi_host; 1016 /* Notify scsi mid layer of any removed devices */ 1017 for (i = 0; i < nremoved; i++) { 1018 struct scsi_device *sdev = 1019 scsi_device_lookup(sh, removed[i]->bus, 1020 removed[i]->target, removed[i]->lun); 1021 if (sdev != NULL) { 1022 scsi_remove_device(sdev); 1023 scsi_device_put(sdev); 1024 } else { 1025 /* We don't expect to get here. 1026 * future cmds to this device will get selection 1027 * timeout as if the device was gone. 1028 */ 1029 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 1030 " for removal.", hostno, removed[i]->bus, 1031 removed[i]->target, removed[i]->lun); 1032 } 1033 kfree(removed[i]); 1034 removed[i] = NULL; 1035 } 1036 1037 /* Notify scsi mid layer of any added devices */ 1038 for (i = 0; i < nadded; i++) { 1039 if (scsi_add_device(sh, added[i]->bus, 1040 added[i]->target, added[i]->lun) == 0) 1041 continue; 1042 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 1043 "device not added.\n", hostno, added[i]->bus, 1044 added[i]->target, added[i]->lun); 1045 /* now we have to remove it from h->dev, 1046 * since it didn't get added to scsi mid layer 1047 */ 1048 fixup_botched_add(h, added[i]); 1049 } 1050 1051 free_and_out: 1052 kfree(added); 1053 kfree(removed); 1054 } 1055 1056 /* 1057 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * 1058 * Assume's h->devlock is held. 1059 */ 1060 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 1061 int bus, int target, int lun) 1062 { 1063 int i; 1064 struct hpsa_scsi_dev_t *sd; 1065 1066 for (i = 0; i < h->ndevices; i++) { 1067 sd = h->dev[i]; 1068 if (sd->bus == bus && sd->target == target && sd->lun == lun) 1069 return sd; 1070 } 1071 return NULL; 1072 } 1073 1074 /* link sdev->hostdata to our per-device structure. */ 1075 static int hpsa_slave_alloc(struct scsi_device *sdev) 1076 { 1077 struct hpsa_scsi_dev_t *sd; 1078 unsigned long flags; 1079 struct ctlr_info *h; 1080 1081 h = sdev_to_hba(sdev); 1082 spin_lock_irqsave(&h->devlock, flags); 1083 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 1084 sdev_id(sdev), sdev->lun); 1085 if (sd != NULL) 1086 sdev->hostdata = sd; 1087 spin_unlock_irqrestore(&h->devlock, flags); 1088 return 0; 1089 } 1090 1091 static void hpsa_slave_destroy(struct scsi_device *sdev) 1092 { 1093 /* nothing to do. */ 1094 } 1095 1096 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 1097 { 1098 int i; 1099 1100 if (!h->cmd_sg_list) 1101 return; 1102 for (i = 0; i < h->nr_cmds; i++) { 1103 kfree(h->cmd_sg_list[i]); 1104 h->cmd_sg_list[i] = NULL; 1105 } 1106 kfree(h->cmd_sg_list); 1107 h->cmd_sg_list = NULL; 1108 } 1109 1110 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) 1111 { 1112 int i; 1113 1114 if (h->chainsize <= 0) 1115 return 0; 1116 1117 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 1118 GFP_KERNEL); 1119 if (!h->cmd_sg_list) 1120 return -ENOMEM; 1121 for (i = 0; i < h->nr_cmds; i++) { 1122 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 1123 h->chainsize, GFP_KERNEL); 1124 if (!h->cmd_sg_list[i]) 1125 goto clean; 1126 } 1127 return 0; 1128 1129 clean: 1130 hpsa_free_sg_chain_blocks(h); 1131 return -ENOMEM; 1132 } 1133 1134 static void hpsa_map_sg_chain_block(struct ctlr_info *h, 1135 struct CommandList *c) 1136 { 1137 struct SGDescriptor *chain_sg, *chain_block; 1138 u64 temp64; 1139 1140 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1141 chain_block = h->cmd_sg_list[c->cmdindex]; 1142 chain_sg->Ext = HPSA_SG_CHAIN; 1143 chain_sg->Len = sizeof(*chain_sg) * 1144 (c->Header.SGTotal - h->max_cmd_sg_entries); 1145 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, 1146 PCI_DMA_TODEVICE); 1147 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); 1148 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); 1149 } 1150 1151 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 1152 struct CommandList *c) 1153 { 1154 struct SGDescriptor *chain_sg; 1155 union u64bit temp64; 1156 1157 if (c->Header.SGTotal <= h->max_cmd_sg_entries) 1158 return; 1159 1160 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1161 temp64.val32.lower = chain_sg->Addr.lower; 1162 temp64.val32.upper = chain_sg->Addr.upper; 1163 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); 1164 } 1165 1166 static void complete_scsi_command(struct CommandList *cp) 1167 { 1168 struct scsi_cmnd *cmd; 1169 struct ctlr_info *h; 1170 struct ErrorInfo *ei; 1171 1172 unsigned char sense_key; 1173 unsigned char asc; /* additional sense code */ 1174 unsigned char ascq; /* additional sense code qualifier */ 1175 unsigned long sense_data_size; 1176 1177 ei = cp->err_info; 1178 cmd = (struct scsi_cmnd *) cp->scsi_cmd; 1179 h = cp->h; 1180 1181 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 1182 if (cp->Header.SGTotal > h->max_cmd_sg_entries) 1183 hpsa_unmap_sg_chain_block(h, cp); 1184 1185 cmd->result = (DID_OK << 16); /* host byte */ 1186 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 1187 cmd->result |= ei->ScsiStatus; 1188 1189 /* copy the sense data whether we need to or not. */ 1190 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) 1191 sense_data_size = SCSI_SENSE_BUFFERSIZE; 1192 else 1193 sense_data_size = sizeof(ei->SenseInfo); 1194 if (ei->SenseLen < sense_data_size) 1195 sense_data_size = ei->SenseLen; 1196 1197 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 1198 scsi_set_resid(cmd, ei->ResidualCnt); 1199 1200 if (ei->CommandStatus == 0) { 1201 cmd->scsi_done(cmd); 1202 cmd_free(h, cp); 1203 return; 1204 } 1205 1206 /* an error has occurred */ 1207 switch (ei->CommandStatus) { 1208 1209 case CMD_TARGET_STATUS: 1210 if (ei->ScsiStatus) { 1211 /* Get sense key */ 1212 sense_key = 0xf & ei->SenseInfo[2]; 1213 /* Get additional sense code */ 1214 asc = ei->SenseInfo[12]; 1215 /* Get addition sense code qualifier */ 1216 ascq = ei->SenseInfo[13]; 1217 } 1218 1219 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 1220 if (check_for_unit_attention(h, cp)) { 1221 cmd->result = DID_SOFT_ERROR << 16; 1222 break; 1223 } 1224 if (sense_key == ILLEGAL_REQUEST) { 1225 /* 1226 * SCSI REPORT_LUNS is commonly unsupported on 1227 * Smart Array. Suppress noisy complaint. 1228 */ 1229 if (cp->Request.CDB[0] == REPORT_LUNS) 1230 break; 1231 1232 /* If ASC/ASCQ indicate Logical Unit 1233 * Not Supported condition, 1234 */ 1235 if ((asc == 0x25) && (ascq == 0x0)) { 1236 dev_warn(&h->pdev->dev, "cp %p " 1237 "has check condition\n", cp); 1238 break; 1239 } 1240 } 1241 1242 if (sense_key == NOT_READY) { 1243 /* If Sense is Not Ready, Logical Unit 1244 * Not ready, Manual Intervention 1245 * required 1246 */ 1247 if ((asc == 0x04) && (ascq == 0x03)) { 1248 dev_warn(&h->pdev->dev, "cp %p " 1249 "has check condition: unit " 1250 "not ready, manual " 1251 "intervention required\n", cp); 1252 break; 1253 } 1254 } 1255 if (sense_key == ABORTED_COMMAND) { 1256 /* Aborted command is retryable */ 1257 dev_warn(&h->pdev->dev, "cp %p " 1258 "has check condition: aborted command: " 1259 "ASC: 0x%x, ASCQ: 0x%x\n", 1260 cp, asc, ascq); 1261 cmd->result = DID_SOFT_ERROR << 16; 1262 break; 1263 } 1264 /* Must be some other type of check condition */ 1265 dev_dbg(&h->pdev->dev, "cp %p has check condition: " 1266 "unknown type: " 1267 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1268 "Returning result: 0x%x, " 1269 "cmd=[%02x %02x %02x %02x %02x " 1270 "%02x %02x %02x %02x %02x %02x " 1271 "%02x %02x %02x %02x %02x]\n", 1272 cp, sense_key, asc, ascq, 1273 cmd->result, 1274 cmd->cmnd[0], cmd->cmnd[1], 1275 cmd->cmnd[2], cmd->cmnd[3], 1276 cmd->cmnd[4], cmd->cmnd[5], 1277 cmd->cmnd[6], cmd->cmnd[7], 1278 cmd->cmnd[8], cmd->cmnd[9], 1279 cmd->cmnd[10], cmd->cmnd[11], 1280 cmd->cmnd[12], cmd->cmnd[13], 1281 cmd->cmnd[14], cmd->cmnd[15]); 1282 break; 1283 } 1284 1285 1286 /* Problem was not a check condition 1287 * Pass it up to the upper layers... 1288 */ 1289 if (ei->ScsiStatus) { 1290 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1291 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1292 "Returning result: 0x%x\n", 1293 cp, ei->ScsiStatus, 1294 sense_key, asc, ascq, 1295 cmd->result); 1296 } else { /* scsi status is zero??? How??? */ 1297 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1298 "Returning no connection.\n", cp), 1299 1300 /* Ordinarily, this case should never happen, 1301 * but there is a bug in some released firmware 1302 * revisions that allows it to happen if, for 1303 * example, a 4100 backplane loses power and 1304 * the tape drive is in it. We assume that 1305 * it's a fatal error of some kind because we 1306 * can't show that it wasn't. We will make it 1307 * look like selection timeout since that is 1308 * the most common reason for this to occur, 1309 * and it's severe enough. 1310 */ 1311 1312 cmd->result = DID_NO_CONNECT << 16; 1313 } 1314 break; 1315 1316 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1317 break; 1318 case CMD_DATA_OVERRUN: 1319 dev_warn(&h->pdev->dev, "cp %p has" 1320 " completed with data overrun " 1321 "reported\n", cp); 1322 break; 1323 case CMD_INVALID: { 1324 /* print_bytes(cp, sizeof(*cp), 1, 0); 1325 print_cmd(cp); */ 1326 /* We get CMD_INVALID if you address a non-existent device 1327 * instead of a selection timeout (no response). You will 1328 * see this if you yank out a drive, then try to access it. 1329 * This is kind of a shame because it means that any other 1330 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1331 * missing target. */ 1332 cmd->result = DID_NO_CONNECT << 16; 1333 } 1334 break; 1335 case CMD_PROTOCOL_ERR: 1336 cmd->result = DID_ERROR << 16; 1337 dev_warn(&h->pdev->dev, "cp %p has " 1338 "protocol error\n", cp); 1339 break; 1340 case CMD_HARDWARE_ERR: 1341 cmd->result = DID_ERROR << 16; 1342 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); 1343 break; 1344 case CMD_CONNECTION_LOST: 1345 cmd->result = DID_ERROR << 16; 1346 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); 1347 break; 1348 case CMD_ABORTED: 1349 cmd->result = DID_ABORT << 16; 1350 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", 1351 cp, ei->ScsiStatus); 1352 break; 1353 case CMD_ABORT_FAILED: 1354 cmd->result = DID_ERROR << 16; 1355 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); 1356 break; 1357 case CMD_UNSOLICITED_ABORT: 1358 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ 1359 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited " 1360 "abort\n", cp); 1361 break; 1362 case CMD_TIMEOUT: 1363 cmd->result = DID_TIME_OUT << 16; 1364 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); 1365 break; 1366 case CMD_UNABORTABLE: 1367 cmd->result = DID_ERROR << 16; 1368 dev_warn(&h->pdev->dev, "Command unabortable\n"); 1369 break; 1370 default: 1371 cmd->result = DID_ERROR << 16; 1372 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1373 cp, ei->CommandStatus); 1374 } 1375 cmd->scsi_done(cmd); 1376 cmd_free(h, cp); 1377 } 1378 1379 static void hpsa_pci_unmap(struct pci_dev *pdev, 1380 struct CommandList *c, int sg_used, int data_direction) 1381 { 1382 int i; 1383 union u64bit addr64; 1384 1385 for (i = 0; i < sg_used; i++) { 1386 addr64.val32.lower = c->SG[i].Addr.lower; 1387 addr64.val32.upper = c->SG[i].Addr.upper; 1388 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, 1389 data_direction); 1390 } 1391 } 1392 1393 static void hpsa_map_one(struct pci_dev *pdev, 1394 struct CommandList *cp, 1395 unsigned char *buf, 1396 size_t buflen, 1397 int data_direction) 1398 { 1399 u64 addr64; 1400 1401 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1402 cp->Header.SGList = 0; 1403 cp->Header.SGTotal = 0; 1404 return; 1405 } 1406 1407 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); 1408 cp->SG[0].Addr.lower = 1409 (u32) (addr64 & (u64) 0x00000000FFFFFFFF); 1410 cp->SG[0].Addr.upper = 1411 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); 1412 cp->SG[0].Len = buflen; 1413 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ 1414 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ 1415 } 1416 1417 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 1418 struct CommandList *c) 1419 { 1420 DECLARE_COMPLETION_ONSTACK(wait); 1421 1422 c->waiting = &wait; 1423 enqueue_cmd_and_start_io(h, c); 1424 wait_for_completion(&wait); 1425 } 1426 1427 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h, 1428 struct CommandList *c) 1429 { 1430 unsigned long flags; 1431 1432 /* If controller lockup detected, fake a hardware error. */ 1433 spin_lock_irqsave(&h->lock, flags); 1434 if (unlikely(h->lockup_detected)) { 1435 spin_unlock_irqrestore(&h->lock, flags); 1436 c->err_info->CommandStatus = CMD_HARDWARE_ERR; 1437 } else { 1438 spin_unlock_irqrestore(&h->lock, flags); 1439 hpsa_scsi_do_simple_cmd_core(h, c); 1440 } 1441 } 1442 1443 #define MAX_DRIVER_CMD_RETRIES 25 1444 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 1445 struct CommandList *c, int data_direction) 1446 { 1447 int backoff_time = 10, retry_count = 0; 1448 1449 do { 1450 memset(c->err_info, 0, sizeof(*c->err_info)); 1451 hpsa_scsi_do_simple_cmd_core(h, c); 1452 retry_count++; 1453 if (retry_count > 3) { 1454 msleep(backoff_time); 1455 if (backoff_time < 1000) 1456 backoff_time *= 2; 1457 } 1458 } while ((check_for_unit_attention(h, c) || 1459 check_for_busy(h, c)) && 1460 retry_count <= MAX_DRIVER_CMD_RETRIES); 1461 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 1462 } 1463 1464 static void hpsa_scsi_interpret_error(struct CommandList *cp) 1465 { 1466 struct ErrorInfo *ei; 1467 struct device *d = &cp->h->pdev->dev; 1468 1469 ei = cp->err_info; 1470 switch (ei->CommandStatus) { 1471 case CMD_TARGET_STATUS: 1472 dev_warn(d, "cmd %p has completed with errors\n", cp); 1473 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, 1474 ei->ScsiStatus); 1475 if (ei->ScsiStatus == 0) 1476 dev_warn(d, "SCSI status is abnormally zero. " 1477 "(probably indicates selection timeout " 1478 "reported incorrectly due to a known " 1479 "firmware bug, circa July, 2001.)\n"); 1480 break; 1481 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1482 dev_info(d, "UNDERRUN\n"); 1483 break; 1484 case CMD_DATA_OVERRUN: 1485 dev_warn(d, "cp %p has completed with data overrun\n", cp); 1486 break; 1487 case CMD_INVALID: { 1488 /* controller unfortunately reports SCSI passthru's 1489 * to non-existent targets as invalid commands. 1490 */ 1491 dev_warn(d, "cp %p is reported invalid (probably means " 1492 "target device no longer present)\n", cp); 1493 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); 1494 print_cmd(cp); */ 1495 } 1496 break; 1497 case CMD_PROTOCOL_ERR: 1498 dev_warn(d, "cp %p has protocol error \n", cp); 1499 break; 1500 case CMD_HARDWARE_ERR: 1501 /* cmd->result = DID_ERROR << 16; */ 1502 dev_warn(d, "cp %p had hardware error\n", cp); 1503 break; 1504 case CMD_CONNECTION_LOST: 1505 dev_warn(d, "cp %p had connection lost\n", cp); 1506 break; 1507 case CMD_ABORTED: 1508 dev_warn(d, "cp %p was aborted\n", cp); 1509 break; 1510 case CMD_ABORT_FAILED: 1511 dev_warn(d, "cp %p reports abort failed\n", cp); 1512 break; 1513 case CMD_UNSOLICITED_ABORT: 1514 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); 1515 break; 1516 case CMD_TIMEOUT: 1517 dev_warn(d, "cp %p timed out\n", cp); 1518 break; 1519 case CMD_UNABORTABLE: 1520 dev_warn(d, "Command unabortable\n"); 1521 break; 1522 default: 1523 dev_warn(d, "cp %p returned unknown status %x\n", cp, 1524 ei->CommandStatus); 1525 } 1526 } 1527 1528 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 1529 unsigned char page, unsigned char *buf, 1530 unsigned char bufsize) 1531 { 1532 int rc = IO_OK; 1533 struct CommandList *c; 1534 struct ErrorInfo *ei; 1535 1536 c = cmd_special_alloc(h); 1537 1538 if (c == NULL) { /* trouble... */ 1539 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1540 return -ENOMEM; 1541 } 1542 1543 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); 1544 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1545 ei = c->err_info; 1546 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 1547 hpsa_scsi_interpret_error(c); 1548 rc = -1; 1549 } 1550 cmd_special_free(h, c); 1551 return rc; 1552 } 1553 1554 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) 1555 { 1556 int rc = IO_OK; 1557 struct CommandList *c; 1558 struct ErrorInfo *ei; 1559 1560 c = cmd_special_alloc(h); 1561 1562 if (c == NULL) { /* trouble... */ 1563 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1564 return -ENOMEM; 1565 } 1566 1567 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); 1568 hpsa_scsi_do_simple_cmd_core(h, c); 1569 /* no unmap needed here because no data xfer. */ 1570 1571 ei = c->err_info; 1572 if (ei->CommandStatus != 0) { 1573 hpsa_scsi_interpret_error(c); 1574 rc = -1; 1575 } 1576 cmd_special_free(h, c); 1577 return rc; 1578 } 1579 1580 static void hpsa_get_raid_level(struct ctlr_info *h, 1581 unsigned char *scsi3addr, unsigned char *raid_level) 1582 { 1583 int rc; 1584 unsigned char *buf; 1585 1586 *raid_level = RAID_UNKNOWN; 1587 buf = kzalloc(64, GFP_KERNEL); 1588 if (!buf) 1589 return; 1590 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); 1591 if (rc == 0) 1592 *raid_level = buf[8]; 1593 if (*raid_level > RAID_UNKNOWN) 1594 *raid_level = RAID_UNKNOWN; 1595 kfree(buf); 1596 return; 1597 } 1598 1599 /* Get the device id from inquiry page 0x83 */ 1600 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 1601 unsigned char *device_id, int buflen) 1602 { 1603 int rc; 1604 unsigned char *buf; 1605 1606 if (buflen > 16) 1607 buflen = 16; 1608 buf = kzalloc(64, GFP_KERNEL); 1609 if (!buf) 1610 return -1; 1611 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); 1612 if (rc == 0) 1613 memcpy(device_id, &buf[8], buflen); 1614 kfree(buf); 1615 return rc != 0; 1616 } 1617 1618 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 1619 struct ReportLUNdata *buf, int bufsize, 1620 int extended_response) 1621 { 1622 int rc = IO_OK; 1623 struct CommandList *c; 1624 unsigned char scsi3addr[8]; 1625 struct ErrorInfo *ei; 1626 1627 c = cmd_special_alloc(h); 1628 if (c == NULL) { /* trouble... */ 1629 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1630 return -1; 1631 } 1632 /* address the controller */ 1633 memset(scsi3addr, 0, sizeof(scsi3addr)); 1634 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 1635 buf, bufsize, 0, scsi3addr, TYPE_CMD); 1636 if (extended_response) 1637 c->Request.CDB[1] = extended_response; 1638 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1639 ei = c->err_info; 1640 if (ei->CommandStatus != 0 && 1641 ei->CommandStatus != CMD_DATA_UNDERRUN) { 1642 hpsa_scsi_interpret_error(c); 1643 rc = -1; 1644 } 1645 cmd_special_free(h, c); 1646 return rc; 1647 } 1648 1649 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 1650 struct ReportLUNdata *buf, 1651 int bufsize, int extended_response) 1652 { 1653 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); 1654 } 1655 1656 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 1657 struct ReportLUNdata *buf, int bufsize) 1658 { 1659 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 1660 } 1661 1662 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 1663 int bus, int target, int lun) 1664 { 1665 device->bus = bus; 1666 device->target = target; 1667 device->lun = lun; 1668 } 1669 1670 static int hpsa_update_device_info(struct ctlr_info *h, 1671 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, 1672 unsigned char *is_OBDR_device) 1673 { 1674 1675 #define OBDR_SIG_OFFSET 43 1676 #define OBDR_TAPE_SIG "$DR-10" 1677 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) 1678 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) 1679 1680 unsigned char *inq_buff; 1681 unsigned char *obdr_sig; 1682 1683 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1684 if (!inq_buff) 1685 goto bail_out; 1686 1687 /* Do an inquiry to the device to see what it is. */ 1688 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 1689 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 1690 /* Inquiry failed (msg printed already) */ 1691 dev_err(&h->pdev->dev, 1692 "hpsa_update_device_info: inquiry failed\n"); 1693 goto bail_out; 1694 } 1695 1696 this_device->devtype = (inq_buff[0] & 0x1f); 1697 memcpy(this_device->scsi3addr, scsi3addr, 8); 1698 memcpy(this_device->vendor, &inq_buff[8], 1699 sizeof(this_device->vendor)); 1700 memcpy(this_device->model, &inq_buff[16], 1701 sizeof(this_device->model)); 1702 memset(this_device->device_id, 0, 1703 sizeof(this_device->device_id)); 1704 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 1705 sizeof(this_device->device_id)); 1706 1707 if (this_device->devtype == TYPE_DISK && 1708 is_logical_dev_addr_mode(scsi3addr)) 1709 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 1710 else 1711 this_device->raid_level = RAID_UNKNOWN; 1712 1713 if (is_OBDR_device) { 1714 /* See if this is a One-Button-Disaster-Recovery device 1715 * by looking for "$DR-10" at offset 43 in inquiry data. 1716 */ 1717 obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; 1718 *is_OBDR_device = (this_device->devtype == TYPE_ROM && 1719 strncmp(obdr_sig, OBDR_TAPE_SIG, 1720 OBDR_SIG_LEN) == 0); 1721 } 1722 1723 kfree(inq_buff); 1724 return 0; 1725 1726 bail_out: 1727 kfree(inq_buff); 1728 return 1; 1729 } 1730 1731 static unsigned char *ext_target_model[] = { 1732 "MSA2012", 1733 "MSA2024", 1734 "MSA2312", 1735 "MSA2324", 1736 "P2000 G3 SAS", 1737 NULL, 1738 }; 1739 1740 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1741 { 1742 int i; 1743 1744 for (i = 0; ext_target_model[i]; i++) 1745 if (strncmp(device->model, ext_target_model[i], 1746 strlen(ext_target_model[i])) == 0) 1747 return 1; 1748 return 0; 1749 } 1750 1751 /* Helper function to assign bus, target, lun mapping of devices. 1752 * Puts non-external target logical volumes on bus 0, external target logical 1753 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 1754 * Logical drive target and lun are assigned at this time, but 1755 * physical device lun and target assignment are deferred (assigned 1756 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 1757 */ 1758 static void figure_bus_target_lun(struct ctlr_info *h, 1759 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) 1760 { 1761 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1762 1763 if (!is_logical_dev_addr_mode(lunaddrbytes)) { 1764 /* physical device, target and lun filled in later */ 1765 if (is_hba_lunid(lunaddrbytes)) 1766 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff); 1767 else 1768 /* defer target, lun assignment for physical devices */ 1769 hpsa_set_bus_target_lun(device, 2, -1, -1); 1770 return; 1771 } 1772 /* It's a logical device */ 1773 if (is_ext_target(h, device)) { 1774 /* external target way, put logicals on bus 1 1775 * and match target/lun numbers box 1776 * reports, other smart array, bus 0, target 0, match lunid 1777 */ 1778 hpsa_set_bus_target_lun(device, 1779 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff); 1780 return; 1781 } 1782 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff); 1783 } 1784 1785 /* 1786 * If there is no lun 0 on a target, linux won't find any devices. 1787 * For the external targets (arrays), we have to manually detect the enclosure 1788 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 1789 * it for some reason. *tmpdevice is the target we're adding, 1790 * this_device is a pointer into the current element of currentsd[] 1791 * that we're building up in update_scsi_devices(), below. 1792 * lunzerobits is a bitmap that tracks which targets already have a 1793 * lun 0 assigned. 1794 * Returns 1 if an enclosure was added, 0 if not. 1795 */ 1796 static int add_ext_target_dev(struct ctlr_info *h, 1797 struct hpsa_scsi_dev_t *tmpdevice, 1798 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 1799 unsigned long lunzerobits[], int *n_ext_target_devs) 1800 { 1801 unsigned char scsi3addr[8]; 1802 1803 if (test_bit(tmpdevice->target, lunzerobits)) 1804 return 0; /* There is already a lun 0 on this target. */ 1805 1806 if (!is_logical_dev_addr_mode(lunaddrbytes)) 1807 return 0; /* It's the logical targets that may lack lun 0. */ 1808 1809 if (!is_ext_target(h, tmpdevice)) 1810 return 0; /* Only external target devices have this problem. */ 1811 1812 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */ 1813 return 0; 1814 1815 memset(scsi3addr, 0, 8); 1816 scsi3addr[3] = tmpdevice->target; 1817 if (is_hba_lunid(scsi3addr)) 1818 return 0; /* Don't add the RAID controller here. */ 1819 1820 if (is_scsi_rev_5(h)) 1821 return 0; /* p1210m doesn't need to do this. */ 1822 1823 if (*n_ext_target_devs >= MAX_EXT_TARGETS) { 1824 dev_warn(&h->pdev->dev, "Maximum number of external " 1825 "target devices exceeded. Check your hardware " 1826 "configuration."); 1827 return 0; 1828 } 1829 1830 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL)) 1831 return 0; 1832 (*n_ext_target_devs)++; 1833 hpsa_set_bus_target_lun(this_device, 1834 tmpdevice->bus, tmpdevice->target, 0); 1835 set_bit(tmpdevice->target, lunzerobits); 1836 return 1; 1837 } 1838 1839 /* 1840 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 1841 * logdev. The number of luns in physdev and logdev are returned in 1842 * *nphysicals and *nlogicals, respectively. 1843 * Returns 0 on success, -1 otherwise. 1844 */ 1845 static int hpsa_gather_lun_info(struct ctlr_info *h, 1846 int reportlunsize, 1847 struct ReportLUNdata *physdev, u32 *nphysicals, 1848 struct ReportLUNdata *logdev, u32 *nlogicals) 1849 { 1850 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { 1851 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 1852 return -1; 1853 } 1854 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; 1855 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 1856 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." 1857 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1858 *nphysicals - HPSA_MAX_PHYS_LUN); 1859 *nphysicals = HPSA_MAX_PHYS_LUN; 1860 } 1861 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { 1862 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 1863 return -1; 1864 } 1865 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 1866 /* Reject Logicals in excess of our max capability. */ 1867 if (*nlogicals > HPSA_MAX_LUN) { 1868 dev_warn(&h->pdev->dev, 1869 "maximum logical LUNs (%d) exceeded. " 1870 "%d LUNs ignored.\n", HPSA_MAX_LUN, 1871 *nlogicals - HPSA_MAX_LUN); 1872 *nlogicals = HPSA_MAX_LUN; 1873 } 1874 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 1875 dev_warn(&h->pdev->dev, 1876 "maximum logical + physical LUNs (%d) exceeded. " 1877 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1878 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 1879 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 1880 } 1881 return 0; 1882 } 1883 1884 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, 1885 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, 1886 struct ReportLUNdata *logdev_list) 1887 { 1888 /* Helper function, figure out where the LUN ID info is coming from 1889 * given index i, lists of physical and logical devices, where in 1890 * the list the raid controller is supposed to appear (first or last) 1891 */ 1892 1893 int logicals_start = nphysicals + (raid_ctlr_position == 0); 1894 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 1895 1896 if (i == raid_ctlr_position) 1897 return RAID_CTLR_LUNID; 1898 1899 if (i < logicals_start) 1900 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; 1901 1902 if (i < last_device) 1903 return &logdev_list->LUN[i - nphysicals - 1904 (raid_ctlr_position == 0)][0]; 1905 BUG(); 1906 return NULL; 1907 } 1908 1909 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 1910 { 1911 /* the idea here is we could get notified 1912 * that some devices have changed, so we do a report 1913 * physical luns and report logical luns cmd, and adjust 1914 * our list of devices accordingly. 1915 * 1916 * The scsi3addr's of devices won't change so long as the 1917 * adapter is not reset. That means we can rescan and 1918 * tell which devices we already know about, vs. new 1919 * devices, vs. disappearing devices. 1920 */ 1921 struct ReportLUNdata *physdev_list = NULL; 1922 struct ReportLUNdata *logdev_list = NULL; 1923 u32 nphysicals = 0; 1924 u32 nlogicals = 0; 1925 u32 ndev_allocated = 0; 1926 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 1927 int ncurrent = 0; 1928 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; 1929 int i, n_ext_target_devs, ndevs_to_allocate; 1930 int raid_ctlr_position; 1931 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); 1932 1933 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); 1934 physdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1935 logdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1936 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 1937 1938 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) { 1939 dev_err(&h->pdev->dev, "out of memory\n"); 1940 goto out; 1941 } 1942 memset(lunzerobits, 0, sizeof(lunzerobits)); 1943 1944 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, 1945 logdev_list, &nlogicals)) 1946 goto out; 1947 1948 /* We might see up to the maximum number of logical and physical disks 1949 * plus external target devices, and a device for the local RAID 1950 * controller. 1951 */ 1952 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; 1953 1954 /* Allocate the per device structures */ 1955 for (i = 0; i < ndevs_to_allocate; i++) { 1956 if (i >= HPSA_MAX_DEVICES) { 1957 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." 1958 " %d devices ignored.\n", HPSA_MAX_DEVICES, 1959 ndevs_to_allocate - HPSA_MAX_DEVICES); 1960 break; 1961 } 1962 1963 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 1964 if (!currentsd[i]) { 1965 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 1966 __FILE__, __LINE__); 1967 goto out; 1968 } 1969 ndev_allocated++; 1970 } 1971 1972 if (unlikely(is_scsi_rev_5(h))) 1973 raid_ctlr_position = 0; 1974 else 1975 raid_ctlr_position = nphysicals + nlogicals; 1976 1977 /* adjust our table of devices */ 1978 n_ext_target_devs = 0; 1979 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 1980 u8 *lunaddrbytes, is_OBDR = 0; 1981 1982 /* Figure out where the LUN ID info is coming from */ 1983 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 1984 i, nphysicals, nlogicals, physdev_list, logdev_list); 1985 /* skip masked physical devices. */ 1986 if (lunaddrbytes[3] & 0xC0 && 1987 i < nphysicals + (raid_ctlr_position == 0)) 1988 continue; 1989 1990 /* Get device type, vendor, model, device id */ 1991 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice, 1992 &is_OBDR)) 1993 continue; /* skip it if we can't talk to it. */ 1994 figure_bus_target_lun(h, lunaddrbytes, tmpdevice); 1995 this_device = currentsd[ncurrent]; 1996 1997 /* 1998 * For external target devices, we have to insert a LUN 0 which 1999 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 2000 * is nonetheless an enclosure device there. We have to 2001 * present that otherwise linux won't find anything if 2002 * there is no lun 0. 2003 */ 2004 if (add_ext_target_dev(h, tmpdevice, this_device, 2005 lunaddrbytes, lunzerobits, 2006 &n_ext_target_devs)) { 2007 ncurrent++; 2008 this_device = currentsd[ncurrent]; 2009 } 2010 2011 *this_device = *tmpdevice; 2012 2013 switch (this_device->devtype) { 2014 case TYPE_ROM: 2015 /* We don't *really* support actual CD-ROM devices, 2016 * just "One Button Disaster Recovery" tape drive 2017 * which temporarily pretends to be a CD-ROM drive. 2018 * So we check that the device is really an OBDR tape 2019 * device by checking for "$DR-10" in bytes 43-48 of 2020 * the inquiry data. 2021 */ 2022 if (is_OBDR) 2023 ncurrent++; 2024 break; 2025 case TYPE_DISK: 2026 if (i < nphysicals) 2027 break; 2028 ncurrent++; 2029 break; 2030 case TYPE_TAPE: 2031 case TYPE_MEDIUM_CHANGER: 2032 ncurrent++; 2033 break; 2034 case TYPE_RAID: 2035 /* Only present the Smartarray HBA as a RAID controller. 2036 * If it's a RAID controller other than the HBA itself 2037 * (an external RAID controller, MSA500 or similar) 2038 * don't present it. 2039 */ 2040 if (!is_hba_lunid(lunaddrbytes)) 2041 break; 2042 ncurrent++; 2043 break; 2044 default: 2045 break; 2046 } 2047 if (ncurrent >= HPSA_MAX_DEVICES) 2048 break; 2049 } 2050 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 2051 out: 2052 kfree(tmpdevice); 2053 for (i = 0; i < ndev_allocated; i++) 2054 kfree(currentsd[i]); 2055 kfree(currentsd); 2056 kfree(physdev_list); 2057 kfree(logdev_list); 2058 } 2059 2060 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 2061 * dma mapping and fills in the scatter gather entries of the 2062 * hpsa command, cp. 2063 */ 2064 static int hpsa_scatter_gather(struct ctlr_info *h, 2065 struct CommandList *cp, 2066 struct scsi_cmnd *cmd) 2067 { 2068 unsigned int len; 2069 struct scatterlist *sg; 2070 u64 addr64; 2071 int use_sg, i, sg_index, chained; 2072 struct SGDescriptor *curr_sg; 2073 2074 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 2075 2076 use_sg = scsi_dma_map(cmd); 2077 if (use_sg < 0) 2078 return use_sg; 2079 2080 if (!use_sg) 2081 goto sglist_finished; 2082 2083 curr_sg = cp->SG; 2084 chained = 0; 2085 sg_index = 0; 2086 scsi_for_each_sg(cmd, sg, use_sg, i) { 2087 if (i == h->max_cmd_sg_entries - 1 && 2088 use_sg > h->max_cmd_sg_entries) { 2089 chained = 1; 2090 curr_sg = h->cmd_sg_list[cp->cmdindex]; 2091 sg_index = 0; 2092 } 2093 addr64 = (u64) sg_dma_address(sg); 2094 len = sg_dma_len(sg); 2095 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); 2096 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); 2097 curr_sg->Len = len; 2098 curr_sg->Ext = 0; /* we are not chaining */ 2099 curr_sg++; 2100 } 2101 2102 if (use_sg + chained > h->maxSG) 2103 h->maxSG = use_sg + chained; 2104 2105 if (chained) { 2106 cp->Header.SGList = h->max_cmd_sg_entries; 2107 cp->Header.SGTotal = (u16) (use_sg + 1); 2108 hpsa_map_sg_chain_block(h, cp); 2109 return 0; 2110 } 2111 2112 sglist_finished: 2113 2114 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 2115 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ 2116 return 0; 2117 } 2118 2119 2120 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd, 2121 void (*done)(struct scsi_cmnd *)) 2122 { 2123 struct ctlr_info *h; 2124 struct hpsa_scsi_dev_t *dev; 2125 unsigned char scsi3addr[8]; 2126 struct CommandList *c; 2127 unsigned long flags; 2128 2129 /* Get the ptr to our adapter structure out of cmd->host. */ 2130 h = sdev_to_hba(cmd->device); 2131 dev = cmd->device->hostdata; 2132 if (!dev) { 2133 cmd->result = DID_NO_CONNECT << 16; 2134 done(cmd); 2135 return 0; 2136 } 2137 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 2138 2139 spin_lock_irqsave(&h->lock, flags); 2140 if (unlikely(h->lockup_detected)) { 2141 spin_unlock_irqrestore(&h->lock, flags); 2142 cmd->result = DID_ERROR << 16; 2143 done(cmd); 2144 return 0; 2145 } 2146 spin_unlock_irqrestore(&h->lock, flags); 2147 c = cmd_alloc(h); 2148 if (c == NULL) { /* trouble... */ 2149 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 2150 return SCSI_MLQUEUE_HOST_BUSY; 2151 } 2152 2153 /* Fill in the command list header */ 2154 2155 cmd->scsi_done = done; /* save this for use by completion code */ 2156 2157 /* save c in case we have to abort it */ 2158 cmd->host_scribble = (unsigned char *) c; 2159 2160 c->cmd_type = CMD_SCSI; 2161 c->scsi_cmd = cmd; 2162 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2163 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 2164 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); 2165 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; 2166 2167 /* Fill in the request block... */ 2168 2169 c->Request.Timeout = 0; 2170 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 2171 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 2172 c->Request.CDBLen = cmd->cmd_len; 2173 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 2174 c->Request.Type.Type = TYPE_CMD; 2175 c->Request.Type.Attribute = ATTR_SIMPLE; 2176 switch (cmd->sc_data_direction) { 2177 case DMA_TO_DEVICE: 2178 c->Request.Type.Direction = XFER_WRITE; 2179 break; 2180 case DMA_FROM_DEVICE: 2181 c->Request.Type.Direction = XFER_READ; 2182 break; 2183 case DMA_NONE: 2184 c->Request.Type.Direction = XFER_NONE; 2185 break; 2186 case DMA_BIDIRECTIONAL: 2187 /* This can happen if a buggy application does a scsi passthru 2188 * and sets both inlen and outlen to non-zero. ( see 2189 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 2190 */ 2191 2192 c->Request.Type.Direction = XFER_RSVD; 2193 /* This is technically wrong, and hpsa controllers should 2194 * reject it with CMD_INVALID, which is the most correct 2195 * response, but non-fibre backends appear to let it 2196 * slide by, and give the same results as if this field 2197 * were set correctly. Either way is acceptable for 2198 * our purposes here. 2199 */ 2200 2201 break; 2202 2203 default: 2204 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 2205 cmd->sc_data_direction); 2206 BUG(); 2207 break; 2208 } 2209 2210 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 2211 cmd_free(h, c); 2212 return SCSI_MLQUEUE_HOST_BUSY; 2213 } 2214 enqueue_cmd_and_start_io(h, c); 2215 /* the cmd'll come back via intr handler in complete_scsi_command() */ 2216 return 0; 2217 } 2218 2219 static DEF_SCSI_QCMD(hpsa_scsi_queue_command) 2220 2221 static void hpsa_scan_start(struct Scsi_Host *sh) 2222 { 2223 struct ctlr_info *h = shost_to_hba(sh); 2224 unsigned long flags; 2225 2226 /* wait until any scan already in progress is finished. */ 2227 while (1) { 2228 spin_lock_irqsave(&h->scan_lock, flags); 2229 if (h->scan_finished) 2230 break; 2231 spin_unlock_irqrestore(&h->scan_lock, flags); 2232 wait_event(h->scan_wait_queue, h->scan_finished); 2233 /* Note: We don't need to worry about a race between this 2234 * thread and driver unload because the midlayer will 2235 * have incremented the reference count, so unload won't 2236 * happen if we're in here. 2237 */ 2238 } 2239 h->scan_finished = 0; /* mark scan as in progress */ 2240 spin_unlock_irqrestore(&h->scan_lock, flags); 2241 2242 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 2243 2244 spin_lock_irqsave(&h->scan_lock, flags); 2245 h->scan_finished = 1; /* mark scan as finished. */ 2246 wake_up_all(&h->scan_wait_queue); 2247 spin_unlock_irqrestore(&h->scan_lock, flags); 2248 } 2249 2250 static int hpsa_scan_finished(struct Scsi_Host *sh, 2251 unsigned long elapsed_time) 2252 { 2253 struct ctlr_info *h = shost_to_hba(sh); 2254 unsigned long flags; 2255 int finished; 2256 2257 spin_lock_irqsave(&h->scan_lock, flags); 2258 finished = h->scan_finished; 2259 spin_unlock_irqrestore(&h->scan_lock, flags); 2260 return finished; 2261 } 2262 2263 static int hpsa_change_queue_depth(struct scsi_device *sdev, 2264 int qdepth, int reason) 2265 { 2266 struct ctlr_info *h = sdev_to_hba(sdev); 2267 2268 if (reason != SCSI_QDEPTH_DEFAULT) 2269 return -ENOTSUPP; 2270 2271 if (qdepth < 1) 2272 qdepth = 1; 2273 else 2274 if (qdepth > h->nr_cmds) 2275 qdepth = h->nr_cmds; 2276 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 2277 return sdev->queue_depth; 2278 } 2279 2280 static void hpsa_unregister_scsi(struct ctlr_info *h) 2281 { 2282 /* we are being forcibly unloaded, and may not refuse. */ 2283 scsi_remove_host(h->scsi_host); 2284 scsi_host_put(h->scsi_host); 2285 h->scsi_host = NULL; 2286 } 2287 2288 static int hpsa_register_scsi(struct ctlr_info *h) 2289 { 2290 struct Scsi_Host *sh; 2291 int error; 2292 2293 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 2294 if (sh == NULL) 2295 goto fail; 2296 2297 sh->io_port = 0; 2298 sh->n_io_port = 0; 2299 sh->this_id = -1; 2300 sh->max_channel = 3; 2301 sh->max_cmd_len = MAX_COMMAND_SIZE; 2302 sh->max_lun = HPSA_MAX_LUN; 2303 sh->max_id = HPSA_MAX_LUN; 2304 sh->can_queue = h->nr_cmds; 2305 sh->cmd_per_lun = h->nr_cmds; 2306 sh->sg_tablesize = h->maxsgentries; 2307 h->scsi_host = sh; 2308 sh->hostdata[0] = (unsigned long) h; 2309 sh->irq = h->intr[h->intr_mode]; 2310 sh->unique_id = sh->irq; 2311 error = scsi_add_host(sh, &h->pdev->dev); 2312 if (error) 2313 goto fail_host_put; 2314 scsi_scan_host(sh); 2315 return 0; 2316 2317 fail_host_put: 2318 dev_err(&h->pdev->dev, "%s: scsi_add_host" 2319 " failed for controller %d\n", __func__, h->ctlr); 2320 scsi_host_put(sh); 2321 return error; 2322 fail: 2323 dev_err(&h->pdev->dev, "%s: scsi_host_alloc" 2324 " failed for controller %d\n", __func__, h->ctlr); 2325 return -ENOMEM; 2326 } 2327 2328 static int wait_for_device_to_become_ready(struct ctlr_info *h, 2329 unsigned char lunaddr[]) 2330 { 2331 int rc = 0; 2332 int count = 0; 2333 int waittime = 1; /* seconds */ 2334 struct CommandList *c; 2335 2336 c = cmd_special_alloc(h); 2337 if (!c) { 2338 dev_warn(&h->pdev->dev, "out of memory in " 2339 "wait_for_device_to_become_ready.\n"); 2340 return IO_ERROR; 2341 } 2342 2343 /* Send test unit ready until device ready, or give up. */ 2344 while (count < HPSA_TUR_RETRY_LIMIT) { 2345 2346 /* Wait for a bit. do this first, because if we send 2347 * the TUR right away, the reset will just abort it. 2348 */ 2349 msleep(1000 * waittime); 2350 count++; 2351 2352 /* Increase wait time with each try, up to a point. */ 2353 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 2354 waittime = waittime * 2; 2355 2356 /* Send the Test Unit Ready */ 2357 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); 2358 hpsa_scsi_do_simple_cmd_core(h, c); 2359 /* no unmap needed here because no data xfer. */ 2360 2361 if (c->err_info->CommandStatus == CMD_SUCCESS) 2362 break; 2363 2364 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2365 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 2366 (c->err_info->SenseInfo[2] == NO_SENSE || 2367 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 2368 break; 2369 2370 dev_warn(&h->pdev->dev, "waiting %d secs " 2371 "for device to become ready.\n", waittime); 2372 rc = 1; /* device not ready. */ 2373 } 2374 2375 if (rc) 2376 dev_warn(&h->pdev->dev, "giving up on device.\n"); 2377 else 2378 dev_warn(&h->pdev->dev, "device is ready.\n"); 2379 2380 cmd_special_free(h, c); 2381 return rc; 2382 } 2383 2384 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 2385 * complaining. Doing a host- or bus-reset can't do anything good here. 2386 */ 2387 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 2388 { 2389 int rc; 2390 struct ctlr_info *h; 2391 struct hpsa_scsi_dev_t *dev; 2392 2393 /* find the controller to which the command to be aborted was sent */ 2394 h = sdev_to_hba(scsicmd->device); 2395 if (h == NULL) /* paranoia */ 2396 return FAILED; 2397 dev = scsicmd->device->hostdata; 2398 if (!dev) { 2399 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 2400 "device lookup failed.\n"); 2401 return FAILED; 2402 } 2403 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", 2404 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2405 /* send a reset to the SCSI LUN which the command was sent to */ 2406 rc = hpsa_send_reset(h, dev->scsi3addr); 2407 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 2408 return SUCCESS; 2409 2410 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 2411 return FAILED; 2412 } 2413 2414 static void swizzle_abort_tag(u8 *tag) 2415 { 2416 u8 original_tag[8]; 2417 2418 memcpy(original_tag, tag, 8); 2419 tag[0] = original_tag[3]; 2420 tag[1] = original_tag[2]; 2421 tag[2] = original_tag[1]; 2422 tag[3] = original_tag[0]; 2423 tag[4] = original_tag[7]; 2424 tag[5] = original_tag[6]; 2425 tag[6] = original_tag[5]; 2426 tag[7] = original_tag[4]; 2427 } 2428 2429 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, 2430 struct CommandList *abort, int swizzle) 2431 { 2432 int rc = IO_OK; 2433 struct CommandList *c; 2434 struct ErrorInfo *ei; 2435 2436 c = cmd_special_alloc(h); 2437 if (c == NULL) { /* trouble... */ 2438 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 2439 return -ENOMEM; 2440 } 2441 2442 fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG); 2443 if (swizzle) 2444 swizzle_abort_tag(&c->Request.CDB[4]); 2445 hpsa_scsi_do_simple_cmd_core(h, c); 2446 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n", 2447 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower); 2448 /* no unmap needed here because no data xfer. */ 2449 2450 ei = c->err_info; 2451 switch (ei->CommandStatus) { 2452 case CMD_SUCCESS: 2453 break; 2454 case CMD_UNABORTABLE: /* Very common, don't make noise. */ 2455 rc = -1; 2456 break; 2457 default: 2458 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", 2459 __func__, abort->Header.Tag.upper, 2460 abort->Header.Tag.lower); 2461 hpsa_scsi_interpret_error(c); 2462 rc = -1; 2463 break; 2464 } 2465 cmd_special_free(h, c); 2466 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, 2467 abort->Header.Tag.upper, abort->Header.Tag.lower); 2468 return rc; 2469 } 2470 2471 /* 2472 * hpsa_find_cmd_in_queue 2473 * 2474 * Used to determine whether a command (find) is still present 2475 * in queue_head. Optionally excludes the last element of queue_head. 2476 * 2477 * This is used to avoid unnecessary aborts. Commands in h->reqQ have 2478 * not yet been submitted, and so can be aborted by the driver without 2479 * sending an abort to the hardware. 2480 * 2481 * Returns pointer to command if found in queue, NULL otherwise. 2482 */ 2483 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h, 2484 struct scsi_cmnd *find, struct list_head *queue_head) 2485 { 2486 unsigned long flags; 2487 struct CommandList *c = NULL; /* ptr into cmpQ */ 2488 2489 if (!find) 2490 return 0; 2491 spin_lock_irqsave(&h->lock, flags); 2492 list_for_each_entry(c, queue_head, list) { 2493 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */ 2494 continue; 2495 if (c->scsi_cmd == find) { 2496 spin_unlock_irqrestore(&h->lock, flags); 2497 return c; 2498 } 2499 } 2500 spin_unlock_irqrestore(&h->lock, flags); 2501 return NULL; 2502 } 2503 2504 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h, 2505 u8 *tag, struct list_head *queue_head) 2506 { 2507 unsigned long flags; 2508 struct CommandList *c; 2509 2510 spin_lock_irqsave(&h->lock, flags); 2511 list_for_each_entry(c, queue_head, list) { 2512 if (memcmp(&c->Header.Tag, tag, 8) != 0) 2513 continue; 2514 spin_unlock_irqrestore(&h->lock, flags); 2515 return c; 2516 } 2517 spin_unlock_irqrestore(&h->lock, flags); 2518 return NULL; 2519 } 2520 2521 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to 2522 * tell which kind we're dealing with, so we send the abort both ways. There 2523 * shouldn't be any collisions between swizzled and unswizzled tags due to the 2524 * way we construct our tags but we check anyway in case the assumptions which 2525 * make this true someday become false. 2526 */ 2527 static int hpsa_send_abort_both_ways(struct ctlr_info *h, 2528 unsigned char *scsi3addr, struct CommandList *abort) 2529 { 2530 u8 swizzled_tag[8]; 2531 struct CommandList *c; 2532 int rc = 0, rc2 = 0; 2533 2534 /* we do not expect to find the swizzled tag in our queue, but 2535 * check anyway just to be sure the assumptions which make this 2536 * the case haven't become wrong. 2537 */ 2538 memcpy(swizzled_tag, &abort->Request.CDB[4], 8); 2539 swizzle_abort_tag(swizzled_tag); 2540 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ); 2541 if (c != NULL) { 2542 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n"); 2543 return hpsa_send_abort(h, scsi3addr, abort, 0); 2544 } 2545 rc = hpsa_send_abort(h, scsi3addr, abort, 0); 2546 2547 /* if the command is still in our queue, we can't conclude that it was 2548 * aborted (it might have just completed normally) but in any case 2549 * we don't need to try to abort it another way. 2550 */ 2551 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ); 2552 if (c) 2553 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1); 2554 return rc && rc2; 2555 } 2556 2557 /* Send an abort for the specified command. 2558 * If the device and controller support it, 2559 * send a task abort request. 2560 */ 2561 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) 2562 { 2563 2564 int i, rc; 2565 struct ctlr_info *h; 2566 struct hpsa_scsi_dev_t *dev; 2567 struct CommandList *abort; /* pointer to command to be aborted */ 2568 struct CommandList *found; 2569 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ 2570 char msg[256]; /* For debug messaging. */ 2571 int ml = 0; 2572 2573 /* Find the controller of the command to be aborted */ 2574 h = sdev_to_hba(sc->device); 2575 if (WARN(h == NULL, 2576 "ABORT REQUEST FAILED, Controller lookup failed.\n")) 2577 return FAILED; 2578 2579 /* Check that controller supports some kind of task abort */ 2580 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && 2581 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 2582 return FAILED; 2583 2584 memset(msg, 0, sizeof(msg)); 2585 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ", 2586 h->scsi_host->host_no, sc->device->channel, 2587 sc->device->id, sc->device->lun); 2588 2589 /* Find the device of the command to be aborted */ 2590 dev = sc->device->hostdata; 2591 if (!dev) { 2592 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", 2593 msg); 2594 return FAILED; 2595 } 2596 2597 /* Get SCSI command to be aborted */ 2598 abort = (struct CommandList *) sc->host_scribble; 2599 if (abort == NULL) { 2600 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n", 2601 msg); 2602 return FAILED; 2603 } 2604 2605 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", 2606 abort->Header.Tag.upper, abort->Header.Tag.lower); 2607 as = (struct scsi_cmnd *) abort->scsi_cmd; 2608 if (as != NULL) 2609 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ", 2610 as->cmnd[0], as->serial_number); 2611 dev_dbg(&h->pdev->dev, "%s\n", msg); 2612 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n", 2613 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2614 2615 /* Search reqQ to See if command is queued but not submitted, 2616 * if so, complete the command with aborted status and remove 2617 * it from the reqQ. 2618 */ 2619 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ); 2620 if (found) { 2621 found->err_info->CommandStatus = CMD_ABORTED; 2622 finish_cmd(found); 2623 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n", 2624 msg); 2625 return SUCCESS; 2626 } 2627 2628 /* not in reqQ, if also not in cmpQ, must have already completed */ 2629 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); 2630 if (!found) { 2631 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n", 2632 msg); 2633 return SUCCESS; 2634 } 2635 2636 /* 2637 * Command is in flight, or possibly already completed 2638 * by the firmware (but not to the scsi mid layer) but we can't 2639 * distinguish which. Send the abort down. 2640 */ 2641 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort); 2642 if (rc != 0) { 2643 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg); 2644 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n", 2645 h->scsi_host->host_no, 2646 dev->bus, dev->target, dev->lun); 2647 return FAILED; 2648 } 2649 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg); 2650 2651 /* If the abort(s) above completed and actually aborted the 2652 * command, then the command to be aborted should already be 2653 * completed. If not, wait around a bit more to see if they 2654 * manage to complete normally. 2655 */ 2656 #define ABORT_COMPLETE_WAIT_SECS 30 2657 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) { 2658 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); 2659 if (!found) 2660 return SUCCESS; 2661 msleep(100); 2662 } 2663 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n", 2664 msg, ABORT_COMPLETE_WAIT_SECS); 2665 return FAILED; 2666 } 2667 2668 2669 /* 2670 * For operations that cannot sleep, a command block is allocated at init, 2671 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 2672 * which ones are free or in use. Lock must be held when calling this. 2673 * cmd_free() is the complement. 2674 */ 2675 static struct CommandList *cmd_alloc(struct ctlr_info *h) 2676 { 2677 struct CommandList *c; 2678 int i; 2679 union u64bit temp64; 2680 dma_addr_t cmd_dma_handle, err_dma_handle; 2681 unsigned long flags; 2682 2683 spin_lock_irqsave(&h->lock, flags); 2684 do { 2685 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); 2686 if (i == h->nr_cmds) { 2687 spin_unlock_irqrestore(&h->lock, flags); 2688 return NULL; 2689 } 2690 } while (test_and_set_bit 2691 (i & (BITS_PER_LONG - 1), 2692 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); 2693 h->nr_allocs++; 2694 spin_unlock_irqrestore(&h->lock, flags); 2695 2696 c = h->cmd_pool + i; 2697 memset(c, 0, sizeof(*c)); 2698 cmd_dma_handle = h->cmd_pool_dhandle 2699 + i * sizeof(*c); 2700 c->err_info = h->errinfo_pool + i; 2701 memset(c->err_info, 0, sizeof(*c->err_info)); 2702 err_dma_handle = h->errinfo_pool_dhandle 2703 + i * sizeof(*c->err_info); 2704 2705 c->cmdindex = i; 2706 2707 INIT_LIST_HEAD(&c->list); 2708 c->busaddr = (u32) cmd_dma_handle; 2709 temp64.val = (u64) err_dma_handle; 2710 c->ErrDesc.Addr.lower = temp64.val32.lower; 2711 c->ErrDesc.Addr.upper = temp64.val32.upper; 2712 c->ErrDesc.Len = sizeof(*c->err_info); 2713 2714 c->h = h; 2715 return c; 2716 } 2717 2718 /* For operations that can wait for kmalloc to possibly sleep, 2719 * this routine can be called. Lock need not be held to call 2720 * cmd_special_alloc. cmd_special_free() is the complement. 2721 */ 2722 static struct CommandList *cmd_special_alloc(struct ctlr_info *h) 2723 { 2724 struct CommandList *c; 2725 union u64bit temp64; 2726 dma_addr_t cmd_dma_handle, err_dma_handle; 2727 2728 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); 2729 if (c == NULL) 2730 return NULL; 2731 memset(c, 0, sizeof(*c)); 2732 2733 c->cmdindex = -1; 2734 2735 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), 2736 &err_dma_handle); 2737 2738 if (c->err_info == NULL) { 2739 pci_free_consistent(h->pdev, 2740 sizeof(*c), c, cmd_dma_handle); 2741 return NULL; 2742 } 2743 memset(c->err_info, 0, sizeof(*c->err_info)); 2744 2745 INIT_LIST_HEAD(&c->list); 2746 c->busaddr = (u32) cmd_dma_handle; 2747 temp64.val = (u64) err_dma_handle; 2748 c->ErrDesc.Addr.lower = temp64.val32.lower; 2749 c->ErrDesc.Addr.upper = temp64.val32.upper; 2750 c->ErrDesc.Len = sizeof(*c->err_info); 2751 2752 c->h = h; 2753 return c; 2754 } 2755 2756 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 2757 { 2758 int i; 2759 unsigned long flags; 2760 2761 i = c - h->cmd_pool; 2762 spin_lock_irqsave(&h->lock, flags); 2763 clear_bit(i & (BITS_PER_LONG - 1), 2764 h->cmd_pool_bits + (i / BITS_PER_LONG)); 2765 h->nr_frees++; 2766 spin_unlock_irqrestore(&h->lock, flags); 2767 } 2768 2769 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) 2770 { 2771 union u64bit temp64; 2772 2773 temp64.val32.lower = c->ErrDesc.Addr.lower; 2774 temp64.val32.upper = c->ErrDesc.Addr.upper; 2775 pci_free_consistent(h->pdev, sizeof(*c->err_info), 2776 c->err_info, (dma_addr_t) temp64.val); 2777 pci_free_consistent(h->pdev, sizeof(*c), 2778 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK)); 2779 } 2780 2781 #ifdef CONFIG_COMPAT 2782 2783 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) 2784 { 2785 IOCTL32_Command_struct __user *arg32 = 2786 (IOCTL32_Command_struct __user *) arg; 2787 IOCTL_Command_struct arg64; 2788 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 2789 int err; 2790 u32 cp; 2791 2792 memset(&arg64, 0, sizeof(arg64)); 2793 err = 0; 2794 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2795 sizeof(arg64.LUN_info)); 2796 err |= copy_from_user(&arg64.Request, &arg32->Request, 2797 sizeof(arg64.Request)); 2798 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2799 sizeof(arg64.error_info)); 2800 err |= get_user(arg64.buf_size, &arg32->buf_size); 2801 err |= get_user(cp, &arg32->buf); 2802 arg64.buf = compat_ptr(cp); 2803 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2804 2805 if (err) 2806 return -EFAULT; 2807 2808 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); 2809 if (err) 2810 return err; 2811 err |= copy_in_user(&arg32->error_info, &p->error_info, 2812 sizeof(arg32->error_info)); 2813 if (err) 2814 return -EFAULT; 2815 return err; 2816 } 2817 2818 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2819 int cmd, void *arg) 2820 { 2821 BIG_IOCTL32_Command_struct __user *arg32 = 2822 (BIG_IOCTL32_Command_struct __user *) arg; 2823 BIG_IOCTL_Command_struct arg64; 2824 BIG_IOCTL_Command_struct __user *p = 2825 compat_alloc_user_space(sizeof(arg64)); 2826 int err; 2827 u32 cp; 2828 2829 memset(&arg64, 0, sizeof(arg64)); 2830 err = 0; 2831 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2832 sizeof(arg64.LUN_info)); 2833 err |= copy_from_user(&arg64.Request, &arg32->Request, 2834 sizeof(arg64.Request)); 2835 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2836 sizeof(arg64.error_info)); 2837 err |= get_user(arg64.buf_size, &arg32->buf_size); 2838 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 2839 err |= get_user(cp, &arg32->buf); 2840 arg64.buf = compat_ptr(cp); 2841 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2842 2843 if (err) 2844 return -EFAULT; 2845 2846 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); 2847 if (err) 2848 return err; 2849 err |= copy_in_user(&arg32->error_info, &p->error_info, 2850 sizeof(arg32->error_info)); 2851 if (err) 2852 return -EFAULT; 2853 return err; 2854 } 2855 2856 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) 2857 { 2858 switch (cmd) { 2859 case CCISS_GETPCIINFO: 2860 case CCISS_GETINTINFO: 2861 case CCISS_SETINTINFO: 2862 case CCISS_GETNODENAME: 2863 case CCISS_SETNODENAME: 2864 case CCISS_GETHEARTBEAT: 2865 case CCISS_GETBUSTYPES: 2866 case CCISS_GETFIRMVER: 2867 case CCISS_GETDRIVVER: 2868 case CCISS_REVALIDVOLS: 2869 case CCISS_DEREGDISK: 2870 case CCISS_REGNEWDISK: 2871 case CCISS_REGNEWD: 2872 case CCISS_RESCANDISK: 2873 case CCISS_GETLUNINFO: 2874 return hpsa_ioctl(dev, cmd, arg); 2875 2876 case CCISS_PASSTHRU32: 2877 return hpsa_ioctl32_passthru(dev, cmd, arg); 2878 case CCISS_BIG_PASSTHRU32: 2879 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 2880 2881 default: 2882 return -ENOIOCTLCMD; 2883 } 2884 } 2885 #endif 2886 2887 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 2888 { 2889 struct hpsa_pci_info pciinfo; 2890 2891 if (!argp) 2892 return -EINVAL; 2893 pciinfo.domain = pci_domain_nr(h->pdev->bus); 2894 pciinfo.bus = h->pdev->bus->number; 2895 pciinfo.dev_fn = h->pdev->devfn; 2896 pciinfo.board_id = h->board_id; 2897 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 2898 return -EFAULT; 2899 return 0; 2900 } 2901 2902 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 2903 { 2904 DriverVer_type DriverVer; 2905 unsigned char vmaj, vmin, vsubmin; 2906 int rc; 2907 2908 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 2909 &vmaj, &vmin, &vsubmin); 2910 if (rc != 3) { 2911 dev_info(&h->pdev->dev, "driver version string '%s' " 2912 "unrecognized.", HPSA_DRIVER_VERSION); 2913 vmaj = 0; 2914 vmin = 0; 2915 vsubmin = 0; 2916 } 2917 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 2918 if (!argp) 2919 return -EINVAL; 2920 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 2921 return -EFAULT; 2922 return 0; 2923 } 2924 2925 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2926 { 2927 IOCTL_Command_struct iocommand; 2928 struct CommandList *c; 2929 char *buff = NULL; 2930 union u64bit temp64; 2931 2932 if (!argp) 2933 return -EINVAL; 2934 if (!capable(CAP_SYS_RAWIO)) 2935 return -EPERM; 2936 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 2937 return -EFAULT; 2938 if ((iocommand.buf_size < 1) && 2939 (iocommand.Request.Type.Direction != XFER_NONE)) { 2940 return -EINVAL; 2941 } 2942 if (iocommand.buf_size > 0) { 2943 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 2944 if (buff == NULL) 2945 return -EFAULT; 2946 if (iocommand.Request.Type.Direction == XFER_WRITE) { 2947 /* Copy the data into the buffer we created */ 2948 if (copy_from_user(buff, iocommand.buf, 2949 iocommand.buf_size)) { 2950 kfree(buff); 2951 return -EFAULT; 2952 } 2953 } else { 2954 memset(buff, 0, iocommand.buf_size); 2955 } 2956 } 2957 c = cmd_special_alloc(h); 2958 if (c == NULL) { 2959 kfree(buff); 2960 return -ENOMEM; 2961 } 2962 /* Fill in the command type */ 2963 c->cmd_type = CMD_IOCTL_PEND; 2964 /* Fill in Command Header */ 2965 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2966 if (iocommand.buf_size > 0) { /* buffer to fill */ 2967 c->Header.SGList = 1; 2968 c->Header.SGTotal = 1; 2969 } else { /* no buffers to fill */ 2970 c->Header.SGList = 0; 2971 c->Header.SGTotal = 0; 2972 } 2973 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 2974 /* use the kernel address the cmd block for tag */ 2975 c->Header.Tag.lower = c->busaddr; 2976 2977 /* Fill in Request block */ 2978 memcpy(&c->Request, &iocommand.Request, 2979 sizeof(c->Request)); 2980 2981 /* Fill in the scatter gather information */ 2982 if (iocommand.buf_size > 0) { 2983 temp64.val = pci_map_single(h->pdev, buff, 2984 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 2985 c->SG[0].Addr.lower = temp64.val32.lower; 2986 c->SG[0].Addr.upper = temp64.val32.upper; 2987 c->SG[0].Len = iocommand.buf_size; 2988 c->SG[0].Ext = 0; /* we are not chaining*/ 2989 } 2990 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); 2991 if (iocommand.buf_size > 0) 2992 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 2993 check_ioctl_unit_attention(h, c); 2994 2995 /* Copy the error information out */ 2996 memcpy(&iocommand.error_info, c->err_info, 2997 sizeof(iocommand.error_info)); 2998 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 2999 kfree(buff); 3000 cmd_special_free(h, c); 3001 return -EFAULT; 3002 } 3003 if (iocommand.Request.Type.Direction == XFER_READ && 3004 iocommand.buf_size > 0) { 3005 /* Copy the data out of the buffer we created */ 3006 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 3007 kfree(buff); 3008 cmd_special_free(h, c); 3009 return -EFAULT; 3010 } 3011 } 3012 kfree(buff); 3013 cmd_special_free(h, c); 3014 return 0; 3015 } 3016 3017 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 3018 { 3019 BIG_IOCTL_Command_struct *ioc; 3020 struct CommandList *c; 3021 unsigned char **buff = NULL; 3022 int *buff_size = NULL; 3023 union u64bit temp64; 3024 BYTE sg_used = 0; 3025 int status = 0; 3026 int i; 3027 u32 left; 3028 u32 sz; 3029 BYTE __user *data_ptr; 3030 3031 if (!argp) 3032 return -EINVAL; 3033 if (!capable(CAP_SYS_RAWIO)) 3034 return -EPERM; 3035 ioc = (BIG_IOCTL_Command_struct *) 3036 kmalloc(sizeof(*ioc), GFP_KERNEL); 3037 if (!ioc) { 3038 status = -ENOMEM; 3039 goto cleanup1; 3040 } 3041 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 3042 status = -EFAULT; 3043 goto cleanup1; 3044 } 3045 if ((ioc->buf_size < 1) && 3046 (ioc->Request.Type.Direction != XFER_NONE)) { 3047 status = -EINVAL; 3048 goto cleanup1; 3049 } 3050 /* Check kmalloc limits using all SGs */ 3051 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 3052 status = -EINVAL; 3053 goto cleanup1; 3054 } 3055 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { 3056 status = -EINVAL; 3057 goto cleanup1; 3058 } 3059 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); 3060 if (!buff) { 3061 status = -ENOMEM; 3062 goto cleanup1; 3063 } 3064 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); 3065 if (!buff_size) { 3066 status = -ENOMEM; 3067 goto cleanup1; 3068 } 3069 left = ioc->buf_size; 3070 data_ptr = ioc->buf; 3071 while (left) { 3072 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 3073 buff_size[sg_used] = sz; 3074 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 3075 if (buff[sg_used] == NULL) { 3076 status = -ENOMEM; 3077 goto cleanup1; 3078 } 3079 if (ioc->Request.Type.Direction == XFER_WRITE) { 3080 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 3081 status = -ENOMEM; 3082 goto cleanup1; 3083 } 3084 } else 3085 memset(buff[sg_used], 0, sz); 3086 left -= sz; 3087 data_ptr += sz; 3088 sg_used++; 3089 } 3090 c = cmd_special_alloc(h); 3091 if (c == NULL) { 3092 status = -ENOMEM; 3093 goto cleanup1; 3094 } 3095 c->cmd_type = CMD_IOCTL_PEND; 3096 c->Header.ReplyQueue = 0; 3097 c->Header.SGList = c->Header.SGTotal = sg_used; 3098 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 3099 c->Header.Tag.lower = c->busaddr; 3100 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 3101 if (ioc->buf_size > 0) { 3102 int i; 3103 for (i = 0; i < sg_used; i++) { 3104 temp64.val = pci_map_single(h->pdev, buff[i], 3105 buff_size[i], PCI_DMA_BIDIRECTIONAL); 3106 c->SG[i].Addr.lower = temp64.val32.lower; 3107 c->SG[i].Addr.upper = temp64.val32.upper; 3108 c->SG[i].Len = buff_size[i]; 3109 /* we are not chaining */ 3110 c->SG[i].Ext = 0; 3111 } 3112 } 3113 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); 3114 if (sg_used) 3115 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 3116 check_ioctl_unit_attention(h, c); 3117 /* Copy the error information out */ 3118 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 3119 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 3120 cmd_special_free(h, c); 3121 status = -EFAULT; 3122 goto cleanup1; 3123 } 3124 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) { 3125 /* Copy the data out of the buffer we created */ 3126 BYTE __user *ptr = ioc->buf; 3127 for (i = 0; i < sg_used; i++) { 3128 if (copy_to_user(ptr, buff[i], buff_size[i])) { 3129 cmd_special_free(h, c); 3130 status = -EFAULT; 3131 goto cleanup1; 3132 } 3133 ptr += buff_size[i]; 3134 } 3135 } 3136 cmd_special_free(h, c); 3137 status = 0; 3138 cleanup1: 3139 if (buff) { 3140 for (i = 0; i < sg_used; i++) 3141 kfree(buff[i]); 3142 kfree(buff); 3143 } 3144 kfree(buff_size); 3145 kfree(ioc); 3146 return status; 3147 } 3148 3149 static void check_ioctl_unit_attention(struct ctlr_info *h, 3150 struct CommandList *c) 3151 { 3152 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 3153 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 3154 (void) check_for_unit_attention(h, c); 3155 } 3156 /* 3157 * ioctl 3158 */ 3159 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) 3160 { 3161 struct ctlr_info *h; 3162 void __user *argp = (void __user *)arg; 3163 3164 h = sdev_to_hba(dev); 3165 3166 switch (cmd) { 3167 case CCISS_DEREGDISK: 3168 case CCISS_REGNEWDISK: 3169 case CCISS_REGNEWD: 3170 hpsa_scan_start(h->scsi_host); 3171 return 0; 3172 case CCISS_GETPCIINFO: 3173 return hpsa_getpciinfo_ioctl(h, argp); 3174 case CCISS_GETDRIVVER: 3175 return hpsa_getdrivver_ioctl(h, argp); 3176 case CCISS_PASSTHRU: 3177 return hpsa_passthru_ioctl(h, argp); 3178 case CCISS_BIG_PASSTHRU: 3179 return hpsa_big_passthru_ioctl(h, argp); 3180 default: 3181 return -ENOTTY; 3182 } 3183 } 3184 3185 static int __devinit hpsa_send_host_reset(struct ctlr_info *h, 3186 unsigned char *scsi3addr, u8 reset_type) 3187 { 3188 struct CommandList *c; 3189 3190 c = cmd_alloc(h); 3191 if (!c) 3192 return -ENOMEM; 3193 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 3194 RAID_CTLR_LUNID, TYPE_MSG); 3195 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 3196 c->waiting = NULL; 3197 enqueue_cmd_and_start_io(h, c); 3198 /* Don't wait for completion, the reset won't complete. Don't free 3199 * the command either. This is the last command we will send before 3200 * re-initializing everything, so it doesn't matter and won't leak. 3201 */ 3202 return 0; 3203 } 3204 3205 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 3206 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 3207 int cmd_type) 3208 { 3209 int pci_dir = XFER_NONE; 3210 struct CommandList *a; /* for commands to be aborted */ 3211 3212 c->cmd_type = CMD_IOCTL_PEND; 3213 c->Header.ReplyQueue = 0; 3214 if (buff != NULL && size > 0) { 3215 c->Header.SGList = 1; 3216 c->Header.SGTotal = 1; 3217 } else { 3218 c->Header.SGList = 0; 3219 c->Header.SGTotal = 0; 3220 } 3221 c->Header.Tag.lower = c->busaddr; 3222 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 3223 3224 c->Request.Type.Type = cmd_type; 3225 if (cmd_type == TYPE_CMD) { 3226 switch (cmd) { 3227 case HPSA_INQUIRY: 3228 /* are we trying to read a vital product page */ 3229 if (page_code != 0) { 3230 c->Request.CDB[1] = 0x01; 3231 c->Request.CDB[2] = page_code; 3232 } 3233 c->Request.CDBLen = 6; 3234 c->Request.Type.Attribute = ATTR_SIMPLE; 3235 c->Request.Type.Direction = XFER_READ; 3236 c->Request.Timeout = 0; 3237 c->Request.CDB[0] = HPSA_INQUIRY; 3238 c->Request.CDB[4] = size & 0xFF; 3239 break; 3240 case HPSA_REPORT_LOG: 3241 case HPSA_REPORT_PHYS: 3242 /* Talking to controller so It's a physical command 3243 mode = 00 target = 0. Nothing to write. 3244 */ 3245 c->Request.CDBLen = 12; 3246 c->Request.Type.Attribute = ATTR_SIMPLE; 3247 c->Request.Type.Direction = XFER_READ; 3248 c->Request.Timeout = 0; 3249 c->Request.CDB[0] = cmd; 3250 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 3251 c->Request.CDB[7] = (size >> 16) & 0xFF; 3252 c->Request.CDB[8] = (size >> 8) & 0xFF; 3253 c->Request.CDB[9] = size & 0xFF; 3254 break; 3255 case HPSA_CACHE_FLUSH: 3256 c->Request.CDBLen = 12; 3257 c->Request.Type.Attribute = ATTR_SIMPLE; 3258 c->Request.Type.Direction = XFER_WRITE; 3259 c->Request.Timeout = 0; 3260 c->Request.CDB[0] = BMIC_WRITE; 3261 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 3262 c->Request.CDB[7] = (size >> 8) & 0xFF; 3263 c->Request.CDB[8] = size & 0xFF; 3264 break; 3265 case TEST_UNIT_READY: 3266 c->Request.CDBLen = 6; 3267 c->Request.Type.Attribute = ATTR_SIMPLE; 3268 c->Request.Type.Direction = XFER_NONE; 3269 c->Request.Timeout = 0; 3270 break; 3271 default: 3272 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 3273 BUG(); 3274 return; 3275 } 3276 } else if (cmd_type == TYPE_MSG) { 3277 switch (cmd) { 3278 3279 case HPSA_DEVICE_RESET_MSG: 3280 c->Request.CDBLen = 16; 3281 c->Request.Type.Type = 1; /* It is a MSG not a CMD */ 3282 c->Request.Type.Attribute = ATTR_SIMPLE; 3283 c->Request.Type.Direction = XFER_NONE; 3284 c->Request.Timeout = 0; /* Don't time out */ 3285 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 3286 c->Request.CDB[0] = cmd; 3287 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; 3288 /* If bytes 4-7 are zero, it means reset the */ 3289 /* LunID device */ 3290 c->Request.CDB[4] = 0x00; 3291 c->Request.CDB[5] = 0x00; 3292 c->Request.CDB[6] = 0x00; 3293 c->Request.CDB[7] = 0x00; 3294 break; 3295 case HPSA_ABORT_MSG: 3296 a = buff; /* point to command to be aborted */ 3297 dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n", 3298 a->Header.Tag.upper, a->Header.Tag.lower, 3299 c->Header.Tag.upper, c->Header.Tag.lower); 3300 c->Request.CDBLen = 16; 3301 c->Request.Type.Type = TYPE_MSG; 3302 c->Request.Type.Attribute = ATTR_SIMPLE; 3303 c->Request.Type.Direction = XFER_WRITE; 3304 c->Request.Timeout = 0; /* Don't time out */ 3305 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; 3306 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; 3307 c->Request.CDB[2] = 0x00; /* reserved */ 3308 c->Request.CDB[3] = 0x00; /* reserved */ 3309 /* Tag to abort goes in CDB[4]-CDB[11] */ 3310 c->Request.CDB[4] = a->Header.Tag.lower & 0xFF; 3311 c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF; 3312 c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF; 3313 c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF; 3314 c->Request.CDB[8] = a->Header.Tag.upper & 0xFF; 3315 c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF; 3316 c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF; 3317 c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF; 3318 c->Request.CDB[12] = 0x00; /* reserved */ 3319 c->Request.CDB[13] = 0x00; /* reserved */ 3320 c->Request.CDB[14] = 0x00; /* reserved */ 3321 c->Request.CDB[15] = 0x00; /* reserved */ 3322 break; 3323 default: 3324 dev_warn(&h->pdev->dev, "unknown message type %d\n", 3325 cmd); 3326 BUG(); 3327 } 3328 } else { 3329 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 3330 BUG(); 3331 } 3332 3333 switch (c->Request.Type.Direction) { 3334 case XFER_READ: 3335 pci_dir = PCI_DMA_FROMDEVICE; 3336 break; 3337 case XFER_WRITE: 3338 pci_dir = PCI_DMA_TODEVICE; 3339 break; 3340 case XFER_NONE: 3341 pci_dir = PCI_DMA_NONE; 3342 break; 3343 default: 3344 pci_dir = PCI_DMA_BIDIRECTIONAL; 3345 } 3346 3347 hpsa_map_one(h->pdev, c, buff, size, pci_dir); 3348 3349 return; 3350 } 3351 3352 /* 3353 * Map (physical) PCI mem into (virtual) kernel space 3354 */ 3355 static void __iomem *remap_pci_mem(ulong base, ulong size) 3356 { 3357 ulong page_base = ((ulong) base) & PAGE_MASK; 3358 ulong page_offs = ((ulong) base) - page_base; 3359 void __iomem *page_remapped = ioremap_nocache(page_base, 3360 page_offs + size); 3361 3362 return page_remapped ? (page_remapped + page_offs) : NULL; 3363 } 3364 3365 /* Takes cmds off the submission queue and sends them to the hardware, 3366 * then puts them on the queue of cmds waiting for completion. 3367 */ 3368 static void start_io(struct ctlr_info *h) 3369 { 3370 struct CommandList *c; 3371 unsigned long flags; 3372 3373 spin_lock_irqsave(&h->lock, flags); 3374 while (!list_empty(&h->reqQ)) { 3375 c = list_entry(h->reqQ.next, struct CommandList, list); 3376 /* can't do anything if fifo is full */ 3377 if ((h->access.fifo_full(h))) { 3378 dev_warn(&h->pdev->dev, "fifo full\n"); 3379 break; 3380 } 3381 3382 /* Get the first entry from the Request Q */ 3383 removeQ(c); 3384 h->Qdepth--; 3385 3386 /* Put job onto the completed Q */ 3387 addQ(&h->cmpQ, c); 3388 3389 /* Must increment commands_outstanding before unlocking 3390 * and submitting to avoid race checking for fifo full 3391 * condition. 3392 */ 3393 h->commands_outstanding++; 3394 if (h->commands_outstanding > h->max_outstanding) 3395 h->max_outstanding = h->commands_outstanding; 3396 3397 /* Tell the controller execute command */ 3398 spin_unlock_irqrestore(&h->lock, flags); 3399 h->access.submit_command(h, c); 3400 spin_lock_irqsave(&h->lock, flags); 3401 } 3402 spin_unlock_irqrestore(&h->lock, flags); 3403 } 3404 3405 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) 3406 { 3407 return h->access.command_completed(h, q); 3408 } 3409 3410 static inline bool interrupt_pending(struct ctlr_info *h) 3411 { 3412 return h->access.intr_pending(h); 3413 } 3414 3415 static inline long interrupt_not_for_us(struct ctlr_info *h) 3416 { 3417 return (h->access.intr_pending(h) == 0) || 3418 (h->interrupts_enabled == 0); 3419 } 3420 3421 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 3422 u32 raw_tag) 3423 { 3424 if (unlikely(tag_index >= h->nr_cmds)) { 3425 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 3426 return 1; 3427 } 3428 return 0; 3429 } 3430 3431 static inline void finish_cmd(struct CommandList *c) 3432 { 3433 unsigned long flags; 3434 3435 spin_lock_irqsave(&c->h->lock, flags); 3436 removeQ(c); 3437 spin_unlock_irqrestore(&c->h->lock, flags); 3438 dial_up_lockup_detection_on_fw_flash_complete(c->h, c); 3439 if (likely(c->cmd_type == CMD_SCSI)) 3440 complete_scsi_command(c); 3441 else if (c->cmd_type == CMD_IOCTL_PEND) 3442 complete(c->waiting); 3443 } 3444 3445 static inline u32 hpsa_tag_contains_index(u32 tag) 3446 { 3447 return tag & DIRECT_LOOKUP_BIT; 3448 } 3449 3450 static inline u32 hpsa_tag_to_index(u32 tag) 3451 { 3452 return tag >> DIRECT_LOOKUP_SHIFT; 3453 } 3454 3455 3456 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) 3457 { 3458 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) 3459 #define HPSA_SIMPLE_ERROR_BITS 0x03 3460 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 3461 return tag & ~HPSA_SIMPLE_ERROR_BITS; 3462 return tag & ~HPSA_PERF_ERROR_BITS; 3463 } 3464 3465 /* process completion of an indexed ("direct lookup") command */ 3466 static inline void process_indexed_cmd(struct ctlr_info *h, 3467 u32 raw_tag) 3468 { 3469 u32 tag_index; 3470 struct CommandList *c; 3471 3472 tag_index = hpsa_tag_to_index(raw_tag); 3473 if (!bad_tag(h, tag_index, raw_tag)) { 3474 c = h->cmd_pool + tag_index; 3475 finish_cmd(c); 3476 } 3477 } 3478 3479 /* process completion of a non-indexed command */ 3480 static inline void process_nonindexed_cmd(struct ctlr_info *h, 3481 u32 raw_tag) 3482 { 3483 u32 tag; 3484 struct CommandList *c = NULL; 3485 unsigned long flags; 3486 3487 tag = hpsa_tag_discard_error_bits(h, raw_tag); 3488 spin_lock_irqsave(&h->lock, flags); 3489 list_for_each_entry(c, &h->cmpQ, list) { 3490 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { 3491 spin_unlock_irqrestore(&h->lock, flags); 3492 finish_cmd(c); 3493 return; 3494 } 3495 } 3496 spin_unlock_irqrestore(&h->lock, flags); 3497 bad_tag(h, h->nr_cmds + 1, raw_tag); 3498 } 3499 3500 /* Some controllers, like p400, will give us one interrupt 3501 * after a soft reset, even if we turned interrupts off. 3502 * Only need to check for this in the hpsa_xxx_discard_completions 3503 * functions. 3504 */ 3505 static int ignore_bogus_interrupt(struct ctlr_info *h) 3506 { 3507 if (likely(!reset_devices)) 3508 return 0; 3509 3510 if (likely(h->interrupts_enabled)) 3511 return 0; 3512 3513 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 3514 "(known firmware bug.) Ignoring.\n"); 3515 3516 return 1; 3517 } 3518 3519 /* 3520 * Convert &h->q[x] (passed to interrupt handlers) back to h. 3521 * Relies on (h-q[x] == x) being true for x such that 3522 * 0 <= x < MAX_REPLY_QUEUES. 3523 */ 3524 static struct ctlr_info *queue_to_hba(u8 *queue) 3525 { 3526 return container_of((queue - *queue), struct ctlr_info, q[0]); 3527 } 3528 3529 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) 3530 { 3531 struct ctlr_info *h = queue_to_hba(queue); 3532 u8 q = *(u8 *) queue; 3533 u32 raw_tag; 3534 3535 if (ignore_bogus_interrupt(h)) 3536 return IRQ_NONE; 3537 3538 if (interrupt_not_for_us(h)) 3539 return IRQ_NONE; 3540 h->last_intr_timestamp = get_jiffies_64(); 3541 while (interrupt_pending(h)) { 3542 raw_tag = get_next_completion(h, q); 3543 while (raw_tag != FIFO_EMPTY) 3544 raw_tag = next_command(h, q); 3545 } 3546 return IRQ_HANDLED; 3547 } 3548 3549 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) 3550 { 3551 struct ctlr_info *h = queue_to_hba(queue); 3552 u32 raw_tag; 3553 u8 q = *(u8 *) queue; 3554 3555 if (ignore_bogus_interrupt(h)) 3556 return IRQ_NONE; 3557 3558 h->last_intr_timestamp = get_jiffies_64(); 3559 raw_tag = get_next_completion(h, q); 3560 while (raw_tag != FIFO_EMPTY) 3561 raw_tag = next_command(h, q); 3562 return IRQ_HANDLED; 3563 } 3564 3565 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) 3566 { 3567 struct ctlr_info *h = queue_to_hba((u8 *) queue); 3568 u32 raw_tag; 3569 u8 q = *(u8 *) queue; 3570 3571 if (interrupt_not_for_us(h)) 3572 return IRQ_NONE; 3573 h->last_intr_timestamp = get_jiffies_64(); 3574 while (interrupt_pending(h)) { 3575 raw_tag = get_next_completion(h, q); 3576 while (raw_tag != FIFO_EMPTY) { 3577 if (likely(hpsa_tag_contains_index(raw_tag))) 3578 process_indexed_cmd(h, raw_tag); 3579 else 3580 process_nonindexed_cmd(h, raw_tag); 3581 raw_tag = next_command(h, q); 3582 } 3583 } 3584 return IRQ_HANDLED; 3585 } 3586 3587 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) 3588 { 3589 struct ctlr_info *h = queue_to_hba(queue); 3590 u32 raw_tag; 3591 u8 q = *(u8 *) queue; 3592 3593 h->last_intr_timestamp = get_jiffies_64(); 3594 raw_tag = get_next_completion(h, q); 3595 while (raw_tag != FIFO_EMPTY) { 3596 if (likely(hpsa_tag_contains_index(raw_tag))) 3597 process_indexed_cmd(h, raw_tag); 3598 else 3599 process_nonindexed_cmd(h, raw_tag); 3600 raw_tag = next_command(h, q); 3601 } 3602 return IRQ_HANDLED; 3603 } 3604 3605 /* Send a message CDB to the firmware. Careful, this only works 3606 * in simple mode, not performant mode due to the tag lookup. 3607 * We only ever use this immediately after a controller reset. 3608 */ 3609 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 3610 unsigned char type) 3611 { 3612 struct Command { 3613 struct CommandListHeader CommandHeader; 3614 struct RequestBlock Request; 3615 struct ErrDescriptor ErrorDescriptor; 3616 }; 3617 struct Command *cmd; 3618 static const size_t cmd_sz = sizeof(*cmd) + 3619 sizeof(cmd->ErrorDescriptor); 3620 dma_addr_t paddr64; 3621 uint32_t paddr32, tag; 3622 void __iomem *vaddr; 3623 int i, err; 3624 3625 vaddr = pci_ioremap_bar(pdev, 0); 3626 if (vaddr == NULL) 3627 return -ENOMEM; 3628 3629 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 3630 * CCISS commands, so they must be allocated from the lower 4GiB of 3631 * memory. 3632 */ 3633 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3634 if (err) { 3635 iounmap(vaddr); 3636 return -ENOMEM; 3637 } 3638 3639 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 3640 if (cmd == NULL) { 3641 iounmap(vaddr); 3642 return -ENOMEM; 3643 } 3644 3645 /* This must fit, because of the 32-bit consistent DMA mask. Also, 3646 * although there's no guarantee, we assume that the address is at 3647 * least 4-byte aligned (most likely, it's page-aligned). 3648 */ 3649 paddr32 = paddr64; 3650 3651 cmd->CommandHeader.ReplyQueue = 0; 3652 cmd->CommandHeader.SGList = 0; 3653 cmd->CommandHeader.SGTotal = 0; 3654 cmd->CommandHeader.Tag.lower = paddr32; 3655 cmd->CommandHeader.Tag.upper = 0; 3656 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 3657 3658 cmd->Request.CDBLen = 16; 3659 cmd->Request.Type.Type = TYPE_MSG; 3660 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; 3661 cmd->Request.Type.Direction = XFER_NONE; 3662 cmd->Request.Timeout = 0; /* Don't time out */ 3663 cmd->Request.CDB[0] = opcode; 3664 cmd->Request.CDB[1] = type; 3665 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 3666 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); 3667 cmd->ErrorDescriptor.Addr.upper = 0; 3668 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); 3669 3670 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); 3671 3672 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 3673 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 3674 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32) 3675 break; 3676 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 3677 } 3678 3679 iounmap(vaddr); 3680 3681 /* we leak the DMA buffer here ... no choice since the controller could 3682 * still complete the command. 3683 */ 3684 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 3685 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 3686 opcode, type); 3687 return -ETIMEDOUT; 3688 } 3689 3690 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 3691 3692 if (tag & HPSA_ERROR_BIT) { 3693 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 3694 opcode, type); 3695 return -EIO; 3696 } 3697 3698 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 3699 opcode, type); 3700 return 0; 3701 } 3702 3703 #define hpsa_noop(p) hpsa_message(p, 3, 0) 3704 3705 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 3706 void * __iomem vaddr, u32 use_doorbell) 3707 { 3708 u16 pmcsr; 3709 int pos; 3710 3711 if (use_doorbell) { 3712 /* For everything after the P600, the PCI power state method 3713 * of resetting the controller doesn't work, so we have this 3714 * other way using the doorbell register. 3715 */ 3716 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 3717 writel(use_doorbell, vaddr + SA5_DOORBELL); 3718 } else { /* Try to do it the PCI power state way */ 3719 3720 /* Quoting from the Open CISS Specification: "The Power 3721 * Management Control/Status Register (CSR) controls the power 3722 * state of the device. The normal operating state is D0, 3723 * CSR=00h. The software off state is D3, CSR=03h. To reset 3724 * the controller, place the interface device in D3 then to D0, 3725 * this causes a secondary PCI reset which will reset the 3726 * controller." */ 3727 3728 pos = pci_find_capability(pdev, PCI_CAP_ID_PM); 3729 if (pos == 0) { 3730 dev_err(&pdev->dev, 3731 "hpsa_reset_controller: " 3732 "PCI PM not supported\n"); 3733 return -ENODEV; 3734 } 3735 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 3736 /* enter the D3hot power management state */ 3737 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); 3738 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3739 pmcsr |= PCI_D3hot; 3740 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3741 3742 msleep(500); 3743 3744 /* enter the D0 power management state */ 3745 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3746 pmcsr |= PCI_D0; 3747 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3748 3749 /* 3750 * The P600 requires a small delay when changing states. 3751 * Otherwise we may think the board did not reset and we bail. 3752 * This for kdump only and is particular to the P600. 3753 */ 3754 msleep(500); 3755 } 3756 return 0; 3757 } 3758 3759 static __devinit void init_driver_version(char *driver_version, int len) 3760 { 3761 memset(driver_version, 0, len); 3762 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); 3763 } 3764 3765 static __devinit int write_driver_ver_to_cfgtable( 3766 struct CfgTable __iomem *cfgtable) 3767 { 3768 char *driver_version; 3769 int i, size = sizeof(cfgtable->driver_version); 3770 3771 driver_version = kmalloc(size, GFP_KERNEL); 3772 if (!driver_version) 3773 return -ENOMEM; 3774 3775 init_driver_version(driver_version, size); 3776 for (i = 0; i < size; i++) 3777 writeb(driver_version[i], &cfgtable->driver_version[i]); 3778 kfree(driver_version); 3779 return 0; 3780 } 3781 3782 static __devinit void read_driver_ver_from_cfgtable( 3783 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver) 3784 { 3785 int i; 3786 3787 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 3788 driver_ver[i] = readb(&cfgtable->driver_version[i]); 3789 } 3790 3791 static __devinit int controller_reset_failed( 3792 struct CfgTable __iomem *cfgtable) 3793 { 3794 3795 char *driver_ver, *old_driver_ver; 3796 int rc, size = sizeof(cfgtable->driver_version); 3797 3798 old_driver_ver = kmalloc(2 * size, GFP_KERNEL); 3799 if (!old_driver_ver) 3800 return -ENOMEM; 3801 driver_ver = old_driver_ver + size; 3802 3803 /* After a reset, the 32 bytes of "driver version" in the cfgtable 3804 * should have been changed, otherwise we know the reset failed. 3805 */ 3806 init_driver_version(old_driver_ver, size); 3807 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 3808 rc = !memcmp(driver_ver, old_driver_ver, size); 3809 kfree(old_driver_ver); 3810 return rc; 3811 } 3812 /* This does a hard reset of the controller using PCI power management 3813 * states or the using the doorbell register. 3814 */ 3815 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) 3816 { 3817 u64 cfg_offset; 3818 u32 cfg_base_addr; 3819 u64 cfg_base_addr_index; 3820 void __iomem *vaddr; 3821 unsigned long paddr; 3822 u32 misc_fw_support; 3823 int rc; 3824 struct CfgTable __iomem *cfgtable; 3825 u32 use_doorbell; 3826 u32 board_id; 3827 u16 command_register; 3828 3829 /* For controllers as old as the P600, this is very nearly 3830 * the same thing as 3831 * 3832 * pci_save_state(pci_dev); 3833 * pci_set_power_state(pci_dev, PCI_D3hot); 3834 * pci_set_power_state(pci_dev, PCI_D0); 3835 * pci_restore_state(pci_dev); 3836 * 3837 * For controllers newer than the P600, the pci power state 3838 * method of resetting doesn't work so we have another way 3839 * using the doorbell register. 3840 */ 3841 3842 rc = hpsa_lookup_board_id(pdev, &board_id); 3843 if (rc < 0 || !ctlr_is_resettable(board_id)) { 3844 dev_warn(&pdev->dev, "Not resetting device.\n"); 3845 return -ENODEV; 3846 } 3847 3848 /* if controller is soft- but not hard resettable... */ 3849 if (!ctlr_is_hard_resettable(board_id)) 3850 return -ENOTSUPP; /* try soft reset later. */ 3851 3852 /* Save the PCI command register */ 3853 pci_read_config_word(pdev, 4, &command_register); 3854 /* Turn the board off. This is so that later pci_restore_state() 3855 * won't turn the board on before the rest of config space is ready. 3856 */ 3857 pci_disable_device(pdev); 3858 pci_save_state(pdev); 3859 3860 /* find the first memory BAR, so we can find the cfg table */ 3861 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 3862 if (rc) 3863 return rc; 3864 vaddr = remap_pci_mem(paddr, 0x250); 3865 if (!vaddr) 3866 return -ENOMEM; 3867 3868 /* find cfgtable in order to check if reset via doorbell is supported */ 3869 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 3870 &cfg_base_addr_index, &cfg_offset); 3871 if (rc) 3872 goto unmap_vaddr; 3873 cfgtable = remap_pci_mem(pci_resource_start(pdev, 3874 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 3875 if (!cfgtable) { 3876 rc = -ENOMEM; 3877 goto unmap_vaddr; 3878 } 3879 rc = write_driver_ver_to_cfgtable(cfgtable); 3880 if (rc) 3881 goto unmap_vaddr; 3882 3883 /* If reset via doorbell register is supported, use that. 3884 * There are two such methods. Favor the newest method. 3885 */ 3886 misc_fw_support = readl(&cfgtable->misc_fw_support); 3887 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 3888 if (use_doorbell) { 3889 use_doorbell = DOORBELL_CTLR_RESET2; 3890 } else { 3891 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 3892 if (use_doorbell) { 3893 dev_warn(&pdev->dev, "Soft reset not supported. " 3894 "Firmware update is required.\n"); 3895 rc = -ENOTSUPP; /* try soft reset */ 3896 goto unmap_cfgtable; 3897 } 3898 } 3899 3900 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 3901 if (rc) 3902 goto unmap_cfgtable; 3903 3904 pci_restore_state(pdev); 3905 rc = pci_enable_device(pdev); 3906 if (rc) { 3907 dev_warn(&pdev->dev, "failed to enable device.\n"); 3908 goto unmap_cfgtable; 3909 } 3910 pci_write_config_word(pdev, 4, command_register); 3911 3912 /* Some devices (notably the HP Smart Array 5i Controller) 3913 need a little pause here */ 3914 msleep(HPSA_POST_RESET_PAUSE_MSECS); 3915 3916 /* Wait for board to become not ready, then ready. */ 3917 dev_info(&pdev->dev, "Waiting for board to reset.\n"); 3918 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY); 3919 if (rc) { 3920 dev_warn(&pdev->dev, 3921 "failed waiting for board to reset." 3922 " Will try soft reset.\n"); 3923 rc = -ENOTSUPP; /* Not expected, but try soft reset later */ 3924 goto unmap_cfgtable; 3925 } 3926 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 3927 if (rc) { 3928 dev_warn(&pdev->dev, 3929 "failed waiting for board to become ready " 3930 "after hard reset\n"); 3931 goto unmap_cfgtable; 3932 } 3933 3934 rc = controller_reset_failed(vaddr); 3935 if (rc < 0) 3936 goto unmap_cfgtable; 3937 if (rc) { 3938 dev_warn(&pdev->dev, "Unable to successfully reset " 3939 "controller. Will try soft reset.\n"); 3940 rc = -ENOTSUPP; 3941 } else { 3942 dev_info(&pdev->dev, "board ready after hard reset.\n"); 3943 } 3944 3945 unmap_cfgtable: 3946 iounmap(cfgtable); 3947 3948 unmap_vaddr: 3949 iounmap(vaddr); 3950 return rc; 3951 } 3952 3953 /* 3954 * We cannot read the structure directly, for portability we must use 3955 * the io functions. 3956 * This is for debug only. 3957 */ 3958 static void print_cfg_table(struct device *dev, struct CfgTable *tb) 3959 { 3960 #ifdef HPSA_DEBUG 3961 int i; 3962 char temp_name[17]; 3963 3964 dev_info(dev, "Controller Configuration information\n"); 3965 dev_info(dev, "------------------------------------\n"); 3966 for (i = 0; i < 4; i++) 3967 temp_name[i] = readb(&(tb->Signature[i])); 3968 temp_name[4] = '\0'; 3969 dev_info(dev, " Signature = %s\n", temp_name); 3970 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 3971 dev_info(dev, " Transport methods supported = 0x%x\n", 3972 readl(&(tb->TransportSupport))); 3973 dev_info(dev, " Transport methods active = 0x%x\n", 3974 readl(&(tb->TransportActive))); 3975 dev_info(dev, " Requested transport Method = 0x%x\n", 3976 readl(&(tb->HostWrite.TransportRequest))); 3977 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 3978 readl(&(tb->HostWrite.CoalIntDelay))); 3979 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 3980 readl(&(tb->HostWrite.CoalIntCount))); 3981 dev_info(dev, " Max outstanding commands = 0x%d\n", 3982 readl(&(tb->CmdsOutMax))); 3983 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 3984 for (i = 0; i < 16; i++) 3985 temp_name[i] = readb(&(tb->ServerName[i])); 3986 temp_name[16] = '\0'; 3987 dev_info(dev, " Server Name = %s\n", temp_name); 3988 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 3989 readl(&(tb->HeartBeat))); 3990 #endif /* HPSA_DEBUG */ 3991 } 3992 3993 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 3994 { 3995 int i, offset, mem_type, bar_type; 3996 3997 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 3998 return 0; 3999 offset = 0; 4000 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 4001 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 4002 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 4003 offset += 4; 4004 else { 4005 mem_type = pci_resource_flags(pdev, i) & 4006 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 4007 switch (mem_type) { 4008 case PCI_BASE_ADDRESS_MEM_TYPE_32: 4009 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 4010 offset += 4; /* 32 bit */ 4011 break; 4012 case PCI_BASE_ADDRESS_MEM_TYPE_64: 4013 offset += 8; 4014 break; 4015 default: /* reserved in PCI 2.2 */ 4016 dev_warn(&pdev->dev, 4017 "base address is invalid\n"); 4018 return -1; 4019 break; 4020 } 4021 } 4022 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 4023 return i + 1; 4024 } 4025 return -1; 4026 } 4027 4028 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 4029 * controllers that are capable. If not, we use IO-APIC mode. 4030 */ 4031 4032 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h) 4033 { 4034 #ifdef CONFIG_PCI_MSI 4035 int err, i; 4036 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES]; 4037 4038 for (i = 0; i < MAX_REPLY_QUEUES; i++) { 4039 hpsa_msix_entries[i].vector = 0; 4040 hpsa_msix_entries[i].entry = i; 4041 } 4042 4043 /* Some boards advertise MSI but don't really support it */ 4044 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 4045 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 4046 goto default_int_mode; 4047 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 4048 dev_info(&h->pdev->dev, "MSIX\n"); 4049 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4050 MAX_REPLY_QUEUES); 4051 if (!err) { 4052 for (i = 0; i < MAX_REPLY_QUEUES; i++) 4053 h->intr[i] = hpsa_msix_entries[i].vector; 4054 h->msix_vector = 1; 4055 return; 4056 } 4057 if (err > 0) { 4058 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 4059 "available\n", err); 4060 goto default_int_mode; 4061 } else { 4062 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", 4063 err); 4064 goto default_int_mode; 4065 } 4066 } 4067 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 4068 dev_info(&h->pdev->dev, "MSI\n"); 4069 if (!pci_enable_msi(h->pdev)) 4070 h->msi_vector = 1; 4071 else 4072 dev_warn(&h->pdev->dev, "MSI init failed\n"); 4073 } 4074 default_int_mode: 4075 #endif /* CONFIG_PCI_MSI */ 4076 /* if we get here we're going to use the default interrupt mode */ 4077 h->intr[h->intr_mode] = h->pdev->irq; 4078 } 4079 4080 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 4081 { 4082 int i; 4083 u32 subsystem_vendor_id, subsystem_device_id; 4084 4085 subsystem_vendor_id = pdev->subsystem_vendor; 4086 subsystem_device_id = pdev->subsystem_device; 4087 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 4088 subsystem_vendor_id; 4089 4090 for (i = 0; i < ARRAY_SIZE(products); i++) 4091 if (*board_id == products[i].board_id) 4092 return i; 4093 4094 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && 4095 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || 4096 !hpsa_allow_any) { 4097 dev_warn(&pdev->dev, "unrecognized board ID: " 4098 "0x%08x, ignoring.\n", *board_id); 4099 return -ENODEV; 4100 } 4101 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 4102 } 4103 4104 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 4105 unsigned long *memory_bar) 4106 { 4107 int i; 4108 4109 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 4110 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 4111 /* addressing mode bits already removed */ 4112 *memory_bar = pci_resource_start(pdev, i); 4113 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 4114 *memory_bar); 4115 return 0; 4116 } 4117 dev_warn(&pdev->dev, "no memory BAR found\n"); 4118 return -ENODEV; 4119 } 4120 4121 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, 4122 void __iomem *vaddr, int wait_for_ready) 4123 { 4124 int i, iterations; 4125 u32 scratchpad; 4126 if (wait_for_ready) 4127 iterations = HPSA_BOARD_READY_ITERATIONS; 4128 else 4129 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 4130 4131 for (i = 0; i < iterations; i++) { 4132 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 4133 if (wait_for_ready) { 4134 if (scratchpad == HPSA_FIRMWARE_READY) 4135 return 0; 4136 } else { 4137 if (scratchpad != HPSA_FIRMWARE_READY) 4138 return 0; 4139 } 4140 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 4141 } 4142 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 4143 return -ENODEV; 4144 } 4145 4146 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 4147 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 4148 u64 *cfg_offset) 4149 { 4150 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 4151 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 4152 *cfg_base_addr &= (u32) 0x0000ffff; 4153 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 4154 if (*cfg_base_addr_index == -1) { 4155 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 4156 return -ENODEV; 4157 } 4158 return 0; 4159 } 4160 4161 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h) 4162 { 4163 u64 cfg_offset; 4164 u32 cfg_base_addr; 4165 u64 cfg_base_addr_index; 4166 u32 trans_offset; 4167 int rc; 4168 4169 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 4170 &cfg_base_addr_index, &cfg_offset); 4171 if (rc) 4172 return rc; 4173 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 4174 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 4175 if (!h->cfgtable) 4176 return -ENOMEM; 4177 rc = write_driver_ver_to_cfgtable(h->cfgtable); 4178 if (rc) 4179 return rc; 4180 /* Find performant mode table. */ 4181 trans_offset = readl(&h->cfgtable->TransMethodOffset); 4182 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 4183 cfg_base_addr_index)+cfg_offset+trans_offset, 4184 sizeof(*h->transtable)); 4185 if (!h->transtable) 4186 return -ENOMEM; 4187 return 0; 4188 } 4189 4190 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 4191 { 4192 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 4193 4194 /* Limit commands in memory limited kdump scenario. */ 4195 if (reset_devices && h->max_commands > 32) 4196 h->max_commands = 32; 4197 4198 if (h->max_commands < 16) { 4199 dev_warn(&h->pdev->dev, "Controller reports " 4200 "max supported commands of %d, an obvious lie. " 4201 "Using 16. Ensure that firmware is up to date.\n", 4202 h->max_commands); 4203 h->max_commands = 16; 4204 } 4205 } 4206 4207 /* Interrogate the hardware for some limits: 4208 * max commands, max SG elements without chaining, and with chaining, 4209 * SG chain block size, etc. 4210 */ 4211 static void __devinit hpsa_find_board_params(struct ctlr_info *h) 4212 { 4213 hpsa_get_max_perf_mode_cmds(h); 4214 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ 4215 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 4216 /* 4217 * Limit in-command s/g elements to 32 save dma'able memory. 4218 * Howvever spec says if 0, use 31 4219 */ 4220 h->max_cmd_sg_entries = 31; 4221 if (h->maxsgentries > 512) { 4222 h->max_cmd_sg_entries = 32; 4223 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; 4224 h->maxsgentries--; /* save one for chain pointer */ 4225 } else { 4226 h->maxsgentries = 31; /* default to traditional values */ 4227 h->chainsize = 0; 4228 } 4229 4230 /* Find out what task management functions are supported and cache */ 4231 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); 4232 } 4233 4234 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 4235 { 4236 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { 4237 dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); 4238 return false; 4239 } 4240 return true; 4241 } 4242 4243 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 4244 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h) 4245 { 4246 #ifdef CONFIG_X86 4247 u32 prefetch; 4248 4249 prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); 4250 prefetch |= 0x100; 4251 writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); 4252 #endif 4253 } 4254 4255 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 4256 * in a prefetch beyond physical memory. 4257 */ 4258 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 4259 { 4260 u32 dma_prefetch; 4261 4262 if (h->board_id != 0x3225103C) 4263 return; 4264 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 4265 dma_prefetch |= 0x8000; 4266 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 4267 } 4268 4269 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 4270 { 4271 int i; 4272 u32 doorbell_value; 4273 unsigned long flags; 4274 4275 /* under certain very rare conditions, this can take awhile. 4276 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 4277 * as we enter this code.) 4278 */ 4279 for (i = 0; i < MAX_CONFIG_WAIT; i++) { 4280 spin_lock_irqsave(&h->lock, flags); 4281 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 4282 spin_unlock_irqrestore(&h->lock, flags); 4283 if (!(doorbell_value & CFGTBL_ChangeReq)) 4284 break; 4285 /* delay and try again */ 4286 usleep_range(10000, 20000); 4287 } 4288 } 4289 4290 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h) 4291 { 4292 u32 trans_support; 4293 4294 trans_support = readl(&(h->cfgtable->TransportSupport)); 4295 if (!(trans_support & SIMPLE_MODE)) 4296 return -ENOTSUPP; 4297 4298 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 4299 /* Update the field, and then ring the doorbell */ 4300 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 4301 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 4302 hpsa_wait_for_mode_change_ack(h); 4303 print_cfg_table(&h->pdev->dev, h->cfgtable); 4304 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { 4305 dev_warn(&h->pdev->dev, 4306 "unable to get board into simple mode\n"); 4307 return -ENODEV; 4308 } 4309 h->transMethod = CFGTBL_Trans_Simple; 4310 return 0; 4311 } 4312 4313 static int __devinit hpsa_pci_init(struct ctlr_info *h) 4314 { 4315 int prod_index, err; 4316 4317 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 4318 if (prod_index < 0) 4319 return -ENODEV; 4320 h->product_name = products[prod_index].product_name; 4321 h->access = *(products[prod_index].access); 4322 4323 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | 4324 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); 4325 4326 err = pci_enable_device(h->pdev); 4327 if (err) { 4328 dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); 4329 return err; 4330 } 4331 4332 /* Enable bus mastering (pci_disable_device may disable this) */ 4333 pci_set_master(h->pdev); 4334 4335 err = pci_request_regions(h->pdev, HPSA); 4336 if (err) { 4337 dev_err(&h->pdev->dev, 4338 "cannot obtain PCI resources, aborting\n"); 4339 return err; 4340 } 4341 hpsa_interrupt_mode(h); 4342 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 4343 if (err) 4344 goto err_out_free_res; 4345 h->vaddr = remap_pci_mem(h->paddr, 0x250); 4346 if (!h->vaddr) { 4347 err = -ENOMEM; 4348 goto err_out_free_res; 4349 } 4350 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 4351 if (err) 4352 goto err_out_free_res; 4353 err = hpsa_find_cfgtables(h); 4354 if (err) 4355 goto err_out_free_res; 4356 hpsa_find_board_params(h); 4357 4358 if (!hpsa_CISS_signature_present(h)) { 4359 err = -ENODEV; 4360 goto err_out_free_res; 4361 } 4362 hpsa_enable_scsi_prefetch(h); 4363 hpsa_p600_dma_prefetch_quirk(h); 4364 err = hpsa_enter_simple_mode(h); 4365 if (err) 4366 goto err_out_free_res; 4367 return 0; 4368 4369 err_out_free_res: 4370 if (h->transtable) 4371 iounmap(h->transtable); 4372 if (h->cfgtable) 4373 iounmap(h->cfgtable); 4374 if (h->vaddr) 4375 iounmap(h->vaddr); 4376 pci_disable_device(h->pdev); 4377 pci_release_regions(h->pdev); 4378 return err; 4379 } 4380 4381 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) 4382 { 4383 int rc; 4384 4385 #define HBA_INQUIRY_BYTE_COUNT 64 4386 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 4387 if (!h->hba_inquiry_data) 4388 return; 4389 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 4390 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 4391 if (rc != 0) { 4392 kfree(h->hba_inquiry_data); 4393 h->hba_inquiry_data = NULL; 4394 } 4395 } 4396 4397 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev) 4398 { 4399 int rc, i; 4400 4401 if (!reset_devices) 4402 return 0; 4403 4404 /* Reset the controller with a PCI power-cycle or via doorbell */ 4405 rc = hpsa_kdump_hard_reset_controller(pdev); 4406 4407 /* -ENOTSUPP here means we cannot reset the controller 4408 * but it's already (and still) up and running in 4409 * "performant mode". Or, it might be 640x, which can't reset 4410 * due to concerns about shared bbwc between 6402/6404 pair. 4411 */ 4412 if (rc == -ENOTSUPP) 4413 return rc; /* just try to do the kdump anyhow. */ 4414 if (rc) 4415 return -ENODEV; 4416 4417 /* Now try to get the controller to respond to a no-op */ 4418 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n"); 4419 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 4420 if (hpsa_noop(pdev) == 0) 4421 break; 4422 else 4423 dev_warn(&pdev->dev, "no-op failed%s\n", 4424 (i < 11 ? "; re-trying" : "")); 4425 } 4426 return 0; 4427 } 4428 4429 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h) 4430 { 4431 h->cmd_pool_bits = kzalloc( 4432 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * 4433 sizeof(unsigned long), GFP_KERNEL); 4434 h->cmd_pool = pci_alloc_consistent(h->pdev, 4435 h->nr_cmds * sizeof(*h->cmd_pool), 4436 &(h->cmd_pool_dhandle)); 4437 h->errinfo_pool = pci_alloc_consistent(h->pdev, 4438 h->nr_cmds * sizeof(*h->errinfo_pool), 4439 &(h->errinfo_pool_dhandle)); 4440 if ((h->cmd_pool_bits == NULL) 4441 || (h->cmd_pool == NULL) 4442 || (h->errinfo_pool == NULL)) { 4443 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 4444 return -ENOMEM; 4445 } 4446 return 0; 4447 } 4448 4449 static void hpsa_free_cmd_pool(struct ctlr_info *h) 4450 { 4451 kfree(h->cmd_pool_bits); 4452 if (h->cmd_pool) 4453 pci_free_consistent(h->pdev, 4454 h->nr_cmds * sizeof(struct CommandList), 4455 h->cmd_pool, h->cmd_pool_dhandle); 4456 if (h->errinfo_pool) 4457 pci_free_consistent(h->pdev, 4458 h->nr_cmds * sizeof(struct ErrorInfo), 4459 h->errinfo_pool, 4460 h->errinfo_pool_dhandle); 4461 } 4462 4463 static int hpsa_request_irq(struct ctlr_info *h, 4464 irqreturn_t (*msixhandler)(int, void *), 4465 irqreturn_t (*intxhandler)(int, void *)) 4466 { 4467 int rc, i; 4468 4469 /* 4470 * initialize h->q[x] = x so that interrupt handlers know which 4471 * queue to process. 4472 */ 4473 for (i = 0; i < MAX_REPLY_QUEUES; i++) 4474 h->q[i] = (u8) i; 4475 4476 if (h->intr_mode == PERF_MODE_INT && h->msix_vector) { 4477 /* If performant mode and MSI-X, use multiple reply queues */ 4478 for (i = 0; i < MAX_REPLY_QUEUES; i++) 4479 rc = request_irq(h->intr[i], msixhandler, 4480 0, h->devname, 4481 &h->q[i]); 4482 } else { 4483 /* Use single reply pool */ 4484 if (h->msix_vector || h->msi_vector) { 4485 rc = request_irq(h->intr[h->intr_mode], 4486 msixhandler, 0, h->devname, 4487 &h->q[h->intr_mode]); 4488 } else { 4489 rc = request_irq(h->intr[h->intr_mode], 4490 intxhandler, IRQF_SHARED, h->devname, 4491 &h->q[h->intr_mode]); 4492 } 4493 } 4494 if (rc) { 4495 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n", 4496 h->intr[h->intr_mode], h->devname); 4497 return -ENODEV; 4498 } 4499 return 0; 4500 } 4501 4502 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h) 4503 { 4504 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID, 4505 HPSA_RESET_TYPE_CONTROLLER)) { 4506 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); 4507 return -EIO; 4508 } 4509 4510 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 4511 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { 4512 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 4513 return -1; 4514 } 4515 4516 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 4517 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { 4518 dev_warn(&h->pdev->dev, "Board failed to become ready " 4519 "after soft reset.\n"); 4520 return -1; 4521 } 4522 4523 return 0; 4524 } 4525 4526 static void free_irqs(struct ctlr_info *h) 4527 { 4528 int i; 4529 4530 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) { 4531 /* Single reply queue, only one irq to free */ 4532 i = h->intr_mode; 4533 free_irq(h->intr[i], &h->q[i]); 4534 return; 4535 } 4536 4537 for (i = 0; i < MAX_REPLY_QUEUES; i++) 4538 free_irq(h->intr[i], &h->q[i]); 4539 } 4540 4541 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h) 4542 { 4543 free_irqs(h); 4544 #ifdef CONFIG_PCI_MSI 4545 if (h->msix_vector) { 4546 if (h->pdev->msix_enabled) 4547 pci_disable_msix(h->pdev); 4548 } else if (h->msi_vector) { 4549 if (h->pdev->msi_enabled) 4550 pci_disable_msi(h->pdev); 4551 } 4552 #endif /* CONFIG_PCI_MSI */ 4553 } 4554 4555 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 4556 { 4557 hpsa_free_irqs_and_disable_msix(h); 4558 hpsa_free_sg_chain_blocks(h); 4559 hpsa_free_cmd_pool(h); 4560 kfree(h->blockFetchTable); 4561 pci_free_consistent(h->pdev, h->reply_pool_size, 4562 h->reply_pool, h->reply_pool_dhandle); 4563 if (h->vaddr) 4564 iounmap(h->vaddr); 4565 if (h->transtable) 4566 iounmap(h->transtable); 4567 if (h->cfgtable) 4568 iounmap(h->cfgtable); 4569 pci_release_regions(h->pdev); 4570 kfree(h); 4571 } 4572 4573 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h) 4574 { 4575 assert_spin_locked(&lockup_detector_lock); 4576 if (!hpsa_lockup_detector) 4577 return; 4578 if (h->lockup_detected) 4579 return; /* already stopped the lockup detector */ 4580 list_del(&h->lockup_list); 4581 } 4582 4583 /* Called when controller lockup detected. */ 4584 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list) 4585 { 4586 struct CommandList *c = NULL; 4587 4588 assert_spin_locked(&h->lock); 4589 /* Mark all outstanding commands as failed and complete them. */ 4590 while (!list_empty(list)) { 4591 c = list_entry(list->next, struct CommandList, list); 4592 c->err_info->CommandStatus = CMD_HARDWARE_ERR; 4593 finish_cmd(c); 4594 } 4595 } 4596 4597 static void controller_lockup_detected(struct ctlr_info *h) 4598 { 4599 unsigned long flags; 4600 4601 assert_spin_locked(&lockup_detector_lock); 4602 remove_ctlr_from_lockup_detector_list(h); 4603 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4604 spin_lock_irqsave(&h->lock, flags); 4605 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 4606 spin_unlock_irqrestore(&h->lock, flags); 4607 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n", 4608 h->lockup_detected); 4609 pci_disable_device(h->pdev); 4610 spin_lock_irqsave(&h->lock, flags); 4611 fail_all_cmds_on_list(h, &h->cmpQ); 4612 fail_all_cmds_on_list(h, &h->reqQ); 4613 spin_unlock_irqrestore(&h->lock, flags); 4614 } 4615 4616 static void detect_controller_lockup(struct ctlr_info *h) 4617 { 4618 u64 now; 4619 u32 heartbeat; 4620 unsigned long flags; 4621 4622 assert_spin_locked(&lockup_detector_lock); 4623 now = get_jiffies_64(); 4624 /* If we've received an interrupt recently, we're ok. */ 4625 if (time_after64(h->last_intr_timestamp + 4626 (h->heartbeat_sample_interval), now)) 4627 return; 4628 4629 /* 4630 * If we've already checked the heartbeat recently, we're ok. 4631 * This could happen if someone sends us a signal. We 4632 * otherwise don't care about signals in this thread. 4633 */ 4634 if (time_after64(h->last_heartbeat_timestamp + 4635 (h->heartbeat_sample_interval), now)) 4636 return; 4637 4638 /* If heartbeat has not changed since we last looked, we're not ok. */ 4639 spin_lock_irqsave(&h->lock, flags); 4640 heartbeat = readl(&h->cfgtable->HeartBeat); 4641 spin_unlock_irqrestore(&h->lock, flags); 4642 if (h->last_heartbeat == heartbeat) { 4643 controller_lockup_detected(h); 4644 return; 4645 } 4646 4647 /* We're ok. */ 4648 h->last_heartbeat = heartbeat; 4649 h->last_heartbeat_timestamp = now; 4650 } 4651 4652 static int detect_controller_lockup_thread(void *notused) 4653 { 4654 struct ctlr_info *h; 4655 unsigned long flags; 4656 4657 while (1) { 4658 struct list_head *this, *tmp; 4659 4660 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL); 4661 if (kthread_should_stop()) 4662 break; 4663 spin_lock_irqsave(&lockup_detector_lock, flags); 4664 list_for_each_safe(this, tmp, &hpsa_ctlr_list) { 4665 h = list_entry(this, struct ctlr_info, lockup_list); 4666 detect_controller_lockup(h); 4667 } 4668 spin_unlock_irqrestore(&lockup_detector_lock, flags); 4669 } 4670 return 0; 4671 } 4672 4673 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h) 4674 { 4675 unsigned long flags; 4676 4677 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 4678 spin_lock_irqsave(&lockup_detector_lock, flags); 4679 list_add_tail(&h->lockup_list, &hpsa_ctlr_list); 4680 spin_unlock_irqrestore(&lockup_detector_lock, flags); 4681 } 4682 4683 static void start_controller_lockup_detector(struct ctlr_info *h) 4684 { 4685 /* Start the lockup detector thread if not already started */ 4686 if (!hpsa_lockup_detector) { 4687 spin_lock_init(&lockup_detector_lock); 4688 hpsa_lockup_detector = 4689 kthread_run(detect_controller_lockup_thread, 4690 NULL, HPSA); 4691 } 4692 if (!hpsa_lockup_detector) { 4693 dev_warn(&h->pdev->dev, 4694 "Could not start lockup detector thread\n"); 4695 return; 4696 } 4697 add_ctlr_to_lockup_detector_list(h); 4698 } 4699 4700 static void stop_controller_lockup_detector(struct ctlr_info *h) 4701 { 4702 unsigned long flags; 4703 4704 spin_lock_irqsave(&lockup_detector_lock, flags); 4705 remove_ctlr_from_lockup_detector_list(h); 4706 /* If the list of ctlr's to monitor is empty, stop the thread */ 4707 if (list_empty(&hpsa_ctlr_list)) { 4708 spin_unlock_irqrestore(&lockup_detector_lock, flags); 4709 kthread_stop(hpsa_lockup_detector); 4710 spin_lock_irqsave(&lockup_detector_lock, flags); 4711 hpsa_lockup_detector = NULL; 4712 } 4713 spin_unlock_irqrestore(&lockup_detector_lock, flags); 4714 } 4715 4716 static int __devinit hpsa_init_one(struct pci_dev *pdev, 4717 const struct pci_device_id *ent) 4718 { 4719 int dac, rc; 4720 struct ctlr_info *h; 4721 int try_soft_reset = 0; 4722 unsigned long flags; 4723 4724 if (number_of_controllers == 0) 4725 printk(KERN_INFO DRIVER_NAME "\n"); 4726 4727 rc = hpsa_init_reset_devices(pdev); 4728 if (rc) { 4729 if (rc != -ENOTSUPP) 4730 return rc; 4731 /* If the reset fails in a particular way (it has no way to do 4732 * a proper hard reset, so returns -ENOTSUPP) we can try to do 4733 * a soft reset once we get the controller configured up to the 4734 * point that it can accept a command. 4735 */ 4736 try_soft_reset = 1; 4737 rc = 0; 4738 } 4739 4740 reinit_after_soft_reset: 4741 4742 /* Command structures must be aligned on a 32-byte boundary because 4743 * the 5 lower bits of the address are used by the hardware. and by 4744 * the driver. See comments in hpsa.h for more info. 4745 */ 4746 #define COMMANDLIST_ALIGNMENT 32 4747 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 4748 h = kzalloc(sizeof(*h), GFP_KERNEL); 4749 if (!h) 4750 return -ENOMEM; 4751 4752 h->pdev = pdev; 4753 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 4754 INIT_LIST_HEAD(&h->cmpQ); 4755 INIT_LIST_HEAD(&h->reqQ); 4756 spin_lock_init(&h->lock); 4757 spin_lock_init(&h->scan_lock); 4758 rc = hpsa_pci_init(h); 4759 if (rc != 0) 4760 goto clean1; 4761 4762 sprintf(h->devname, HPSA "%d", number_of_controllers); 4763 h->ctlr = number_of_controllers; 4764 number_of_controllers++; 4765 4766 /* configure PCI DMA stuff */ 4767 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 4768 if (rc == 0) { 4769 dac = 1; 4770 } else { 4771 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4772 if (rc == 0) { 4773 dac = 0; 4774 } else { 4775 dev_err(&pdev->dev, "no suitable DMA available\n"); 4776 goto clean1; 4777 } 4778 } 4779 4780 /* make sure the board interrupts are off */ 4781 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4782 4783 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx)) 4784 goto clean2; 4785 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", 4786 h->devname, pdev->device, 4787 h->intr[h->intr_mode], dac ? "" : " not"); 4788 if (hpsa_allocate_cmd_pool(h)) 4789 goto clean4; 4790 if (hpsa_allocate_sg_chain_blocks(h)) 4791 goto clean4; 4792 init_waitqueue_head(&h->scan_wait_queue); 4793 h->scan_finished = 1; /* no scan currently in progress */ 4794 4795 pci_set_drvdata(pdev, h); 4796 h->ndevices = 0; 4797 h->scsi_host = NULL; 4798 spin_lock_init(&h->devlock); 4799 hpsa_put_ctlr_into_performant_mode(h); 4800 4801 /* At this point, the controller is ready to take commands. 4802 * Now, if reset_devices and the hard reset didn't work, try 4803 * the soft reset and see if that works. 4804 */ 4805 if (try_soft_reset) { 4806 4807 /* This is kind of gross. We may or may not get a completion 4808 * from the soft reset command, and if we do, then the value 4809 * from the fifo may or may not be valid. So, we wait 10 secs 4810 * after the reset throwing away any completions we get during 4811 * that time. Unregister the interrupt handler and register 4812 * fake ones to scoop up any residual completions. 4813 */ 4814 spin_lock_irqsave(&h->lock, flags); 4815 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4816 spin_unlock_irqrestore(&h->lock, flags); 4817 free_irqs(h); 4818 rc = hpsa_request_irq(h, hpsa_msix_discard_completions, 4819 hpsa_intx_discard_completions); 4820 if (rc) { 4821 dev_warn(&h->pdev->dev, "Failed to request_irq after " 4822 "soft reset.\n"); 4823 goto clean4; 4824 } 4825 4826 rc = hpsa_kdump_soft_reset(h); 4827 if (rc) 4828 /* Neither hard nor soft reset worked, we're hosed. */ 4829 goto clean4; 4830 4831 dev_info(&h->pdev->dev, "Board READY.\n"); 4832 dev_info(&h->pdev->dev, 4833 "Waiting for stale completions to drain.\n"); 4834 h->access.set_intr_mask(h, HPSA_INTR_ON); 4835 msleep(10000); 4836 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4837 4838 rc = controller_reset_failed(h->cfgtable); 4839 if (rc) 4840 dev_info(&h->pdev->dev, 4841 "Soft reset appears to have failed.\n"); 4842 4843 /* since the controller's reset, we have to go back and re-init 4844 * everything. Easiest to just forget what we've done and do it 4845 * all over again. 4846 */ 4847 hpsa_undo_allocations_after_kdump_soft_reset(h); 4848 try_soft_reset = 0; 4849 if (rc) 4850 /* don't go to clean4, we already unallocated */ 4851 return -ENODEV; 4852 4853 goto reinit_after_soft_reset; 4854 } 4855 4856 /* Turn the interrupts on so we can service requests */ 4857 h->access.set_intr_mask(h, HPSA_INTR_ON); 4858 4859 hpsa_hba_inquiry(h); 4860 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 4861 start_controller_lockup_detector(h); 4862 return 1; 4863 4864 clean4: 4865 hpsa_free_sg_chain_blocks(h); 4866 hpsa_free_cmd_pool(h); 4867 free_irqs(h); 4868 clean2: 4869 clean1: 4870 kfree(h); 4871 return rc; 4872 } 4873 4874 static void hpsa_flush_cache(struct ctlr_info *h) 4875 { 4876 char *flush_buf; 4877 struct CommandList *c; 4878 4879 flush_buf = kzalloc(4, GFP_KERNEL); 4880 if (!flush_buf) 4881 return; 4882 4883 c = cmd_special_alloc(h); 4884 if (!c) { 4885 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 4886 goto out_of_memory; 4887 } 4888 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 4889 RAID_CTLR_LUNID, TYPE_CMD); 4890 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 4891 if (c->err_info->CommandStatus != 0) 4892 dev_warn(&h->pdev->dev, 4893 "error flushing cache on controller\n"); 4894 cmd_special_free(h, c); 4895 out_of_memory: 4896 kfree(flush_buf); 4897 } 4898 4899 static void hpsa_shutdown(struct pci_dev *pdev) 4900 { 4901 struct ctlr_info *h; 4902 4903 h = pci_get_drvdata(pdev); 4904 /* Turn board interrupts off and send the flush cache command 4905 * sendcmd will turn off interrupt, and send the flush... 4906 * To write all data in the battery backed cache to disks 4907 */ 4908 hpsa_flush_cache(h); 4909 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4910 hpsa_free_irqs_and_disable_msix(h); 4911 } 4912 4913 static void __devexit hpsa_free_device_info(struct ctlr_info *h) 4914 { 4915 int i; 4916 4917 for (i = 0; i < h->ndevices; i++) 4918 kfree(h->dev[i]); 4919 } 4920 4921 static void __devexit hpsa_remove_one(struct pci_dev *pdev) 4922 { 4923 struct ctlr_info *h; 4924 4925 if (pci_get_drvdata(pdev) == NULL) { 4926 dev_err(&pdev->dev, "unable to remove device\n"); 4927 return; 4928 } 4929 h = pci_get_drvdata(pdev); 4930 stop_controller_lockup_detector(h); 4931 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 4932 hpsa_shutdown(pdev); 4933 iounmap(h->vaddr); 4934 iounmap(h->transtable); 4935 iounmap(h->cfgtable); 4936 hpsa_free_device_info(h); 4937 hpsa_free_sg_chain_blocks(h); 4938 pci_free_consistent(h->pdev, 4939 h->nr_cmds * sizeof(struct CommandList), 4940 h->cmd_pool, h->cmd_pool_dhandle); 4941 pci_free_consistent(h->pdev, 4942 h->nr_cmds * sizeof(struct ErrorInfo), 4943 h->errinfo_pool, h->errinfo_pool_dhandle); 4944 pci_free_consistent(h->pdev, h->reply_pool_size, 4945 h->reply_pool, h->reply_pool_dhandle); 4946 kfree(h->cmd_pool_bits); 4947 kfree(h->blockFetchTable); 4948 kfree(h->hba_inquiry_data); 4949 pci_disable_device(pdev); 4950 pci_release_regions(pdev); 4951 pci_set_drvdata(pdev, NULL); 4952 kfree(h); 4953 } 4954 4955 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 4956 __attribute__((unused)) pm_message_t state) 4957 { 4958 return -ENOSYS; 4959 } 4960 4961 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 4962 { 4963 return -ENOSYS; 4964 } 4965 4966 static struct pci_driver hpsa_pci_driver = { 4967 .name = HPSA, 4968 .probe = hpsa_init_one, 4969 .remove = __devexit_p(hpsa_remove_one), 4970 .id_table = hpsa_pci_device_id, /* id_table */ 4971 .shutdown = hpsa_shutdown, 4972 .suspend = hpsa_suspend, 4973 .resume = hpsa_resume, 4974 }; 4975 4976 /* Fill in bucket_map[], given nsgs (the max number of 4977 * scatter gather elements supported) and bucket[], 4978 * which is an array of 8 integers. The bucket[] array 4979 * contains 8 different DMA transfer sizes (in 16 4980 * byte increments) which the controller uses to fetch 4981 * commands. This function fills in bucket_map[], which 4982 * maps a given number of scatter gather elements to one of 4983 * the 8 DMA transfer sizes. The point of it is to allow the 4984 * controller to only do as much DMA as needed to fetch the 4985 * command, with the DMA transfer size encoded in the lower 4986 * bits of the command address. 4987 */ 4988 static void calc_bucket_map(int bucket[], int num_buckets, 4989 int nsgs, int *bucket_map) 4990 { 4991 int i, j, b, size; 4992 4993 /* even a command with 0 SGs requires 4 blocks */ 4994 #define MINIMUM_TRANSFER_BLOCKS 4 4995 #define NUM_BUCKETS 8 4996 /* Note, bucket_map must have nsgs+1 entries. */ 4997 for (i = 0; i <= nsgs; i++) { 4998 /* Compute size of a command with i SG entries */ 4999 size = i + MINIMUM_TRANSFER_BLOCKS; 5000 b = num_buckets; /* Assume the biggest bucket */ 5001 /* Find the bucket that is just big enough */ 5002 for (j = 0; j < 8; j++) { 5003 if (bucket[j] >= size) { 5004 b = j; 5005 break; 5006 } 5007 } 5008 /* for a command with i SG entries, use bucket b. */ 5009 bucket_map[i] = b; 5010 } 5011 } 5012 5013 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h, 5014 u32 use_short_tags) 5015 { 5016 int i; 5017 unsigned long register_value; 5018 5019 /* This is a bit complicated. There are 8 registers on 5020 * the controller which we write to to tell it 8 different 5021 * sizes of commands which there may be. It's a way of 5022 * reducing the DMA done to fetch each command. Encoded into 5023 * each command's tag are 3 bits which communicate to the controller 5024 * which of the eight sizes that command fits within. The size of 5025 * each command depends on how many scatter gather entries there are. 5026 * Each SG entry requires 16 bytes. The eight registers are programmed 5027 * with the number of 16-byte blocks a command of that size requires. 5028 * The smallest command possible requires 5 such 16 byte blocks. 5029 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte 5030 * blocks. Note, this only extends to the SG entries contained 5031 * within the command block, and does not extend to chained blocks 5032 * of SG elements. bft[] contains the eight values we write to 5033 * the registers. They are not evenly distributed, but have more 5034 * sizes for small commands, and fewer sizes for larger commands. 5035 */ 5036 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; 5037 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); 5038 /* 5 = 1 s/g entry or 4k 5039 * 6 = 2 s/g entry or 8k 5040 * 8 = 4 s/g entry or 16k 5041 * 10 = 6 s/g entry or 24k 5042 */ 5043 5044 /* Controller spec: zero out this buffer. */ 5045 memset(h->reply_pool, 0, h->reply_pool_size); 5046 5047 bft[7] = SG_ENTRIES_IN_CMD + 4; 5048 calc_bucket_map(bft, ARRAY_SIZE(bft), 5049 SG_ENTRIES_IN_CMD, h->blockFetchTable); 5050 for (i = 0; i < 8; i++) 5051 writel(bft[i], &h->transtable->BlockFetch[i]); 5052 5053 /* size of controller ring buffer */ 5054 writel(h->max_commands, &h->transtable->RepQSize); 5055 writel(h->nreply_queues, &h->transtable->RepQCount); 5056 writel(0, &h->transtable->RepQCtrAddrLow32); 5057 writel(0, &h->transtable->RepQCtrAddrHigh32); 5058 5059 for (i = 0; i < h->nreply_queues; i++) { 5060 writel(0, &h->transtable->RepQAddr[i].upper); 5061 writel(h->reply_pool_dhandle + 5062 (h->max_commands * sizeof(u64) * i), 5063 &h->transtable->RepQAddr[i].lower); 5064 } 5065 5066 writel(CFGTBL_Trans_Performant | use_short_tags | 5067 CFGTBL_Trans_enable_directed_msix, 5068 &(h->cfgtable->HostWrite.TransportRequest)); 5069 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 5070 hpsa_wait_for_mode_change_ack(h); 5071 register_value = readl(&(h->cfgtable->TransportActive)); 5072 if (!(register_value & CFGTBL_Trans_Performant)) { 5073 dev_warn(&h->pdev->dev, "unable to get board into" 5074 " performant mode\n"); 5075 return; 5076 } 5077 /* Change the access methods to the performant access methods */ 5078 h->access = SA5_performant_access; 5079 h->transMethod = CFGTBL_Trans_Performant; 5080 } 5081 5082 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 5083 { 5084 u32 trans_support; 5085 int i; 5086 5087 if (hpsa_simple_mode) 5088 return; 5089 5090 trans_support = readl(&(h->cfgtable->TransportSupport)); 5091 if (!(trans_support & PERFORMANT_MODE)) 5092 return; 5093 5094 h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1; 5095 hpsa_get_max_perf_mode_cmds(h); 5096 /* Performant mode ring buffer and supporting data structures */ 5097 h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues; 5098 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, 5099 &(h->reply_pool_dhandle)); 5100 5101 for (i = 0; i < h->nreply_queues; i++) { 5102 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i]; 5103 h->reply_queue[i].size = h->max_commands; 5104 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ 5105 h->reply_queue[i].current_entry = 0; 5106 } 5107 5108 /* Need a block fetch table for performant mode */ 5109 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * 5110 sizeof(u32)), GFP_KERNEL); 5111 5112 if ((h->reply_pool == NULL) 5113 || (h->blockFetchTable == NULL)) 5114 goto clean_up; 5115 5116 hpsa_enter_performant_mode(h, 5117 trans_support & CFGTBL_Trans_use_short_tags); 5118 5119 return; 5120 5121 clean_up: 5122 if (h->reply_pool) 5123 pci_free_consistent(h->pdev, h->reply_pool_size, 5124 h->reply_pool, h->reply_pool_dhandle); 5125 kfree(h->blockFetchTable); 5126 } 5127 5128 /* 5129 * This is it. Register the PCI driver information for the cards we control 5130 * the OS will call our registered routines when it finds one of our cards. 5131 */ 5132 static int __init hpsa_init(void) 5133 { 5134 return pci_register_driver(&hpsa_pci_driver); 5135 } 5136 5137 static void __exit hpsa_cleanup(void) 5138 { 5139 pci_unregister_driver(&hpsa_pci_driver); 5140 } 5141 5142 module_init(hpsa_init); 5143 module_exit(hpsa_cleanup); 5144