xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-170"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78 
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 	HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87 
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 	"Use 'simple mode' rather than 'performant mode'");
92 
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
151 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152 	{0,}
153 };
154 
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156 
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162 	{0x40700E11, "Smart Array 5300", &SA5A_access},
163 	{0x40800E11, "Smart Array 5i", &SA5B_access},
164 	{0x40820E11, "Smart Array 532", &SA5B_access},
165 	{0x40830E11, "Smart Array 5312", &SA5B_access},
166 	{0x409A0E11, "Smart Array 641", &SA5A_access},
167 	{0x409B0E11, "Smart Array 642", &SA5A_access},
168 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
169 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170 	{0x40910E11, "Smart Array 6i", &SA5A_access},
171 	{0x3225103C, "Smart Array P600", &SA5A_access},
172 	{0x3223103C, "Smart Array P800", &SA5A_access},
173 	{0x3234103C, "Smart Array P400", &SA5A_access},
174 	{0x3235103C, "Smart Array P400i", &SA5A_access},
175 	{0x3211103C, "Smart Array E200i", &SA5A_access},
176 	{0x3212103C, "Smart Array E200", &SA5A_access},
177 	{0x3213103C, "Smart Array E200i", &SA5A_access},
178 	{0x3214103C, "Smart Array E200i", &SA5A_access},
179 	{0x3215103C, "Smart Array E200i", &SA5A_access},
180 	{0x3237103C, "Smart Array E500", &SA5A_access},
181 	{0x323D103C, "Smart Array P700m", &SA5A_access},
182 	{0x3241103C, "Smart Array P212", &SA5_access},
183 	{0x3243103C, "Smart Array P410", &SA5_access},
184 	{0x3245103C, "Smart Array P410i", &SA5_access},
185 	{0x3247103C, "Smart Array P411", &SA5_access},
186 	{0x3249103C, "Smart Array P812", &SA5_access},
187 	{0x324A103C, "Smart Array P712m", &SA5_access},
188 	{0x324B103C, "Smart Array P711m", &SA5_access},
189 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190 	{0x3350103C, "Smart Array P222", &SA5_access},
191 	{0x3351103C, "Smart Array P420", &SA5_access},
192 	{0x3352103C, "Smart Array P421", &SA5_access},
193 	{0x3353103C, "Smart Array P822", &SA5_access},
194 	{0x3354103C, "Smart Array P420i", &SA5_access},
195 	{0x3355103C, "Smart Array P220i", &SA5_access},
196 	{0x3356103C, "Smart Array P721m", &SA5_access},
197 	{0x1920103C, "Smart Array P430i", &SA5_access},
198 	{0x1921103C, "Smart Array P830i", &SA5_access},
199 	{0x1922103C, "Smart Array P430", &SA5_access},
200 	{0x1923103C, "Smart Array P431", &SA5_access},
201 	{0x1924103C, "Smart Array P830", &SA5_access},
202 	{0x1925103C, "Smart Array P831", &SA5_access},
203 	{0x1926103C, "Smart Array P731m", &SA5_access},
204 	{0x1928103C, "Smart Array P230i", &SA5_access},
205 	{0x1929103C, "Smart Array P530", &SA5_access},
206 	{0x21BD103C, "Smart Array P244br", &SA5_access},
207 	{0x21BE103C, "Smart Array P741m", &SA5_access},
208 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
209 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
210 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
211 	{0x21C2103C, "Smart Array P440", &SA5_access},
212 	{0x21C3103C, "Smart Array P441", &SA5_access},
213 	{0x21C4103C, "Smart Array", &SA5_access},
214 	{0x21C5103C, "Smart Array P841", &SA5_access},
215 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
216 	{0x21C7103C, "Smart HBA H240", &SA5_access},
217 	{0x21C8103C, "Smart HBA H241", &SA5_access},
218 	{0x21C9103C, "Smart Array", &SA5_access},
219 	{0x21CA103C, "Smart Array P246br", &SA5_access},
220 	{0x21CB103C, "Smart Array P840", &SA5_access},
221 	{0x21CC103C, "Smart Array", &SA5_access},
222 	{0x21CD103C, "Smart Array", &SA5_access},
223 	{0x21CE103C, "Smart HBA", &SA5_access},
224 	{0x05809005, "SmartHBA-SA", &SA5_access},
225 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
226 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
228 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
229 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237 
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242 			struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246 		struct sas_rphy *rphy);
247 
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253 
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257 		      void __user *arg);
258 
259 #ifdef CONFIG_COMPAT
260 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
261 	void __user *arg);
262 #endif
263 
264 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_alloc(struct ctlr_info *h);
266 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
267 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
268 					    struct scsi_cmnd *scmd);
269 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
270 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
271 	int cmd_type);
272 static void hpsa_free_cmd_pool(struct ctlr_info *h);
273 #define VPD_PAGE (1 << 8)
274 #define HPSA_SIMPLE_ERROR_BITS 0x03
275 
276 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
277 static void hpsa_scan_start(struct Scsi_Host *);
278 static int hpsa_scan_finished(struct Scsi_Host *sh,
279 	unsigned long elapsed_time);
280 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
281 
282 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
283 static int hpsa_slave_alloc(struct scsi_device *sdev);
284 static int hpsa_slave_configure(struct scsi_device *sdev);
285 static void hpsa_slave_destroy(struct scsi_device *sdev);
286 
287 static void hpsa_update_scsi_devices(struct ctlr_info *h);
288 static int check_for_unit_attention(struct ctlr_info *h,
289 	struct CommandList *c);
290 static void check_ioctl_unit_attention(struct ctlr_info *h,
291 	struct CommandList *c);
292 /* performant mode helper functions */
293 static void calc_bucket_map(int *bucket, int num_buckets,
294 	int nsgs, int min_blocks, u32 *bucket_map);
295 static void hpsa_free_performant_mode(struct ctlr_info *h);
296 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
297 static inline u32 next_command(struct ctlr_info *h, u8 q);
298 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
299 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
300 			       u64 *cfg_offset);
301 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
302 				    unsigned long *memory_bar);
303 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
304 				bool *legacy_board);
305 static int wait_for_device_to_become_ready(struct ctlr_info *h,
306 					   unsigned char lunaddr[],
307 					   int reply_queue);
308 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
309 				     int wait_for_ready);
310 static inline void finish_cmd(struct CommandList *c);
311 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
312 #define BOARD_NOT_READY 0
313 #define BOARD_READY 1
314 static void hpsa_drain_accel_commands(struct ctlr_info *h);
315 static void hpsa_flush_cache(struct ctlr_info *h);
316 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
317 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
318 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
319 static void hpsa_command_resubmit_worker(struct work_struct *work);
320 static u32 lockup_detected(struct ctlr_info *h);
321 static int detect_controller_lockup(struct ctlr_info *h);
322 static void hpsa_disable_rld_caching(struct ctlr_info *h);
323 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
324 	struct ReportExtendedLUNdata *buf, int bufsize);
325 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
326 	unsigned char scsi3addr[], u8 page);
327 static int hpsa_luns_changed(struct ctlr_info *h);
328 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
329 			       struct hpsa_scsi_dev_t *dev,
330 			       unsigned char *scsi3addr);
331 
332 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
333 {
334 	unsigned long *priv = shost_priv(sdev->host);
335 	return (struct ctlr_info *) *priv;
336 }
337 
338 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
339 {
340 	unsigned long *priv = shost_priv(sh);
341 	return (struct ctlr_info *) *priv;
342 }
343 
344 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
345 {
346 	return c->scsi_cmd == SCSI_CMD_IDLE;
347 }
348 
349 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
350 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
351 			u8 *sense_key, u8 *asc, u8 *ascq)
352 {
353 	struct scsi_sense_hdr sshdr;
354 	bool rc;
355 
356 	*sense_key = -1;
357 	*asc = -1;
358 	*ascq = -1;
359 
360 	if (sense_data_len < 1)
361 		return;
362 
363 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
364 	if (rc) {
365 		*sense_key = sshdr.sense_key;
366 		*asc = sshdr.asc;
367 		*ascq = sshdr.ascq;
368 	}
369 }
370 
371 static int check_for_unit_attention(struct ctlr_info *h,
372 	struct CommandList *c)
373 {
374 	u8 sense_key, asc, ascq;
375 	int sense_len;
376 
377 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
378 		sense_len = sizeof(c->err_info->SenseInfo);
379 	else
380 		sense_len = c->err_info->SenseLen;
381 
382 	decode_sense_data(c->err_info->SenseInfo, sense_len,
383 				&sense_key, &asc, &ascq);
384 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
385 		return 0;
386 
387 	switch (asc) {
388 	case STATE_CHANGED:
389 		dev_warn(&h->pdev->dev,
390 			"%s: a state change detected, command retried\n",
391 			h->devname);
392 		break;
393 	case LUN_FAILED:
394 		dev_warn(&h->pdev->dev,
395 			"%s: LUN failure detected\n", h->devname);
396 		break;
397 	case REPORT_LUNS_CHANGED:
398 		dev_warn(&h->pdev->dev,
399 			"%s: report LUN data changed\n", h->devname);
400 	/*
401 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
402 	 * target (array) devices.
403 	 */
404 		break;
405 	case POWER_OR_RESET:
406 		dev_warn(&h->pdev->dev,
407 			"%s: a power on or device reset detected\n",
408 			h->devname);
409 		break;
410 	case UNIT_ATTENTION_CLEARED:
411 		dev_warn(&h->pdev->dev,
412 			"%s: unit attention cleared by another initiator\n",
413 			h->devname);
414 		break;
415 	default:
416 		dev_warn(&h->pdev->dev,
417 			"%s: unknown unit attention detected\n",
418 			h->devname);
419 		break;
420 	}
421 	return 1;
422 }
423 
424 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
425 {
426 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
427 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
428 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
429 		return 0;
430 	dev_warn(&h->pdev->dev, HPSA "device busy");
431 	return 1;
432 }
433 
434 static u32 lockup_detected(struct ctlr_info *h);
435 static ssize_t host_show_lockup_detected(struct device *dev,
436 		struct device_attribute *attr, char *buf)
437 {
438 	int ld;
439 	struct ctlr_info *h;
440 	struct Scsi_Host *shost = class_to_shost(dev);
441 
442 	h = shost_to_hba(shost);
443 	ld = lockup_detected(h);
444 
445 	return sprintf(buf, "ld=%d\n", ld);
446 }
447 
448 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
449 					 struct device_attribute *attr,
450 					 const char *buf, size_t count)
451 {
452 	int status, len;
453 	struct ctlr_info *h;
454 	struct Scsi_Host *shost = class_to_shost(dev);
455 	char tmpbuf[10];
456 
457 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
458 		return -EACCES;
459 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
460 	strncpy(tmpbuf, buf, len);
461 	tmpbuf[len] = '\0';
462 	if (sscanf(tmpbuf, "%d", &status) != 1)
463 		return -EINVAL;
464 	h = shost_to_hba(shost);
465 	h->acciopath_status = !!status;
466 	dev_warn(&h->pdev->dev,
467 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
468 		h->acciopath_status ? "enabled" : "disabled");
469 	return count;
470 }
471 
472 static ssize_t host_store_raid_offload_debug(struct device *dev,
473 					 struct device_attribute *attr,
474 					 const char *buf, size_t count)
475 {
476 	int debug_level, len;
477 	struct ctlr_info *h;
478 	struct Scsi_Host *shost = class_to_shost(dev);
479 	char tmpbuf[10];
480 
481 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
482 		return -EACCES;
483 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
484 	strncpy(tmpbuf, buf, len);
485 	tmpbuf[len] = '\0';
486 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
487 		return -EINVAL;
488 	if (debug_level < 0)
489 		debug_level = 0;
490 	h = shost_to_hba(shost);
491 	h->raid_offload_debug = debug_level;
492 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
493 		h->raid_offload_debug);
494 	return count;
495 }
496 
497 static ssize_t host_store_rescan(struct device *dev,
498 				 struct device_attribute *attr,
499 				 const char *buf, size_t count)
500 {
501 	struct ctlr_info *h;
502 	struct Scsi_Host *shost = class_to_shost(dev);
503 	h = shost_to_hba(shost);
504 	hpsa_scan_start(h->scsi_host);
505 	return count;
506 }
507 
508 static ssize_t host_show_firmware_revision(struct device *dev,
509 	     struct device_attribute *attr, char *buf)
510 {
511 	struct ctlr_info *h;
512 	struct Scsi_Host *shost = class_to_shost(dev);
513 	unsigned char *fwrev;
514 
515 	h = shost_to_hba(shost);
516 	if (!h->hba_inquiry_data)
517 		return 0;
518 	fwrev = &h->hba_inquiry_data[32];
519 	return snprintf(buf, 20, "%c%c%c%c\n",
520 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
521 }
522 
523 static ssize_t host_show_commands_outstanding(struct device *dev,
524 	     struct device_attribute *attr, char *buf)
525 {
526 	struct Scsi_Host *shost = class_to_shost(dev);
527 	struct ctlr_info *h = shost_to_hba(shost);
528 
529 	return snprintf(buf, 20, "%d\n",
530 			atomic_read(&h->commands_outstanding));
531 }
532 
533 static ssize_t host_show_transport_mode(struct device *dev,
534 	struct device_attribute *attr, char *buf)
535 {
536 	struct ctlr_info *h;
537 	struct Scsi_Host *shost = class_to_shost(dev);
538 
539 	h = shost_to_hba(shost);
540 	return snprintf(buf, 20, "%s\n",
541 		h->transMethod & CFGTBL_Trans_Performant ?
542 			"performant" : "simple");
543 }
544 
545 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
546 	struct device_attribute *attr, char *buf)
547 {
548 	struct ctlr_info *h;
549 	struct Scsi_Host *shost = class_to_shost(dev);
550 
551 	h = shost_to_hba(shost);
552 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
553 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
554 }
555 
556 /* List of controllers which cannot be hard reset on kexec with reset_devices */
557 static u32 unresettable_controller[] = {
558 	0x324a103C, /* Smart Array P712m */
559 	0x324b103C, /* Smart Array P711m */
560 	0x3223103C, /* Smart Array P800 */
561 	0x3234103C, /* Smart Array P400 */
562 	0x3235103C, /* Smart Array P400i */
563 	0x3211103C, /* Smart Array E200i */
564 	0x3212103C, /* Smart Array E200 */
565 	0x3213103C, /* Smart Array E200i */
566 	0x3214103C, /* Smart Array E200i */
567 	0x3215103C, /* Smart Array E200i */
568 	0x3237103C, /* Smart Array E500 */
569 	0x323D103C, /* Smart Array P700m */
570 	0x40800E11, /* Smart Array 5i */
571 	0x409C0E11, /* Smart Array 6400 */
572 	0x409D0E11, /* Smart Array 6400 EM */
573 	0x40700E11, /* Smart Array 5300 */
574 	0x40820E11, /* Smart Array 532 */
575 	0x40830E11, /* Smart Array 5312 */
576 	0x409A0E11, /* Smart Array 641 */
577 	0x409B0E11, /* Smart Array 642 */
578 	0x40910E11, /* Smart Array 6i */
579 };
580 
581 /* List of controllers which cannot even be soft reset */
582 static u32 soft_unresettable_controller[] = {
583 	0x40800E11, /* Smart Array 5i */
584 	0x40700E11, /* Smart Array 5300 */
585 	0x40820E11, /* Smart Array 532 */
586 	0x40830E11, /* Smart Array 5312 */
587 	0x409A0E11, /* Smart Array 641 */
588 	0x409B0E11, /* Smart Array 642 */
589 	0x40910E11, /* Smart Array 6i */
590 	/* Exclude 640x boards.  These are two pci devices in one slot
591 	 * which share a battery backed cache module.  One controls the
592 	 * cache, the other accesses the cache through the one that controls
593 	 * it.  If we reset the one controlling the cache, the other will
594 	 * likely not be happy.  Just forbid resetting this conjoined mess.
595 	 * The 640x isn't really supported by hpsa anyway.
596 	 */
597 	0x409C0E11, /* Smart Array 6400 */
598 	0x409D0E11, /* Smart Array 6400 EM */
599 };
600 
601 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
602 {
603 	int i;
604 
605 	for (i = 0; i < nelems; i++)
606 		if (a[i] == board_id)
607 			return 1;
608 	return 0;
609 }
610 
611 static int ctlr_is_hard_resettable(u32 board_id)
612 {
613 	return !board_id_in_array(unresettable_controller,
614 			ARRAY_SIZE(unresettable_controller), board_id);
615 }
616 
617 static int ctlr_is_soft_resettable(u32 board_id)
618 {
619 	return !board_id_in_array(soft_unresettable_controller,
620 			ARRAY_SIZE(soft_unresettable_controller), board_id);
621 }
622 
623 static int ctlr_is_resettable(u32 board_id)
624 {
625 	return ctlr_is_hard_resettable(board_id) ||
626 		ctlr_is_soft_resettable(board_id);
627 }
628 
629 static ssize_t host_show_resettable(struct device *dev,
630 	struct device_attribute *attr, char *buf)
631 {
632 	struct ctlr_info *h;
633 	struct Scsi_Host *shost = class_to_shost(dev);
634 
635 	h = shost_to_hba(shost);
636 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
637 }
638 
639 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
640 {
641 	return (scsi3addr[3] & 0xC0) == 0x40;
642 }
643 
644 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
645 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
646 };
647 #define HPSA_RAID_0	0
648 #define HPSA_RAID_4	1
649 #define HPSA_RAID_1	2	/* also used for RAID 10 */
650 #define HPSA_RAID_5	3	/* also used for RAID 50 */
651 #define HPSA_RAID_51	4
652 #define HPSA_RAID_6	5	/* also used for RAID 60 */
653 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
654 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
655 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
656 
657 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
658 {
659 	return !device->physical_device;
660 }
661 
662 static ssize_t raid_level_show(struct device *dev,
663 	     struct device_attribute *attr, char *buf)
664 {
665 	ssize_t l = 0;
666 	unsigned char rlevel;
667 	struct ctlr_info *h;
668 	struct scsi_device *sdev;
669 	struct hpsa_scsi_dev_t *hdev;
670 	unsigned long flags;
671 
672 	sdev = to_scsi_device(dev);
673 	h = sdev_to_hba(sdev);
674 	spin_lock_irqsave(&h->lock, flags);
675 	hdev = sdev->hostdata;
676 	if (!hdev) {
677 		spin_unlock_irqrestore(&h->lock, flags);
678 		return -ENODEV;
679 	}
680 
681 	/* Is this even a logical drive? */
682 	if (!is_logical_device(hdev)) {
683 		spin_unlock_irqrestore(&h->lock, flags);
684 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
685 		return l;
686 	}
687 
688 	rlevel = hdev->raid_level;
689 	spin_unlock_irqrestore(&h->lock, flags);
690 	if (rlevel > RAID_UNKNOWN)
691 		rlevel = RAID_UNKNOWN;
692 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
693 	return l;
694 }
695 
696 static ssize_t lunid_show(struct device *dev,
697 	     struct device_attribute *attr, char *buf)
698 {
699 	struct ctlr_info *h;
700 	struct scsi_device *sdev;
701 	struct hpsa_scsi_dev_t *hdev;
702 	unsigned long flags;
703 	unsigned char lunid[8];
704 
705 	sdev = to_scsi_device(dev);
706 	h = sdev_to_hba(sdev);
707 	spin_lock_irqsave(&h->lock, flags);
708 	hdev = sdev->hostdata;
709 	if (!hdev) {
710 		spin_unlock_irqrestore(&h->lock, flags);
711 		return -ENODEV;
712 	}
713 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
714 	spin_unlock_irqrestore(&h->lock, flags);
715 	return snprintf(buf, 20, "0x%8phN\n", lunid);
716 }
717 
718 static ssize_t unique_id_show(struct device *dev,
719 	     struct device_attribute *attr, char *buf)
720 {
721 	struct ctlr_info *h;
722 	struct scsi_device *sdev;
723 	struct hpsa_scsi_dev_t *hdev;
724 	unsigned long flags;
725 	unsigned char sn[16];
726 
727 	sdev = to_scsi_device(dev);
728 	h = sdev_to_hba(sdev);
729 	spin_lock_irqsave(&h->lock, flags);
730 	hdev = sdev->hostdata;
731 	if (!hdev) {
732 		spin_unlock_irqrestore(&h->lock, flags);
733 		return -ENODEV;
734 	}
735 	memcpy(sn, hdev->device_id, sizeof(sn));
736 	spin_unlock_irqrestore(&h->lock, flags);
737 	return snprintf(buf, 16 * 2 + 2,
738 			"%02X%02X%02X%02X%02X%02X%02X%02X"
739 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
740 			sn[0], sn[1], sn[2], sn[3],
741 			sn[4], sn[5], sn[6], sn[7],
742 			sn[8], sn[9], sn[10], sn[11],
743 			sn[12], sn[13], sn[14], sn[15]);
744 }
745 
746 static ssize_t sas_address_show(struct device *dev,
747 	      struct device_attribute *attr, char *buf)
748 {
749 	struct ctlr_info *h;
750 	struct scsi_device *sdev;
751 	struct hpsa_scsi_dev_t *hdev;
752 	unsigned long flags;
753 	u64 sas_address;
754 
755 	sdev = to_scsi_device(dev);
756 	h = sdev_to_hba(sdev);
757 	spin_lock_irqsave(&h->lock, flags);
758 	hdev = sdev->hostdata;
759 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
760 		spin_unlock_irqrestore(&h->lock, flags);
761 		return -ENODEV;
762 	}
763 	sas_address = hdev->sas_address;
764 	spin_unlock_irqrestore(&h->lock, flags);
765 
766 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
767 }
768 
769 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
770 	     struct device_attribute *attr, char *buf)
771 {
772 	struct ctlr_info *h;
773 	struct scsi_device *sdev;
774 	struct hpsa_scsi_dev_t *hdev;
775 	unsigned long flags;
776 	int offload_enabled;
777 
778 	sdev = to_scsi_device(dev);
779 	h = sdev_to_hba(sdev);
780 	spin_lock_irqsave(&h->lock, flags);
781 	hdev = sdev->hostdata;
782 	if (!hdev) {
783 		spin_unlock_irqrestore(&h->lock, flags);
784 		return -ENODEV;
785 	}
786 	offload_enabled = hdev->offload_enabled;
787 	spin_unlock_irqrestore(&h->lock, flags);
788 
789 	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
790 		return snprintf(buf, 20, "%d\n", offload_enabled);
791 	else
792 		return snprintf(buf, 40, "%s\n",
793 				"Not applicable for a controller");
794 }
795 
796 #define MAX_PATHS 8
797 static ssize_t path_info_show(struct device *dev,
798 	     struct device_attribute *attr, char *buf)
799 {
800 	struct ctlr_info *h;
801 	struct scsi_device *sdev;
802 	struct hpsa_scsi_dev_t *hdev;
803 	unsigned long flags;
804 	int i;
805 	int output_len = 0;
806 	u8 box;
807 	u8 bay;
808 	u8 path_map_index = 0;
809 	char *active;
810 	unsigned char phys_connector[2];
811 
812 	sdev = to_scsi_device(dev);
813 	h = sdev_to_hba(sdev);
814 	spin_lock_irqsave(&h->devlock, flags);
815 	hdev = sdev->hostdata;
816 	if (!hdev) {
817 		spin_unlock_irqrestore(&h->devlock, flags);
818 		return -ENODEV;
819 	}
820 
821 	bay = hdev->bay;
822 	for (i = 0; i < MAX_PATHS; i++) {
823 		path_map_index = 1<<i;
824 		if (i == hdev->active_path_index)
825 			active = "Active";
826 		else if (hdev->path_map & path_map_index)
827 			active = "Inactive";
828 		else
829 			continue;
830 
831 		output_len += scnprintf(buf + output_len,
832 				PAGE_SIZE - output_len,
833 				"[%d:%d:%d:%d] %20.20s ",
834 				h->scsi_host->host_no,
835 				hdev->bus, hdev->target, hdev->lun,
836 				scsi_device_type(hdev->devtype));
837 
838 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
839 			output_len += scnprintf(buf + output_len,
840 						PAGE_SIZE - output_len,
841 						"%s\n", active);
842 			continue;
843 		}
844 
845 		box = hdev->box[i];
846 		memcpy(&phys_connector, &hdev->phys_connector[i],
847 			sizeof(phys_connector));
848 		if (phys_connector[0] < '0')
849 			phys_connector[0] = '0';
850 		if (phys_connector[1] < '0')
851 			phys_connector[1] = '0';
852 		output_len += scnprintf(buf + output_len,
853 				PAGE_SIZE - output_len,
854 				"PORT: %.2s ",
855 				phys_connector);
856 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
857 			hdev->expose_device) {
858 			if (box == 0 || box == 0xFF) {
859 				output_len += scnprintf(buf + output_len,
860 					PAGE_SIZE - output_len,
861 					"BAY: %hhu %s\n",
862 					bay, active);
863 			} else {
864 				output_len += scnprintf(buf + output_len,
865 					PAGE_SIZE - output_len,
866 					"BOX: %hhu BAY: %hhu %s\n",
867 					box, bay, active);
868 			}
869 		} else if (box != 0 && box != 0xFF) {
870 			output_len += scnprintf(buf + output_len,
871 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
872 				box, active);
873 		} else
874 			output_len += scnprintf(buf + output_len,
875 				PAGE_SIZE - output_len, "%s\n", active);
876 	}
877 
878 	spin_unlock_irqrestore(&h->devlock, flags);
879 	return output_len;
880 }
881 
882 static ssize_t host_show_ctlr_num(struct device *dev,
883 	struct device_attribute *attr, char *buf)
884 {
885 	struct ctlr_info *h;
886 	struct Scsi_Host *shost = class_to_shost(dev);
887 
888 	h = shost_to_hba(shost);
889 	return snprintf(buf, 20, "%d\n", h->ctlr);
890 }
891 
892 static ssize_t host_show_legacy_board(struct device *dev,
893 	struct device_attribute *attr, char *buf)
894 {
895 	struct ctlr_info *h;
896 	struct Scsi_Host *shost = class_to_shost(dev);
897 
898 	h = shost_to_hba(shost);
899 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
900 }
901 
902 static DEVICE_ATTR_RO(raid_level);
903 static DEVICE_ATTR_RO(lunid);
904 static DEVICE_ATTR_RO(unique_id);
905 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
906 static DEVICE_ATTR_RO(sas_address);
907 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
908 			host_show_hp_ssd_smart_path_enabled, NULL);
909 static DEVICE_ATTR_RO(path_info);
910 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
911 		host_show_hp_ssd_smart_path_status,
912 		host_store_hp_ssd_smart_path_status);
913 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
914 			host_store_raid_offload_debug);
915 static DEVICE_ATTR(firmware_revision, S_IRUGO,
916 	host_show_firmware_revision, NULL);
917 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
918 	host_show_commands_outstanding, NULL);
919 static DEVICE_ATTR(transport_mode, S_IRUGO,
920 	host_show_transport_mode, NULL);
921 static DEVICE_ATTR(resettable, S_IRUGO,
922 	host_show_resettable, NULL);
923 static DEVICE_ATTR(lockup_detected, S_IRUGO,
924 	host_show_lockup_detected, NULL);
925 static DEVICE_ATTR(ctlr_num, S_IRUGO,
926 	host_show_ctlr_num, NULL);
927 static DEVICE_ATTR(legacy_board, S_IRUGO,
928 	host_show_legacy_board, NULL);
929 
930 static struct device_attribute *hpsa_sdev_attrs[] = {
931 	&dev_attr_raid_level,
932 	&dev_attr_lunid,
933 	&dev_attr_unique_id,
934 	&dev_attr_hp_ssd_smart_path_enabled,
935 	&dev_attr_path_info,
936 	&dev_attr_sas_address,
937 	NULL,
938 };
939 
940 static struct device_attribute *hpsa_shost_attrs[] = {
941 	&dev_attr_rescan,
942 	&dev_attr_firmware_revision,
943 	&dev_attr_commands_outstanding,
944 	&dev_attr_transport_mode,
945 	&dev_attr_resettable,
946 	&dev_attr_hp_ssd_smart_path_status,
947 	&dev_attr_raid_offload_debug,
948 	&dev_attr_lockup_detected,
949 	&dev_attr_ctlr_num,
950 	&dev_attr_legacy_board,
951 	NULL,
952 };
953 
954 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
955 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
956 
957 static struct scsi_host_template hpsa_driver_template = {
958 	.module			= THIS_MODULE,
959 	.name			= HPSA,
960 	.proc_name		= HPSA,
961 	.queuecommand		= hpsa_scsi_queue_command,
962 	.scan_start		= hpsa_scan_start,
963 	.scan_finished		= hpsa_scan_finished,
964 	.change_queue_depth	= hpsa_change_queue_depth,
965 	.this_id		= -1,
966 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
967 	.ioctl			= hpsa_ioctl,
968 	.slave_alloc		= hpsa_slave_alloc,
969 	.slave_configure	= hpsa_slave_configure,
970 	.slave_destroy		= hpsa_slave_destroy,
971 #ifdef CONFIG_COMPAT
972 	.compat_ioctl		= hpsa_compat_ioctl,
973 #endif
974 	.sdev_attrs = hpsa_sdev_attrs,
975 	.shost_attrs = hpsa_shost_attrs,
976 	.max_sectors = 2048,
977 	.no_write_same = 1,
978 };
979 
980 static inline u32 next_command(struct ctlr_info *h, u8 q)
981 {
982 	u32 a;
983 	struct reply_queue_buffer *rq = &h->reply_queue[q];
984 
985 	if (h->transMethod & CFGTBL_Trans_io_accel1)
986 		return h->access.command_completed(h, q);
987 
988 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
989 		return h->access.command_completed(h, q);
990 
991 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
992 		a = rq->head[rq->current_entry];
993 		rq->current_entry++;
994 		atomic_dec(&h->commands_outstanding);
995 	} else {
996 		a = FIFO_EMPTY;
997 	}
998 	/* Check for wraparound */
999 	if (rq->current_entry == h->max_commands) {
1000 		rq->current_entry = 0;
1001 		rq->wraparound ^= 1;
1002 	}
1003 	return a;
1004 }
1005 
1006 /*
1007  * There are some special bits in the bus address of the
1008  * command that we have to set for the controller to know
1009  * how to process the command:
1010  *
1011  * Normal performant mode:
1012  * bit 0: 1 means performant mode, 0 means simple mode.
1013  * bits 1-3 = block fetch table entry
1014  * bits 4-6 = command type (== 0)
1015  *
1016  * ioaccel1 mode:
1017  * bit 0 = "performant mode" bit.
1018  * bits 1-3 = block fetch table entry
1019  * bits 4-6 = command type (== 110)
1020  * (command type is needed because ioaccel1 mode
1021  * commands are submitted through the same register as normal
1022  * mode commands, so this is how the controller knows whether
1023  * the command is normal mode or ioaccel1 mode.)
1024  *
1025  * ioaccel2 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-4 = block fetch table entry (note extra bit)
1028  * bits 4-6 = not needed, because ioaccel2 mode has
1029  * a separate special register for submitting commands.
1030  */
1031 
1032 /*
1033  * set_performant_mode: Modify the tag for cciss performant
1034  * set bit 0 for pull model, bits 3-1 for block fetch
1035  * register number
1036  */
1037 #define DEFAULT_REPLY_QUEUE (-1)
1038 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1039 					int reply_queue)
1040 {
1041 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1042 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1043 		if (unlikely(!h->msix_vectors))
1044 			return;
1045 		c->Header.ReplyQueue = reply_queue;
1046 	}
1047 }
1048 
1049 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1050 						struct CommandList *c,
1051 						int reply_queue)
1052 {
1053 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1054 
1055 	/*
1056 	 * Tell the controller to post the reply to the queue for this
1057 	 * processor.  This seems to give the best I/O throughput.
1058 	 */
1059 	cp->ReplyQueue = reply_queue;
1060 	/*
1061 	 * Set the bits in the address sent down to include:
1062 	 *  - performant mode bit (bit 0)
1063 	 *  - pull count (bits 1-3)
1064 	 *  - command type (bits 4-6)
1065 	 */
1066 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1067 					IOACCEL1_BUSADDR_CMDTYPE;
1068 }
1069 
1070 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1071 						struct CommandList *c,
1072 						int reply_queue)
1073 {
1074 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1075 		&h->ioaccel2_cmd_pool[c->cmdindex];
1076 
1077 	/* Tell the controller to post the reply to the queue for this
1078 	 * processor.  This seems to give the best I/O throughput.
1079 	 */
1080 	cp->reply_queue = reply_queue;
1081 	/* Set the bits in the address sent down to include:
1082 	 *  - performant mode bit not used in ioaccel mode 2
1083 	 *  - pull count (bits 0-3)
1084 	 *  - command type isn't needed for ioaccel2
1085 	 */
1086 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1087 }
1088 
1089 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1090 						struct CommandList *c,
1091 						int reply_queue)
1092 {
1093 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1094 
1095 	/*
1096 	 * Tell the controller to post the reply to the queue for this
1097 	 * processor.  This seems to give the best I/O throughput.
1098 	 */
1099 	cp->reply_queue = reply_queue;
1100 	/*
1101 	 * Set the bits in the address sent down to include:
1102 	 *  - performant mode bit not used in ioaccel mode 2
1103 	 *  - pull count (bits 0-3)
1104 	 *  - command type isn't needed for ioaccel2
1105 	 */
1106 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1107 }
1108 
1109 static int is_firmware_flash_cmd(u8 *cdb)
1110 {
1111 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1112 }
1113 
1114 /*
1115  * During firmware flash, the heartbeat register may not update as frequently
1116  * as it should.  So we dial down lockup detection during firmware flash. and
1117  * dial it back up when firmware flash completes.
1118  */
1119 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1120 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1121 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1122 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1123 		struct CommandList *c)
1124 {
1125 	if (!is_firmware_flash_cmd(c->Request.CDB))
1126 		return;
1127 	atomic_inc(&h->firmware_flash_in_progress);
1128 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1129 }
1130 
1131 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1132 		struct CommandList *c)
1133 {
1134 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1135 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1136 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1137 }
1138 
1139 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1140 	struct CommandList *c, int reply_queue)
1141 {
1142 	dial_down_lockup_detection_during_fw_flash(h, c);
1143 	atomic_inc(&h->commands_outstanding);
1144 	if (c->device)
1145 		atomic_inc(&c->device->commands_outstanding);
1146 
1147 	reply_queue = h->reply_map[raw_smp_processor_id()];
1148 	switch (c->cmd_type) {
1149 	case CMD_IOACCEL1:
1150 		set_ioaccel1_performant_mode(h, c, reply_queue);
1151 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1152 		break;
1153 	case CMD_IOACCEL2:
1154 		set_ioaccel2_performant_mode(h, c, reply_queue);
1155 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1156 		break;
1157 	case IOACCEL2_TMF:
1158 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1159 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1160 		break;
1161 	default:
1162 		set_performant_mode(h, c, reply_queue);
1163 		h->access.submit_command(h, c);
1164 	}
1165 }
1166 
1167 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1168 {
1169 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1170 }
1171 
1172 static inline int is_hba_lunid(unsigned char scsi3addr[])
1173 {
1174 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1175 }
1176 
1177 static inline int is_scsi_rev_5(struct ctlr_info *h)
1178 {
1179 	if (!h->hba_inquiry_data)
1180 		return 0;
1181 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1182 		return 1;
1183 	return 0;
1184 }
1185 
1186 static int hpsa_find_target_lun(struct ctlr_info *h,
1187 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1188 {
1189 	/* finds an unused bus, target, lun for a new physical device
1190 	 * assumes h->devlock is held
1191 	 */
1192 	int i, found = 0;
1193 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1194 
1195 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1196 
1197 	for (i = 0; i < h->ndevices; i++) {
1198 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1199 			__set_bit(h->dev[i]->target, lun_taken);
1200 	}
1201 
1202 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1203 	if (i < HPSA_MAX_DEVICES) {
1204 		/* *bus = 1; */
1205 		*target = i;
1206 		*lun = 0;
1207 		found = 1;
1208 	}
1209 	return !found;
1210 }
1211 
1212 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1213 	struct hpsa_scsi_dev_t *dev, char *description)
1214 {
1215 #define LABEL_SIZE 25
1216 	char label[LABEL_SIZE];
1217 
1218 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1219 		return;
1220 
1221 	switch (dev->devtype) {
1222 	case TYPE_RAID:
1223 		snprintf(label, LABEL_SIZE, "controller");
1224 		break;
1225 	case TYPE_ENCLOSURE:
1226 		snprintf(label, LABEL_SIZE, "enclosure");
1227 		break;
1228 	case TYPE_DISK:
1229 	case TYPE_ZBC:
1230 		if (dev->external)
1231 			snprintf(label, LABEL_SIZE, "external");
1232 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1233 			snprintf(label, LABEL_SIZE, "%s",
1234 				raid_label[PHYSICAL_DRIVE]);
1235 		else
1236 			snprintf(label, LABEL_SIZE, "RAID-%s",
1237 				dev->raid_level > RAID_UNKNOWN ? "?" :
1238 				raid_label[dev->raid_level]);
1239 		break;
1240 	case TYPE_ROM:
1241 		snprintf(label, LABEL_SIZE, "rom");
1242 		break;
1243 	case TYPE_TAPE:
1244 		snprintf(label, LABEL_SIZE, "tape");
1245 		break;
1246 	case TYPE_MEDIUM_CHANGER:
1247 		snprintf(label, LABEL_SIZE, "changer");
1248 		break;
1249 	default:
1250 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1251 		break;
1252 	}
1253 
1254 	dev_printk(level, &h->pdev->dev,
1255 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1256 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1257 			description,
1258 			scsi_device_type(dev->devtype),
1259 			dev->vendor,
1260 			dev->model,
1261 			label,
1262 			dev->offload_config ? '+' : '-',
1263 			dev->offload_to_be_enabled ? '+' : '-',
1264 			dev->expose_device);
1265 }
1266 
1267 /* Add an entry into h->dev[] array. */
1268 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1269 		struct hpsa_scsi_dev_t *device,
1270 		struct hpsa_scsi_dev_t *added[], int *nadded)
1271 {
1272 	/* assumes h->devlock is held */
1273 	int n = h->ndevices;
1274 	int i;
1275 	unsigned char addr1[8], addr2[8];
1276 	struct hpsa_scsi_dev_t *sd;
1277 
1278 	if (n >= HPSA_MAX_DEVICES) {
1279 		dev_err(&h->pdev->dev, "too many devices, some will be "
1280 			"inaccessible.\n");
1281 		return -1;
1282 	}
1283 
1284 	/* physical devices do not have lun or target assigned until now. */
1285 	if (device->lun != -1)
1286 		/* Logical device, lun is already assigned. */
1287 		goto lun_assigned;
1288 
1289 	/* If this device a non-zero lun of a multi-lun device
1290 	 * byte 4 of the 8-byte LUN addr will contain the logical
1291 	 * unit no, zero otherwise.
1292 	 */
1293 	if (device->scsi3addr[4] == 0) {
1294 		/* This is not a non-zero lun of a multi-lun device */
1295 		if (hpsa_find_target_lun(h, device->scsi3addr,
1296 			device->bus, &device->target, &device->lun) != 0)
1297 			return -1;
1298 		goto lun_assigned;
1299 	}
1300 
1301 	/* This is a non-zero lun of a multi-lun device.
1302 	 * Search through our list and find the device which
1303 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1304 	 * Assign the same bus and target for this new LUN.
1305 	 * Use the logical unit number from the firmware.
1306 	 */
1307 	memcpy(addr1, device->scsi3addr, 8);
1308 	addr1[4] = 0;
1309 	addr1[5] = 0;
1310 	for (i = 0; i < n; i++) {
1311 		sd = h->dev[i];
1312 		memcpy(addr2, sd->scsi3addr, 8);
1313 		addr2[4] = 0;
1314 		addr2[5] = 0;
1315 		/* differ only in byte 4 and 5? */
1316 		if (memcmp(addr1, addr2, 8) == 0) {
1317 			device->bus = sd->bus;
1318 			device->target = sd->target;
1319 			device->lun = device->scsi3addr[4];
1320 			break;
1321 		}
1322 	}
1323 	if (device->lun == -1) {
1324 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1325 			" suspect firmware bug or unsupported hardware "
1326 			"configuration.\n");
1327 		return -1;
1328 	}
1329 
1330 lun_assigned:
1331 
1332 	h->dev[n] = device;
1333 	h->ndevices++;
1334 	added[*nadded] = device;
1335 	(*nadded)++;
1336 	hpsa_show_dev_msg(KERN_INFO, h, device,
1337 		device->expose_device ? "added" : "masked");
1338 	return 0;
1339 }
1340 
1341 /*
1342  * Called during a scan operation.
1343  *
1344  * Update an entry in h->dev[] array.
1345  */
1346 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1347 	int entry, struct hpsa_scsi_dev_t *new_entry)
1348 {
1349 	/* assumes h->devlock is held */
1350 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1351 
1352 	/* Raid level changed. */
1353 	h->dev[entry]->raid_level = new_entry->raid_level;
1354 
1355 	/*
1356 	 * ioacccel_handle may have changed for a dual domain disk
1357 	 */
1358 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359 
1360 	/* Raid offload parameters changed.  Careful about the ordering. */
1361 	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1362 		/*
1363 		 * if drive is newly offload_enabled, we want to copy the
1364 		 * raid map data first.  If previously offload_enabled and
1365 		 * offload_config were set, raid map data had better be
1366 		 * the same as it was before. If raid map data has changed
1367 		 * then it had better be the case that
1368 		 * h->dev[entry]->offload_enabled is currently 0.
1369 		 */
1370 		h->dev[entry]->raid_map = new_entry->raid_map;
1371 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1372 	}
1373 	if (new_entry->offload_to_be_enabled) {
1374 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1376 	}
1377 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1378 	h->dev[entry]->offload_config = new_entry->offload_config;
1379 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1380 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1381 
1382 	/*
1383 	 * We can turn off ioaccel offload now, but need to delay turning
1384 	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1385 	 * can't do that until all the devices are updated.
1386 	 */
1387 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1388 
1389 	/*
1390 	 * turn ioaccel off immediately if told to do so.
1391 	 */
1392 	if (!new_entry->offload_to_be_enabled)
1393 		h->dev[entry]->offload_enabled = 0;
1394 
1395 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1396 }
1397 
1398 /* Replace an entry from h->dev[] array. */
1399 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1400 	int entry, struct hpsa_scsi_dev_t *new_entry,
1401 	struct hpsa_scsi_dev_t *added[], int *nadded,
1402 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1403 {
1404 	/* assumes h->devlock is held */
1405 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1406 	removed[*nremoved] = h->dev[entry];
1407 	(*nremoved)++;
1408 
1409 	/*
1410 	 * New physical devices won't have target/lun assigned yet
1411 	 * so we need to preserve the values in the slot we are replacing.
1412 	 */
1413 	if (new_entry->target == -1) {
1414 		new_entry->target = h->dev[entry]->target;
1415 		new_entry->lun = h->dev[entry]->lun;
1416 	}
1417 
1418 	h->dev[entry] = new_entry;
1419 	added[*nadded] = new_entry;
1420 	(*nadded)++;
1421 
1422 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1423 }
1424 
1425 /* Remove an entry from h->dev[] array. */
1426 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1427 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1428 {
1429 	/* assumes h->devlock is held */
1430 	int i;
1431 	struct hpsa_scsi_dev_t *sd;
1432 
1433 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1434 
1435 	sd = h->dev[entry];
1436 	removed[*nremoved] = h->dev[entry];
1437 	(*nremoved)++;
1438 
1439 	for (i = entry; i < h->ndevices-1; i++)
1440 		h->dev[i] = h->dev[i+1];
1441 	h->ndevices--;
1442 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1443 }
1444 
1445 #define SCSI3ADDR_EQ(a, b) ( \
1446 	(a)[7] == (b)[7] && \
1447 	(a)[6] == (b)[6] && \
1448 	(a)[5] == (b)[5] && \
1449 	(a)[4] == (b)[4] && \
1450 	(a)[3] == (b)[3] && \
1451 	(a)[2] == (b)[2] && \
1452 	(a)[1] == (b)[1] && \
1453 	(a)[0] == (b)[0])
1454 
1455 static void fixup_botched_add(struct ctlr_info *h,
1456 	struct hpsa_scsi_dev_t *added)
1457 {
1458 	/* called when scsi_add_device fails in order to re-adjust
1459 	 * h->dev[] to match the mid layer's view.
1460 	 */
1461 	unsigned long flags;
1462 	int i, j;
1463 
1464 	spin_lock_irqsave(&h->lock, flags);
1465 	for (i = 0; i < h->ndevices; i++) {
1466 		if (h->dev[i] == added) {
1467 			for (j = i; j < h->ndevices-1; j++)
1468 				h->dev[j] = h->dev[j+1];
1469 			h->ndevices--;
1470 			break;
1471 		}
1472 	}
1473 	spin_unlock_irqrestore(&h->lock, flags);
1474 	kfree(added);
1475 }
1476 
1477 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1478 	struct hpsa_scsi_dev_t *dev2)
1479 {
1480 	/* we compare everything except lun and target as these
1481 	 * are not yet assigned.  Compare parts likely
1482 	 * to differ first
1483 	 */
1484 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1485 		sizeof(dev1->scsi3addr)) != 0)
1486 		return 0;
1487 	if (memcmp(dev1->device_id, dev2->device_id,
1488 		sizeof(dev1->device_id)) != 0)
1489 		return 0;
1490 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1491 		return 0;
1492 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1493 		return 0;
1494 	if (dev1->devtype != dev2->devtype)
1495 		return 0;
1496 	if (dev1->bus != dev2->bus)
1497 		return 0;
1498 	return 1;
1499 }
1500 
1501 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1502 	struct hpsa_scsi_dev_t *dev2)
1503 {
1504 	/* Device attributes that can change, but don't mean
1505 	 * that the device is a different device, nor that the OS
1506 	 * needs to be told anything about the change.
1507 	 */
1508 	if (dev1->raid_level != dev2->raid_level)
1509 		return 1;
1510 	if (dev1->offload_config != dev2->offload_config)
1511 		return 1;
1512 	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1513 		return 1;
1514 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1515 		if (dev1->queue_depth != dev2->queue_depth)
1516 			return 1;
1517 	/*
1518 	 * This can happen for dual domain devices. An active
1519 	 * path change causes the ioaccel handle to change
1520 	 *
1521 	 * for example note the handle differences between p0 and p1
1522 	 * Device                    WWN               ,WWN hash,Handle
1523 	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1524 	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1525 	 */
1526 	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1527 		return 1;
1528 	return 0;
1529 }
1530 
1531 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1532  * and return needle location in *index.  If scsi3addr matches, but not
1533  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1534  * location in *index.
1535  * In the case of a minor device attribute change, such as RAID level, just
1536  * return DEVICE_UPDATED, along with the updated device's location in index.
1537  * If needle not found, return DEVICE_NOT_FOUND.
1538  */
1539 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1540 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1541 	int *index)
1542 {
1543 	int i;
1544 #define DEVICE_NOT_FOUND 0
1545 #define DEVICE_CHANGED 1
1546 #define DEVICE_SAME 2
1547 #define DEVICE_UPDATED 3
1548 	if (needle == NULL)
1549 		return DEVICE_NOT_FOUND;
1550 
1551 	for (i = 0; i < haystack_size; i++) {
1552 		if (haystack[i] == NULL) /* previously removed. */
1553 			continue;
1554 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1555 			*index = i;
1556 			if (device_is_the_same(needle, haystack[i])) {
1557 				if (device_updated(needle, haystack[i]))
1558 					return DEVICE_UPDATED;
1559 				return DEVICE_SAME;
1560 			} else {
1561 				/* Keep offline devices offline */
1562 				if (needle->volume_offline)
1563 					return DEVICE_NOT_FOUND;
1564 				return DEVICE_CHANGED;
1565 			}
1566 		}
1567 	}
1568 	*index = -1;
1569 	return DEVICE_NOT_FOUND;
1570 }
1571 
1572 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1573 					unsigned char scsi3addr[])
1574 {
1575 	struct offline_device_entry *device;
1576 	unsigned long flags;
1577 
1578 	/* Check to see if device is already on the list */
1579 	spin_lock_irqsave(&h->offline_device_lock, flags);
1580 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1581 		if (memcmp(device->scsi3addr, scsi3addr,
1582 			sizeof(device->scsi3addr)) == 0) {
1583 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1584 			return;
1585 		}
1586 	}
1587 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588 
1589 	/* Device is not on the list, add it. */
1590 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1591 	if (!device)
1592 		return;
1593 
1594 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1595 	spin_lock_irqsave(&h->offline_device_lock, flags);
1596 	list_add_tail(&device->offline_list, &h->offline_device_list);
1597 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598 }
1599 
1600 /* Print a message explaining various offline volume states */
1601 static void hpsa_show_volume_status(struct ctlr_info *h,
1602 	struct hpsa_scsi_dev_t *sd)
1603 {
1604 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1605 		dev_info(&h->pdev->dev,
1606 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1607 			h->scsi_host->host_no,
1608 			sd->bus, sd->target, sd->lun);
1609 	switch (sd->volume_offline) {
1610 	case HPSA_LV_OK:
1611 		break;
1612 	case HPSA_LV_UNDERGOING_ERASE:
1613 		dev_info(&h->pdev->dev,
1614 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1615 			h->scsi_host->host_no,
1616 			sd->bus, sd->target, sd->lun);
1617 		break;
1618 	case HPSA_LV_NOT_AVAILABLE:
1619 		dev_info(&h->pdev->dev,
1620 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1621 			h->scsi_host->host_no,
1622 			sd->bus, sd->target, sd->lun);
1623 		break;
1624 	case HPSA_LV_UNDERGOING_RPI:
1625 		dev_info(&h->pdev->dev,
1626 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1627 			h->scsi_host->host_no,
1628 			sd->bus, sd->target, sd->lun);
1629 		break;
1630 	case HPSA_LV_PENDING_RPI:
1631 		dev_info(&h->pdev->dev,
1632 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1633 			h->scsi_host->host_no,
1634 			sd->bus, sd->target, sd->lun);
1635 		break;
1636 	case HPSA_LV_ENCRYPTED_NO_KEY:
1637 		dev_info(&h->pdev->dev,
1638 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1639 			h->scsi_host->host_no,
1640 			sd->bus, sd->target, sd->lun);
1641 		break;
1642 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1643 		dev_info(&h->pdev->dev,
1644 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1645 			h->scsi_host->host_no,
1646 			sd->bus, sd->target, sd->lun);
1647 		break;
1648 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1649 		dev_info(&h->pdev->dev,
1650 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1651 			h->scsi_host->host_no,
1652 			sd->bus, sd->target, sd->lun);
1653 		break;
1654 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1655 		dev_info(&h->pdev->dev,
1656 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1657 			h->scsi_host->host_no,
1658 			sd->bus, sd->target, sd->lun);
1659 		break;
1660 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1661 		dev_info(&h->pdev->dev,
1662 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1663 			h->scsi_host->host_no,
1664 			sd->bus, sd->target, sd->lun);
1665 		break;
1666 	case HPSA_LV_PENDING_ENCRYPTION:
1667 		dev_info(&h->pdev->dev,
1668 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1669 			h->scsi_host->host_no,
1670 			sd->bus, sd->target, sd->lun);
1671 		break;
1672 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1673 		dev_info(&h->pdev->dev,
1674 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1675 			h->scsi_host->host_no,
1676 			sd->bus, sd->target, sd->lun);
1677 		break;
1678 	}
1679 }
1680 
1681 /*
1682  * Figure the list of physical drive pointers for a logical drive with
1683  * raid offload configured.
1684  */
1685 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1686 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1687 				struct hpsa_scsi_dev_t *logical_drive)
1688 {
1689 	struct raid_map_data *map = &logical_drive->raid_map;
1690 	struct raid_map_disk_data *dd = &map->data[0];
1691 	int i, j;
1692 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1693 				le16_to_cpu(map->metadata_disks_per_row);
1694 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1695 				le16_to_cpu(map->layout_map_count) *
1696 				total_disks_per_row;
1697 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1698 				total_disks_per_row;
1699 	int qdepth;
1700 
1701 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1702 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1703 
1704 	logical_drive->nphysical_disks = nraid_map_entries;
1705 
1706 	qdepth = 0;
1707 	for (i = 0; i < nraid_map_entries; i++) {
1708 		logical_drive->phys_disk[i] = NULL;
1709 		if (!logical_drive->offload_config)
1710 			continue;
1711 		for (j = 0; j < ndevices; j++) {
1712 			if (dev[j] == NULL)
1713 				continue;
1714 			if (dev[j]->devtype != TYPE_DISK &&
1715 			    dev[j]->devtype != TYPE_ZBC)
1716 				continue;
1717 			if (is_logical_device(dev[j]))
1718 				continue;
1719 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1720 				continue;
1721 
1722 			logical_drive->phys_disk[i] = dev[j];
1723 			if (i < nphys_disk)
1724 				qdepth = min(h->nr_cmds, qdepth +
1725 				    logical_drive->phys_disk[i]->queue_depth);
1726 			break;
1727 		}
1728 
1729 		/*
1730 		 * This can happen if a physical drive is removed and
1731 		 * the logical drive is degraded.  In that case, the RAID
1732 		 * map data will refer to a physical disk which isn't actually
1733 		 * present.  And in that case offload_enabled should already
1734 		 * be 0, but we'll turn it off here just in case
1735 		 */
1736 		if (!logical_drive->phys_disk[i]) {
1737 			dev_warn(&h->pdev->dev,
1738 				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1739 				__func__,
1740 				h->scsi_host->host_no, logical_drive->bus,
1741 				logical_drive->target, logical_drive->lun);
1742 			logical_drive->offload_enabled = 0;
1743 			logical_drive->offload_to_be_enabled = 0;
1744 			logical_drive->queue_depth = 8;
1745 		}
1746 	}
1747 	if (nraid_map_entries)
1748 		/*
1749 		 * This is correct for reads, too high for full stripe writes,
1750 		 * way too high for partial stripe writes
1751 		 */
1752 		logical_drive->queue_depth = qdepth;
1753 	else {
1754 		if (logical_drive->external)
1755 			logical_drive->queue_depth = EXTERNAL_QD;
1756 		else
1757 			logical_drive->queue_depth = h->nr_cmds;
1758 	}
1759 }
1760 
1761 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1762 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1763 {
1764 	int i;
1765 
1766 	for (i = 0; i < ndevices; i++) {
1767 		if (dev[i] == NULL)
1768 			continue;
1769 		if (dev[i]->devtype != TYPE_DISK &&
1770 		    dev[i]->devtype != TYPE_ZBC)
1771 			continue;
1772 		if (!is_logical_device(dev[i]))
1773 			continue;
1774 
1775 		/*
1776 		 * If offload is currently enabled, the RAID map and
1777 		 * phys_disk[] assignment *better* not be changing
1778 		 * because we would be changing ioaccel phsy_disk[] pointers
1779 		 * on a ioaccel volume processing I/O requests.
1780 		 *
1781 		 * If an ioaccel volume status changed, initially because it was
1782 		 * re-configured and thus underwent a transformation, or
1783 		 * a drive failed, we would have received a state change
1784 		 * request and ioaccel should have been turned off. When the
1785 		 * transformation completes, we get another state change
1786 		 * request to turn ioaccel back on. In this case, we need
1787 		 * to update the ioaccel information.
1788 		 *
1789 		 * Thus: If it is not currently enabled, but will be after
1790 		 * the scan completes, make sure the ioaccel pointers
1791 		 * are up to date.
1792 		 */
1793 
1794 		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1795 			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1796 	}
1797 }
1798 
1799 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1800 {
1801 	int rc = 0;
1802 
1803 	if (!h->scsi_host)
1804 		return 1;
1805 
1806 	if (is_logical_device(device)) /* RAID */
1807 		rc = scsi_add_device(h->scsi_host, device->bus,
1808 					device->target, device->lun);
1809 	else /* HBA */
1810 		rc = hpsa_add_sas_device(h->sas_host, device);
1811 
1812 	return rc;
1813 }
1814 
1815 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1816 						struct hpsa_scsi_dev_t *dev)
1817 {
1818 	int i;
1819 	int count = 0;
1820 
1821 	for (i = 0; i < h->nr_cmds; i++) {
1822 		struct CommandList *c = h->cmd_pool + i;
1823 		int refcount = atomic_inc_return(&c->refcount);
1824 
1825 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1826 				dev->scsi3addr)) {
1827 			unsigned long flags;
1828 
1829 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1830 			if (!hpsa_is_cmd_idle(c))
1831 				++count;
1832 			spin_unlock_irqrestore(&h->lock, flags);
1833 		}
1834 
1835 		cmd_free(h, c);
1836 	}
1837 
1838 	return count;
1839 }
1840 
1841 #define NUM_WAIT 20
1842 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1843 						struct hpsa_scsi_dev_t *device)
1844 {
1845 	int cmds = 0;
1846 	int waits = 0;
1847 	int num_wait = NUM_WAIT;
1848 
1849 	if (device->external)
1850 		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1851 
1852 	while (1) {
1853 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1854 		if (cmds == 0)
1855 			break;
1856 		if (++waits > num_wait)
1857 			break;
1858 		msleep(1000);
1859 	}
1860 
1861 	if (waits > num_wait) {
1862 		dev_warn(&h->pdev->dev,
1863 			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1864 			__func__,
1865 			h->scsi_host->host_no,
1866 			device->bus, device->target, device->lun, cmds);
1867 	}
1868 }
1869 
1870 static void hpsa_remove_device(struct ctlr_info *h,
1871 			struct hpsa_scsi_dev_t *device)
1872 {
1873 	struct scsi_device *sdev = NULL;
1874 
1875 	if (!h->scsi_host)
1876 		return;
1877 
1878 	/*
1879 	 * Allow for commands to drain
1880 	 */
1881 	device->removed = 1;
1882 	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1883 
1884 	if (is_logical_device(device)) { /* RAID */
1885 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1886 						device->target, device->lun);
1887 		if (sdev) {
1888 			scsi_remove_device(sdev);
1889 			scsi_device_put(sdev);
1890 		} else {
1891 			/*
1892 			 * We don't expect to get here.  Future commands
1893 			 * to this device will get a selection timeout as
1894 			 * if the device were gone.
1895 			 */
1896 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1897 					"didn't find device for removal.");
1898 		}
1899 	} else { /* HBA */
1900 
1901 		hpsa_remove_sas_device(device);
1902 	}
1903 }
1904 
1905 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1906 	struct hpsa_scsi_dev_t *sd[], int nsds)
1907 {
1908 	/* sd contains scsi3 addresses and devtypes, and inquiry
1909 	 * data.  This function takes what's in sd to be the current
1910 	 * reality and updates h->dev[] to reflect that reality.
1911 	 */
1912 	int i, entry, device_change, changes = 0;
1913 	struct hpsa_scsi_dev_t *csd;
1914 	unsigned long flags;
1915 	struct hpsa_scsi_dev_t **added, **removed;
1916 	int nadded, nremoved;
1917 
1918 	/*
1919 	 * A reset can cause a device status to change
1920 	 * re-schedule the scan to see what happened.
1921 	 */
1922 	spin_lock_irqsave(&h->reset_lock, flags);
1923 	if (h->reset_in_progress) {
1924 		h->drv_req_rescan = 1;
1925 		spin_unlock_irqrestore(&h->reset_lock, flags);
1926 		return;
1927 	}
1928 	spin_unlock_irqrestore(&h->reset_lock, flags);
1929 
1930 	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1931 	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1932 
1933 	if (!added || !removed) {
1934 		dev_warn(&h->pdev->dev, "out of memory in "
1935 			"adjust_hpsa_scsi_table\n");
1936 		goto free_and_out;
1937 	}
1938 
1939 	spin_lock_irqsave(&h->devlock, flags);
1940 
1941 	/* find any devices in h->dev[] that are not in
1942 	 * sd[] and remove them from h->dev[], and for any
1943 	 * devices which have changed, remove the old device
1944 	 * info and add the new device info.
1945 	 * If minor device attributes change, just update
1946 	 * the existing device structure.
1947 	 */
1948 	i = 0;
1949 	nremoved = 0;
1950 	nadded = 0;
1951 	while (i < h->ndevices) {
1952 		csd = h->dev[i];
1953 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1954 		if (device_change == DEVICE_NOT_FOUND) {
1955 			changes++;
1956 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1957 			continue; /* remove ^^^, hence i not incremented */
1958 		} else if (device_change == DEVICE_CHANGED) {
1959 			changes++;
1960 			hpsa_scsi_replace_entry(h, i, sd[entry],
1961 				added, &nadded, removed, &nremoved);
1962 			/* Set it to NULL to prevent it from being freed
1963 			 * at the bottom of hpsa_update_scsi_devices()
1964 			 */
1965 			sd[entry] = NULL;
1966 		} else if (device_change == DEVICE_UPDATED) {
1967 			hpsa_scsi_update_entry(h, i, sd[entry]);
1968 		}
1969 		i++;
1970 	}
1971 
1972 	/* Now, make sure every device listed in sd[] is also
1973 	 * listed in h->dev[], adding them if they aren't found
1974 	 */
1975 
1976 	for (i = 0; i < nsds; i++) {
1977 		if (!sd[i]) /* if already added above. */
1978 			continue;
1979 
1980 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1981 		 * as the SCSI mid-layer does not handle such devices well.
1982 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1983 		 * at 160Hz, and prevents the system from coming up.
1984 		 */
1985 		if (sd[i]->volume_offline) {
1986 			hpsa_show_volume_status(h, sd[i]);
1987 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1988 			continue;
1989 		}
1990 
1991 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1992 					h->ndevices, &entry);
1993 		if (device_change == DEVICE_NOT_FOUND) {
1994 			changes++;
1995 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1996 				break;
1997 			sd[i] = NULL; /* prevent from being freed later. */
1998 		} else if (device_change == DEVICE_CHANGED) {
1999 			/* should never happen... */
2000 			changes++;
2001 			dev_warn(&h->pdev->dev,
2002 				"device unexpectedly changed.\n");
2003 			/* but if it does happen, we just ignore that device */
2004 		}
2005 	}
2006 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2007 
2008 	/*
2009 	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2010 	 * any logical drives that need it enabled.
2011 	 *
2012 	 * The raid map should be current by now.
2013 	 *
2014 	 * We are updating the device list used for I/O requests.
2015 	 */
2016 	for (i = 0; i < h->ndevices; i++) {
2017 		if (h->dev[i] == NULL)
2018 			continue;
2019 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2020 	}
2021 
2022 	spin_unlock_irqrestore(&h->devlock, flags);
2023 
2024 	/* Monitor devices which are in one of several NOT READY states to be
2025 	 * brought online later. This must be done without holding h->devlock,
2026 	 * so don't touch h->dev[]
2027 	 */
2028 	for (i = 0; i < nsds; i++) {
2029 		if (!sd[i]) /* if already added above. */
2030 			continue;
2031 		if (sd[i]->volume_offline)
2032 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2033 	}
2034 
2035 	/* Don't notify scsi mid layer of any changes the first time through
2036 	 * (or if there are no changes) scsi_scan_host will do it later the
2037 	 * first time through.
2038 	 */
2039 	if (!changes)
2040 		goto free_and_out;
2041 
2042 	/* Notify scsi mid layer of any removed devices */
2043 	for (i = 0; i < nremoved; i++) {
2044 		if (removed[i] == NULL)
2045 			continue;
2046 		if (removed[i]->expose_device)
2047 			hpsa_remove_device(h, removed[i]);
2048 		kfree(removed[i]);
2049 		removed[i] = NULL;
2050 	}
2051 
2052 	/* Notify scsi mid layer of any added devices */
2053 	for (i = 0; i < nadded; i++) {
2054 		int rc = 0;
2055 
2056 		if (added[i] == NULL)
2057 			continue;
2058 		if (!(added[i]->expose_device))
2059 			continue;
2060 		rc = hpsa_add_device(h, added[i]);
2061 		if (!rc)
2062 			continue;
2063 		dev_warn(&h->pdev->dev,
2064 			"addition failed %d, device not added.", rc);
2065 		/* now we have to remove it from h->dev,
2066 		 * since it didn't get added to scsi mid layer
2067 		 */
2068 		fixup_botched_add(h, added[i]);
2069 		h->drv_req_rescan = 1;
2070 	}
2071 
2072 free_and_out:
2073 	kfree(added);
2074 	kfree(removed);
2075 }
2076 
2077 /*
2078  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2079  * Assume's h->devlock is held.
2080  */
2081 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2082 	int bus, int target, int lun)
2083 {
2084 	int i;
2085 	struct hpsa_scsi_dev_t *sd;
2086 
2087 	for (i = 0; i < h->ndevices; i++) {
2088 		sd = h->dev[i];
2089 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2090 			return sd;
2091 	}
2092 	return NULL;
2093 }
2094 
2095 static int hpsa_slave_alloc(struct scsi_device *sdev)
2096 {
2097 	struct hpsa_scsi_dev_t *sd = NULL;
2098 	unsigned long flags;
2099 	struct ctlr_info *h;
2100 
2101 	h = sdev_to_hba(sdev);
2102 	spin_lock_irqsave(&h->devlock, flags);
2103 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2104 		struct scsi_target *starget;
2105 		struct sas_rphy *rphy;
2106 
2107 		starget = scsi_target(sdev);
2108 		rphy = target_to_rphy(starget);
2109 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2110 		if (sd) {
2111 			sd->target = sdev_id(sdev);
2112 			sd->lun = sdev->lun;
2113 		}
2114 	}
2115 	if (!sd)
2116 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2117 					sdev_id(sdev), sdev->lun);
2118 
2119 	if (sd && sd->expose_device) {
2120 		atomic_set(&sd->ioaccel_cmds_out, 0);
2121 		sdev->hostdata = sd;
2122 	} else
2123 		sdev->hostdata = NULL;
2124 	spin_unlock_irqrestore(&h->devlock, flags);
2125 	return 0;
2126 }
2127 
2128 /* configure scsi device based on internal per-device structure */
2129 static int hpsa_slave_configure(struct scsi_device *sdev)
2130 {
2131 	struct hpsa_scsi_dev_t *sd;
2132 	int queue_depth;
2133 
2134 	sd = sdev->hostdata;
2135 	sdev->no_uld_attach = !sd || !sd->expose_device;
2136 
2137 	if (sd) {
2138 		sd->was_removed = 0;
2139 		if (sd->external) {
2140 			queue_depth = EXTERNAL_QD;
2141 			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2142 			blk_queue_rq_timeout(sdev->request_queue,
2143 						HPSA_EH_PTRAID_TIMEOUT);
2144 		} else {
2145 			queue_depth = sd->queue_depth != 0 ?
2146 					sd->queue_depth : sdev->host->can_queue;
2147 		}
2148 	} else
2149 		queue_depth = sdev->host->can_queue;
2150 
2151 	scsi_change_queue_depth(sdev, queue_depth);
2152 
2153 	return 0;
2154 }
2155 
2156 static void hpsa_slave_destroy(struct scsi_device *sdev)
2157 {
2158 	struct hpsa_scsi_dev_t *hdev = NULL;
2159 
2160 	hdev = sdev->hostdata;
2161 
2162 	if (hdev)
2163 		hdev->was_removed = 1;
2164 }
2165 
2166 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168 	int i;
2169 
2170 	if (!h->ioaccel2_cmd_sg_list)
2171 		return;
2172 	for (i = 0; i < h->nr_cmds; i++) {
2173 		kfree(h->ioaccel2_cmd_sg_list[i]);
2174 		h->ioaccel2_cmd_sg_list[i] = NULL;
2175 	}
2176 	kfree(h->ioaccel2_cmd_sg_list);
2177 	h->ioaccel2_cmd_sg_list = NULL;
2178 }
2179 
2180 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182 	int i;
2183 
2184 	if (h->chainsize <= 0)
2185 		return 0;
2186 
2187 	h->ioaccel2_cmd_sg_list =
2188 		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2189 					GFP_KERNEL);
2190 	if (!h->ioaccel2_cmd_sg_list)
2191 		return -ENOMEM;
2192 	for (i = 0; i < h->nr_cmds; i++) {
2193 		h->ioaccel2_cmd_sg_list[i] =
2194 			kmalloc_array(h->maxsgentries,
2195 				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2196 				      GFP_KERNEL);
2197 		if (!h->ioaccel2_cmd_sg_list[i])
2198 			goto clean;
2199 	}
2200 	return 0;
2201 
2202 clean:
2203 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2204 	return -ENOMEM;
2205 }
2206 
2207 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209 	int i;
2210 
2211 	if (!h->cmd_sg_list)
2212 		return;
2213 	for (i = 0; i < h->nr_cmds; i++) {
2214 		kfree(h->cmd_sg_list[i]);
2215 		h->cmd_sg_list[i] = NULL;
2216 	}
2217 	kfree(h->cmd_sg_list);
2218 	h->cmd_sg_list = NULL;
2219 }
2220 
2221 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223 	int i;
2224 
2225 	if (h->chainsize <= 0)
2226 		return 0;
2227 
2228 	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2229 				 GFP_KERNEL);
2230 	if (!h->cmd_sg_list)
2231 		return -ENOMEM;
2232 
2233 	for (i = 0; i < h->nr_cmds; i++) {
2234 		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2235 						  sizeof(*h->cmd_sg_list[i]),
2236 						  GFP_KERNEL);
2237 		if (!h->cmd_sg_list[i])
2238 			goto clean;
2239 
2240 	}
2241 	return 0;
2242 
2243 clean:
2244 	hpsa_free_sg_chain_blocks(h);
2245 	return -ENOMEM;
2246 }
2247 
2248 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2249 	struct io_accel2_cmd *cp, struct CommandList *c)
2250 {
2251 	struct ioaccel2_sg_element *chain_block;
2252 	u64 temp64;
2253 	u32 chain_size;
2254 
2255 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2256 	chain_size = le32_to_cpu(cp->sg[0].length);
2257 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2258 				DMA_TO_DEVICE);
2259 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2260 		/* prevent subsequent unmapping */
2261 		cp->sg->address = 0;
2262 		return -1;
2263 	}
2264 	cp->sg->address = cpu_to_le64(temp64);
2265 	return 0;
2266 }
2267 
2268 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269 	struct io_accel2_cmd *cp)
2270 {
2271 	struct ioaccel2_sg_element *chain_sg;
2272 	u64 temp64;
2273 	u32 chain_size;
2274 
2275 	chain_sg = cp->sg;
2276 	temp64 = le64_to_cpu(chain_sg->address);
2277 	chain_size = le32_to_cpu(cp->sg[0].length);
2278 	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2279 }
2280 
2281 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2282 	struct CommandList *c)
2283 {
2284 	struct SGDescriptor *chain_sg, *chain_block;
2285 	u64 temp64;
2286 	u32 chain_len;
2287 
2288 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2289 	chain_block = h->cmd_sg_list[c->cmdindex];
2290 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2291 	chain_len = sizeof(*chain_sg) *
2292 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2293 	chain_sg->Len = cpu_to_le32(chain_len);
2294 	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2295 				DMA_TO_DEVICE);
2296 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2297 		/* prevent subsequent unmapping */
2298 		chain_sg->Addr = cpu_to_le64(0);
2299 		return -1;
2300 	}
2301 	chain_sg->Addr = cpu_to_le64(temp64);
2302 	return 0;
2303 }
2304 
2305 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2306 	struct CommandList *c)
2307 {
2308 	struct SGDescriptor *chain_sg;
2309 
2310 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2311 		return;
2312 
2313 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2314 	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2315 			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2316 }
2317 
2318 
2319 /* Decode the various types of errors on ioaccel2 path.
2320  * Return 1 for any error that should generate a RAID path retry.
2321  * Return 0 for errors that don't require a RAID path retry.
2322  */
2323 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2324 					struct CommandList *c,
2325 					struct scsi_cmnd *cmd,
2326 					struct io_accel2_cmd *c2,
2327 					struct hpsa_scsi_dev_t *dev)
2328 {
2329 	int data_len;
2330 	int retry = 0;
2331 	u32 ioaccel2_resid = 0;
2332 
2333 	switch (c2->error_data.serv_response) {
2334 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2335 		switch (c2->error_data.status) {
2336 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2337 			if (cmd)
2338 				cmd->result = 0;
2339 			break;
2340 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2341 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2342 			if (c2->error_data.data_present !=
2343 					IOACCEL2_SENSE_DATA_PRESENT) {
2344 				memset(cmd->sense_buffer, 0,
2345 					SCSI_SENSE_BUFFERSIZE);
2346 				break;
2347 			}
2348 			/* copy the sense data */
2349 			data_len = c2->error_data.sense_data_len;
2350 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2351 				data_len = SCSI_SENSE_BUFFERSIZE;
2352 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2353 				data_len =
2354 					sizeof(c2->error_data.sense_data_buff);
2355 			memcpy(cmd->sense_buffer,
2356 				c2->error_data.sense_data_buff, data_len);
2357 			retry = 1;
2358 			break;
2359 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2360 			retry = 1;
2361 			break;
2362 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2363 			retry = 1;
2364 			break;
2365 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2366 			retry = 1;
2367 			break;
2368 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2369 			retry = 1;
2370 			break;
2371 		default:
2372 			retry = 1;
2373 			break;
2374 		}
2375 		break;
2376 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2377 		switch (c2->error_data.status) {
2378 		case IOACCEL2_STATUS_SR_IO_ERROR:
2379 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2380 		case IOACCEL2_STATUS_SR_OVERRUN:
2381 			retry = 1;
2382 			break;
2383 		case IOACCEL2_STATUS_SR_UNDERRUN:
2384 			cmd->result = (DID_OK << 16);		/* host byte */
2385 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2386 			ioaccel2_resid = get_unaligned_le32(
2387 						&c2->error_data.resid_cnt[0]);
2388 			scsi_set_resid(cmd, ioaccel2_resid);
2389 			break;
2390 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2391 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2392 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2393 			/*
2394 			 * Did an HBA disk disappear? We will eventually
2395 			 * get a state change event from the controller but
2396 			 * in the meantime, we need to tell the OS that the
2397 			 * HBA disk is no longer there and stop I/O
2398 			 * from going down. This allows the potential re-insert
2399 			 * of the disk to get the same device node.
2400 			 */
2401 			if (dev->physical_device && dev->expose_device) {
2402 				cmd->result = DID_NO_CONNECT << 16;
2403 				dev->removed = 1;
2404 				h->drv_req_rescan = 1;
2405 				dev_warn(&h->pdev->dev,
2406 					"%s: device is gone!\n", __func__);
2407 			} else
2408 				/*
2409 				 * Retry by sending down the RAID path.
2410 				 * We will get an event from ctlr to
2411 				 * trigger rescan regardless.
2412 				 */
2413 				retry = 1;
2414 			break;
2415 		default:
2416 			retry = 1;
2417 		}
2418 		break;
2419 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2420 		break;
2421 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2422 		break;
2423 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2424 		retry = 1;
2425 		break;
2426 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2427 		break;
2428 	default:
2429 		retry = 1;
2430 		break;
2431 	}
2432 
2433 	if (dev->in_reset)
2434 		retry = 0;
2435 
2436 	return retry;	/* retry on raid path? */
2437 }
2438 
2439 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2440 		struct CommandList *c)
2441 {
2442 	struct hpsa_scsi_dev_t *dev = c->device;
2443 
2444 	/*
2445 	 * Reset c->scsi_cmd here so that the reset handler will know
2446 	 * this command has completed.  Then, check to see if the handler is
2447 	 * waiting for this command, and, if so, wake it.
2448 	 */
2449 	c->scsi_cmd = SCSI_CMD_IDLE;
2450 	mb();	/* Declare command idle before checking for pending events. */
2451 	if (dev) {
2452 		atomic_dec(&dev->commands_outstanding);
2453 		if (dev->in_reset &&
2454 			atomic_read(&dev->commands_outstanding) <= 0)
2455 			wake_up_all(&h->event_sync_wait_queue);
2456 	}
2457 }
2458 
2459 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2460 				      struct CommandList *c)
2461 {
2462 	hpsa_cmd_resolve_events(h, c);
2463 	cmd_tagged_free(h, c);
2464 }
2465 
2466 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2467 		struct CommandList *c, struct scsi_cmnd *cmd)
2468 {
2469 	hpsa_cmd_resolve_and_free(h, c);
2470 	if (cmd && cmd->scsi_done)
2471 		cmd->scsi_done(cmd);
2472 }
2473 
2474 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2475 {
2476 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2477 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2478 }
2479 
2480 static void process_ioaccel2_completion(struct ctlr_info *h,
2481 		struct CommandList *c, struct scsi_cmnd *cmd,
2482 		struct hpsa_scsi_dev_t *dev)
2483 {
2484 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2485 
2486 	/* check for good status */
2487 	if (likely(c2->error_data.serv_response == 0 &&
2488 			c2->error_data.status == 0)) {
2489 		cmd->result = 0;
2490 		return hpsa_cmd_free_and_done(h, c, cmd);
2491 	}
2492 
2493 	/*
2494 	 * Any RAID offload error results in retry which will use
2495 	 * the normal I/O path so the controller can handle whatever is
2496 	 * wrong.
2497 	 */
2498 	if (is_logical_device(dev) &&
2499 		c2->error_data.serv_response ==
2500 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2501 		if (c2->error_data.status ==
2502 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2503 			dev->offload_enabled = 0;
2504 			dev->offload_to_be_enabled = 0;
2505 		}
2506 
2507 		if (dev->in_reset) {
2508 			cmd->result = DID_RESET << 16;
2509 			return hpsa_cmd_free_and_done(h, c, cmd);
2510 		}
2511 
2512 		return hpsa_retry_cmd(h, c);
2513 	}
2514 
2515 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2516 		return hpsa_retry_cmd(h, c);
2517 
2518 	return hpsa_cmd_free_and_done(h, c, cmd);
2519 }
2520 
2521 /* Returns 0 on success, < 0 otherwise. */
2522 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2523 					struct CommandList *cp)
2524 {
2525 	u8 tmf_status = cp->err_info->ScsiStatus;
2526 
2527 	switch (tmf_status) {
2528 	case CISS_TMF_COMPLETE:
2529 		/*
2530 		 * CISS_TMF_COMPLETE never happens, instead,
2531 		 * ei->CommandStatus == 0 for this case.
2532 		 */
2533 	case CISS_TMF_SUCCESS:
2534 		return 0;
2535 	case CISS_TMF_INVALID_FRAME:
2536 	case CISS_TMF_NOT_SUPPORTED:
2537 	case CISS_TMF_FAILED:
2538 	case CISS_TMF_WRONG_LUN:
2539 	case CISS_TMF_OVERLAPPED_TAG:
2540 		break;
2541 	default:
2542 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2543 				tmf_status);
2544 		break;
2545 	}
2546 	return -tmf_status;
2547 }
2548 
2549 static void complete_scsi_command(struct CommandList *cp)
2550 {
2551 	struct scsi_cmnd *cmd;
2552 	struct ctlr_info *h;
2553 	struct ErrorInfo *ei;
2554 	struct hpsa_scsi_dev_t *dev;
2555 	struct io_accel2_cmd *c2;
2556 
2557 	u8 sense_key;
2558 	u8 asc;      /* additional sense code */
2559 	u8 ascq;     /* additional sense code qualifier */
2560 	unsigned long sense_data_size;
2561 
2562 	ei = cp->err_info;
2563 	cmd = cp->scsi_cmd;
2564 	h = cp->h;
2565 
2566 	if (!cmd->device) {
2567 		cmd->result = DID_NO_CONNECT << 16;
2568 		return hpsa_cmd_free_and_done(h, cp, cmd);
2569 	}
2570 
2571 	dev = cmd->device->hostdata;
2572 	if (!dev) {
2573 		cmd->result = DID_NO_CONNECT << 16;
2574 		return hpsa_cmd_free_and_done(h, cp, cmd);
2575 	}
2576 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2577 
2578 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2579 	if ((cp->cmd_type == CMD_SCSI) &&
2580 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2581 		hpsa_unmap_sg_chain_block(h, cp);
2582 
2583 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2584 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2585 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2586 
2587 	cmd->result = (DID_OK << 16); 		/* host byte */
2588 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2589 
2590 	/* SCSI command has already been cleaned up in SML */
2591 	if (dev->was_removed) {
2592 		hpsa_cmd_resolve_and_free(h, cp);
2593 		return;
2594 	}
2595 
2596 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2597 		if (dev->physical_device && dev->expose_device &&
2598 			dev->removed) {
2599 			cmd->result = DID_NO_CONNECT << 16;
2600 			return hpsa_cmd_free_and_done(h, cp, cmd);
2601 		}
2602 		if (likely(cp->phys_disk != NULL))
2603 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2604 	}
2605 
2606 	/*
2607 	 * We check for lockup status here as it may be set for
2608 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2609 	 * fail_all_oustanding_cmds()
2610 	 */
2611 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2612 		/* DID_NO_CONNECT will prevent a retry */
2613 		cmd->result = DID_NO_CONNECT << 16;
2614 		return hpsa_cmd_free_and_done(h, cp, cmd);
2615 	}
2616 
2617 	if (cp->cmd_type == CMD_IOACCEL2)
2618 		return process_ioaccel2_completion(h, cp, cmd, dev);
2619 
2620 	scsi_set_resid(cmd, ei->ResidualCnt);
2621 	if (ei->CommandStatus == 0)
2622 		return hpsa_cmd_free_and_done(h, cp, cmd);
2623 
2624 	/* For I/O accelerator commands, copy over some fields to the normal
2625 	 * CISS header used below for error handling.
2626 	 */
2627 	if (cp->cmd_type == CMD_IOACCEL1) {
2628 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2629 		cp->Header.SGList = scsi_sg_count(cmd);
2630 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2631 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2632 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2633 		cp->Header.tag = c->tag;
2634 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2635 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2636 
2637 		/* Any RAID offload error results in retry which will use
2638 		 * the normal I/O path so the controller can handle whatever's
2639 		 * wrong.
2640 		 */
2641 		if (is_logical_device(dev)) {
2642 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2643 				dev->offload_enabled = 0;
2644 			return hpsa_retry_cmd(h, cp);
2645 		}
2646 	}
2647 
2648 	/* an error has occurred */
2649 	switch (ei->CommandStatus) {
2650 
2651 	case CMD_TARGET_STATUS:
2652 		cmd->result |= ei->ScsiStatus;
2653 		/* copy the sense data */
2654 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2655 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2656 		else
2657 			sense_data_size = sizeof(ei->SenseInfo);
2658 		if (ei->SenseLen < sense_data_size)
2659 			sense_data_size = ei->SenseLen;
2660 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2661 		if (ei->ScsiStatus)
2662 			decode_sense_data(ei->SenseInfo, sense_data_size,
2663 				&sense_key, &asc, &ascq);
2664 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2665 			switch (sense_key) {
2666 			case ABORTED_COMMAND:
2667 				cmd->result |= DID_SOFT_ERROR << 16;
2668 				break;
2669 			case UNIT_ATTENTION:
2670 				if (asc == 0x3F && ascq == 0x0E)
2671 					h->drv_req_rescan = 1;
2672 				break;
2673 			case ILLEGAL_REQUEST:
2674 				if (asc == 0x25 && ascq == 0x00) {
2675 					dev->removed = 1;
2676 					cmd->result = DID_NO_CONNECT << 16;
2677 				}
2678 				break;
2679 			}
2680 			break;
2681 		}
2682 		/* Problem was not a check condition
2683 		 * Pass it up to the upper layers...
2684 		 */
2685 		if (ei->ScsiStatus) {
2686 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2687 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2688 				"Returning result: 0x%x\n",
2689 				cp, ei->ScsiStatus,
2690 				sense_key, asc, ascq,
2691 				cmd->result);
2692 		} else {  /* scsi status is zero??? How??? */
2693 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2694 				"Returning no connection.\n", cp),
2695 
2696 			/* Ordinarily, this case should never happen,
2697 			 * but there is a bug in some released firmware
2698 			 * revisions that allows it to happen if, for
2699 			 * example, a 4100 backplane loses power and
2700 			 * the tape drive is in it.  We assume that
2701 			 * it's a fatal error of some kind because we
2702 			 * can't show that it wasn't. We will make it
2703 			 * look like selection timeout since that is
2704 			 * the most common reason for this to occur,
2705 			 * and it's severe enough.
2706 			 */
2707 
2708 			cmd->result = DID_NO_CONNECT << 16;
2709 		}
2710 		break;
2711 
2712 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2713 		break;
2714 	case CMD_DATA_OVERRUN:
2715 		dev_warn(&h->pdev->dev,
2716 			"CDB %16phN data overrun\n", cp->Request.CDB);
2717 		break;
2718 	case CMD_INVALID: {
2719 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2720 		print_cmd(cp); */
2721 		/* We get CMD_INVALID if you address a non-existent device
2722 		 * instead of a selection timeout (no response).  You will
2723 		 * see this if you yank out a drive, then try to access it.
2724 		 * This is kind of a shame because it means that any other
2725 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2726 		 * missing target. */
2727 		cmd->result = DID_NO_CONNECT << 16;
2728 	}
2729 		break;
2730 	case CMD_PROTOCOL_ERR:
2731 		cmd->result = DID_ERROR << 16;
2732 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2733 				cp->Request.CDB);
2734 		break;
2735 	case CMD_HARDWARE_ERR:
2736 		cmd->result = DID_ERROR << 16;
2737 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2738 			cp->Request.CDB);
2739 		break;
2740 	case CMD_CONNECTION_LOST:
2741 		cmd->result = DID_ERROR << 16;
2742 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2743 			cp->Request.CDB);
2744 		break;
2745 	case CMD_ABORTED:
2746 		cmd->result = DID_ABORT << 16;
2747 		break;
2748 	case CMD_ABORT_FAILED:
2749 		cmd->result = DID_ERROR << 16;
2750 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2751 			cp->Request.CDB);
2752 		break;
2753 	case CMD_UNSOLICITED_ABORT:
2754 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2755 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2756 			cp->Request.CDB);
2757 		break;
2758 	case CMD_TIMEOUT:
2759 		cmd->result = DID_TIME_OUT << 16;
2760 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2761 			cp->Request.CDB);
2762 		break;
2763 	case CMD_UNABORTABLE:
2764 		cmd->result = DID_ERROR << 16;
2765 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2766 		break;
2767 	case CMD_TMF_STATUS:
2768 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2769 			cmd->result = DID_ERROR << 16;
2770 		break;
2771 	case CMD_IOACCEL_DISABLED:
2772 		/* This only handles the direct pass-through case since RAID
2773 		 * offload is handled above.  Just attempt a retry.
2774 		 */
2775 		cmd->result = DID_SOFT_ERROR << 16;
2776 		dev_warn(&h->pdev->dev,
2777 				"cp %p had HP SSD Smart Path error\n", cp);
2778 		break;
2779 	default:
2780 		cmd->result = DID_ERROR << 16;
2781 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2782 				cp, ei->CommandStatus);
2783 	}
2784 
2785 	return hpsa_cmd_free_and_done(h, cp, cmd);
2786 }
2787 
2788 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2789 		int sg_used, enum dma_data_direction data_direction)
2790 {
2791 	int i;
2792 
2793 	for (i = 0; i < sg_used; i++)
2794 		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2795 				le32_to_cpu(c->SG[i].Len),
2796 				data_direction);
2797 }
2798 
2799 static int hpsa_map_one(struct pci_dev *pdev,
2800 		struct CommandList *cp,
2801 		unsigned char *buf,
2802 		size_t buflen,
2803 		enum dma_data_direction data_direction)
2804 {
2805 	u64 addr64;
2806 
2807 	if (buflen == 0 || data_direction == DMA_NONE) {
2808 		cp->Header.SGList = 0;
2809 		cp->Header.SGTotal = cpu_to_le16(0);
2810 		return 0;
2811 	}
2812 
2813 	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2814 	if (dma_mapping_error(&pdev->dev, addr64)) {
2815 		/* Prevent subsequent unmap of something never mapped */
2816 		cp->Header.SGList = 0;
2817 		cp->Header.SGTotal = cpu_to_le16(0);
2818 		return -1;
2819 	}
2820 	cp->SG[0].Addr = cpu_to_le64(addr64);
2821 	cp->SG[0].Len = cpu_to_le32(buflen);
2822 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2823 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2824 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2825 	return 0;
2826 }
2827 
2828 #define NO_TIMEOUT ((unsigned long) -1)
2829 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2830 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2831 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2832 {
2833 	DECLARE_COMPLETION_ONSTACK(wait);
2834 
2835 	c->waiting = &wait;
2836 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2837 	if (timeout_msecs == NO_TIMEOUT) {
2838 		/* TODO: get rid of this no-timeout thing */
2839 		wait_for_completion_io(&wait);
2840 		return IO_OK;
2841 	}
2842 	if (!wait_for_completion_io_timeout(&wait,
2843 					msecs_to_jiffies(timeout_msecs))) {
2844 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2845 		return -ETIMEDOUT;
2846 	}
2847 	return IO_OK;
2848 }
2849 
2850 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2851 				   int reply_queue, unsigned long timeout_msecs)
2852 {
2853 	if (unlikely(lockup_detected(h))) {
2854 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2855 		return IO_OK;
2856 	}
2857 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2858 }
2859 
2860 static u32 lockup_detected(struct ctlr_info *h)
2861 {
2862 	int cpu;
2863 	u32 rc, *lockup_detected;
2864 
2865 	cpu = get_cpu();
2866 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2867 	rc = *lockup_detected;
2868 	put_cpu();
2869 	return rc;
2870 }
2871 
2872 #define MAX_DRIVER_CMD_RETRIES 25
2873 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2874 		struct CommandList *c, enum dma_data_direction data_direction,
2875 		unsigned long timeout_msecs)
2876 {
2877 	int backoff_time = 10, retry_count = 0;
2878 	int rc;
2879 
2880 	do {
2881 		memset(c->err_info, 0, sizeof(*c->err_info));
2882 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2883 						  timeout_msecs);
2884 		if (rc)
2885 			break;
2886 		retry_count++;
2887 		if (retry_count > 3) {
2888 			msleep(backoff_time);
2889 			if (backoff_time < 1000)
2890 				backoff_time *= 2;
2891 		}
2892 	} while ((check_for_unit_attention(h, c) ||
2893 			check_for_busy(h, c)) &&
2894 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2895 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2896 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2897 		rc = -EIO;
2898 	return rc;
2899 }
2900 
2901 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2902 				struct CommandList *c)
2903 {
2904 	const u8 *cdb = c->Request.CDB;
2905 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2906 
2907 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2908 		 txt, lun, cdb);
2909 }
2910 
2911 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2912 			struct CommandList *cp)
2913 {
2914 	const struct ErrorInfo *ei = cp->err_info;
2915 	struct device *d = &cp->h->pdev->dev;
2916 	u8 sense_key, asc, ascq;
2917 	int sense_len;
2918 
2919 	switch (ei->CommandStatus) {
2920 	case CMD_TARGET_STATUS:
2921 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2922 			sense_len = sizeof(ei->SenseInfo);
2923 		else
2924 			sense_len = ei->SenseLen;
2925 		decode_sense_data(ei->SenseInfo, sense_len,
2926 					&sense_key, &asc, &ascq);
2927 		hpsa_print_cmd(h, "SCSI status", cp);
2928 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2929 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2930 				sense_key, asc, ascq);
2931 		else
2932 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2933 		if (ei->ScsiStatus == 0)
2934 			dev_warn(d, "SCSI status is abnormally zero.  "
2935 			"(probably indicates selection timeout "
2936 			"reported incorrectly due to a known "
2937 			"firmware bug, circa July, 2001.)\n");
2938 		break;
2939 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2940 		break;
2941 	case CMD_DATA_OVERRUN:
2942 		hpsa_print_cmd(h, "overrun condition", cp);
2943 		break;
2944 	case CMD_INVALID: {
2945 		/* controller unfortunately reports SCSI passthru's
2946 		 * to non-existent targets as invalid commands.
2947 		 */
2948 		hpsa_print_cmd(h, "invalid command", cp);
2949 		dev_warn(d, "probably means device no longer present\n");
2950 		}
2951 		break;
2952 	case CMD_PROTOCOL_ERR:
2953 		hpsa_print_cmd(h, "protocol error", cp);
2954 		break;
2955 	case CMD_HARDWARE_ERR:
2956 		hpsa_print_cmd(h, "hardware error", cp);
2957 		break;
2958 	case CMD_CONNECTION_LOST:
2959 		hpsa_print_cmd(h, "connection lost", cp);
2960 		break;
2961 	case CMD_ABORTED:
2962 		hpsa_print_cmd(h, "aborted", cp);
2963 		break;
2964 	case CMD_ABORT_FAILED:
2965 		hpsa_print_cmd(h, "abort failed", cp);
2966 		break;
2967 	case CMD_UNSOLICITED_ABORT:
2968 		hpsa_print_cmd(h, "unsolicited abort", cp);
2969 		break;
2970 	case CMD_TIMEOUT:
2971 		hpsa_print_cmd(h, "timed out", cp);
2972 		break;
2973 	case CMD_UNABORTABLE:
2974 		hpsa_print_cmd(h, "unabortable", cp);
2975 		break;
2976 	case CMD_CTLR_LOCKUP:
2977 		hpsa_print_cmd(h, "controller lockup detected", cp);
2978 		break;
2979 	default:
2980 		hpsa_print_cmd(h, "unknown status", cp);
2981 		dev_warn(d, "Unknown command status %x\n",
2982 				ei->CommandStatus);
2983 	}
2984 }
2985 
2986 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2987 					u8 page, u8 *buf, size_t bufsize)
2988 {
2989 	int rc = IO_OK;
2990 	struct CommandList *c;
2991 	struct ErrorInfo *ei;
2992 
2993 	c = cmd_alloc(h);
2994 	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2995 			page, scsi3addr, TYPE_CMD)) {
2996 		rc = -1;
2997 		goto out;
2998 	}
2999 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3000 			NO_TIMEOUT);
3001 	if (rc)
3002 		goto out;
3003 	ei = c->err_info;
3004 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3005 		hpsa_scsi_interpret_error(h, c);
3006 		rc = -1;
3007 	}
3008 out:
3009 	cmd_free(h, c);
3010 	return rc;
3011 }
3012 
3013 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3014 						u8 *scsi3addr)
3015 {
3016 	u8 *buf;
3017 	u64 sa = 0;
3018 	int rc = 0;
3019 
3020 	buf = kzalloc(1024, GFP_KERNEL);
3021 	if (!buf)
3022 		return 0;
3023 
3024 	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3025 					buf, 1024);
3026 
3027 	if (rc)
3028 		goto out;
3029 
3030 	sa = get_unaligned_be64(buf+12);
3031 
3032 out:
3033 	kfree(buf);
3034 	return sa;
3035 }
3036 
3037 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3038 			u16 page, unsigned char *buf,
3039 			unsigned char bufsize)
3040 {
3041 	int rc = IO_OK;
3042 	struct CommandList *c;
3043 	struct ErrorInfo *ei;
3044 
3045 	c = cmd_alloc(h);
3046 
3047 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3048 			page, scsi3addr, TYPE_CMD)) {
3049 		rc = -1;
3050 		goto out;
3051 	}
3052 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3053 			NO_TIMEOUT);
3054 	if (rc)
3055 		goto out;
3056 	ei = c->err_info;
3057 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3058 		hpsa_scsi_interpret_error(h, c);
3059 		rc = -1;
3060 	}
3061 out:
3062 	cmd_free(h, c);
3063 	return rc;
3064 }
3065 
3066 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3067 	u8 reset_type, int reply_queue)
3068 {
3069 	int rc = IO_OK;
3070 	struct CommandList *c;
3071 	struct ErrorInfo *ei;
3072 
3073 	c = cmd_alloc(h);
3074 	c->device = dev;
3075 
3076 	/* fill_cmd can't fail here, no data buffer to map. */
3077 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3078 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3079 	if (rc) {
3080 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3081 		goto out;
3082 	}
3083 	/* no unmap needed here because no data xfer. */
3084 
3085 	ei = c->err_info;
3086 	if (ei->CommandStatus != 0) {
3087 		hpsa_scsi_interpret_error(h, c);
3088 		rc = -1;
3089 	}
3090 out:
3091 	cmd_free(h, c);
3092 	return rc;
3093 }
3094 
3095 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3096 			       struct hpsa_scsi_dev_t *dev,
3097 			       unsigned char *scsi3addr)
3098 {
3099 	int i;
3100 	bool match = false;
3101 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3102 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3103 
3104 	if (hpsa_is_cmd_idle(c))
3105 		return false;
3106 
3107 	switch (c->cmd_type) {
3108 	case CMD_SCSI:
3109 	case CMD_IOCTL_PEND:
3110 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3111 				sizeof(c->Header.LUN.LunAddrBytes));
3112 		break;
3113 
3114 	case CMD_IOACCEL1:
3115 	case CMD_IOACCEL2:
3116 		if (c->phys_disk == dev) {
3117 			/* HBA mode match */
3118 			match = true;
3119 		} else {
3120 			/* Possible RAID mode -- check each phys dev. */
3121 			/* FIXME:  Do we need to take out a lock here?  If
3122 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3123 			 * instead. */
3124 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3125 				/* FIXME: an alternate test might be
3126 				 *
3127 				 * match = dev->phys_disk[i]->ioaccel_handle
3128 				 *              == c2->scsi_nexus;      */
3129 				match = dev->phys_disk[i] == c->phys_disk;
3130 			}
3131 		}
3132 		break;
3133 
3134 	case IOACCEL2_TMF:
3135 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3136 			match = dev->phys_disk[i]->ioaccel_handle ==
3137 					le32_to_cpu(ac->it_nexus);
3138 		}
3139 		break;
3140 
3141 	case 0:		/* The command is in the middle of being initialized. */
3142 		match = false;
3143 		break;
3144 
3145 	default:
3146 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3147 			c->cmd_type);
3148 		BUG();
3149 	}
3150 
3151 	return match;
3152 }
3153 
3154 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3155 	u8 reset_type, int reply_queue)
3156 {
3157 	int rc = 0;
3158 
3159 	/* We can really only handle one reset at a time */
3160 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3161 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3162 		return -EINTR;
3163 	}
3164 
3165 	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3166 	if (!rc) {
3167 		/* incremented by sending the reset request */
3168 		atomic_dec(&dev->commands_outstanding);
3169 		wait_event(h->event_sync_wait_queue,
3170 			atomic_read(&dev->commands_outstanding) <= 0 ||
3171 			lockup_detected(h));
3172 	}
3173 
3174 	if (unlikely(lockup_detected(h))) {
3175 		dev_warn(&h->pdev->dev,
3176 			 "Controller lockup detected during reset wait\n");
3177 		rc = -ENODEV;
3178 	}
3179 
3180 	if (!rc)
3181 		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3182 
3183 	mutex_unlock(&h->reset_mutex);
3184 	return rc;
3185 }
3186 
3187 static void hpsa_get_raid_level(struct ctlr_info *h,
3188 	unsigned char *scsi3addr, unsigned char *raid_level)
3189 {
3190 	int rc;
3191 	unsigned char *buf;
3192 
3193 	*raid_level = RAID_UNKNOWN;
3194 	buf = kzalloc(64, GFP_KERNEL);
3195 	if (!buf)
3196 		return;
3197 
3198 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3199 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3200 		goto exit;
3201 
3202 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3203 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3204 
3205 	if (rc == 0)
3206 		*raid_level = buf[8];
3207 	if (*raid_level > RAID_UNKNOWN)
3208 		*raid_level = RAID_UNKNOWN;
3209 exit:
3210 	kfree(buf);
3211 	return;
3212 }
3213 
3214 #define HPSA_MAP_DEBUG
3215 #ifdef HPSA_MAP_DEBUG
3216 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3217 				struct raid_map_data *map_buff)
3218 {
3219 	struct raid_map_disk_data *dd = &map_buff->data[0];
3220 	int map, row, col;
3221 	u16 map_cnt, row_cnt, disks_per_row;
3222 
3223 	if (rc != 0)
3224 		return;
3225 
3226 	/* Show details only if debugging has been activated. */
3227 	if (h->raid_offload_debug < 2)
3228 		return;
3229 
3230 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3231 				le32_to_cpu(map_buff->structure_size));
3232 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3233 			le32_to_cpu(map_buff->volume_blk_size));
3234 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3235 			le64_to_cpu(map_buff->volume_blk_cnt));
3236 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3237 			map_buff->phys_blk_shift);
3238 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3239 			map_buff->parity_rotation_shift);
3240 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3241 			le16_to_cpu(map_buff->strip_size));
3242 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3243 			le64_to_cpu(map_buff->disk_starting_blk));
3244 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3245 			le64_to_cpu(map_buff->disk_blk_cnt));
3246 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3247 			le16_to_cpu(map_buff->data_disks_per_row));
3248 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3249 			le16_to_cpu(map_buff->metadata_disks_per_row));
3250 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3251 			le16_to_cpu(map_buff->row_cnt));
3252 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3253 			le16_to_cpu(map_buff->layout_map_count));
3254 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3255 			le16_to_cpu(map_buff->flags));
3256 	dev_info(&h->pdev->dev, "encryption = %s\n",
3257 			le16_to_cpu(map_buff->flags) &
3258 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3259 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3260 			le16_to_cpu(map_buff->dekindex));
3261 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3262 	for (map = 0; map < map_cnt; map++) {
3263 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3264 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3265 		for (row = 0; row < row_cnt; row++) {
3266 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3267 			disks_per_row =
3268 				le16_to_cpu(map_buff->data_disks_per_row);
3269 			for (col = 0; col < disks_per_row; col++, dd++)
3270 				dev_info(&h->pdev->dev,
3271 					"    D%02u: h=0x%04x xor=%u,%u\n",
3272 					col, dd->ioaccel_handle,
3273 					dd->xor_mult[0], dd->xor_mult[1]);
3274 			disks_per_row =
3275 				le16_to_cpu(map_buff->metadata_disks_per_row);
3276 			for (col = 0; col < disks_per_row; col++, dd++)
3277 				dev_info(&h->pdev->dev,
3278 					"    M%02u: h=0x%04x xor=%u,%u\n",
3279 					col, dd->ioaccel_handle,
3280 					dd->xor_mult[0], dd->xor_mult[1]);
3281 		}
3282 	}
3283 }
3284 #else
3285 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3286 			__attribute__((unused)) int rc,
3287 			__attribute__((unused)) struct raid_map_data *map_buff)
3288 {
3289 }
3290 #endif
3291 
3292 static int hpsa_get_raid_map(struct ctlr_info *h,
3293 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3294 {
3295 	int rc = 0;
3296 	struct CommandList *c;
3297 	struct ErrorInfo *ei;
3298 
3299 	c = cmd_alloc(h);
3300 
3301 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3302 			sizeof(this_device->raid_map), 0,
3303 			scsi3addr, TYPE_CMD)) {
3304 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3305 		cmd_free(h, c);
3306 		return -1;
3307 	}
3308 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3309 			NO_TIMEOUT);
3310 	if (rc)
3311 		goto out;
3312 	ei = c->err_info;
3313 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3314 		hpsa_scsi_interpret_error(h, c);
3315 		rc = -1;
3316 		goto out;
3317 	}
3318 	cmd_free(h, c);
3319 
3320 	/* @todo in the future, dynamically allocate RAID map memory */
3321 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3322 				sizeof(this_device->raid_map)) {
3323 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3324 		rc = -1;
3325 	}
3326 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3327 	return rc;
3328 out:
3329 	cmd_free(h, c);
3330 	return rc;
3331 }
3332 
3333 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3334 		unsigned char scsi3addr[], u16 bmic_device_index,
3335 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3336 {
3337 	int rc = IO_OK;
3338 	struct CommandList *c;
3339 	struct ErrorInfo *ei;
3340 
3341 	c = cmd_alloc(h);
3342 
3343 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3344 		0, RAID_CTLR_LUNID, TYPE_CMD);
3345 	if (rc)
3346 		goto out;
3347 
3348 	c->Request.CDB[2] = bmic_device_index & 0xff;
3349 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3350 
3351 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3352 			NO_TIMEOUT);
3353 	if (rc)
3354 		goto out;
3355 	ei = c->err_info;
3356 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3357 		hpsa_scsi_interpret_error(h, c);
3358 		rc = -1;
3359 	}
3360 out:
3361 	cmd_free(h, c);
3362 	return rc;
3363 }
3364 
3365 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3366 	struct bmic_identify_controller *buf, size_t bufsize)
3367 {
3368 	int rc = IO_OK;
3369 	struct CommandList *c;
3370 	struct ErrorInfo *ei;
3371 
3372 	c = cmd_alloc(h);
3373 
3374 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3375 		0, RAID_CTLR_LUNID, TYPE_CMD);
3376 	if (rc)
3377 		goto out;
3378 
3379 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3380 			NO_TIMEOUT);
3381 	if (rc)
3382 		goto out;
3383 	ei = c->err_info;
3384 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385 		hpsa_scsi_interpret_error(h, c);
3386 		rc = -1;
3387 	}
3388 out:
3389 	cmd_free(h, c);
3390 	return rc;
3391 }
3392 
3393 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3394 		unsigned char scsi3addr[], u16 bmic_device_index,
3395 		struct bmic_identify_physical_device *buf, size_t bufsize)
3396 {
3397 	int rc = IO_OK;
3398 	struct CommandList *c;
3399 	struct ErrorInfo *ei;
3400 
3401 	c = cmd_alloc(h);
3402 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3403 		0, RAID_CTLR_LUNID, TYPE_CMD);
3404 	if (rc)
3405 		goto out;
3406 
3407 	c->Request.CDB[2] = bmic_device_index & 0xff;
3408 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3409 
3410 	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3411 						NO_TIMEOUT);
3412 	ei = c->err_info;
3413 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3414 		hpsa_scsi_interpret_error(h, c);
3415 		rc = -1;
3416 	}
3417 out:
3418 	cmd_free(h, c);
3419 
3420 	return rc;
3421 }
3422 
3423 /*
3424  * get enclosure information
3425  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3426  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3427  * Uses id_physical_device to determine the box_index.
3428  */
3429 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3430 			unsigned char *scsi3addr,
3431 			struct ReportExtendedLUNdata *rlep, int rle_index,
3432 			struct hpsa_scsi_dev_t *encl_dev)
3433 {
3434 	int rc = -1;
3435 	struct CommandList *c = NULL;
3436 	struct ErrorInfo *ei = NULL;
3437 	struct bmic_sense_storage_box_params *bssbp = NULL;
3438 	struct bmic_identify_physical_device *id_phys = NULL;
3439 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3440 	u16 bmic_device_index = 0;
3441 
3442 	encl_dev->eli =
3443 		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3444 
3445 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3446 
3447 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3448 		rc = IO_OK;
3449 		goto out;
3450 	}
3451 
3452 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3453 		rc = IO_OK;
3454 		goto out;
3455 	}
3456 
3457 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3458 	if (!bssbp)
3459 		goto out;
3460 
3461 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3462 	if (!id_phys)
3463 		goto out;
3464 
3465 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3466 						id_phys, sizeof(*id_phys));
3467 	if (rc) {
3468 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3469 			__func__, encl_dev->external, bmic_device_index);
3470 		goto out;
3471 	}
3472 
3473 	c = cmd_alloc(h);
3474 
3475 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3476 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3477 
3478 	if (rc)
3479 		goto out;
3480 
3481 	if (id_phys->phys_connector[1] == 'E')
3482 		c->Request.CDB[5] = id_phys->box_index;
3483 	else
3484 		c->Request.CDB[5] = 0;
3485 
3486 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3487 						NO_TIMEOUT);
3488 	if (rc)
3489 		goto out;
3490 
3491 	ei = c->err_info;
3492 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3493 		rc = -1;
3494 		goto out;
3495 	}
3496 
3497 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3498 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3499 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3500 
3501 	rc = IO_OK;
3502 out:
3503 	kfree(bssbp);
3504 	kfree(id_phys);
3505 
3506 	if (c)
3507 		cmd_free(h, c);
3508 
3509 	if (rc != IO_OK)
3510 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3511 			"Error, could not get enclosure information");
3512 }
3513 
3514 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3515 						unsigned char *scsi3addr)
3516 {
3517 	struct ReportExtendedLUNdata *physdev;
3518 	u32 nphysicals;
3519 	u64 sa = 0;
3520 	int i;
3521 
3522 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3523 	if (!physdev)
3524 		return 0;
3525 
3526 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3527 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3528 		kfree(physdev);
3529 		return 0;
3530 	}
3531 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3532 
3533 	for (i = 0; i < nphysicals; i++)
3534 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3535 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3536 			break;
3537 		}
3538 
3539 	kfree(physdev);
3540 
3541 	return sa;
3542 }
3543 
3544 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3545 					struct hpsa_scsi_dev_t *dev)
3546 {
3547 	int rc;
3548 	u64 sa = 0;
3549 
3550 	if (is_hba_lunid(scsi3addr)) {
3551 		struct bmic_sense_subsystem_info *ssi;
3552 
3553 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3554 		if (!ssi)
3555 			return;
3556 
3557 		rc = hpsa_bmic_sense_subsystem_information(h,
3558 					scsi3addr, 0, ssi, sizeof(*ssi));
3559 		if (rc == 0) {
3560 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3561 			h->sas_address = sa;
3562 		}
3563 
3564 		kfree(ssi);
3565 	} else
3566 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3567 
3568 	dev->sas_address = sa;
3569 }
3570 
3571 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3572 	struct ReportExtendedLUNdata *physdev)
3573 {
3574 	u32 nphysicals;
3575 	int i;
3576 
3577 	if (h->discovery_polling)
3578 		return;
3579 
3580 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3581 
3582 	for (i = 0; i < nphysicals; i++) {
3583 		if (physdev->LUN[i].device_type ==
3584 			BMIC_DEVICE_TYPE_CONTROLLER
3585 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3586 			dev_info(&h->pdev->dev,
3587 				"External controller present, activate discovery polling and disable rld caching\n");
3588 			hpsa_disable_rld_caching(h);
3589 			h->discovery_polling = 1;
3590 			break;
3591 		}
3592 	}
3593 }
3594 
3595 /* Get a device id from inquiry page 0x83 */
3596 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3597 	unsigned char scsi3addr[], u8 page)
3598 {
3599 	int rc;
3600 	int i;
3601 	int pages;
3602 	unsigned char *buf, bufsize;
3603 
3604 	buf = kzalloc(256, GFP_KERNEL);
3605 	if (!buf)
3606 		return false;
3607 
3608 	/* Get the size of the page list first */
3609 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3610 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3611 				buf, HPSA_VPD_HEADER_SZ);
3612 	if (rc != 0)
3613 		goto exit_unsupported;
3614 	pages = buf[3];
3615 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3616 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3617 	else
3618 		bufsize = 255;
3619 
3620 	/* Get the whole VPD page list */
3621 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3622 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3623 				buf, bufsize);
3624 	if (rc != 0)
3625 		goto exit_unsupported;
3626 
3627 	pages = buf[3];
3628 	for (i = 1; i <= pages; i++)
3629 		if (buf[3 + i] == page)
3630 			goto exit_supported;
3631 exit_unsupported:
3632 	kfree(buf);
3633 	return false;
3634 exit_supported:
3635 	kfree(buf);
3636 	return true;
3637 }
3638 
3639 /*
3640  * Called during a scan operation.
3641  * Sets ioaccel status on the new device list, not the existing device list
3642  *
3643  * The device list used during I/O will be updated later in
3644  * adjust_hpsa_scsi_table.
3645  */
3646 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3647 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3648 {
3649 	int rc;
3650 	unsigned char *buf;
3651 	u8 ioaccel_status;
3652 
3653 	this_device->offload_config = 0;
3654 	this_device->offload_enabled = 0;
3655 	this_device->offload_to_be_enabled = 0;
3656 
3657 	buf = kzalloc(64, GFP_KERNEL);
3658 	if (!buf)
3659 		return;
3660 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3661 		goto out;
3662 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3663 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3664 	if (rc != 0)
3665 		goto out;
3666 
3667 #define IOACCEL_STATUS_BYTE 4
3668 #define OFFLOAD_CONFIGURED_BIT 0x01
3669 #define OFFLOAD_ENABLED_BIT 0x02
3670 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3671 	this_device->offload_config =
3672 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3673 	if (this_device->offload_config) {
3674 		this_device->offload_to_be_enabled =
3675 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3676 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3677 			this_device->offload_to_be_enabled = 0;
3678 	}
3679 
3680 out:
3681 	kfree(buf);
3682 	return;
3683 }
3684 
3685 /* Get the device id from inquiry page 0x83 */
3686 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3687 	unsigned char *device_id, int index, int buflen)
3688 {
3689 	int rc;
3690 	unsigned char *buf;
3691 
3692 	/* Does controller have VPD for device id? */
3693 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3694 		return 1; /* not supported */
3695 
3696 	buf = kzalloc(64, GFP_KERNEL);
3697 	if (!buf)
3698 		return -ENOMEM;
3699 
3700 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3701 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3702 	if (rc == 0) {
3703 		if (buflen > 16)
3704 			buflen = 16;
3705 		memcpy(device_id, &buf[8], buflen);
3706 	}
3707 
3708 	kfree(buf);
3709 
3710 	return rc; /*0 - got id,  otherwise, didn't */
3711 }
3712 
3713 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3714 		void *buf, int bufsize,
3715 		int extended_response)
3716 {
3717 	int rc = IO_OK;
3718 	struct CommandList *c;
3719 	unsigned char scsi3addr[8];
3720 	struct ErrorInfo *ei;
3721 
3722 	c = cmd_alloc(h);
3723 
3724 	/* address the controller */
3725 	memset(scsi3addr, 0, sizeof(scsi3addr));
3726 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3727 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3728 		rc = -EAGAIN;
3729 		goto out;
3730 	}
3731 	if (extended_response)
3732 		c->Request.CDB[1] = extended_response;
3733 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3734 			NO_TIMEOUT);
3735 	if (rc)
3736 		goto out;
3737 	ei = c->err_info;
3738 	if (ei->CommandStatus != 0 &&
3739 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3740 		hpsa_scsi_interpret_error(h, c);
3741 		rc = -EIO;
3742 	} else {
3743 		struct ReportLUNdata *rld = buf;
3744 
3745 		if (rld->extended_response_flag != extended_response) {
3746 			if (!h->legacy_board) {
3747 				dev_err(&h->pdev->dev,
3748 					"report luns requested format %u, got %u\n",
3749 					extended_response,
3750 					rld->extended_response_flag);
3751 				rc = -EINVAL;
3752 			} else
3753 				rc = -EOPNOTSUPP;
3754 		}
3755 	}
3756 out:
3757 	cmd_free(h, c);
3758 	return rc;
3759 }
3760 
3761 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3762 		struct ReportExtendedLUNdata *buf, int bufsize)
3763 {
3764 	int rc;
3765 	struct ReportLUNdata *lbuf;
3766 
3767 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3768 				      HPSA_REPORT_PHYS_EXTENDED);
3769 	if (!rc || rc != -EOPNOTSUPP)
3770 		return rc;
3771 
3772 	/* REPORT PHYS EXTENDED is not supported */
3773 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3774 	if (!lbuf)
3775 		return -ENOMEM;
3776 
3777 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3778 	if (!rc) {
3779 		int i;
3780 		u32 nphys;
3781 
3782 		/* Copy ReportLUNdata header */
3783 		memcpy(buf, lbuf, 8);
3784 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3785 		for (i = 0; i < nphys; i++)
3786 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3787 	}
3788 	kfree(lbuf);
3789 	return rc;
3790 }
3791 
3792 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3793 		struct ReportLUNdata *buf, int bufsize)
3794 {
3795 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3796 }
3797 
3798 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3799 	int bus, int target, int lun)
3800 {
3801 	device->bus = bus;
3802 	device->target = target;
3803 	device->lun = lun;
3804 }
3805 
3806 /* Use VPD inquiry to get details of volume status */
3807 static int hpsa_get_volume_status(struct ctlr_info *h,
3808 					unsigned char scsi3addr[])
3809 {
3810 	int rc;
3811 	int status;
3812 	int size;
3813 	unsigned char *buf;
3814 
3815 	buf = kzalloc(64, GFP_KERNEL);
3816 	if (!buf)
3817 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3818 
3819 	/* Does controller have VPD for logical volume status? */
3820 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3821 		goto exit_failed;
3822 
3823 	/* Get the size of the VPD return buffer */
3824 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3825 					buf, HPSA_VPD_HEADER_SZ);
3826 	if (rc != 0)
3827 		goto exit_failed;
3828 	size = buf[3];
3829 
3830 	/* Now get the whole VPD buffer */
3831 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3832 					buf, size + HPSA_VPD_HEADER_SZ);
3833 	if (rc != 0)
3834 		goto exit_failed;
3835 	status = buf[4]; /* status byte */
3836 
3837 	kfree(buf);
3838 	return status;
3839 exit_failed:
3840 	kfree(buf);
3841 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3842 }
3843 
3844 /* Determine offline status of a volume.
3845  * Return either:
3846  *  0 (not offline)
3847  *  0xff (offline for unknown reasons)
3848  *  # (integer code indicating one of several NOT READY states
3849  *     describing why a volume is to be kept offline)
3850  */
3851 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3852 					unsigned char scsi3addr[])
3853 {
3854 	struct CommandList *c;
3855 	unsigned char *sense;
3856 	u8 sense_key, asc, ascq;
3857 	int sense_len;
3858 	int rc, ldstat = 0;
3859 	u16 cmd_status;
3860 	u8 scsi_status;
3861 #define ASC_LUN_NOT_READY 0x04
3862 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3863 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3864 
3865 	c = cmd_alloc(h);
3866 
3867 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3868 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3869 					NO_TIMEOUT);
3870 	if (rc) {
3871 		cmd_free(h, c);
3872 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3873 	}
3874 	sense = c->err_info->SenseInfo;
3875 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3876 		sense_len = sizeof(c->err_info->SenseInfo);
3877 	else
3878 		sense_len = c->err_info->SenseLen;
3879 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3880 	cmd_status = c->err_info->CommandStatus;
3881 	scsi_status = c->err_info->ScsiStatus;
3882 	cmd_free(h, c);
3883 
3884 	/* Determine the reason for not ready state */
3885 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3886 
3887 	/* Keep volume offline in certain cases: */
3888 	switch (ldstat) {
3889 	case HPSA_LV_FAILED:
3890 	case HPSA_LV_UNDERGOING_ERASE:
3891 	case HPSA_LV_NOT_AVAILABLE:
3892 	case HPSA_LV_UNDERGOING_RPI:
3893 	case HPSA_LV_PENDING_RPI:
3894 	case HPSA_LV_ENCRYPTED_NO_KEY:
3895 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3896 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3897 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3898 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3899 		return ldstat;
3900 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3901 		/* If VPD status page isn't available,
3902 		 * use ASC/ASCQ to determine state
3903 		 */
3904 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3905 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3906 			return ldstat;
3907 		break;
3908 	default:
3909 		break;
3910 	}
3911 	return HPSA_LV_OK;
3912 }
3913 
3914 static int hpsa_update_device_info(struct ctlr_info *h,
3915 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3916 	unsigned char *is_OBDR_device)
3917 {
3918 
3919 #define OBDR_SIG_OFFSET 43
3920 #define OBDR_TAPE_SIG "$DR-10"
3921 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3922 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3923 
3924 	unsigned char *inq_buff;
3925 	unsigned char *obdr_sig;
3926 	int rc = 0;
3927 
3928 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3929 	if (!inq_buff) {
3930 		rc = -ENOMEM;
3931 		goto bail_out;
3932 	}
3933 
3934 	/* Do an inquiry to the device to see what it is. */
3935 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3936 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3937 		dev_err(&h->pdev->dev,
3938 			"%s: inquiry failed, device will be skipped.\n",
3939 			__func__);
3940 		rc = HPSA_INQUIRY_FAILED;
3941 		goto bail_out;
3942 	}
3943 
3944 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3945 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3946 
3947 	this_device->devtype = (inq_buff[0] & 0x1f);
3948 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3949 	memcpy(this_device->vendor, &inq_buff[8],
3950 		sizeof(this_device->vendor));
3951 	memcpy(this_device->model, &inq_buff[16],
3952 		sizeof(this_device->model));
3953 	this_device->rev = inq_buff[2];
3954 	memset(this_device->device_id, 0,
3955 		sizeof(this_device->device_id));
3956 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3957 		sizeof(this_device->device_id)) < 0) {
3958 		dev_err(&h->pdev->dev,
3959 			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3960 			h->ctlr, __func__,
3961 			h->scsi_host->host_no,
3962 			this_device->bus, this_device->target,
3963 			this_device->lun,
3964 			scsi_device_type(this_device->devtype),
3965 			this_device->model);
3966 		rc = HPSA_LV_FAILED;
3967 		goto bail_out;
3968 	}
3969 
3970 	if ((this_device->devtype == TYPE_DISK ||
3971 		this_device->devtype == TYPE_ZBC) &&
3972 		is_logical_dev_addr_mode(scsi3addr)) {
3973 		unsigned char volume_offline;
3974 
3975 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3976 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3977 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3978 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3979 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3980 		    h->legacy_board) {
3981 			/*
3982 			 * Legacy boards might not support volume status
3983 			 */
3984 			dev_info(&h->pdev->dev,
3985 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3986 				 this_device->target, this_device->lun);
3987 			volume_offline = 0;
3988 		}
3989 		this_device->volume_offline = volume_offline;
3990 		if (volume_offline == HPSA_LV_FAILED) {
3991 			rc = HPSA_LV_FAILED;
3992 			dev_err(&h->pdev->dev,
3993 				"%s: LV failed, device will be skipped.\n",
3994 				__func__);
3995 			goto bail_out;
3996 		}
3997 	} else {
3998 		this_device->raid_level = RAID_UNKNOWN;
3999 		this_device->offload_config = 0;
4000 		this_device->offload_enabled = 0;
4001 		this_device->offload_to_be_enabled = 0;
4002 		this_device->hba_ioaccel_enabled = 0;
4003 		this_device->volume_offline = 0;
4004 		this_device->queue_depth = h->nr_cmds;
4005 	}
4006 
4007 	if (this_device->external)
4008 		this_device->queue_depth = EXTERNAL_QD;
4009 
4010 	if (is_OBDR_device) {
4011 		/* See if this is a One-Button-Disaster-Recovery device
4012 		 * by looking for "$DR-10" at offset 43 in inquiry data.
4013 		 */
4014 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4015 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4016 					strncmp(obdr_sig, OBDR_TAPE_SIG,
4017 						OBDR_SIG_LEN) == 0);
4018 	}
4019 	kfree(inq_buff);
4020 	return 0;
4021 
4022 bail_out:
4023 	kfree(inq_buff);
4024 	return rc;
4025 }
4026 
4027 /*
4028  * Helper function to assign bus, target, lun mapping of devices.
4029  * Logical drive target and lun are assigned at this time, but
4030  * physical device lun and target assignment are deferred (assigned
4031  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4032 */
4033 static void figure_bus_target_lun(struct ctlr_info *h,
4034 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4035 {
4036 	u32 lunid = get_unaligned_le32(lunaddrbytes);
4037 
4038 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4039 		/* physical device, target and lun filled in later */
4040 		if (is_hba_lunid(lunaddrbytes)) {
4041 			int bus = HPSA_HBA_BUS;
4042 
4043 			if (!device->rev)
4044 				bus = HPSA_LEGACY_HBA_BUS;
4045 			hpsa_set_bus_target_lun(device,
4046 					bus, 0, lunid & 0x3fff);
4047 		} else
4048 			/* defer target, lun assignment for physical devices */
4049 			hpsa_set_bus_target_lun(device,
4050 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4051 		return;
4052 	}
4053 	/* It's a logical device */
4054 	if (device->external) {
4055 		hpsa_set_bus_target_lun(device,
4056 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4057 			lunid & 0x00ff);
4058 		return;
4059 	}
4060 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4061 				0, lunid & 0x3fff);
4062 }
4063 
4064 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4065 	int i, int nphysicals, int nlocal_logicals)
4066 {
4067 	/* In report logicals, local logicals are listed first,
4068 	* then any externals.
4069 	*/
4070 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4071 
4072 	if (i == raid_ctlr_position)
4073 		return 0;
4074 
4075 	if (i < logicals_start)
4076 		return 0;
4077 
4078 	/* i is in logicals range, but still within local logicals */
4079 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4080 		return 0;
4081 
4082 	return 1; /* it's an external lun */
4083 }
4084 
4085 /*
4086  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4087  * logdev.  The number of luns in physdev and logdev are returned in
4088  * *nphysicals and *nlogicals, respectively.
4089  * Returns 0 on success, -1 otherwise.
4090  */
4091 static int hpsa_gather_lun_info(struct ctlr_info *h,
4092 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4093 	struct ReportLUNdata *logdev, u32 *nlogicals)
4094 {
4095 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4096 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4097 		return -1;
4098 	}
4099 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4100 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4101 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4102 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4103 		*nphysicals = HPSA_MAX_PHYS_LUN;
4104 	}
4105 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4106 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4107 		return -1;
4108 	}
4109 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4110 	/* Reject Logicals in excess of our max capability. */
4111 	if (*nlogicals > HPSA_MAX_LUN) {
4112 		dev_warn(&h->pdev->dev,
4113 			"maximum logical LUNs (%d) exceeded.  "
4114 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4115 			*nlogicals - HPSA_MAX_LUN);
4116 		*nlogicals = HPSA_MAX_LUN;
4117 	}
4118 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4119 		dev_warn(&h->pdev->dev,
4120 			"maximum logical + physical LUNs (%d) exceeded. "
4121 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4122 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4123 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4124 	}
4125 	return 0;
4126 }
4127 
4128 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4129 	int i, int nphysicals, int nlogicals,
4130 	struct ReportExtendedLUNdata *physdev_list,
4131 	struct ReportLUNdata *logdev_list)
4132 {
4133 	/* Helper function, figure out where the LUN ID info is coming from
4134 	 * given index i, lists of physical and logical devices, where in
4135 	 * the list the raid controller is supposed to appear (first or last)
4136 	 */
4137 
4138 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4139 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4140 
4141 	if (i == raid_ctlr_position)
4142 		return RAID_CTLR_LUNID;
4143 
4144 	if (i < logicals_start)
4145 		return &physdev_list->LUN[i -
4146 				(raid_ctlr_position == 0)].lunid[0];
4147 
4148 	if (i < last_device)
4149 		return &logdev_list->LUN[i - nphysicals -
4150 			(raid_ctlr_position == 0)][0];
4151 	BUG();
4152 	return NULL;
4153 }
4154 
4155 /* get physical drive ioaccel handle and queue depth */
4156 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4157 		struct hpsa_scsi_dev_t *dev,
4158 		struct ReportExtendedLUNdata *rlep, int rle_index,
4159 		struct bmic_identify_physical_device *id_phys)
4160 {
4161 	int rc;
4162 	struct ext_report_lun_entry *rle;
4163 
4164 	rle = &rlep->LUN[rle_index];
4165 
4166 	dev->ioaccel_handle = rle->ioaccel_handle;
4167 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4168 		dev->hba_ioaccel_enabled = 1;
4169 	memset(id_phys, 0, sizeof(*id_phys));
4170 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4171 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4172 			sizeof(*id_phys));
4173 	if (!rc)
4174 		/* Reserve space for FW operations */
4175 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4176 #define DRIVE_QUEUE_DEPTH 7
4177 		dev->queue_depth =
4178 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4179 				DRIVE_CMDS_RESERVED_FOR_FW;
4180 	else
4181 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4182 }
4183 
4184 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4185 	struct ReportExtendedLUNdata *rlep, int rle_index,
4186 	struct bmic_identify_physical_device *id_phys)
4187 {
4188 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4189 
4190 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4191 		this_device->hba_ioaccel_enabled = 1;
4192 
4193 	memcpy(&this_device->active_path_index,
4194 		&id_phys->active_path_number,
4195 		sizeof(this_device->active_path_index));
4196 	memcpy(&this_device->path_map,
4197 		&id_phys->redundant_path_present_map,
4198 		sizeof(this_device->path_map));
4199 	memcpy(&this_device->box,
4200 		&id_phys->alternate_paths_phys_box_on_port,
4201 		sizeof(this_device->box));
4202 	memcpy(&this_device->phys_connector,
4203 		&id_phys->alternate_paths_phys_connector,
4204 		sizeof(this_device->phys_connector));
4205 	memcpy(&this_device->bay,
4206 		&id_phys->phys_bay_in_box,
4207 		sizeof(this_device->bay));
4208 }
4209 
4210 /* get number of local logical disks. */
4211 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4212 	struct bmic_identify_controller *id_ctlr,
4213 	u32 *nlocals)
4214 {
4215 	int rc;
4216 
4217 	if (!id_ctlr) {
4218 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4219 			__func__);
4220 		return -ENOMEM;
4221 	}
4222 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4223 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4224 	if (!rc)
4225 		if (id_ctlr->configured_logical_drive_count < 255)
4226 			*nlocals = id_ctlr->configured_logical_drive_count;
4227 		else
4228 			*nlocals = le16_to_cpu(
4229 					id_ctlr->extended_logical_unit_count);
4230 	else
4231 		*nlocals = -1;
4232 	return rc;
4233 }
4234 
4235 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4236 {
4237 	struct bmic_identify_physical_device *id_phys;
4238 	bool is_spare = false;
4239 	int rc;
4240 
4241 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4242 	if (!id_phys)
4243 		return false;
4244 
4245 	rc = hpsa_bmic_id_physical_device(h,
4246 					lunaddrbytes,
4247 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4248 					id_phys, sizeof(*id_phys));
4249 	if (rc == 0)
4250 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4251 
4252 	kfree(id_phys);
4253 	return is_spare;
4254 }
4255 
4256 #define RPL_DEV_FLAG_NON_DISK                           0x1
4257 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4258 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4259 
4260 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4261 
4262 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4263 				struct ext_report_lun_entry *rle)
4264 {
4265 	u8 device_flags;
4266 	u8 device_type;
4267 
4268 	if (!MASKED_DEVICE(lunaddrbytes))
4269 		return false;
4270 
4271 	device_flags = rle->device_flags;
4272 	device_type = rle->device_type;
4273 
4274 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4275 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4276 			return false;
4277 		return true;
4278 	}
4279 
4280 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4281 		return false;
4282 
4283 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4284 		return false;
4285 
4286 	/*
4287 	 * Spares may be spun down, we do not want to
4288 	 * do an Inquiry to a RAID set spare drive as
4289 	 * that would have them spun up, that is a
4290 	 * performance hit because I/O to the RAID device
4291 	 * stops while the spin up occurs which can take
4292 	 * over 50 seconds.
4293 	 */
4294 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4295 		return true;
4296 
4297 	return false;
4298 }
4299 
4300 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4301 {
4302 	/* the idea here is we could get notified
4303 	 * that some devices have changed, so we do a report
4304 	 * physical luns and report logical luns cmd, and adjust
4305 	 * our list of devices accordingly.
4306 	 *
4307 	 * The scsi3addr's of devices won't change so long as the
4308 	 * adapter is not reset.  That means we can rescan and
4309 	 * tell which devices we already know about, vs. new
4310 	 * devices, vs.  disappearing devices.
4311 	 */
4312 	struct ReportExtendedLUNdata *physdev_list = NULL;
4313 	struct ReportLUNdata *logdev_list = NULL;
4314 	struct bmic_identify_physical_device *id_phys = NULL;
4315 	struct bmic_identify_controller *id_ctlr = NULL;
4316 	u32 nphysicals = 0;
4317 	u32 nlogicals = 0;
4318 	u32 nlocal_logicals = 0;
4319 	u32 ndev_allocated = 0;
4320 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4321 	int ncurrent = 0;
4322 	int i, n_ext_target_devs, ndevs_to_allocate;
4323 	int raid_ctlr_position;
4324 	bool physical_device;
4325 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4326 
4327 	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4328 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4329 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4330 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4331 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4332 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4333 
4334 	if (!currentsd || !physdev_list || !logdev_list ||
4335 		!tmpdevice || !id_phys || !id_ctlr) {
4336 		dev_err(&h->pdev->dev, "out of memory\n");
4337 		goto out;
4338 	}
4339 	memset(lunzerobits, 0, sizeof(lunzerobits));
4340 
4341 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4342 
4343 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4344 			logdev_list, &nlogicals)) {
4345 		h->drv_req_rescan = 1;
4346 		goto out;
4347 	}
4348 
4349 	/* Set number of local logicals (non PTRAID) */
4350 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4351 		dev_warn(&h->pdev->dev,
4352 			"%s: Can't determine number of local logical devices.\n",
4353 			__func__);
4354 	}
4355 
4356 	/* We might see up to the maximum number of logical and physical disks
4357 	 * plus external target devices, and a device for the local RAID
4358 	 * controller.
4359 	 */
4360 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4361 
4362 	hpsa_ext_ctrl_present(h, physdev_list);
4363 
4364 	/* Allocate the per device structures */
4365 	for (i = 0; i < ndevs_to_allocate; i++) {
4366 		if (i >= HPSA_MAX_DEVICES) {
4367 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4368 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4369 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4370 			break;
4371 		}
4372 
4373 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4374 		if (!currentsd[i]) {
4375 			h->drv_req_rescan = 1;
4376 			goto out;
4377 		}
4378 		ndev_allocated++;
4379 	}
4380 
4381 	if (is_scsi_rev_5(h))
4382 		raid_ctlr_position = 0;
4383 	else
4384 		raid_ctlr_position = nphysicals + nlogicals;
4385 
4386 	/* adjust our table of devices */
4387 	n_ext_target_devs = 0;
4388 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4389 		u8 *lunaddrbytes, is_OBDR = 0;
4390 		int rc = 0;
4391 		int phys_dev_index = i - (raid_ctlr_position == 0);
4392 		bool skip_device = false;
4393 
4394 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4395 
4396 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4397 
4398 		/* Figure out where the LUN ID info is coming from */
4399 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4400 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4401 
4402 		/* Determine if this is a lun from an external target array */
4403 		tmpdevice->external =
4404 			figure_external_status(h, raid_ctlr_position, i,
4405 						nphysicals, nlocal_logicals);
4406 
4407 		/*
4408 		 * Skip over some devices such as a spare.
4409 		 */
4410 		if (!tmpdevice->external && physical_device) {
4411 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4412 					&physdev_list->LUN[phys_dev_index]);
4413 			if (skip_device)
4414 				continue;
4415 		}
4416 
4417 		/* Get device type, vendor, model, device id, raid_map */
4418 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4419 							&is_OBDR);
4420 		if (rc == -ENOMEM) {
4421 			dev_warn(&h->pdev->dev,
4422 				"Out of memory, rescan deferred.\n");
4423 			h->drv_req_rescan = 1;
4424 			goto out;
4425 		}
4426 		if (rc) {
4427 			h->drv_req_rescan = 1;
4428 			continue;
4429 		}
4430 
4431 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4432 		this_device = currentsd[ncurrent];
4433 
4434 		*this_device = *tmpdevice;
4435 		this_device->physical_device = physical_device;
4436 
4437 		/*
4438 		 * Expose all devices except for physical devices that
4439 		 * are masked.
4440 		 */
4441 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4442 			this_device->expose_device = 0;
4443 		else
4444 			this_device->expose_device = 1;
4445 
4446 
4447 		/*
4448 		 * Get the SAS address for physical devices that are exposed.
4449 		 */
4450 		if (this_device->physical_device && this_device->expose_device)
4451 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4452 
4453 		switch (this_device->devtype) {
4454 		case TYPE_ROM:
4455 			/* We don't *really* support actual CD-ROM devices,
4456 			 * just "One Button Disaster Recovery" tape drive
4457 			 * which temporarily pretends to be a CD-ROM drive.
4458 			 * So we check that the device is really an OBDR tape
4459 			 * device by checking for "$DR-10" in bytes 43-48 of
4460 			 * the inquiry data.
4461 			 */
4462 			if (is_OBDR)
4463 				ncurrent++;
4464 			break;
4465 		case TYPE_DISK:
4466 		case TYPE_ZBC:
4467 			if (this_device->physical_device) {
4468 				/* The disk is in HBA mode. */
4469 				/* Never use RAID mapper in HBA mode. */
4470 				this_device->offload_enabled = 0;
4471 				hpsa_get_ioaccel_drive_info(h, this_device,
4472 					physdev_list, phys_dev_index, id_phys);
4473 				hpsa_get_path_info(this_device,
4474 					physdev_list, phys_dev_index, id_phys);
4475 			}
4476 			ncurrent++;
4477 			break;
4478 		case TYPE_TAPE:
4479 		case TYPE_MEDIUM_CHANGER:
4480 			ncurrent++;
4481 			break;
4482 		case TYPE_ENCLOSURE:
4483 			if (!this_device->external)
4484 				hpsa_get_enclosure_info(h, lunaddrbytes,
4485 						physdev_list, phys_dev_index,
4486 						this_device);
4487 			ncurrent++;
4488 			break;
4489 		case TYPE_RAID:
4490 			/* Only present the Smartarray HBA as a RAID controller.
4491 			 * If it's a RAID controller other than the HBA itself
4492 			 * (an external RAID controller, MSA500 or similar)
4493 			 * don't present it.
4494 			 */
4495 			if (!is_hba_lunid(lunaddrbytes))
4496 				break;
4497 			ncurrent++;
4498 			break;
4499 		default:
4500 			break;
4501 		}
4502 		if (ncurrent >= HPSA_MAX_DEVICES)
4503 			break;
4504 	}
4505 
4506 	if (h->sas_host == NULL) {
4507 		int rc = 0;
4508 
4509 		rc = hpsa_add_sas_host(h);
4510 		if (rc) {
4511 			dev_warn(&h->pdev->dev,
4512 				"Could not add sas host %d\n", rc);
4513 			goto out;
4514 		}
4515 	}
4516 
4517 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4518 out:
4519 	kfree(tmpdevice);
4520 	for (i = 0; i < ndev_allocated; i++)
4521 		kfree(currentsd[i]);
4522 	kfree(currentsd);
4523 	kfree(physdev_list);
4524 	kfree(logdev_list);
4525 	kfree(id_ctlr);
4526 	kfree(id_phys);
4527 }
4528 
4529 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4530 				   struct scatterlist *sg)
4531 {
4532 	u64 addr64 = (u64) sg_dma_address(sg);
4533 	unsigned int len = sg_dma_len(sg);
4534 
4535 	desc->Addr = cpu_to_le64(addr64);
4536 	desc->Len = cpu_to_le32(len);
4537 	desc->Ext = 0;
4538 }
4539 
4540 /*
4541  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4542  * dma mapping  and fills in the scatter gather entries of the
4543  * hpsa command, cp.
4544  */
4545 static int hpsa_scatter_gather(struct ctlr_info *h,
4546 		struct CommandList *cp,
4547 		struct scsi_cmnd *cmd)
4548 {
4549 	struct scatterlist *sg;
4550 	int use_sg, i, sg_limit, chained, last_sg;
4551 	struct SGDescriptor *curr_sg;
4552 
4553 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4554 
4555 	use_sg = scsi_dma_map(cmd);
4556 	if (use_sg < 0)
4557 		return use_sg;
4558 
4559 	if (!use_sg)
4560 		goto sglist_finished;
4561 
4562 	/*
4563 	 * If the number of entries is greater than the max for a single list,
4564 	 * then we have a chained list; we will set up all but one entry in the
4565 	 * first list (the last entry is saved for link information);
4566 	 * otherwise, we don't have a chained list and we'll set up at each of
4567 	 * the entries in the one list.
4568 	 */
4569 	curr_sg = cp->SG;
4570 	chained = use_sg > h->max_cmd_sg_entries;
4571 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4572 	last_sg = scsi_sg_count(cmd) - 1;
4573 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4574 		hpsa_set_sg_descriptor(curr_sg, sg);
4575 		curr_sg++;
4576 	}
4577 
4578 	if (chained) {
4579 		/*
4580 		 * Continue with the chained list.  Set curr_sg to the chained
4581 		 * list.  Modify the limit to the total count less the entries
4582 		 * we've already set up.  Resume the scan at the list entry
4583 		 * where the previous loop left off.
4584 		 */
4585 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4586 		sg_limit = use_sg - sg_limit;
4587 		for_each_sg(sg, sg, sg_limit, i) {
4588 			hpsa_set_sg_descriptor(curr_sg, sg);
4589 			curr_sg++;
4590 		}
4591 	}
4592 
4593 	/* Back the pointer up to the last entry and mark it as "last". */
4594 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4595 
4596 	if (use_sg + chained > h->maxSG)
4597 		h->maxSG = use_sg + chained;
4598 
4599 	if (chained) {
4600 		cp->Header.SGList = h->max_cmd_sg_entries;
4601 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4602 		if (hpsa_map_sg_chain_block(h, cp)) {
4603 			scsi_dma_unmap(cmd);
4604 			return -1;
4605 		}
4606 		return 0;
4607 	}
4608 
4609 sglist_finished:
4610 
4611 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4612 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4613 	return 0;
4614 }
4615 
4616 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4617 						u8 *cdb, int cdb_len,
4618 						const char *func)
4619 {
4620 	dev_warn(&h->pdev->dev,
4621 		 "%s: Blocking zero-length request: CDB:%*phN\n",
4622 		 func, cdb_len, cdb);
4623 }
4624 
4625 #define IO_ACCEL_INELIGIBLE 1
4626 /* zero-length transfers trigger hardware errors. */
4627 static bool is_zero_length_transfer(u8 *cdb)
4628 {
4629 	u32 block_cnt;
4630 
4631 	/* Block zero-length transfer sizes on certain commands. */
4632 	switch (cdb[0]) {
4633 	case READ_10:
4634 	case WRITE_10:
4635 	case VERIFY:		/* 0x2F */
4636 	case WRITE_VERIFY:	/* 0x2E */
4637 		block_cnt = get_unaligned_be16(&cdb[7]);
4638 		break;
4639 	case READ_12:
4640 	case WRITE_12:
4641 	case VERIFY_12: /* 0xAF */
4642 	case WRITE_VERIFY_12:	/* 0xAE */
4643 		block_cnt = get_unaligned_be32(&cdb[6]);
4644 		break;
4645 	case READ_16:
4646 	case WRITE_16:
4647 	case VERIFY_16:		/* 0x8F */
4648 		block_cnt = get_unaligned_be32(&cdb[10]);
4649 		break;
4650 	default:
4651 		return false;
4652 	}
4653 
4654 	return block_cnt == 0;
4655 }
4656 
4657 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4658 {
4659 	int is_write = 0;
4660 	u32 block;
4661 	u32 block_cnt;
4662 
4663 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4664 	switch (cdb[0]) {
4665 	case WRITE_6:
4666 	case WRITE_12:
4667 		is_write = 1;
4668 		/* fall through */
4669 	case READ_6:
4670 	case READ_12:
4671 		if (*cdb_len == 6) {
4672 			block = (((cdb[1] & 0x1F) << 16) |
4673 				(cdb[2] << 8) |
4674 				cdb[3]);
4675 			block_cnt = cdb[4];
4676 			if (block_cnt == 0)
4677 				block_cnt = 256;
4678 		} else {
4679 			BUG_ON(*cdb_len != 12);
4680 			block = get_unaligned_be32(&cdb[2]);
4681 			block_cnt = get_unaligned_be32(&cdb[6]);
4682 		}
4683 		if (block_cnt > 0xffff)
4684 			return IO_ACCEL_INELIGIBLE;
4685 
4686 		cdb[0] = is_write ? WRITE_10 : READ_10;
4687 		cdb[1] = 0;
4688 		cdb[2] = (u8) (block >> 24);
4689 		cdb[3] = (u8) (block >> 16);
4690 		cdb[4] = (u8) (block >> 8);
4691 		cdb[5] = (u8) (block);
4692 		cdb[6] = 0;
4693 		cdb[7] = (u8) (block_cnt >> 8);
4694 		cdb[8] = (u8) (block_cnt);
4695 		cdb[9] = 0;
4696 		*cdb_len = 10;
4697 		break;
4698 	}
4699 	return 0;
4700 }
4701 
4702 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4703 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4704 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4705 {
4706 	struct scsi_cmnd *cmd = c->scsi_cmd;
4707 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4708 	unsigned int len;
4709 	unsigned int total_len = 0;
4710 	struct scatterlist *sg;
4711 	u64 addr64;
4712 	int use_sg, i;
4713 	struct SGDescriptor *curr_sg;
4714 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4715 
4716 	/* TODO: implement chaining support */
4717 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4718 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4719 		return IO_ACCEL_INELIGIBLE;
4720 	}
4721 
4722 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4723 
4724 	if (is_zero_length_transfer(cdb)) {
4725 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4726 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4727 		return IO_ACCEL_INELIGIBLE;
4728 	}
4729 
4730 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4731 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4732 		return IO_ACCEL_INELIGIBLE;
4733 	}
4734 
4735 	c->cmd_type = CMD_IOACCEL1;
4736 
4737 	/* Adjust the DMA address to point to the accelerated command buffer */
4738 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4739 				(c->cmdindex * sizeof(*cp));
4740 	BUG_ON(c->busaddr & 0x0000007F);
4741 
4742 	use_sg = scsi_dma_map(cmd);
4743 	if (use_sg < 0) {
4744 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4745 		return use_sg;
4746 	}
4747 
4748 	if (use_sg) {
4749 		curr_sg = cp->SG;
4750 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4751 			addr64 = (u64) sg_dma_address(sg);
4752 			len  = sg_dma_len(sg);
4753 			total_len += len;
4754 			curr_sg->Addr = cpu_to_le64(addr64);
4755 			curr_sg->Len = cpu_to_le32(len);
4756 			curr_sg->Ext = cpu_to_le32(0);
4757 			curr_sg++;
4758 		}
4759 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4760 
4761 		switch (cmd->sc_data_direction) {
4762 		case DMA_TO_DEVICE:
4763 			control |= IOACCEL1_CONTROL_DATA_OUT;
4764 			break;
4765 		case DMA_FROM_DEVICE:
4766 			control |= IOACCEL1_CONTROL_DATA_IN;
4767 			break;
4768 		case DMA_NONE:
4769 			control |= IOACCEL1_CONTROL_NODATAXFER;
4770 			break;
4771 		default:
4772 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4773 			cmd->sc_data_direction);
4774 			BUG();
4775 			break;
4776 		}
4777 	} else {
4778 		control |= IOACCEL1_CONTROL_NODATAXFER;
4779 	}
4780 
4781 	c->Header.SGList = use_sg;
4782 	/* Fill out the command structure to submit */
4783 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4784 	cp->transfer_len = cpu_to_le32(total_len);
4785 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4786 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4787 	cp->control = cpu_to_le32(control);
4788 	memcpy(cp->CDB, cdb, cdb_len);
4789 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4790 	/* Tag was already set at init time. */
4791 	enqueue_cmd_and_start_io(h, c);
4792 	return 0;
4793 }
4794 
4795 /*
4796  * Queue a command directly to a device behind the controller using the
4797  * I/O accelerator path.
4798  */
4799 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4800 	struct CommandList *c)
4801 {
4802 	struct scsi_cmnd *cmd = c->scsi_cmd;
4803 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4804 
4805 	if (!dev)
4806 		return -1;
4807 
4808 	c->phys_disk = dev;
4809 
4810 	if (dev->in_reset)
4811 		return -1;
4812 
4813 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4814 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4815 }
4816 
4817 /*
4818  * Set encryption parameters for the ioaccel2 request
4819  */
4820 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4821 	struct CommandList *c, struct io_accel2_cmd *cp)
4822 {
4823 	struct scsi_cmnd *cmd = c->scsi_cmd;
4824 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4825 	struct raid_map_data *map = &dev->raid_map;
4826 	u64 first_block;
4827 
4828 	/* Are we doing encryption on this device */
4829 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4830 		return;
4831 	/* Set the data encryption key index. */
4832 	cp->dekindex = map->dekindex;
4833 
4834 	/* Set the encryption enable flag, encoded into direction field. */
4835 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4836 
4837 	/* Set encryption tweak values based on logical block address
4838 	 * If block size is 512, tweak value is LBA.
4839 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4840 	 */
4841 	switch (cmd->cmnd[0]) {
4842 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4843 	case READ_6:
4844 	case WRITE_6:
4845 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4846 				(cmd->cmnd[2] << 8) |
4847 				cmd->cmnd[3]);
4848 		break;
4849 	case WRITE_10:
4850 	case READ_10:
4851 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4852 	case WRITE_12:
4853 	case READ_12:
4854 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4855 		break;
4856 	case WRITE_16:
4857 	case READ_16:
4858 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4859 		break;
4860 	default:
4861 		dev_err(&h->pdev->dev,
4862 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4863 			__func__, cmd->cmnd[0]);
4864 		BUG();
4865 		break;
4866 	}
4867 
4868 	if (le32_to_cpu(map->volume_blk_size) != 512)
4869 		first_block = first_block *
4870 				le32_to_cpu(map->volume_blk_size)/512;
4871 
4872 	cp->tweak_lower = cpu_to_le32(first_block);
4873 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4874 }
4875 
4876 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4877 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4878 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4879 {
4880 	struct scsi_cmnd *cmd = c->scsi_cmd;
4881 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4882 	struct ioaccel2_sg_element *curr_sg;
4883 	int use_sg, i;
4884 	struct scatterlist *sg;
4885 	u64 addr64;
4886 	u32 len;
4887 	u32 total_len = 0;
4888 
4889 	if (!cmd->device)
4890 		return -1;
4891 
4892 	if (!cmd->device->hostdata)
4893 		return -1;
4894 
4895 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4896 
4897 	if (is_zero_length_transfer(cdb)) {
4898 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4899 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4900 		return IO_ACCEL_INELIGIBLE;
4901 	}
4902 
4903 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4904 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4905 		return IO_ACCEL_INELIGIBLE;
4906 	}
4907 
4908 	c->cmd_type = CMD_IOACCEL2;
4909 	/* Adjust the DMA address to point to the accelerated command buffer */
4910 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4911 				(c->cmdindex * sizeof(*cp));
4912 	BUG_ON(c->busaddr & 0x0000007F);
4913 
4914 	memset(cp, 0, sizeof(*cp));
4915 	cp->IU_type = IOACCEL2_IU_TYPE;
4916 
4917 	use_sg = scsi_dma_map(cmd);
4918 	if (use_sg < 0) {
4919 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4920 		return use_sg;
4921 	}
4922 
4923 	if (use_sg) {
4924 		curr_sg = cp->sg;
4925 		if (use_sg > h->ioaccel_maxsg) {
4926 			addr64 = le64_to_cpu(
4927 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4928 			curr_sg->address = cpu_to_le64(addr64);
4929 			curr_sg->length = 0;
4930 			curr_sg->reserved[0] = 0;
4931 			curr_sg->reserved[1] = 0;
4932 			curr_sg->reserved[2] = 0;
4933 			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4934 
4935 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4936 		}
4937 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4938 			addr64 = (u64) sg_dma_address(sg);
4939 			len  = sg_dma_len(sg);
4940 			total_len += len;
4941 			curr_sg->address = cpu_to_le64(addr64);
4942 			curr_sg->length = cpu_to_le32(len);
4943 			curr_sg->reserved[0] = 0;
4944 			curr_sg->reserved[1] = 0;
4945 			curr_sg->reserved[2] = 0;
4946 			curr_sg->chain_indicator = 0;
4947 			curr_sg++;
4948 		}
4949 
4950 		/*
4951 		 * Set the last s/g element bit
4952 		 */
4953 		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4954 
4955 		switch (cmd->sc_data_direction) {
4956 		case DMA_TO_DEVICE:
4957 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4958 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4959 			break;
4960 		case DMA_FROM_DEVICE:
4961 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4963 			break;
4964 		case DMA_NONE:
4965 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4966 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4967 			break;
4968 		default:
4969 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4970 				cmd->sc_data_direction);
4971 			BUG();
4972 			break;
4973 		}
4974 	} else {
4975 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4976 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4977 	}
4978 
4979 	/* Set encryption parameters, if necessary */
4980 	set_encrypt_ioaccel2(h, c, cp);
4981 
4982 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4983 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4984 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4985 
4986 	cp->data_len = cpu_to_le32(total_len);
4987 	cp->err_ptr = cpu_to_le64(c->busaddr +
4988 			offsetof(struct io_accel2_cmd, error_data));
4989 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4990 
4991 	/* fill in sg elements */
4992 	if (use_sg > h->ioaccel_maxsg) {
4993 		cp->sg_count = 1;
4994 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4995 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4996 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4997 			scsi_dma_unmap(cmd);
4998 			return -1;
4999 		}
5000 	} else
5001 		cp->sg_count = (u8) use_sg;
5002 
5003 	if (phys_disk->in_reset) {
5004 		cmd->result = DID_RESET << 16;
5005 		return -1;
5006 	}
5007 
5008 	enqueue_cmd_and_start_io(h, c);
5009 	return 0;
5010 }
5011 
5012 /*
5013  * Queue a command to the correct I/O accelerator path.
5014  */
5015 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5016 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5017 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5018 {
5019 	if (!c->scsi_cmd->device)
5020 		return -1;
5021 
5022 	if (!c->scsi_cmd->device->hostdata)
5023 		return -1;
5024 
5025 	if (phys_disk->in_reset)
5026 		return -1;
5027 
5028 	/* Try to honor the device's queue depth */
5029 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5030 					phys_disk->queue_depth) {
5031 		atomic_dec(&phys_disk->ioaccel_cmds_out);
5032 		return IO_ACCEL_INELIGIBLE;
5033 	}
5034 	if (h->transMethod & CFGTBL_Trans_io_accel1)
5035 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5036 						cdb, cdb_len, scsi3addr,
5037 						phys_disk);
5038 	else
5039 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5040 						cdb, cdb_len, scsi3addr,
5041 						phys_disk);
5042 }
5043 
5044 static void raid_map_helper(struct raid_map_data *map,
5045 		int offload_to_mirror, u32 *map_index, u32 *current_group)
5046 {
5047 	if (offload_to_mirror == 0)  {
5048 		/* use physical disk in the first mirrored group. */
5049 		*map_index %= le16_to_cpu(map->data_disks_per_row);
5050 		return;
5051 	}
5052 	do {
5053 		/* determine mirror group that *map_index indicates */
5054 		*current_group = *map_index /
5055 			le16_to_cpu(map->data_disks_per_row);
5056 		if (offload_to_mirror == *current_group)
5057 			continue;
5058 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5059 			/* select map index from next group */
5060 			*map_index += le16_to_cpu(map->data_disks_per_row);
5061 			(*current_group)++;
5062 		} else {
5063 			/* select map index from first group */
5064 			*map_index %= le16_to_cpu(map->data_disks_per_row);
5065 			*current_group = 0;
5066 		}
5067 	} while (offload_to_mirror != *current_group);
5068 }
5069 
5070 /*
5071  * Attempt to perform offload RAID mapping for a logical volume I/O.
5072  */
5073 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5074 	struct CommandList *c)
5075 {
5076 	struct scsi_cmnd *cmd = c->scsi_cmd;
5077 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5078 	struct raid_map_data *map = &dev->raid_map;
5079 	struct raid_map_disk_data *dd = &map->data[0];
5080 	int is_write = 0;
5081 	u32 map_index;
5082 	u64 first_block, last_block;
5083 	u32 block_cnt;
5084 	u32 blocks_per_row;
5085 	u64 first_row, last_row;
5086 	u32 first_row_offset, last_row_offset;
5087 	u32 first_column, last_column;
5088 	u64 r0_first_row, r0_last_row;
5089 	u32 r5or6_blocks_per_row;
5090 	u64 r5or6_first_row, r5or6_last_row;
5091 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5092 	u32 r5or6_first_column, r5or6_last_column;
5093 	u32 total_disks_per_row;
5094 	u32 stripesize;
5095 	u32 first_group, last_group, current_group;
5096 	u32 map_row;
5097 	u32 disk_handle;
5098 	u64 disk_block;
5099 	u32 disk_block_cnt;
5100 	u8 cdb[16];
5101 	u8 cdb_len;
5102 	u16 strip_size;
5103 #if BITS_PER_LONG == 32
5104 	u64 tmpdiv;
5105 #endif
5106 	int offload_to_mirror;
5107 
5108 	if (!dev)
5109 		return -1;
5110 
5111 	if (dev->in_reset)
5112 		return -1;
5113 
5114 	/* check for valid opcode, get LBA and block count */
5115 	switch (cmd->cmnd[0]) {
5116 	case WRITE_6:
5117 		is_write = 1;
5118 		/* fall through */
5119 	case READ_6:
5120 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5121 				(cmd->cmnd[2] << 8) |
5122 				cmd->cmnd[3]);
5123 		block_cnt = cmd->cmnd[4];
5124 		if (block_cnt == 0)
5125 			block_cnt = 256;
5126 		break;
5127 	case WRITE_10:
5128 		is_write = 1;
5129 		/* fall through */
5130 	case READ_10:
5131 		first_block =
5132 			(((u64) cmd->cmnd[2]) << 24) |
5133 			(((u64) cmd->cmnd[3]) << 16) |
5134 			(((u64) cmd->cmnd[4]) << 8) |
5135 			cmd->cmnd[5];
5136 		block_cnt =
5137 			(((u32) cmd->cmnd[7]) << 8) |
5138 			cmd->cmnd[8];
5139 		break;
5140 	case WRITE_12:
5141 		is_write = 1;
5142 		/* fall through */
5143 	case READ_12:
5144 		first_block =
5145 			(((u64) cmd->cmnd[2]) << 24) |
5146 			(((u64) cmd->cmnd[3]) << 16) |
5147 			(((u64) cmd->cmnd[4]) << 8) |
5148 			cmd->cmnd[5];
5149 		block_cnt =
5150 			(((u32) cmd->cmnd[6]) << 24) |
5151 			(((u32) cmd->cmnd[7]) << 16) |
5152 			(((u32) cmd->cmnd[8]) << 8) |
5153 		cmd->cmnd[9];
5154 		break;
5155 	case WRITE_16:
5156 		is_write = 1;
5157 		/* fall through */
5158 	case READ_16:
5159 		first_block =
5160 			(((u64) cmd->cmnd[2]) << 56) |
5161 			(((u64) cmd->cmnd[3]) << 48) |
5162 			(((u64) cmd->cmnd[4]) << 40) |
5163 			(((u64) cmd->cmnd[5]) << 32) |
5164 			(((u64) cmd->cmnd[6]) << 24) |
5165 			(((u64) cmd->cmnd[7]) << 16) |
5166 			(((u64) cmd->cmnd[8]) << 8) |
5167 			cmd->cmnd[9];
5168 		block_cnt =
5169 			(((u32) cmd->cmnd[10]) << 24) |
5170 			(((u32) cmd->cmnd[11]) << 16) |
5171 			(((u32) cmd->cmnd[12]) << 8) |
5172 			cmd->cmnd[13];
5173 		break;
5174 	default:
5175 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5176 	}
5177 	last_block = first_block + block_cnt - 1;
5178 
5179 	/* check for write to non-RAID-0 */
5180 	if (is_write && dev->raid_level != 0)
5181 		return IO_ACCEL_INELIGIBLE;
5182 
5183 	/* check for invalid block or wraparound */
5184 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5185 		last_block < first_block)
5186 		return IO_ACCEL_INELIGIBLE;
5187 
5188 	/* calculate stripe information for the request */
5189 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5190 				le16_to_cpu(map->strip_size);
5191 	strip_size = le16_to_cpu(map->strip_size);
5192 #if BITS_PER_LONG == 32
5193 	tmpdiv = first_block;
5194 	(void) do_div(tmpdiv, blocks_per_row);
5195 	first_row = tmpdiv;
5196 	tmpdiv = last_block;
5197 	(void) do_div(tmpdiv, blocks_per_row);
5198 	last_row = tmpdiv;
5199 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5200 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5201 	tmpdiv = first_row_offset;
5202 	(void) do_div(tmpdiv, strip_size);
5203 	first_column = tmpdiv;
5204 	tmpdiv = last_row_offset;
5205 	(void) do_div(tmpdiv, strip_size);
5206 	last_column = tmpdiv;
5207 #else
5208 	first_row = first_block / blocks_per_row;
5209 	last_row = last_block / blocks_per_row;
5210 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5211 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5212 	first_column = first_row_offset / strip_size;
5213 	last_column = last_row_offset / strip_size;
5214 #endif
5215 
5216 	/* if this isn't a single row/column then give to the controller */
5217 	if ((first_row != last_row) || (first_column != last_column))
5218 		return IO_ACCEL_INELIGIBLE;
5219 
5220 	/* proceeding with driver mapping */
5221 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5222 				le16_to_cpu(map->metadata_disks_per_row);
5223 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5224 				le16_to_cpu(map->row_cnt);
5225 	map_index = (map_row * total_disks_per_row) + first_column;
5226 
5227 	switch (dev->raid_level) {
5228 	case HPSA_RAID_0:
5229 		break; /* nothing special to do */
5230 	case HPSA_RAID_1:
5231 		/* Handles load balance across RAID 1 members.
5232 		 * (2-drive R1 and R10 with even # of drives.)
5233 		 * Appropriate for SSDs, not optimal for HDDs
5234 		 */
5235 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5236 		if (dev->offload_to_mirror)
5237 			map_index += le16_to_cpu(map->data_disks_per_row);
5238 		dev->offload_to_mirror = !dev->offload_to_mirror;
5239 		break;
5240 	case HPSA_RAID_ADM:
5241 		/* Handles N-way mirrors  (R1-ADM)
5242 		 * and R10 with # of drives divisible by 3.)
5243 		 */
5244 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5245 
5246 		offload_to_mirror = dev->offload_to_mirror;
5247 		raid_map_helper(map, offload_to_mirror,
5248 				&map_index, &current_group);
5249 		/* set mirror group to use next time */
5250 		offload_to_mirror =
5251 			(offload_to_mirror >=
5252 			le16_to_cpu(map->layout_map_count) - 1)
5253 			? 0 : offload_to_mirror + 1;
5254 		dev->offload_to_mirror = offload_to_mirror;
5255 		/* Avoid direct use of dev->offload_to_mirror within this
5256 		 * function since multiple threads might simultaneously
5257 		 * increment it beyond the range of dev->layout_map_count -1.
5258 		 */
5259 		break;
5260 	case HPSA_RAID_5:
5261 	case HPSA_RAID_6:
5262 		if (le16_to_cpu(map->layout_map_count) <= 1)
5263 			break;
5264 
5265 		/* Verify first and last block are in same RAID group */
5266 		r5or6_blocks_per_row =
5267 			le16_to_cpu(map->strip_size) *
5268 			le16_to_cpu(map->data_disks_per_row);
5269 		BUG_ON(r5or6_blocks_per_row == 0);
5270 		stripesize = r5or6_blocks_per_row *
5271 			le16_to_cpu(map->layout_map_count);
5272 #if BITS_PER_LONG == 32
5273 		tmpdiv = first_block;
5274 		first_group = do_div(tmpdiv, stripesize);
5275 		tmpdiv = first_group;
5276 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5277 		first_group = tmpdiv;
5278 		tmpdiv = last_block;
5279 		last_group = do_div(tmpdiv, stripesize);
5280 		tmpdiv = last_group;
5281 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5282 		last_group = tmpdiv;
5283 #else
5284 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5285 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5286 #endif
5287 		if (first_group != last_group)
5288 			return IO_ACCEL_INELIGIBLE;
5289 
5290 		/* Verify request is in a single row of RAID 5/6 */
5291 #if BITS_PER_LONG == 32
5292 		tmpdiv = first_block;
5293 		(void) do_div(tmpdiv, stripesize);
5294 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5295 		tmpdiv = last_block;
5296 		(void) do_div(tmpdiv, stripesize);
5297 		r5or6_last_row = r0_last_row = tmpdiv;
5298 #else
5299 		first_row = r5or6_first_row = r0_first_row =
5300 						first_block / stripesize;
5301 		r5or6_last_row = r0_last_row = last_block / stripesize;
5302 #endif
5303 		if (r5or6_first_row != r5or6_last_row)
5304 			return IO_ACCEL_INELIGIBLE;
5305 
5306 
5307 		/* Verify request is in a single column */
5308 #if BITS_PER_LONG == 32
5309 		tmpdiv = first_block;
5310 		first_row_offset = do_div(tmpdiv, stripesize);
5311 		tmpdiv = first_row_offset;
5312 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5313 		r5or6_first_row_offset = first_row_offset;
5314 		tmpdiv = last_block;
5315 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5316 		tmpdiv = r5or6_last_row_offset;
5317 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5318 		tmpdiv = r5or6_first_row_offset;
5319 		(void) do_div(tmpdiv, map->strip_size);
5320 		first_column = r5or6_first_column = tmpdiv;
5321 		tmpdiv = r5or6_last_row_offset;
5322 		(void) do_div(tmpdiv, map->strip_size);
5323 		r5or6_last_column = tmpdiv;
5324 #else
5325 		first_row_offset = r5or6_first_row_offset =
5326 			(u32)((first_block % stripesize) %
5327 						r5or6_blocks_per_row);
5328 
5329 		r5or6_last_row_offset =
5330 			(u32)((last_block % stripesize) %
5331 						r5or6_blocks_per_row);
5332 
5333 		first_column = r5or6_first_column =
5334 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5335 		r5or6_last_column =
5336 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5337 #endif
5338 		if (r5or6_first_column != r5or6_last_column)
5339 			return IO_ACCEL_INELIGIBLE;
5340 
5341 		/* Request is eligible */
5342 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5343 			le16_to_cpu(map->row_cnt);
5344 
5345 		map_index = (first_group *
5346 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5347 			(map_row * total_disks_per_row) + first_column;
5348 		break;
5349 	default:
5350 		return IO_ACCEL_INELIGIBLE;
5351 	}
5352 
5353 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5354 		return IO_ACCEL_INELIGIBLE;
5355 
5356 	c->phys_disk = dev->phys_disk[map_index];
5357 	if (!c->phys_disk)
5358 		return IO_ACCEL_INELIGIBLE;
5359 
5360 	disk_handle = dd[map_index].ioaccel_handle;
5361 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5362 			first_row * le16_to_cpu(map->strip_size) +
5363 			(first_row_offset - first_column *
5364 			le16_to_cpu(map->strip_size));
5365 	disk_block_cnt = block_cnt;
5366 
5367 	/* handle differing logical/physical block sizes */
5368 	if (map->phys_blk_shift) {
5369 		disk_block <<= map->phys_blk_shift;
5370 		disk_block_cnt <<= map->phys_blk_shift;
5371 	}
5372 	BUG_ON(disk_block_cnt > 0xffff);
5373 
5374 	/* build the new CDB for the physical disk I/O */
5375 	if (disk_block > 0xffffffff) {
5376 		cdb[0] = is_write ? WRITE_16 : READ_16;
5377 		cdb[1] = 0;
5378 		cdb[2] = (u8) (disk_block >> 56);
5379 		cdb[3] = (u8) (disk_block >> 48);
5380 		cdb[4] = (u8) (disk_block >> 40);
5381 		cdb[5] = (u8) (disk_block >> 32);
5382 		cdb[6] = (u8) (disk_block >> 24);
5383 		cdb[7] = (u8) (disk_block >> 16);
5384 		cdb[8] = (u8) (disk_block >> 8);
5385 		cdb[9] = (u8) (disk_block);
5386 		cdb[10] = (u8) (disk_block_cnt >> 24);
5387 		cdb[11] = (u8) (disk_block_cnt >> 16);
5388 		cdb[12] = (u8) (disk_block_cnt >> 8);
5389 		cdb[13] = (u8) (disk_block_cnt);
5390 		cdb[14] = 0;
5391 		cdb[15] = 0;
5392 		cdb_len = 16;
5393 	} else {
5394 		cdb[0] = is_write ? WRITE_10 : READ_10;
5395 		cdb[1] = 0;
5396 		cdb[2] = (u8) (disk_block >> 24);
5397 		cdb[3] = (u8) (disk_block >> 16);
5398 		cdb[4] = (u8) (disk_block >> 8);
5399 		cdb[5] = (u8) (disk_block);
5400 		cdb[6] = 0;
5401 		cdb[7] = (u8) (disk_block_cnt >> 8);
5402 		cdb[8] = (u8) (disk_block_cnt);
5403 		cdb[9] = 0;
5404 		cdb_len = 10;
5405 	}
5406 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5407 						dev->scsi3addr,
5408 						dev->phys_disk[map_index]);
5409 }
5410 
5411 /*
5412  * Submit commands down the "normal" RAID stack path
5413  * All callers to hpsa_ciss_submit must check lockup_detected
5414  * beforehand, before (opt.) and after calling cmd_alloc
5415  */
5416 static int hpsa_ciss_submit(struct ctlr_info *h,
5417 	struct CommandList *c, struct scsi_cmnd *cmd,
5418 	struct hpsa_scsi_dev_t *dev)
5419 {
5420 	cmd->host_scribble = (unsigned char *) c;
5421 	c->cmd_type = CMD_SCSI;
5422 	c->scsi_cmd = cmd;
5423 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5424 	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5425 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5426 
5427 	/* Fill in the request block... */
5428 
5429 	c->Request.Timeout = 0;
5430 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5431 	c->Request.CDBLen = cmd->cmd_len;
5432 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5433 	switch (cmd->sc_data_direction) {
5434 	case DMA_TO_DEVICE:
5435 		c->Request.type_attr_dir =
5436 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5437 		break;
5438 	case DMA_FROM_DEVICE:
5439 		c->Request.type_attr_dir =
5440 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5441 		break;
5442 	case DMA_NONE:
5443 		c->Request.type_attr_dir =
5444 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5445 		break;
5446 	case DMA_BIDIRECTIONAL:
5447 		/* This can happen if a buggy application does a scsi passthru
5448 		 * and sets both inlen and outlen to non-zero. ( see
5449 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5450 		 */
5451 
5452 		c->Request.type_attr_dir =
5453 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5454 		/* This is technically wrong, and hpsa controllers should
5455 		 * reject it with CMD_INVALID, which is the most correct
5456 		 * response, but non-fibre backends appear to let it
5457 		 * slide by, and give the same results as if this field
5458 		 * were set correctly.  Either way is acceptable for
5459 		 * our purposes here.
5460 		 */
5461 
5462 		break;
5463 
5464 	default:
5465 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5466 			cmd->sc_data_direction);
5467 		BUG();
5468 		break;
5469 	}
5470 
5471 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5472 		hpsa_cmd_resolve_and_free(h, c);
5473 		return SCSI_MLQUEUE_HOST_BUSY;
5474 	}
5475 
5476 	if (dev->in_reset) {
5477 		hpsa_cmd_resolve_and_free(h, c);
5478 		return SCSI_MLQUEUE_HOST_BUSY;
5479 	}
5480 
5481 	enqueue_cmd_and_start_io(h, c);
5482 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5483 	return 0;
5484 }
5485 
5486 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5487 				struct CommandList *c)
5488 {
5489 	dma_addr_t cmd_dma_handle, err_dma_handle;
5490 
5491 	/* Zero out all of commandlist except the last field, refcount */
5492 	memset(c, 0, offsetof(struct CommandList, refcount));
5493 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5494 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5495 	c->err_info = h->errinfo_pool + index;
5496 	memset(c->err_info, 0, sizeof(*c->err_info));
5497 	err_dma_handle = h->errinfo_pool_dhandle
5498 	    + index * sizeof(*c->err_info);
5499 	c->cmdindex = index;
5500 	c->busaddr = (u32) cmd_dma_handle;
5501 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5502 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5503 	c->h = h;
5504 	c->scsi_cmd = SCSI_CMD_IDLE;
5505 }
5506 
5507 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5508 {
5509 	int i;
5510 
5511 	for (i = 0; i < h->nr_cmds; i++) {
5512 		struct CommandList *c = h->cmd_pool + i;
5513 
5514 		hpsa_cmd_init(h, i, c);
5515 		atomic_set(&c->refcount, 0);
5516 	}
5517 }
5518 
5519 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5520 				struct CommandList *c)
5521 {
5522 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5523 
5524 	BUG_ON(c->cmdindex != index);
5525 
5526 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5527 	memset(c->err_info, 0, sizeof(*c->err_info));
5528 	c->busaddr = (u32) cmd_dma_handle;
5529 }
5530 
5531 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5532 		struct CommandList *c, struct scsi_cmnd *cmd)
5533 {
5534 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5535 	int rc = IO_ACCEL_INELIGIBLE;
5536 
5537 	if (!dev)
5538 		return SCSI_MLQUEUE_HOST_BUSY;
5539 
5540 	if (dev->in_reset)
5541 		return SCSI_MLQUEUE_HOST_BUSY;
5542 
5543 	if (hpsa_simple_mode)
5544 		return IO_ACCEL_INELIGIBLE;
5545 
5546 	cmd->host_scribble = (unsigned char *) c;
5547 
5548 	if (dev->offload_enabled) {
5549 		hpsa_cmd_init(h, c->cmdindex, c);
5550 		c->cmd_type = CMD_SCSI;
5551 		c->scsi_cmd = cmd;
5552 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5553 		if (rc < 0)     /* scsi_dma_map failed. */
5554 			rc = SCSI_MLQUEUE_HOST_BUSY;
5555 	} else if (dev->hba_ioaccel_enabled) {
5556 		hpsa_cmd_init(h, c->cmdindex, c);
5557 		c->cmd_type = CMD_SCSI;
5558 		c->scsi_cmd = cmd;
5559 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5560 		if (rc < 0)     /* scsi_dma_map failed. */
5561 			rc = SCSI_MLQUEUE_HOST_BUSY;
5562 	}
5563 	return rc;
5564 }
5565 
5566 static void hpsa_command_resubmit_worker(struct work_struct *work)
5567 {
5568 	struct scsi_cmnd *cmd;
5569 	struct hpsa_scsi_dev_t *dev;
5570 	struct CommandList *c = container_of(work, struct CommandList, work);
5571 
5572 	cmd = c->scsi_cmd;
5573 	dev = cmd->device->hostdata;
5574 	if (!dev) {
5575 		cmd->result = DID_NO_CONNECT << 16;
5576 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5577 	}
5578 
5579 	if (dev->in_reset) {
5580 		cmd->result = DID_RESET << 16;
5581 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5582 	}
5583 
5584 	if (c->cmd_type == CMD_IOACCEL2) {
5585 		struct ctlr_info *h = c->h;
5586 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5587 		int rc;
5588 
5589 		if (c2->error_data.serv_response ==
5590 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5591 			rc = hpsa_ioaccel_submit(h, c, cmd);
5592 			if (rc == 0)
5593 				return;
5594 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5595 				/*
5596 				 * If we get here, it means dma mapping failed.
5597 				 * Try again via scsi mid layer, which will
5598 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5599 				 */
5600 				cmd->result = DID_IMM_RETRY << 16;
5601 				return hpsa_cmd_free_and_done(h, c, cmd);
5602 			}
5603 			/* else, fall thru and resubmit down CISS path */
5604 		}
5605 	}
5606 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5607 	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5608 		/*
5609 		 * If we get here, it means dma mapping failed. Try
5610 		 * again via scsi mid layer, which will then get
5611 		 * SCSI_MLQUEUE_HOST_BUSY.
5612 		 *
5613 		 * hpsa_ciss_submit will have already freed c
5614 		 * if it encountered a dma mapping failure.
5615 		 */
5616 		cmd->result = DID_IMM_RETRY << 16;
5617 		cmd->scsi_done(cmd);
5618 	}
5619 }
5620 
5621 /* Running in struct Scsi_Host->host_lock less mode */
5622 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5623 {
5624 	struct ctlr_info *h;
5625 	struct hpsa_scsi_dev_t *dev;
5626 	struct CommandList *c;
5627 	int rc = 0;
5628 
5629 	/* Get the ptr to our adapter structure out of cmd->host. */
5630 	h = sdev_to_hba(cmd->device);
5631 
5632 	BUG_ON(cmd->request->tag < 0);
5633 
5634 	dev = cmd->device->hostdata;
5635 	if (!dev) {
5636 		cmd->result = DID_NO_CONNECT << 16;
5637 		cmd->scsi_done(cmd);
5638 		return 0;
5639 	}
5640 
5641 	if (dev->removed) {
5642 		cmd->result = DID_NO_CONNECT << 16;
5643 		cmd->scsi_done(cmd);
5644 		return 0;
5645 	}
5646 
5647 	if (unlikely(lockup_detected(h))) {
5648 		cmd->result = DID_NO_CONNECT << 16;
5649 		cmd->scsi_done(cmd);
5650 		return 0;
5651 	}
5652 
5653 	if (dev->in_reset)
5654 		return SCSI_MLQUEUE_DEVICE_BUSY;
5655 
5656 	c = cmd_tagged_alloc(h, cmd);
5657 	if (c == NULL)
5658 		return SCSI_MLQUEUE_DEVICE_BUSY;
5659 
5660 	/*
5661 	 * This is necessary because the SML doesn't zero out this field during
5662 	 * error recovery.
5663 	 */
5664 	cmd->result = 0;
5665 
5666 	/*
5667 	 * Call alternate submit routine for I/O accelerated commands.
5668 	 * Retries always go down the normal I/O path.
5669 	 */
5670 	if (likely(cmd->retries == 0 &&
5671 			!blk_rq_is_passthrough(cmd->request) &&
5672 			h->acciopath_status)) {
5673 		rc = hpsa_ioaccel_submit(h, c, cmd);
5674 		if (rc == 0)
5675 			return 0;
5676 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5677 			hpsa_cmd_resolve_and_free(h, c);
5678 			return SCSI_MLQUEUE_HOST_BUSY;
5679 		}
5680 	}
5681 	return hpsa_ciss_submit(h, c, cmd, dev);
5682 }
5683 
5684 static void hpsa_scan_complete(struct ctlr_info *h)
5685 {
5686 	unsigned long flags;
5687 
5688 	spin_lock_irqsave(&h->scan_lock, flags);
5689 	h->scan_finished = 1;
5690 	wake_up(&h->scan_wait_queue);
5691 	spin_unlock_irqrestore(&h->scan_lock, flags);
5692 }
5693 
5694 static void hpsa_scan_start(struct Scsi_Host *sh)
5695 {
5696 	struct ctlr_info *h = shost_to_hba(sh);
5697 	unsigned long flags;
5698 
5699 	/*
5700 	 * Don't let rescans be initiated on a controller known to be locked
5701 	 * up.  If the controller locks up *during* a rescan, that thread is
5702 	 * probably hosed, but at least we can prevent new rescan threads from
5703 	 * piling up on a locked up controller.
5704 	 */
5705 	if (unlikely(lockup_detected(h)))
5706 		return hpsa_scan_complete(h);
5707 
5708 	/*
5709 	 * If a scan is already waiting to run, no need to add another
5710 	 */
5711 	spin_lock_irqsave(&h->scan_lock, flags);
5712 	if (h->scan_waiting) {
5713 		spin_unlock_irqrestore(&h->scan_lock, flags);
5714 		return;
5715 	}
5716 
5717 	spin_unlock_irqrestore(&h->scan_lock, flags);
5718 
5719 	/* wait until any scan already in progress is finished. */
5720 	while (1) {
5721 		spin_lock_irqsave(&h->scan_lock, flags);
5722 		if (h->scan_finished)
5723 			break;
5724 		h->scan_waiting = 1;
5725 		spin_unlock_irqrestore(&h->scan_lock, flags);
5726 		wait_event(h->scan_wait_queue, h->scan_finished);
5727 		/* Note: We don't need to worry about a race between this
5728 		 * thread and driver unload because the midlayer will
5729 		 * have incremented the reference count, so unload won't
5730 		 * happen if we're in here.
5731 		 */
5732 	}
5733 	h->scan_finished = 0; /* mark scan as in progress */
5734 	h->scan_waiting = 0;
5735 	spin_unlock_irqrestore(&h->scan_lock, flags);
5736 
5737 	if (unlikely(lockup_detected(h)))
5738 		return hpsa_scan_complete(h);
5739 
5740 	/*
5741 	 * Do the scan after a reset completion
5742 	 */
5743 	spin_lock_irqsave(&h->reset_lock, flags);
5744 	if (h->reset_in_progress) {
5745 		h->drv_req_rescan = 1;
5746 		spin_unlock_irqrestore(&h->reset_lock, flags);
5747 		hpsa_scan_complete(h);
5748 		return;
5749 	}
5750 	spin_unlock_irqrestore(&h->reset_lock, flags);
5751 
5752 	hpsa_update_scsi_devices(h);
5753 
5754 	hpsa_scan_complete(h);
5755 }
5756 
5757 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5758 {
5759 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5760 
5761 	if (!logical_drive)
5762 		return -ENODEV;
5763 
5764 	if (qdepth < 1)
5765 		qdepth = 1;
5766 	else if (qdepth > logical_drive->queue_depth)
5767 		qdepth = logical_drive->queue_depth;
5768 
5769 	return scsi_change_queue_depth(sdev, qdepth);
5770 }
5771 
5772 static int hpsa_scan_finished(struct Scsi_Host *sh,
5773 	unsigned long elapsed_time)
5774 {
5775 	struct ctlr_info *h = shost_to_hba(sh);
5776 	unsigned long flags;
5777 	int finished;
5778 
5779 	spin_lock_irqsave(&h->scan_lock, flags);
5780 	finished = h->scan_finished;
5781 	spin_unlock_irqrestore(&h->scan_lock, flags);
5782 	return finished;
5783 }
5784 
5785 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5786 {
5787 	struct Scsi_Host *sh;
5788 
5789 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5790 	if (sh == NULL) {
5791 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5792 		return -ENOMEM;
5793 	}
5794 
5795 	sh->io_port = 0;
5796 	sh->n_io_port = 0;
5797 	sh->this_id = -1;
5798 	sh->max_channel = 3;
5799 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5800 	sh->max_lun = HPSA_MAX_LUN;
5801 	sh->max_id = HPSA_MAX_LUN;
5802 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5803 	sh->cmd_per_lun = sh->can_queue;
5804 	sh->sg_tablesize = h->maxsgentries;
5805 	sh->transportt = hpsa_sas_transport_template;
5806 	sh->hostdata[0] = (unsigned long) h;
5807 	sh->irq = pci_irq_vector(h->pdev, 0);
5808 	sh->unique_id = sh->irq;
5809 
5810 	h->scsi_host = sh;
5811 	return 0;
5812 }
5813 
5814 static int hpsa_scsi_add_host(struct ctlr_info *h)
5815 {
5816 	int rv;
5817 
5818 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5819 	if (rv) {
5820 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5821 		return rv;
5822 	}
5823 	scsi_scan_host(h->scsi_host);
5824 	return 0;
5825 }
5826 
5827 /*
5828  * The block layer has already gone to the trouble of picking out a unique,
5829  * small-integer tag for this request.  We use an offset from that value as
5830  * an index to select our command block.  (The offset allows us to reserve the
5831  * low-numbered entries for our own uses.)
5832  */
5833 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5834 {
5835 	int idx = scmd->request->tag;
5836 
5837 	if (idx < 0)
5838 		return idx;
5839 
5840 	/* Offset to leave space for internal cmds. */
5841 	return idx += HPSA_NRESERVED_CMDS;
5842 }
5843 
5844 /*
5845  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5846  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5847  */
5848 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5849 				struct CommandList *c, unsigned char lunaddr[],
5850 				int reply_queue)
5851 {
5852 	int rc;
5853 
5854 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5855 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5856 			NULL, 0, 0, lunaddr, TYPE_CMD);
5857 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5858 	if (rc)
5859 		return rc;
5860 	/* no unmap needed here because no data xfer. */
5861 
5862 	/* Check if the unit is already ready. */
5863 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5864 		return 0;
5865 
5866 	/*
5867 	 * The first command sent after reset will receive "unit attention" to
5868 	 * indicate that the LUN has been reset...this is actually what we're
5869 	 * looking for (but, success is good too).
5870 	 */
5871 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5872 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5873 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5874 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5875 		return 0;
5876 
5877 	return 1;
5878 }
5879 
5880 /*
5881  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5882  * returns zero when the unit is ready, and non-zero when giving up.
5883  */
5884 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5885 				struct CommandList *c,
5886 				unsigned char lunaddr[], int reply_queue)
5887 {
5888 	int rc;
5889 	int count = 0;
5890 	int waittime = 1; /* seconds */
5891 
5892 	/* Send test unit ready until device ready, or give up. */
5893 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5894 
5895 		/*
5896 		 * Wait for a bit.  do this first, because if we send
5897 		 * the TUR right away, the reset will just abort it.
5898 		 */
5899 		msleep(1000 * waittime);
5900 
5901 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5902 		if (!rc)
5903 			break;
5904 
5905 		/* Increase wait time with each try, up to a point. */
5906 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5907 			waittime *= 2;
5908 
5909 		dev_warn(&h->pdev->dev,
5910 			 "waiting %d secs for device to become ready.\n",
5911 			 waittime);
5912 	}
5913 
5914 	return rc;
5915 }
5916 
5917 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5918 					   unsigned char lunaddr[],
5919 					   int reply_queue)
5920 {
5921 	int first_queue;
5922 	int last_queue;
5923 	int rq;
5924 	int rc = 0;
5925 	struct CommandList *c;
5926 
5927 	c = cmd_alloc(h);
5928 
5929 	/*
5930 	 * If no specific reply queue was requested, then send the TUR
5931 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5932 	 * the loop exactly once using only the specified queue.
5933 	 */
5934 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5935 		first_queue = 0;
5936 		last_queue = h->nreply_queues - 1;
5937 	} else {
5938 		first_queue = reply_queue;
5939 		last_queue = reply_queue;
5940 	}
5941 
5942 	for (rq = first_queue; rq <= last_queue; rq++) {
5943 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5944 		if (rc)
5945 			break;
5946 	}
5947 
5948 	if (rc)
5949 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5950 	else
5951 		dev_warn(&h->pdev->dev, "device is ready.\n");
5952 
5953 	cmd_free(h, c);
5954 	return rc;
5955 }
5956 
5957 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5958  * complaining.  Doing a host- or bus-reset can't do anything good here.
5959  */
5960 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5961 {
5962 	int rc = SUCCESS;
5963 	int i;
5964 	struct ctlr_info *h;
5965 	struct hpsa_scsi_dev_t *dev = NULL;
5966 	u8 reset_type;
5967 	char msg[48];
5968 	unsigned long flags;
5969 
5970 	/* find the controller to which the command to be aborted was sent */
5971 	h = sdev_to_hba(scsicmd->device);
5972 	if (h == NULL) /* paranoia */
5973 		return FAILED;
5974 
5975 	spin_lock_irqsave(&h->reset_lock, flags);
5976 	h->reset_in_progress = 1;
5977 	spin_unlock_irqrestore(&h->reset_lock, flags);
5978 
5979 	if (lockup_detected(h)) {
5980 		rc = FAILED;
5981 		goto return_reset_status;
5982 	}
5983 
5984 	dev = scsicmd->device->hostdata;
5985 	if (!dev) {
5986 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5987 		rc = FAILED;
5988 		goto return_reset_status;
5989 	}
5990 
5991 	if (dev->devtype == TYPE_ENCLOSURE) {
5992 		rc = SUCCESS;
5993 		goto return_reset_status;
5994 	}
5995 
5996 	/* if controller locked up, we can guarantee command won't complete */
5997 	if (lockup_detected(h)) {
5998 		snprintf(msg, sizeof(msg),
5999 			 "cmd %d RESET FAILED, lockup detected",
6000 			 hpsa_get_cmd_index(scsicmd));
6001 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6002 		rc = FAILED;
6003 		goto return_reset_status;
6004 	}
6005 
6006 	/* this reset request might be the result of a lockup; check */
6007 	if (detect_controller_lockup(h)) {
6008 		snprintf(msg, sizeof(msg),
6009 			 "cmd %d RESET FAILED, new lockup detected",
6010 			 hpsa_get_cmd_index(scsicmd));
6011 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6012 		rc = FAILED;
6013 		goto return_reset_status;
6014 	}
6015 
6016 	/* Do not attempt on controller */
6017 	if (is_hba_lunid(dev->scsi3addr)) {
6018 		rc = SUCCESS;
6019 		goto return_reset_status;
6020 	}
6021 
6022 	if (is_logical_dev_addr_mode(dev->scsi3addr))
6023 		reset_type = HPSA_DEVICE_RESET_MSG;
6024 	else
6025 		reset_type = HPSA_PHYS_TARGET_RESET;
6026 
6027 	sprintf(msg, "resetting %s",
6028 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6029 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6030 
6031 	/*
6032 	 * wait to see if any commands will complete before sending reset
6033 	 */
6034 	dev->in_reset = true; /* block any new cmds from OS for this device */
6035 	for (i = 0; i < 10; i++) {
6036 		if (atomic_read(&dev->commands_outstanding) > 0)
6037 			msleep(1000);
6038 		else
6039 			break;
6040 	}
6041 
6042 	/* send a reset to the SCSI LUN which the command was sent to */
6043 	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6044 	if (rc == 0)
6045 		rc = SUCCESS;
6046 	else
6047 		rc = FAILED;
6048 
6049 	sprintf(msg, "reset %s %s",
6050 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6051 		rc == SUCCESS ? "completed successfully" : "failed");
6052 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6053 
6054 return_reset_status:
6055 	spin_lock_irqsave(&h->reset_lock, flags);
6056 	h->reset_in_progress = 0;
6057 	if (dev)
6058 		dev->in_reset = false;
6059 	spin_unlock_irqrestore(&h->reset_lock, flags);
6060 	return rc;
6061 }
6062 
6063 /*
6064  * For operations with an associated SCSI command, a command block is allocated
6065  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6066  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6067  * the complement, although cmd_free() may be called instead.
6068  */
6069 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6070 					    struct scsi_cmnd *scmd)
6071 {
6072 	int idx = hpsa_get_cmd_index(scmd);
6073 	struct CommandList *c = h->cmd_pool + idx;
6074 
6075 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6076 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6077 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6078 		/* The index value comes from the block layer, so if it's out of
6079 		 * bounds, it's probably not our bug.
6080 		 */
6081 		BUG();
6082 	}
6083 
6084 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6085 		/*
6086 		 * We expect that the SCSI layer will hand us a unique tag
6087 		 * value.  Thus, there should never be a collision here between
6088 		 * two requests...because if the selected command isn't idle
6089 		 * then someone is going to be very disappointed.
6090 		 */
6091 		if (idx != h->last_collision_tag) { /* Print once per tag */
6092 			dev_warn(&h->pdev->dev,
6093 				"%s: tag collision (tag=%d)\n", __func__, idx);
6094 			if (scmd)
6095 				scsi_print_command(scmd);
6096 			h->last_collision_tag = idx;
6097 		}
6098 		return NULL;
6099 	}
6100 
6101 	atomic_inc(&c->refcount);
6102 
6103 	hpsa_cmd_partial_init(h, idx, c);
6104 	return c;
6105 }
6106 
6107 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6108 {
6109 	/*
6110 	 * Release our reference to the block.  We don't need to do anything
6111 	 * else to free it, because it is accessed by index.
6112 	 */
6113 	(void)atomic_dec(&c->refcount);
6114 }
6115 
6116 /*
6117  * For operations that cannot sleep, a command block is allocated at init,
6118  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6119  * which ones are free or in use.  Lock must be held when calling this.
6120  * cmd_free() is the complement.
6121  * This function never gives up and returns NULL.  If it hangs,
6122  * another thread must call cmd_free() to free some tags.
6123  */
6124 
6125 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6126 {
6127 	struct CommandList *c;
6128 	int refcount, i;
6129 	int offset = 0;
6130 
6131 	/*
6132 	 * There is some *extremely* small but non-zero chance that that
6133 	 * multiple threads could get in here, and one thread could
6134 	 * be scanning through the list of bits looking for a free
6135 	 * one, but the free ones are always behind him, and other
6136 	 * threads sneak in behind him and eat them before he can
6137 	 * get to them, so that while there is always a free one, a
6138 	 * very unlucky thread might be starved anyway, never able to
6139 	 * beat the other threads.  In reality, this happens so
6140 	 * infrequently as to be indistinguishable from never.
6141 	 *
6142 	 * Note that we start allocating commands before the SCSI host structure
6143 	 * is initialized.  Since the search starts at bit zero, this
6144 	 * all works, since we have at least one command structure available;
6145 	 * however, it means that the structures with the low indexes have to be
6146 	 * reserved for driver-initiated requests, while requests from the block
6147 	 * layer will use the higher indexes.
6148 	 */
6149 
6150 	for (;;) {
6151 		i = find_next_zero_bit(h->cmd_pool_bits,
6152 					HPSA_NRESERVED_CMDS,
6153 					offset);
6154 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6155 			offset = 0;
6156 			continue;
6157 		}
6158 		c = h->cmd_pool + i;
6159 		refcount = atomic_inc_return(&c->refcount);
6160 		if (unlikely(refcount > 1)) {
6161 			cmd_free(h, c); /* already in use */
6162 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6163 			continue;
6164 		}
6165 		set_bit(i & (BITS_PER_LONG - 1),
6166 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6167 		break; /* it's ours now. */
6168 	}
6169 	hpsa_cmd_partial_init(h, i, c);
6170 	c->device = NULL;
6171 	return c;
6172 }
6173 
6174 /*
6175  * This is the complementary operation to cmd_alloc().  Note, however, in some
6176  * corner cases it may also be used to free blocks allocated by
6177  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6178  * the clear-bit is harmless.
6179  */
6180 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6181 {
6182 	if (atomic_dec_and_test(&c->refcount)) {
6183 		int i;
6184 
6185 		i = c - h->cmd_pool;
6186 		clear_bit(i & (BITS_PER_LONG - 1),
6187 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6188 	}
6189 }
6190 
6191 #ifdef CONFIG_COMPAT
6192 
6193 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6194 	void __user *arg)
6195 {
6196 	IOCTL32_Command_struct __user *arg32 =
6197 	    (IOCTL32_Command_struct __user *) arg;
6198 	IOCTL_Command_struct arg64;
6199 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6200 	int err;
6201 	u32 cp;
6202 
6203 	memset(&arg64, 0, sizeof(arg64));
6204 	err = 0;
6205 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6206 			   sizeof(arg64.LUN_info));
6207 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6208 			   sizeof(arg64.Request));
6209 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6210 			   sizeof(arg64.error_info));
6211 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6212 	err |= get_user(cp, &arg32->buf);
6213 	arg64.buf = compat_ptr(cp);
6214 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6215 
6216 	if (err)
6217 		return -EFAULT;
6218 
6219 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6220 	if (err)
6221 		return err;
6222 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6223 			 sizeof(arg32->error_info));
6224 	if (err)
6225 		return -EFAULT;
6226 	return err;
6227 }
6228 
6229 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6230 	unsigned int cmd, void __user *arg)
6231 {
6232 	BIG_IOCTL32_Command_struct __user *arg32 =
6233 	    (BIG_IOCTL32_Command_struct __user *) arg;
6234 	BIG_IOCTL_Command_struct arg64;
6235 	BIG_IOCTL_Command_struct __user *p =
6236 	    compat_alloc_user_space(sizeof(arg64));
6237 	int err;
6238 	u32 cp;
6239 
6240 	memset(&arg64, 0, sizeof(arg64));
6241 	err = 0;
6242 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6243 			   sizeof(arg64.LUN_info));
6244 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6245 			   sizeof(arg64.Request));
6246 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6247 			   sizeof(arg64.error_info));
6248 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6249 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6250 	err |= get_user(cp, &arg32->buf);
6251 	arg64.buf = compat_ptr(cp);
6252 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6253 
6254 	if (err)
6255 		return -EFAULT;
6256 
6257 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6258 	if (err)
6259 		return err;
6260 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6261 			 sizeof(arg32->error_info));
6262 	if (err)
6263 		return -EFAULT;
6264 	return err;
6265 }
6266 
6267 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6268 			     void __user *arg)
6269 {
6270 	switch (cmd) {
6271 	case CCISS_GETPCIINFO:
6272 	case CCISS_GETINTINFO:
6273 	case CCISS_SETINTINFO:
6274 	case CCISS_GETNODENAME:
6275 	case CCISS_SETNODENAME:
6276 	case CCISS_GETHEARTBEAT:
6277 	case CCISS_GETBUSTYPES:
6278 	case CCISS_GETFIRMVER:
6279 	case CCISS_GETDRIVVER:
6280 	case CCISS_REVALIDVOLS:
6281 	case CCISS_DEREGDISK:
6282 	case CCISS_REGNEWDISK:
6283 	case CCISS_REGNEWD:
6284 	case CCISS_RESCANDISK:
6285 	case CCISS_GETLUNINFO:
6286 		return hpsa_ioctl(dev, cmd, arg);
6287 
6288 	case CCISS_PASSTHRU32:
6289 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6290 	case CCISS_BIG_PASSTHRU32:
6291 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6292 
6293 	default:
6294 		return -ENOIOCTLCMD;
6295 	}
6296 }
6297 #endif
6298 
6299 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6300 {
6301 	struct hpsa_pci_info pciinfo;
6302 
6303 	if (!argp)
6304 		return -EINVAL;
6305 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6306 	pciinfo.bus = h->pdev->bus->number;
6307 	pciinfo.dev_fn = h->pdev->devfn;
6308 	pciinfo.board_id = h->board_id;
6309 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6310 		return -EFAULT;
6311 	return 0;
6312 }
6313 
6314 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6315 {
6316 	DriverVer_type DriverVer;
6317 	unsigned char vmaj, vmin, vsubmin;
6318 	int rc;
6319 
6320 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6321 		&vmaj, &vmin, &vsubmin);
6322 	if (rc != 3) {
6323 		dev_info(&h->pdev->dev, "driver version string '%s' "
6324 			"unrecognized.", HPSA_DRIVER_VERSION);
6325 		vmaj = 0;
6326 		vmin = 0;
6327 		vsubmin = 0;
6328 	}
6329 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6330 	if (!argp)
6331 		return -EINVAL;
6332 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6333 		return -EFAULT;
6334 	return 0;
6335 }
6336 
6337 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6338 {
6339 	IOCTL_Command_struct iocommand;
6340 	struct CommandList *c;
6341 	char *buff = NULL;
6342 	u64 temp64;
6343 	int rc = 0;
6344 
6345 	if (!argp)
6346 		return -EINVAL;
6347 	if (!capable(CAP_SYS_RAWIO))
6348 		return -EPERM;
6349 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6350 		return -EFAULT;
6351 	if ((iocommand.buf_size < 1) &&
6352 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6353 		return -EINVAL;
6354 	}
6355 	if (iocommand.buf_size > 0) {
6356 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6357 		if (buff == NULL)
6358 			return -ENOMEM;
6359 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6360 			/* Copy the data into the buffer we created */
6361 			if (copy_from_user(buff, iocommand.buf,
6362 				iocommand.buf_size)) {
6363 				rc = -EFAULT;
6364 				goto out_kfree;
6365 			}
6366 		} else {
6367 			memset(buff, 0, iocommand.buf_size);
6368 		}
6369 	}
6370 	c = cmd_alloc(h);
6371 
6372 	/* Fill in the command type */
6373 	c->cmd_type = CMD_IOCTL_PEND;
6374 	c->scsi_cmd = SCSI_CMD_BUSY;
6375 	/* Fill in Command Header */
6376 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6377 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6378 		c->Header.SGList = 1;
6379 		c->Header.SGTotal = cpu_to_le16(1);
6380 	} else	{ /* no buffers to fill */
6381 		c->Header.SGList = 0;
6382 		c->Header.SGTotal = cpu_to_le16(0);
6383 	}
6384 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6385 
6386 	/* Fill in Request block */
6387 	memcpy(&c->Request, &iocommand.Request,
6388 		sizeof(c->Request));
6389 
6390 	/* Fill in the scatter gather information */
6391 	if (iocommand.buf_size > 0) {
6392 		temp64 = dma_map_single(&h->pdev->dev, buff,
6393 			iocommand.buf_size, DMA_BIDIRECTIONAL);
6394 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6395 			c->SG[0].Addr = cpu_to_le64(0);
6396 			c->SG[0].Len = cpu_to_le32(0);
6397 			rc = -ENOMEM;
6398 			goto out;
6399 		}
6400 		c->SG[0].Addr = cpu_to_le64(temp64);
6401 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6402 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6403 	}
6404 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6405 					NO_TIMEOUT);
6406 	if (iocommand.buf_size > 0)
6407 		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6408 	check_ioctl_unit_attention(h, c);
6409 	if (rc) {
6410 		rc = -EIO;
6411 		goto out;
6412 	}
6413 
6414 	/* Copy the error information out */
6415 	memcpy(&iocommand.error_info, c->err_info,
6416 		sizeof(iocommand.error_info));
6417 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6418 		rc = -EFAULT;
6419 		goto out;
6420 	}
6421 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6422 		iocommand.buf_size > 0) {
6423 		/* Copy the data out of the buffer we created */
6424 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6425 			rc = -EFAULT;
6426 			goto out;
6427 		}
6428 	}
6429 out:
6430 	cmd_free(h, c);
6431 out_kfree:
6432 	kfree(buff);
6433 	return rc;
6434 }
6435 
6436 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6437 {
6438 	BIG_IOCTL_Command_struct *ioc;
6439 	struct CommandList *c;
6440 	unsigned char **buff = NULL;
6441 	int *buff_size = NULL;
6442 	u64 temp64;
6443 	BYTE sg_used = 0;
6444 	int status = 0;
6445 	u32 left;
6446 	u32 sz;
6447 	BYTE __user *data_ptr;
6448 
6449 	if (!argp)
6450 		return -EINVAL;
6451 	if (!capable(CAP_SYS_RAWIO))
6452 		return -EPERM;
6453 	ioc = vmemdup_user(argp, sizeof(*ioc));
6454 	if (IS_ERR(ioc)) {
6455 		status = PTR_ERR(ioc);
6456 		goto cleanup1;
6457 	}
6458 	if ((ioc->buf_size < 1) &&
6459 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6460 		status = -EINVAL;
6461 		goto cleanup1;
6462 	}
6463 	/* Check kmalloc limits  using all SGs */
6464 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6465 		status = -EINVAL;
6466 		goto cleanup1;
6467 	}
6468 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6469 		status = -EINVAL;
6470 		goto cleanup1;
6471 	}
6472 	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6473 	if (!buff) {
6474 		status = -ENOMEM;
6475 		goto cleanup1;
6476 	}
6477 	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6478 	if (!buff_size) {
6479 		status = -ENOMEM;
6480 		goto cleanup1;
6481 	}
6482 	left = ioc->buf_size;
6483 	data_ptr = ioc->buf;
6484 	while (left) {
6485 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6486 		buff_size[sg_used] = sz;
6487 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6488 		if (buff[sg_used] == NULL) {
6489 			status = -ENOMEM;
6490 			goto cleanup1;
6491 		}
6492 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6493 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6494 				status = -EFAULT;
6495 				goto cleanup1;
6496 			}
6497 		} else
6498 			memset(buff[sg_used], 0, sz);
6499 		left -= sz;
6500 		data_ptr += sz;
6501 		sg_used++;
6502 	}
6503 	c = cmd_alloc(h);
6504 
6505 	c->cmd_type = CMD_IOCTL_PEND;
6506 	c->scsi_cmd = SCSI_CMD_BUSY;
6507 	c->Header.ReplyQueue = 0;
6508 	c->Header.SGList = (u8) sg_used;
6509 	c->Header.SGTotal = cpu_to_le16(sg_used);
6510 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6511 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6512 	if (ioc->buf_size > 0) {
6513 		int i;
6514 		for (i = 0; i < sg_used; i++) {
6515 			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6516 				    buff_size[i], DMA_BIDIRECTIONAL);
6517 			if (dma_mapping_error(&h->pdev->dev,
6518 							(dma_addr_t) temp64)) {
6519 				c->SG[i].Addr = cpu_to_le64(0);
6520 				c->SG[i].Len = cpu_to_le32(0);
6521 				hpsa_pci_unmap(h->pdev, c, i,
6522 					DMA_BIDIRECTIONAL);
6523 				status = -ENOMEM;
6524 				goto cleanup0;
6525 			}
6526 			c->SG[i].Addr = cpu_to_le64(temp64);
6527 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6528 			c->SG[i].Ext = cpu_to_le32(0);
6529 		}
6530 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6531 	}
6532 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6533 						NO_TIMEOUT);
6534 	if (sg_used)
6535 		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6536 	check_ioctl_unit_attention(h, c);
6537 	if (status) {
6538 		status = -EIO;
6539 		goto cleanup0;
6540 	}
6541 
6542 	/* Copy the error information out */
6543 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6544 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6545 		status = -EFAULT;
6546 		goto cleanup0;
6547 	}
6548 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6549 		int i;
6550 
6551 		/* Copy the data out of the buffer we created */
6552 		BYTE __user *ptr = ioc->buf;
6553 		for (i = 0; i < sg_used; i++) {
6554 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6555 				status = -EFAULT;
6556 				goto cleanup0;
6557 			}
6558 			ptr += buff_size[i];
6559 		}
6560 	}
6561 	status = 0;
6562 cleanup0:
6563 	cmd_free(h, c);
6564 cleanup1:
6565 	if (buff) {
6566 		int i;
6567 
6568 		for (i = 0; i < sg_used; i++)
6569 			kfree(buff[i]);
6570 		kfree(buff);
6571 	}
6572 	kfree(buff_size);
6573 	kvfree(ioc);
6574 	return status;
6575 }
6576 
6577 static void check_ioctl_unit_attention(struct ctlr_info *h,
6578 	struct CommandList *c)
6579 {
6580 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6581 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6582 		(void) check_for_unit_attention(h, c);
6583 }
6584 
6585 /*
6586  * ioctl
6587  */
6588 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6589 		      void __user *arg)
6590 {
6591 	struct ctlr_info *h;
6592 	void __user *argp = (void __user *)arg;
6593 	int rc;
6594 
6595 	h = sdev_to_hba(dev);
6596 
6597 	switch (cmd) {
6598 	case CCISS_DEREGDISK:
6599 	case CCISS_REGNEWDISK:
6600 	case CCISS_REGNEWD:
6601 		hpsa_scan_start(h->scsi_host);
6602 		return 0;
6603 	case CCISS_GETPCIINFO:
6604 		return hpsa_getpciinfo_ioctl(h, argp);
6605 	case CCISS_GETDRIVVER:
6606 		return hpsa_getdrivver_ioctl(h, argp);
6607 	case CCISS_PASSTHRU:
6608 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6609 			return -EAGAIN;
6610 		rc = hpsa_passthru_ioctl(h, argp);
6611 		atomic_inc(&h->passthru_cmds_avail);
6612 		return rc;
6613 	case CCISS_BIG_PASSTHRU:
6614 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6615 			return -EAGAIN;
6616 		rc = hpsa_big_passthru_ioctl(h, argp);
6617 		atomic_inc(&h->passthru_cmds_avail);
6618 		return rc;
6619 	default:
6620 		return -ENOTTY;
6621 	}
6622 }
6623 
6624 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6625 {
6626 	struct CommandList *c;
6627 
6628 	c = cmd_alloc(h);
6629 
6630 	/* fill_cmd can't fail here, no data buffer to map */
6631 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6632 		RAID_CTLR_LUNID, TYPE_MSG);
6633 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6634 	c->waiting = NULL;
6635 	enqueue_cmd_and_start_io(h, c);
6636 	/* Don't wait for completion, the reset won't complete.  Don't free
6637 	 * the command either.  This is the last command we will send before
6638 	 * re-initializing everything, so it doesn't matter and won't leak.
6639 	 */
6640 	return;
6641 }
6642 
6643 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6644 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6645 	int cmd_type)
6646 {
6647 	enum dma_data_direction dir = DMA_NONE;
6648 
6649 	c->cmd_type = CMD_IOCTL_PEND;
6650 	c->scsi_cmd = SCSI_CMD_BUSY;
6651 	c->Header.ReplyQueue = 0;
6652 	if (buff != NULL && size > 0) {
6653 		c->Header.SGList = 1;
6654 		c->Header.SGTotal = cpu_to_le16(1);
6655 	} else {
6656 		c->Header.SGList = 0;
6657 		c->Header.SGTotal = cpu_to_le16(0);
6658 	}
6659 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6660 
6661 	if (cmd_type == TYPE_CMD) {
6662 		switch (cmd) {
6663 		case HPSA_INQUIRY:
6664 			/* are we trying to read a vital product page */
6665 			if (page_code & VPD_PAGE) {
6666 				c->Request.CDB[1] = 0x01;
6667 				c->Request.CDB[2] = (page_code & 0xff);
6668 			}
6669 			c->Request.CDBLen = 6;
6670 			c->Request.type_attr_dir =
6671 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6672 			c->Request.Timeout = 0;
6673 			c->Request.CDB[0] = HPSA_INQUIRY;
6674 			c->Request.CDB[4] = size & 0xFF;
6675 			break;
6676 		case RECEIVE_DIAGNOSTIC:
6677 			c->Request.CDBLen = 6;
6678 			c->Request.type_attr_dir =
6679 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6680 			c->Request.Timeout = 0;
6681 			c->Request.CDB[0] = cmd;
6682 			c->Request.CDB[1] = 1;
6683 			c->Request.CDB[2] = 1;
6684 			c->Request.CDB[3] = (size >> 8) & 0xFF;
6685 			c->Request.CDB[4] = size & 0xFF;
6686 			break;
6687 		case HPSA_REPORT_LOG:
6688 		case HPSA_REPORT_PHYS:
6689 			/* Talking to controller so It's a physical command
6690 			   mode = 00 target = 0.  Nothing to write.
6691 			 */
6692 			c->Request.CDBLen = 12;
6693 			c->Request.type_attr_dir =
6694 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6695 			c->Request.Timeout = 0;
6696 			c->Request.CDB[0] = cmd;
6697 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6698 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6699 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6700 			c->Request.CDB[9] = size & 0xFF;
6701 			break;
6702 		case BMIC_SENSE_DIAG_OPTIONS:
6703 			c->Request.CDBLen = 16;
6704 			c->Request.type_attr_dir =
6705 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6706 			c->Request.Timeout = 0;
6707 			/* Spec says this should be BMIC_WRITE */
6708 			c->Request.CDB[0] = BMIC_READ;
6709 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6710 			break;
6711 		case BMIC_SET_DIAG_OPTIONS:
6712 			c->Request.CDBLen = 16;
6713 			c->Request.type_attr_dir =
6714 					TYPE_ATTR_DIR(cmd_type,
6715 						ATTR_SIMPLE, XFER_WRITE);
6716 			c->Request.Timeout = 0;
6717 			c->Request.CDB[0] = BMIC_WRITE;
6718 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6719 			break;
6720 		case HPSA_CACHE_FLUSH:
6721 			c->Request.CDBLen = 12;
6722 			c->Request.type_attr_dir =
6723 					TYPE_ATTR_DIR(cmd_type,
6724 						ATTR_SIMPLE, XFER_WRITE);
6725 			c->Request.Timeout = 0;
6726 			c->Request.CDB[0] = BMIC_WRITE;
6727 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6728 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6729 			c->Request.CDB[8] = size & 0xFF;
6730 			break;
6731 		case TEST_UNIT_READY:
6732 			c->Request.CDBLen = 6;
6733 			c->Request.type_attr_dir =
6734 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6735 			c->Request.Timeout = 0;
6736 			break;
6737 		case HPSA_GET_RAID_MAP:
6738 			c->Request.CDBLen = 12;
6739 			c->Request.type_attr_dir =
6740 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6741 			c->Request.Timeout = 0;
6742 			c->Request.CDB[0] = HPSA_CISS_READ;
6743 			c->Request.CDB[1] = cmd;
6744 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6745 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6746 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6747 			c->Request.CDB[9] = size & 0xFF;
6748 			break;
6749 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6750 			c->Request.CDBLen = 10;
6751 			c->Request.type_attr_dir =
6752 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6753 			c->Request.Timeout = 0;
6754 			c->Request.CDB[0] = BMIC_READ;
6755 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6756 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6757 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6758 			break;
6759 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6760 			c->Request.CDBLen = 10;
6761 			c->Request.type_attr_dir =
6762 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6763 			c->Request.Timeout = 0;
6764 			c->Request.CDB[0] = BMIC_READ;
6765 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6766 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6767 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6768 			break;
6769 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6770 			c->Request.CDBLen = 10;
6771 			c->Request.type_attr_dir =
6772 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6773 			c->Request.Timeout = 0;
6774 			c->Request.CDB[0] = BMIC_READ;
6775 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6776 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6777 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6778 			break;
6779 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6780 			c->Request.CDBLen = 10;
6781 			c->Request.type_attr_dir =
6782 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6783 			c->Request.Timeout = 0;
6784 			c->Request.CDB[0] = BMIC_READ;
6785 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6786 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6787 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6788 			break;
6789 		case BMIC_IDENTIFY_CONTROLLER:
6790 			c->Request.CDBLen = 10;
6791 			c->Request.type_attr_dir =
6792 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6793 			c->Request.Timeout = 0;
6794 			c->Request.CDB[0] = BMIC_READ;
6795 			c->Request.CDB[1] = 0;
6796 			c->Request.CDB[2] = 0;
6797 			c->Request.CDB[3] = 0;
6798 			c->Request.CDB[4] = 0;
6799 			c->Request.CDB[5] = 0;
6800 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6801 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6802 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6803 			c->Request.CDB[9] = 0;
6804 			break;
6805 		default:
6806 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6807 			BUG();
6808 		}
6809 	} else if (cmd_type == TYPE_MSG) {
6810 		switch (cmd) {
6811 
6812 		case  HPSA_PHYS_TARGET_RESET:
6813 			c->Request.CDBLen = 16;
6814 			c->Request.type_attr_dir =
6815 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6816 			c->Request.Timeout = 0; /* Don't time out */
6817 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6818 			c->Request.CDB[0] = HPSA_RESET;
6819 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6820 			/* Physical target reset needs no control bytes 4-7*/
6821 			c->Request.CDB[4] = 0x00;
6822 			c->Request.CDB[5] = 0x00;
6823 			c->Request.CDB[6] = 0x00;
6824 			c->Request.CDB[7] = 0x00;
6825 			break;
6826 		case  HPSA_DEVICE_RESET_MSG:
6827 			c->Request.CDBLen = 16;
6828 			c->Request.type_attr_dir =
6829 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6830 			c->Request.Timeout = 0; /* Don't time out */
6831 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6832 			c->Request.CDB[0] =  cmd;
6833 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6834 			/* If bytes 4-7 are zero, it means reset the */
6835 			/* LunID device */
6836 			c->Request.CDB[4] = 0x00;
6837 			c->Request.CDB[5] = 0x00;
6838 			c->Request.CDB[6] = 0x00;
6839 			c->Request.CDB[7] = 0x00;
6840 			break;
6841 		default:
6842 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6843 				cmd);
6844 			BUG();
6845 		}
6846 	} else {
6847 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6848 		BUG();
6849 	}
6850 
6851 	switch (GET_DIR(c->Request.type_attr_dir)) {
6852 	case XFER_READ:
6853 		dir = DMA_FROM_DEVICE;
6854 		break;
6855 	case XFER_WRITE:
6856 		dir = DMA_TO_DEVICE;
6857 		break;
6858 	case XFER_NONE:
6859 		dir = DMA_NONE;
6860 		break;
6861 	default:
6862 		dir = DMA_BIDIRECTIONAL;
6863 	}
6864 	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6865 		return -1;
6866 	return 0;
6867 }
6868 
6869 /*
6870  * Map (physical) PCI mem into (virtual) kernel space
6871  */
6872 static void __iomem *remap_pci_mem(ulong base, ulong size)
6873 {
6874 	ulong page_base = ((ulong) base) & PAGE_MASK;
6875 	ulong page_offs = ((ulong) base) - page_base;
6876 	void __iomem *page_remapped = ioremap_nocache(page_base,
6877 		page_offs + size);
6878 
6879 	return page_remapped ? (page_remapped + page_offs) : NULL;
6880 }
6881 
6882 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6883 {
6884 	return h->access.command_completed(h, q);
6885 }
6886 
6887 static inline bool interrupt_pending(struct ctlr_info *h)
6888 {
6889 	return h->access.intr_pending(h);
6890 }
6891 
6892 static inline long interrupt_not_for_us(struct ctlr_info *h)
6893 {
6894 	return (h->access.intr_pending(h) == 0) ||
6895 		(h->interrupts_enabled == 0);
6896 }
6897 
6898 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6899 	u32 raw_tag)
6900 {
6901 	if (unlikely(tag_index >= h->nr_cmds)) {
6902 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6903 		return 1;
6904 	}
6905 	return 0;
6906 }
6907 
6908 static inline void finish_cmd(struct CommandList *c)
6909 {
6910 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6911 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6912 			|| c->cmd_type == CMD_IOACCEL2))
6913 		complete_scsi_command(c);
6914 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6915 		complete(c->waiting);
6916 }
6917 
6918 /* process completion of an indexed ("direct lookup") command */
6919 static inline void process_indexed_cmd(struct ctlr_info *h,
6920 	u32 raw_tag)
6921 {
6922 	u32 tag_index;
6923 	struct CommandList *c;
6924 
6925 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6926 	if (!bad_tag(h, tag_index, raw_tag)) {
6927 		c = h->cmd_pool + tag_index;
6928 		finish_cmd(c);
6929 	}
6930 }
6931 
6932 /* Some controllers, like p400, will give us one interrupt
6933  * after a soft reset, even if we turned interrupts off.
6934  * Only need to check for this in the hpsa_xxx_discard_completions
6935  * functions.
6936  */
6937 static int ignore_bogus_interrupt(struct ctlr_info *h)
6938 {
6939 	if (likely(!reset_devices))
6940 		return 0;
6941 
6942 	if (likely(h->interrupts_enabled))
6943 		return 0;
6944 
6945 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6946 		"(known firmware bug.)  Ignoring.\n");
6947 
6948 	return 1;
6949 }
6950 
6951 /*
6952  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6953  * Relies on (h-q[x] == x) being true for x such that
6954  * 0 <= x < MAX_REPLY_QUEUES.
6955  */
6956 static struct ctlr_info *queue_to_hba(u8 *queue)
6957 {
6958 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6959 }
6960 
6961 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6962 {
6963 	struct ctlr_info *h = queue_to_hba(queue);
6964 	u8 q = *(u8 *) queue;
6965 	u32 raw_tag;
6966 
6967 	if (ignore_bogus_interrupt(h))
6968 		return IRQ_NONE;
6969 
6970 	if (interrupt_not_for_us(h))
6971 		return IRQ_NONE;
6972 	h->last_intr_timestamp = get_jiffies_64();
6973 	while (interrupt_pending(h)) {
6974 		raw_tag = get_next_completion(h, q);
6975 		while (raw_tag != FIFO_EMPTY)
6976 			raw_tag = next_command(h, q);
6977 	}
6978 	return IRQ_HANDLED;
6979 }
6980 
6981 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6982 {
6983 	struct ctlr_info *h = queue_to_hba(queue);
6984 	u32 raw_tag;
6985 	u8 q = *(u8 *) queue;
6986 
6987 	if (ignore_bogus_interrupt(h))
6988 		return IRQ_NONE;
6989 
6990 	h->last_intr_timestamp = get_jiffies_64();
6991 	raw_tag = get_next_completion(h, q);
6992 	while (raw_tag != FIFO_EMPTY)
6993 		raw_tag = next_command(h, q);
6994 	return IRQ_HANDLED;
6995 }
6996 
6997 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6998 {
6999 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7000 	u32 raw_tag;
7001 	u8 q = *(u8 *) queue;
7002 
7003 	if (interrupt_not_for_us(h))
7004 		return IRQ_NONE;
7005 	h->last_intr_timestamp = get_jiffies_64();
7006 	while (interrupt_pending(h)) {
7007 		raw_tag = get_next_completion(h, q);
7008 		while (raw_tag != FIFO_EMPTY) {
7009 			process_indexed_cmd(h, raw_tag);
7010 			raw_tag = next_command(h, q);
7011 		}
7012 	}
7013 	return IRQ_HANDLED;
7014 }
7015 
7016 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7017 {
7018 	struct ctlr_info *h = queue_to_hba(queue);
7019 	u32 raw_tag;
7020 	u8 q = *(u8 *) queue;
7021 
7022 	h->last_intr_timestamp = get_jiffies_64();
7023 	raw_tag = get_next_completion(h, q);
7024 	while (raw_tag != FIFO_EMPTY) {
7025 		process_indexed_cmd(h, raw_tag);
7026 		raw_tag = next_command(h, q);
7027 	}
7028 	return IRQ_HANDLED;
7029 }
7030 
7031 /* Send a message CDB to the firmware. Careful, this only works
7032  * in simple mode, not performant mode due to the tag lookup.
7033  * We only ever use this immediately after a controller reset.
7034  */
7035 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7036 			unsigned char type)
7037 {
7038 	struct Command {
7039 		struct CommandListHeader CommandHeader;
7040 		struct RequestBlock Request;
7041 		struct ErrDescriptor ErrorDescriptor;
7042 	};
7043 	struct Command *cmd;
7044 	static const size_t cmd_sz = sizeof(*cmd) +
7045 					sizeof(cmd->ErrorDescriptor);
7046 	dma_addr_t paddr64;
7047 	__le32 paddr32;
7048 	u32 tag;
7049 	void __iomem *vaddr;
7050 	int i, err;
7051 
7052 	vaddr = pci_ioremap_bar(pdev, 0);
7053 	if (vaddr == NULL)
7054 		return -ENOMEM;
7055 
7056 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7057 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7058 	 * memory.
7059 	 */
7060 	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7061 	if (err) {
7062 		iounmap(vaddr);
7063 		return err;
7064 	}
7065 
7066 	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7067 	if (cmd == NULL) {
7068 		iounmap(vaddr);
7069 		return -ENOMEM;
7070 	}
7071 
7072 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7073 	 * although there's no guarantee, we assume that the address is at
7074 	 * least 4-byte aligned (most likely, it's page-aligned).
7075 	 */
7076 	paddr32 = cpu_to_le32(paddr64);
7077 
7078 	cmd->CommandHeader.ReplyQueue = 0;
7079 	cmd->CommandHeader.SGList = 0;
7080 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7081 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7082 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7083 
7084 	cmd->Request.CDBLen = 16;
7085 	cmd->Request.type_attr_dir =
7086 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7087 	cmd->Request.Timeout = 0; /* Don't time out */
7088 	cmd->Request.CDB[0] = opcode;
7089 	cmd->Request.CDB[1] = type;
7090 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7091 	cmd->ErrorDescriptor.Addr =
7092 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7093 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7094 
7095 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7096 
7097 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7098 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7099 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7100 			break;
7101 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7102 	}
7103 
7104 	iounmap(vaddr);
7105 
7106 	/* we leak the DMA buffer here ... no choice since the controller could
7107 	 *  still complete the command.
7108 	 */
7109 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7110 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7111 			opcode, type);
7112 		return -ETIMEDOUT;
7113 	}
7114 
7115 	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7116 
7117 	if (tag & HPSA_ERROR_BIT) {
7118 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7119 			opcode, type);
7120 		return -EIO;
7121 	}
7122 
7123 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7124 		opcode, type);
7125 	return 0;
7126 }
7127 
7128 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7129 
7130 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7131 	void __iomem *vaddr, u32 use_doorbell)
7132 {
7133 
7134 	if (use_doorbell) {
7135 		/* For everything after the P600, the PCI power state method
7136 		 * of resetting the controller doesn't work, so we have this
7137 		 * other way using the doorbell register.
7138 		 */
7139 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7140 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7141 
7142 		/* PMC hardware guys tell us we need a 10 second delay after
7143 		 * doorbell reset and before any attempt to talk to the board
7144 		 * at all to ensure that this actually works and doesn't fall
7145 		 * over in some weird corner cases.
7146 		 */
7147 		msleep(10000);
7148 	} else { /* Try to do it the PCI power state way */
7149 
7150 		/* Quoting from the Open CISS Specification: "The Power
7151 		 * Management Control/Status Register (CSR) controls the power
7152 		 * state of the device.  The normal operating state is D0,
7153 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7154 		 * the controller, place the interface device in D3 then to D0,
7155 		 * this causes a secondary PCI reset which will reset the
7156 		 * controller." */
7157 
7158 		int rc = 0;
7159 
7160 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7161 
7162 		/* enter the D3hot power management state */
7163 		rc = pci_set_power_state(pdev, PCI_D3hot);
7164 		if (rc)
7165 			return rc;
7166 
7167 		msleep(500);
7168 
7169 		/* enter the D0 power management state */
7170 		rc = pci_set_power_state(pdev, PCI_D0);
7171 		if (rc)
7172 			return rc;
7173 
7174 		/*
7175 		 * The P600 requires a small delay when changing states.
7176 		 * Otherwise we may think the board did not reset and we bail.
7177 		 * This for kdump only and is particular to the P600.
7178 		 */
7179 		msleep(500);
7180 	}
7181 	return 0;
7182 }
7183 
7184 static void init_driver_version(char *driver_version, int len)
7185 {
7186 	memset(driver_version, 0, len);
7187 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7188 }
7189 
7190 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7191 {
7192 	char *driver_version;
7193 	int i, size = sizeof(cfgtable->driver_version);
7194 
7195 	driver_version = kmalloc(size, GFP_KERNEL);
7196 	if (!driver_version)
7197 		return -ENOMEM;
7198 
7199 	init_driver_version(driver_version, size);
7200 	for (i = 0; i < size; i++)
7201 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7202 	kfree(driver_version);
7203 	return 0;
7204 }
7205 
7206 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7207 					  unsigned char *driver_ver)
7208 {
7209 	int i;
7210 
7211 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7212 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7213 }
7214 
7215 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7216 {
7217 
7218 	char *driver_ver, *old_driver_ver;
7219 	int rc, size = sizeof(cfgtable->driver_version);
7220 
7221 	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7222 	if (!old_driver_ver)
7223 		return -ENOMEM;
7224 	driver_ver = old_driver_ver + size;
7225 
7226 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7227 	 * should have been changed, otherwise we know the reset failed.
7228 	 */
7229 	init_driver_version(old_driver_ver, size);
7230 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7231 	rc = !memcmp(driver_ver, old_driver_ver, size);
7232 	kfree(old_driver_ver);
7233 	return rc;
7234 }
7235 /* This does a hard reset of the controller using PCI power management
7236  * states or the using the doorbell register.
7237  */
7238 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7239 {
7240 	u64 cfg_offset;
7241 	u32 cfg_base_addr;
7242 	u64 cfg_base_addr_index;
7243 	void __iomem *vaddr;
7244 	unsigned long paddr;
7245 	u32 misc_fw_support;
7246 	int rc;
7247 	struct CfgTable __iomem *cfgtable;
7248 	u32 use_doorbell;
7249 	u16 command_register;
7250 
7251 	/* For controllers as old as the P600, this is very nearly
7252 	 * the same thing as
7253 	 *
7254 	 * pci_save_state(pci_dev);
7255 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7256 	 * pci_set_power_state(pci_dev, PCI_D0);
7257 	 * pci_restore_state(pci_dev);
7258 	 *
7259 	 * For controllers newer than the P600, the pci power state
7260 	 * method of resetting doesn't work so we have another way
7261 	 * using the doorbell register.
7262 	 */
7263 
7264 	if (!ctlr_is_resettable(board_id)) {
7265 		dev_warn(&pdev->dev, "Controller not resettable\n");
7266 		return -ENODEV;
7267 	}
7268 
7269 	/* if controller is soft- but not hard resettable... */
7270 	if (!ctlr_is_hard_resettable(board_id))
7271 		return -ENOTSUPP; /* try soft reset later. */
7272 
7273 	/* Save the PCI command register */
7274 	pci_read_config_word(pdev, 4, &command_register);
7275 	pci_save_state(pdev);
7276 
7277 	/* find the first memory BAR, so we can find the cfg table */
7278 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7279 	if (rc)
7280 		return rc;
7281 	vaddr = remap_pci_mem(paddr, 0x250);
7282 	if (!vaddr)
7283 		return -ENOMEM;
7284 
7285 	/* find cfgtable in order to check if reset via doorbell is supported */
7286 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7287 					&cfg_base_addr_index, &cfg_offset);
7288 	if (rc)
7289 		goto unmap_vaddr;
7290 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7291 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7292 	if (!cfgtable) {
7293 		rc = -ENOMEM;
7294 		goto unmap_vaddr;
7295 	}
7296 	rc = write_driver_ver_to_cfgtable(cfgtable);
7297 	if (rc)
7298 		goto unmap_cfgtable;
7299 
7300 	/* If reset via doorbell register is supported, use that.
7301 	 * There are two such methods.  Favor the newest method.
7302 	 */
7303 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7304 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7305 	if (use_doorbell) {
7306 		use_doorbell = DOORBELL_CTLR_RESET2;
7307 	} else {
7308 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7309 		if (use_doorbell) {
7310 			dev_warn(&pdev->dev,
7311 				"Soft reset not supported. Firmware update is required.\n");
7312 			rc = -ENOTSUPP; /* try soft reset */
7313 			goto unmap_cfgtable;
7314 		}
7315 	}
7316 
7317 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7318 	if (rc)
7319 		goto unmap_cfgtable;
7320 
7321 	pci_restore_state(pdev);
7322 	pci_write_config_word(pdev, 4, command_register);
7323 
7324 	/* Some devices (notably the HP Smart Array 5i Controller)
7325 	   need a little pause here */
7326 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7327 
7328 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7329 	if (rc) {
7330 		dev_warn(&pdev->dev,
7331 			"Failed waiting for board to become ready after hard reset\n");
7332 		goto unmap_cfgtable;
7333 	}
7334 
7335 	rc = controller_reset_failed(vaddr);
7336 	if (rc < 0)
7337 		goto unmap_cfgtable;
7338 	if (rc) {
7339 		dev_warn(&pdev->dev, "Unable to successfully reset "
7340 			"controller. Will try soft reset.\n");
7341 		rc = -ENOTSUPP;
7342 	} else {
7343 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7344 	}
7345 
7346 unmap_cfgtable:
7347 	iounmap(cfgtable);
7348 
7349 unmap_vaddr:
7350 	iounmap(vaddr);
7351 	return rc;
7352 }
7353 
7354 /*
7355  *  We cannot read the structure directly, for portability we must use
7356  *   the io functions.
7357  *   This is for debug only.
7358  */
7359 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7360 {
7361 #ifdef HPSA_DEBUG
7362 	int i;
7363 	char temp_name[17];
7364 
7365 	dev_info(dev, "Controller Configuration information\n");
7366 	dev_info(dev, "------------------------------------\n");
7367 	for (i = 0; i < 4; i++)
7368 		temp_name[i] = readb(&(tb->Signature[i]));
7369 	temp_name[4] = '\0';
7370 	dev_info(dev, "   Signature = %s\n", temp_name);
7371 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7372 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7373 	       readl(&(tb->TransportSupport)));
7374 	dev_info(dev, "   Transport methods active = 0x%x\n",
7375 	       readl(&(tb->TransportActive)));
7376 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7377 	       readl(&(tb->HostWrite.TransportRequest)));
7378 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7379 	       readl(&(tb->HostWrite.CoalIntDelay)));
7380 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7381 	       readl(&(tb->HostWrite.CoalIntCount)));
7382 	dev_info(dev, "   Max outstanding commands = %d\n",
7383 	       readl(&(tb->CmdsOutMax)));
7384 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7385 	for (i = 0; i < 16; i++)
7386 		temp_name[i] = readb(&(tb->ServerName[i]));
7387 	temp_name[16] = '\0';
7388 	dev_info(dev, "   Server Name = %s\n", temp_name);
7389 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7390 		readl(&(tb->HeartBeat)));
7391 #endif				/* HPSA_DEBUG */
7392 }
7393 
7394 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7395 {
7396 	int i, offset, mem_type, bar_type;
7397 
7398 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7399 		return 0;
7400 	offset = 0;
7401 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7402 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7403 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7404 			offset += 4;
7405 		else {
7406 			mem_type = pci_resource_flags(pdev, i) &
7407 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7408 			switch (mem_type) {
7409 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7410 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7411 				offset += 4;	/* 32 bit */
7412 				break;
7413 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7414 				offset += 8;
7415 				break;
7416 			default:	/* reserved in PCI 2.2 */
7417 				dev_warn(&pdev->dev,
7418 				       "base address is invalid\n");
7419 				return -1;
7420 				break;
7421 			}
7422 		}
7423 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7424 			return i + 1;
7425 	}
7426 	return -1;
7427 }
7428 
7429 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7430 {
7431 	pci_free_irq_vectors(h->pdev);
7432 	h->msix_vectors = 0;
7433 }
7434 
7435 static void hpsa_setup_reply_map(struct ctlr_info *h)
7436 {
7437 	const struct cpumask *mask;
7438 	unsigned int queue, cpu;
7439 
7440 	for (queue = 0; queue < h->msix_vectors; queue++) {
7441 		mask = pci_irq_get_affinity(h->pdev, queue);
7442 		if (!mask)
7443 			goto fallback;
7444 
7445 		for_each_cpu(cpu, mask)
7446 			h->reply_map[cpu] = queue;
7447 	}
7448 	return;
7449 
7450 fallback:
7451 	for_each_possible_cpu(cpu)
7452 		h->reply_map[cpu] = 0;
7453 }
7454 
7455 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7456  * controllers that are capable. If not, we use legacy INTx mode.
7457  */
7458 static int hpsa_interrupt_mode(struct ctlr_info *h)
7459 {
7460 	unsigned int flags = PCI_IRQ_LEGACY;
7461 	int ret;
7462 
7463 	/* Some boards advertise MSI but don't really support it */
7464 	switch (h->board_id) {
7465 	case 0x40700E11:
7466 	case 0x40800E11:
7467 	case 0x40820E11:
7468 	case 0x40830E11:
7469 		break;
7470 	default:
7471 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7472 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7473 		if (ret > 0) {
7474 			h->msix_vectors = ret;
7475 			return 0;
7476 		}
7477 
7478 		flags |= PCI_IRQ_MSI;
7479 		break;
7480 	}
7481 
7482 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7483 	if (ret < 0)
7484 		return ret;
7485 	return 0;
7486 }
7487 
7488 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7489 				bool *legacy_board)
7490 {
7491 	int i;
7492 	u32 subsystem_vendor_id, subsystem_device_id;
7493 
7494 	subsystem_vendor_id = pdev->subsystem_vendor;
7495 	subsystem_device_id = pdev->subsystem_device;
7496 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7497 		    subsystem_vendor_id;
7498 
7499 	if (legacy_board)
7500 		*legacy_board = false;
7501 	for (i = 0; i < ARRAY_SIZE(products); i++)
7502 		if (*board_id == products[i].board_id) {
7503 			if (products[i].access != &SA5A_access &&
7504 			    products[i].access != &SA5B_access)
7505 				return i;
7506 			dev_warn(&pdev->dev,
7507 				 "legacy board ID: 0x%08x\n",
7508 				 *board_id);
7509 			if (legacy_board)
7510 			    *legacy_board = true;
7511 			return i;
7512 		}
7513 
7514 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7515 	if (legacy_board)
7516 		*legacy_board = true;
7517 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7518 }
7519 
7520 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7521 				    unsigned long *memory_bar)
7522 {
7523 	int i;
7524 
7525 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7526 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7527 			/* addressing mode bits already removed */
7528 			*memory_bar = pci_resource_start(pdev, i);
7529 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7530 				*memory_bar);
7531 			return 0;
7532 		}
7533 	dev_warn(&pdev->dev, "no memory BAR found\n");
7534 	return -ENODEV;
7535 }
7536 
7537 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7538 				     int wait_for_ready)
7539 {
7540 	int i, iterations;
7541 	u32 scratchpad;
7542 	if (wait_for_ready)
7543 		iterations = HPSA_BOARD_READY_ITERATIONS;
7544 	else
7545 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7546 
7547 	for (i = 0; i < iterations; i++) {
7548 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7549 		if (wait_for_ready) {
7550 			if (scratchpad == HPSA_FIRMWARE_READY)
7551 				return 0;
7552 		} else {
7553 			if (scratchpad != HPSA_FIRMWARE_READY)
7554 				return 0;
7555 		}
7556 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7557 	}
7558 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7559 	return -ENODEV;
7560 }
7561 
7562 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7563 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7564 			       u64 *cfg_offset)
7565 {
7566 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7567 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7568 	*cfg_base_addr &= (u32) 0x0000ffff;
7569 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7570 	if (*cfg_base_addr_index == -1) {
7571 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7572 		return -ENODEV;
7573 	}
7574 	return 0;
7575 }
7576 
7577 static void hpsa_free_cfgtables(struct ctlr_info *h)
7578 {
7579 	if (h->transtable) {
7580 		iounmap(h->transtable);
7581 		h->transtable = NULL;
7582 	}
7583 	if (h->cfgtable) {
7584 		iounmap(h->cfgtable);
7585 		h->cfgtable = NULL;
7586 	}
7587 }
7588 
7589 /* Find and map CISS config table and transfer table
7590 + * several items must be unmapped (freed) later
7591 + * */
7592 static int hpsa_find_cfgtables(struct ctlr_info *h)
7593 {
7594 	u64 cfg_offset;
7595 	u32 cfg_base_addr;
7596 	u64 cfg_base_addr_index;
7597 	u32 trans_offset;
7598 	int rc;
7599 
7600 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7601 		&cfg_base_addr_index, &cfg_offset);
7602 	if (rc)
7603 		return rc;
7604 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7605 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7606 	if (!h->cfgtable) {
7607 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7608 		return -ENOMEM;
7609 	}
7610 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7611 	if (rc)
7612 		return rc;
7613 	/* Find performant mode table. */
7614 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7615 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7616 				cfg_base_addr_index)+cfg_offset+trans_offset,
7617 				sizeof(*h->transtable));
7618 	if (!h->transtable) {
7619 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7620 		hpsa_free_cfgtables(h);
7621 		return -ENOMEM;
7622 	}
7623 	return 0;
7624 }
7625 
7626 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7627 {
7628 #define MIN_MAX_COMMANDS 16
7629 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7630 
7631 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7632 
7633 	/* Limit commands in memory limited kdump scenario. */
7634 	if (reset_devices && h->max_commands > 32)
7635 		h->max_commands = 32;
7636 
7637 	if (h->max_commands < MIN_MAX_COMMANDS) {
7638 		dev_warn(&h->pdev->dev,
7639 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7640 			h->max_commands,
7641 			MIN_MAX_COMMANDS);
7642 		h->max_commands = MIN_MAX_COMMANDS;
7643 	}
7644 }
7645 
7646 /* If the controller reports that the total max sg entries is greater than 512,
7647  * then we know that chained SG blocks work.  (Original smart arrays did not
7648  * support chained SG blocks and would return zero for max sg entries.)
7649  */
7650 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7651 {
7652 	return h->maxsgentries > 512;
7653 }
7654 
7655 /* Interrogate the hardware for some limits:
7656  * max commands, max SG elements without chaining, and with chaining,
7657  * SG chain block size, etc.
7658  */
7659 static void hpsa_find_board_params(struct ctlr_info *h)
7660 {
7661 	hpsa_get_max_perf_mode_cmds(h);
7662 	h->nr_cmds = h->max_commands;
7663 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7664 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7665 	if (hpsa_supports_chained_sg_blocks(h)) {
7666 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7667 		h->max_cmd_sg_entries = 32;
7668 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7669 		h->maxsgentries--; /* save one for chain pointer */
7670 	} else {
7671 		/*
7672 		 * Original smart arrays supported at most 31 s/g entries
7673 		 * embedded inline in the command (trying to use more
7674 		 * would lock up the controller)
7675 		 */
7676 		h->max_cmd_sg_entries = 31;
7677 		h->maxsgentries = 31; /* default to traditional values */
7678 		h->chainsize = 0;
7679 	}
7680 
7681 	/* Find out what task management functions are supported and cache */
7682 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7683 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7684 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7685 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7686 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7687 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7688 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7689 }
7690 
7691 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7692 {
7693 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7694 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7695 		return false;
7696 	}
7697 	return true;
7698 }
7699 
7700 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7701 {
7702 	u32 driver_support;
7703 
7704 	driver_support = readl(&(h->cfgtable->driver_support));
7705 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7706 #ifdef CONFIG_X86
7707 	driver_support |= ENABLE_SCSI_PREFETCH;
7708 #endif
7709 	driver_support |= ENABLE_UNIT_ATTN;
7710 	writel(driver_support, &(h->cfgtable->driver_support));
7711 }
7712 
7713 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7714  * in a prefetch beyond physical memory.
7715  */
7716 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7717 {
7718 	u32 dma_prefetch;
7719 
7720 	if (h->board_id != 0x3225103C)
7721 		return;
7722 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7723 	dma_prefetch |= 0x8000;
7724 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7725 }
7726 
7727 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7728 {
7729 	int i;
7730 	u32 doorbell_value;
7731 	unsigned long flags;
7732 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7733 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7734 		spin_lock_irqsave(&h->lock, flags);
7735 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7736 		spin_unlock_irqrestore(&h->lock, flags);
7737 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7738 			goto done;
7739 		/* delay and try again */
7740 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7741 	}
7742 	return -ENODEV;
7743 done:
7744 	return 0;
7745 }
7746 
7747 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7748 {
7749 	int i;
7750 	u32 doorbell_value;
7751 	unsigned long flags;
7752 
7753 	/* under certain very rare conditions, this can take awhile.
7754 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7755 	 * as we enter this code.)
7756 	 */
7757 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7758 		if (h->remove_in_progress)
7759 			goto done;
7760 		spin_lock_irqsave(&h->lock, flags);
7761 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7762 		spin_unlock_irqrestore(&h->lock, flags);
7763 		if (!(doorbell_value & CFGTBL_ChangeReq))
7764 			goto done;
7765 		/* delay and try again */
7766 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7767 	}
7768 	return -ENODEV;
7769 done:
7770 	return 0;
7771 }
7772 
7773 /* return -ENODEV or other reason on error, 0 on success */
7774 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7775 {
7776 	u32 trans_support;
7777 
7778 	trans_support = readl(&(h->cfgtable->TransportSupport));
7779 	if (!(trans_support & SIMPLE_MODE))
7780 		return -ENOTSUPP;
7781 
7782 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7783 
7784 	/* Update the field, and then ring the doorbell */
7785 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7786 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7787 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7788 	if (hpsa_wait_for_mode_change_ack(h))
7789 		goto error;
7790 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7791 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7792 		goto error;
7793 	h->transMethod = CFGTBL_Trans_Simple;
7794 	return 0;
7795 error:
7796 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7797 	return -ENODEV;
7798 }
7799 
7800 /* free items allocated or mapped by hpsa_pci_init */
7801 static void hpsa_free_pci_init(struct ctlr_info *h)
7802 {
7803 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7804 	iounmap(h->vaddr);			/* pci_init 3 */
7805 	h->vaddr = NULL;
7806 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7807 	/*
7808 	 * call pci_disable_device before pci_release_regions per
7809 	 * Documentation/driver-api/pci/pci.rst
7810 	 */
7811 	pci_disable_device(h->pdev);		/* pci_init 1 */
7812 	pci_release_regions(h->pdev);		/* pci_init 2 */
7813 }
7814 
7815 /* several items must be freed later */
7816 static int hpsa_pci_init(struct ctlr_info *h)
7817 {
7818 	int prod_index, err;
7819 	bool legacy_board;
7820 
7821 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7822 	if (prod_index < 0)
7823 		return prod_index;
7824 	h->product_name = products[prod_index].product_name;
7825 	h->access = *(products[prod_index].access);
7826 	h->legacy_board = legacy_board;
7827 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7828 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7829 
7830 	err = pci_enable_device(h->pdev);
7831 	if (err) {
7832 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7833 		pci_disable_device(h->pdev);
7834 		return err;
7835 	}
7836 
7837 	err = pci_request_regions(h->pdev, HPSA);
7838 	if (err) {
7839 		dev_err(&h->pdev->dev,
7840 			"failed to obtain PCI resources\n");
7841 		pci_disable_device(h->pdev);
7842 		return err;
7843 	}
7844 
7845 	pci_set_master(h->pdev);
7846 
7847 	err = hpsa_interrupt_mode(h);
7848 	if (err)
7849 		goto clean1;
7850 
7851 	/* setup mapping between CPU and reply queue */
7852 	hpsa_setup_reply_map(h);
7853 
7854 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7855 	if (err)
7856 		goto clean2;	/* intmode+region, pci */
7857 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7858 	if (!h->vaddr) {
7859 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7860 		err = -ENOMEM;
7861 		goto clean2;	/* intmode+region, pci */
7862 	}
7863 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7864 	if (err)
7865 		goto clean3;	/* vaddr, intmode+region, pci */
7866 	err = hpsa_find_cfgtables(h);
7867 	if (err)
7868 		goto clean3;	/* vaddr, intmode+region, pci */
7869 	hpsa_find_board_params(h);
7870 
7871 	if (!hpsa_CISS_signature_present(h)) {
7872 		err = -ENODEV;
7873 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7874 	}
7875 	hpsa_set_driver_support_bits(h);
7876 	hpsa_p600_dma_prefetch_quirk(h);
7877 	err = hpsa_enter_simple_mode(h);
7878 	if (err)
7879 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7880 	return 0;
7881 
7882 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7883 	hpsa_free_cfgtables(h);
7884 clean3:	/* vaddr, intmode+region, pci */
7885 	iounmap(h->vaddr);
7886 	h->vaddr = NULL;
7887 clean2:	/* intmode+region, pci */
7888 	hpsa_disable_interrupt_mode(h);
7889 clean1:
7890 	/*
7891 	 * call pci_disable_device before pci_release_regions per
7892 	 * Documentation/driver-api/pci/pci.rst
7893 	 */
7894 	pci_disable_device(h->pdev);
7895 	pci_release_regions(h->pdev);
7896 	return err;
7897 }
7898 
7899 static void hpsa_hba_inquiry(struct ctlr_info *h)
7900 {
7901 	int rc;
7902 
7903 #define HBA_INQUIRY_BYTE_COUNT 64
7904 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7905 	if (!h->hba_inquiry_data)
7906 		return;
7907 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7908 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7909 	if (rc != 0) {
7910 		kfree(h->hba_inquiry_data);
7911 		h->hba_inquiry_data = NULL;
7912 	}
7913 }
7914 
7915 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7916 {
7917 	int rc, i;
7918 	void __iomem *vaddr;
7919 
7920 	if (!reset_devices)
7921 		return 0;
7922 
7923 	/* kdump kernel is loading, we don't know in which state is
7924 	 * the pci interface. The dev->enable_cnt is equal zero
7925 	 * so we call enable+disable, wait a while and switch it on.
7926 	 */
7927 	rc = pci_enable_device(pdev);
7928 	if (rc) {
7929 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7930 		return -ENODEV;
7931 	}
7932 	pci_disable_device(pdev);
7933 	msleep(260);			/* a randomly chosen number */
7934 	rc = pci_enable_device(pdev);
7935 	if (rc) {
7936 		dev_warn(&pdev->dev, "failed to enable device.\n");
7937 		return -ENODEV;
7938 	}
7939 
7940 	pci_set_master(pdev);
7941 
7942 	vaddr = pci_ioremap_bar(pdev, 0);
7943 	if (vaddr == NULL) {
7944 		rc = -ENOMEM;
7945 		goto out_disable;
7946 	}
7947 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7948 	iounmap(vaddr);
7949 
7950 	/* Reset the controller with a PCI power-cycle or via doorbell */
7951 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7952 
7953 	/* -ENOTSUPP here means we cannot reset the controller
7954 	 * but it's already (and still) up and running in
7955 	 * "performant mode".  Or, it might be 640x, which can't reset
7956 	 * due to concerns about shared bbwc between 6402/6404 pair.
7957 	 */
7958 	if (rc)
7959 		goto out_disable;
7960 
7961 	/* Now try to get the controller to respond to a no-op */
7962 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7963 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7964 		if (hpsa_noop(pdev) == 0)
7965 			break;
7966 		else
7967 			dev_warn(&pdev->dev, "no-op failed%s\n",
7968 					(i < 11 ? "; re-trying" : ""));
7969 	}
7970 
7971 out_disable:
7972 
7973 	pci_disable_device(pdev);
7974 	return rc;
7975 }
7976 
7977 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7978 {
7979 	kfree(h->cmd_pool_bits);
7980 	h->cmd_pool_bits = NULL;
7981 	if (h->cmd_pool) {
7982 		dma_free_coherent(&h->pdev->dev,
7983 				h->nr_cmds * sizeof(struct CommandList),
7984 				h->cmd_pool,
7985 				h->cmd_pool_dhandle);
7986 		h->cmd_pool = NULL;
7987 		h->cmd_pool_dhandle = 0;
7988 	}
7989 	if (h->errinfo_pool) {
7990 		dma_free_coherent(&h->pdev->dev,
7991 				h->nr_cmds * sizeof(struct ErrorInfo),
7992 				h->errinfo_pool,
7993 				h->errinfo_pool_dhandle);
7994 		h->errinfo_pool = NULL;
7995 		h->errinfo_pool_dhandle = 0;
7996 	}
7997 }
7998 
7999 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8000 {
8001 	h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8002 				   sizeof(unsigned long),
8003 				   GFP_KERNEL);
8004 	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8005 		    h->nr_cmds * sizeof(*h->cmd_pool),
8006 		    &h->cmd_pool_dhandle, GFP_KERNEL);
8007 	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8008 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8009 		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8010 	if ((h->cmd_pool_bits == NULL)
8011 	    || (h->cmd_pool == NULL)
8012 	    || (h->errinfo_pool == NULL)) {
8013 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8014 		goto clean_up;
8015 	}
8016 	hpsa_preinitialize_commands(h);
8017 	return 0;
8018 clean_up:
8019 	hpsa_free_cmd_pool(h);
8020 	return -ENOMEM;
8021 }
8022 
8023 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8024 static void hpsa_free_irqs(struct ctlr_info *h)
8025 {
8026 	int i;
8027 	int irq_vector = 0;
8028 
8029 	if (hpsa_simple_mode)
8030 		irq_vector = h->intr_mode;
8031 
8032 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8033 		/* Single reply queue, only one irq to free */
8034 		free_irq(pci_irq_vector(h->pdev, irq_vector),
8035 				&h->q[h->intr_mode]);
8036 		h->q[h->intr_mode] = 0;
8037 		return;
8038 	}
8039 
8040 	for (i = 0; i < h->msix_vectors; i++) {
8041 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8042 		h->q[i] = 0;
8043 	}
8044 	for (; i < MAX_REPLY_QUEUES; i++)
8045 		h->q[i] = 0;
8046 }
8047 
8048 /* returns 0 on success; cleans up and returns -Enn on error */
8049 static int hpsa_request_irqs(struct ctlr_info *h,
8050 	irqreturn_t (*msixhandler)(int, void *),
8051 	irqreturn_t (*intxhandler)(int, void *))
8052 {
8053 	int rc, i;
8054 	int irq_vector = 0;
8055 
8056 	if (hpsa_simple_mode)
8057 		irq_vector = h->intr_mode;
8058 
8059 	/*
8060 	 * initialize h->q[x] = x so that interrupt handlers know which
8061 	 * queue to process.
8062 	 */
8063 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8064 		h->q[i] = (u8) i;
8065 
8066 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8067 		/* If performant mode and MSI-X, use multiple reply queues */
8068 		for (i = 0; i < h->msix_vectors; i++) {
8069 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8070 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8071 					0, h->intrname[i],
8072 					&h->q[i]);
8073 			if (rc) {
8074 				int j;
8075 
8076 				dev_err(&h->pdev->dev,
8077 					"failed to get irq %d for %s\n",
8078 				       pci_irq_vector(h->pdev, i), h->devname);
8079 				for (j = 0; j < i; j++) {
8080 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8081 					h->q[j] = 0;
8082 				}
8083 				for (; j < MAX_REPLY_QUEUES; j++)
8084 					h->q[j] = 0;
8085 				return rc;
8086 			}
8087 		}
8088 	} else {
8089 		/* Use single reply pool */
8090 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8091 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8092 				h->msix_vectors ? "x" : "");
8093 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8094 				msixhandler, 0,
8095 				h->intrname[0],
8096 				&h->q[h->intr_mode]);
8097 		} else {
8098 			sprintf(h->intrname[h->intr_mode],
8099 				"%s-intx", h->devname);
8100 			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8101 				intxhandler, IRQF_SHARED,
8102 				h->intrname[0],
8103 				&h->q[h->intr_mode]);
8104 		}
8105 	}
8106 	if (rc) {
8107 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8108 		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8109 		hpsa_free_irqs(h);
8110 		return -ENODEV;
8111 	}
8112 	return 0;
8113 }
8114 
8115 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8116 {
8117 	int rc;
8118 	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8119 
8120 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8121 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8122 	if (rc) {
8123 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8124 		return rc;
8125 	}
8126 
8127 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8128 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8129 	if (rc) {
8130 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8131 			"after soft reset.\n");
8132 		return rc;
8133 	}
8134 
8135 	return 0;
8136 }
8137 
8138 static void hpsa_free_reply_queues(struct ctlr_info *h)
8139 {
8140 	int i;
8141 
8142 	for (i = 0; i < h->nreply_queues; i++) {
8143 		if (!h->reply_queue[i].head)
8144 			continue;
8145 		dma_free_coherent(&h->pdev->dev,
8146 					h->reply_queue_size,
8147 					h->reply_queue[i].head,
8148 					h->reply_queue[i].busaddr);
8149 		h->reply_queue[i].head = NULL;
8150 		h->reply_queue[i].busaddr = 0;
8151 	}
8152 	h->reply_queue_size = 0;
8153 }
8154 
8155 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8156 {
8157 	hpsa_free_performant_mode(h);		/* init_one 7 */
8158 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8159 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8160 	hpsa_free_irqs(h);			/* init_one 4 */
8161 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8162 	h->scsi_host = NULL;			/* init_one 3 */
8163 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8164 	free_percpu(h->lockup_detected);	/* init_one 2 */
8165 	h->lockup_detected = NULL;		/* init_one 2 */
8166 	if (h->resubmit_wq) {
8167 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8168 		h->resubmit_wq = NULL;
8169 	}
8170 	if (h->rescan_ctlr_wq) {
8171 		destroy_workqueue(h->rescan_ctlr_wq);
8172 		h->rescan_ctlr_wq = NULL;
8173 	}
8174 	if (h->monitor_ctlr_wq) {
8175 		destroy_workqueue(h->monitor_ctlr_wq);
8176 		h->monitor_ctlr_wq = NULL;
8177 	}
8178 
8179 	kfree(h);				/* init_one 1 */
8180 }
8181 
8182 /* Called when controller lockup detected. */
8183 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8184 {
8185 	int i, refcount;
8186 	struct CommandList *c;
8187 	int failcount = 0;
8188 
8189 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8190 	for (i = 0; i < h->nr_cmds; i++) {
8191 		c = h->cmd_pool + i;
8192 		refcount = atomic_inc_return(&c->refcount);
8193 		if (refcount > 1) {
8194 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8195 			finish_cmd(c);
8196 			atomic_dec(&h->commands_outstanding);
8197 			failcount++;
8198 		}
8199 		cmd_free(h, c);
8200 	}
8201 	dev_warn(&h->pdev->dev,
8202 		"failed %d commands in fail_all\n", failcount);
8203 }
8204 
8205 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8206 {
8207 	int cpu;
8208 
8209 	for_each_online_cpu(cpu) {
8210 		u32 *lockup_detected;
8211 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8212 		*lockup_detected = value;
8213 	}
8214 	wmb(); /* be sure the per-cpu variables are out to memory */
8215 }
8216 
8217 static void controller_lockup_detected(struct ctlr_info *h)
8218 {
8219 	unsigned long flags;
8220 	u32 lockup_detected;
8221 
8222 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8223 	spin_lock_irqsave(&h->lock, flags);
8224 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8225 	if (!lockup_detected) {
8226 		/* no heartbeat, but controller gave us a zero. */
8227 		dev_warn(&h->pdev->dev,
8228 			"lockup detected after %d but scratchpad register is zero\n",
8229 			h->heartbeat_sample_interval / HZ);
8230 		lockup_detected = 0xffffffff;
8231 	}
8232 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8233 	spin_unlock_irqrestore(&h->lock, flags);
8234 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8235 			lockup_detected, h->heartbeat_sample_interval / HZ);
8236 	if (lockup_detected == 0xffff0000) {
8237 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8238 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8239 	}
8240 	pci_disable_device(h->pdev);
8241 	fail_all_outstanding_cmds(h);
8242 }
8243 
8244 static int detect_controller_lockup(struct ctlr_info *h)
8245 {
8246 	u64 now;
8247 	u32 heartbeat;
8248 	unsigned long flags;
8249 
8250 	now = get_jiffies_64();
8251 	/* If we've received an interrupt recently, we're ok. */
8252 	if (time_after64(h->last_intr_timestamp +
8253 				(h->heartbeat_sample_interval), now))
8254 		return false;
8255 
8256 	/*
8257 	 * If we've already checked the heartbeat recently, we're ok.
8258 	 * This could happen if someone sends us a signal. We
8259 	 * otherwise don't care about signals in this thread.
8260 	 */
8261 	if (time_after64(h->last_heartbeat_timestamp +
8262 				(h->heartbeat_sample_interval), now))
8263 		return false;
8264 
8265 	/* If heartbeat has not changed since we last looked, we're not ok. */
8266 	spin_lock_irqsave(&h->lock, flags);
8267 	heartbeat = readl(&h->cfgtable->HeartBeat);
8268 	spin_unlock_irqrestore(&h->lock, flags);
8269 	if (h->last_heartbeat == heartbeat) {
8270 		controller_lockup_detected(h);
8271 		return true;
8272 	}
8273 
8274 	/* We're ok. */
8275 	h->last_heartbeat = heartbeat;
8276 	h->last_heartbeat_timestamp = now;
8277 	return false;
8278 }
8279 
8280 /*
8281  * Set ioaccel status for all ioaccel volumes.
8282  *
8283  * Called from monitor controller worker (hpsa_event_monitor_worker)
8284  *
8285  * A Volume (or Volumes that comprise an Array set may be undergoing a
8286  * transformation, so we will be turning off ioaccel for all volumes that
8287  * make up the Array.
8288  */
8289 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8290 {
8291 	int rc;
8292 	int i;
8293 	u8 ioaccel_status;
8294 	unsigned char *buf;
8295 	struct hpsa_scsi_dev_t *device;
8296 
8297 	if (!h)
8298 		return;
8299 
8300 	buf = kmalloc(64, GFP_KERNEL);
8301 	if (!buf)
8302 		return;
8303 
8304 	/*
8305 	 * Run through current device list used during I/O requests.
8306 	 */
8307 	for (i = 0; i < h->ndevices; i++) {
8308 		device = h->dev[i];
8309 
8310 		if (!device)
8311 			continue;
8312 		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8313 						HPSA_VPD_LV_IOACCEL_STATUS))
8314 			continue;
8315 
8316 		memset(buf, 0, 64);
8317 
8318 		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8319 					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8320 					buf, 64);
8321 		if (rc != 0)
8322 			continue;
8323 
8324 		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8325 		device->offload_config =
8326 				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8327 		if (device->offload_config)
8328 			device->offload_to_be_enabled =
8329 				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8330 
8331 		/*
8332 		 * Immediately turn off ioaccel for any volume the
8333 		 * controller tells us to. Some of the reasons could be:
8334 		 *    transformation - change to the LVs of an Array.
8335 		 *    degraded volume - component failure
8336 		 *
8337 		 * If ioaccel is to be re-enabled, re-enable later during the
8338 		 * scan operation so the driver can get a fresh raidmap
8339 		 * before turning ioaccel back on.
8340 		 *
8341 		 */
8342 		if (!device->offload_to_be_enabled)
8343 			device->offload_enabled = 0;
8344 	}
8345 
8346 	kfree(buf);
8347 }
8348 
8349 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8350 {
8351 	char *event_type;
8352 
8353 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8354 		return;
8355 
8356 	/* Ask the controller to clear the events we're handling. */
8357 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8358 			| CFGTBL_Trans_io_accel2)) &&
8359 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8360 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8361 
8362 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8363 			event_type = "state change";
8364 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8365 			event_type = "configuration change";
8366 		/* Stop sending new RAID offload reqs via the IO accelerator */
8367 		scsi_block_requests(h->scsi_host);
8368 		hpsa_set_ioaccel_status(h);
8369 		hpsa_drain_accel_commands(h);
8370 		/* Set 'accelerator path config change' bit */
8371 		dev_warn(&h->pdev->dev,
8372 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8373 			h->events, event_type);
8374 		writel(h->events, &(h->cfgtable->clear_event_notify));
8375 		/* Set the "clear event notify field update" bit 6 */
8376 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8377 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8378 		hpsa_wait_for_clear_event_notify_ack(h);
8379 		scsi_unblock_requests(h->scsi_host);
8380 	} else {
8381 		/* Acknowledge controller notification events. */
8382 		writel(h->events, &(h->cfgtable->clear_event_notify));
8383 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8384 		hpsa_wait_for_clear_event_notify_ack(h);
8385 	}
8386 	return;
8387 }
8388 
8389 /* Check a register on the controller to see if there are configuration
8390  * changes (added/changed/removed logical drives, etc.) which mean that
8391  * we should rescan the controller for devices.
8392  * Also check flag for driver-initiated rescan.
8393  */
8394 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8395 {
8396 	if (h->drv_req_rescan) {
8397 		h->drv_req_rescan = 0;
8398 		return 1;
8399 	}
8400 
8401 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8402 		return 0;
8403 
8404 	h->events = readl(&(h->cfgtable->event_notify));
8405 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8406 }
8407 
8408 /*
8409  * Check if any of the offline devices have become ready
8410  */
8411 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8412 {
8413 	unsigned long flags;
8414 	struct offline_device_entry *d;
8415 	struct list_head *this, *tmp;
8416 
8417 	spin_lock_irqsave(&h->offline_device_lock, flags);
8418 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8419 		d = list_entry(this, struct offline_device_entry,
8420 				offline_list);
8421 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8422 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8423 			spin_lock_irqsave(&h->offline_device_lock, flags);
8424 			list_del(&d->offline_list);
8425 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8426 			return 1;
8427 		}
8428 		spin_lock_irqsave(&h->offline_device_lock, flags);
8429 	}
8430 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8431 	return 0;
8432 }
8433 
8434 static int hpsa_luns_changed(struct ctlr_info *h)
8435 {
8436 	int rc = 1; /* assume there are changes */
8437 	struct ReportLUNdata *logdev = NULL;
8438 
8439 	/* if we can't find out if lun data has changed,
8440 	 * assume that it has.
8441 	 */
8442 
8443 	if (!h->lastlogicals)
8444 		return rc;
8445 
8446 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8447 	if (!logdev)
8448 		return rc;
8449 
8450 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8451 		dev_warn(&h->pdev->dev,
8452 			"report luns failed, can't track lun changes.\n");
8453 		goto out;
8454 	}
8455 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8456 		dev_info(&h->pdev->dev,
8457 			"Lun changes detected.\n");
8458 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8459 		goto out;
8460 	} else
8461 		rc = 0; /* no changes detected. */
8462 out:
8463 	kfree(logdev);
8464 	return rc;
8465 }
8466 
8467 static void hpsa_perform_rescan(struct ctlr_info *h)
8468 {
8469 	struct Scsi_Host *sh = NULL;
8470 	unsigned long flags;
8471 
8472 	/*
8473 	 * Do the scan after the reset
8474 	 */
8475 	spin_lock_irqsave(&h->reset_lock, flags);
8476 	if (h->reset_in_progress) {
8477 		h->drv_req_rescan = 1;
8478 		spin_unlock_irqrestore(&h->reset_lock, flags);
8479 		return;
8480 	}
8481 	spin_unlock_irqrestore(&h->reset_lock, flags);
8482 
8483 	sh = scsi_host_get(h->scsi_host);
8484 	if (sh != NULL) {
8485 		hpsa_scan_start(sh);
8486 		scsi_host_put(sh);
8487 		h->drv_req_rescan = 0;
8488 	}
8489 }
8490 
8491 /*
8492  * watch for controller events
8493  */
8494 static void hpsa_event_monitor_worker(struct work_struct *work)
8495 {
8496 	struct ctlr_info *h = container_of(to_delayed_work(work),
8497 					struct ctlr_info, event_monitor_work);
8498 	unsigned long flags;
8499 
8500 	spin_lock_irqsave(&h->lock, flags);
8501 	if (h->remove_in_progress) {
8502 		spin_unlock_irqrestore(&h->lock, flags);
8503 		return;
8504 	}
8505 	spin_unlock_irqrestore(&h->lock, flags);
8506 
8507 	if (hpsa_ctlr_needs_rescan(h)) {
8508 		hpsa_ack_ctlr_events(h);
8509 		hpsa_perform_rescan(h);
8510 	}
8511 
8512 	spin_lock_irqsave(&h->lock, flags);
8513 	if (!h->remove_in_progress)
8514 		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8515 				HPSA_EVENT_MONITOR_INTERVAL);
8516 	spin_unlock_irqrestore(&h->lock, flags);
8517 }
8518 
8519 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8520 {
8521 	unsigned long flags;
8522 	struct ctlr_info *h = container_of(to_delayed_work(work),
8523 					struct ctlr_info, rescan_ctlr_work);
8524 
8525 	spin_lock_irqsave(&h->lock, flags);
8526 	if (h->remove_in_progress) {
8527 		spin_unlock_irqrestore(&h->lock, flags);
8528 		return;
8529 	}
8530 	spin_unlock_irqrestore(&h->lock, flags);
8531 
8532 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8533 		hpsa_perform_rescan(h);
8534 	} else if (h->discovery_polling) {
8535 		if (hpsa_luns_changed(h)) {
8536 			dev_info(&h->pdev->dev,
8537 				"driver discovery polling rescan.\n");
8538 			hpsa_perform_rescan(h);
8539 		}
8540 	}
8541 	spin_lock_irqsave(&h->lock, flags);
8542 	if (!h->remove_in_progress)
8543 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8544 				h->heartbeat_sample_interval);
8545 	spin_unlock_irqrestore(&h->lock, flags);
8546 }
8547 
8548 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8549 {
8550 	unsigned long flags;
8551 	struct ctlr_info *h = container_of(to_delayed_work(work),
8552 					struct ctlr_info, monitor_ctlr_work);
8553 
8554 	detect_controller_lockup(h);
8555 	if (lockup_detected(h))
8556 		return;
8557 
8558 	spin_lock_irqsave(&h->lock, flags);
8559 	if (!h->remove_in_progress)
8560 		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8561 				h->heartbeat_sample_interval);
8562 	spin_unlock_irqrestore(&h->lock, flags);
8563 }
8564 
8565 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8566 						char *name)
8567 {
8568 	struct workqueue_struct *wq = NULL;
8569 
8570 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8571 	if (!wq)
8572 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8573 
8574 	return wq;
8575 }
8576 
8577 static void hpda_free_ctlr_info(struct ctlr_info *h)
8578 {
8579 	kfree(h->reply_map);
8580 	kfree(h);
8581 }
8582 
8583 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8584 {
8585 	struct ctlr_info *h;
8586 
8587 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8588 	if (!h)
8589 		return NULL;
8590 
8591 	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8592 	if (!h->reply_map) {
8593 		kfree(h);
8594 		return NULL;
8595 	}
8596 	return h;
8597 }
8598 
8599 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8600 {
8601 	int dac, rc;
8602 	struct ctlr_info *h;
8603 	int try_soft_reset = 0;
8604 	unsigned long flags;
8605 	u32 board_id;
8606 
8607 	if (number_of_controllers == 0)
8608 		printk(KERN_INFO DRIVER_NAME "\n");
8609 
8610 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8611 	if (rc < 0) {
8612 		dev_warn(&pdev->dev, "Board ID not found\n");
8613 		return rc;
8614 	}
8615 
8616 	rc = hpsa_init_reset_devices(pdev, board_id);
8617 	if (rc) {
8618 		if (rc != -ENOTSUPP)
8619 			return rc;
8620 		/* If the reset fails in a particular way (it has no way to do
8621 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8622 		 * a soft reset once we get the controller configured up to the
8623 		 * point that it can accept a command.
8624 		 */
8625 		try_soft_reset = 1;
8626 		rc = 0;
8627 	}
8628 
8629 reinit_after_soft_reset:
8630 
8631 	/* Command structures must be aligned on a 32-byte boundary because
8632 	 * the 5 lower bits of the address are used by the hardware. and by
8633 	 * the driver.  See comments in hpsa.h for more info.
8634 	 */
8635 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8636 	h = hpda_alloc_ctlr_info();
8637 	if (!h) {
8638 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8639 		return -ENOMEM;
8640 	}
8641 
8642 	h->pdev = pdev;
8643 
8644 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8645 	INIT_LIST_HEAD(&h->offline_device_list);
8646 	spin_lock_init(&h->lock);
8647 	spin_lock_init(&h->offline_device_lock);
8648 	spin_lock_init(&h->scan_lock);
8649 	spin_lock_init(&h->reset_lock);
8650 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8651 
8652 	/* Allocate and clear per-cpu variable lockup_detected */
8653 	h->lockup_detected = alloc_percpu(u32);
8654 	if (!h->lockup_detected) {
8655 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8656 		rc = -ENOMEM;
8657 		goto clean1;	/* aer/h */
8658 	}
8659 	set_lockup_detected_for_all_cpus(h, 0);
8660 
8661 	rc = hpsa_pci_init(h);
8662 	if (rc)
8663 		goto clean2;	/* lu, aer/h */
8664 
8665 	/* relies on h-> settings made by hpsa_pci_init, including
8666 	 * interrupt_mode h->intr */
8667 	rc = hpsa_scsi_host_alloc(h);
8668 	if (rc)
8669 		goto clean2_5;	/* pci, lu, aer/h */
8670 
8671 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8672 	h->ctlr = number_of_controllers;
8673 	number_of_controllers++;
8674 
8675 	/* configure PCI DMA stuff */
8676 	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8677 	if (rc == 0) {
8678 		dac = 1;
8679 	} else {
8680 		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8681 		if (rc == 0) {
8682 			dac = 0;
8683 		} else {
8684 			dev_err(&pdev->dev, "no suitable DMA available\n");
8685 			goto clean3;	/* shost, pci, lu, aer/h */
8686 		}
8687 	}
8688 
8689 	/* make sure the board interrupts are off */
8690 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8691 
8692 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8693 	if (rc)
8694 		goto clean3;	/* shost, pci, lu, aer/h */
8695 	rc = hpsa_alloc_cmd_pool(h);
8696 	if (rc)
8697 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8698 	rc = hpsa_alloc_sg_chain_blocks(h);
8699 	if (rc)
8700 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8701 	init_waitqueue_head(&h->scan_wait_queue);
8702 	init_waitqueue_head(&h->event_sync_wait_queue);
8703 	mutex_init(&h->reset_mutex);
8704 	h->scan_finished = 1; /* no scan currently in progress */
8705 	h->scan_waiting = 0;
8706 
8707 	pci_set_drvdata(pdev, h);
8708 	h->ndevices = 0;
8709 
8710 	spin_lock_init(&h->devlock);
8711 	rc = hpsa_put_ctlr_into_performant_mode(h);
8712 	if (rc)
8713 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8714 
8715 	/* create the resubmit workqueue */
8716 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8717 	if (!h->rescan_ctlr_wq) {
8718 		rc = -ENOMEM;
8719 		goto clean7;
8720 	}
8721 
8722 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8723 	if (!h->resubmit_wq) {
8724 		rc = -ENOMEM;
8725 		goto clean7;	/* aer/h */
8726 	}
8727 
8728 	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8729 	if (!h->monitor_ctlr_wq) {
8730 		rc = -ENOMEM;
8731 		goto clean7;
8732 	}
8733 
8734 	/*
8735 	 * At this point, the controller is ready to take commands.
8736 	 * Now, if reset_devices and the hard reset didn't work, try
8737 	 * the soft reset and see if that works.
8738 	 */
8739 	if (try_soft_reset) {
8740 
8741 		/* This is kind of gross.  We may or may not get a completion
8742 		 * from the soft reset command, and if we do, then the value
8743 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8744 		 * after the reset throwing away any completions we get during
8745 		 * that time.  Unregister the interrupt handler and register
8746 		 * fake ones to scoop up any residual completions.
8747 		 */
8748 		spin_lock_irqsave(&h->lock, flags);
8749 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8750 		spin_unlock_irqrestore(&h->lock, flags);
8751 		hpsa_free_irqs(h);
8752 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8753 					hpsa_intx_discard_completions);
8754 		if (rc) {
8755 			dev_warn(&h->pdev->dev,
8756 				"Failed to request_irq after soft reset.\n");
8757 			/*
8758 			 * cannot goto clean7 or free_irqs will be called
8759 			 * again. Instead, do its work
8760 			 */
8761 			hpsa_free_performant_mode(h);	/* clean7 */
8762 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8763 			hpsa_free_cmd_pool(h);		/* clean5 */
8764 			/*
8765 			 * skip hpsa_free_irqs(h) clean4 since that
8766 			 * was just called before request_irqs failed
8767 			 */
8768 			goto clean3;
8769 		}
8770 
8771 		rc = hpsa_kdump_soft_reset(h);
8772 		if (rc)
8773 			/* Neither hard nor soft reset worked, we're hosed. */
8774 			goto clean7;
8775 
8776 		dev_info(&h->pdev->dev, "Board READY.\n");
8777 		dev_info(&h->pdev->dev,
8778 			"Waiting for stale completions to drain.\n");
8779 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8780 		msleep(10000);
8781 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8782 
8783 		rc = controller_reset_failed(h->cfgtable);
8784 		if (rc)
8785 			dev_info(&h->pdev->dev,
8786 				"Soft reset appears to have failed.\n");
8787 
8788 		/* since the controller's reset, we have to go back and re-init
8789 		 * everything.  Easiest to just forget what we've done and do it
8790 		 * all over again.
8791 		 */
8792 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8793 		try_soft_reset = 0;
8794 		if (rc)
8795 			/* don't goto clean, we already unallocated */
8796 			return -ENODEV;
8797 
8798 		goto reinit_after_soft_reset;
8799 	}
8800 
8801 	/* Enable Accelerated IO path at driver layer */
8802 	h->acciopath_status = 1;
8803 	/* Disable discovery polling.*/
8804 	h->discovery_polling = 0;
8805 
8806 
8807 	/* Turn the interrupts on so we can service requests */
8808 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8809 
8810 	hpsa_hba_inquiry(h);
8811 
8812 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8813 	if (!h->lastlogicals)
8814 		dev_info(&h->pdev->dev,
8815 			"Can't track change to report lun data\n");
8816 
8817 	/* hook into SCSI subsystem */
8818 	rc = hpsa_scsi_add_host(h);
8819 	if (rc)
8820 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8821 
8822 	/* Monitor the controller for firmware lockups */
8823 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8824 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8825 	schedule_delayed_work(&h->monitor_ctlr_work,
8826 				h->heartbeat_sample_interval);
8827 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8828 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8829 				h->heartbeat_sample_interval);
8830 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8831 	schedule_delayed_work(&h->event_monitor_work,
8832 				HPSA_EVENT_MONITOR_INTERVAL);
8833 	return 0;
8834 
8835 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8836 	hpsa_free_performant_mode(h);
8837 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8838 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8839 	hpsa_free_sg_chain_blocks(h);
8840 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8841 	hpsa_free_cmd_pool(h);
8842 clean4: /* irq, shost, pci, lu, aer/h */
8843 	hpsa_free_irqs(h);
8844 clean3: /* shost, pci, lu, aer/h */
8845 	scsi_host_put(h->scsi_host);
8846 	h->scsi_host = NULL;
8847 clean2_5: /* pci, lu, aer/h */
8848 	hpsa_free_pci_init(h);
8849 clean2: /* lu, aer/h */
8850 	if (h->lockup_detected) {
8851 		free_percpu(h->lockup_detected);
8852 		h->lockup_detected = NULL;
8853 	}
8854 clean1:	/* wq/aer/h */
8855 	if (h->resubmit_wq) {
8856 		destroy_workqueue(h->resubmit_wq);
8857 		h->resubmit_wq = NULL;
8858 	}
8859 	if (h->rescan_ctlr_wq) {
8860 		destroy_workqueue(h->rescan_ctlr_wq);
8861 		h->rescan_ctlr_wq = NULL;
8862 	}
8863 	if (h->monitor_ctlr_wq) {
8864 		destroy_workqueue(h->monitor_ctlr_wq);
8865 		h->monitor_ctlr_wq = NULL;
8866 	}
8867 	kfree(h);
8868 	return rc;
8869 }
8870 
8871 static void hpsa_flush_cache(struct ctlr_info *h)
8872 {
8873 	char *flush_buf;
8874 	struct CommandList *c;
8875 	int rc;
8876 
8877 	if (unlikely(lockup_detected(h)))
8878 		return;
8879 	flush_buf = kzalloc(4, GFP_KERNEL);
8880 	if (!flush_buf)
8881 		return;
8882 
8883 	c = cmd_alloc(h);
8884 
8885 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8886 		RAID_CTLR_LUNID, TYPE_CMD)) {
8887 		goto out;
8888 	}
8889 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8890 			DEFAULT_TIMEOUT);
8891 	if (rc)
8892 		goto out;
8893 	if (c->err_info->CommandStatus != 0)
8894 out:
8895 		dev_warn(&h->pdev->dev,
8896 			"error flushing cache on controller\n");
8897 	cmd_free(h, c);
8898 	kfree(flush_buf);
8899 }
8900 
8901 /* Make controller gather fresh report lun data each time we
8902  * send down a report luns request
8903  */
8904 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8905 {
8906 	u32 *options;
8907 	struct CommandList *c;
8908 	int rc;
8909 
8910 	/* Don't bother trying to set diag options if locked up */
8911 	if (unlikely(h->lockup_detected))
8912 		return;
8913 
8914 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8915 	if (!options)
8916 		return;
8917 
8918 	c = cmd_alloc(h);
8919 
8920 	/* first, get the current diag options settings */
8921 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8922 		RAID_CTLR_LUNID, TYPE_CMD))
8923 		goto errout;
8924 
8925 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8926 			NO_TIMEOUT);
8927 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8928 		goto errout;
8929 
8930 	/* Now, set the bit for disabling the RLD caching */
8931 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8932 
8933 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8934 		RAID_CTLR_LUNID, TYPE_CMD))
8935 		goto errout;
8936 
8937 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8938 			NO_TIMEOUT);
8939 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8940 		goto errout;
8941 
8942 	/* Now verify that it got set: */
8943 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8944 		RAID_CTLR_LUNID, TYPE_CMD))
8945 		goto errout;
8946 
8947 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8948 			NO_TIMEOUT);
8949 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8950 		goto errout;
8951 
8952 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8953 		goto out;
8954 
8955 errout:
8956 	dev_err(&h->pdev->dev,
8957 			"Error: failed to disable report lun data caching.\n");
8958 out:
8959 	cmd_free(h, c);
8960 	kfree(options);
8961 }
8962 
8963 static void __hpsa_shutdown(struct pci_dev *pdev)
8964 {
8965 	struct ctlr_info *h;
8966 
8967 	h = pci_get_drvdata(pdev);
8968 	/* Turn board interrupts off  and send the flush cache command
8969 	 * sendcmd will turn off interrupt, and send the flush...
8970 	 * To write all data in the battery backed cache to disks
8971 	 */
8972 	hpsa_flush_cache(h);
8973 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8974 	hpsa_free_irqs(h);			/* init_one 4 */
8975 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8976 }
8977 
8978 static void hpsa_shutdown(struct pci_dev *pdev)
8979 {
8980 	__hpsa_shutdown(pdev);
8981 	pci_disable_device(pdev);
8982 }
8983 
8984 static void hpsa_free_device_info(struct ctlr_info *h)
8985 {
8986 	int i;
8987 
8988 	for (i = 0; i < h->ndevices; i++) {
8989 		kfree(h->dev[i]);
8990 		h->dev[i] = NULL;
8991 	}
8992 }
8993 
8994 static void hpsa_remove_one(struct pci_dev *pdev)
8995 {
8996 	struct ctlr_info *h;
8997 	unsigned long flags;
8998 
8999 	if (pci_get_drvdata(pdev) == NULL) {
9000 		dev_err(&pdev->dev, "unable to remove device\n");
9001 		return;
9002 	}
9003 	h = pci_get_drvdata(pdev);
9004 
9005 	/* Get rid of any controller monitoring work items */
9006 	spin_lock_irqsave(&h->lock, flags);
9007 	h->remove_in_progress = 1;
9008 	spin_unlock_irqrestore(&h->lock, flags);
9009 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9010 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9011 	cancel_delayed_work_sync(&h->event_monitor_work);
9012 	destroy_workqueue(h->rescan_ctlr_wq);
9013 	destroy_workqueue(h->resubmit_wq);
9014 	destroy_workqueue(h->monitor_ctlr_wq);
9015 
9016 	hpsa_delete_sas_host(h);
9017 
9018 	/*
9019 	 * Call before disabling interrupts.
9020 	 * scsi_remove_host can trigger I/O operations especially
9021 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9022 	 * operations which cannot complete and will hang the system.
9023 	 */
9024 	if (h->scsi_host)
9025 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9026 	/* includes hpsa_free_irqs - init_one 4 */
9027 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9028 	__hpsa_shutdown(pdev);
9029 
9030 	hpsa_free_device_info(h);		/* scan */
9031 
9032 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9033 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9034 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9035 	hpsa_free_performant_mode(h);			/* init_one 7 */
9036 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9037 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9038 	kfree(h->lastlogicals);
9039 
9040 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9041 
9042 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9043 	h->scsi_host = NULL;				/* init_one 3 */
9044 
9045 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9046 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9047 
9048 	free_percpu(h->lockup_detected);		/* init_one 2 */
9049 	h->lockup_detected = NULL;			/* init_one 2 */
9050 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9051 
9052 	hpda_free_ctlr_info(h);				/* init_one 1 */
9053 }
9054 
9055 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9056 	__attribute__((unused)) pm_message_t state)
9057 {
9058 	return -ENOSYS;
9059 }
9060 
9061 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9062 {
9063 	return -ENOSYS;
9064 }
9065 
9066 static struct pci_driver hpsa_pci_driver = {
9067 	.name = HPSA,
9068 	.probe = hpsa_init_one,
9069 	.remove = hpsa_remove_one,
9070 	.id_table = hpsa_pci_device_id,	/* id_table */
9071 	.shutdown = hpsa_shutdown,
9072 	.suspend = hpsa_suspend,
9073 	.resume = hpsa_resume,
9074 };
9075 
9076 /* Fill in bucket_map[], given nsgs (the max number of
9077  * scatter gather elements supported) and bucket[],
9078  * which is an array of 8 integers.  The bucket[] array
9079  * contains 8 different DMA transfer sizes (in 16
9080  * byte increments) which the controller uses to fetch
9081  * commands.  This function fills in bucket_map[], which
9082  * maps a given number of scatter gather elements to one of
9083  * the 8 DMA transfer sizes.  The point of it is to allow the
9084  * controller to only do as much DMA as needed to fetch the
9085  * command, with the DMA transfer size encoded in the lower
9086  * bits of the command address.
9087  */
9088 static void  calc_bucket_map(int bucket[], int num_buckets,
9089 	int nsgs, int min_blocks, u32 *bucket_map)
9090 {
9091 	int i, j, b, size;
9092 
9093 	/* Note, bucket_map must have nsgs+1 entries. */
9094 	for (i = 0; i <= nsgs; i++) {
9095 		/* Compute size of a command with i SG entries */
9096 		size = i + min_blocks;
9097 		b = num_buckets; /* Assume the biggest bucket */
9098 		/* Find the bucket that is just big enough */
9099 		for (j = 0; j < num_buckets; j++) {
9100 			if (bucket[j] >= size) {
9101 				b = j;
9102 				break;
9103 			}
9104 		}
9105 		/* for a command with i SG entries, use bucket b. */
9106 		bucket_map[i] = b;
9107 	}
9108 }
9109 
9110 /*
9111  * return -ENODEV on err, 0 on success (or no action)
9112  * allocates numerous items that must be freed later
9113  */
9114 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9115 {
9116 	int i;
9117 	unsigned long register_value;
9118 	unsigned long transMethod = CFGTBL_Trans_Performant |
9119 			(trans_support & CFGTBL_Trans_use_short_tags) |
9120 				CFGTBL_Trans_enable_directed_msix |
9121 			(trans_support & (CFGTBL_Trans_io_accel1 |
9122 				CFGTBL_Trans_io_accel2));
9123 	struct access_method access = SA5_performant_access;
9124 
9125 	/* This is a bit complicated.  There are 8 registers on
9126 	 * the controller which we write to to tell it 8 different
9127 	 * sizes of commands which there may be.  It's a way of
9128 	 * reducing the DMA done to fetch each command.  Encoded into
9129 	 * each command's tag are 3 bits which communicate to the controller
9130 	 * which of the eight sizes that command fits within.  The size of
9131 	 * each command depends on how many scatter gather entries there are.
9132 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9133 	 * with the number of 16-byte blocks a command of that size requires.
9134 	 * The smallest command possible requires 5 such 16 byte blocks.
9135 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9136 	 * blocks.  Note, this only extends to the SG entries contained
9137 	 * within the command block, and does not extend to chained blocks
9138 	 * of SG elements.   bft[] contains the eight values we write to
9139 	 * the registers.  They are not evenly distributed, but have more
9140 	 * sizes for small commands, and fewer sizes for larger commands.
9141 	 */
9142 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9143 #define MIN_IOACCEL2_BFT_ENTRY 5
9144 #define HPSA_IOACCEL2_HEADER_SZ 4
9145 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9146 			13, 14, 15, 16, 17, 18, 19,
9147 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9148 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9149 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9150 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9151 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9152 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9153 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9154 	/*  5 = 1 s/g entry or 4k
9155 	 *  6 = 2 s/g entry or 8k
9156 	 *  8 = 4 s/g entry or 16k
9157 	 * 10 = 6 s/g entry or 24k
9158 	 */
9159 
9160 	/* If the controller supports either ioaccel method then
9161 	 * we can also use the RAID stack submit path that does not
9162 	 * perform the superfluous readl() after each command submission.
9163 	 */
9164 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9165 		access = SA5_performant_access_no_read;
9166 
9167 	/* Controller spec: zero out this buffer. */
9168 	for (i = 0; i < h->nreply_queues; i++)
9169 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9170 
9171 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9172 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9173 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9174 	for (i = 0; i < 8; i++)
9175 		writel(bft[i], &h->transtable->BlockFetch[i]);
9176 
9177 	/* size of controller ring buffer */
9178 	writel(h->max_commands, &h->transtable->RepQSize);
9179 	writel(h->nreply_queues, &h->transtable->RepQCount);
9180 	writel(0, &h->transtable->RepQCtrAddrLow32);
9181 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9182 
9183 	for (i = 0; i < h->nreply_queues; i++) {
9184 		writel(0, &h->transtable->RepQAddr[i].upper);
9185 		writel(h->reply_queue[i].busaddr,
9186 			&h->transtable->RepQAddr[i].lower);
9187 	}
9188 
9189 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9190 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9191 	/*
9192 	 * enable outbound interrupt coalescing in accelerator mode;
9193 	 */
9194 	if (trans_support & CFGTBL_Trans_io_accel1) {
9195 		access = SA5_ioaccel_mode1_access;
9196 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9197 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9198 	} else
9199 		if (trans_support & CFGTBL_Trans_io_accel2)
9200 			access = SA5_ioaccel_mode2_access;
9201 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9202 	if (hpsa_wait_for_mode_change_ack(h)) {
9203 		dev_err(&h->pdev->dev,
9204 			"performant mode problem - doorbell timeout\n");
9205 		return -ENODEV;
9206 	}
9207 	register_value = readl(&(h->cfgtable->TransportActive));
9208 	if (!(register_value & CFGTBL_Trans_Performant)) {
9209 		dev_err(&h->pdev->dev,
9210 			"performant mode problem - transport not active\n");
9211 		return -ENODEV;
9212 	}
9213 	/* Change the access methods to the performant access methods */
9214 	h->access = access;
9215 	h->transMethod = transMethod;
9216 
9217 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9218 		(trans_support & CFGTBL_Trans_io_accel2)))
9219 		return 0;
9220 
9221 	if (trans_support & CFGTBL_Trans_io_accel1) {
9222 		/* Set up I/O accelerator mode */
9223 		for (i = 0; i < h->nreply_queues; i++) {
9224 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9225 			h->reply_queue[i].current_entry =
9226 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9227 		}
9228 		bft[7] = h->ioaccel_maxsg + 8;
9229 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9230 				h->ioaccel1_blockFetchTable);
9231 
9232 		/* initialize all reply queue entries to unused */
9233 		for (i = 0; i < h->nreply_queues; i++)
9234 			memset(h->reply_queue[i].head,
9235 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9236 				h->reply_queue_size);
9237 
9238 		/* set all the constant fields in the accelerator command
9239 		 * frames once at init time to save CPU cycles later.
9240 		 */
9241 		for (i = 0; i < h->nr_cmds; i++) {
9242 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9243 
9244 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9245 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9246 					(i * sizeof(struct ErrorInfo)));
9247 			cp->err_info_len = sizeof(struct ErrorInfo);
9248 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9249 			cp->host_context_flags =
9250 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9251 			cp->timeout_sec = 0;
9252 			cp->ReplyQueue = 0;
9253 			cp->tag =
9254 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9255 			cp->host_addr =
9256 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9257 					(i * sizeof(struct io_accel1_cmd)));
9258 		}
9259 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9260 		u64 cfg_offset, cfg_base_addr_index;
9261 		u32 bft2_offset, cfg_base_addr;
9262 		int rc;
9263 
9264 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9265 			&cfg_base_addr_index, &cfg_offset);
9266 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9267 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9268 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9269 				4, h->ioaccel2_blockFetchTable);
9270 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9271 		BUILD_BUG_ON(offsetof(struct CfgTable,
9272 				io_accel_request_size_offset) != 0xb8);
9273 		h->ioaccel2_bft2_regs =
9274 			remap_pci_mem(pci_resource_start(h->pdev,
9275 					cfg_base_addr_index) +
9276 					cfg_offset + bft2_offset,
9277 					ARRAY_SIZE(bft2) *
9278 					sizeof(*h->ioaccel2_bft2_regs));
9279 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9280 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9281 	}
9282 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9283 	if (hpsa_wait_for_mode_change_ack(h)) {
9284 		dev_err(&h->pdev->dev,
9285 			"performant mode problem - enabling ioaccel mode\n");
9286 		return -ENODEV;
9287 	}
9288 	return 0;
9289 }
9290 
9291 /* Free ioaccel1 mode command blocks and block fetch table */
9292 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9293 {
9294 	if (h->ioaccel_cmd_pool) {
9295 		pci_free_consistent(h->pdev,
9296 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9297 			h->ioaccel_cmd_pool,
9298 			h->ioaccel_cmd_pool_dhandle);
9299 		h->ioaccel_cmd_pool = NULL;
9300 		h->ioaccel_cmd_pool_dhandle = 0;
9301 	}
9302 	kfree(h->ioaccel1_blockFetchTable);
9303 	h->ioaccel1_blockFetchTable = NULL;
9304 }
9305 
9306 /* Allocate ioaccel1 mode command blocks and block fetch table */
9307 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9308 {
9309 	h->ioaccel_maxsg =
9310 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9311 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9312 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9313 
9314 	/* Command structures must be aligned on a 128-byte boundary
9315 	 * because the 7 lower bits of the address are used by the
9316 	 * hardware.
9317 	 */
9318 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9319 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9320 	h->ioaccel_cmd_pool =
9321 		dma_alloc_coherent(&h->pdev->dev,
9322 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9323 			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9324 
9325 	h->ioaccel1_blockFetchTable =
9326 		kmalloc(((h->ioaccel_maxsg + 1) *
9327 				sizeof(u32)), GFP_KERNEL);
9328 
9329 	if ((h->ioaccel_cmd_pool == NULL) ||
9330 		(h->ioaccel1_blockFetchTable == NULL))
9331 		goto clean_up;
9332 
9333 	memset(h->ioaccel_cmd_pool, 0,
9334 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9335 	return 0;
9336 
9337 clean_up:
9338 	hpsa_free_ioaccel1_cmd_and_bft(h);
9339 	return -ENOMEM;
9340 }
9341 
9342 /* Free ioaccel2 mode command blocks and block fetch table */
9343 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9344 {
9345 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9346 
9347 	if (h->ioaccel2_cmd_pool) {
9348 		pci_free_consistent(h->pdev,
9349 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9350 			h->ioaccel2_cmd_pool,
9351 			h->ioaccel2_cmd_pool_dhandle);
9352 		h->ioaccel2_cmd_pool = NULL;
9353 		h->ioaccel2_cmd_pool_dhandle = 0;
9354 	}
9355 	kfree(h->ioaccel2_blockFetchTable);
9356 	h->ioaccel2_blockFetchTable = NULL;
9357 }
9358 
9359 /* Allocate ioaccel2 mode command blocks and block fetch table */
9360 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9361 {
9362 	int rc;
9363 
9364 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9365 
9366 	h->ioaccel_maxsg =
9367 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9368 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9369 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9370 
9371 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9372 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9373 	h->ioaccel2_cmd_pool =
9374 		dma_alloc_coherent(&h->pdev->dev,
9375 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9376 			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9377 
9378 	h->ioaccel2_blockFetchTable =
9379 		kmalloc(((h->ioaccel_maxsg + 1) *
9380 				sizeof(u32)), GFP_KERNEL);
9381 
9382 	if ((h->ioaccel2_cmd_pool == NULL) ||
9383 		(h->ioaccel2_blockFetchTable == NULL)) {
9384 		rc = -ENOMEM;
9385 		goto clean_up;
9386 	}
9387 
9388 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9389 	if (rc)
9390 		goto clean_up;
9391 
9392 	memset(h->ioaccel2_cmd_pool, 0,
9393 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9394 	return 0;
9395 
9396 clean_up:
9397 	hpsa_free_ioaccel2_cmd_and_bft(h);
9398 	return rc;
9399 }
9400 
9401 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9402 static void hpsa_free_performant_mode(struct ctlr_info *h)
9403 {
9404 	kfree(h->blockFetchTable);
9405 	h->blockFetchTable = NULL;
9406 	hpsa_free_reply_queues(h);
9407 	hpsa_free_ioaccel1_cmd_and_bft(h);
9408 	hpsa_free_ioaccel2_cmd_and_bft(h);
9409 }
9410 
9411 /* return -ENODEV on error, 0 on success (or no action)
9412  * allocates numerous items that must be freed later
9413  */
9414 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9415 {
9416 	u32 trans_support;
9417 	unsigned long transMethod = CFGTBL_Trans_Performant |
9418 					CFGTBL_Trans_use_short_tags;
9419 	int i, rc;
9420 
9421 	if (hpsa_simple_mode)
9422 		return 0;
9423 
9424 	trans_support = readl(&(h->cfgtable->TransportSupport));
9425 	if (!(trans_support & PERFORMANT_MODE))
9426 		return 0;
9427 
9428 	/* Check for I/O accelerator mode support */
9429 	if (trans_support & CFGTBL_Trans_io_accel1) {
9430 		transMethod |= CFGTBL_Trans_io_accel1 |
9431 				CFGTBL_Trans_enable_directed_msix;
9432 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9433 		if (rc)
9434 			return rc;
9435 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9436 		transMethod |= CFGTBL_Trans_io_accel2 |
9437 				CFGTBL_Trans_enable_directed_msix;
9438 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9439 		if (rc)
9440 			return rc;
9441 	}
9442 
9443 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9444 	hpsa_get_max_perf_mode_cmds(h);
9445 	/* Performant mode ring buffer and supporting data structures */
9446 	h->reply_queue_size = h->max_commands * sizeof(u64);
9447 
9448 	for (i = 0; i < h->nreply_queues; i++) {
9449 		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9450 						h->reply_queue_size,
9451 						&h->reply_queue[i].busaddr,
9452 						GFP_KERNEL);
9453 		if (!h->reply_queue[i].head) {
9454 			rc = -ENOMEM;
9455 			goto clean1;	/* rq, ioaccel */
9456 		}
9457 		h->reply_queue[i].size = h->max_commands;
9458 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9459 		h->reply_queue[i].current_entry = 0;
9460 	}
9461 
9462 	/* Need a block fetch table for performant mode */
9463 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9464 				sizeof(u32)), GFP_KERNEL);
9465 	if (!h->blockFetchTable) {
9466 		rc = -ENOMEM;
9467 		goto clean1;	/* rq, ioaccel */
9468 	}
9469 
9470 	rc = hpsa_enter_performant_mode(h, trans_support);
9471 	if (rc)
9472 		goto clean2;	/* bft, rq, ioaccel */
9473 	return 0;
9474 
9475 clean2:	/* bft, rq, ioaccel */
9476 	kfree(h->blockFetchTable);
9477 	h->blockFetchTable = NULL;
9478 clean1:	/* rq, ioaccel */
9479 	hpsa_free_reply_queues(h);
9480 	hpsa_free_ioaccel1_cmd_and_bft(h);
9481 	hpsa_free_ioaccel2_cmd_and_bft(h);
9482 	return rc;
9483 }
9484 
9485 static int is_accelerated_cmd(struct CommandList *c)
9486 {
9487 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9488 }
9489 
9490 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9491 {
9492 	struct CommandList *c = NULL;
9493 	int i, accel_cmds_out;
9494 	int refcount;
9495 
9496 	do { /* wait for all outstanding ioaccel commands to drain out */
9497 		accel_cmds_out = 0;
9498 		for (i = 0; i < h->nr_cmds; i++) {
9499 			c = h->cmd_pool + i;
9500 			refcount = atomic_inc_return(&c->refcount);
9501 			if (refcount > 1) /* Command is allocated */
9502 				accel_cmds_out += is_accelerated_cmd(c);
9503 			cmd_free(h, c);
9504 		}
9505 		if (accel_cmds_out <= 0)
9506 			break;
9507 		msleep(100);
9508 	} while (1);
9509 }
9510 
9511 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9512 				struct hpsa_sas_port *hpsa_sas_port)
9513 {
9514 	struct hpsa_sas_phy *hpsa_sas_phy;
9515 	struct sas_phy *phy;
9516 
9517 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9518 	if (!hpsa_sas_phy)
9519 		return NULL;
9520 
9521 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9522 		hpsa_sas_port->next_phy_index);
9523 	if (!phy) {
9524 		kfree(hpsa_sas_phy);
9525 		return NULL;
9526 	}
9527 
9528 	hpsa_sas_port->next_phy_index++;
9529 	hpsa_sas_phy->phy = phy;
9530 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9531 
9532 	return hpsa_sas_phy;
9533 }
9534 
9535 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9536 {
9537 	struct sas_phy *phy = hpsa_sas_phy->phy;
9538 
9539 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9540 	if (hpsa_sas_phy->added_to_port)
9541 		list_del(&hpsa_sas_phy->phy_list_entry);
9542 	sas_phy_delete(phy);
9543 	kfree(hpsa_sas_phy);
9544 }
9545 
9546 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9547 {
9548 	int rc;
9549 	struct hpsa_sas_port *hpsa_sas_port;
9550 	struct sas_phy *phy;
9551 	struct sas_identify *identify;
9552 
9553 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9554 	phy = hpsa_sas_phy->phy;
9555 
9556 	identify = &phy->identify;
9557 	memset(identify, 0, sizeof(*identify));
9558 	identify->sas_address = hpsa_sas_port->sas_address;
9559 	identify->device_type = SAS_END_DEVICE;
9560 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9561 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9562 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9563 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9564 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9565 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9566 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9567 
9568 	rc = sas_phy_add(hpsa_sas_phy->phy);
9569 	if (rc)
9570 		return rc;
9571 
9572 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9573 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9574 			&hpsa_sas_port->phy_list_head);
9575 	hpsa_sas_phy->added_to_port = true;
9576 
9577 	return 0;
9578 }
9579 
9580 static int
9581 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9582 				struct sas_rphy *rphy)
9583 {
9584 	struct sas_identify *identify;
9585 
9586 	identify = &rphy->identify;
9587 	identify->sas_address = hpsa_sas_port->sas_address;
9588 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9589 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9590 
9591 	return sas_rphy_add(rphy);
9592 }
9593 
9594 static struct hpsa_sas_port
9595 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9596 				u64 sas_address)
9597 {
9598 	int rc;
9599 	struct hpsa_sas_port *hpsa_sas_port;
9600 	struct sas_port *port;
9601 
9602 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9603 	if (!hpsa_sas_port)
9604 		return NULL;
9605 
9606 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9607 	hpsa_sas_port->parent_node = hpsa_sas_node;
9608 
9609 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9610 	if (!port)
9611 		goto free_hpsa_port;
9612 
9613 	rc = sas_port_add(port);
9614 	if (rc)
9615 		goto free_sas_port;
9616 
9617 	hpsa_sas_port->port = port;
9618 	hpsa_sas_port->sas_address = sas_address;
9619 	list_add_tail(&hpsa_sas_port->port_list_entry,
9620 			&hpsa_sas_node->port_list_head);
9621 
9622 	return hpsa_sas_port;
9623 
9624 free_sas_port:
9625 	sas_port_free(port);
9626 free_hpsa_port:
9627 	kfree(hpsa_sas_port);
9628 
9629 	return NULL;
9630 }
9631 
9632 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9633 {
9634 	struct hpsa_sas_phy *hpsa_sas_phy;
9635 	struct hpsa_sas_phy *next;
9636 
9637 	list_for_each_entry_safe(hpsa_sas_phy, next,
9638 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9639 		hpsa_free_sas_phy(hpsa_sas_phy);
9640 
9641 	sas_port_delete(hpsa_sas_port->port);
9642 	list_del(&hpsa_sas_port->port_list_entry);
9643 	kfree(hpsa_sas_port);
9644 }
9645 
9646 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9647 {
9648 	struct hpsa_sas_node *hpsa_sas_node;
9649 
9650 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9651 	if (hpsa_sas_node) {
9652 		hpsa_sas_node->parent_dev = parent_dev;
9653 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9654 	}
9655 
9656 	return hpsa_sas_node;
9657 }
9658 
9659 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9660 {
9661 	struct hpsa_sas_port *hpsa_sas_port;
9662 	struct hpsa_sas_port *next;
9663 
9664 	if (!hpsa_sas_node)
9665 		return;
9666 
9667 	list_for_each_entry_safe(hpsa_sas_port, next,
9668 			&hpsa_sas_node->port_list_head, port_list_entry)
9669 		hpsa_free_sas_port(hpsa_sas_port);
9670 
9671 	kfree(hpsa_sas_node);
9672 }
9673 
9674 static struct hpsa_scsi_dev_t
9675 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9676 					struct sas_rphy *rphy)
9677 {
9678 	int i;
9679 	struct hpsa_scsi_dev_t *device;
9680 
9681 	for (i = 0; i < h->ndevices; i++) {
9682 		device = h->dev[i];
9683 		if (!device->sas_port)
9684 			continue;
9685 		if (device->sas_port->rphy == rphy)
9686 			return device;
9687 	}
9688 
9689 	return NULL;
9690 }
9691 
9692 static int hpsa_add_sas_host(struct ctlr_info *h)
9693 {
9694 	int rc;
9695 	struct device *parent_dev;
9696 	struct hpsa_sas_node *hpsa_sas_node;
9697 	struct hpsa_sas_port *hpsa_sas_port;
9698 	struct hpsa_sas_phy *hpsa_sas_phy;
9699 
9700 	parent_dev = &h->scsi_host->shost_dev;
9701 
9702 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9703 	if (!hpsa_sas_node)
9704 		return -ENOMEM;
9705 
9706 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9707 	if (!hpsa_sas_port) {
9708 		rc = -ENODEV;
9709 		goto free_sas_node;
9710 	}
9711 
9712 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9713 	if (!hpsa_sas_phy) {
9714 		rc = -ENODEV;
9715 		goto free_sas_port;
9716 	}
9717 
9718 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9719 	if (rc)
9720 		goto free_sas_phy;
9721 
9722 	h->sas_host = hpsa_sas_node;
9723 
9724 	return 0;
9725 
9726 free_sas_phy:
9727 	hpsa_free_sas_phy(hpsa_sas_phy);
9728 free_sas_port:
9729 	hpsa_free_sas_port(hpsa_sas_port);
9730 free_sas_node:
9731 	hpsa_free_sas_node(hpsa_sas_node);
9732 
9733 	return rc;
9734 }
9735 
9736 static void hpsa_delete_sas_host(struct ctlr_info *h)
9737 {
9738 	hpsa_free_sas_node(h->sas_host);
9739 }
9740 
9741 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9742 				struct hpsa_scsi_dev_t *device)
9743 {
9744 	int rc;
9745 	struct hpsa_sas_port *hpsa_sas_port;
9746 	struct sas_rphy *rphy;
9747 
9748 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9749 	if (!hpsa_sas_port)
9750 		return -ENOMEM;
9751 
9752 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9753 	if (!rphy) {
9754 		rc = -ENODEV;
9755 		goto free_sas_port;
9756 	}
9757 
9758 	hpsa_sas_port->rphy = rphy;
9759 	device->sas_port = hpsa_sas_port;
9760 
9761 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9762 	if (rc)
9763 		goto free_sas_port;
9764 
9765 	return 0;
9766 
9767 free_sas_port:
9768 	hpsa_free_sas_port(hpsa_sas_port);
9769 	device->sas_port = NULL;
9770 
9771 	return rc;
9772 }
9773 
9774 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9775 {
9776 	if (device->sas_port) {
9777 		hpsa_free_sas_port(device->sas_port);
9778 		device->sas_port = NULL;
9779 	}
9780 }
9781 
9782 static int
9783 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9784 {
9785 	return 0;
9786 }
9787 
9788 static int
9789 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9790 {
9791 	struct Scsi_Host *shost = phy_to_shost(rphy);
9792 	struct ctlr_info *h;
9793 	struct hpsa_scsi_dev_t *sd;
9794 
9795 	if (!shost)
9796 		return -ENXIO;
9797 
9798 	h = shost_to_hba(shost);
9799 
9800 	if (!h)
9801 		return -ENXIO;
9802 
9803 	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9804 	if (!sd)
9805 		return -ENXIO;
9806 
9807 	*identifier = sd->eli;
9808 
9809 	return 0;
9810 }
9811 
9812 static int
9813 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9814 {
9815 	return -ENXIO;
9816 }
9817 
9818 static int
9819 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9820 {
9821 	return 0;
9822 }
9823 
9824 static int
9825 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9826 {
9827 	return 0;
9828 }
9829 
9830 static int
9831 hpsa_sas_phy_setup(struct sas_phy *phy)
9832 {
9833 	return 0;
9834 }
9835 
9836 static void
9837 hpsa_sas_phy_release(struct sas_phy *phy)
9838 {
9839 }
9840 
9841 static int
9842 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9843 {
9844 	return -EINVAL;
9845 }
9846 
9847 static struct sas_function_template hpsa_sas_transport_functions = {
9848 	.get_linkerrors = hpsa_sas_get_linkerrors,
9849 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9850 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9851 	.phy_reset = hpsa_sas_phy_reset,
9852 	.phy_enable = hpsa_sas_phy_enable,
9853 	.phy_setup = hpsa_sas_phy_setup,
9854 	.phy_release = hpsa_sas_phy_release,
9855 	.set_phy_speed = hpsa_sas_phy_speed,
9856 };
9857 
9858 /*
9859  *  This is it.  Register the PCI driver information for the cards we control
9860  *  the OS will call our registered routines when it finds one of our cards.
9861  */
9862 static int __init hpsa_init(void)
9863 {
9864 	int rc;
9865 
9866 	hpsa_sas_transport_template =
9867 		sas_attach_transport(&hpsa_sas_transport_functions);
9868 	if (!hpsa_sas_transport_template)
9869 		return -ENODEV;
9870 
9871 	rc = pci_register_driver(&hpsa_pci_driver);
9872 
9873 	if (rc)
9874 		sas_release_transport(hpsa_sas_transport_template);
9875 
9876 	return rc;
9877 }
9878 
9879 static void __exit hpsa_cleanup(void)
9880 {
9881 	pci_unregister_driver(&hpsa_pci_driver);
9882 	sas_release_transport(hpsa_sas_transport_template);
9883 }
9884 
9885 static void __attribute__((unused)) verify_offsets(void)
9886 {
9887 #define VERIFY_OFFSET(member, offset) \
9888 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9889 
9890 	VERIFY_OFFSET(structure_size, 0);
9891 	VERIFY_OFFSET(volume_blk_size, 4);
9892 	VERIFY_OFFSET(volume_blk_cnt, 8);
9893 	VERIFY_OFFSET(phys_blk_shift, 16);
9894 	VERIFY_OFFSET(parity_rotation_shift, 17);
9895 	VERIFY_OFFSET(strip_size, 18);
9896 	VERIFY_OFFSET(disk_starting_blk, 20);
9897 	VERIFY_OFFSET(disk_blk_cnt, 28);
9898 	VERIFY_OFFSET(data_disks_per_row, 36);
9899 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9900 	VERIFY_OFFSET(row_cnt, 40);
9901 	VERIFY_OFFSET(layout_map_count, 42);
9902 	VERIFY_OFFSET(flags, 44);
9903 	VERIFY_OFFSET(dekindex, 46);
9904 	/* VERIFY_OFFSET(reserved, 48 */
9905 	VERIFY_OFFSET(data, 64);
9906 
9907 #undef VERIFY_OFFSET
9908 
9909 #define VERIFY_OFFSET(member, offset) \
9910 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9911 
9912 	VERIFY_OFFSET(IU_type, 0);
9913 	VERIFY_OFFSET(direction, 1);
9914 	VERIFY_OFFSET(reply_queue, 2);
9915 	/* VERIFY_OFFSET(reserved1, 3);  */
9916 	VERIFY_OFFSET(scsi_nexus, 4);
9917 	VERIFY_OFFSET(Tag, 8);
9918 	VERIFY_OFFSET(cdb, 16);
9919 	VERIFY_OFFSET(cciss_lun, 32);
9920 	VERIFY_OFFSET(data_len, 40);
9921 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9922 	VERIFY_OFFSET(sg_count, 45);
9923 	/* VERIFY_OFFSET(reserved3 */
9924 	VERIFY_OFFSET(err_ptr, 48);
9925 	VERIFY_OFFSET(err_len, 56);
9926 	/* VERIFY_OFFSET(reserved4  */
9927 	VERIFY_OFFSET(sg, 64);
9928 
9929 #undef VERIFY_OFFSET
9930 
9931 #define VERIFY_OFFSET(member, offset) \
9932 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9933 
9934 	VERIFY_OFFSET(dev_handle, 0x00);
9935 	VERIFY_OFFSET(reserved1, 0x02);
9936 	VERIFY_OFFSET(function, 0x03);
9937 	VERIFY_OFFSET(reserved2, 0x04);
9938 	VERIFY_OFFSET(err_info, 0x0C);
9939 	VERIFY_OFFSET(reserved3, 0x10);
9940 	VERIFY_OFFSET(err_info_len, 0x12);
9941 	VERIFY_OFFSET(reserved4, 0x13);
9942 	VERIFY_OFFSET(sgl_offset, 0x14);
9943 	VERIFY_OFFSET(reserved5, 0x15);
9944 	VERIFY_OFFSET(transfer_len, 0x1C);
9945 	VERIFY_OFFSET(reserved6, 0x20);
9946 	VERIFY_OFFSET(io_flags, 0x24);
9947 	VERIFY_OFFSET(reserved7, 0x26);
9948 	VERIFY_OFFSET(LUN, 0x34);
9949 	VERIFY_OFFSET(control, 0x3C);
9950 	VERIFY_OFFSET(CDB, 0x40);
9951 	VERIFY_OFFSET(reserved8, 0x50);
9952 	VERIFY_OFFSET(host_context_flags, 0x60);
9953 	VERIFY_OFFSET(timeout_sec, 0x62);
9954 	VERIFY_OFFSET(ReplyQueue, 0x64);
9955 	VERIFY_OFFSET(reserved9, 0x65);
9956 	VERIFY_OFFSET(tag, 0x68);
9957 	VERIFY_OFFSET(host_addr, 0x70);
9958 	VERIFY_OFFSET(CISS_LUN, 0x78);
9959 	VERIFY_OFFSET(SG, 0x78 + 8);
9960 #undef VERIFY_OFFSET
9961 }
9962 
9963 module_init(hpsa_init);
9964 module_exit(hpsa_cleanup);
9965