1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4 * Copyright 2016 Microsemi Corporation
5 * Copyright 2014-2015 PMC-Sierra, Inc.
6 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 *
17 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18 *
19 */
20
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82 HPSA_DRIVER_VERSION);
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90 "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
150 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
159 */
160 static struct board_type products[] = {
161 {0x40700E11, "Smart Array 5300", &SA5A_access},
162 {0x40800E11, "Smart Array 5i", &SA5B_access},
163 {0x40820E11, "Smart Array 532", &SA5B_access},
164 {0x40830E11, "Smart Array 5312", &SA5B_access},
165 {0x409A0E11, "Smart Array 641", &SA5A_access},
166 {0x409B0E11, "Smart Array 642", &SA5A_access},
167 {0x409C0E11, "Smart Array 6400", &SA5A_access},
168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169 {0x40910E11, "Smart Array 6i", &SA5A_access},
170 {0x3225103C, "Smart Array P600", &SA5A_access},
171 {0x3223103C, "Smart Array P800", &SA5A_access},
172 {0x3234103C, "Smart Array P400", &SA5A_access},
173 {0x3235103C, "Smart Array P400i", &SA5A_access},
174 {0x3211103C, "Smart Array E200i", &SA5A_access},
175 {0x3212103C, "Smart Array E200", &SA5A_access},
176 {0x3213103C, "Smart Array E200i", &SA5A_access},
177 {0x3214103C, "Smart Array E200i", &SA5A_access},
178 {0x3215103C, "Smart Array E200i", &SA5A_access},
179 {0x3237103C, "Smart Array E500", &SA5A_access},
180 {0x323D103C, "Smart Array P700m", &SA5A_access},
181 {0x3241103C, "Smart Array P212", &SA5_access},
182 {0x3243103C, "Smart Array P410", &SA5_access},
183 {0x3245103C, "Smart Array P410i", &SA5_access},
184 {0x3247103C, "Smart Array P411", &SA5_access},
185 {0x3249103C, "Smart Array P812", &SA5_access},
186 {0x324A103C, "Smart Array P712m", &SA5_access},
187 {0x324B103C, "Smart Array P711m", &SA5_access},
188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189 {0x3350103C, "Smart Array P222", &SA5_access},
190 {0x3351103C, "Smart Array P420", &SA5_access},
191 {0x3352103C, "Smart Array P421", &SA5_access},
192 {0x3353103C, "Smart Array P822", &SA5_access},
193 {0x3354103C, "Smart Array P420i", &SA5_access},
194 {0x3355103C, "Smart Array P220i", &SA5_access},
195 {0x3356103C, "Smart Array P721m", &SA5_access},
196 {0x1920103C, "Smart Array P430i", &SA5_access},
197 {0x1921103C, "Smart Array P830i", &SA5_access},
198 {0x1922103C, "Smart Array P430", &SA5_access},
199 {0x1923103C, "Smart Array P431", &SA5_access},
200 {0x1924103C, "Smart Array P830", &SA5_access},
201 {0x1925103C, "Smart Array P831", &SA5_access},
202 {0x1926103C, "Smart Array P731m", &SA5_access},
203 {0x1928103C, "Smart Array P230i", &SA5_access},
204 {0x1929103C, "Smart Array P530", &SA5_access},
205 {0x21BD103C, "Smart Array P244br", &SA5_access},
206 {0x21BE103C, "Smart Array P741m", &SA5_access},
207 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208 {0x21C0103C, "Smart Array P440ar", &SA5_access},
209 {0x21C1103C, "Smart Array P840ar", &SA5_access},
210 {0x21C2103C, "Smart Array P440", &SA5_access},
211 {0x21C3103C, "Smart Array P441", &SA5_access},
212 {0x21C4103C, "Smart Array", &SA5_access},
213 {0x21C5103C, "Smart Array P841", &SA5_access},
214 {0x21C6103C, "Smart HBA H244br", &SA5_access},
215 {0x21C7103C, "Smart HBA H240", &SA5_access},
216 {0x21C8103C, "Smart HBA H241", &SA5_access},
217 {0x21C9103C, "Smart Array", &SA5_access},
218 {0x21CA103C, "Smart Array P246br", &SA5_access},
219 {0x21CB103C, "Smart Array P840", &SA5_access},
220 {0x21CC103C, "Smart Array", &SA5_access},
221 {0x21CD103C, "Smart Array", &SA5_access},
222 {0x21CE103C, "Smart HBA", &SA5_access},
223 {0x05809005, "SmartHBA-SA", &SA5_access},
224 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241 struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256 void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258 IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260 BIG_IOCTL_Command_struct *ioc);
261
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 void __user *arg);
265 #endif
266
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271 struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274 int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282 unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292 struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294 struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297 int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303 u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305 unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307 bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309 unsigned char lunaddr[],
310 int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312 int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327 struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329 unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332 struct hpsa_scsi_dev_t *dev,
333 unsigned char *scsi3addr);
334
sdev_to_hba(struct scsi_device * sdev)335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337 unsigned long *priv = shost_priv(sdev->host);
338 return (struct ctlr_info *) *priv;
339 }
340
shost_to_hba(struct Scsi_Host * sh)341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343 unsigned long *priv = shost_priv(sh);
344 return (struct ctlr_info *) *priv;
345 }
346
hpsa_is_cmd_idle(struct CommandList * c)347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349 return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351
352 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
decode_sense_data(const u8 * sense_data,int sense_data_len,u8 * sense_key,u8 * asc,u8 * ascq)353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354 u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356 struct scsi_sense_hdr sshdr;
357 bool rc;
358
359 *sense_key = -1;
360 *asc = -1;
361 *ascq = -1;
362
363 if (sense_data_len < 1)
364 return;
365
366 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367 if (rc) {
368 *sense_key = sshdr.sense_key;
369 *asc = sshdr.asc;
370 *ascq = sshdr.ascq;
371 }
372 }
373
check_for_unit_attention(struct ctlr_info * h,struct CommandList * c)374 static int check_for_unit_attention(struct ctlr_info *h,
375 struct CommandList *c)
376 {
377 u8 sense_key, asc, ascq;
378 int sense_len;
379
380 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381 sense_len = sizeof(c->err_info->SenseInfo);
382 else
383 sense_len = c->err_info->SenseLen;
384
385 decode_sense_data(c->err_info->SenseInfo, sense_len,
386 &sense_key, &asc, &ascq);
387 if (sense_key != UNIT_ATTENTION || asc == 0xff)
388 return 0;
389
390 switch (asc) {
391 case STATE_CHANGED:
392 dev_warn(&h->pdev->dev,
393 "%s: a state change detected, command retried\n",
394 h->devname);
395 break;
396 case LUN_FAILED:
397 dev_warn(&h->pdev->dev,
398 "%s: LUN failure detected\n", h->devname);
399 break;
400 case REPORT_LUNS_CHANGED:
401 dev_warn(&h->pdev->dev,
402 "%s: report LUN data changed\n", h->devname);
403 /*
404 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 * target (array) devices.
406 */
407 break;
408 case POWER_OR_RESET:
409 dev_warn(&h->pdev->dev,
410 "%s: a power on or device reset detected\n",
411 h->devname);
412 break;
413 case UNIT_ATTENTION_CLEARED:
414 dev_warn(&h->pdev->dev,
415 "%s: unit attention cleared by another initiator\n",
416 h->devname);
417 break;
418 default:
419 dev_warn(&h->pdev->dev,
420 "%s: unknown unit attention detected\n",
421 h->devname);
422 break;
423 }
424 return 1;
425 }
426
check_for_busy(struct ctlr_info * h,struct CommandList * c)427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432 return 0;
433 dev_warn(&h->pdev->dev, HPSA "device busy");
434 return 1;
435 }
436
437 static u32 lockup_detected(struct ctlr_info *h);
host_show_lockup_detected(struct device * dev,struct device_attribute * attr,char * buf)438 static ssize_t host_show_lockup_detected(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 int ld;
442 struct ctlr_info *h;
443 struct Scsi_Host *shost = class_to_shost(dev);
444
445 h = shost_to_hba(shost);
446 ld = lockup_detected(h);
447
448 return sprintf(buf, "ld=%d\n", ld);
449 }
450
host_store_hp_ssd_smart_path_status(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452 struct device_attribute *attr,
453 const char *buf, size_t count)
454 {
455 int status, len;
456 struct ctlr_info *h;
457 struct Scsi_Host *shost = class_to_shost(dev);
458 char tmpbuf[10];
459
460 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461 return -EACCES;
462 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463 strncpy(tmpbuf, buf, len);
464 tmpbuf[len] = '\0';
465 if (sscanf(tmpbuf, "%d", &status) != 1)
466 return -EINVAL;
467 h = shost_to_hba(shost);
468 h->acciopath_status = !!status;
469 dev_warn(&h->pdev->dev,
470 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 h->acciopath_status ? "enabled" : "disabled");
472 return count;
473 }
474
host_store_raid_offload_debug(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476 struct device_attribute *attr,
477 const char *buf, size_t count)
478 {
479 int debug_level, len;
480 struct ctlr_info *h;
481 struct Scsi_Host *shost = class_to_shost(dev);
482 char tmpbuf[10];
483
484 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485 return -EACCES;
486 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487 strncpy(tmpbuf, buf, len);
488 tmpbuf[len] = '\0';
489 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 return -EINVAL;
491 if (debug_level < 0)
492 debug_level = 0;
493 h = shost_to_hba(shost);
494 h->raid_offload_debug = debug_level;
495 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496 h->raid_offload_debug);
497 return count;
498 }
499
host_store_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)500 static ssize_t host_store_rescan(struct device *dev,
501 struct device_attribute *attr,
502 const char *buf, size_t count)
503 {
504 struct ctlr_info *h;
505 struct Scsi_Host *shost = class_to_shost(dev);
506 h = shost_to_hba(shost);
507 hpsa_scan_start(h->scsi_host);
508 return count;
509 }
510
hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t * device)511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513 device->offload_enabled = 0;
514 device->offload_to_be_enabled = 0;
515 }
516
host_show_firmware_revision(struct device * dev,struct device_attribute * attr,char * buf)517 static ssize_t host_show_firmware_revision(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct ctlr_info *h;
521 struct Scsi_Host *shost = class_to_shost(dev);
522 unsigned char *fwrev;
523
524 h = shost_to_hba(shost);
525 if (!h->hba_inquiry_data)
526 return 0;
527 fwrev = &h->hba_inquiry_data[32];
528 return snprintf(buf, 20, "%c%c%c%c\n",
529 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531
host_show_commands_outstanding(struct device * dev,struct device_attribute * attr,char * buf)532 static ssize_t host_show_commands_outstanding(struct device *dev,
533 struct device_attribute *attr, char *buf)
534 {
535 struct Scsi_Host *shost = class_to_shost(dev);
536 struct ctlr_info *h = shost_to_hba(shost);
537
538 return snprintf(buf, 20, "%d\n",
539 atomic_read(&h->commands_outstanding));
540 }
541
host_show_transport_mode(struct device * dev,struct device_attribute * attr,char * buf)542 static ssize_t host_show_transport_mode(struct device *dev,
543 struct device_attribute *attr, char *buf)
544 {
545 struct ctlr_info *h;
546 struct Scsi_Host *shost = class_to_shost(dev);
547
548 h = shost_to_hba(shost);
549 return snprintf(buf, 20, "%s\n",
550 h->transMethod & CFGTBL_Trans_Performant ?
551 "performant" : "simple");
552 }
553
host_show_hp_ssd_smart_path_status(struct device * dev,struct device_attribute * attr,char * buf)554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct ctlr_info *h;
558 struct Scsi_Host *shost = class_to_shost(dev);
559
560 h = shost_to_hba(shost);
561 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562 (h->acciopath_status == 1) ? "enabled" : "disabled");
563 }
564
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567 0x324a103C, /* Smart Array P712m */
568 0x324b103C, /* Smart Array P711m */
569 0x3223103C, /* Smart Array P800 */
570 0x3234103C, /* Smart Array P400 */
571 0x3235103C, /* Smart Array P400i */
572 0x3211103C, /* Smart Array E200i */
573 0x3212103C, /* Smart Array E200 */
574 0x3213103C, /* Smart Array E200i */
575 0x3214103C, /* Smart Array E200i */
576 0x3215103C, /* Smart Array E200i */
577 0x3237103C, /* Smart Array E500 */
578 0x323D103C, /* Smart Array P700m */
579 0x40800E11, /* Smart Array 5i */
580 0x409C0E11, /* Smart Array 6400 */
581 0x409D0E11, /* Smart Array 6400 EM */
582 0x40700E11, /* Smart Array 5300 */
583 0x40820E11, /* Smart Array 532 */
584 0x40830E11, /* Smart Array 5312 */
585 0x409A0E11, /* Smart Array 641 */
586 0x409B0E11, /* Smart Array 642 */
587 0x40910E11, /* Smart Array 6i */
588 };
589
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592 0x40800E11, /* Smart Array 5i */
593 0x40700E11, /* Smart Array 5300 */
594 0x40820E11, /* Smart Array 532 */
595 0x40830E11, /* Smart Array 5312 */
596 0x409A0E11, /* Smart Array 641 */
597 0x409B0E11, /* Smart Array 642 */
598 0x40910E11, /* Smart Array 6i */
599 /* Exclude 640x boards. These are two pci devices in one slot
600 * which share a battery backed cache module. One controls the
601 * cache, the other accesses the cache through the one that controls
602 * it. If we reset the one controlling the cache, the other will
603 * likely not be happy. Just forbid resetting this conjoined mess.
604 * The 640x isn't really supported by hpsa anyway.
605 */
606 0x409C0E11, /* Smart Array 6400 */
607 0x409D0E11, /* Smart Array 6400 EM */
608 };
609
board_id_in_array(u32 a[],int nelems,u32 board_id)610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612 int i;
613
614 for (i = 0; i < nelems; i++)
615 if (a[i] == board_id)
616 return 1;
617 return 0;
618 }
619
ctlr_is_hard_resettable(u32 board_id)620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622 return !board_id_in_array(unresettable_controller,
623 ARRAY_SIZE(unresettable_controller), board_id);
624 }
625
ctlr_is_soft_resettable(u32 board_id)626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628 return !board_id_in_array(soft_unresettable_controller,
629 ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631
ctlr_is_resettable(u32 board_id)632 static int ctlr_is_resettable(u32 board_id)
633 {
634 return ctlr_is_hard_resettable(board_id) ||
635 ctlr_is_soft_resettable(board_id);
636 }
637
host_show_resettable(struct device * dev,struct device_attribute * attr,char * buf)638 static ssize_t host_show_resettable(struct device *dev,
639 struct device_attribute *attr, char *buf)
640 {
641 struct ctlr_info *h;
642 struct Scsi_Host *shost = class_to_shost(dev);
643
644 h = shost_to_hba(shost);
645 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647
is_logical_dev_addr_mode(unsigned char scsi3addr[])648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650 return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0 0
657 #define HPSA_RAID_4 1
658 #define HPSA_RAID_1 2 /* also used for RAID 10 */
659 #define HPSA_RAID_5 3 /* also used for RAID 50 */
660 #define HPSA_RAID_51 4
661 #define HPSA_RAID_6 5 /* also used for RAID 60 */
662 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665
is_logical_device(struct hpsa_scsi_dev_t * device)666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668 return !device->physical_device;
669 }
670
raid_level_show(struct device * dev,struct device_attribute * attr,char * buf)671 static ssize_t raid_level_show(struct device *dev,
672 struct device_attribute *attr, char *buf)
673 {
674 ssize_t l = 0;
675 unsigned char rlevel;
676 struct ctlr_info *h;
677 struct scsi_device *sdev;
678 struct hpsa_scsi_dev_t *hdev;
679 unsigned long flags;
680
681 sdev = to_scsi_device(dev);
682 h = sdev_to_hba(sdev);
683 spin_lock_irqsave(&h->lock, flags);
684 hdev = sdev->hostdata;
685 if (!hdev) {
686 spin_unlock_irqrestore(&h->lock, flags);
687 return -ENODEV;
688 }
689
690 /* Is this even a logical drive? */
691 if (!is_logical_device(hdev)) {
692 spin_unlock_irqrestore(&h->lock, flags);
693 l = snprintf(buf, PAGE_SIZE, "N/A\n");
694 return l;
695 }
696
697 rlevel = hdev->raid_level;
698 spin_unlock_irqrestore(&h->lock, flags);
699 if (rlevel > RAID_UNKNOWN)
700 rlevel = RAID_UNKNOWN;
701 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702 return l;
703 }
704
lunid_show(struct device * dev,struct device_attribute * attr,char * buf)705 static ssize_t lunid_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707 {
708 struct ctlr_info *h;
709 struct scsi_device *sdev;
710 struct hpsa_scsi_dev_t *hdev;
711 unsigned long flags;
712 unsigned char lunid[8];
713
714 sdev = to_scsi_device(dev);
715 h = sdev_to_hba(sdev);
716 spin_lock_irqsave(&h->lock, flags);
717 hdev = sdev->hostdata;
718 if (!hdev) {
719 spin_unlock_irqrestore(&h->lock, flags);
720 return -ENODEV;
721 }
722 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723 spin_unlock_irqrestore(&h->lock, flags);
724 return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)727 static ssize_t unique_id_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
729 {
730 struct ctlr_info *h;
731 struct scsi_device *sdev;
732 struct hpsa_scsi_dev_t *hdev;
733 unsigned long flags;
734 unsigned char sn[16];
735
736 sdev = to_scsi_device(dev);
737 h = sdev_to_hba(sdev);
738 spin_lock_irqsave(&h->lock, flags);
739 hdev = sdev->hostdata;
740 if (!hdev) {
741 spin_unlock_irqrestore(&h->lock, flags);
742 return -ENODEV;
743 }
744 memcpy(sn, hdev->device_id, sizeof(sn));
745 spin_unlock_irqrestore(&h->lock, flags);
746 return snprintf(buf, 16 * 2 + 2,
747 "%02X%02X%02X%02X%02X%02X%02X%02X"
748 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
749 sn[0], sn[1], sn[2], sn[3],
750 sn[4], sn[5], sn[6], sn[7],
751 sn[8], sn[9], sn[10], sn[11],
752 sn[12], sn[13], sn[14], sn[15]);
753 }
754
sas_address_show(struct device * dev,struct device_attribute * attr,char * buf)755 static ssize_t sas_address_show(struct device *dev,
756 struct device_attribute *attr, char *buf)
757 {
758 struct ctlr_info *h;
759 struct scsi_device *sdev;
760 struct hpsa_scsi_dev_t *hdev;
761 unsigned long flags;
762 u64 sas_address;
763
764 sdev = to_scsi_device(dev);
765 h = sdev_to_hba(sdev);
766 spin_lock_irqsave(&h->lock, flags);
767 hdev = sdev->hostdata;
768 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769 spin_unlock_irqrestore(&h->lock, flags);
770 return -ENODEV;
771 }
772 sas_address = hdev->sas_address;
773 spin_unlock_irqrestore(&h->lock, flags);
774
775 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777
host_show_hp_ssd_smart_path_enabled(struct device * dev,struct device_attribute * attr,char * buf)778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779 struct device_attribute *attr, char *buf)
780 {
781 struct ctlr_info *h;
782 struct scsi_device *sdev;
783 struct hpsa_scsi_dev_t *hdev;
784 unsigned long flags;
785 int offload_enabled;
786
787 sdev = to_scsi_device(dev);
788 h = sdev_to_hba(sdev);
789 spin_lock_irqsave(&h->lock, flags);
790 hdev = sdev->hostdata;
791 if (!hdev) {
792 spin_unlock_irqrestore(&h->lock, flags);
793 return -ENODEV;
794 }
795 offload_enabled = hdev->offload_enabled;
796 spin_unlock_irqrestore(&h->lock, flags);
797
798 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799 return snprintf(buf, 20, "%d\n", offload_enabled);
800 else
801 return snprintf(buf, 40, "%s\n",
802 "Not applicable for a controller");
803 }
804
805 #define MAX_PATHS 8
path_info_show(struct device * dev,struct device_attribute * attr,char * buf)806 static ssize_t path_info_show(struct device *dev,
807 struct device_attribute *attr, char *buf)
808 {
809 struct ctlr_info *h;
810 struct scsi_device *sdev;
811 struct hpsa_scsi_dev_t *hdev;
812 unsigned long flags;
813 int i;
814 int output_len = 0;
815 u8 box;
816 u8 bay;
817 u8 path_map_index = 0;
818 char *active;
819 unsigned char phys_connector[2];
820
821 sdev = to_scsi_device(dev);
822 h = sdev_to_hba(sdev);
823 spin_lock_irqsave(&h->devlock, flags);
824 hdev = sdev->hostdata;
825 if (!hdev) {
826 spin_unlock_irqrestore(&h->devlock, flags);
827 return -ENODEV;
828 }
829
830 bay = hdev->bay;
831 for (i = 0; i < MAX_PATHS; i++) {
832 path_map_index = 1<<i;
833 if (i == hdev->active_path_index)
834 active = "Active";
835 else if (hdev->path_map & path_map_index)
836 active = "Inactive";
837 else
838 continue;
839
840 output_len += scnprintf(buf + output_len,
841 PAGE_SIZE - output_len,
842 "[%d:%d:%d:%d] %20.20s ",
843 h->scsi_host->host_no,
844 hdev->bus, hdev->target, hdev->lun,
845 scsi_device_type(hdev->devtype));
846
847 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848 output_len += scnprintf(buf + output_len,
849 PAGE_SIZE - output_len,
850 "%s\n", active);
851 continue;
852 }
853
854 box = hdev->box[i];
855 memcpy(&phys_connector, &hdev->phys_connector[i],
856 sizeof(phys_connector));
857 if (phys_connector[0] < '0')
858 phys_connector[0] = '0';
859 if (phys_connector[1] < '0')
860 phys_connector[1] = '0';
861 output_len += scnprintf(buf + output_len,
862 PAGE_SIZE - output_len,
863 "PORT: %.2s ",
864 phys_connector);
865 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866 hdev->expose_device) {
867 if (box == 0 || box == 0xFF) {
868 output_len += scnprintf(buf + output_len,
869 PAGE_SIZE - output_len,
870 "BAY: %hhu %s\n",
871 bay, active);
872 } else {
873 output_len += scnprintf(buf + output_len,
874 PAGE_SIZE - output_len,
875 "BOX: %hhu BAY: %hhu %s\n",
876 box, bay, active);
877 }
878 } else if (box != 0 && box != 0xFF) {
879 output_len += scnprintf(buf + output_len,
880 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881 box, active);
882 } else
883 output_len += scnprintf(buf + output_len,
884 PAGE_SIZE - output_len, "%s\n", active);
885 }
886
887 spin_unlock_irqrestore(&h->devlock, flags);
888 return output_len;
889 }
890
host_show_ctlr_num(struct device * dev,struct device_attribute * attr,char * buf)891 static ssize_t host_show_ctlr_num(struct device *dev,
892 struct device_attribute *attr, char *buf)
893 {
894 struct ctlr_info *h;
895 struct Scsi_Host *shost = class_to_shost(dev);
896
897 h = shost_to_hba(shost);
898 return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900
host_show_legacy_board(struct device * dev,struct device_attribute * attr,char * buf)901 static ssize_t host_show_legacy_board(struct device *dev,
902 struct device_attribute *attr, char *buf)
903 {
904 struct ctlr_info *h;
905 struct Scsi_Host *shost = class_to_shost(dev);
906
907 h = shost_to_hba(shost);
908 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917 host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920 host_show_hp_ssd_smart_path_status,
921 host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923 host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925 host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927 host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929 host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931 host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933 host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935 host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937 host_show_legacy_board, NULL);
938
939 static struct attribute *hpsa_sdev_attrs[] = {
940 &dev_attr_raid_level.attr,
941 &dev_attr_lunid.attr,
942 &dev_attr_unique_id.attr,
943 &dev_attr_hp_ssd_smart_path_enabled.attr,
944 &dev_attr_path_info.attr,
945 &dev_attr_sas_address.attr,
946 NULL,
947 };
948
949 ATTRIBUTE_GROUPS(hpsa_sdev);
950
951 static struct attribute *hpsa_shost_attrs[] = {
952 &dev_attr_rescan.attr,
953 &dev_attr_firmware_revision.attr,
954 &dev_attr_commands_outstanding.attr,
955 &dev_attr_transport_mode.attr,
956 &dev_attr_resettable.attr,
957 &dev_attr_hp_ssd_smart_path_status.attr,
958 &dev_attr_raid_offload_debug.attr,
959 &dev_attr_lockup_detected.attr,
960 &dev_attr_ctlr_num.attr,
961 &dev_attr_legacy_board.attr,
962 NULL,
963 };
964
965 ATTRIBUTE_GROUPS(hpsa_shost);
966
967 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
968 HPSA_MAX_CONCURRENT_PASSTHRUS)
969
970 static const struct scsi_host_template hpsa_driver_template = {
971 .module = THIS_MODULE,
972 .name = HPSA,
973 .proc_name = HPSA,
974 .queuecommand = hpsa_scsi_queue_command,
975 .scan_start = hpsa_scan_start,
976 .scan_finished = hpsa_scan_finished,
977 .change_queue_depth = hpsa_change_queue_depth,
978 .this_id = -1,
979 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
980 .ioctl = hpsa_ioctl,
981 .slave_alloc = hpsa_slave_alloc,
982 .slave_configure = hpsa_slave_configure,
983 .slave_destroy = hpsa_slave_destroy,
984 #ifdef CONFIG_COMPAT
985 .compat_ioctl = hpsa_compat_ioctl,
986 #endif
987 .sdev_groups = hpsa_sdev_groups,
988 .shost_groups = hpsa_shost_groups,
989 .max_sectors = 2048,
990 .no_write_same = 1,
991 };
992
next_command(struct ctlr_info * h,u8 q)993 static inline u32 next_command(struct ctlr_info *h, u8 q)
994 {
995 u32 a;
996 struct reply_queue_buffer *rq = &h->reply_queue[q];
997
998 if (h->transMethod & CFGTBL_Trans_io_accel1)
999 return h->access.command_completed(h, q);
1000
1001 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
1002 return h->access.command_completed(h, q);
1003
1004 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1005 a = rq->head[rq->current_entry];
1006 rq->current_entry++;
1007 atomic_dec(&h->commands_outstanding);
1008 } else {
1009 a = FIFO_EMPTY;
1010 }
1011 /* Check for wraparound */
1012 if (rq->current_entry == h->max_commands) {
1013 rq->current_entry = 0;
1014 rq->wraparound ^= 1;
1015 }
1016 return a;
1017 }
1018
1019 /*
1020 * There are some special bits in the bus address of the
1021 * command that we have to set for the controller to know
1022 * how to process the command:
1023 *
1024 * Normal performant mode:
1025 * bit 0: 1 means performant mode, 0 means simple mode.
1026 * bits 1-3 = block fetch table entry
1027 * bits 4-6 = command type (== 0)
1028 *
1029 * ioaccel1 mode:
1030 * bit 0 = "performant mode" bit.
1031 * bits 1-3 = block fetch table entry
1032 * bits 4-6 = command type (== 110)
1033 * (command type is needed because ioaccel1 mode
1034 * commands are submitted through the same register as normal
1035 * mode commands, so this is how the controller knows whether
1036 * the command is normal mode or ioaccel1 mode.)
1037 *
1038 * ioaccel2 mode:
1039 * bit 0 = "performant mode" bit.
1040 * bits 1-4 = block fetch table entry (note extra bit)
1041 * bits 4-6 = not needed, because ioaccel2 mode has
1042 * a separate special register for submitting commands.
1043 */
1044
1045 /*
1046 * set_performant_mode: Modify the tag for cciss performant
1047 * set bit 0 for pull model, bits 3-1 for block fetch
1048 * register number
1049 */
1050 #define DEFAULT_REPLY_QUEUE (-1)
set_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1051 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1052 int reply_queue)
1053 {
1054 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1055 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1056 if (unlikely(!h->msix_vectors))
1057 return;
1058 c->Header.ReplyQueue = reply_queue;
1059 }
1060 }
1061
set_ioaccel1_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1062 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1063 struct CommandList *c,
1064 int reply_queue)
1065 {
1066 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1067
1068 /*
1069 * Tell the controller to post the reply to the queue for this
1070 * processor. This seems to give the best I/O throughput.
1071 */
1072 cp->ReplyQueue = reply_queue;
1073 /*
1074 * Set the bits in the address sent down to include:
1075 * - performant mode bit (bit 0)
1076 * - pull count (bits 1-3)
1077 * - command type (bits 4-6)
1078 */
1079 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1080 IOACCEL1_BUSADDR_CMDTYPE;
1081 }
1082
set_ioaccel2_tmf_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1083 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1084 struct CommandList *c,
1085 int reply_queue)
1086 {
1087 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1088 &h->ioaccel2_cmd_pool[c->cmdindex];
1089
1090 /* Tell the controller to post the reply to the queue for this
1091 * processor. This seems to give the best I/O throughput.
1092 */
1093 cp->reply_queue = reply_queue;
1094 /* Set the bits in the address sent down to include:
1095 * - performant mode bit not used in ioaccel mode 2
1096 * - pull count (bits 0-3)
1097 * - command type isn't needed for ioaccel2
1098 */
1099 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100 }
1101
set_ioaccel2_performant_mode(struct ctlr_info * h,struct CommandList * c,int reply_queue)1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103 struct CommandList *c,
1104 int reply_queue)
1105 {
1106 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107
1108 /*
1109 * Tell the controller to post the reply to the queue for this
1110 * processor. This seems to give the best I/O throughput.
1111 */
1112 cp->reply_queue = reply_queue;
1113 /*
1114 * Set the bits in the address sent down to include:
1115 * - performant mode bit not used in ioaccel mode 2
1116 * - pull count (bits 0-3)
1117 * - command type isn't needed for ioaccel2
1118 */
1119 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1120 }
1121
is_firmware_flash_cmd(u8 * cdb)1122 static int is_firmware_flash_cmd(u8 *cdb)
1123 {
1124 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1125 }
1126
1127 /*
1128 * During firmware flash, the heartbeat register may not update as frequently
1129 * as it should. So we dial down lockup detection during firmware flash. and
1130 * dial it back up when firmware flash completes.
1131 */
1132 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1133 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1134 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
dial_down_lockup_detection_during_fw_flash(struct ctlr_info * h,struct CommandList * c)1135 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1136 struct CommandList *c)
1137 {
1138 if (!is_firmware_flash_cmd(c->Request.CDB))
1139 return;
1140 atomic_inc(&h->firmware_flash_in_progress);
1141 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1142 }
1143
dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info * h,struct CommandList * c)1144 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1145 struct CommandList *c)
1146 {
1147 if (is_firmware_flash_cmd(c->Request.CDB) &&
1148 atomic_dec_and_test(&h->firmware_flash_in_progress))
1149 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1150 }
1151
__enqueue_cmd_and_start_io(struct ctlr_info * h,struct CommandList * c,int reply_queue)1152 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1153 struct CommandList *c, int reply_queue)
1154 {
1155 dial_down_lockup_detection_during_fw_flash(h, c);
1156 atomic_inc(&h->commands_outstanding);
1157 /*
1158 * Check to see if the command is being retried.
1159 */
1160 if (c->device && !c->retry_pending)
1161 atomic_inc(&c->device->commands_outstanding);
1162
1163 reply_queue = h->reply_map[raw_smp_processor_id()];
1164 switch (c->cmd_type) {
1165 case CMD_IOACCEL1:
1166 set_ioaccel1_performant_mode(h, c, reply_queue);
1167 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1168 break;
1169 case CMD_IOACCEL2:
1170 set_ioaccel2_performant_mode(h, c, reply_queue);
1171 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172 break;
1173 case IOACCEL2_TMF:
1174 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1175 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1176 break;
1177 default:
1178 set_performant_mode(h, c, reply_queue);
1179 h->access.submit_command(h, c);
1180 }
1181 }
1182
enqueue_cmd_and_start_io(struct ctlr_info * h,struct CommandList * c)1183 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1184 {
1185 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1186 }
1187
is_hba_lunid(unsigned char scsi3addr[])1188 static inline int is_hba_lunid(unsigned char scsi3addr[])
1189 {
1190 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1191 }
1192
is_scsi_rev_5(struct ctlr_info * h)1193 static inline int is_scsi_rev_5(struct ctlr_info *h)
1194 {
1195 if (!h->hba_inquiry_data)
1196 return 0;
1197 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1198 return 1;
1199 return 0;
1200 }
1201
hpsa_find_target_lun(struct ctlr_info * h,unsigned char scsi3addr[],int bus,int * target,int * lun)1202 static int hpsa_find_target_lun(struct ctlr_info *h,
1203 unsigned char scsi3addr[], int bus, int *target, int *lun)
1204 {
1205 /* finds an unused bus, target, lun for a new physical device
1206 * assumes h->devlock is held
1207 */
1208 int i, found = 0;
1209 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1210
1211 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1212
1213 for (i = 0; i < h->ndevices; i++) {
1214 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1215 __set_bit(h->dev[i]->target, lun_taken);
1216 }
1217
1218 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1219 if (i < HPSA_MAX_DEVICES) {
1220 /* *bus = 1; */
1221 *target = i;
1222 *lun = 0;
1223 found = 1;
1224 }
1225 return !found;
1226 }
1227
hpsa_show_dev_msg(const char * level,struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,char * description)1228 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1229 struct hpsa_scsi_dev_t *dev, char *description)
1230 {
1231 #define LABEL_SIZE 25
1232 char label[LABEL_SIZE];
1233
1234 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1235 return;
1236
1237 switch (dev->devtype) {
1238 case TYPE_RAID:
1239 snprintf(label, LABEL_SIZE, "controller");
1240 break;
1241 case TYPE_ENCLOSURE:
1242 snprintf(label, LABEL_SIZE, "enclosure");
1243 break;
1244 case TYPE_DISK:
1245 case TYPE_ZBC:
1246 if (dev->external)
1247 snprintf(label, LABEL_SIZE, "external");
1248 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1249 snprintf(label, LABEL_SIZE, "%s",
1250 raid_label[PHYSICAL_DRIVE]);
1251 else
1252 snprintf(label, LABEL_SIZE, "RAID-%s",
1253 dev->raid_level > RAID_UNKNOWN ? "?" :
1254 raid_label[dev->raid_level]);
1255 break;
1256 case TYPE_ROM:
1257 snprintf(label, LABEL_SIZE, "rom");
1258 break;
1259 case TYPE_TAPE:
1260 snprintf(label, LABEL_SIZE, "tape");
1261 break;
1262 case TYPE_MEDIUM_CHANGER:
1263 snprintf(label, LABEL_SIZE, "changer");
1264 break;
1265 default:
1266 snprintf(label, LABEL_SIZE, "UNKNOWN");
1267 break;
1268 }
1269
1270 dev_printk(level, &h->pdev->dev,
1271 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1272 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1273 description,
1274 scsi_device_type(dev->devtype),
1275 dev->vendor,
1276 dev->model,
1277 label,
1278 dev->offload_config ? '+' : '-',
1279 dev->offload_to_be_enabled ? '+' : '-',
1280 dev->expose_device);
1281 }
1282
1283 /* Add an entry into h->dev[] array. */
hpsa_scsi_add_entry(struct ctlr_info * h,struct hpsa_scsi_dev_t * device,struct hpsa_scsi_dev_t * added[],int * nadded)1284 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1285 struct hpsa_scsi_dev_t *device,
1286 struct hpsa_scsi_dev_t *added[], int *nadded)
1287 {
1288 /* assumes h->devlock is held */
1289 int n = h->ndevices;
1290 int i;
1291 unsigned char addr1[8], addr2[8];
1292 struct hpsa_scsi_dev_t *sd;
1293
1294 if (n >= HPSA_MAX_DEVICES) {
1295 dev_err(&h->pdev->dev, "too many devices, some will be "
1296 "inaccessible.\n");
1297 return -1;
1298 }
1299
1300 /* physical devices do not have lun or target assigned until now. */
1301 if (device->lun != -1)
1302 /* Logical device, lun is already assigned. */
1303 goto lun_assigned;
1304
1305 /* If this device a non-zero lun of a multi-lun device
1306 * byte 4 of the 8-byte LUN addr will contain the logical
1307 * unit no, zero otherwise.
1308 */
1309 if (device->scsi3addr[4] == 0) {
1310 /* This is not a non-zero lun of a multi-lun device */
1311 if (hpsa_find_target_lun(h, device->scsi3addr,
1312 device->bus, &device->target, &device->lun) != 0)
1313 return -1;
1314 goto lun_assigned;
1315 }
1316
1317 /* This is a non-zero lun of a multi-lun device.
1318 * Search through our list and find the device which
1319 * has the same 8 byte LUN address, excepting byte 4 and 5.
1320 * Assign the same bus and target for this new LUN.
1321 * Use the logical unit number from the firmware.
1322 */
1323 memcpy(addr1, device->scsi3addr, 8);
1324 addr1[4] = 0;
1325 addr1[5] = 0;
1326 for (i = 0; i < n; i++) {
1327 sd = h->dev[i];
1328 memcpy(addr2, sd->scsi3addr, 8);
1329 addr2[4] = 0;
1330 addr2[5] = 0;
1331 /* differ only in byte 4 and 5? */
1332 if (memcmp(addr1, addr2, 8) == 0) {
1333 device->bus = sd->bus;
1334 device->target = sd->target;
1335 device->lun = device->scsi3addr[4];
1336 break;
1337 }
1338 }
1339 if (device->lun == -1) {
1340 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1341 " suspect firmware bug or unsupported hardware "
1342 "configuration.\n");
1343 return -1;
1344 }
1345
1346 lun_assigned:
1347
1348 h->dev[n] = device;
1349 h->ndevices++;
1350 added[*nadded] = device;
1351 (*nadded)++;
1352 hpsa_show_dev_msg(KERN_INFO, h, device,
1353 device->expose_device ? "added" : "masked");
1354 return 0;
1355 }
1356
1357 /*
1358 * Called during a scan operation.
1359 *
1360 * Update an entry in h->dev[] array.
1361 */
hpsa_scsi_update_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * new_entry)1362 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1363 int entry, struct hpsa_scsi_dev_t *new_entry)
1364 {
1365 /* assumes h->devlock is held */
1366 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1367
1368 /* Raid level changed. */
1369 h->dev[entry]->raid_level = new_entry->raid_level;
1370
1371 /*
1372 * ioacccel_handle may have changed for a dual domain disk
1373 */
1374 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375
1376 /* Raid offload parameters changed. Careful about the ordering. */
1377 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1378 /*
1379 * if drive is newly offload_enabled, we want to copy the
1380 * raid map data first. If previously offload_enabled and
1381 * offload_config were set, raid map data had better be
1382 * the same as it was before. If raid map data has changed
1383 * then it had better be the case that
1384 * h->dev[entry]->offload_enabled is currently 0.
1385 */
1386 h->dev[entry]->raid_map = new_entry->raid_map;
1387 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1388 }
1389 if (new_entry->offload_to_be_enabled) {
1390 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1391 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1392 }
1393 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1394 h->dev[entry]->offload_config = new_entry->offload_config;
1395 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1396 h->dev[entry]->queue_depth = new_entry->queue_depth;
1397
1398 /*
1399 * We can turn off ioaccel offload now, but need to delay turning
1400 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1401 * can't do that until all the devices are updated.
1402 */
1403 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1404
1405 /*
1406 * turn ioaccel off immediately if told to do so.
1407 */
1408 if (!new_entry->offload_to_be_enabled)
1409 h->dev[entry]->offload_enabled = 0;
1410
1411 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1412 }
1413
1414 /* Replace an entry from h->dev[] array. */
hpsa_scsi_replace_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * new_entry,struct hpsa_scsi_dev_t * added[],int * nadded,struct hpsa_scsi_dev_t * removed[],int * nremoved)1415 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1416 int entry, struct hpsa_scsi_dev_t *new_entry,
1417 struct hpsa_scsi_dev_t *added[], int *nadded,
1418 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1419 {
1420 /* assumes h->devlock is held */
1421 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1422 removed[*nremoved] = h->dev[entry];
1423 (*nremoved)++;
1424
1425 /*
1426 * New physical devices won't have target/lun assigned yet
1427 * so we need to preserve the values in the slot we are replacing.
1428 */
1429 if (new_entry->target == -1) {
1430 new_entry->target = h->dev[entry]->target;
1431 new_entry->lun = h->dev[entry]->lun;
1432 }
1433
1434 h->dev[entry] = new_entry;
1435 added[*nadded] = new_entry;
1436 (*nadded)++;
1437
1438 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1439 }
1440
1441 /* Remove an entry from h->dev[] array. */
hpsa_scsi_remove_entry(struct ctlr_info * h,int entry,struct hpsa_scsi_dev_t * removed[],int * nremoved)1442 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1443 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1444 {
1445 /* assumes h->devlock is held */
1446 int i;
1447 struct hpsa_scsi_dev_t *sd;
1448
1449 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1450
1451 sd = h->dev[entry];
1452 removed[*nremoved] = h->dev[entry];
1453 (*nremoved)++;
1454
1455 for (i = entry; i < h->ndevices-1; i++)
1456 h->dev[i] = h->dev[i+1];
1457 h->ndevices--;
1458 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1459 }
1460
1461 #define SCSI3ADDR_EQ(a, b) ( \
1462 (a)[7] == (b)[7] && \
1463 (a)[6] == (b)[6] && \
1464 (a)[5] == (b)[5] && \
1465 (a)[4] == (b)[4] && \
1466 (a)[3] == (b)[3] && \
1467 (a)[2] == (b)[2] && \
1468 (a)[1] == (b)[1] && \
1469 (a)[0] == (b)[0])
1470
fixup_botched_add(struct ctlr_info * h,struct hpsa_scsi_dev_t * added)1471 static void fixup_botched_add(struct ctlr_info *h,
1472 struct hpsa_scsi_dev_t *added)
1473 {
1474 /* called when scsi_add_device fails in order to re-adjust
1475 * h->dev[] to match the mid layer's view.
1476 */
1477 unsigned long flags;
1478 int i, j;
1479
1480 spin_lock_irqsave(&h->lock, flags);
1481 for (i = 0; i < h->ndevices; i++) {
1482 if (h->dev[i] == added) {
1483 for (j = i; j < h->ndevices-1; j++)
1484 h->dev[j] = h->dev[j+1];
1485 h->ndevices--;
1486 break;
1487 }
1488 }
1489 spin_unlock_irqrestore(&h->lock, flags);
1490 kfree(added);
1491 }
1492
device_is_the_same(struct hpsa_scsi_dev_t * dev1,struct hpsa_scsi_dev_t * dev2)1493 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1494 struct hpsa_scsi_dev_t *dev2)
1495 {
1496 /* we compare everything except lun and target as these
1497 * are not yet assigned. Compare parts likely
1498 * to differ first
1499 */
1500 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1501 sizeof(dev1->scsi3addr)) != 0)
1502 return 0;
1503 if (memcmp(dev1->device_id, dev2->device_id,
1504 sizeof(dev1->device_id)) != 0)
1505 return 0;
1506 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1507 return 0;
1508 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1509 return 0;
1510 if (dev1->devtype != dev2->devtype)
1511 return 0;
1512 if (dev1->bus != dev2->bus)
1513 return 0;
1514 return 1;
1515 }
1516
device_updated(struct hpsa_scsi_dev_t * dev1,struct hpsa_scsi_dev_t * dev2)1517 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1518 struct hpsa_scsi_dev_t *dev2)
1519 {
1520 /* Device attributes that can change, but don't mean
1521 * that the device is a different device, nor that the OS
1522 * needs to be told anything about the change.
1523 */
1524 if (dev1->raid_level != dev2->raid_level)
1525 return 1;
1526 if (dev1->offload_config != dev2->offload_config)
1527 return 1;
1528 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1529 return 1;
1530 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1531 if (dev1->queue_depth != dev2->queue_depth)
1532 return 1;
1533 /*
1534 * This can happen for dual domain devices. An active
1535 * path change causes the ioaccel handle to change
1536 *
1537 * for example note the handle differences between p0 and p1
1538 * Device WWN ,WWN hash,Handle
1539 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1540 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1541 */
1542 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1543 return 1;
1544 return 0;
1545 }
1546
1547 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1548 * and return needle location in *index. If scsi3addr matches, but not
1549 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1550 * location in *index.
1551 * In the case of a minor device attribute change, such as RAID level, just
1552 * return DEVICE_UPDATED, along with the updated device's location in index.
1553 * If needle not found, return DEVICE_NOT_FOUND.
1554 */
hpsa_scsi_find_entry(struct hpsa_scsi_dev_t * needle,struct hpsa_scsi_dev_t * haystack[],int haystack_size,int * index)1555 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1556 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1557 int *index)
1558 {
1559 int i;
1560 #define DEVICE_NOT_FOUND 0
1561 #define DEVICE_CHANGED 1
1562 #define DEVICE_SAME 2
1563 #define DEVICE_UPDATED 3
1564 if (needle == NULL)
1565 return DEVICE_NOT_FOUND;
1566
1567 for (i = 0; i < haystack_size; i++) {
1568 if (haystack[i] == NULL) /* previously removed. */
1569 continue;
1570 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1571 *index = i;
1572 if (device_is_the_same(needle, haystack[i])) {
1573 if (device_updated(needle, haystack[i]))
1574 return DEVICE_UPDATED;
1575 return DEVICE_SAME;
1576 } else {
1577 /* Keep offline devices offline */
1578 if (needle->volume_offline)
1579 return DEVICE_NOT_FOUND;
1580 return DEVICE_CHANGED;
1581 }
1582 }
1583 }
1584 *index = -1;
1585 return DEVICE_NOT_FOUND;
1586 }
1587
hpsa_monitor_offline_device(struct ctlr_info * h,unsigned char scsi3addr[])1588 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1589 unsigned char scsi3addr[])
1590 {
1591 struct offline_device_entry *device;
1592 unsigned long flags;
1593
1594 /* Check to see if device is already on the list */
1595 spin_lock_irqsave(&h->offline_device_lock, flags);
1596 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1597 if (memcmp(device->scsi3addr, scsi3addr,
1598 sizeof(device->scsi3addr)) == 0) {
1599 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600 return;
1601 }
1602 }
1603 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1604
1605 /* Device is not on the list, add it. */
1606 device = kmalloc(sizeof(*device), GFP_KERNEL);
1607 if (!device)
1608 return;
1609
1610 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1611 spin_lock_irqsave(&h->offline_device_lock, flags);
1612 list_add_tail(&device->offline_list, &h->offline_device_list);
1613 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1614 }
1615
1616 /* Print a message explaining various offline volume states */
hpsa_show_volume_status(struct ctlr_info * h,struct hpsa_scsi_dev_t * sd)1617 static void hpsa_show_volume_status(struct ctlr_info *h,
1618 struct hpsa_scsi_dev_t *sd)
1619 {
1620 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1621 dev_info(&h->pdev->dev,
1622 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1623 h->scsi_host->host_no,
1624 sd->bus, sd->target, sd->lun);
1625 switch (sd->volume_offline) {
1626 case HPSA_LV_OK:
1627 break;
1628 case HPSA_LV_UNDERGOING_ERASE:
1629 dev_info(&h->pdev->dev,
1630 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1631 h->scsi_host->host_no,
1632 sd->bus, sd->target, sd->lun);
1633 break;
1634 case HPSA_LV_NOT_AVAILABLE:
1635 dev_info(&h->pdev->dev,
1636 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1637 h->scsi_host->host_no,
1638 sd->bus, sd->target, sd->lun);
1639 break;
1640 case HPSA_LV_UNDERGOING_RPI:
1641 dev_info(&h->pdev->dev,
1642 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1643 h->scsi_host->host_no,
1644 sd->bus, sd->target, sd->lun);
1645 break;
1646 case HPSA_LV_PENDING_RPI:
1647 dev_info(&h->pdev->dev,
1648 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1649 h->scsi_host->host_no,
1650 sd->bus, sd->target, sd->lun);
1651 break;
1652 case HPSA_LV_ENCRYPTED_NO_KEY:
1653 dev_info(&h->pdev->dev,
1654 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1655 h->scsi_host->host_no,
1656 sd->bus, sd->target, sd->lun);
1657 break;
1658 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1659 dev_info(&h->pdev->dev,
1660 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1661 h->scsi_host->host_no,
1662 sd->bus, sd->target, sd->lun);
1663 break;
1664 case HPSA_LV_UNDERGOING_ENCRYPTION:
1665 dev_info(&h->pdev->dev,
1666 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1667 h->scsi_host->host_no,
1668 sd->bus, sd->target, sd->lun);
1669 break;
1670 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1671 dev_info(&h->pdev->dev,
1672 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1673 h->scsi_host->host_no,
1674 sd->bus, sd->target, sd->lun);
1675 break;
1676 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1677 dev_info(&h->pdev->dev,
1678 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1679 h->scsi_host->host_no,
1680 sd->bus, sd->target, sd->lun);
1681 break;
1682 case HPSA_LV_PENDING_ENCRYPTION:
1683 dev_info(&h->pdev->dev,
1684 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1685 h->scsi_host->host_no,
1686 sd->bus, sd->target, sd->lun);
1687 break;
1688 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1689 dev_info(&h->pdev->dev,
1690 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1691 h->scsi_host->host_no,
1692 sd->bus, sd->target, sd->lun);
1693 break;
1694 }
1695 }
1696
1697 /*
1698 * Figure the list of physical drive pointers for a logical drive with
1699 * raid offload configured.
1700 */
hpsa_figure_phys_disk_ptrs(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev[],int ndevices,struct hpsa_scsi_dev_t * logical_drive)1701 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1702 struct hpsa_scsi_dev_t *dev[], int ndevices,
1703 struct hpsa_scsi_dev_t *logical_drive)
1704 {
1705 struct raid_map_data *map = &logical_drive->raid_map;
1706 struct raid_map_disk_data *dd = &map->data[0];
1707 int i, j;
1708 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1709 le16_to_cpu(map->metadata_disks_per_row);
1710 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1711 le16_to_cpu(map->layout_map_count) *
1712 total_disks_per_row;
1713 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1714 total_disks_per_row;
1715 int qdepth;
1716
1717 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1718 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1719
1720 logical_drive->nphysical_disks = nraid_map_entries;
1721
1722 qdepth = 0;
1723 for (i = 0; i < nraid_map_entries; i++) {
1724 logical_drive->phys_disk[i] = NULL;
1725 if (!logical_drive->offload_config)
1726 continue;
1727 for (j = 0; j < ndevices; j++) {
1728 if (dev[j] == NULL)
1729 continue;
1730 if (dev[j]->devtype != TYPE_DISK &&
1731 dev[j]->devtype != TYPE_ZBC)
1732 continue;
1733 if (is_logical_device(dev[j]))
1734 continue;
1735 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1736 continue;
1737
1738 logical_drive->phys_disk[i] = dev[j];
1739 if (i < nphys_disk)
1740 qdepth = min(h->nr_cmds, qdepth +
1741 logical_drive->phys_disk[i]->queue_depth);
1742 break;
1743 }
1744
1745 /*
1746 * This can happen if a physical drive is removed and
1747 * the logical drive is degraded. In that case, the RAID
1748 * map data will refer to a physical disk which isn't actually
1749 * present. And in that case offload_enabled should already
1750 * be 0, but we'll turn it off here just in case
1751 */
1752 if (!logical_drive->phys_disk[i]) {
1753 dev_warn(&h->pdev->dev,
1754 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1755 __func__,
1756 h->scsi_host->host_no, logical_drive->bus,
1757 logical_drive->target, logical_drive->lun);
1758 hpsa_turn_off_ioaccel_for_device(logical_drive);
1759 logical_drive->queue_depth = 8;
1760 }
1761 }
1762 if (nraid_map_entries)
1763 /*
1764 * This is correct for reads, too high for full stripe writes,
1765 * way too high for partial stripe writes
1766 */
1767 logical_drive->queue_depth = qdepth;
1768 else {
1769 if (logical_drive->external)
1770 logical_drive->queue_depth = EXTERNAL_QD;
1771 else
1772 logical_drive->queue_depth = h->nr_cmds;
1773 }
1774 }
1775
hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev[],int ndevices)1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777 struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 {
1779 int i;
1780
1781 for (i = 0; i < ndevices; i++) {
1782 if (dev[i] == NULL)
1783 continue;
1784 if (dev[i]->devtype != TYPE_DISK &&
1785 dev[i]->devtype != TYPE_ZBC)
1786 continue;
1787 if (!is_logical_device(dev[i]))
1788 continue;
1789
1790 /*
1791 * If offload is currently enabled, the RAID map and
1792 * phys_disk[] assignment *better* not be changing
1793 * because we would be changing ioaccel phsy_disk[] pointers
1794 * on a ioaccel volume processing I/O requests.
1795 *
1796 * If an ioaccel volume status changed, initially because it was
1797 * re-configured and thus underwent a transformation, or
1798 * a drive failed, we would have received a state change
1799 * request and ioaccel should have been turned off. When the
1800 * transformation completes, we get another state change
1801 * request to turn ioaccel back on. In this case, we need
1802 * to update the ioaccel information.
1803 *
1804 * Thus: If it is not currently enabled, but will be after
1805 * the scan completes, make sure the ioaccel pointers
1806 * are up to date.
1807 */
1808
1809 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811 }
1812 }
1813
hpsa_add_device(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815 {
1816 int rc = 0;
1817
1818 if (!h->scsi_host)
1819 return 1;
1820
1821 if (is_logical_device(device)) /* RAID */
1822 rc = scsi_add_device(h->scsi_host, device->bus,
1823 device->target, device->lun);
1824 else /* HBA */
1825 rc = hpsa_add_sas_device(h->sas_host, device);
1826
1827 return rc;
1828 }
1829
hpsa_find_outstanding_commands_for_dev(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev)1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831 struct hpsa_scsi_dev_t *dev)
1832 {
1833 int i;
1834 int count = 0;
1835
1836 for (i = 0; i < h->nr_cmds; i++) {
1837 struct CommandList *c = h->cmd_pool + i;
1838 int refcount = atomic_inc_return(&c->refcount);
1839
1840 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841 dev->scsi3addr)) {
1842 unsigned long flags;
1843
1844 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1845 if (!hpsa_is_cmd_idle(c))
1846 ++count;
1847 spin_unlock_irqrestore(&h->lock, flags);
1848 }
1849
1850 cmd_free(h, c);
1851 }
1852
1853 return count;
1854 }
1855
1856 #define NUM_WAIT 20
hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1857 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1858 struct hpsa_scsi_dev_t *device)
1859 {
1860 int cmds = 0;
1861 int waits = 0;
1862 int num_wait = NUM_WAIT;
1863
1864 if (device->external)
1865 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1866
1867 while (1) {
1868 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1869 if (cmds == 0)
1870 break;
1871 if (++waits > num_wait)
1872 break;
1873 msleep(1000);
1874 }
1875
1876 if (waits > num_wait) {
1877 dev_warn(&h->pdev->dev,
1878 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1879 __func__,
1880 h->scsi_host->host_no,
1881 device->bus, device->target, device->lun, cmds);
1882 }
1883 }
1884
hpsa_remove_device(struct ctlr_info * h,struct hpsa_scsi_dev_t * device)1885 static void hpsa_remove_device(struct ctlr_info *h,
1886 struct hpsa_scsi_dev_t *device)
1887 {
1888 struct scsi_device *sdev = NULL;
1889
1890 if (!h->scsi_host)
1891 return;
1892
1893 /*
1894 * Allow for commands to drain
1895 */
1896 device->removed = 1;
1897 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1898
1899 if (is_logical_device(device)) { /* RAID */
1900 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1901 device->target, device->lun);
1902 if (sdev) {
1903 scsi_remove_device(sdev);
1904 scsi_device_put(sdev);
1905 } else {
1906 /*
1907 * We don't expect to get here. Future commands
1908 * to this device will get a selection timeout as
1909 * if the device were gone.
1910 */
1911 hpsa_show_dev_msg(KERN_WARNING, h, device,
1912 "didn't find device for removal.");
1913 }
1914 } else { /* HBA */
1915
1916 hpsa_remove_sas_device(device);
1917 }
1918 }
1919
adjust_hpsa_scsi_table(struct ctlr_info * h,struct hpsa_scsi_dev_t * sd[],int nsds)1920 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1921 struct hpsa_scsi_dev_t *sd[], int nsds)
1922 {
1923 /* sd contains scsi3 addresses and devtypes, and inquiry
1924 * data. This function takes what's in sd to be the current
1925 * reality and updates h->dev[] to reflect that reality.
1926 */
1927 int i, entry, device_change, changes = 0;
1928 struct hpsa_scsi_dev_t *csd;
1929 unsigned long flags;
1930 struct hpsa_scsi_dev_t **added, **removed;
1931 int nadded, nremoved;
1932
1933 /*
1934 * A reset can cause a device status to change
1935 * re-schedule the scan to see what happened.
1936 */
1937 spin_lock_irqsave(&h->reset_lock, flags);
1938 if (h->reset_in_progress) {
1939 h->drv_req_rescan = 1;
1940 spin_unlock_irqrestore(&h->reset_lock, flags);
1941 return;
1942 }
1943 spin_unlock_irqrestore(&h->reset_lock, flags);
1944
1945 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1946 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1947
1948 if (!added || !removed) {
1949 dev_warn(&h->pdev->dev, "out of memory in "
1950 "adjust_hpsa_scsi_table\n");
1951 goto free_and_out;
1952 }
1953
1954 spin_lock_irqsave(&h->devlock, flags);
1955
1956 /* find any devices in h->dev[] that are not in
1957 * sd[] and remove them from h->dev[], and for any
1958 * devices which have changed, remove the old device
1959 * info and add the new device info.
1960 * If minor device attributes change, just update
1961 * the existing device structure.
1962 */
1963 i = 0;
1964 nremoved = 0;
1965 nadded = 0;
1966 while (i < h->ndevices) {
1967 csd = h->dev[i];
1968 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1969 if (device_change == DEVICE_NOT_FOUND) {
1970 changes++;
1971 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1972 continue; /* remove ^^^, hence i not incremented */
1973 } else if (device_change == DEVICE_CHANGED) {
1974 changes++;
1975 hpsa_scsi_replace_entry(h, i, sd[entry],
1976 added, &nadded, removed, &nremoved);
1977 /* Set it to NULL to prevent it from being freed
1978 * at the bottom of hpsa_update_scsi_devices()
1979 */
1980 sd[entry] = NULL;
1981 } else if (device_change == DEVICE_UPDATED) {
1982 hpsa_scsi_update_entry(h, i, sd[entry]);
1983 }
1984 i++;
1985 }
1986
1987 /* Now, make sure every device listed in sd[] is also
1988 * listed in h->dev[], adding them if they aren't found
1989 */
1990
1991 for (i = 0; i < nsds; i++) {
1992 if (!sd[i]) /* if already added above. */
1993 continue;
1994
1995 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1996 * as the SCSI mid-layer does not handle such devices well.
1997 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1998 * at 160Hz, and prevents the system from coming up.
1999 */
2000 if (sd[i]->volume_offline) {
2001 hpsa_show_volume_status(h, sd[i]);
2002 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
2003 continue;
2004 }
2005
2006 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2007 h->ndevices, &entry);
2008 if (device_change == DEVICE_NOT_FOUND) {
2009 changes++;
2010 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2011 break;
2012 sd[i] = NULL; /* prevent from being freed later. */
2013 } else if (device_change == DEVICE_CHANGED) {
2014 /* should never happen... */
2015 changes++;
2016 dev_warn(&h->pdev->dev,
2017 "device unexpectedly changed.\n");
2018 /* but if it does happen, we just ignore that device */
2019 }
2020 }
2021 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2022
2023 /*
2024 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2025 * any logical drives that need it enabled.
2026 *
2027 * The raid map should be current by now.
2028 *
2029 * We are updating the device list used for I/O requests.
2030 */
2031 for (i = 0; i < h->ndevices; i++) {
2032 if (h->dev[i] == NULL)
2033 continue;
2034 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2035 }
2036
2037 spin_unlock_irqrestore(&h->devlock, flags);
2038
2039 /* Monitor devices which are in one of several NOT READY states to be
2040 * brought online later. This must be done without holding h->devlock,
2041 * so don't touch h->dev[]
2042 */
2043 for (i = 0; i < nsds; i++) {
2044 if (!sd[i]) /* if already added above. */
2045 continue;
2046 if (sd[i]->volume_offline)
2047 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2048 }
2049
2050 /* Don't notify scsi mid layer of any changes the first time through
2051 * (or if there are no changes) scsi_scan_host will do it later the
2052 * first time through.
2053 */
2054 if (!changes)
2055 goto free_and_out;
2056
2057 /* Notify scsi mid layer of any removed devices */
2058 for (i = 0; i < nremoved; i++) {
2059 if (removed[i] == NULL)
2060 continue;
2061 if (removed[i]->expose_device)
2062 hpsa_remove_device(h, removed[i]);
2063 kfree(removed[i]);
2064 removed[i] = NULL;
2065 }
2066
2067 /* Notify scsi mid layer of any added devices */
2068 for (i = 0; i < nadded; i++) {
2069 int rc = 0;
2070
2071 if (added[i] == NULL)
2072 continue;
2073 if (!(added[i]->expose_device))
2074 continue;
2075 rc = hpsa_add_device(h, added[i]);
2076 if (!rc)
2077 continue;
2078 dev_warn(&h->pdev->dev,
2079 "addition failed %d, device not added.", rc);
2080 /* now we have to remove it from h->dev,
2081 * since it didn't get added to scsi mid layer
2082 */
2083 fixup_botched_add(h, added[i]);
2084 h->drv_req_rescan = 1;
2085 }
2086
2087 free_and_out:
2088 kfree(added);
2089 kfree(removed);
2090 }
2091
2092 /*
2093 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2094 * Assume's h->devlock is held.
2095 */
lookup_hpsa_scsi_dev(struct ctlr_info * h,int bus,int target,int lun)2096 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2097 int bus, int target, int lun)
2098 {
2099 int i;
2100 struct hpsa_scsi_dev_t *sd;
2101
2102 for (i = 0; i < h->ndevices; i++) {
2103 sd = h->dev[i];
2104 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2105 return sd;
2106 }
2107 return NULL;
2108 }
2109
hpsa_slave_alloc(struct scsi_device * sdev)2110 static int hpsa_slave_alloc(struct scsi_device *sdev)
2111 {
2112 struct hpsa_scsi_dev_t *sd = NULL;
2113 unsigned long flags;
2114 struct ctlr_info *h;
2115
2116 h = sdev_to_hba(sdev);
2117 spin_lock_irqsave(&h->devlock, flags);
2118 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2119 struct scsi_target *starget;
2120 struct sas_rphy *rphy;
2121
2122 starget = scsi_target(sdev);
2123 rphy = target_to_rphy(starget);
2124 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2125 if (sd) {
2126 sd->target = sdev_id(sdev);
2127 sd->lun = sdev->lun;
2128 }
2129 }
2130 if (!sd)
2131 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2132 sdev_id(sdev), sdev->lun);
2133
2134 if (sd && sd->expose_device) {
2135 atomic_set(&sd->ioaccel_cmds_out, 0);
2136 sdev->hostdata = sd;
2137 } else
2138 sdev->hostdata = NULL;
2139 spin_unlock_irqrestore(&h->devlock, flags);
2140 return 0;
2141 }
2142
2143 /* configure scsi device based on internal per-device structure */
2144 #define CTLR_TIMEOUT (120 * HZ)
hpsa_slave_configure(struct scsi_device * sdev)2145 static int hpsa_slave_configure(struct scsi_device *sdev)
2146 {
2147 struct hpsa_scsi_dev_t *sd;
2148 int queue_depth;
2149
2150 sd = sdev->hostdata;
2151 sdev->no_uld_attach = !sd || !sd->expose_device;
2152
2153 if (sd) {
2154 sd->was_removed = 0;
2155 queue_depth = sd->queue_depth != 0 ?
2156 sd->queue_depth : sdev->host->can_queue;
2157 if (sd->external) {
2158 queue_depth = EXTERNAL_QD;
2159 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2160 blk_queue_rq_timeout(sdev->request_queue,
2161 HPSA_EH_PTRAID_TIMEOUT);
2162 }
2163 if (is_hba_lunid(sd->scsi3addr)) {
2164 sdev->eh_timeout = CTLR_TIMEOUT;
2165 blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2166 }
2167 } else {
2168 queue_depth = sdev->host->can_queue;
2169 }
2170
2171 scsi_change_queue_depth(sdev, queue_depth);
2172
2173 return 0;
2174 }
2175
hpsa_slave_destroy(struct scsi_device * sdev)2176 static void hpsa_slave_destroy(struct scsi_device *sdev)
2177 {
2178 struct hpsa_scsi_dev_t *hdev = NULL;
2179
2180 hdev = sdev->hostdata;
2181
2182 if (hdev)
2183 hdev->was_removed = 1;
2184 }
2185
hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info * h)2186 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2187 {
2188 int i;
2189
2190 if (!h->ioaccel2_cmd_sg_list)
2191 return;
2192 for (i = 0; i < h->nr_cmds; i++) {
2193 kfree(h->ioaccel2_cmd_sg_list[i]);
2194 h->ioaccel2_cmd_sg_list[i] = NULL;
2195 }
2196 kfree(h->ioaccel2_cmd_sg_list);
2197 h->ioaccel2_cmd_sg_list = NULL;
2198 }
2199
hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info * h)2200 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2201 {
2202 int i;
2203
2204 if (h->chainsize <= 0)
2205 return 0;
2206
2207 h->ioaccel2_cmd_sg_list =
2208 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2209 GFP_KERNEL);
2210 if (!h->ioaccel2_cmd_sg_list)
2211 return -ENOMEM;
2212 for (i = 0; i < h->nr_cmds; i++) {
2213 h->ioaccel2_cmd_sg_list[i] =
2214 kmalloc_array(h->maxsgentries,
2215 sizeof(*h->ioaccel2_cmd_sg_list[i]),
2216 GFP_KERNEL);
2217 if (!h->ioaccel2_cmd_sg_list[i])
2218 goto clean;
2219 }
2220 return 0;
2221
2222 clean:
2223 hpsa_free_ioaccel2_sg_chain_blocks(h);
2224 return -ENOMEM;
2225 }
2226
hpsa_free_sg_chain_blocks(struct ctlr_info * h)2227 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2228 {
2229 int i;
2230
2231 if (!h->cmd_sg_list)
2232 return;
2233 for (i = 0; i < h->nr_cmds; i++) {
2234 kfree(h->cmd_sg_list[i]);
2235 h->cmd_sg_list[i] = NULL;
2236 }
2237 kfree(h->cmd_sg_list);
2238 h->cmd_sg_list = NULL;
2239 }
2240
hpsa_alloc_sg_chain_blocks(struct ctlr_info * h)2241 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2242 {
2243 int i;
2244
2245 if (h->chainsize <= 0)
2246 return 0;
2247
2248 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2249 GFP_KERNEL);
2250 if (!h->cmd_sg_list)
2251 return -ENOMEM;
2252
2253 for (i = 0; i < h->nr_cmds; i++) {
2254 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2255 sizeof(*h->cmd_sg_list[i]),
2256 GFP_KERNEL);
2257 if (!h->cmd_sg_list[i])
2258 goto clean;
2259
2260 }
2261 return 0;
2262
2263 clean:
2264 hpsa_free_sg_chain_blocks(h);
2265 return -ENOMEM;
2266 }
2267
hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info * h,struct io_accel2_cmd * cp,struct CommandList * c)2268 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269 struct io_accel2_cmd *cp, struct CommandList *c)
2270 {
2271 struct ioaccel2_sg_element *chain_block;
2272 u64 temp64;
2273 u32 chain_size;
2274
2275 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2276 chain_size = le32_to_cpu(cp->sg[0].length);
2277 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2278 DMA_TO_DEVICE);
2279 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2280 /* prevent subsequent unmapping */
2281 cp->sg->address = 0;
2282 return -1;
2283 }
2284 cp->sg->address = cpu_to_le64(temp64);
2285 return 0;
2286 }
2287
hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info * h,struct io_accel2_cmd * cp)2288 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2289 struct io_accel2_cmd *cp)
2290 {
2291 struct ioaccel2_sg_element *chain_sg;
2292 u64 temp64;
2293 u32 chain_size;
2294
2295 chain_sg = cp->sg;
2296 temp64 = le64_to_cpu(chain_sg->address);
2297 chain_size = le32_to_cpu(cp->sg[0].length);
2298 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2299 }
2300
hpsa_map_sg_chain_block(struct ctlr_info * h,struct CommandList * c)2301 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2302 struct CommandList *c)
2303 {
2304 struct SGDescriptor *chain_sg, *chain_block;
2305 u64 temp64;
2306 u32 chain_len;
2307
2308 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309 chain_block = h->cmd_sg_list[c->cmdindex];
2310 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2311 chain_len = sizeof(*chain_sg) *
2312 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2313 chain_sg->Len = cpu_to_le32(chain_len);
2314 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2315 DMA_TO_DEVICE);
2316 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2317 /* prevent subsequent unmapping */
2318 chain_sg->Addr = cpu_to_le64(0);
2319 return -1;
2320 }
2321 chain_sg->Addr = cpu_to_le64(temp64);
2322 return 0;
2323 }
2324
hpsa_unmap_sg_chain_block(struct ctlr_info * h,struct CommandList * c)2325 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2326 struct CommandList *c)
2327 {
2328 struct SGDescriptor *chain_sg;
2329
2330 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2331 return;
2332
2333 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2334 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2335 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2336 }
2337
2338
2339 /* Decode the various types of errors on ioaccel2 path.
2340 * Return 1 for any error that should generate a RAID path retry.
2341 * Return 0 for errors that don't require a RAID path retry.
2342 */
handle_ioaccel_mode2_error(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct io_accel2_cmd * c2,struct hpsa_scsi_dev_t * dev)2343 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2344 struct CommandList *c,
2345 struct scsi_cmnd *cmd,
2346 struct io_accel2_cmd *c2,
2347 struct hpsa_scsi_dev_t *dev)
2348 {
2349 int data_len;
2350 int retry = 0;
2351 u32 ioaccel2_resid = 0;
2352
2353 switch (c2->error_data.serv_response) {
2354 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2355 switch (c2->error_data.status) {
2356 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2357 if (cmd)
2358 cmd->result = 0;
2359 break;
2360 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2361 cmd->result |= SAM_STAT_CHECK_CONDITION;
2362 if (c2->error_data.data_present !=
2363 IOACCEL2_SENSE_DATA_PRESENT) {
2364 memset(cmd->sense_buffer, 0,
2365 SCSI_SENSE_BUFFERSIZE);
2366 break;
2367 }
2368 /* copy the sense data */
2369 data_len = c2->error_data.sense_data_len;
2370 if (data_len > SCSI_SENSE_BUFFERSIZE)
2371 data_len = SCSI_SENSE_BUFFERSIZE;
2372 if (data_len > sizeof(c2->error_data.sense_data_buff))
2373 data_len =
2374 sizeof(c2->error_data.sense_data_buff);
2375 memcpy(cmd->sense_buffer,
2376 c2->error_data.sense_data_buff, data_len);
2377 retry = 1;
2378 break;
2379 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2380 retry = 1;
2381 break;
2382 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2383 retry = 1;
2384 break;
2385 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2386 retry = 1;
2387 break;
2388 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2389 retry = 1;
2390 break;
2391 default:
2392 retry = 1;
2393 break;
2394 }
2395 break;
2396 case IOACCEL2_SERV_RESPONSE_FAILURE:
2397 switch (c2->error_data.status) {
2398 case IOACCEL2_STATUS_SR_IO_ERROR:
2399 case IOACCEL2_STATUS_SR_IO_ABORTED:
2400 case IOACCEL2_STATUS_SR_OVERRUN:
2401 retry = 1;
2402 break;
2403 case IOACCEL2_STATUS_SR_UNDERRUN:
2404 cmd->result = (DID_OK << 16); /* host byte */
2405 ioaccel2_resid = get_unaligned_le32(
2406 &c2->error_data.resid_cnt[0]);
2407 scsi_set_resid(cmd, ioaccel2_resid);
2408 break;
2409 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2410 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2411 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2412 /*
2413 * Did an HBA disk disappear? We will eventually
2414 * get a state change event from the controller but
2415 * in the meantime, we need to tell the OS that the
2416 * HBA disk is no longer there and stop I/O
2417 * from going down. This allows the potential re-insert
2418 * of the disk to get the same device node.
2419 */
2420 if (dev->physical_device && dev->expose_device) {
2421 cmd->result = DID_NO_CONNECT << 16;
2422 dev->removed = 1;
2423 h->drv_req_rescan = 1;
2424 dev_warn(&h->pdev->dev,
2425 "%s: device is gone!\n", __func__);
2426 } else
2427 /*
2428 * Retry by sending down the RAID path.
2429 * We will get an event from ctlr to
2430 * trigger rescan regardless.
2431 */
2432 retry = 1;
2433 break;
2434 default:
2435 retry = 1;
2436 }
2437 break;
2438 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2439 break;
2440 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2441 break;
2442 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2443 retry = 1;
2444 break;
2445 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2446 break;
2447 default:
2448 retry = 1;
2449 break;
2450 }
2451
2452 if (dev->in_reset)
2453 retry = 0;
2454
2455 return retry; /* retry on raid path? */
2456 }
2457
hpsa_cmd_resolve_events(struct ctlr_info * h,struct CommandList * c)2458 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2459 struct CommandList *c)
2460 {
2461 struct hpsa_scsi_dev_t *dev = c->device;
2462
2463 /*
2464 * Reset c->scsi_cmd here so that the reset handler will know
2465 * this command has completed. Then, check to see if the handler is
2466 * waiting for this command, and, if so, wake it.
2467 */
2468 c->scsi_cmd = SCSI_CMD_IDLE;
2469 mb(); /* Declare command idle before checking for pending events. */
2470 if (dev) {
2471 atomic_dec(&dev->commands_outstanding);
2472 if (dev->in_reset &&
2473 atomic_read(&dev->commands_outstanding) <= 0)
2474 wake_up_all(&h->event_sync_wait_queue);
2475 }
2476 }
2477
hpsa_cmd_resolve_and_free(struct ctlr_info * h,struct CommandList * c)2478 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2479 struct CommandList *c)
2480 {
2481 hpsa_cmd_resolve_events(h, c);
2482 cmd_tagged_free(h, c);
2483 }
2484
hpsa_cmd_free_and_done(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd)2485 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2486 struct CommandList *c, struct scsi_cmnd *cmd)
2487 {
2488 hpsa_cmd_resolve_and_free(h, c);
2489 if (cmd)
2490 scsi_done(cmd);
2491 }
2492
hpsa_retry_cmd(struct ctlr_info * h,struct CommandList * c)2493 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2494 {
2495 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2496 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2497 }
2498
process_ioaccel2_completion(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct hpsa_scsi_dev_t * dev)2499 static void process_ioaccel2_completion(struct ctlr_info *h,
2500 struct CommandList *c, struct scsi_cmnd *cmd,
2501 struct hpsa_scsi_dev_t *dev)
2502 {
2503 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2504
2505 /* check for good status */
2506 if (likely(c2->error_data.serv_response == 0 &&
2507 c2->error_data.status == 0)) {
2508 cmd->result = 0;
2509 return hpsa_cmd_free_and_done(h, c, cmd);
2510 }
2511
2512 /*
2513 * Any RAID offload error results in retry which will use
2514 * the normal I/O path so the controller can handle whatever is
2515 * wrong.
2516 */
2517 if (is_logical_device(dev) &&
2518 c2->error_data.serv_response ==
2519 IOACCEL2_SERV_RESPONSE_FAILURE) {
2520 if (c2->error_data.status ==
2521 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2522 hpsa_turn_off_ioaccel_for_device(dev);
2523 }
2524
2525 if (dev->in_reset) {
2526 cmd->result = DID_RESET << 16;
2527 return hpsa_cmd_free_and_done(h, c, cmd);
2528 }
2529
2530 return hpsa_retry_cmd(h, c);
2531 }
2532
2533 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2534 return hpsa_retry_cmd(h, c);
2535
2536 return hpsa_cmd_free_and_done(h, c, cmd);
2537 }
2538
2539 /* Returns 0 on success, < 0 otherwise. */
hpsa_evaluate_tmf_status(struct ctlr_info * h,struct CommandList * cp)2540 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2541 struct CommandList *cp)
2542 {
2543 u8 tmf_status = cp->err_info->ScsiStatus;
2544
2545 switch (tmf_status) {
2546 case CISS_TMF_COMPLETE:
2547 /*
2548 * CISS_TMF_COMPLETE never happens, instead,
2549 * ei->CommandStatus == 0 for this case.
2550 */
2551 case CISS_TMF_SUCCESS:
2552 return 0;
2553 case CISS_TMF_INVALID_FRAME:
2554 case CISS_TMF_NOT_SUPPORTED:
2555 case CISS_TMF_FAILED:
2556 case CISS_TMF_WRONG_LUN:
2557 case CISS_TMF_OVERLAPPED_TAG:
2558 break;
2559 default:
2560 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2561 tmf_status);
2562 break;
2563 }
2564 return -tmf_status;
2565 }
2566
complete_scsi_command(struct CommandList * cp)2567 static void complete_scsi_command(struct CommandList *cp)
2568 {
2569 struct scsi_cmnd *cmd;
2570 struct ctlr_info *h;
2571 struct ErrorInfo *ei;
2572 struct hpsa_scsi_dev_t *dev;
2573 struct io_accel2_cmd *c2;
2574
2575 u8 sense_key;
2576 u8 asc; /* additional sense code */
2577 u8 ascq; /* additional sense code qualifier */
2578 unsigned long sense_data_size;
2579
2580 ei = cp->err_info;
2581 cmd = cp->scsi_cmd;
2582 h = cp->h;
2583
2584 if (!cmd->device) {
2585 cmd->result = DID_NO_CONNECT << 16;
2586 return hpsa_cmd_free_and_done(h, cp, cmd);
2587 }
2588
2589 dev = cmd->device->hostdata;
2590 if (!dev) {
2591 cmd->result = DID_NO_CONNECT << 16;
2592 return hpsa_cmd_free_and_done(h, cp, cmd);
2593 }
2594 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2595
2596 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2597 if ((cp->cmd_type == CMD_SCSI) &&
2598 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2599 hpsa_unmap_sg_chain_block(h, cp);
2600
2601 if ((cp->cmd_type == CMD_IOACCEL2) &&
2602 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2603 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2604
2605 cmd->result = (DID_OK << 16); /* host byte */
2606
2607 /* SCSI command has already been cleaned up in SML */
2608 if (dev->was_removed) {
2609 hpsa_cmd_resolve_and_free(h, cp);
2610 return;
2611 }
2612
2613 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2614 if (dev->physical_device && dev->expose_device &&
2615 dev->removed) {
2616 cmd->result = DID_NO_CONNECT << 16;
2617 return hpsa_cmd_free_and_done(h, cp, cmd);
2618 }
2619 if (likely(cp->phys_disk != NULL))
2620 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2621 }
2622
2623 /*
2624 * We check for lockup status here as it may be set for
2625 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2626 * fail_all_oustanding_cmds()
2627 */
2628 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2629 /* DID_NO_CONNECT will prevent a retry */
2630 cmd->result = DID_NO_CONNECT << 16;
2631 return hpsa_cmd_free_and_done(h, cp, cmd);
2632 }
2633
2634 if (cp->cmd_type == CMD_IOACCEL2)
2635 return process_ioaccel2_completion(h, cp, cmd, dev);
2636
2637 scsi_set_resid(cmd, ei->ResidualCnt);
2638 if (ei->CommandStatus == 0)
2639 return hpsa_cmd_free_and_done(h, cp, cmd);
2640
2641 /* For I/O accelerator commands, copy over some fields to the normal
2642 * CISS header used below for error handling.
2643 */
2644 if (cp->cmd_type == CMD_IOACCEL1) {
2645 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2646 cp->Header.SGList = scsi_sg_count(cmd);
2647 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2648 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2649 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2650 cp->Header.tag = c->tag;
2651 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2652 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2653
2654 /* Any RAID offload error results in retry which will use
2655 * the normal I/O path so the controller can handle whatever's
2656 * wrong.
2657 */
2658 if (is_logical_device(dev)) {
2659 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2660 dev->offload_enabled = 0;
2661 return hpsa_retry_cmd(h, cp);
2662 }
2663 }
2664
2665 /* an error has occurred */
2666 switch (ei->CommandStatus) {
2667
2668 case CMD_TARGET_STATUS:
2669 cmd->result |= ei->ScsiStatus;
2670 /* copy the sense data */
2671 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2672 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2673 else
2674 sense_data_size = sizeof(ei->SenseInfo);
2675 if (ei->SenseLen < sense_data_size)
2676 sense_data_size = ei->SenseLen;
2677 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2678 if (ei->ScsiStatus)
2679 decode_sense_data(ei->SenseInfo, sense_data_size,
2680 &sense_key, &asc, &ascq);
2681 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2682 switch (sense_key) {
2683 case ABORTED_COMMAND:
2684 cmd->result |= DID_SOFT_ERROR << 16;
2685 break;
2686 case UNIT_ATTENTION:
2687 if (asc == 0x3F && ascq == 0x0E)
2688 h->drv_req_rescan = 1;
2689 break;
2690 case ILLEGAL_REQUEST:
2691 if (asc == 0x25 && ascq == 0x00) {
2692 dev->removed = 1;
2693 cmd->result = DID_NO_CONNECT << 16;
2694 }
2695 break;
2696 }
2697 break;
2698 }
2699 /* Problem was not a check condition
2700 * Pass it up to the upper layers...
2701 */
2702 if (ei->ScsiStatus) {
2703 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2704 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2705 "Returning result: 0x%x\n",
2706 cp, ei->ScsiStatus,
2707 sense_key, asc, ascq,
2708 cmd->result);
2709 } else { /* scsi status is zero??? How??? */
2710 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2711 "Returning no connection.\n", cp),
2712
2713 /* Ordinarily, this case should never happen,
2714 * but there is a bug in some released firmware
2715 * revisions that allows it to happen if, for
2716 * example, a 4100 backplane loses power and
2717 * the tape drive is in it. We assume that
2718 * it's a fatal error of some kind because we
2719 * can't show that it wasn't. We will make it
2720 * look like selection timeout since that is
2721 * the most common reason for this to occur,
2722 * and it's severe enough.
2723 */
2724
2725 cmd->result = DID_NO_CONNECT << 16;
2726 }
2727 break;
2728
2729 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2730 break;
2731 case CMD_DATA_OVERRUN:
2732 dev_warn(&h->pdev->dev,
2733 "CDB %16phN data overrun\n", cp->Request.CDB);
2734 break;
2735 case CMD_INVALID: {
2736 /* print_bytes(cp, sizeof(*cp), 1, 0);
2737 print_cmd(cp); */
2738 /* We get CMD_INVALID if you address a non-existent device
2739 * instead of a selection timeout (no response). You will
2740 * see this if you yank out a drive, then try to access it.
2741 * This is kind of a shame because it means that any other
2742 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2743 * missing target. */
2744 cmd->result = DID_NO_CONNECT << 16;
2745 }
2746 break;
2747 case CMD_PROTOCOL_ERR:
2748 cmd->result = DID_ERROR << 16;
2749 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2750 cp->Request.CDB);
2751 break;
2752 case CMD_HARDWARE_ERR:
2753 cmd->result = DID_ERROR << 16;
2754 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2755 cp->Request.CDB);
2756 break;
2757 case CMD_CONNECTION_LOST:
2758 cmd->result = DID_ERROR << 16;
2759 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2760 cp->Request.CDB);
2761 break;
2762 case CMD_ABORTED:
2763 cmd->result = DID_ABORT << 16;
2764 break;
2765 case CMD_ABORT_FAILED:
2766 cmd->result = DID_ERROR << 16;
2767 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2768 cp->Request.CDB);
2769 break;
2770 case CMD_UNSOLICITED_ABORT:
2771 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2772 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2773 cp->Request.CDB);
2774 break;
2775 case CMD_TIMEOUT:
2776 cmd->result = DID_TIME_OUT << 16;
2777 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2778 cp->Request.CDB);
2779 break;
2780 case CMD_UNABORTABLE:
2781 cmd->result = DID_ERROR << 16;
2782 dev_warn(&h->pdev->dev, "Command unabortable\n");
2783 break;
2784 case CMD_TMF_STATUS:
2785 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2786 cmd->result = DID_ERROR << 16;
2787 break;
2788 case CMD_IOACCEL_DISABLED:
2789 /* This only handles the direct pass-through case since RAID
2790 * offload is handled above. Just attempt a retry.
2791 */
2792 cmd->result = DID_SOFT_ERROR << 16;
2793 dev_warn(&h->pdev->dev,
2794 "cp %p had HP SSD Smart Path error\n", cp);
2795 break;
2796 default:
2797 cmd->result = DID_ERROR << 16;
2798 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2799 cp, ei->CommandStatus);
2800 }
2801
2802 return hpsa_cmd_free_and_done(h, cp, cmd);
2803 }
2804
hpsa_pci_unmap(struct pci_dev * pdev,struct CommandList * c,int sg_used,enum dma_data_direction data_direction)2805 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2806 int sg_used, enum dma_data_direction data_direction)
2807 {
2808 int i;
2809
2810 for (i = 0; i < sg_used; i++)
2811 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2812 le32_to_cpu(c->SG[i].Len),
2813 data_direction);
2814 }
2815
hpsa_map_one(struct pci_dev * pdev,struct CommandList * cp,unsigned char * buf,size_t buflen,enum dma_data_direction data_direction)2816 static int hpsa_map_one(struct pci_dev *pdev,
2817 struct CommandList *cp,
2818 unsigned char *buf,
2819 size_t buflen,
2820 enum dma_data_direction data_direction)
2821 {
2822 u64 addr64;
2823
2824 if (buflen == 0 || data_direction == DMA_NONE) {
2825 cp->Header.SGList = 0;
2826 cp->Header.SGTotal = cpu_to_le16(0);
2827 return 0;
2828 }
2829
2830 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2831 if (dma_mapping_error(&pdev->dev, addr64)) {
2832 /* Prevent subsequent unmap of something never mapped */
2833 cp->Header.SGList = 0;
2834 cp->Header.SGTotal = cpu_to_le16(0);
2835 return -1;
2836 }
2837 cp->SG[0].Addr = cpu_to_le64(addr64);
2838 cp->SG[0].Len = cpu_to_le32(buflen);
2839 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2840 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2841 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2842 return 0;
2843 }
2844
2845 #define NO_TIMEOUT ((unsigned long) -1)
2846 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
hpsa_scsi_do_simple_cmd_core(struct ctlr_info * h,struct CommandList * c,int reply_queue,unsigned long timeout_msecs)2847 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2848 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2849 {
2850 DECLARE_COMPLETION_ONSTACK(wait);
2851
2852 c->waiting = &wait;
2853 __enqueue_cmd_and_start_io(h, c, reply_queue);
2854 if (timeout_msecs == NO_TIMEOUT) {
2855 /* TODO: get rid of this no-timeout thing */
2856 wait_for_completion_io(&wait);
2857 return IO_OK;
2858 }
2859 if (!wait_for_completion_io_timeout(&wait,
2860 msecs_to_jiffies(timeout_msecs))) {
2861 dev_warn(&h->pdev->dev, "Command timed out.\n");
2862 return -ETIMEDOUT;
2863 }
2864 return IO_OK;
2865 }
2866
hpsa_scsi_do_simple_cmd(struct ctlr_info * h,struct CommandList * c,int reply_queue,unsigned long timeout_msecs)2867 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2868 int reply_queue, unsigned long timeout_msecs)
2869 {
2870 if (unlikely(lockup_detected(h))) {
2871 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2872 return IO_OK;
2873 }
2874 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2875 }
2876
lockup_detected(struct ctlr_info * h)2877 static u32 lockup_detected(struct ctlr_info *h)
2878 {
2879 int cpu;
2880 u32 rc, *lockup_detected;
2881
2882 cpu = get_cpu();
2883 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2884 rc = *lockup_detected;
2885 put_cpu();
2886 return rc;
2887 }
2888
2889 #define MAX_DRIVER_CMD_RETRIES 25
hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info * h,struct CommandList * c,enum dma_data_direction data_direction,unsigned long timeout_msecs)2890 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2891 struct CommandList *c, enum dma_data_direction data_direction,
2892 unsigned long timeout_msecs)
2893 {
2894 int backoff_time = 10, retry_count = 0;
2895 int rc;
2896
2897 do {
2898 memset(c->err_info, 0, sizeof(*c->err_info));
2899 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2900 timeout_msecs);
2901 if (rc)
2902 break;
2903 retry_count++;
2904 if (retry_count > 3) {
2905 msleep(backoff_time);
2906 if (backoff_time < 1000)
2907 backoff_time *= 2;
2908 }
2909 } while ((check_for_unit_attention(h, c) ||
2910 check_for_busy(h, c)) &&
2911 retry_count <= MAX_DRIVER_CMD_RETRIES);
2912 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2913 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2914 rc = -EIO;
2915 return rc;
2916 }
2917
hpsa_print_cmd(struct ctlr_info * h,char * txt,struct CommandList * c)2918 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2919 struct CommandList *c)
2920 {
2921 const u8 *cdb = c->Request.CDB;
2922 const u8 *lun = c->Header.LUN.LunAddrBytes;
2923
2924 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2925 txt, lun, cdb);
2926 }
2927
hpsa_scsi_interpret_error(struct ctlr_info * h,struct CommandList * cp)2928 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2929 struct CommandList *cp)
2930 {
2931 const struct ErrorInfo *ei = cp->err_info;
2932 struct device *d = &cp->h->pdev->dev;
2933 u8 sense_key, asc, ascq;
2934 int sense_len;
2935
2936 switch (ei->CommandStatus) {
2937 case CMD_TARGET_STATUS:
2938 if (ei->SenseLen > sizeof(ei->SenseInfo))
2939 sense_len = sizeof(ei->SenseInfo);
2940 else
2941 sense_len = ei->SenseLen;
2942 decode_sense_data(ei->SenseInfo, sense_len,
2943 &sense_key, &asc, &ascq);
2944 hpsa_print_cmd(h, "SCSI status", cp);
2945 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2946 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2947 sense_key, asc, ascq);
2948 else
2949 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2950 if (ei->ScsiStatus == 0)
2951 dev_warn(d, "SCSI status is abnormally zero. "
2952 "(probably indicates selection timeout "
2953 "reported incorrectly due to a known "
2954 "firmware bug, circa July, 2001.)\n");
2955 break;
2956 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2957 break;
2958 case CMD_DATA_OVERRUN:
2959 hpsa_print_cmd(h, "overrun condition", cp);
2960 break;
2961 case CMD_INVALID: {
2962 /* controller unfortunately reports SCSI passthru's
2963 * to non-existent targets as invalid commands.
2964 */
2965 hpsa_print_cmd(h, "invalid command", cp);
2966 dev_warn(d, "probably means device no longer present\n");
2967 }
2968 break;
2969 case CMD_PROTOCOL_ERR:
2970 hpsa_print_cmd(h, "protocol error", cp);
2971 break;
2972 case CMD_HARDWARE_ERR:
2973 hpsa_print_cmd(h, "hardware error", cp);
2974 break;
2975 case CMD_CONNECTION_LOST:
2976 hpsa_print_cmd(h, "connection lost", cp);
2977 break;
2978 case CMD_ABORTED:
2979 hpsa_print_cmd(h, "aborted", cp);
2980 break;
2981 case CMD_ABORT_FAILED:
2982 hpsa_print_cmd(h, "abort failed", cp);
2983 break;
2984 case CMD_UNSOLICITED_ABORT:
2985 hpsa_print_cmd(h, "unsolicited abort", cp);
2986 break;
2987 case CMD_TIMEOUT:
2988 hpsa_print_cmd(h, "timed out", cp);
2989 break;
2990 case CMD_UNABORTABLE:
2991 hpsa_print_cmd(h, "unabortable", cp);
2992 break;
2993 case CMD_CTLR_LOCKUP:
2994 hpsa_print_cmd(h, "controller lockup detected", cp);
2995 break;
2996 default:
2997 hpsa_print_cmd(h, "unknown status", cp);
2998 dev_warn(d, "Unknown command status %x\n",
2999 ei->CommandStatus);
3000 }
3001 }
3002
hpsa_do_receive_diagnostic(struct ctlr_info * h,u8 * scsi3addr,u8 page,u8 * buf,size_t bufsize)3003 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3004 u8 page, u8 *buf, size_t bufsize)
3005 {
3006 int rc = IO_OK;
3007 struct CommandList *c;
3008 struct ErrorInfo *ei;
3009
3010 c = cmd_alloc(h);
3011 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3012 page, scsi3addr, TYPE_CMD)) {
3013 rc = -1;
3014 goto out;
3015 }
3016 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3017 NO_TIMEOUT);
3018 if (rc)
3019 goto out;
3020 ei = c->err_info;
3021 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3022 hpsa_scsi_interpret_error(h, c);
3023 rc = -1;
3024 }
3025 out:
3026 cmd_free(h, c);
3027 return rc;
3028 }
3029
hpsa_get_enclosure_logical_identifier(struct ctlr_info * h,u8 * scsi3addr)3030 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3031 u8 *scsi3addr)
3032 {
3033 u8 *buf;
3034 u64 sa = 0;
3035 int rc = 0;
3036
3037 buf = kzalloc(1024, GFP_KERNEL);
3038 if (!buf)
3039 return 0;
3040
3041 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3042 buf, 1024);
3043
3044 if (rc)
3045 goto out;
3046
3047 sa = get_unaligned_be64(buf+12);
3048
3049 out:
3050 kfree(buf);
3051 return sa;
3052 }
3053
hpsa_scsi_do_inquiry(struct ctlr_info * h,unsigned char * scsi3addr,u16 page,unsigned char * buf,unsigned char bufsize)3054 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3055 u16 page, unsigned char *buf,
3056 unsigned char bufsize)
3057 {
3058 int rc = IO_OK;
3059 struct CommandList *c;
3060 struct ErrorInfo *ei;
3061
3062 c = cmd_alloc(h);
3063
3064 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3065 page, scsi3addr, TYPE_CMD)) {
3066 rc = -1;
3067 goto out;
3068 }
3069 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3070 NO_TIMEOUT);
3071 if (rc)
3072 goto out;
3073 ei = c->err_info;
3074 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3075 hpsa_scsi_interpret_error(h, c);
3076 rc = -1;
3077 }
3078 out:
3079 cmd_free(h, c);
3080 return rc;
3081 }
3082
hpsa_send_reset(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,u8 reset_type,int reply_queue)3083 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3084 u8 reset_type, int reply_queue)
3085 {
3086 int rc = IO_OK;
3087 struct CommandList *c;
3088 struct ErrorInfo *ei;
3089
3090 c = cmd_alloc(h);
3091 c->device = dev;
3092
3093 /* fill_cmd can't fail here, no data buffer to map. */
3094 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3095 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3096 if (rc) {
3097 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3098 goto out;
3099 }
3100 /* no unmap needed here because no data xfer. */
3101
3102 ei = c->err_info;
3103 if (ei->CommandStatus != 0) {
3104 hpsa_scsi_interpret_error(h, c);
3105 rc = -1;
3106 }
3107 out:
3108 cmd_free(h, c);
3109 return rc;
3110 }
3111
hpsa_cmd_dev_match(struct ctlr_info * h,struct CommandList * c,struct hpsa_scsi_dev_t * dev,unsigned char * scsi3addr)3112 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3113 struct hpsa_scsi_dev_t *dev,
3114 unsigned char *scsi3addr)
3115 {
3116 int i;
3117 bool match = false;
3118 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3119 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3120
3121 if (hpsa_is_cmd_idle(c))
3122 return false;
3123
3124 switch (c->cmd_type) {
3125 case CMD_SCSI:
3126 case CMD_IOCTL_PEND:
3127 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3128 sizeof(c->Header.LUN.LunAddrBytes));
3129 break;
3130
3131 case CMD_IOACCEL1:
3132 case CMD_IOACCEL2:
3133 if (c->phys_disk == dev) {
3134 /* HBA mode match */
3135 match = true;
3136 } else {
3137 /* Possible RAID mode -- check each phys dev. */
3138 /* FIXME: Do we need to take out a lock here? If
3139 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3140 * instead. */
3141 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3142 /* FIXME: an alternate test might be
3143 *
3144 * match = dev->phys_disk[i]->ioaccel_handle
3145 * == c2->scsi_nexus; */
3146 match = dev->phys_disk[i] == c->phys_disk;
3147 }
3148 }
3149 break;
3150
3151 case IOACCEL2_TMF:
3152 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3153 match = dev->phys_disk[i]->ioaccel_handle ==
3154 le32_to_cpu(ac->it_nexus);
3155 }
3156 break;
3157
3158 case 0: /* The command is in the middle of being initialized. */
3159 match = false;
3160 break;
3161
3162 default:
3163 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3164 c->cmd_type);
3165 BUG();
3166 }
3167
3168 return match;
3169 }
3170
hpsa_do_reset(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,u8 reset_type,int reply_queue)3171 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3172 u8 reset_type, int reply_queue)
3173 {
3174 int rc = 0;
3175
3176 /* We can really only handle one reset at a time */
3177 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3178 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3179 return -EINTR;
3180 }
3181
3182 rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3183 if (!rc) {
3184 /* incremented by sending the reset request */
3185 atomic_dec(&dev->commands_outstanding);
3186 wait_event(h->event_sync_wait_queue,
3187 atomic_read(&dev->commands_outstanding) <= 0 ||
3188 lockup_detected(h));
3189 }
3190
3191 if (unlikely(lockup_detected(h))) {
3192 dev_warn(&h->pdev->dev,
3193 "Controller lockup detected during reset wait\n");
3194 rc = -ENODEV;
3195 }
3196
3197 if (!rc)
3198 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3199
3200 mutex_unlock(&h->reset_mutex);
3201 return rc;
3202 }
3203
hpsa_get_raid_level(struct ctlr_info * h,unsigned char * scsi3addr,unsigned char * raid_level)3204 static void hpsa_get_raid_level(struct ctlr_info *h,
3205 unsigned char *scsi3addr, unsigned char *raid_level)
3206 {
3207 int rc;
3208 unsigned char *buf;
3209
3210 *raid_level = RAID_UNKNOWN;
3211 buf = kzalloc(64, GFP_KERNEL);
3212 if (!buf)
3213 return;
3214
3215 if (!hpsa_vpd_page_supported(h, scsi3addr,
3216 HPSA_VPD_LV_DEVICE_GEOMETRY))
3217 goto exit;
3218
3219 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3220 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3221
3222 if (rc == 0)
3223 *raid_level = buf[8];
3224 if (*raid_level > RAID_UNKNOWN)
3225 *raid_level = RAID_UNKNOWN;
3226 exit:
3227 kfree(buf);
3228 return;
3229 }
3230
3231 #define HPSA_MAP_DEBUG
3232 #ifdef HPSA_MAP_DEBUG
hpsa_debug_map_buff(struct ctlr_info * h,int rc,struct raid_map_data * map_buff)3233 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3234 struct raid_map_data *map_buff)
3235 {
3236 struct raid_map_disk_data *dd = &map_buff->data[0];
3237 int map, row, col;
3238 u16 map_cnt, row_cnt, disks_per_row;
3239
3240 if (rc != 0)
3241 return;
3242
3243 /* Show details only if debugging has been activated. */
3244 if (h->raid_offload_debug < 2)
3245 return;
3246
3247 dev_info(&h->pdev->dev, "structure_size = %u\n",
3248 le32_to_cpu(map_buff->structure_size));
3249 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3250 le32_to_cpu(map_buff->volume_blk_size));
3251 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3252 le64_to_cpu(map_buff->volume_blk_cnt));
3253 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3254 map_buff->phys_blk_shift);
3255 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3256 map_buff->parity_rotation_shift);
3257 dev_info(&h->pdev->dev, "strip_size = %u\n",
3258 le16_to_cpu(map_buff->strip_size));
3259 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3260 le64_to_cpu(map_buff->disk_starting_blk));
3261 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3262 le64_to_cpu(map_buff->disk_blk_cnt));
3263 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3264 le16_to_cpu(map_buff->data_disks_per_row));
3265 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3266 le16_to_cpu(map_buff->metadata_disks_per_row));
3267 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3268 le16_to_cpu(map_buff->row_cnt));
3269 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3270 le16_to_cpu(map_buff->layout_map_count));
3271 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3272 le16_to_cpu(map_buff->flags));
3273 dev_info(&h->pdev->dev, "encryption = %s\n",
3274 le16_to_cpu(map_buff->flags) &
3275 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3276 dev_info(&h->pdev->dev, "dekindex = %u\n",
3277 le16_to_cpu(map_buff->dekindex));
3278 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3279 for (map = 0; map < map_cnt; map++) {
3280 dev_info(&h->pdev->dev, "Map%u:\n", map);
3281 row_cnt = le16_to_cpu(map_buff->row_cnt);
3282 for (row = 0; row < row_cnt; row++) {
3283 dev_info(&h->pdev->dev, " Row%u:\n", row);
3284 disks_per_row =
3285 le16_to_cpu(map_buff->data_disks_per_row);
3286 for (col = 0; col < disks_per_row; col++, dd++)
3287 dev_info(&h->pdev->dev,
3288 " D%02u: h=0x%04x xor=%u,%u\n",
3289 col, dd->ioaccel_handle,
3290 dd->xor_mult[0], dd->xor_mult[1]);
3291 disks_per_row =
3292 le16_to_cpu(map_buff->metadata_disks_per_row);
3293 for (col = 0; col < disks_per_row; col++, dd++)
3294 dev_info(&h->pdev->dev,
3295 " M%02u: h=0x%04x xor=%u,%u\n",
3296 col, dd->ioaccel_handle,
3297 dd->xor_mult[0], dd->xor_mult[1]);
3298 }
3299 }
3300 }
3301 #else
hpsa_debug_map_buff(struct ctlr_info * h,int rc,struct raid_map_data * map_buff)3302 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3303 __attribute__((unused)) int rc,
3304 __attribute__((unused)) struct raid_map_data *map_buff)
3305 {
3306 }
3307 #endif
3308
hpsa_get_raid_map(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * this_device)3309 static int hpsa_get_raid_map(struct ctlr_info *h,
3310 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3311 {
3312 int rc = 0;
3313 struct CommandList *c;
3314 struct ErrorInfo *ei;
3315
3316 c = cmd_alloc(h);
3317
3318 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3319 sizeof(this_device->raid_map), 0,
3320 scsi3addr, TYPE_CMD)) {
3321 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3322 cmd_free(h, c);
3323 return -1;
3324 }
3325 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3326 NO_TIMEOUT);
3327 if (rc)
3328 goto out;
3329 ei = c->err_info;
3330 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3331 hpsa_scsi_interpret_error(h, c);
3332 rc = -1;
3333 goto out;
3334 }
3335 cmd_free(h, c);
3336
3337 /* @todo in the future, dynamically allocate RAID map memory */
3338 if (le32_to_cpu(this_device->raid_map.structure_size) >
3339 sizeof(this_device->raid_map)) {
3340 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3341 rc = -1;
3342 }
3343 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3344 return rc;
3345 out:
3346 cmd_free(h, c);
3347 return rc;
3348 }
3349
hpsa_bmic_sense_subsystem_information(struct ctlr_info * h,unsigned char scsi3addr[],u16 bmic_device_index,struct bmic_sense_subsystem_info * buf,size_t bufsize)3350 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3351 unsigned char scsi3addr[], u16 bmic_device_index,
3352 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3353 {
3354 int rc = IO_OK;
3355 struct CommandList *c;
3356 struct ErrorInfo *ei;
3357
3358 c = cmd_alloc(h);
3359
3360 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3361 0, RAID_CTLR_LUNID, TYPE_CMD);
3362 if (rc)
3363 goto out;
3364
3365 c->Request.CDB[2] = bmic_device_index & 0xff;
3366 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3367
3368 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3369 NO_TIMEOUT);
3370 if (rc)
3371 goto out;
3372 ei = c->err_info;
3373 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3374 hpsa_scsi_interpret_error(h, c);
3375 rc = -1;
3376 }
3377 out:
3378 cmd_free(h, c);
3379 return rc;
3380 }
3381
hpsa_bmic_id_controller(struct ctlr_info * h,struct bmic_identify_controller * buf,size_t bufsize)3382 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3383 struct bmic_identify_controller *buf, size_t bufsize)
3384 {
3385 int rc = IO_OK;
3386 struct CommandList *c;
3387 struct ErrorInfo *ei;
3388
3389 c = cmd_alloc(h);
3390
3391 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3392 0, RAID_CTLR_LUNID, TYPE_CMD);
3393 if (rc)
3394 goto out;
3395
3396 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3397 NO_TIMEOUT);
3398 if (rc)
3399 goto out;
3400 ei = c->err_info;
3401 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3402 hpsa_scsi_interpret_error(h, c);
3403 rc = -1;
3404 }
3405 out:
3406 cmd_free(h, c);
3407 return rc;
3408 }
3409
hpsa_bmic_id_physical_device(struct ctlr_info * h,unsigned char scsi3addr[],u16 bmic_device_index,struct bmic_identify_physical_device * buf,size_t bufsize)3410 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3411 unsigned char scsi3addr[], u16 bmic_device_index,
3412 struct bmic_identify_physical_device *buf, size_t bufsize)
3413 {
3414 int rc = IO_OK;
3415 struct CommandList *c;
3416 struct ErrorInfo *ei;
3417
3418 c = cmd_alloc(h);
3419 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3420 0, RAID_CTLR_LUNID, TYPE_CMD);
3421 if (rc)
3422 goto out;
3423
3424 c->Request.CDB[2] = bmic_device_index & 0xff;
3425 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3426
3427 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3428 NO_TIMEOUT);
3429 ei = c->err_info;
3430 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3431 hpsa_scsi_interpret_error(h, c);
3432 rc = -1;
3433 }
3434 out:
3435 cmd_free(h, c);
3436
3437 return rc;
3438 }
3439
3440 /*
3441 * get enclosure information
3442 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3443 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3444 * Uses id_physical_device to determine the box_index.
3445 */
hpsa_get_enclosure_info(struct ctlr_info * h,unsigned char * scsi3addr,struct ReportExtendedLUNdata * rlep,int rle_index,struct hpsa_scsi_dev_t * encl_dev)3446 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3447 unsigned char *scsi3addr,
3448 struct ReportExtendedLUNdata *rlep, int rle_index,
3449 struct hpsa_scsi_dev_t *encl_dev)
3450 {
3451 int rc = -1;
3452 struct CommandList *c = NULL;
3453 struct ErrorInfo *ei = NULL;
3454 struct bmic_sense_storage_box_params *bssbp = NULL;
3455 struct bmic_identify_physical_device *id_phys = NULL;
3456 struct ext_report_lun_entry *rle;
3457 u16 bmic_device_index = 0;
3458
3459 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3460 return;
3461
3462 rle = &rlep->LUN[rle_index];
3463
3464 encl_dev->eli =
3465 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3466
3467 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3468
3469 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3470 rc = IO_OK;
3471 goto out;
3472 }
3473
3474 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3475 rc = IO_OK;
3476 goto out;
3477 }
3478
3479 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3480 if (!bssbp)
3481 goto out;
3482
3483 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3484 if (!id_phys)
3485 goto out;
3486
3487 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3488 id_phys, sizeof(*id_phys));
3489 if (rc) {
3490 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3491 __func__, encl_dev->external, bmic_device_index);
3492 goto out;
3493 }
3494
3495 c = cmd_alloc(h);
3496
3497 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3498 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3499
3500 if (rc)
3501 goto out;
3502
3503 if (id_phys->phys_connector[1] == 'E')
3504 c->Request.CDB[5] = id_phys->box_index;
3505 else
3506 c->Request.CDB[5] = 0;
3507
3508 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3509 NO_TIMEOUT);
3510 if (rc)
3511 goto out;
3512
3513 ei = c->err_info;
3514 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3515 rc = -1;
3516 goto out;
3517 }
3518
3519 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3520 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3521 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3522
3523 rc = IO_OK;
3524 out:
3525 kfree(bssbp);
3526 kfree(id_phys);
3527
3528 if (c)
3529 cmd_free(h, c);
3530
3531 if (rc != IO_OK)
3532 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3533 "Error, could not get enclosure information");
3534 }
3535
hpsa_get_sas_address_from_report_physical(struct ctlr_info * h,unsigned char * scsi3addr)3536 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3537 unsigned char *scsi3addr)
3538 {
3539 struct ReportExtendedLUNdata *physdev;
3540 u32 nphysicals;
3541 u64 sa = 0;
3542 int i;
3543
3544 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3545 if (!physdev)
3546 return 0;
3547
3548 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3549 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3550 kfree(physdev);
3551 return 0;
3552 }
3553 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3554
3555 for (i = 0; i < nphysicals; i++)
3556 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3557 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3558 break;
3559 }
3560
3561 kfree(physdev);
3562
3563 return sa;
3564 }
3565
hpsa_get_sas_address(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * dev)3566 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3567 struct hpsa_scsi_dev_t *dev)
3568 {
3569 int rc;
3570 u64 sa = 0;
3571
3572 if (is_hba_lunid(scsi3addr)) {
3573 struct bmic_sense_subsystem_info *ssi;
3574
3575 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3576 if (!ssi)
3577 return;
3578
3579 rc = hpsa_bmic_sense_subsystem_information(h,
3580 scsi3addr, 0, ssi, sizeof(*ssi));
3581 if (rc == 0) {
3582 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3583 h->sas_address = sa;
3584 }
3585
3586 kfree(ssi);
3587 } else
3588 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3589
3590 dev->sas_address = sa;
3591 }
3592
hpsa_ext_ctrl_present(struct ctlr_info * h,struct ReportExtendedLUNdata * physdev)3593 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3594 struct ReportExtendedLUNdata *physdev)
3595 {
3596 u32 nphysicals;
3597 int i;
3598
3599 if (h->discovery_polling)
3600 return;
3601
3602 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3603
3604 for (i = 0; i < nphysicals; i++) {
3605 if (physdev->LUN[i].device_type ==
3606 BMIC_DEVICE_TYPE_CONTROLLER
3607 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3608 dev_info(&h->pdev->dev,
3609 "External controller present, activate discovery polling and disable rld caching\n");
3610 hpsa_disable_rld_caching(h);
3611 h->discovery_polling = 1;
3612 break;
3613 }
3614 }
3615 }
3616
3617 /* Get a device id from inquiry page 0x83 */
hpsa_vpd_page_supported(struct ctlr_info * h,unsigned char scsi3addr[],u8 page)3618 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3619 unsigned char scsi3addr[], u8 page)
3620 {
3621 int rc;
3622 int i;
3623 int pages;
3624 unsigned char *buf, bufsize;
3625
3626 buf = kzalloc(256, GFP_KERNEL);
3627 if (!buf)
3628 return false;
3629
3630 /* Get the size of the page list first */
3631 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633 buf, HPSA_VPD_HEADER_SZ);
3634 if (rc != 0)
3635 goto exit_unsupported;
3636 pages = buf[3];
3637 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3638 bufsize = pages + HPSA_VPD_HEADER_SZ;
3639 else
3640 bufsize = 255;
3641
3642 /* Get the whole VPD page list */
3643 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3644 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3645 buf, bufsize);
3646 if (rc != 0)
3647 goto exit_unsupported;
3648
3649 pages = buf[3];
3650 for (i = 1; i <= pages; i++)
3651 if (buf[3 + i] == page)
3652 goto exit_supported;
3653 exit_unsupported:
3654 kfree(buf);
3655 return false;
3656 exit_supported:
3657 kfree(buf);
3658 return true;
3659 }
3660
3661 /*
3662 * Called during a scan operation.
3663 * Sets ioaccel status on the new device list, not the existing device list
3664 *
3665 * The device list used during I/O will be updated later in
3666 * adjust_hpsa_scsi_table.
3667 */
hpsa_get_ioaccel_status(struct ctlr_info * h,unsigned char * scsi3addr,struct hpsa_scsi_dev_t * this_device)3668 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3669 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3670 {
3671 int rc;
3672 unsigned char *buf;
3673 u8 ioaccel_status;
3674
3675 this_device->offload_config = 0;
3676 this_device->offload_enabled = 0;
3677 this_device->offload_to_be_enabled = 0;
3678
3679 buf = kzalloc(64, GFP_KERNEL);
3680 if (!buf)
3681 return;
3682 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3683 goto out;
3684 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3685 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3686 if (rc != 0)
3687 goto out;
3688
3689 #define IOACCEL_STATUS_BYTE 4
3690 #define OFFLOAD_CONFIGURED_BIT 0x01
3691 #define OFFLOAD_ENABLED_BIT 0x02
3692 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3693 this_device->offload_config =
3694 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3695 if (this_device->offload_config) {
3696 bool offload_enabled =
3697 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3698 /*
3699 * Check to see if offload can be enabled.
3700 */
3701 if (offload_enabled) {
3702 rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3703 if (rc) /* could not load raid_map */
3704 goto out;
3705 this_device->offload_to_be_enabled = 1;
3706 }
3707 }
3708
3709 out:
3710 kfree(buf);
3711 return;
3712 }
3713
3714 /* Get the device id from inquiry page 0x83 */
hpsa_get_device_id(struct ctlr_info * h,unsigned char * scsi3addr,unsigned char * device_id,int index,int buflen)3715 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3716 unsigned char *device_id, int index, int buflen)
3717 {
3718 int rc;
3719 unsigned char *buf;
3720
3721 /* Does controller have VPD for device id? */
3722 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3723 return 1; /* not supported */
3724
3725 buf = kzalloc(64, GFP_KERNEL);
3726 if (!buf)
3727 return -ENOMEM;
3728
3729 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3730 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3731 if (rc == 0) {
3732 if (buflen > 16)
3733 buflen = 16;
3734 memcpy(device_id, &buf[8], buflen);
3735 }
3736
3737 kfree(buf);
3738
3739 return rc; /*0 - got id, otherwise, didn't */
3740 }
3741
hpsa_scsi_do_report_luns(struct ctlr_info * h,int logical,void * buf,int bufsize,int extended_response)3742 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3743 void *buf, int bufsize,
3744 int extended_response)
3745 {
3746 int rc = IO_OK;
3747 struct CommandList *c;
3748 unsigned char scsi3addr[8];
3749 struct ErrorInfo *ei;
3750
3751 c = cmd_alloc(h);
3752
3753 /* address the controller */
3754 memset(scsi3addr, 0, sizeof(scsi3addr));
3755 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3756 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3757 rc = -EAGAIN;
3758 goto out;
3759 }
3760 if (extended_response)
3761 c->Request.CDB[1] = extended_response;
3762 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3763 NO_TIMEOUT);
3764 if (rc)
3765 goto out;
3766 ei = c->err_info;
3767 if (ei->CommandStatus != 0 &&
3768 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3769 hpsa_scsi_interpret_error(h, c);
3770 rc = -EIO;
3771 } else {
3772 struct ReportLUNdata *rld = buf;
3773
3774 if (rld->extended_response_flag != extended_response) {
3775 if (!h->legacy_board) {
3776 dev_err(&h->pdev->dev,
3777 "report luns requested format %u, got %u\n",
3778 extended_response,
3779 rld->extended_response_flag);
3780 rc = -EINVAL;
3781 } else
3782 rc = -EOPNOTSUPP;
3783 }
3784 }
3785 out:
3786 cmd_free(h, c);
3787 return rc;
3788 }
3789
hpsa_scsi_do_report_phys_luns(struct ctlr_info * h,struct ReportExtendedLUNdata * buf,int bufsize)3790 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3791 struct ReportExtendedLUNdata *buf, int bufsize)
3792 {
3793 int rc;
3794 struct ReportLUNdata *lbuf;
3795
3796 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3797 HPSA_REPORT_PHYS_EXTENDED);
3798 if (!rc || rc != -EOPNOTSUPP)
3799 return rc;
3800
3801 /* REPORT PHYS EXTENDED is not supported */
3802 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3803 if (!lbuf)
3804 return -ENOMEM;
3805
3806 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3807 if (!rc) {
3808 int i;
3809 u32 nphys;
3810
3811 /* Copy ReportLUNdata header */
3812 memcpy(buf, lbuf, 8);
3813 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3814 for (i = 0; i < nphys; i++)
3815 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3816 }
3817 kfree(lbuf);
3818 return rc;
3819 }
3820
hpsa_scsi_do_report_log_luns(struct ctlr_info * h,struct ReportLUNdata * buf,int bufsize)3821 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3822 struct ReportLUNdata *buf, int bufsize)
3823 {
3824 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3825 }
3826
hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t * device,int bus,int target,int lun)3827 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3828 int bus, int target, int lun)
3829 {
3830 device->bus = bus;
3831 device->target = target;
3832 device->lun = lun;
3833 }
3834
3835 /* Use VPD inquiry to get details of volume status */
hpsa_get_volume_status(struct ctlr_info * h,unsigned char scsi3addr[])3836 static int hpsa_get_volume_status(struct ctlr_info *h,
3837 unsigned char scsi3addr[])
3838 {
3839 int rc;
3840 int status;
3841 int size;
3842 unsigned char *buf;
3843
3844 buf = kzalloc(64, GFP_KERNEL);
3845 if (!buf)
3846 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3847
3848 /* Does controller have VPD for logical volume status? */
3849 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3850 goto exit_failed;
3851
3852 /* Get the size of the VPD return buffer */
3853 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3854 buf, HPSA_VPD_HEADER_SZ);
3855 if (rc != 0)
3856 goto exit_failed;
3857 size = buf[3];
3858
3859 /* Now get the whole VPD buffer */
3860 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3861 buf, size + HPSA_VPD_HEADER_SZ);
3862 if (rc != 0)
3863 goto exit_failed;
3864 status = buf[4]; /* status byte */
3865
3866 kfree(buf);
3867 return status;
3868 exit_failed:
3869 kfree(buf);
3870 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3871 }
3872
3873 /* Determine offline status of a volume.
3874 * Return either:
3875 * 0 (not offline)
3876 * 0xff (offline for unknown reasons)
3877 * # (integer code indicating one of several NOT READY states
3878 * describing why a volume is to be kept offline)
3879 */
hpsa_volume_offline(struct ctlr_info * h,unsigned char scsi3addr[])3880 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3881 unsigned char scsi3addr[])
3882 {
3883 struct CommandList *c;
3884 unsigned char *sense;
3885 u8 sense_key, asc, ascq;
3886 int sense_len;
3887 int rc, ldstat = 0;
3888 #define ASC_LUN_NOT_READY 0x04
3889 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3890 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3891
3892 c = cmd_alloc(h);
3893
3894 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3895 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3896 NO_TIMEOUT);
3897 if (rc) {
3898 cmd_free(h, c);
3899 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3900 }
3901 sense = c->err_info->SenseInfo;
3902 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3903 sense_len = sizeof(c->err_info->SenseInfo);
3904 else
3905 sense_len = c->err_info->SenseLen;
3906 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3907 cmd_free(h, c);
3908
3909 /* Determine the reason for not ready state */
3910 ldstat = hpsa_get_volume_status(h, scsi3addr);
3911
3912 /* Keep volume offline in certain cases: */
3913 switch (ldstat) {
3914 case HPSA_LV_FAILED:
3915 case HPSA_LV_UNDERGOING_ERASE:
3916 case HPSA_LV_NOT_AVAILABLE:
3917 case HPSA_LV_UNDERGOING_RPI:
3918 case HPSA_LV_PENDING_RPI:
3919 case HPSA_LV_ENCRYPTED_NO_KEY:
3920 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3921 case HPSA_LV_UNDERGOING_ENCRYPTION:
3922 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3923 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3924 return ldstat;
3925 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3926 /* If VPD status page isn't available,
3927 * use ASC/ASCQ to determine state
3928 */
3929 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3930 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3931 return ldstat;
3932 break;
3933 default:
3934 break;
3935 }
3936 return HPSA_LV_OK;
3937 }
3938
hpsa_update_device_info(struct ctlr_info * h,unsigned char scsi3addr[],struct hpsa_scsi_dev_t * this_device,unsigned char * is_OBDR_device)3939 static int hpsa_update_device_info(struct ctlr_info *h,
3940 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3941 unsigned char *is_OBDR_device)
3942 {
3943
3944 #define OBDR_SIG_OFFSET 43
3945 #define OBDR_TAPE_SIG "$DR-10"
3946 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3948
3949 unsigned char *inq_buff;
3950 unsigned char *obdr_sig;
3951 int rc = 0;
3952
3953 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3954 if (!inq_buff) {
3955 rc = -ENOMEM;
3956 goto bail_out;
3957 }
3958
3959 /* Do an inquiry to the device to see what it is. */
3960 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3961 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3962 dev_err(&h->pdev->dev,
3963 "%s: inquiry failed, device will be skipped.\n",
3964 __func__);
3965 rc = HPSA_INQUIRY_FAILED;
3966 goto bail_out;
3967 }
3968
3969 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3970 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3971
3972 this_device->devtype = (inq_buff[0] & 0x1f);
3973 memcpy(this_device->scsi3addr, scsi3addr, 8);
3974 memcpy(this_device->vendor, &inq_buff[8],
3975 sizeof(this_device->vendor));
3976 memcpy(this_device->model, &inq_buff[16],
3977 sizeof(this_device->model));
3978 this_device->rev = inq_buff[2];
3979 memset(this_device->device_id, 0,
3980 sizeof(this_device->device_id));
3981 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3982 sizeof(this_device->device_id)) < 0) {
3983 dev_err(&h->pdev->dev,
3984 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3985 h->ctlr, __func__,
3986 h->scsi_host->host_no,
3987 this_device->bus, this_device->target,
3988 this_device->lun,
3989 scsi_device_type(this_device->devtype),
3990 this_device->model);
3991 rc = HPSA_LV_FAILED;
3992 goto bail_out;
3993 }
3994
3995 if ((this_device->devtype == TYPE_DISK ||
3996 this_device->devtype == TYPE_ZBC) &&
3997 is_logical_dev_addr_mode(scsi3addr)) {
3998 unsigned char volume_offline;
3999
4000 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4001 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4002 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4003 volume_offline = hpsa_volume_offline(h, scsi3addr);
4004 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4005 h->legacy_board) {
4006 /*
4007 * Legacy boards might not support volume status
4008 */
4009 dev_info(&h->pdev->dev,
4010 "C0:T%d:L%d Volume status not available, assuming online.\n",
4011 this_device->target, this_device->lun);
4012 volume_offline = 0;
4013 }
4014 this_device->volume_offline = volume_offline;
4015 if (volume_offline == HPSA_LV_FAILED) {
4016 rc = HPSA_LV_FAILED;
4017 dev_err(&h->pdev->dev,
4018 "%s: LV failed, device will be skipped.\n",
4019 __func__);
4020 goto bail_out;
4021 }
4022 } else {
4023 this_device->raid_level = RAID_UNKNOWN;
4024 this_device->offload_config = 0;
4025 hpsa_turn_off_ioaccel_for_device(this_device);
4026 this_device->hba_ioaccel_enabled = 0;
4027 this_device->volume_offline = 0;
4028 this_device->queue_depth = h->nr_cmds;
4029 }
4030
4031 if (this_device->external)
4032 this_device->queue_depth = EXTERNAL_QD;
4033
4034 if (is_OBDR_device) {
4035 /* See if this is a One-Button-Disaster-Recovery device
4036 * by looking for "$DR-10" at offset 43 in inquiry data.
4037 */
4038 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4039 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4040 strncmp(obdr_sig, OBDR_TAPE_SIG,
4041 OBDR_SIG_LEN) == 0);
4042 }
4043 kfree(inq_buff);
4044 return 0;
4045
4046 bail_out:
4047 kfree(inq_buff);
4048 return rc;
4049 }
4050
4051 /*
4052 * Helper function to assign bus, target, lun mapping of devices.
4053 * Logical drive target and lun are assigned at this time, but
4054 * physical device lun and target assignment are deferred (assigned
4055 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4056 */
figure_bus_target_lun(struct ctlr_info * h,u8 * lunaddrbytes,struct hpsa_scsi_dev_t * device)4057 static void figure_bus_target_lun(struct ctlr_info *h,
4058 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4059 {
4060 u32 lunid = get_unaligned_le32(lunaddrbytes);
4061
4062 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4063 /* physical device, target and lun filled in later */
4064 if (is_hba_lunid(lunaddrbytes)) {
4065 int bus = HPSA_HBA_BUS;
4066
4067 if (!device->rev)
4068 bus = HPSA_LEGACY_HBA_BUS;
4069 hpsa_set_bus_target_lun(device,
4070 bus, 0, lunid & 0x3fff);
4071 } else
4072 /* defer target, lun assignment for physical devices */
4073 hpsa_set_bus_target_lun(device,
4074 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4075 return;
4076 }
4077 /* It's a logical device */
4078 if (device->external) {
4079 hpsa_set_bus_target_lun(device,
4080 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4081 lunid & 0x00ff);
4082 return;
4083 }
4084 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4085 0, lunid & 0x3fff);
4086 }
4087
figure_external_status(struct ctlr_info * h,int raid_ctlr_position,int i,int nphysicals,int nlocal_logicals)4088 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4089 int i, int nphysicals, int nlocal_logicals)
4090 {
4091 /* In report logicals, local logicals are listed first,
4092 * then any externals.
4093 */
4094 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4095
4096 if (i == raid_ctlr_position)
4097 return 0;
4098
4099 if (i < logicals_start)
4100 return 0;
4101
4102 /* i is in logicals range, but still within local logicals */
4103 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4104 return 0;
4105
4106 return 1; /* it's an external lun */
4107 }
4108
4109 /*
4110 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4111 * logdev. The number of luns in physdev and logdev are returned in
4112 * *nphysicals and *nlogicals, respectively.
4113 * Returns 0 on success, -1 otherwise.
4114 */
hpsa_gather_lun_info(struct ctlr_info * h,struct ReportExtendedLUNdata * physdev,u32 * nphysicals,struct ReportLUNdata * logdev,u32 * nlogicals)4115 static int hpsa_gather_lun_info(struct ctlr_info *h,
4116 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4117 struct ReportLUNdata *logdev, u32 *nlogicals)
4118 {
4119 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4120 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4121 return -1;
4122 }
4123 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4124 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4125 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4127 *nphysicals = HPSA_MAX_PHYS_LUN;
4128 }
4129 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4130 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4131 return -1;
4132 }
4133 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4134 /* Reject Logicals in excess of our max capability. */
4135 if (*nlogicals > HPSA_MAX_LUN) {
4136 dev_warn(&h->pdev->dev,
4137 "maximum logical LUNs (%d) exceeded. "
4138 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4139 *nlogicals - HPSA_MAX_LUN);
4140 *nlogicals = HPSA_MAX_LUN;
4141 }
4142 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4143 dev_warn(&h->pdev->dev,
4144 "maximum logical + physical LUNs (%d) exceeded. "
4145 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4146 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4147 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4148 }
4149 return 0;
4150 }
4151
figure_lunaddrbytes(struct ctlr_info * h,int raid_ctlr_position,int i,int nphysicals,int nlogicals,struct ReportExtendedLUNdata * physdev_list,struct ReportLUNdata * logdev_list)4152 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4153 int i, int nphysicals, int nlogicals,
4154 struct ReportExtendedLUNdata *physdev_list,
4155 struct ReportLUNdata *logdev_list)
4156 {
4157 /* Helper function, figure out where the LUN ID info is coming from
4158 * given index i, lists of physical and logical devices, where in
4159 * the list the raid controller is supposed to appear (first or last)
4160 */
4161
4162 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4163 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4164
4165 if (i == raid_ctlr_position)
4166 return RAID_CTLR_LUNID;
4167
4168 if (i < logicals_start)
4169 return &physdev_list->LUN[i -
4170 (raid_ctlr_position == 0)].lunid[0];
4171
4172 if (i < last_device)
4173 return &logdev_list->LUN[i - nphysicals -
4174 (raid_ctlr_position == 0)][0];
4175 BUG();
4176 return NULL;
4177 }
4178
4179 /* get physical drive ioaccel handle and queue depth */
hpsa_get_ioaccel_drive_info(struct ctlr_info * h,struct hpsa_scsi_dev_t * dev,struct ReportExtendedLUNdata * rlep,int rle_index,struct bmic_identify_physical_device * id_phys)4180 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4181 struct hpsa_scsi_dev_t *dev,
4182 struct ReportExtendedLUNdata *rlep, int rle_index,
4183 struct bmic_identify_physical_device *id_phys)
4184 {
4185 int rc;
4186 struct ext_report_lun_entry *rle;
4187
4188 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4189 return;
4190
4191 rle = &rlep->LUN[rle_index];
4192
4193 dev->ioaccel_handle = rle->ioaccel_handle;
4194 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4195 dev->hba_ioaccel_enabled = 1;
4196 memset(id_phys, 0, sizeof(*id_phys));
4197 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4198 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4199 sizeof(*id_phys));
4200 if (!rc)
4201 /* Reserve space for FW operations */
4202 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4203 #define DRIVE_QUEUE_DEPTH 7
4204 dev->queue_depth =
4205 le16_to_cpu(id_phys->current_queue_depth_limit) -
4206 DRIVE_CMDS_RESERVED_FOR_FW;
4207 else
4208 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4209 }
4210
hpsa_get_path_info(struct hpsa_scsi_dev_t * this_device,struct ReportExtendedLUNdata * rlep,int rle_index,struct bmic_identify_physical_device * id_phys)4211 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4212 struct ReportExtendedLUNdata *rlep, int rle_index,
4213 struct bmic_identify_physical_device *id_phys)
4214 {
4215 struct ext_report_lun_entry *rle;
4216
4217 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4218 return;
4219
4220 rle = &rlep->LUN[rle_index];
4221
4222 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4223 this_device->hba_ioaccel_enabled = 1;
4224
4225 memcpy(&this_device->active_path_index,
4226 &id_phys->active_path_number,
4227 sizeof(this_device->active_path_index));
4228 memcpy(&this_device->path_map,
4229 &id_phys->redundant_path_present_map,
4230 sizeof(this_device->path_map));
4231 memcpy(&this_device->box,
4232 &id_phys->alternate_paths_phys_box_on_port,
4233 sizeof(this_device->box));
4234 memcpy(&this_device->phys_connector,
4235 &id_phys->alternate_paths_phys_connector,
4236 sizeof(this_device->phys_connector));
4237 memcpy(&this_device->bay,
4238 &id_phys->phys_bay_in_box,
4239 sizeof(this_device->bay));
4240 }
4241
4242 /* get number of local logical disks. */
hpsa_set_local_logical_count(struct ctlr_info * h,struct bmic_identify_controller * id_ctlr,u32 * nlocals)4243 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4244 struct bmic_identify_controller *id_ctlr,
4245 u32 *nlocals)
4246 {
4247 int rc;
4248
4249 if (!id_ctlr) {
4250 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4251 __func__);
4252 return -ENOMEM;
4253 }
4254 memset(id_ctlr, 0, sizeof(*id_ctlr));
4255 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4256 if (!rc)
4257 if (id_ctlr->configured_logical_drive_count < 255)
4258 *nlocals = id_ctlr->configured_logical_drive_count;
4259 else
4260 *nlocals = le16_to_cpu(
4261 id_ctlr->extended_logical_unit_count);
4262 else
4263 *nlocals = -1;
4264 return rc;
4265 }
4266
hpsa_is_disk_spare(struct ctlr_info * h,u8 * lunaddrbytes)4267 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4268 {
4269 struct bmic_identify_physical_device *id_phys;
4270 bool is_spare = false;
4271 int rc;
4272
4273 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4274 if (!id_phys)
4275 return false;
4276
4277 rc = hpsa_bmic_id_physical_device(h,
4278 lunaddrbytes,
4279 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4280 id_phys, sizeof(*id_phys));
4281 if (rc == 0)
4282 is_spare = (id_phys->more_flags >> 6) & 0x01;
4283
4284 kfree(id_phys);
4285 return is_spare;
4286 }
4287
4288 #define RPL_DEV_FLAG_NON_DISK 0x1
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4290 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4291
4292 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4293
hpsa_skip_device(struct ctlr_info * h,u8 * lunaddrbytes,struct ext_report_lun_entry * rle)4294 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4295 struct ext_report_lun_entry *rle)
4296 {
4297 u8 device_flags;
4298 u8 device_type;
4299
4300 if (!MASKED_DEVICE(lunaddrbytes))
4301 return false;
4302
4303 device_flags = rle->device_flags;
4304 device_type = rle->device_type;
4305
4306 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4307 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4308 return false;
4309 return true;
4310 }
4311
4312 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4313 return false;
4314
4315 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4316 return false;
4317
4318 /*
4319 * Spares may be spun down, we do not want to
4320 * do an Inquiry to a RAID set spare drive as
4321 * that would have them spun up, that is a
4322 * performance hit because I/O to the RAID device
4323 * stops while the spin up occurs which can take
4324 * over 50 seconds.
4325 */
4326 if (hpsa_is_disk_spare(h, lunaddrbytes))
4327 return true;
4328
4329 return false;
4330 }
4331
hpsa_update_scsi_devices(struct ctlr_info * h)4332 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4333 {
4334 /* the idea here is we could get notified
4335 * that some devices have changed, so we do a report
4336 * physical luns and report logical luns cmd, and adjust
4337 * our list of devices accordingly.
4338 *
4339 * The scsi3addr's of devices won't change so long as the
4340 * adapter is not reset. That means we can rescan and
4341 * tell which devices we already know about, vs. new
4342 * devices, vs. disappearing devices.
4343 */
4344 struct ReportExtendedLUNdata *physdev_list = NULL;
4345 struct ReportLUNdata *logdev_list = NULL;
4346 struct bmic_identify_physical_device *id_phys = NULL;
4347 struct bmic_identify_controller *id_ctlr = NULL;
4348 u32 nphysicals = 0;
4349 u32 nlogicals = 0;
4350 u32 nlocal_logicals = 0;
4351 u32 ndev_allocated = 0;
4352 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4353 int ncurrent = 0;
4354 int i, ndevs_to_allocate;
4355 int raid_ctlr_position;
4356 bool physical_device;
4357
4358 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4359 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4360 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4361 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4362 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4363 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4364
4365 if (!currentsd || !physdev_list || !logdev_list ||
4366 !tmpdevice || !id_phys || !id_ctlr) {
4367 dev_err(&h->pdev->dev, "out of memory\n");
4368 goto out;
4369 }
4370
4371 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4372
4373 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4374 logdev_list, &nlogicals)) {
4375 h->drv_req_rescan = 1;
4376 goto out;
4377 }
4378
4379 /* Set number of local logicals (non PTRAID) */
4380 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4381 dev_warn(&h->pdev->dev,
4382 "%s: Can't determine number of local logical devices.\n",
4383 __func__);
4384 }
4385
4386 /* We might see up to the maximum number of logical and physical disks
4387 * plus external target devices, and a device for the local RAID
4388 * controller.
4389 */
4390 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4391
4392 hpsa_ext_ctrl_present(h, physdev_list);
4393
4394 /* Allocate the per device structures */
4395 for (i = 0; i < ndevs_to_allocate; i++) {
4396 if (i >= HPSA_MAX_DEVICES) {
4397 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4398 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4399 ndevs_to_allocate - HPSA_MAX_DEVICES);
4400 break;
4401 }
4402
4403 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4404 if (!currentsd[i]) {
4405 h->drv_req_rescan = 1;
4406 goto out;
4407 }
4408 ndev_allocated++;
4409 }
4410
4411 if (is_scsi_rev_5(h))
4412 raid_ctlr_position = 0;
4413 else
4414 raid_ctlr_position = nphysicals + nlogicals;
4415
4416 /* adjust our table of devices */
4417 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4418 u8 *lunaddrbytes, is_OBDR = 0;
4419 int rc = 0;
4420 int phys_dev_index = i - (raid_ctlr_position == 0);
4421 bool skip_device = false;
4422
4423 memset(tmpdevice, 0, sizeof(*tmpdevice));
4424
4425 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4426
4427 /* Figure out where the LUN ID info is coming from */
4428 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4429 i, nphysicals, nlogicals, physdev_list, logdev_list);
4430
4431 /* Determine if this is a lun from an external target array */
4432 tmpdevice->external =
4433 figure_external_status(h, raid_ctlr_position, i,
4434 nphysicals, nlocal_logicals);
4435
4436 /*
4437 * Skip over some devices such as a spare.
4438 */
4439 if (phys_dev_index >= 0 && !tmpdevice->external &&
4440 physical_device) {
4441 skip_device = hpsa_skip_device(h, lunaddrbytes,
4442 &physdev_list->LUN[phys_dev_index]);
4443 if (skip_device)
4444 continue;
4445 }
4446
4447 /* Get device type, vendor, model, device id, raid_map */
4448 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4449 &is_OBDR);
4450 if (rc == -ENOMEM) {
4451 dev_warn(&h->pdev->dev,
4452 "Out of memory, rescan deferred.\n");
4453 h->drv_req_rescan = 1;
4454 goto out;
4455 }
4456 if (rc) {
4457 h->drv_req_rescan = 1;
4458 continue;
4459 }
4460
4461 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4462 this_device = currentsd[ncurrent];
4463
4464 *this_device = *tmpdevice;
4465 this_device->physical_device = physical_device;
4466
4467 /*
4468 * Expose all devices except for physical devices that
4469 * are masked.
4470 */
4471 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4472 this_device->expose_device = 0;
4473 else
4474 this_device->expose_device = 1;
4475
4476
4477 /*
4478 * Get the SAS address for physical devices that are exposed.
4479 */
4480 if (this_device->physical_device && this_device->expose_device)
4481 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4482
4483 switch (this_device->devtype) {
4484 case TYPE_ROM:
4485 /* We don't *really* support actual CD-ROM devices,
4486 * just "One Button Disaster Recovery" tape drive
4487 * which temporarily pretends to be a CD-ROM drive.
4488 * So we check that the device is really an OBDR tape
4489 * device by checking for "$DR-10" in bytes 43-48 of
4490 * the inquiry data.
4491 */
4492 if (is_OBDR)
4493 ncurrent++;
4494 break;
4495 case TYPE_DISK:
4496 case TYPE_ZBC:
4497 if (this_device->physical_device) {
4498 /* The disk is in HBA mode. */
4499 /* Never use RAID mapper in HBA mode. */
4500 this_device->offload_enabled = 0;
4501 hpsa_get_ioaccel_drive_info(h, this_device,
4502 physdev_list, phys_dev_index, id_phys);
4503 hpsa_get_path_info(this_device,
4504 physdev_list, phys_dev_index, id_phys);
4505 }
4506 ncurrent++;
4507 break;
4508 case TYPE_TAPE:
4509 case TYPE_MEDIUM_CHANGER:
4510 ncurrent++;
4511 break;
4512 case TYPE_ENCLOSURE:
4513 if (!this_device->external)
4514 hpsa_get_enclosure_info(h, lunaddrbytes,
4515 physdev_list, phys_dev_index,
4516 this_device);
4517 ncurrent++;
4518 break;
4519 case TYPE_RAID:
4520 /* Only present the Smartarray HBA as a RAID controller.
4521 * If it's a RAID controller other than the HBA itself
4522 * (an external RAID controller, MSA500 or similar)
4523 * don't present it.
4524 */
4525 if (!is_hba_lunid(lunaddrbytes))
4526 break;
4527 ncurrent++;
4528 break;
4529 default:
4530 break;
4531 }
4532 if (ncurrent >= HPSA_MAX_DEVICES)
4533 break;
4534 }
4535
4536 if (h->sas_host == NULL) {
4537 int rc = 0;
4538
4539 rc = hpsa_add_sas_host(h);
4540 if (rc) {
4541 dev_warn(&h->pdev->dev,
4542 "Could not add sas host %d\n", rc);
4543 goto out;
4544 }
4545 }
4546
4547 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4548 out:
4549 kfree(tmpdevice);
4550 for (i = 0; i < ndev_allocated; i++)
4551 kfree(currentsd[i]);
4552 kfree(currentsd);
4553 kfree(physdev_list);
4554 kfree(logdev_list);
4555 kfree(id_ctlr);
4556 kfree(id_phys);
4557 }
4558
hpsa_set_sg_descriptor(struct SGDescriptor * desc,struct scatterlist * sg)4559 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4560 struct scatterlist *sg)
4561 {
4562 u64 addr64 = (u64) sg_dma_address(sg);
4563 unsigned int len = sg_dma_len(sg);
4564
4565 desc->Addr = cpu_to_le64(addr64);
4566 desc->Len = cpu_to_le32(len);
4567 desc->Ext = 0;
4568 }
4569
4570 /*
4571 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4572 * dma mapping and fills in the scatter gather entries of the
4573 * hpsa command, cp.
4574 */
hpsa_scatter_gather(struct ctlr_info * h,struct CommandList * cp,struct scsi_cmnd * cmd)4575 static int hpsa_scatter_gather(struct ctlr_info *h,
4576 struct CommandList *cp,
4577 struct scsi_cmnd *cmd)
4578 {
4579 struct scatterlist *sg;
4580 int use_sg, i, sg_limit, chained;
4581 struct SGDescriptor *curr_sg;
4582
4583 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4584
4585 use_sg = scsi_dma_map(cmd);
4586 if (use_sg < 0)
4587 return use_sg;
4588
4589 if (!use_sg)
4590 goto sglist_finished;
4591
4592 /*
4593 * If the number of entries is greater than the max for a single list,
4594 * then we have a chained list; we will set up all but one entry in the
4595 * first list (the last entry is saved for link information);
4596 * otherwise, we don't have a chained list and we'll set up at each of
4597 * the entries in the one list.
4598 */
4599 curr_sg = cp->SG;
4600 chained = use_sg > h->max_cmd_sg_entries;
4601 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4602 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4603 hpsa_set_sg_descriptor(curr_sg, sg);
4604 curr_sg++;
4605 }
4606
4607 if (chained) {
4608 /*
4609 * Continue with the chained list. Set curr_sg to the chained
4610 * list. Modify the limit to the total count less the entries
4611 * we've already set up. Resume the scan at the list entry
4612 * where the previous loop left off.
4613 */
4614 curr_sg = h->cmd_sg_list[cp->cmdindex];
4615 sg_limit = use_sg - sg_limit;
4616 for_each_sg(sg, sg, sg_limit, i) {
4617 hpsa_set_sg_descriptor(curr_sg, sg);
4618 curr_sg++;
4619 }
4620 }
4621
4622 /* Back the pointer up to the last entry and mark it as "last". */
4623 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4624
4625 if (use_sg + chained > h->maxSG)
4626 h->maxSG = use_sg + chained;
4627
4628 if (chained) {
4629 cp->Header.SGList = h->max_cmd_sg_entries;
4630 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4631 if (hpsa_map_sg_chain_block(h, cp)) {
4632 scsi_dma_unmap(cmd);
4633 return -1;
4634 }
4635 return 0;
4636 }
4637
4638 sglist_finished:
4639
4640 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4641 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4642 return 0;
4643 }
4644
warn_zero_length_transfer(struct ctlr_info * h,u8 * cdb,int cdb_len,const char * func)4645 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4646 u8 *cdb, int cdb_len,
4647 const char *func)
4648 {
4649 dev_warn(&h->pdev->dev,
4650 "%s: Blocking zero-length request: CDB:%*phN\n",
4651 func, cdb_len, cdb);
4652 }
4653
4654 #define IO_ACCEL_INELIGIBLE 1
4655 /* zero-length transfers trigger hardware errors. */
is_zero_length_transfer(u8 * cdb)4656 static bool is_zero_length_transfer(u8 *cdb)
4657 {
4658 u32 block_cnt;
4659
4660 /* Block zero-length transfer sizes on certain commands. */
4661 switch (cdb[0]) {
4662 case READ_10:
4663 case WRITE_10:
4664 case VERIFY: /* 0x2F */
4665 case WRITE_VERIFY: /* 0x2E */
4666 block_cnt = get_unaligned_be16(&cdb[7]);
4667 break;
4668 case READ_12:
4669 case WRITE_12:
4670 case VERIFY_12: /* 0xAF */
4671 case WRITE_VERIFY_12: /* 0xAE */
4672 block_cnt = get_unaligned_be32(&cdb[6]);
4673 break;
4674 case READ_16:
4675 case WRITE_16:
4676 case VERIFY_16: /* 0x8F */
4677 block_cnt = get_unaligned_be32(&cdb[10]);
4678 break;
4679 default:
4680 return false;
4681 }
4682
4683 return block_cnt == 0;
4684 }
4685
fixup_ioaccel_cdb(u8 * cdb,int * cdb_len)4686 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4687 {
4688 int is_write = 0;
4689 u32 block;
4690 u32 block_cnt;
4691
4692 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4693 switch (cdb[0]) {
4694 case WRITE_6:
4695 case WRITE_12:
4696 is_write = 1;
4697 fallthrough;
4698 case READ_6:
4699 case READ_12:
4700 if (*cdb_len == 6) {
4701 block = (((cdb[1] & 0x1F) << 16) |
4702 (cdb[2] << 8) |
4703 cdb[3]);
4704 block_cnt = cdb[4];
4705 if (block_cnt == 0)
4706 block_cnt = 256;
4707 } else {
4708 BUG_ON(*cdb_len != 12);
4709 block = get_unaligned_be32(&cdb[2]);
4710 block_cnt = get_unaligned_be32(&cdb[6]);
4711 }
4712 if (block_cnt > 0xffff)
4713 return IO_ACCEL_INELIGIBLE;
4714
4715 cdb[0] = is_write ? WRITE_10 : READ_10;
4716 cdb[1] = 0;
4717 cdb[2] = (u8) (block >> 24);
4718 cdb[3] = (u8) (block >> 16);
4719 cdb[4] = (u8) (block >> 8);
4720 cdb[5] = (u8) (block);
4721 cdb[6] = 0;
4722 cdb[7] = (u8) (block_cnt >> 8);
4723 cdb[8] = (u8) (block_cnt);
4724 cdb[9] = 0;
4725 *cdb_len = 10;
4726 break;
4727 }
4728 return 0;
4729 }
4730
hpsa_scsi_ioaccel1_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)4731 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4732 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4733 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4734 {
4735 struct scsi_cmnd *cmd = c->scsi_cmd;
4736 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4737 unsigned int len;
4738 unsigned int total_len = 0;
4739 struct scatterlist *sg;
4740 u64 addr64;
4741 int use_sg, i;
4742 struct SGDescriptor *curr_sg;
4743 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4744
4745 /* TODO: implement chaining support */
4746 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4747 atomic_dec(&phys_disk->ioaccel_cmds_out);
4748 return IO_ACCEL_INELIGIBLE;
4749 }
4750
4751 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4752
4753 if (is_zero_length_transfer(cdb)) {
4754 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4755 atomic_dec(&phys_disk->ioaccel_cmds_out);
4756 return IO_ACCEL_INELIGIBLE;
4757 }
4758
4759 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4760 atomic_dec(&phys_disk->ioaccel_cmds_out);
4761 return IO_ACCEL_INELIGIBLE;
4762 }
4763
4764 c->cmd_type = CMD_IOACCEL1;
4765
4766 /* Adjust the DMA address to point to the accelerated command buffer */
4767 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4768 (c->cmdindex * sizeof(*cp));
4769 BUG_ON(c->busaddr & 0x0000007F);
4770
4771 use_sg = scsi_dma_map(cmd);
4772 if (use_sg < 0) {
4773 atomic_dec(&phys_disk->ioaccel_cmds_out);
4774 return use_sg;
4775 }
4776
4777 if (use_sg) {
4778 curr_sg = cp->SG;
4779 scsi_for_each_sg(cmd, sg, use_sg, i) {
4780 addr64 = (u64) sg_dma_address(sg);
4781 len = sg_dma_len(sg);
4782 total_len += len;
4783 curr_sg->Addr = cpu_to_le64(addr64);
4784 curr_sg->Len = cpu_to_le32(len);
4785 curr_sg->Ext = cpu_to_le32(0);
4786 curr_sg++;
4787 }
4788 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4789
4790 switch (cmd->sc_data_direction) {
4791 case DMA_TO_DEVICE:
4792 control |= IOACCEL1_CONTROL_DATA_OUT;
4793 break;
4794 case DMA_FROM_DEVICE:
4795 control |= IOACCEL1_CONTROL_DATA_IN;
4796 break;
4797 case DMA_NONE:
4798 control |= IOACCEL1_CONTROL_NODATAXFER;
4799 break;
4800 default:
4801 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4802 cmd->sc_data_direction);
4803 BUG();
4804 break;
4805 }
4806 } else {
4807 control |= IOACCEL1_CONTROL_NODATAXFER;
4808 }
4809
4810 c->Header.SGList = use_sg;
4811 /* Fill out the command structure to submit */
4812 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4813 cp->transfer_len = cpu_to_le32(total_len);
4814 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4815 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4816 cp->control = cpu_to_le32(control);
4817 memcpy(cp->CDB, cdb, cdb_len);
4818 memcpy(cp->CISS_LUN, scsi3addr, 8);
4819 /* Tag was already set at init time. */
4820 enqueue_cmd_and_start_io(h, c);
4821 return 0;
4822 }
4823
4824 /*
4825 * Queue a command directly to a device behind the controller using the
4826 * I/O accelerator path.
4827 */
hpsa_scsi_ioaccel_direct_map(struct ctlr_info * h,struct CommandList * c)4828 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4829 struct CommandList *c)
4830 {
4831 struct scsi_cmnd *cmd = c->scsi_cmd;
4832 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4833
4834 if (!dev)
4835 return -1;
4836
4837 c->phys_disk = dev;
4838
4839 if (dev->in_reset)
4840 return -1;
4841
4842 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4843 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4844 }
4845
4846 /*
4847 * Set encryption parameters for the ioaccel2 request
4848 */
set_encrypt_ioaccel2(struct ctlr_info * h,struct CommandList * c,struct io_accel2_cmd * cp)4849 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4850 struct CommandList *c, struct io_accel2_cmd *cp)
4851 {
4852 struct scsi_cmnd *cmd = c->scsi_cmd;
4853 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4854 struct raid_map_data *map = &dev->raid_map;
4855 u64 first_block;
4856
4857 /* Are we doing encryption on this device */
4858 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4859 return;
4860 /* Set the data encryption key index. */
4861 cp->dekindex = map->dekindex;
4862
4863 /* Set the encryption enable flag, encoded into direction field. */
4864 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4865
4866 /* Set encryption tweak values based on logical block address
4867 * If block size is 512, tweak value is LBA.
4868 * For other block sizes, tweak is (LBA * block size)/ 512)
4869 */
4870 switch (cmd->cmnd[0]) {
4871 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4872 case READ_6:
4873 case WRITE_6:
4874 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4875 (cmd->cmnd[2] << 8) |
4876 cmd->cmnd[3]);
4877 break;
4878 case WRITE_10:
4879 case READ_10:
4880 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4881 case WRITE_12:
4882 case READ_12:
4883 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4884 break;
4885 case WRITE_16:
4886 case READ_16:
4887 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4888 break;
4889 default:
4890 dev_err(&h->pdev->dev,
4891 "ERROR: %s: size (0x%x) not supported for encryption\n",
4892 __func__, cmd->cmnd[0]);
4893 BUG();
4894 break;
4895 }
4896
4897 if (le32_to_cpu(map->volume_blk_size) != 512)
4898 first_block = first_block *
4899 le32_to_cpu(map->volume_blk_size)/512;
4900
4901 cp->tweak_lower = cpu_to_le32(first_block);
4902 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4903 }
4904
hpsa_scsi_ioaccel2_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)4905 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4906 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4907 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4908 {
4909 struct scsi_cmnd *cmd = c->scsi_cmd;
4910 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4911 struct ioaccel2_sg_element *curr_sg;
4912 int use_sg, i;
4913 struct scatterlist *sg;
4914 u64 addr64;
4915 u32 len;
4916 u32 total_len = 0;
4917
4918 if (!cmd->device)
4919 return -1;
4920
4921 if (!cmd->device->hostdata)
4922 return -1;
4923
4924 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4925
4926 if (is_zero_length_transfer(cdb)) {
4927 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4928 atomic_dec(&phys_disk->ioaccel_cmds_out);
4929 return IO_ACCEL_INELIGIBLE;
4930 }
4931
4932 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4933 atomic_dec(&phys_disk->ioaccel_cmds_out);
4934 return IO_ACCEL_INELIGIBLE;
4935 }
4936
4937 c->cmd_type = CMD_IOACCEL2;
4938 /* Adjust the DMA address to point to the accelerated command buffer */
4939 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4940 (c->cmdindex * sizeof(*cp));
4941 BUG_ON(c->busaddr & 0x0000007F);
4942
4943 memset(cp, 0, sizeof(*cp));
4944 cp->IU_type = IOACCEL2_IU_TYPE;
4945
4946 use_sg = scsi_dma_map(cmd);
4947 if (use_sg < 0) {
4948 atomic_dec(&phys_disk->ioaccel_cmds_out);
4949 return use_sg;
4950 }
4951
4952 if (use_sg) {
4953 curr_sg = cp->sg;
4954 if (use_sg > h->ioaccel_maxsg) {
4955 addr64 = le64_to_cpu(
4956 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4957 curr_sg->address = cpu_to_le64(addr64);
4958 curr_sg->length = 0;
4959 curr_sg->reserved[0] = 0;
4960 curr_sg->reserved[1] = 0;
4961 curr_sg->reserved[2] = 0;
4962 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4963
4964 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4965 }
4966 scsi_for_each_sg(cmd, sg, use_sg, i) {
4967 addr64 = (u64) sg_dma_address(sg);
4968 len = sg_dma_len(sg);
4969 total_len += len;
4970 curr_sg->address = cpu_to_le64(addr64);
4971 curr_sg->length = cpu_to_le32(len);
4972 curr_sg->reserved[0] = 0;
4973 curr_sg->reserved[1] = 0;
4974 curr_sg->reserved[2] = 0;
4975 curr_sg->chain_indicator = 0;
4976 curr_sg++;
4977 }
4978
4979 /*
4980 * Set the last s/g element bit
4981 */
4982 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4983
4984 switch (cmd->sc_data_direction) {
4985 case DMA_TO_DEVICE:
4986 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4987 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4988 break;
4989 case DMA_FROM_DEVICE:
4990 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4991 cp->direction |= IOACCEL2_DIR_DATA_IN;
4992 break;
4993 case DMA_NONE:
4994 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4995 cp->direction |= IOACCEL2_DIR_NO_DATA;
4996 break;
4997 default:
4998 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4999 cmd->sc_data_direction);
5000 BUG();
5001 break;
5002 }
5003 } else {
5004 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5005 cp->direction |= IOACCEL2_DIR_NO_DATA;
5006 }
5007
5008 /* Set encryption parameters, if necessary */
5009 set_encrypt_ioaccel2(h, c, cp);
5010
5011 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5012 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5013 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5014
5015 cp->data_len = cpu_to_le32(total_len);
5016 cp->err_ptr = cpu_to_le64(c->busaddr +
5017 offsetof(struct io_accel2_cmd, error_data));
5018 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5019
5020 /* fill in sg elements */
5021 if (use_sg > h->ioaccel_maxsg) {
5022 cp->sg_count = 1;
5023 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5024 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5025 atomic_dec(&phys_disk->ioaccel_cmds_out);
5026 scsi_dma_unmap(cmd);
5027 return -1;
5028 }
5029 } else
5030 cp->sg_count = (u8) use_sg;
5031
5032 if (phys_disk->in_reset) {
5033 cmd->result = DID_RESET << 16;
5034 return -1;
5035 }
5036
5037 enqueue_cmd_and_start_io(h, c);
5038 return 0;
5039 }
5040
5041 /*
5042 * Queue a command to the correct I/O accelerator path.
5043 */
hpsa_scsi_ioaccel_queue_command(struct ctlr_info * h,struct CommandList * c,u32 ioaccel_handle,u8 * cdb,int cdb_len,u8 * scsi3addr,struct hpsa_scsi_dev_t * phys_disk)5044 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5045 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5046 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5047 {
5048 if (!c->scsi_cmd->device)
5049 return -1;
5050
5051 if (!c->scsi_cmd->device->hostdata)
5052 return -1;
5053
5054 if (phys_disk->in_reset)
5055 return -1;
5056
5057 /* Try to honor the device's queue depth */
5058 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5059 phys_disk->queue_depth) {
5060 atomic_dec(&phys_disk->ioaccel_cmds_out);
5061 return IO_ACCEL_INELIGIBLE;
5062 }
5063 if (h->transMethod & CFGTBL_Trans_io_accel1)
5064 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5065 cdb, cdb_len, scsi3addr,
5066 phys_disk);
5067 else
5068 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5069 cdb, cdb_len, scsi3addr,
5070 phys_disk);
5071 }
5072
raid_map_helper(struct raid_map_data * map,int offload_to_mirror,u32 * map_index,u32 * current_group)5073 static void raid_map_helper(struct raid_map_data *map,
5074 int offload_to_mirror, u32 *map_index, u32 *current_group)
5075 {
5076 if (offload_to_mirror == 0) {
5077 /* use physical disk in the first mirrored group. */
5078 *map_index %= le16_to_cpu(map->data_disks_per_row);
5079 return;
5080 }
5081 do {
5082 /* determine mirror group that *map_index indicates */
5083 *current_group = *map_index /
5084 le16_to_cpu(map->data_disks_per_row);
5085 if (offload_to_mirror == *current_group)
5086 continue;
5087 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5088 /* select map index from next group */
5089 *map_index += le16_to_cpu(map->data_disks_per_row);
5090 (*current_group)++;
5091 } else {
5092 /* select map index from first group */
5093 *map_index %= le16_to_cpu(map->data_disks_per_row);
5094 *current_group = 0;
5095 }
5096 } while (offload_to_mirror != *current_group);
5097 }
5098
5099 /*
5100 * Attempt to perform offload RAID mapping for a logical volume I/O.
5101 */
hpsa_scsi_ioaccel_raid_map(struct ctlr_info * h,struct CommandList * c)5102 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5103 struct CommandList *c)
5104 {
5105 struct scsi_cmnd *cmd = c->scsi_cmd;
5106 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5107 struct raid_map_data *map = &dev->raid_map;
5108 struct raid_map_disk_data *dd = &map->data[0];
5109 int is_write = 0;
5110 u32 map_index;
5111 u64 first_block, last_block;
5112 u32 block_cnt;
5113 u32 blocks_per_row;
5114 u64 first_row, last_row;
5115 u32 first_row_offset, last_row_offset;
5116 u32 first_column, last_column;
5117 u64 r0_first_row, r0_last_row;
5118 u32 r5or6_blocks_per_row;
5119 u64 r5or6_first_row, r5or6_last_row;
5120 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5121 u32 r5or6_first_column, r5or6_last_column;
5122 u32 total_disks_per_row;
5123 u32 stripesize;
5124 u32 first_group, last_group, current_group;
5125 u32 map_row;
5126 u32 disk_handle;
5127 u64 disk_block;
5128 u32 disk_block_cnt;
5129 u8 cdb[16];
5130 u8 cdb_len;
5131 u16 strip_size;
5132 #if BITS_PER_LONG == 32
5133 u64 tmpdiv;
5134 #endif
5135 int offload_to_mirror;
5136
5137 if (!dev)
5138 return -1;
5139
5140 if (dev->in_reset)
5141 return -1;
5142
5143 /* check for valid opcode, get LBA and block count */
5144 switch (cmd->cmnd[0]) {
5145 case WRITE_6:
5146 is_write = 1;
5147 fallthrough;
5148 case READ_6:
5149 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5150 (cmd->cmnd[2] << 8) |
5151 cmd->cmnd[3]);
5152 block_cnt = cmd->cmnd[4];
5153 if (block_cnt == 0)
5154 block_cnt = 256;
5155 break;
5156 case WRITE_10:
5157 is_write = 1;
5158 fallthrough;
5159 case READ_10:
5160 first_block =
5161 (((u64) cmd->cmnd[2]) << 24) |
5162 (((u64) cmd->cmnd[3]) << 16) |
5163 (((u64) cmd->cmnd[4]) << 8) |
5164 cmd->cmnd[5];
5165 block_cnt =
5166 (((u32) cmd->cmnd[7]) << 8) |
5167 cmd->cmnd[8];
5168 break;
5169 case WRITE_12:
5170 is_write = 1;
5171 fallthrough;
5172 case READ_12:
5173 first_block =
5174 (((u64) cmd->cmnd[2]) << 24) |
5175 (((u64) cmd->cmnd[3]) << 16) |
5176 (((u64) cmd->cmnd[4]) << 8) |
5177 cmd->cmnd[5];
5178 block_cnt =
5179 (((u32) cmd->cmnd[6]) << 24) |
5180 (((u32) cmd->cmnd[7]) << 16) |
5181 (((u32) cmd->cmnd[8]) << 8) |
5182 cmd->cmnd[9];
5183 break;
5184 case WRITE_16:
5185 is_write = 1;
5186 fallthrough;
5187 case READ_16:
5188 first_block =
5189 (((u64) cmd->cmnd[2]) << 56) |
5190 (((u64) cmd->cmnd[3]) << 48) |
5191 (((u64) cmd->cmnd[4]) << 40) |
5192 (((u64) cmd->cmnd[5]) << 32) |
5193 (((u64) cmd->cmnd[6]) << 24) |
5194 (((u64) cmd->cmnd[7]) << 16) |
5195 (((u64) cmd->cmnd[8]) << 8) |
5196 cmd->cmnd[9];
5197 block_cnt =
5198 (((u32) cmd->cmnd[10]) << 24) |
5199 (((u32) cmd->cmnd[11]) << 16) |
5200 (((u32) cmd->cmnd[12]) << 8) |
5201 cmd->cmnd[13];
5202 break;
5203 default:
5204 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5205 }
5206 last_block = first_block + block_cnt - 1;
5207
5208 /* check for write to non-RAID-0 */
5209 if (is_write && dev->raid_level != 0)
5210 return IO_ACCEL_INELIGIBLE;
5211
5212 /* check for invalid block or wraparound */
5213 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5214 last_block < first_block)
5215 return IO_ACCEL_INELIGIBLE;
5216
5217 /* calculate stripe information for the request */
5218 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5219 le16_to_cpu(map->strip_size);
5220 strip_size = le16_to_cpu(map->strip_size);
5221 #if BITS_PER_LONG == 32
5222 tmpdiv = first_block;
5223 (void) do_div(tmpdiv, blocks_per_row);
5224 first_row = tmpdiv;
5225 tmpdiv = last_block;
5226 (void) do_div(tmpdiv, blocks_per_row);
5227 last_row = tmpdiv;
5228 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5229 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5230 tmpdiv = first_row_offset;
5231 (void) do_div(tmpdiv, strip_size);
5232 first_column = tmpdiv;
5233 tmpdiv = last_row_offset;
5234 (void) do_div(tmpdiv, strip_size);
5235 last_column = tmpdiv;
5236 #else
5237 first_row = first_block / blocks_per_row;
5238 last_row = last_block / blocks_per_row;
5239 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5240 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5241 first_column = first_row_offset / strip_size;
5242 last_column = last_row_offset / strip_size;
5243 #endif
5244
5245 /* if this isn't a single row/column then give to the controller */
5246 if ((first_row != last_row) || (first_column != last_column))
5247 return IO_ACCEL_INELIGIBLE;
5248
5249 /* proceeding with driver mapping */
5250 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5251 le16_to_cpu(map->metadata_disks_per_row);
5252 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5253 le16_to_cpu(map->row_cnt);
5254 map_index = (map_row * total_disks_per_row) + first_column;
5255
5256 switch (dev->raid_level) {
5257 case HPSA_RAID_0:
5258 break; /* nothing special to do */
5259 case HPSA_RAID_1:
5260 /* Handles load balance across RAID 1 members.
5261 * (2-drive R1 and R10 with even # of drives.)
5262 * Appropriate for SSDs, not optimal for HDDs
5263 * Ensure we have the correct raid_map.
5264 */
5265 if (le16_to_cpu(map->layout_map_count) != 2) {
5266 hpsa_turn_off_ioaccel_for_device(dev);
5267 return IO_ACCEL_INELIGIBLE;
5268 }
5269 if (dev->offload_to_mirror)
5270 map_index += le16_to_cpu(map->data_disks_per_row);
5271 dev->offload_to_mirror = !dev->offload_to_mirror;
5272 break;
5273 case HPSA_RAID_ADM:
5274 /* Handles N-way mirrors (R1-ADM)
5275 * and R10 with # of drives divisible by 3.)
5276 * Ensure we have the correct raid_map.
5277 */
5278 if (le16_to_cpu(map->layout_map_count) != 3) {
5279 hpsa_turn_off_ioaccel_for_device(dev);
5280 return IO_ACCEL_INELIGIBLE;
5281 }
5282
5283 offload_to_mirror = dev->offload_to_mirror;
5284 raid_map_helper(map, offload_to_mirror,
5285 &map_index, ¤t_group);
5286 /* set mirror group to use next time */
5287 offload_to_mirror =
5288 (offload_to_mirror >=
5289 le16_to_cpu(map->layout_map_count) - 1)
5290 ? 0 : offload_to_mirror + 1;
5291 dev->offload_to_mirror = offload_to_mirror;
5292 /* Avoid direct use of dev->offload_to_mirror within this
5293 * function since multiple threads might simultaneously
5294 * increment it beyond the range of dev->layout_map_count -1.
5295 */
5296 break;
5297 case HPSA_RAID_5:
5298 case HPSA_RAID_6:
5299 if (le16_to_cpu(map->layout_map_count) <= 1)
5300 break;
5301
5302 /* Verify first and last block are in same RAID group */
5303 r5or6_blocks_per_row =
5304 le16_to_cpu(map->strip_size) *
5305 le16_to_cpu(map->data_disks_per_row);
5306 if (r5or6_blocks_per_row == 0) {
5307 hpsa_turn_off_ioaccel_for_device(dev);
5308 return IO_ACCEL_INELIGIBLE;
5309 }
5310 stripesize = r5or6_blocks_per_row *
5311 le16_to_cpu(map->layout_map_count);
5312 #if BITS_PER_LONG == 32
5313 tmpdiv = first_block;
5314 first_group = do_div(tmpdiv, stripesize);
5315 tmpdiv = first_group;
5316 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5317 first_group = tmpdiv;
5318 tmpdiv = last_block;
5319 last_group = do_div(tmpdiv, stripesize);
5320 tmpdiv = last_group;
5321 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5322 last_group = tmpdiv;
5323 #else
5324 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5325 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5326 #endif
5327 if (first_group != last_group)
5328 return IO_ACCEL_INELIGIBLE;
5329
5330 /* Verify request is in a single row of RAID 5/6 */
5331 #if BITS_PER_LONG == 32
5332 tmpdiv = first_block;
5333 (void) do_div(tmpdiv, stripesize);
5334 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5335 tmpdiv = last_block;
5336 (void) do_div(tmpdiv, stripesize);
5337 r5or6_last_row = r0_last_row = tmpdiv;
5338 #else
5339 first_row = r5or6_first_row = r0_first_row =
5340 first_block / stripesize;
5341 r5or6_last_row = r0_last_row = last_block / stripesize;
5342 #endif
5343 if (r5or6_first_row != r5or6_last_row)
5344 return IO_ACCEL_INELIGIBLE;
5345
5346
5347 /* Verify request is in a single column */
5348 #if BITS_PER_LONG == 32
5349 tmpdiv = first_block;
5350 first_row_offset = do_div(tmpdiv, stripesize);
5351 tmpdiv = first_row_offset;
5352 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5353 r5or6_first_row_offset = first_row_offset;
5354 tmpdiv = last_block;
5355 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5356 tmpdiv = r5or6_last_row_offset;
5357 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5358 tmpdiv = r5or6_first_row_offset;
5359 (void) do_div(tmpdiv, map->strip_size);
5360 first_column = r5or6_first_column = tmpdiv;
5361 tmpdiv = r5or6_last_row_offset;
5362 (void) do_div(tmpdiv, map->strip_size);
5363 r5or6_last_column = tmpdiv;
5364 #else
5365 first_row_offset = r5or6_first_row_offset =
5366 (u32)((first_block % stripesize) %
5367 r5or6_blocks_per_row);
5368
5369 r5or6_last_row_offset =
5370 (u32)((last_block % stripesize) %
5371 r5or6_blocks_per_row);
5372
5373 first_column = r5or6_first_column =
5374 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5375 r5or6_last_column =
5376 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5377 #endif
5378 if (r5or6_first_column != r5or6_last_column)
5379 return IO_ACCEL_INELIGIBLE;
5380
5381 /* Request is eligible */
5382 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5383 le16_to_cpu(map->row_cnt);
5384
5385 map_index = (first_group *
5386 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5387 (map_row * total_disks_per_row) + first_column;
5388 break;
5389 default:
5390 return IO_ACCEL_INELIGIBLE;
5391 }
5392
5393 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5394 return IO_ACCEL_INELIGIBLE;
5395
5396 c->phys_disk = dev->phys_disk[map_index];
5397 if (!c->phys_disk)
5398 return IO_ACCEL_INELIGIBLE;
5399
5400 disk_handle = dd[map_index].ioaccel_handle;
5401 disk_block = le64_to_cpu(map->disk_starting_blk) +
5402 first_row * le16_to_cpu(map->strip_size) +
5403 (first_row_offset - first_column *
5404 le16_to_cpu(map->strip_size));
5405 disk_block_cnt = block_cnt;
5406
5407 /* handle differing logical/physical block sizes */
5408 if (map->phys_blk_shift) {
5409 disk_block <<= map->phys_blk_shift;
5410 disk_block_cnt <<= map->phys_blk_shift;
5411 }
5412 BUG_ON(disk_block_cnt > 0xffff);
5413
5414 /* build the new CDB for the physical disk I/O */
5415 if (disk_block > 0xffffffff) {
5416 cdb[0] = is_write ? WRITE_16 : READ_16;
5417 cdb[1] = 0;
5418 cdb[2] = (u8) (disk_block >> 56);
5419 cdb[3] = (u8) (disk_block >> 48);
5420 cdb[4] = (u8) (disk_block >> 40);
5421 cdb[5] = (u8) (disk_block >> 32);
5422 cdb[6] = (u8) (disk_block >> 24);
5423 cdb[7] = (u8) (disk_block >> 16);
5424 cdb[8] = (u8) (disk_block >> 8);
5425 cdb[9] = (u8) (disk_block);
5426 cdb[10] = (u8) (disk_block_cnt >> 24);
5427 cdb[11] = (u8) (disk_block_cnt >> 16);
5428 cdb[12] = (u8) (disk_block_cnt >> 8);
5429 cdb[13] = (u8) (disk_block_cnt);
5430 cdb[14] = 0;
5431 cdb[15] = 0;
5432 cdb_len = 16;
5433 } else {
5434 cdb[0] = is_write ? WRITE_10 : READ_10;
5435 cdb[1] = 0;
5436 cdb[2] = (u8) (disk_block >> 24);
5437 cdb[3] = (u8) (disk_block >> 16);
5438 cdb[4] = (u8) (disk_block >> 8);
5439 cdb[5] = (u8) (disk_block);
5440 cdb[6] = 0;
5441 cdb[7] = (u8) (disk_block_cnt >> 8);
5442 cdb[8] = (u8) (disk_block_cnt);
5443 cdb[9] = 0;
5444 cdb_len = 10;
5445 }
5446 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5447 dev->scsi3addr,
5448 dev->phys_disk[map_index]);
5449 }
5450
5451 /*
5452 * Submit commands down the "normal" RAID stack path
5453 * All callers to hpsa_ciss_submit must check lockup_detected
5454 * beforehand, before (opt.) and after calling cmd_alloc
5455 */
hpsa_ciss_submit(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,struct hpsa_scsi_dev_t * dev)5456 static int hpsa_ciss_submit(struct ctlr_info *h,
5457 struct CommandList *c, struct scsi_cmnd *cmd,
5458 struct hpsa_scsi_dev_t *dev)
5459 {
5460 cmd->host_scribble = (unsigned char *) c;
5461 c->cmd_type = CMD_SCSI;
5462 c->scsi_cmd = cmd;
5463 c->Header.ReplyQueue = 0; /* unused in simple mode */
5464 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5465 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5466
5467 /* Fill in the request block... */
5468
5469 c->Request.Timeout = 0;
5470 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5471 c->Request.CDBLen = cmd->cmd_len;
5472 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5473 switch (cmd->sc_data_direction) {
5474 case DMA_TO_DEVICE:
5475 c->Request.type_attr_dir =
5476 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5477 break;
5478 case DMA_FROM_DEVICE:
5479 c->Request.type_attr_dir =
5480 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5481 break;
5482 case DMA_NONE:
5483 c->Request.type_attr_dir =
5484 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5485 break;
5486 case DMA_BIDIRECTIONAL:
5487 /* This can happen if a buggy application does a scsi passthru
5488 * and sets both inlen and outlen to non-zero. ( see
5489 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5490 */
5491
5492 c->Request.type_attr_dir =
5493 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5494 /* This is technically wrong, and hpsa controllers should
5495 * reject it with CMD_INVALID, which is the most correct
5496 * response, but non-fibre backends appear to let it
5497 * slide by, and give the same results as if this field
5498 * were set correctly. Either way is acceptable for
5499 * our purposes here.
5500 */
5501
5502 break;
5503
5504 default:
5505 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5506 cmd->sc_data_direction);
5507 BUG();
5508 break;
5509 }
5510
5511 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5512 hpsa_cmd_resolve_and_free(h, c);
5513 return SCSI_MLQUEUE_HOST_BUSY;
5514 }
5515
5516 if (dev->in_reset) {
5517 hpsa_cmd_resolve_and_free(h, c);
5518 return SCSI_MLQUEUE_HOST_BUSY;
5519 }
5520
5521 c->device = dev;
5522
5523 enqueue_cmd_and_start_io(h, c);
5524 /* the cmd'll come back via intr handler in complete_scsi_command() */
5525 return 0;
5526 }
5527
hpsa_cmd_init(struct ctlr_info * h,int index,struct CommandList * c)5528 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5529 struct CommandList *c)
5530 {
5531 dma_addr_t cmd_dma_handle, err_dma_handle;
5532
5533 /* Zero out all of commandlist except the last field, refcount */
5534 memset(c, 0, offsetof(struct CommandList, refcount));
5535 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5536 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5537 c->err_info = h->errinfo_pool + index;
5538 memset(c->err_info, 0, sizeof(*c->err_info));
5539 err_dma_handle = h->errinfo_pool_dhandle
5540 + index * sizeof(*c->err_info);
5541 c->cmdindex = index;
5542 c->busaddr = (u32) cmd_dma_handle;
5543 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5544 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5545 c->h = h;
5546 c->scsi_cmd = SCSI_CMD_IDLE;
5547 }
5548
hpsa_preinitialize_commands(struct ctlr_info * h)5549 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5550 {
5551 int i;
5552
5553 for (i = 0; i < h->nr_cmds; i++) {
5554 struct CommandList *c = h->cmd_pool + i;
5555
5556 hpsa_cmd_init(h, i, c);
5557 atomic_set(&c->refcount, 0);
5558 }
5559 }
5560
hpsa_cmd_partial_init(struct ctlr_info * h,int index,struct CommandList * c)5561 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5562 struct CommandList *c)
5563 {
5564 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5565
5566 BUG_ON(c->cmdindex != index);
5567
5568 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5569 memset(c->err_info, 0, sizeof(*c->err_info));
5570 c->busaddr = (u32) cmd_dma_handle;
5571 }
5572
hpsa_ioaccel_submit(struct ctlr_info * h,struct CommandList * c,struct scsi_cmnd * cmd,bool retry)5573 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5574 struct CommandList *c, struct scsi_cmnd *cmd,
5575 bool retry)
5576 {
5577 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5578 int rc = IO_ACCEL_INELIGIBLE;
5579
5580 if (!dev)
5581 return SCSI_MLQUEUE_HOST_BUSY;
5582
5583 if (dev->in_reset)
5584 return SCSI_MLQUEUE_HOST_BUSY;
5585
5586 if (hpsa_simple_mode)
5587 return IO_ACCEL_INELIGIBLE;
5588
5589 cmd->host_scribble = (unsigned char *) c;
5590
5591 if (dev->offload_enabled) {
5592 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5593 c->cmd_type = CMD_SCSI;
5594 c->scsi_cmd = cmd;
5595 c->device = dev;
5596 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5597 c->retry_pending = true;
5598 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5599 if (rc < 0) /* scsi_dma_map failed. */
5600 rc = SCSI_MLQUEUE_HOST_BUSY;
5601 } else if (dev->hba_ioaccel_enabled) {
5602 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5603 c->cmd_type = CMD_SCSI;
5604 c->scsi_cmd = cmd;
5605 c->device = dev;
5606 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5607 c->retry_pending = true;
5608 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5609 if (rc < 0) /* scsi_dma_map failed. */
5610 rc = SCSI_MLQUEUE_HOST_BUSY;
5611 }
5612 return rc;
5613 }
5614
hpsa_command_resubmit_worker(struct work_struct * work)5615 static void hpsa_command_resubmit_worker(struct work_struct *work)
5616 {
5617 struct scsi_cmnd *cmd;
5618 struct hpsa_scsi_dev_t *dev;
5619 struct CommandList *c = container_of(work, struct CommandList, work);
5620
5621 cmd = c->scsi_cmd;
5622 dev = cmd->device->hostdata;
5623 if (!dev) {
5624 cmd->result = DID_NO_CONNECT << 16;
5625 return hpsa_cmd_free_and_done(c->h, c, cmd);
5626 }
5627
5628 if (dev->in_reset) {
5629 cmd->result = DID_RESET << 16;
5630 return hpsa_cmd_free_and_done(c->h, c, cmd);
5631 }
5632
5633 if (c->cmd_type == CMD_IOACCEL2) {
5634 struct ctlr_info *h = c->h;
5635 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5636 int rc;
5637
5638 if (c2->error_data.serv_response ==
5639 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5640 /* Resubmit with the retry_pending flag set. */
5641 rc = hpsa_ioaccel_submit(h, c, cmd, true);
5642 if (rc == 0)
5643 return;
5644 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5645 /*
5646 * If we get here, it means dma mapping failed.
5647 * Try again via scsi mid layer, which will
5648 * then get SCSI_MLQUEUE_HOST_BUSY.
5649 */
5650 cmd->result = DID_IMM_RETRY << 16;
5651 return hpsa_cmd_free_and_done(h, c, cmd);
5652 }
5653 /* else, fall thru and resubmit down CISS path */
5654 }
5655 }
5656 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5657 /*
5658 * Here we have not come in though queue_command, so we
5659 * can set the retry_pending flag to true for a driver initiated
5660 * retry attempt (I.E. not a SML retry).
5661 * I.E. We are submitting a driver initiated retry.
5662 * Note: hpsa_ciss_submit does not zero out the command fields like
5663 * ioaccel submit does.
5664 */
5665 c->retry_pending = true;
5666 if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5667 /*
5668 * If we get here, it means dma mapping failed. Try
5669 * again via scsi mid layer, which will then get
5670 * SCSI_MLQUEUE_HOST_BUSY.
5671 *
5672 * hpsa_ciss_submit will have already freed c
5673 * if it encountered a dma mapping failure.
5674 */
5675 cmd->result = DID_IMM_RETRY << 16;
5676 scsi_done(cmd);
5677 }
5678 }
5679
5680 /* Running in struct Scsi_Host->host_lock less mode */
hpsa_scsi_queue_command(struct Scsi_Host * sh,struct scsi_cmnd * cmd)5681 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5682 {
5683 struct ctlr_info *h;
5684 struct hpsa_scsi_dev_t *dev;
5685 struct CommandList *c;
5686 int rc = 0;
5687
5688 /* Get the ptr to our adapter structure out of cmd->host. */
5689 h = sdev_to_hba(cmd->device);
5690
5691 BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5692
5693 dev = cmd->device->hostdata;
5694 if (!dev) {
5695 cmd->result = DID_NO_CONNECT << 16;
5696 scsi_done(cmd);
5697 return 0;
5698 }
5699
5700 if (dev->removed) {
5701 cmd->result = DID_NO_CONNECT << 16;
5702 scsi_done(cmd);
5703 return 0;
5704 }
5705
5706 if (unlikely(lockup_detected(h))) {
5707 cmd->result = DID_NO_CONNECT << 16;
5708 scsi_done(cmd);
5709 return 0;
5710 }
5711
5712 if (dev->in_reset)
5713 return SCSI_MLQUEUE_DEVICE_BUSY;
5714
5715 c = cmd_tagged_alloc(h, cmd);
5716 if (c == NULL)
5717 return SCSI_MLQUEUE_DEVICE_BUSY;
5718
5719 /*
5720 * This is necessary because the SML doesn't zero out this field during
5721 * error recovery.
5722 */
5723 cmd->result = 0;
5724
5725 /*
5726 * Call alternate submit routine for I/O accelerated commands.
5727 * Retries always go down the normal I/O path.
5728 * Note: If cmd->retries is non-zero, then this is a SML
5729 * initiated retry and not a driver initiated retry.
5730 * This command has been obtained from cmd_tagged_alloc
5731 * and is therefore a brand-new command.
5732 */
5733 if (likely(cmd->retries == 0 &&
5734 !blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5735 h->acciopath_status)) {
5736 /* Submit with the retry_pending flag unset. */
5737 rc = hpsa_ioaccel_submit(h, c, cmd, false);
5738 if (rc == 0)
5739 return 0;
5740 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5741 hpsa_cmd_resolve_and_free(h, c);
5742 return SCSI_MLQUEUE_HOST_BUSY;
5743 }
5744 }
5745 return hpsa_ciss_submit(h, c, cmd, dev);
5746 }
5747
hpsa_scan_complete(struct ctlr_info * h)5748 static void hpsa_scan_complete(struct ctlr_info *h)
5749 {
5750 unsigned long flags;
5751
5752 spin_lock_irqsave(&h->scan_lock, flags);
5753 h->scan_finished = 1;
5754 wake_up(&h->scan_wait_queue);
5755 spin_unlock_irqrestore(&h->scan_lock, flags);
5756 }
5757
hpsa_scan_start(struct Scsi_Host * sh)5758 static void hpsa_scan_start(struct Scsi_Host *sh)
5759 {
5760 struct ctlr_info *h = shost_to_hba(sh);
5761 unsigned long flags;
5762
5763 /*
5764 * Don't let rescans be initiated on a controller known to be locked
5765 * up. If the controller locks up *during* a rescan, that thread is
5766 * probably hosed, but at least we can prevent new rescan threads from
5767 * piling up on a locked up controller.
5768 */
5769 if (unlikely(lockup_detected(h)))
5770 return hpsa_scan_complete(h);
5771
5772 /*
5773 * If a scan is already waiting to run, no need to add another
5774 */
5775 spin_lock_irqsave(&h->scan_lock, flags);
5776 if (h->scan_waiting) {
5777 spin_unlock_irqrestore(&h->scan_lock, flags);
5778 return;
5779 }
5780
5781 spin_unlock_irqrestore(&h->scan_lock, flags);
5782
5783 /* wait until any scan already in progress is finished. */
5784 while (1) {
5785 spin_lock_irqsave(&h->scan_lock, flags);
5786 if (h->scan_finished)
5787 break;
5788 h->scan_waiting = 1;
5789 spin_unlock_irqrestore(&h->scan_lock, flags);
5790 wait_event(h->scan_wait_queue, h->scan_finished);
5791 /* Note: We don't need to worry about a race between this
5792 * thread and driver unload because the midlayer will
5793 * have incremented the reference count, so unload won't
5794 * happen if we're in here.
5795 */
5796 }
5797 h->scan_finished = 0; /* mark scan as in progress */
5798 h->scan_waiting = 0;
5799 spin_unlock_irqrestore(&h->scan_lock, flags);
5800
5801 if (unlikely(lockup_detected(h)))
5802 return hpsa_scan_complete(h);
5803
5804 /*
5805 * Do the scan after a reset completion
5806 */
5807 spin_lock_irqsave(&h->reset_lock, flags);
5808 if (h->reset_in_progress) {
5809 h->drv_req_rescan = 1;
5810 spin_unlock_irqrestore(&h->reset_lock, flags);
5811 hpsa_scan_complete(h);
5812 return;
5813 }
5814 spin_unlock_irqrestore(&h->reset_lock, flags);
5815
5816 hpsa_update_scsi_devices(h);
5817
5818 hpsa_scan_complete(h);
5819 }
5820
hpsa_change_queue_depth(struct scsi_device * sdev,int qdepth)5821 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5822 {
5823 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5824
5825 if (!logical_drive)
5826 return -ENODEV;
5827
5828 if (qdepth < 1)
5829 qdepth = 1;
5830 else if (qdepth > logical_drive->queue_depth)
5831 qdepth = logical_drive->queue_depth;
5832
5833 return scsi_change_queue_depth(sdev, qdepth);
5834 }
5835
hpsa_scan_finished(struct Scsi_Host * sh,unsigned long elapsed_time)5836 static int hpsa_scan_finished(struct Scsi_Host *sh,
5837 unsigned long elapsed_time)
5838 {
5839 struct ctlr_info *h = shost_to_hba(sh);
5840 unsigned long flags;
5841 int finished;
5842
5843 spin_lock_irqsave(&h->scan_lock, flags);
5844 finished = h->scan_finished;
5845 spin_unlock_irqrestore(&h->scan_lock, flags);
5846 return finished;
5847 }
5848
hpsa_scsi_host_alloc(struct ctlr_info * h)5849 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5850 {
5851 struct Scsi_Host *sh;
5852
5853 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info *));
5854 if (sh == NULL) {
5855 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5856 return -ENOMEM;
5857 }
5858
5859 sh->io_port = 0;
5860 sh->n_io_port = 0;
5861 sh->this_id = -1;
5862 sh->max_channel = 3;
5863 sh->max_cmd_len = MAX_COMMAND_SIZE;
5864 sh->max_lun = HPSA_MAX_LUN;
5865 sh->max_id = HPSA_MAX_LUN;
5866 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5867 sh->cmd_per_lun = sh->can_queue;
5868 sh->sg_tablesize = h->maxsgentries;
5869 sh->transportt = hpsa_sas_transport_template;
5870 sh->hostdata[0] = (unsigned long) h;
5871 sh->irq = pci_irq_vector(h->pdev, 0);
5872 sh->unique_id = sh->irq;
5873
5874 h->scsi_host = sh;
5875 return 0;
5876 }
5877
hpsa_scsi_add_host(struct ctlr_info * h)5878 static int hpsa_scsi_add_host(struct ctlr_info *h)
5879 {
5880 int rv;
5881
5882 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5883 if (rv) {
5884 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5885 return rv;
5886 }
5887 scsi_scan_host(h->scsi_host);
5888 return 0;
5889 }
5890
5891 /*
5892 * The block layer has already gone to the trouble of picking out a unique,
5893 * small-integer tag for this request. We use an offset from that value as
5894 * an index to select our command block. (The offset allows us to reserve the
5895 * low-numbered entries for our own uses.)
5896 */
hpsa_get_cmd_index(struct scsi_cmnd * scmd)5897 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5898 {
5899 int idx = scsi_cmd_to_rq(scmd)->tag;
5900
5901 if (idx < 0)
5902 return idx;
5903
5904 /* Offset to leave space for internal cmds. */
5905 return idx += HPSA_NRESERVED_CMDS;
5906 }
5907
5908 /*
5909 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5910 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5911 */
hpsa_send_test_unit_ready(struct ctlr_info * h,struct CommandList * c,unsigned char lunaddr[],int reply_queue)5912 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5913 struct CommandList *c, unsigned char lunaddr[],
5914 int reply_queue)
5915 {
5916 int rc;
5917
5918 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5919 (void) fill_cmd(c, TEST_UNIT_READY, h,
5920 NULL, 0, 0, lunaddr, TYPE_CMD);
5921 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5922 if (rc)
5923 return rc;
5924 /* no unmap needed here because no data xfer. */
5925
5926 /* Check if the unit is already ready. */
5927 if (c->err_info->CommandStatus == CMD_SUCCESS)
5928 return 0;
5929
5930 /*
5931 * The first command sent after reset will receive "unit attention" to
5932 * indicate that the LUN has been reset...this is actually what we're
5933 * looking for (but, success is good too).
5934 */
5935 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5936 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5937 (c->err_info->SenseInfo[2] == NO_SENSE ||
5938 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5939 return 0;
5940
5941 return 1;
5942 }
5943
5944 /*
5945 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5946 * returns zero when the unit is ready, and non-zero when giving up.
5947 */
hpsa_wait_for_test_unit_ready(struct ctlr_info * h,struct CommandList * c,unsigned char lunaddr[],int reply_queue)5948 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5949 struct CommandList *c,
5950 unsigned char lunaddr[], int reply_queue)
5951 {
5952 int rc;
5953 int count = 0;
5954 int waittime = 1; /* seconds */
5955
5956 /* Send test unit ready until device ready, or give up. */
5957 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5958
5959 /*
5960 * Wait for a bit. do this first, because if we send
5961 * the TUR right away, the reset will just abort it.
5962 */
5963 msleep(1000 * waittime);
5964
5965 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5966 if (!rc)
5967 break;
5968
5969 /* Increase wait time with each try, up to a point. */
5970 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5971 waittime *= 2;
5972
5973 dev_warn(&h->pdev->dev,
5974 "waiting %d secs for device to become ready.\n",
5975 waittime);
5976 }
5977
5978 return rc;
5979 }
5980
wait_for_device_to_become_ready(struct ctlr_info * h,unsigned char lunaddr[],int reply_queue)5981 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5982 unsigned char lunaddr[],
5983 int reply_queue)
5984 {
5985 int first_queue;
5986 int last_queue;
5987 int rq;
5988 int rc = 0;
5989 struct CommandList *c;
5990
5991 c = cmd_alloc(h);
5992
5993 /*
5994 * If no specific reply queue was requested, then send the TUR
5995 * repeatedly, requesting a reply on each reply queue; otherwise execute
5996 * the loop exactly once using only the specified queue.
5997 */
5998 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5999 first_queue = 0;
6000 last_queue = h->nreply_queues - 1;
6001 } else {
6002 first_queue = reply_queue;
6003 last_queue = reply_queue;
6004 }
6005
6006 for (rq = first_queue; rq <= last_queue; rq++) {
6007 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6008 if (rc)
6009 break;
6010 }
6011
6012 if (rc)
6013 dev_warn(&h->pdev->dev, "giving up on device.\n");
6014 else
6015 dev_warn(&h->pdev->dev, "device is ready.\n");
6016
6017 cmd_free(h, c);
6018 return rc;
6019 }
6020
6021 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6022 * complaining. Doing a host- or bus-reset can't do anything good here.
6023 */
hpsa_eh_device_reset_handler(struct scsi_cmnd * scsicmd)6024 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6025 {
6026 int rc = SUCCESS;
6027 int i;
6028 struct ctlr_info *h;
6029 struct hpsa_scsi_dev_t *dev = NULL;
6030 u8 reset_type;
6031 char msg[48];
6032 unsigned long flags;
6033
6034 /* find the controller to which the command to be aborted was sent */
6035 h = sdev_to_hba(scsicmd->device);
6036 if (h == NULL) /* paranoia */
6037 return FAILED;
6038
6039 spin_lock_irqsave(&h->reset_lock, flags);
6040 h->reset_in_progress = 1;
6041 spin_unlock_irqrestore(&h->reset_lock, flags);
6042
6043 if (lockup_detected(h)) {
6044 rc = FAILED;
6045 goto return_reset_status;
6046 }
6047
6048 dev = scsicmd->device->hostdata;
6049 if (!dev) {
6050 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6051 rc = FAILED;
6052 goto return_reset_status;
6053 }
6054
6055 if (dev->devtype == TYPE_ENCLOSURE) {
6056 rc = SUCCESS;
6057 goto return_reset_status;
6058 }
6059
6060 /* if controller locked up, we can guarantee command won't complete */
6061 if (lockup_detected(h)) {
6062 snprintf(msg, sizeof(msg),
6063 "cmd %d RESET FAILED, lockup detected",
6064 hpsa_get_cmd_index(scsicmd));
6065 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6066 rc = FAILED;
6067 goto return_reset_status;
6068 }
6069
6070 /* this reset request might be the result of a lockup; check */
6071 if (detect_controller_lockup(h)) {
6072 snprintf(msg, sizeof(msg),
6073 "cmd %d RESET FAILED, new lockup detected",
6074 hpsa_get_cmd_index(scsicmd));
6075 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6076 rc = FAILED;
6077 goto return_reset_status;
6078 }
6079
6080 /* Do not attempt on controller */
6081 if (is_hba_lunid(dev->scsi3addr)) {
6082 rc = SUCCESS;
6083 goto return_reset_status;
6084 }
6085
6086 if (is_logical_dev_addr_mode(dev->scsi3addr))
6087 reset_type = HPSA_DEVICE_RESET_MSG;
6088 else
6089 reset_type = HPSA_PHYS_TARGET_RESET;
6090
6091 sprintf(msg, "resetting %s",
6092 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6093 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6094
6095 /*
6096 * wait to see if any commands will complete before sending reset
6097 */
6098 dev->in_reset = true; /* block any new cmds from OS for this device */
6099 for (i = 0; i < 10; i++) {
6100 if (atomic_read(&dev->commands_outstanding) > 0)
6101 msleep(1000);
6102 else
6103 break;
6104 }
6105
6106 /* send a reset to the SCSI LUN which the command was sent to */
6107 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6108 if (rc == 0)
6109 rc = SUCCESS;
6110 else
6111 rc = FAILED;
6112
6113 sprintf(msg, "reset %s %s",
6114 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6115 rc == SUCCESS ? "completed successfully" : "failed");
6116 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6117
6118 return_reset_status:
6119 spin_lock_irqsave(&h->reset_lock, flags);
6120 h->reset_in_progress = 0;
6121 if (dev)
6122 dev->in_reset = false;
6123 spin_unlock_irqrestore(&h->reset_lock, flags);
6124 return rc;
6125 }
6126
6127 /*
6128 * For operations with an associated SCSI command, a command block is allocated
6129 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6130 * block request tag as an index into a table of entries. cmd_tagged_free() is
6131 * the complement, although cmd_free() may be called instead.
6132 * This function is only called for new requests from queue_command.
6133 */
cmd_tagged_alloc(struct ctlr_info * h,struct scsi_cmnd * scmd)6134 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6135 struct scsi_cmnd *scmd)
6136 {
6137 int idx = hpsa_get_cmd_index(scmd);
6138 struct CommandList *c = h->cmd_pool + idx;
6139
6140 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6141 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6142 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6143 /* The index value comes from the block layer, so if it's out of
6144 * bounds, it's probably not our bug.
6145 */
6146 BUG();
6147 }
6148
6149 if (unlikely(!hpsa_is_cmd_idle(c))) {
6150 /*
6151 * We expect that the SCSI layer will hand us a unique tag
6152 * value. Thus, there should never be a collision here between
6153 * two requests...because if the selected command isn't idle
6154 * then someone is going to be very disappointed.
6155 */
6156 if (idx != h->last_collision_tag) { /* Print once per tag */
6157 dev_warn(&h->pdev->dev,
6158 "%s: tag collision (tag=%d)\n", __func__, idx);
6159 if (scmd)
6160 scsi_print_command(scmd);
6161 h->last_collision_tag = idx;
6162 }
6163 return NULL;
6164 }
6165
6166 atomic_inc(&c->refcount);
6167 hpsa_cmd_partial_init(h, idx, c);
6168
6169 /*
6170 * This is a new command obtained from queue_command so
6171 * there have not been any driver initiated retry attempts.
6172 */
6173 c->retry_pending = false;
6174
6175 return c;
6176 }
6177
cmd_tagged_free(struct ctlr_info * h,struct CommandList * c)6178 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6179 {
6180 /*
6181 * Release our reference to the block. We don't need to do anything
6182 * else to free it, because it is accessed by index.
6183 */
6184 (void)atomic_dec(&c->refcount);
6185 }
6186
6187 /*
6188 * For operations that cannot sleep, a command block is allocated at init,
6189 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6190 * which ones are free or in use. Lock must be held when calling this.
6191 * cmd_free() is the complement.
6192 * This function never gives up and returns NULL. If it hangs,
6193 * another thread must call cmd_free() to free some tags.
6194 */
6195
cmd_alloc(struct ctlr_info * h)6196 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6197 {
6198 struct CommandList *c;
6199 int refcount, i;
6200 int offset = 0;
6201
6202 /*
6203 * There is some *extremely* small but non-zero chance that that
6204 * multiple threads could get in here, and one thread could
6205 * be scanning through the list of bits looking for a free
6206 * one, but the free ones are always behind him, and other
6207 * threads sneak in behind him and eat them before he can
6208 * get to them, so that while there is always a free one, a
6209 * very unlucky thread might be starved anyway, never able to
6210 * beat the other threads. In reality, this happens so
6211 * infrequently as to be indistinguishable from never.
6212 *
6213 * Note that we start allocating commands before the SCSI host structure
6214 * is initialized. Since the search starts at bit zero, this
6215 * all works, since we have at least one command structure available;
6216 * however, it means that the structures with the low indexes have to be
6217 * reserved for driver-initiated requests, while requests from the block
6218 * layer will use the higher indexes.
6219 */
6220
6221 for (;;) {
6222 i = find_next_zero_bit(h->cmd_pool_bits,
6223 HPSA_NRESERVED_CMDS,
6224 offset);
6225 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6226 offset = 0;
6227 continue;
6228 }
6229 c = h->cmd_pool + i;
6230 refcount = atomic_inc_return(&c->refcount);
6231 if (unlikely(refcount > 1)) {
6232 cmd_free(h, c); /* already in use */
6233 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6234 continue;
6235 }
6236 set_bit(i, h->cmd_pool_bits);
6237 break; /* it's ours now. */
6238 }
6239 hpsa_cmd_partial_init(h, i, c);
6240 c->device = NULL;
6241
6242 /*
6243 * cmd_alloc is for "internal" commands and they are never
6244 * retried.
6245 */
6246 c->retry_pending = false;
6247
6248 return c;
6249 }
6250
6251 /*
6252 * This is the complementary operation to cmd_alloc(). Note, however, in some
6253 * corner cases it may also be used to free blocks allocated by
6254 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6255 * the clear-bit is harmless.
6256 */
cmd_free(struct ctlr_info * h,struct CommandList * c)6257 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6258 {
6259 if (atomic_dec_and_test(&c->refcount)) {
6260 int i;
6261
6262 i = c - h->cmd_pool;
6263 clear_bit(i, h->cmd_pool_bits);
6264 }
6265 }
6266
6267 #ifdef CONFIG_COMPAT
6268
hpsa_ioctl32_passthru(struct scsi_device * dev,unsigned int cmd,void __user * arg)6269 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6270 void __user *arg)
6271 {
6272 struct ctlr_info *h = sdev_to_hba(dev);
6273 IOCTL32_Command_struct __user *arg32 = arg;
6274 IOCTL_Command_struct arg64;
6275 int err;
6276 u32 cp;
6277
6278 if (!arg)
6279 return -EINVAL;
6280
6281 memset(&arg64, 0, sizeof(arg64));
6282 if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6283 return -EFAULT;
6284 if (get_user(cp, &arg32->buf))
6285 return -EFAULT;
6286 arg64.buf = compat_ptr(cp);
6287
6288 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6289 return -EAGAIN;
6290 err = hpsa_passthru_ioctl(h, &arg64);
6291 atomic_inc(&h->passthru_cmds_avail);
6292 if (err)
6293 return err;
6294 if (copy_to_user(&arg32->error_info, &arg64.error_info,
6295 sizeof(arg32->error_info)))
6296 return -EFAULT;
6297 return 0;
6298 }
6299
hpsa_ioctl32_big_passthru(struct scsi_device * dev,unsigned int cmd,void __user * arg)6300 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6301 unsigned int cmd, void __user *arg)
6302 {
6303 struct ctlr_info *h = sdev_to_hba(dev);
6304 BIG_IOCTL32_Command_struct __user *arg32 = arg;
6305 BIG_IOCTL_Command_struct arg64;
6306 int err;
6307 u32 cp;
6308
6309 if (!arg)
6310 return -EINVAL;
6311 memset(&arg64, 0, sizeof(arg64));
6312 if (copy_from_user(&arg64, arg32,
6313 offsetof(BIG_IOCTL32_Command_struct, buf)))
6314 return -EFAULT;
6315 if (get_user(cp, &arg32->buf))
6316 return -EFAULT;
6317 arg64.buf = compat_ptr(cp);
6318
6319 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6320 return -EAGAIN;
6321 err = hpsa_big_passthru_ioctl(h, &arg64);
6322 atomic_inc(&h->passthru_cmds_avail);
6323 if (err)
6324 return err;
6325 if (copy_to_user(&arg32->error_info, &arg64.error_info,
6326 sizeof(arg32->error_info)))
6327 return -EFAULT;
6328 return 0;
6329 }
6330
hpsa_compat_ioctl(struct scsi_device * dev,unsigned int cmd,void __user * arg)6331 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6332 void __user *arg)
6333 {
6334 switch (cmd) {
6335 case CCISS_GETPCIINFO:
6336 case CCISS_GETINTINFO:
6337 case CCISS_SETINTINFO:
6338 case CCISS_GETNODENAME:
6339 case CCISS_SETNODENAME:
6340 case CCISS_GETHEARTBEAT:
6341 case CCISS_GETBUSTYPES:
6342 case CCISS_GETFIRMVER:
6343 case CCISS_GETDRIVVER:
6344 case CCISS_REVALIDVOLS:
6345 case CCISS_DEREGDISK:
6346 case CCISS_REGNEWDISK:
6347 case CCISS_REGNEWD:
6348 case CCISS_RESCANDISK:
6349 case CCISS_GETLUNINFO:
6350 return hpsa_ioctl(dev, cmd, arg);
6351
6352 case CCISS_PASSTHRU32:
6353 return hpsa_ioctl32_passthru(dev, cmd, arg);
6354 case CCISS_BIG_PASSTHRU32:
6355 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6356
6357 default:
6358 return -ENOIOCTLCMD;
6359 }
6360 }
6361 #endif
6362
hpsa_getpciinfo_ioctl(struct ctlr_info * h,void __user * argp)6363 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6364 {
6365 struct hpsa_pci_info pciinfo;
6366
6367 if (!argp)
6368 return -EINVAL;
6369 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6370 pciinfo.bus = h->pdev->bus->number;
6371 pciinfo.dev_fn = h->pdev->devfn;
6372 pciinfo.board_id = h->board_id;
6373 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6374 return -EFAULT;
6375 return 0;
6376 }
6377
hpsa_getdrivver_ioctl(struct ctlr_info * h,void __user * argp)6378 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6379 {
6380 DriverVer_type DriverVer;
6381 unsigned char vmaj, vmin, vsubmin;
6382 int rc;
6383
6384 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6385 &vmaj, &vmin, &vsubmin);
6386 if (rc != 3) {
6387 dev_info(&h->pdev->dev, "driver version string '%s' "
6388 "unrecognized.", HPSA_DRIVER_VERSION);
6389 vmaj = 0;
6390 vmin = 0;
6391 vsubmin = 0;
6392 }
6393 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6394 if (!argp)
6395 return -EINVAL;
6396 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6397 return -EFAULT;
6398 return 0;
6399 }
6400
hpsa_passthru_ioctl(struct ctlr_info * h,IOCTL_Command_struct * iocommand)6401 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6402 IOCTL_Command_struct *iocommand)
6403 {
6404 struct CommandList *c;
6405 char *buff = NULL;
6406 u64 temp64;
6407 int rc = 0;
6408
6409 if (!capable(CAP_SYS_RAWIO))
6410 return -EPERM;
6411 if ((iocommand->buf_size < 1) &&
6412 (iocommand->Request.Type.Direction != XFER_NONE)) {
6413 return -EINVAL;
6414 }
6415 if (iocommand->buf_size > 0) {
6416 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6417 if (buff == NULL)
6418 return -ENOMEM;
6419 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6420 /* Copy the data into the buffer we created */
6421 if (copy_from_user(buff, iocommand->buf,
6422 iocommand->buf_size)) {
6423 rc = -EFAULT;
6424 goto out_kfree;
6425 }
6426 } else {
6427 memset(buff, 0, iocommand->buf_size);
6428 }
6429 }
6430 c = cmd_alloc(h);
6431
6432 /* Fill in the command type */
6433 c->cmd_type = CMD_IOCTL_PEND;
6434 c->scsi_cmd = SCSI_CMD_BUSY;
6435 /* Fill in Command Header */
6436 c->Header.ReplyQueue = 0; /* unused in simple mode */
6437 if (iocommand->buf_size > 0) { /* buffer to fill */
6438 c->Header.SGList = 1;
6439 c->Header.SGTotal = cpu_to_le16(1);
6440 } else { /* no buffers to fill */
6441 c->Header.SGList = 0;
6442 c->Header.SGTotal = cpu_to_le16(0);
6443 }
6444 memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6445
6446 /* Fill in Request block */
6447 memcpy(&c->Request, &iocommand->Request,
6448 sizeof(c->Request));
6449
6450 /* Fill in the scatter gather information */
6451 if (iocommand->buf_size > 0) {
6452 temp64 = dma_map_single(&h->pdev->dev, buff,
6453 iocommand->buf_size, DMA_BIDIRECTIONAL);
6454 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6455 c->SG[0].Addr = cpu_to_le64(0);
6456 c->SG[0].Len = cpu_to_le32(0);
6457 rc = -ENOMEM;
6458 goto out;
6459 }
6460 c->SG[0].Addr = cpu_to_le64(temp64);
6461 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6462 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6463 }
6464 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6465 NO_TIMEOUT);
6466 if (iocommand->buf_size > 0)
6467 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6468 check_ioctl_unit_attention(h, c);
6469 if (rc) {
6470 rc = -EIO;
6471 goto out;
6472 }
6473
6474 /* Copy the error information out */
6475 memcpy(&iocommand->error_info, c->err_info,
6476 sizeof(iocommand->error_info));
6477 if ((iocommand->Request.Type.Direction & XFER_READ) &&
6478 iocommand->buf_size > 0) {
6479 /* Copy the data out of the buffer we created */
6480 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6481 rc = -EFAULT;
6482 goto out;
6483 }
6484 }
6485 out:
6486 cmd_free(h, c);
6487 out_kfree:
6488 kfree(buff);
6489 return rc;
6490 }
6491
hpsa_big_passthru_ioctl(struct ctlr_info * h,BIG_IOCTL_Command_struct * ioc)6492 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6493 BIG_IOCTL_Command_struct *ioc)
6494 {
6495 struct CommandList *c;
6496 unsigned char **buff = NULL;
6497 int *buff_size = NULL;
6498 u64 temp64;
6499 BYTE sg_used = 0;
6500 int status = 0;
6501 u32 left;
6502 u32 sz;
6503 BYTE __user *data_ptr;
6504
6505 if (!capable(CAP_SYS_RAWIO))
6506 return -EPERM;
6507
6508 if ((ioc->buf_size < 1) &&
6509 (ioc->Request.Type.Direction != XFER_NONE))
6510 return -EINVAL;
6511 /* Check kmalloc limits using all SGs */
6512 if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6513 return -EINVAL;
6514 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6515 return -EINVAL;
6516 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6517 if (!buff) {
6518 status = -ENOMEM;
6519 goto cleanup1;
6520 }
6521 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6522 if (!buff_size) {
6523 status = -ENOMEM;
6524 goto cleanup1;
6525 }
6526 left = ioc->buf_size;
6527 data_ptr = ioc->buf;
6528 while (left) {
6529 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6530 buff_size[sg_used] = sz;
6531 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6532 if (buff[sg_used] == NULL) {
6533 status = -ENOMEM;
6534 goto cleanup1;
6535 }
6536 if (ioc->Request.Type.Direction & XFER_WRITE) {
6537 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6538 status = -EFAULT;
6539 goto cleanup1;
6540 }
6541 } else
6542 memset(buff[sg_used], 0, sz);
6543 left -= sz;
6544 data_ptr += sz;
6545 sg_used++;
6546 }
6547 c = cmd_alloc(h);
6548
6549 c->cmd_type = CMD_IOCTL_PEND;
6550 c->scsi_cmd = SCSI_CMD_BUSY;
6551 c->Header.ReplyQueue = 0;
6552 c->Header.SGList = (u8) sg_used;
6553 c->Header.SGTotal = cpu_to_le16(sg_used);
6554 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6555 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6556 if (ioc->buf_size > 0) {
6557 int i;
6558 for (i = 0; i < sg_used; i++) {
6559 temp64 = dma_map_single(&h->pdev->dev, buff[i],
6560 buff_size[i], DMA_BIDIRECTIONAL);
6561 if (dma_mapping_error(&h->pdev->dev,
6562 (dma_addr_t) temp64)) {
6563 c->SG[i].Addr = cpu_to_le64(0);
6564 c->SG[i].Len = cpu_to_le32(0);
6565 hpsa_pci_unmap(h->pdev, c, i,
6566 DMA_BIDIRECTIONAL);
6567 status = -ENOMEM;
6568 goto cleanup0;
6569 }
6570 c->SG[i].Addr = cpu_to_le64(temp64);
6571 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6572 c->SG[i].Ext = cpu_to_le32(0);
6573 }
6574 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6575 }
6576 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6577 NO_TIMEOUT);
6578 if (sg_used)
6579 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6580 check_ioctl_unit_attention(h, c);
6581 if (status) {
6582 status = -EIO;
6583 goto cleanup0;
6584 }
6585
6586 /* Copy the error information out */
6587 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6588 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6589 int i;
6590
6591 /* Copy the data out of the buffer we created */
6592 BYTE __user *ptr = ioc->buf;
6593 for (i = 0; i < sg_used; i++) {
6594 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6595 status = -EFAULT;
6596 goto cleanup0;
6597 }
6598 ptr += buff_size[i];
6599 }
6600 }
6601 status = 0;
6602 cleanup0:
6603 cmd_free(h, c);
6604 cleanup1:
6605 if (buff) {
6606 int i;
6607
6608 for (i = 0; i < sg_used; i++)
6609 kfree(buff[i]);
6610 kfree(buff);
6611 }
6612 kfree(buff_size);
6613 return status;
6614 }
6615
check_ioctl_unit_attention(struct ctlr_info * h,struct CommandList * c)6616 static void check_ioctl_unit_attention(struct ctlr_info *h,
6617 struct CommandList *c)
6618 {
6619 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6620 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6621 (void) check_for_unit_attention(h, c);
6622 }
6623
6624 /*
6625 * ioctl
6626 */
hpsa_ioctl(struct scsi_device * dev,unsigned int cmd,void __user * argp)6627 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6628 void __user *argp)
6629 {
6630 struct ctlr_info *h = sdev_to_hba(dev);
6631 int rc;
6632
6633 switch (cmd) {
6634 case CCISS_DEREGDISK:
6635 case CCISS_REGNEWDISK:
6636 case CCISS_REGNEWD:
6637 hpsa_scan_start(h->scsi_host);
6638 return 0;
6639 case CCISS_GETPCIINFO:
6640 return hpsa_getpciinfo_ioctl(h, argp);
6641 case CCISS_GETDRIVVER:
6642 return hpsa_getdrivver_ioctl(h, argp);
6643 case CCISS_PASSTHRU: {
6644 IOCTL_Command_struct iocommand;
6645
6646 if (!argp)
6647 return -EINVAL;
6648 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6649 return -EFAULT;
6650 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6651 return -EAGAIN;
6652 rc = hpsa_passthru_ioctl(h, &iocommand);
6653 atomic_inc(&h->passthru_cmds_avail);
6654 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6655 rc = -EFAULT;
6656 return rc;
6657 }
6658 case CCISS_BIG_PASSTHRU: {
6659 BIG_IOCTL_Command_struct ioc;
6660 if (!argp)
6661 return -EINVAL;
6662 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6663 return -EFAULT;
6664 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6665 return -EAGAIN;
6666 rc = hpsa_big_passthru_ioctl(h, &ioc);
6667 atomic_inc(&h->passthru_cmds_avail);
6668 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6669 rc = -EFAULT;
6670 return rc;
6671 }
6672 default:
6673 return -ENOTTY;
6674 }
6675 }
6676
hpsa_send_host_reset(struct ctlr_info * h,u8 reset_type)6677 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6678 {
6679 struct CommandList *c;
6680
6681 c = cmd_alloc(h);
6682
6683 /* fill_cmd can't fail here, no data buffer to map */
6684 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6685 RAID_CTLR_LUNID, TYPE_MSG);
6686 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6687 c->waiting = NULL;
6688 enqueue_cmd_and_start_io(h, c);
6689 /* Don't wait for completion, the reset won't complete. Don't free
6690 * the command either. This is the last command we will send before
6691 * re-initializing everything, so it doesn't matter and won't leak.
6692 */
6693 return;
6694 }
6695
fill_cmd(struct CommandList * c,u8 cmd,struct ctlr_info * h,void * buff,size_t size,u16 page_code,unsigned char * scsi3addr,int cmd_type)6696 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6697 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6698 int cmd_type)
6699 {
6700 enum dma_data_direction dir = DMA_NONE;
6701
6702 c->cmd_type = CMD_IOCTL_PEND;
6703 c->scsi_cmd = SCSI_CMD_BUSY;
6704 c->Header.ReplyQueue = 0;
6705 if (buff != NULL && size > 0) {
6706 c->Header.SGList = 1;
6707 c->Header.SGTotal = cpu_to_le16(1);
6708 } else {
6709 c->Header.SGList = 0;
6710 c->Header.SGTotal = cpu_to_le16(0);
6711 }
6712 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6713
6714 if (cmd_type == TYPE_CMD) {
6715 switch (cmd) {
6716 case HPSA_INQUIRY:
6717 /* are we trying to read a vital product page */
6718 if (page_code & VPD_PAGE) {
6719 c->Request.CDB[1] = 0x01;
6720 c->Request.CDB[2] = (page_code & 0xff);
6721 }
6722 c->Request.CDBLen = 6;
6723 c->Request.type_attr_dir =
6724 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725 c->Request.Timeout = 0;
6726 c->Request.CDB[0] = HPSA_INQUIRY;
6727 c->Request.CDB[4] = size & 0xFF;
6728 break;
6729 case RECEIVE_DIAGNOSTIC:
6730 c->Request.CDBLen = 6;
6731 c->Request.type_attr_dir =
6732 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733 c->Request.Timeout = 0;
6734 c->Request.CDB[0] = cmd;
6735 c->Request.CDB[1] = 1;
6736 c->Request.CDB[2] = 1;
6737 c->Request.CDB[3] = (size >> 8) & 0xFF;
6738 c->Request.CDB[4] = size & 0xFF;
6739 break;
6740 case HPSA_REPORT_LOG:
6741 case HPSA_REPORT_PHYS:
6742 /* Talking to controller so It's a physical command
6743 mode = 00 target = 0. Nothing to write.
6744 */
6745 c->Request.CDBLen = 12;
6746 c->Request.type_attr_dir =
6747 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6748 c->Request.Timeout = 0;
6749 c->Request.CDB[0] = cmd;
6750 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6751 c->Request.CDB[7] = (size >> 16) & 0xFF;
6752 c->Request.CDB[8] = (size >> 8) & 0xFF;
6753 c->Request.CDB[9] = size & 0xFF;
6754 break;
6755 case BMIC_SENSE_DIAG_OPTIONS:
6756 c->Request.CDBLen = 16;
6757 c->Request.type_attr_dir =
6758 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6759 c->Request.Timeout = 0;
6760 /* Spec says this should be BMIC_WRITE */
6761 c->Request.CDB[0] = BMIC_READ;
6762 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6763 break;
6764 case BMIC_SET_DIAG_OPTIONS:
6765 c->Request.CDBLen = 16;
6766 c->Request.type_attr_dir =
6767 TYPE_ATTR_DIR(cmd_type,
6768 ATTR_SIMPLE, XFER_WRITE);
6769 c->Request.Timeout = 0;
6770 c->Request.CDB[0] = BMIC_WRITE;
6771 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6772 break;
6773 case HPSA_CACHE_FLUSH:
6774 c->Request.CDBLen = 12;
6775 c->Request.type_attr_dir =
6776 TYPE_ATTR_DIR(cmd_type,
6777 ATTR_SIMPLE, XFER_WRITE);
6778 c->Request.Timeout = 0;
6779 c->Request.CDB[0] = BMIC_WRITE;
6780 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6781 c->Request.CDB[7] = (size >> 8) & 0xFF;
6782 c->Request.CDB[8] = size & 0xFF;
6783 break;
6784 case TEST_UNIT_READY:
6785 c->Request.CDBLen = 6;
6786 c->Request.type_attr_dir =
6787 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6788 c->Request.Timeout = 0;
6789 break;
6790 case HPSA_GET_RAID_MAP:
6791 c->Request.CDBLen = 12;
6792 c->Request.type_attr_dir =
6793 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6794 c->Request.Timeout = 0;
6795 c->Request.CDB[0] = HPSA_CISS_READ;
6796 c->Request.CDB[1] = cmd;
6797 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6798 c->Request.CDB[7] = (size >> 16) & 0xFF;
6799 c->Request.CDB[8] = (size >> 8) & 0xFF;
6800 c->Request.CDB[9] = size & 0xFF;
6801 break;
6802 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6803 c->Request.CDBLen = 10;
6804 c->Request.type_attr_dir =
6805 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6806 c->Request.Timeout = 0;
6807 c->Request.CDB[0] = BMIC_READ;
6808 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6809 c->Request.CDB[7] = (size >> 16) & 0xFF;
6810 c->Request.CDB[8] = (size >> 8) & 0xFF;
6811 break;
6812 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6813 c->Request.CDBLen = 10;
6814 c->Request.type_attr_dir =
6815 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6816 c->Request.Timeout = 0;
6817 c->Request.CDB[0] = BMIC_READ;
6818 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6819 c->Request.CDB[7] = (size >> 16) & 0xFF;
6820 c->Request.CDB[8] = (size >> 8) & 0XFF;
6821 break;
6822 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6823 c->Request.CDBLen = 10;
6824 c->Request.type_attr_dir =
6825 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6826 c->Request.Timeout = 0;
6827 c->Request.CDB[0] = BMIC_READ;
6828 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6829 c->Request.CDB[7] = (size >> 16) & 0xFF;
6830 c->Request.CDB[8] = (size >> 8) & 0XFF;
6831 break;
6832 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6833 c->Request.CDBLen = 10;
6834 c->Request.type_attr_dir =
6835 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6836 c->Request.Timeout = 0;
6837 c->Request.CDB[0] = BMIC_READ;
6838 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6839 c->Request.CDB[7] = (size >> 16) & 0xFF;
6840 c->Request.CDB[8] = (size >> 8) & 0XFF;
6841 break;
6842 case BMIC_IDENTIFY_CONTROLLER:
6843 c->Request.CDBLen = 10;
6844 c->Request.type_attr_dir =
6845 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6846 c->Request.Timeout = 0;
6847 c->Request.CDB[0] = BMIC_READ;
6848 c->Request.CDB[1] = 0;
6849 c->Request.CDB[2] = 0;
6850 c->Request.CDB[3] = 0;
6851 c->Request.CDB[4] = 0;
6852 c->Request.CDB[5] = 0;
6853 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6854 c->Request.CDB[7] = (size >> 16) & 0xFF;
6855 c->Request.CDB[8] = (size >> 8) & 0XFF;
6856 c->Request.CDB[9] = 0;
6857 break;
6858 default:
6859 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6860 BUG();
6861 }
6862 } else if (cmd_type == TYPE_MSG) {
6863 switch (cmd) {
6864
6865 case HPSA_PHYS_TARGET_RESET:
6866 c->Request.CDBLen = 16;
6867 c->Request.type_attr_dir =
6868 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6869 c->Request.Timeout = 0; /* Don't time out */
6870 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6871 c->Request.CDB[0] = HPSA_RESET;
6872 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6873 /* Physical target reset needs no control bytes 4-7*/
6874 c->Request.CDB[4] = 0x00;
6875 c->Request.CDB[5] = 0x00;
6876 c->Request.CDB[6] = 0x00;
6877 c->Request.CDB[7] = 0x00;
6878 break;
6879 case HPSA_DEVICE_RESET_MSG:
6880 c->Request.CDBLen = 16;
6881 c->Request.type_attr_dir =
6882 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6883 c->Request.Timeout = 0; /* Don't time out */
6884 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6885 c->Request.CDB[0] = cmd;
6886 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6887 /* If bytes 4-7 are zero, it means reset the */
6888 /* LunID device */
6889 c->Request.CDB[4] = 0x00;
6890 c->Request.CDB[5] = 0x00;
6891 c->Request.CDB[6] = 0x00;
6892 c->Request.CDB[7] = 0x00;
6893 break;
6894 default:
6895 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6896 cmd);
6897 BUG();
6898 }
6899 } else {
6900 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6901 BUG();
6902 }
6903
6904 switch (GET_DIR(c->Request.type_attr_dir)) {
6905 case XFER_READ:
6906 dir = DMA_FROM_DEVICE;
6907 break;
6908 case XFER_WRITE:
6909 dir = DMA_TO_DEVICE;
6910 break;
6911 case XFER_NONE:
6912 dir = DMA_NONE;
6913 break;
6914 default:
6915 dir = DMA_BIDIRECTIONAL;
6916 }
6917 if (hpsa_map_one(h->pdev, c, buff, size, dir))
6918 return -1;
6919 return 0;
6920 }
6921
6922 /*
6923 * Map (physical) PCI mem into (virtual) kernel space
6924 */
remap_pci_mem(ulong base,ulong size)6925 static void __iomem *remap_pci_mem(ulong base, ulong size)
6926 {
6927 ulong page_base = ((ulong) base) & PAGE_MASK;
6928 ulong page_offs = ((ulong) base) - page_base;
6929 void __iomem *page_remapped = ioremap(page_base,
6930 page_offs + size);
6931
6932 return page_remapped ? (page_remapped + page_offs) : NULL;
6933 }
6934
get_next_completion(struct ctlr_info * h,u8 q)6935 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6936 {
6937 return h->access.command_completed(h, q);
6938 }
6939
interrupt_pending(struct ctlr_info * h)6940 static inline bool interrupt_pending(struct ctlr_info *h)
6941 {
6942 return h->access.intr_pending(h);
6943 }
6944
interrupt_not_for_us(struct ctlr_info * h)6945 static inline long interrupt_not_for_us(struct ctlr_info *h)
6946 {
6947 return (h->access.intr_pending(h) == 0) ||
6948 (h->interrupts_enabled == 0);
6949 }
6950
bad_tag(struct ctlr_info * h,u32 tag_index,u32 raw_tag)6951 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6952 u32 raw_tag)
6953 {
6954 if (unlikely(tag_index >= h->nr_cmds)) {
6955 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6956 return 1;
6957 }
6958 return 0;
6959 }
6960
finish_cmd(struct CommandList * c)6961 static inline void finish_cmd(struct CommandList *c)
6962 {
6963 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6964 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6965 || c->cmd_type == CMD_IOACCEL2))
6966 complete_scsi_command(c);
6967 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6968 complete(c->waiting);
6969 }
6970
6971 /* process completion of an indexed ("direct lookup") command */
process_indexed_cmd(struct ctlr_info * h,u32 raw_tag)6972 static inline void process_indexed_cmd(struct ctlr_info *h,
6973 u32 raw_tag)
6974 {
6975 u32 tag_index;
6976 struct CommandList *c;
6977
6978 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6979 if (!bad_tag(h, tag_index, raw_tag)) {
6980 c = h->cmd_pool + tag_index;
6981 finish_cmd(c);
6982 }
6983 }
6984
6985 /* Some controllers, like p400, will give us one interrupt
6986 * after a soft reset, even if we turned interrupts off.
6987 * Only need to check for this in the hpsa_xxx_discard_completions
6988 * functions.
6989 */
ignore_bogus_interrupt(struct ctlr_info * h)6990 static int ignore_bogus_interrupt(struct ctlr_info *h)
6991 {
6992 if (likely(!reset_devices))
6993 return 0;
6994
6995 if (likely(h->interrupts_enabled))
6996 return 0;
6997
6998 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6999 "(known firmware bug.) Ignoring.\n");
7000
7001 return 1;
7002 }
7003
7004 /*
7005 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7006 * Relies on (h-q[x] == x) being true for x such that
7007 * 0 <= x < MAX_REPLY_QUEUES.
7008 */
queue_to_hba(u8 * queue)7009 static struct ctlr_info *queue_to_hba(u8 *queue)
7010 {
7011 return container_of((queue - *queue), struct ctlr_info, q[0]);
7012 }
7013
hpsa_intx_discard_completions(int irq,void * queue)7014 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7015 {
7016 struct ctlr_info *h = queue_to_hba(queue);
7017 u8 q = *(u8 *) queue;
7018 u32 raw_tag;
7019
7020 if (ignore_bogus_interrupt(h))
7021 return IRQ_NONE;
7022
7023 if (interrupt_not_for_us(h))
7024 return IRQ_NONE;
7025 h->last_intr_timestamp = get_jiffies_64();
7026 while (interrupt_pending(h)) {
7027 raw_tag = get_next_completion(h, q);
7028 while (raw_tag != FIFO_EMPTY)
7029 raw_tag = next_command(h, q);
7030 }
7031 return IRQ_HANDLED;
7032 }
7033
hpsa_msix_discard_completions(int irq,void * queue)7034 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7035 {
7036 struct ctlr_info *h = queue_to_hba(queue);
7037 u32 raw_tag;
7038 u8 q = *(u8 *) queue;
7039
7040 if (ignore_bogus_interrupt(h))
7041 return IRQ_NONE;
7042
7043 h->last_intr_timestamp = get_jiffies_64();
7044 raw_tag = get_next_completion(h, q);
7045 while (raw_tag != FIFO_EMPTY)
7046 raw_tag = next_command(h, q);
7047 return IRQ_HANDLED;
7048 }
7049
do_hpsa_intr_intx(int irq,void * queue)7050 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7051 {
7052 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7053 u32 raw_tag;
7054 u8 q = *(u8 *) queue;
7055
7056 if (interrupt_not_for_us(h))
7057 return IRQ_NONE;
7058 h->last_intr_timestamp = get_jiffies_64();
7059 while (interrupt_pending(h)) {
7060 raw_tag = get_next_completion(h, q);
7061 while (raw_tag != FIFO_EMPTY) {
7062 process_indexed_cmd(h, raw_tag);
7063 raw_tag = next_command(h, q);
7064 }
7065 }
7066 return IRQ_HANDLED;
7067 }
7068
do_hpsa_intr_msi(int irq,void * queue)7069 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7070 {
7071 struct ctlr_info *h = queue_to_hba(queue);
7072 u32 raw_tag;
7073 u8 q = *(u8 *) queue;
7074
7075 h->last_intr_timestamp = get_jiffies_64();
7076 raw_tag = get_next_completion(h, q);
7077 while (raw_tag != FIFO_EMPTY) {
7078 process_indexed_cmd(h, raw_tag);
7079 raw_tag = next_command(h, q);
7080 }
7081 return IRQ_HANDLED;
7082 }
7083
7084 /* Send a message CDB to the firmware. Careful, this only works
7085 * in simple mode, not performant mode due to the tag lookup.
7086 * We only ever use this immediately after a controller reset.
7087 */
hpsa_message(struct pci_dev * pdev,unsigned char opcode,unsigned char type)7088 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7089 unsigned char type)
7090 {
7091 struct Command {
7092 struct CommandListHeader CommandHeader;
7093 struct RequestBlock Request;
7094 struct ErrDescriptor ErrorDescriptor;
7095 };
7096 struct Command *cmd;
7097 static const size_t cmd_sz = sizeof(*cmd) +
7098 sizeof(cmd->ErrorDescriptor);
7099 dma_addr_t paddr64;
7100 __le32 paddr32;
7101 u32 tag;
7102 void __iomem *vaddr;
7103 int i, err;
7104
7105 vaddr = pci_ioremap_bar(pdev, 0);
7106 if (vaddr == NULL)
7107 return -ENOMEM;
7108
7109 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7110 * CCISS commands, so they must be allocated from the lower 4GiB of
7111 * memory.
7112 */
7113 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7114 if (err) {
7115 iounmap(vaddr);
7116 return err;
7117 }
7118
7119 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7120 if (cmd == NULL) {
7121 iounmap(vaddr);
7122 return -ENOMEM;
7123 }
7124
7125 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7126 * although there's no guarantee, we assume that the address is at
7127 * least 4-byte aligned (most likely, it's page-aligned).
7128 */
7129 paddr32 = cpu_to_le32(paddr64);
7130
7131 cmd->CommandHeader.ReplyQueue = 0;
7132 cmd->CommandHeader.SGList = 0;
7133 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7134 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7135 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7136
7137 cmd->Request.CDBLen = 16;
7138 cmd->Request.type_attr_dir =
7139 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7140 cmd->Request.Timeout = 0; /* Don't time out */
7141 cmd->Request.CDB[0] = opcode;
7142 cmd->Request.CDB[1] = type;
7143 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7144 cmd->ErrorDescriptor.Addr =
7145 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7146 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7147
7148 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7149
7150 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7151 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7152 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7153 break;
7154 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7155 }
7156
7157 iounmap(vaddr);
7158
7159 /* we leak the DMA buffer here ... no choice since the controller could
7160 * still complete the command.
7161 */
7162 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7163 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7164 opcode, type);
7165 return -ETIMEDOUT;
7166 }
7167
7168 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7169
7170 if (tag & HPSA_ERROR_BIT) {
7171 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7172 opcode, type);
7173 return -EIO;
7174 }
7175
7176 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7177 opcode, type);
7178 return 0;
7179 }
7180
7181 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7182
hpsa_controller_hard_reset(struct pci_dev * pdev,void __iomem * vaddr,u32 use_doorbell)7183 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7184 void __iomem *vaddr, u32 use_doorbell)
7185 {
7186
7187 if (use_doorbell) {
7188 /* For everything after the P600, the PCI power state method
7189 * of resetting the controller doesn't work, so we have this
7190 * other way using the doorbell register.
7191 */
7192 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7193 writel(use_doorbell, vaddr + SA5_DOORBELL);
7194
7195 /* PMC hardware guys tell us we need a 10 second delay after
7196 * doorbell reset and before any attempt to talk to the board
7197 * at all to ensure that this actually works and doesn't fall
7198 * over in some weird corner cases.
7199 */
7200 msleep(10000);
7201 } else { /* Try to do it the PCI power state way */
7202
7203 /* Quoting from the Open CISS Specification: "The Power
7204 * Management Control/Status Register (CSR) controls the power
7205 * state of the device. The normal operating state is D0,
7206 * CSR=00h. The software off state is D3, CSR=03h. To reset
7207 * the controller, place the interface device in D3 then to D0,
7208 * this causes a secondary PCI reset which will reset the
7209 * controller." */
7210
7211 int rc = 0;
7212
7213 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7214
7215 /* enter the D3hot power management state */
7216 rc = pci_set_power_state(pdev, PCI_D3hot);
7217 if (rc)
7218 return rc;
7219
7220 msleep(500);
7221
7222 /* enter the D0 power management state */
7223 rc = pci_set_power_state(pdev, PCI_D0);
7224 if (rc)
7225 return rc;
7226
7227 /*
7228 * The P600 requires a small delay when changing states.
7229 * Otherwise we may think the board did not reset and we bail.
7230 * This for kdump only and is particular to the P600.
7231 */
7232 msleep(500);
7233 }
7234 return 0;
7235 }
7236
init_driver_version(char * driver_version,int len)7237 static void init_driver_version(char *driver_version, int len)
7238 {
7239 memset(driver_version, 0, len);
7240 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7241 }
7242
write_driver_ver_to_cfgtable(struct CfgTable __iomem * cfgtable)7243 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7244 {
7245 char *driver_version;
7246 int i, size = sizeof(cfgtable->driver_version);
7247
7248 driver_version = kmalloc(size, GFP_KERNEL);
7249 if (!driver_version)
7250 return -ENOMEM;
7251
7252 init_driver_version(driver_version, size);
7253 for (i = 0; i < size; i++)
7254 writeb(driver_version[i], &cfgtable->driver_version[i]);
7255 kfree(driver_version);
7256 return 0;
7257 }
7258
read_driver_ver_from_cfgtable(struct CfgTable __iomem * cfgtable,unsigned char * driver_ver)7259 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7260 unsigned char *driver_ver)
7261 {
7262 int i;
7263
7264 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7265 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7266 }
7267
controller_reset_failed(struct CfgTable __iomem * cfgtable)7268 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7269 {
7270
7271 char *driver_ver, *old_driver_ver;
7272 int rc, size = sizeof(cfgtable->driver_version);
7273
7274 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7275 if (!old_driver_ver)
7276 return -ENOMEM;
7277 driver_ver = old_driver_ver + size;
7278
7279 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7280 * should have been changed, otherwise we know the reset failed.
7281 */
7282 init_driver_version(old_driver_ver, size);
7283 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7284 rc = !memcmp(driver_ver, old_driver_ver, size);
7285 kfree(old_driver_ver);
7286 return rc;
7287 }
7288 /* This does a hard reset of the controller using PCI power management
7289 * states or the using the doorbell register.
7290 */
hpsa_kdump_hard_reset_controller(struct pci_dev * pdev,u32 board_id)7291 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7292 {
7293 u64 cfg_offset;
7294 u32 cfg_base_addr;
7295 u64 cfg_base_addr_index;
7296 void __iomem *vaddr;
7297 unsigned long paddr;
7298 u32 misc_fw_support;
7299 int rc;
7300 struct CfgTable __iomem *cfgtable;
7301 u32 use_doorbell;
7302 u16 command_register;
7303
7304 /* For controllers as old as the P600, this is very nearly
7305 * the same thing as
7306 *
7307 * pci_save_state(pci_dev);
7308 * pci_set_power_state(pci_dev, PCI_D3hot);
7309 * pci_set_power_state(pci_dev, PCI_D0);
7310 * pci_restore_state(pci_dev);
7311 *
7312 * For controllers newer than the P600, the pci power state
7313 * method of resetting doesn't work so we have another way
7314 * using the doorbell register.
7315 */
7316
7317 if (!ctlr_is_resettable(board_id)) {
7318 dev_warn(&pdev->dev, "Controller not resettable\n");
7319 return -ENODEV;
7320 }
7321
7322 /* if controller is soft- but not hard resettable... */
7323 if (!ctlr_is_hard_resettable(board_id))
7324 return -ENOTSUPP; /* try soft reset later. */
7325
7326 /* Save the PCI command register */
7327 pci_read_config_word(pdev, 4, &command_register);
7328 pci_save_state(pdev);
7329
7330 /* find the first memory BAR, so we can find the cfg table */
7331 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7332 if (rc)
7333 return rc;
7334 vaddr = remap_pci_mem(paddr, 0x250);
7335 if (!vaddr)
7336 return -ENOMEM;
7337
7338 /* find cfgtable in order to check if reset via doorbell is supported */
7339 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7340 &cfg_base_addr_index, &cfg_offset);
7341 if (rc)
7342 goto unmap_vaddr;
7343 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7344 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7345 if (!cfgtable) {
7346 rc = -ENOMEM;
7347 goto unmap_vaddr;
7348 }
7349 rc = write_driver_ver_to_cfgtable(cfgtable);
7350 if (rc)
7351 goto unmap_cfgtable;
7352
7353 /* If reset via doorbell register is supported, use that.
7354 * There are two such methods. Favor the newest method.
7355 */
7356 misc_fw_support = readl(&cfgtable->misc_fw_support);
7357 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7358 if (use_doorbell) {
7359 use_doorbell = DOORBELL_CTLR_RESET2;
7360 } else {
7361 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7362 if (use_doorbell) {
7363 dev_warn(&pdev->dev,
7364 "Soft reset not supported. Firmware update is required.\n");
7365 rc = -ENOTSUPP; /* try soft reset */
7366 goto unmap_cfgtable;
7367 }
7368 }
7369
7370 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7371 if (rc)
7372 goto unmap_cfgtable;
7373
7374 pci_restore_state(pdev);
7375 pci_write_config_word(pdev, 4, command_register);
7376
7377 /* Some devices (notably the HP Smart Array 5i Controller)
7378 need a little pause here */
7379 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7380
7381 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7382 if (rc) {
7383 dev_warn(&pdev->dev,
7384 "Failed waiting for board to become ready after hard reset\n");
7385 goto unmap_cfgtable;
7386 }
7387
7388 rc = controller_reset_failed(vaddr);
7389 if (rc < 0)
7390 goto unmap_cfgtable;
7391 if (rc) {
7392 dev_warn(&pdev->dev, "Unable to successfully reset "
7393 "controller. Will try soft reset.\n");
7394 rc = -ENOTSUPP;
7395 } else {
7396 dev_info(&pdev->dev, "board ready after hard reset.\n");
7397 }
7398
7399 unmap_cfgtable:
7400 iounmap(cfgtable);
7401
7402 unmap_vaddr:
7403 iounmap(vaddr);
7404 return rc;
7405 }
7406
7407 /*
7408 * We cannot read the structure directly, for portability we must use
7409 * the io functions.
7410 * This is for debug only.
7411 */
print_cfg_table(struct device * dev,struct CfgTable __iomem * tb)7412 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7413 {
7414 #ifdef HPSA_DEBUG
7415 int i;
7416 char temp_name[17];
7417
7418 dev_info(dev, "Controller Configuration information\n");
7419 dev_info(dev, "------------------------------------\n");
7420 for (i = 0; i < 4; i++)
7421 temp_name[i] = readb(&(tb->Signature[i]));
7422 temp_name[4] = '\0';
7423 dev_info(dev, " Signature = %s\n", temp_name);
7424 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7425 dev_info(dev, " Transport methods supported = 0x%x\n",
7426 readl(&(tb->TransportSupport)));
7427 dev_info(dev, " Transport methods active = 0x%x\n",
7428 readl(&(tb->TransportActive)));
7429 dev_info(dev, " Requested transport Method = 0x%x\n",
7430 readl(&(tb->HostWrite.TransportRequest)));
7431 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7432 readl(&(tb->HostWrite.CoalIntDelay)));
7433 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7434 readl(&(tb->HostWrite.CoalIntCount)));
7435 dev_info(dev, " Max outstanding commands = %d\n",
7436 readl(&(tb->CmdsOutMax)));
7437 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7438 for (i = 0; i < 16; i++)
7439 temp_name[i] = readb(&(tb->ServerName[i]));
7440 temp_name[16] = '\0';
7441 dev_info(dev, " Server Name = %s\n", temp_name);
7442 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7443 readl(&(tb->HeartBeat)));
7444 #endif /* HPSA_DEBUG */
7445 }
7446
find_PCI_BAR_index(struct pci_dev * pdev,unsigned long pci_bar_addr)7447 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7448 {
7449 int i, offset, mem_type, bar_type;
7450
7451 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7452 return 0;
7453 offset = 0;
7454 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7455 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7456 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7457 offset += 4;
7458 else {
7459 mem_type = pci_resource_flags(pdev, i) &
7460 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7461 switch (mem_type) {
7462 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7463 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7464 offset += 4; /* 32 bit */
7465 break;
7466 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7467 offset += 8;
7468 break;
7469 default: /* reserved in PCI 2.2 */
7470 dev_warn(&pdev->dev,
7471 "base address is invalid\n");
7472 return -1;
7473 }
7474 }
7475 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7476 return i + 1;
7477 }
7478 return -1;
7479 }
7480
hpsa_disable_interrupt_mode(struct ctlr_info * h)7481 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7482 {
7483 pci_free_irq_vectors(h->pdev);
7484 h->msix_vectors = 0;
7485 }
7486
hpsa_setup_reply_map(struct ctlr_info * h)7487 static void hpsa_setup_reply_map(struct ctlr_info *h)
7488 {
7489 const struct cpumask *mask;
7490 unsigned int queue, cpu;
7491
7492 for (queue = 0; queue < h->msix_vectors; queue++) {
7493 mask = pci_irq_get_affinity(h->pdev, queue);
7494 if (!mask)
7495 goto fallback;
7496
7497 for_each_cpu(cpu, mask)
7498 h->reply_map[cpu] = queue;
7499 }
7500 return;
7501
7502 fallback:
7503 for_each_possible_cpu(cpu)
7504 h->reply_map[cpu] = 0;
7505 }
7506
7507 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7508 * controllers that are capable. If not, we use legacy INTx mode.
7509 */
hpsa_interrupt_mode(struct ctlr_info * h)7510 static int hpsa_interrupt_mode(struct ctlr_info *h)
7511 {
7512 unsigned int flags = PCI_IRQ_LEGACY;
7513 int ret;
7514
7515 /* Some boards advertise MSI but don't really support it */
7516 switch (h->board_id) {
7517 case 0x40700E11:
7518 case 0x40800E11:
7519 case 0x40820E11:
7520 case 0x40830E11:
7521 break;
7522 default:
7523 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7524 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7525 if (ret > 0) {
7526 h->msix_vectors = ret;
7527 return 0;
7528 }
7529
7530 flags |= PCI_IRQ_MSI;
7531 break;
7532 }
7533
7534 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7535 if (ret < 0)
7536 return ret;
7537 return 0;
7538 }
7539
hpsa_lookup_board_id(struct pci_dev * pdev,u32 * board_id,bool * legacy_board)7540 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7541 bool *legacy_board)
7542 {
7543 int i;
7544 u32 subsystem_vendor_id, subsystem_device_id;
7545
7546 subsystem_vendor_id = pdev->subsystem_vendor;
7547 subsystem_device_id = pdev->subsystem_device;
7548 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7549 subsystem_vendor_id;
7550
7551 if (legacy_board)
7552 *legacy_board = false;
7553 for (i = 0; i < ARRAY_SIZE(products); i++)
7554 if (*board_id == products[i].board_id) {
7555 if (products[i].access != &SA5A_access &&
7556 products[i].access != &SA5B_access)
7557 return i;
7558 dev_warn(&pdev->dev,
7559 "legacy board ID: 0x%08x\n",
7560 *board_id);
7561 if (legacy_board)
7562 *legacy_board = true;
7563 return i;
7564 }
7565
7566 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7567 if (legacy_board)
7568 *legacy_board = true;
7569 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7570 }
7571
hpsa_pci_find_memory_BAR(struct pci_dev * pdev,unsigned long * memory_bar)7572 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7573 unsigned long *memory_bar)
7574 {
7575 int i;
7576
7577 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7578 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7579 /* addressing mode bits already removed */
7580 *memory_bar = pci_resource_start(pdev, i);
7581 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7582 *memory_bar);
7583 return 0;
7584 }
7585 dev_warn(&pdev->dev, "no memory BAR found\n");
7586 return -ENODEV;
7587 }
7588
hpsa_wait_for_board_state(struct pci_dev * pdev,void __iomem * vaddr,int wait_for_ready)7589 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7590 int wait_for_ready)
7591 {
7592 int i, iterations;
7593 u32 scratchpad;
7594 if (wait_for_ready)
7595 iterations = HPSA_BOARD_READY_ITERATIONS;
7596 else
7597 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7598
7599 for (i = 0; i < iterations; i++) {
7600 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7601 if (wait_for_ready) {
7602 if (scratchpad == HPSA_FIRMWARE_READY)
7603 return 0;
7604 } else {
7605 if (scratchpad != HPSA_FIRMWARE_READY)
7606 return 0;
7607 }
7608 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7609 }
7610 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7611 return -ENODEV;
7612 }
7613
hpsa_find_cfg_addrs(struct pci_dev * pdev,void __iomem * vaddr,u32 * cfg_base_addr,u64 * cfg_base_addr_index,u64 * cfg_offset)7614 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7615 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7616 u64 *cfg_offset)
7617 {
7618 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7619 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7620 *cfg_base_addr &= (u32) 0x0000ffff;
7621 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7622 if (*cfg_base_addr_index == -1) {
7623 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7624 return -ENODEV;
7625 }
7626 return 0;
7627 }
7628
hpsa_free_cfgtables(struct ctlr_info * h)7629 static void hpsa_free_cfgtables(struct ctlr_info *h)
7630 {
7631 if (h->transtable) {
7632 iounmap(h->transtable);
7633 h->transtable = NULL;
7634 }
7635 if (h->cfgtable) {
7636 iounmap(h->cfgtable);
7637 h->cfgtable = NULL;
7638 }
7639 }
7640
7641 /* Find and map CISS config table and transfer table
7642 + * several items must be unmapped (freed) later
7643 + * */
hpsa_find_cfgtables(struct ctlr_info * h)7644 static int hpsa_find_cfgtables(struct ctlr_info *h)
7645 {
7646 u64 cfg_offset;
7647 u32 cfg_base_addr;
7648 u64 cfg_base_addr_index;
7649 u32 trans_offset;
7650 int rc;
7651
7652 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7653 &cfg_base_addr_index, &cfg_offset);
7654 if (rc)
7655 return rc;
7656 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7657 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7658 if (!h->cfgtable) {
7659 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7660 return -ENOMEM;
7661 }
7662 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7663 if (rc)
7664 return rc;
7665 /* Find performant mode table. */
7666 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7667 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7668 cfg_base_addr_index)+cfg_offset+trans_offset,
7669 sizeof(*h->transtable));
7670 if (!h->transtable) {
7671 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7672 hpsa_free_cfgtables(h);
7673 return -ENOMEM;
7674 }
7675 return 0;
7676 }
7677
hpsa_get_max_perf_mode_cmds(struct ctlr_info * h)7678 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7679 {
7680 #define MIN_MAX_COMMANDS 16
7681 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7682
7683 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7684
7685 /* Limit commands in memory limited kdump scenario. */
7686 if (reset_devices && h->max_commands > 32)
7687 h->max_commands = 32;
7688
7689 if (h->max_commands < MIN_MAX_COMMANDS) {
7690 dev_warn(&h->pdev->dev,
7691 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7692 h->max_commands,
7693 MIN_MAX_COMMANDS);
7694 h->max_commands = MIN_MAX_COMMANDS;
7695 }
7696 }
7697
7698 /* If the controller reports that the total max sg entries is greater than 512,
7699 * then we know that chained SG blocks work. (Original smart arrays did not
7700 * support chained SG blocks and would return zero for max sg entries.)
7701 */
hpsa_supports_chained_sg_blocks(struct ctlr_info * h)7702 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7703 {
7704 return h->maxsgentries > 512;
7705 }
7706
7707 /* Interrogate the hardware for some limits:
7708 * max commands, max SG elements without chaining, and with chaining,
7709 * SG chain block size, etc.
7710 */
hpsa_find_board_params(struct ctlr_info * h)7711 static void hpsa_find_board_params(struct ctlr_info *h)
7712 {
7713 hpsa_get_max_perf_mode_cmds(h);
7714 h->nr_cmds = h->max_commands;
7715 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7716 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7717 if (hpsa_supports_chained_sg_blocks(h)) {
7718 /* Limit in-command s/g elements to 32 save dma'able memory. */
7719 h->max_cmd_sg_entries = 32;
7720 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7721 h->maxsgentries--; /* save one for chain pointer */
7722 } else {
7723 /*
7724 * Original smart arrays supported at most 31 s/g entries
7725 * embedded inline in the command (trying to use more
7726 * would lock up the controller)
7727 */
7728 h->max_cmd_sg_entries = 31;
7729 h->maxsgentries = 31; /* default to traditional values */
7730 h->chainsize = 0;
7731 }
7732
7733 /* Find out what task management functions are supported and cache */
7734 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7735 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7736 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7737 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7738 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7739 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7740 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7741 }
7742
hpsa_CISS_signature_present(struct ctlr_info * h)7743 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7744 {
7745 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7746 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7747 return false;
7748 }
7749 return true;
7750 }
7751
hpsa_set_driver_support_bits(struct ctlr_info * h)7752 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7753 {
7754 u32 driver_support;
7755
7756 driver_support = readl(&(h->cfgtable->driver_support));
7757 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7758 #ifdef CONFIG_X86
7759 driver_support |= ENABLE_SCSI_PREFETCH;
7760 #endif
7761 driver_support |= ENABLE_UNIT_ATTN;
7762 writel(driver_support, &(h->cfgtable->driver_support));
7763 }
7764
7765 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7766 * in a prefetch beyond physical memory.
7767 */
hpsa_p600_dma_prefetch_quirk(struct ctlr_info * h)7768 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7769 {
7770 u32 dma_prefetch;
7771
7772 if (h->board_id != 0x3225103C)
7773 return;
7774 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7775 dma_prefetch |= 0x8000;
7776 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7777 }
7778
hpsa_wait_for_clear_event_notify_ack(struct ctlr_info * h)7779 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7780 {
7781 int i;
7782 u32 doorbell_value;
7783 unsigned long flags;
7784 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7785 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7786 spin_lock_irqsave(&h->lock, flags);
7787 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7788 spin_unlock_irqrestore(&h->lock, flags);
7789 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7790 goto done;
7791 /* delay and try again */
7792 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7793 }
7794 return -ENODEV;
7795 done:
7796 return 0;
7797 }
7798
hpsa_wait_for_mode_change_ack(struct ctlr_info * h)7799 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7800 {
7801 int i;
7802 u32 doorbell_value;
7803 unsigned long flags;
7804
7805 /* under certain very rare conditions, this can take awhile.
7806 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7807 * as we enter this code.)
7808 */
7809 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7810 if (h->remove_in_progress)
7811 goto done;
7812 spin_lock_irqsave(&h->lock, flags);
7813 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7814 spin_unlock_irqrestore(&h->lock, flags);
7815 if (!(doorbell_value & CFGTBL_ChangeReq))
7816 goto done;
7817 /* delay and try again */
7818 msleep(MODE_CHANGE_WAIT_INTERVAL);
7819 }
7820 return -ENODEV;
7821 done:
7822 return 0;
7823 }
7824
7825 /* return -ENODEV or other reason on error, 0 on success */
hpsa_enter_simple_mode(struct ctlr_info * h)7826 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7827 {
7828 u32 trans_support;
7829
7830 trans_support = readl(&(h->cfgtable->TransportSupport));
7831 if (!(trans_support & SIMPLE_MODE))
7832 return -ENOTSUPP;
7833
7834 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7835
7836 /* Update the field, and then ring the doorbell */
7837 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7838 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7839 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7840 if (hpsa_wait_for_mode_change_ack(h))
7841 goto error;
7842 print_cfg_table(&h->pdev->dev, h->cfgtable);
7843 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7844 goto error;
7845 h->transMethod = CFGTBL_Trans_Simple;
7846 return 0;
7847 error:
7848 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7849 return -ENODEV;
7850 }
7851
7852 /* free items allocated or mapped by hpsa_pci_init */
hpsa_free_pci_init(struct ctlr_info * h)7853 static void hpsa_free_pci_init(struct ctlr_info *h)
7854 {
7855 hpsa_free_cfgtables(h); /* pci_init 4 */
7856 iounmap(h->vaddr); /* pci_init 3 */
7857 h->vaddr = NULL;
7858 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7859 /*
7860 * call pci_disable_device before pci_release_regions per
7861 * Documentation/driver-api/pci/pci.rst
7862 */
7863 pci_disable_device(h->pdev); /* pci_init 1 */
7864 pci_release_regions(h->pdev); /* pci_init 2 */
7865 }
7866
7867 /* several items must be freed later */
hpsa_pci_init(struct ctlr_info * h)7868 static int hpsa_pci_init(struct ctlr_info *h)
7869 {
7870 int prod_index, err;
7871 bool legacy_board;
7872
7873 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7874 if (prod_index < 0)
7875 return prod_index;
7876 h->product_name = products[prod_index].product_name;
7877 h->access = *(products[prod_index].access);
7878 h->legacy_board = legacy_board;
7879 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7880 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7881
7882 err = pci_enable_device(h->pdev);
7883 if (err) {
7884 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7885 pci_disable_device(h->pdev);
7886 return err;
7887 }
7888
7889 err = pci_request_regions(h->pdev, HPSA);
7890 if (err) {
7891 dev_err(&h->pdev->dev,
7892 "failed to obtain PCI resources\n");
7893 pci_disable_device(h->pdev);
7894 return err;
7895 }
7896
7897 pci_set_master(h->pdev);
7898
7899 err = hpsa_interrupt_mode(h);
7900 if (err)
7901 goto clean1;
7902
7903 /* setup mapping between CPU and reply queue */
7904 hpsa_setup_reply_map(h);
7905
7906 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7907 if (err)
7908 goto clean2; /* intmode+region, pci */
7909 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7910 if (!h->vaddr) {
7911 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7912 err = -ENOMEM;
7913 goto clean2; /* intmode+region, pci */
7914 }
7915 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7916 if (err)
7917 goto clean3; /* vaddr, intmode+region, pci */
7918 err = hpsa_find_cfgtables(h);
7919 if (err)
7920 goto clean3; /* vaddr, intmode+region, pci */
7921 hpsa_find_board_params(h);
7922
7923 if (!hpsa_CISS_signature_present(h)) {
7924 err = -ENODEV;
7925 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7926 }
7927 hpsa_set_driver_support_bits(h);
7928 hpsa_p600_dma_prefetch_quirk(h);
7929 err = hpsa_enter_simple_mode(h);
7930 if (err)
7931 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7932 return 0;
7933
7934 clean4: /* cfgtables, vaddr, intmode+region, pci */
7935 hpsa_free_cfgtables(h);
7936 clean3: /* vaddr, intmode+region, pci */
7937 iounmap(h->vaddr);
7938 h->vaddr = NULL;
7939 clean2: /* intmode+region, pci */
7940 hpsa_disable_interrupt_mode(h);
7941 clean1:
7942 /*
7943 * call pci_disable_device before pci_release_regions per
7944 * Documentation/driver-api/pci/pci.rst
7945 */
7946 pci_disable_device(h->pdev);
7947 pci_release_regions(h->pdev);
7948 return err;
7949 }
7950
hpsa_hba_inquiry(struct ctlr_info * h)7951 static void hpsa_hba_inquiry(struct ctlr_info *h)
7952 {
7953 int rc;
7954
7955 #define HBA_INQUIRY_BYTE_COUNT 64
7956 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7957 if (!h->hba_inquiry_data)
7958 return;
7959 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7960 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7961 if (rc != 0) {
7962 kfree(h->hba_inquiry_data);
7963 h->hba_inquiry_data = NULL;
7964 }
7965 }
7966
hpsa_init_reset_devices(struct pci_dev * pdev,u32 board_id)7967 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7968 {
7969 int rc, i;
7970 void __iomem *vaddr;
7971
7972 if (!reset_devices)
7973 return 0;
7974
7975 /* kdump kernel is loading, we don't know in which state is
7976 * the pci interface. The dev->enable_cnt is equal zero
7977 * so we call enable+disable, wait a while and switch it on.
7978 */
7979 rc = pci_enable_device(pdev);
7980 if (rc) {
7981 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7982 return -ENODEV;
7983 }
7984 pci_disable_device(pdev);
7985 msleep(260); /* a randomly chosen number */
7986 rc = pci_enable_device(pdev);
7987 if (rc) {
7988 dev_warn(&pdev->dev, "failed to enable device.\n");
7989 return -ENODEV;
7990 }
7991
7992 pci_set_master(pdev);
7993
7994 vaddr = pci_ioremap_bar(pdev, 0);
7995 if (vaddr == NULL) {
7996 rc = -ENOMEM;
7997 goto out_disable;
7998 }
7999 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8000 iounmap(vaddr);
8001
8002 /* Reset the controller with a PCI power-cycle or via doorbell */
8003 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8004
8005 /* -ENOTSUPP here means we cannot reset the controller
8006 * but it's already (and still) up and running in
8007 * "performant mode". Or, it might be 640x, which can't reset
8008 * due to concerns about shared bbwc between 6402/6404 pair.
8009 */
8010 if (rc)
8011 goto out_disable;
8012
8013 /* Now try to get the controller to respond to a no-op */
8014 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8015 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8016 if (hpsa_noop(pdev) == 0)
8017 break;
8018 else
8019 dev_warn(&pdev->dev, "no-op failed%s\n",
8020 (i < 11 ? "; re-trying" : ""));
8021 }
8022
8023 out_disable:
8024
8025 pci_disable_device(pdev);
8026 return rc;
8027 }
8028
hpsa_free_cmd_pool(struct ctlr_info * h)8029 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8030 {
8031 bitmap_free(h->cmd_pool_bits);
8032 h->cmd_pool_bits = NULL;
8033 if (h->cmd_pool) {
8034 dma_free_coherent(&h->pdev->dev,
8035 h->nr_cmds * sizeof(struct CommandList),
8036 h->cmd_pool,
8037 h->cmd_pool_dhandle);
8038 h->cmd_pool = NULL;
8039 h->cmd_pool_dhandle = 0;
8040 }
8041 if (h->errinfo_pool) {
8042 dma_free_coherent(&h->pdev->dev,
8043 h->nr_cmds * sizeof(struct ErrorInfo),
8044 h->errinfo_pool,
8045 h->errinfo_pool_dhandle);
8046 h->errinfo_pool = NULL;
8047 h->errinfo_pool_dhandle = 0;
8048 }
8049 }
8050
hpsa_alloc_cmd_pool(struct ctlr_info * h)8051 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8052 {
8053 h->cmd_pool_bits = bitmap_zalloc(h->nr_cmds, GFP_KERNEL);
8054 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8055 h->nr_cmds * sizeof(*h->cmd_pool),
8056 &h->cmd_pool_dhandle, GFP_KERNEL);
8057 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8058 h->nr_cmds * sizeof(*h->errinfo_pool),
8059 &h->errinfo_pool_dhandle, GFP_KERNEL);
8060 if ((h->cmd_pool_bits == NULL)
8061 || (h->cmd_pool == NULL)
8062 || (h->errinfo_pool == NULL)) {
8063 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8064 goto clean_up;
8065 }
8066 hpsa_preinitialize_commands(h);
8067 return 0;
8068 clean_up:
8069 hpsa_free_cmd_pool(h);
8070 return -ENOMEM;
8071 }
8072
8073 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
hpsa_free_irqs(struct ctlr_info * h)8074 static void hpsa_free_irqs(struct ctlr_info *h)
8075 {
8076 int i;
8077 int irq_vector = 0;
8078
8079 if (hpsa_simple_mode)
8080 irq_vector = h->intr_mode;
8081
8082 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8083 /* Single reply queue, only one irq to free */
8084 free_irq(pci_irq_vector(h->pdev, irq_vector),
8085 &h->q[h->intr_mode]);
8086 h->q[h->intr_mode] = 0;
8087 return;
8088 }
8089
8090 for (i = 0; i < h->msix_vectors; i++) {
8091 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8092 h->q[i] = 0;
8093 }
8094 for (; i < MAX_REPLY_QUEUES; i++)
8095 h->q[i] = 0;
8096 }
8097
8098 /* returns 0 on success; cleans up and returns -Enn on error */
hpsa_request_irqs(struct ctlr_info * h,irqreturn_t (* msixhandler)(int,void *),irqreturn_t (* intxhandler)(int,void *))8099 static int hpsa_request_irqs(struct ctlr_info *h,
8100 irqreturn_t (*msixhandler)(int, void *),
8101 irqreturn_t (*intxhandler)(int, void *))
8102 {
8103 int rc, i;
8104 int irq_vector = 0;
8105
8106 if (hpsa_simple_mode)
8107 irq_vector = h->intr_mode;
8108
8109 /*
8110 * initialize h->q[x] = x so that interrupt handlers know which
8111 * queue to process.
8112 */
8113 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8114 h->q[i] = (u8) i;
8115
8116 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8117 /* If performant mode and MSI-X, use multiple reply queues */
8118 for (i = 0; i < h->msix_vectors; i++) {
8119 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8120 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8121 0, h->intrname[i],
8122 &h->q[i]);
8123 if (rc) {
8124 int j;
8125
8126 dev_err(&h->pdev->dev,
8127 "failed to get irq %d for %s\n",
8128 pci_irq_vector(h->pdev, i), h->devname);
8129 for (j = 0; j < i; j++) {
8130 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8131 h->q[j] = 0;
8132 }
8133 for (; j < MAX_REPLY_QUEUES; j++)
8134 h->q[j] = 0;
8135 return rc;
8136 }
8137 }
8138 } else {
8139 /* Use single reply pool */
8140 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8141 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8142 h->msix_vectors ? "x" : "");
8143 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8144 msixhandler, 0,
8145 h->intrname[0],
8146 &h->q[h->intr_mode]);
8147 } else {
8148 sprintf(h->intrname[h->intr_mode],
8149 "%s-intx", h->devname);
8150 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8151 intxhandler, IRQF_SHARED,
8152 h->intrname[0],
8153 &h->q[h->intr_mode]);
8154 }
8155 }
8156 if (rc) {
8157 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8158 pci_irq_vector(h->pdev, irq_vector), h->devname);
8159 hpsa_free_irqs(h);
8160 return -ENODEV;
8161 }
8162 return 0;
8163 }
8164
hpsa_kdump_soft_reset(struct ctlr_info * h)8165 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8166 {
8167 int rc;
8168 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8169
8170 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8171 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8172 if (rc) {
8173 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8174 return rc;
8175 }
8176
8177 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8178 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8179 if (rc) {
8180 dev_warn(&h->pdev->dev, "Board failed to become ready "
8181 "after soft reset.\n");
8182 return rc;
8183 }
8184
8185 return 0;
8186 }
8187
hpsa_free_reply_queues(struct ctlr_info * h)8188 static void hpsa_free_reply_queues(struct ctlr_info *h)
8189 {
8190 int i;
8191
8192 for (i = 0; i < h->nreply_queues; i++) {
8193 if (!h->reply_queue[i].head)
8194 continue;
8195 dma_free_coherent(&h->pdev->dev,
8196 h->reply_queue_size,
8197 h->reply_queue[i].head,
8198 h->reply_queue[i].busaddr);
8199 h->reply_queue[i].head = NULL;
8200 h->reply_queue[i].busaddr = 0;
8201 }
8202 h->reply_queue_size = 0;
8203 }
8204
hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info * h)8205 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8206 {
8207 hpsa_free_performant_mode(h); /* init_one 7 */
8208 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8209 hpsa_free_cmd_pool(h); /* init_one 5 */
8210 hpsa_free_irqs(h); /* init_one 4 */
8211 scsi_host_put(h->scsi_host); /* init_one 3 */
8212 h->scsi_host = NULL; /* init_one 3 */
8213 hpsa_free_pci_init(h); /* init_one 2_5 */
8214 free_percpu(h->lockup_detected); /* init_one 2 */
8215 h->lockup_detected = NULL; /* init_one 2 */
8216 if (h->resubmit_wq) {
8217 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8218 h->resubmit_wq = NULL;
8219 }
8220 if (h->rescan_ctlr_wq) {
8221 destroy_workqueue(h->rescan_ctlr_wq);
8222 h->rescan_ctlr_wq = NULL;
8223 }
8224 if (h->monitor_ctlr_wq) {
8225 destroy_workqueue(h->monitor_ctlr_wq);
8226 h->monitor_ctlr_wq = NULL;
8227 }
8228
8229 kfree(h); /* init_one 1 */
8230 }
8231
8232 /* Called when controller lockup detected. */
fail_all_outstanding_cmds(struct ctlr_info * h)8233 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8234 {
8235 int i, refcount;
8236 struct CommandList *c;
8237 int failcount = 0;
8238
8239 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8240 for (i = 0; i < h->nr_cmds; i++) {
8241 c = h->cmd_pool + i;
8242 refcount = atomic_inc_return(&c->refcount);
8243 if (refcount > 1) {
8244 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8245 finish_cmd(c);
8246 atomic_dec(&h->commands_outstanding);
8247 failcount++;
8248 }
8249 cmd_free(h, c);
8250 }
8251 dev_warn(&h->pdev->dev,
8252 "failed %d commands in fail_all\n", failcount);
8253 }
8254
set_lockup_detected_for_all_cpus(struct ctlr_info * h,u32 value)8255 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8256 {
8257 int cpu;
8258
8259 for_each_online_cpu(cpu) {
8260 u32 *lockup_detected;
8261 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8262 *lockup_detected = value;
8263 }
8264 wmb(); /* be sure the per-cpu variables are out to memory */
8265 }
8266
controller_lockup_detected(struct ctlr_info * h)8267 static void controller_lockup_detected(struct ctlr_info *h)
8268 {
8269 unsigned long flags;
8270 u32 lockup_detected;
8271
8272 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8273 spin_lock_irqsave(&h->lock, flags);
8274 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8275 if (!lockup_detected) {
8276 /* no heartbeat, but controller gave us a zero. */
8277 dev_warn(&h->pdev->dev,
8278 "lockup detected after %d but scratchpad register is zero\n",
8279 h->heartbeat_sample_interval / HZ);
8280 lockup_detected = 0xffffffff;
8281 }
8282 set_lockup_detected_for_all_cpus(h, lockup_detected);
8283 spin_unlock_irqrestore(&h->lock, flags);
8284 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8285 lockup_detected, h->heartbeat_sample_interval / HZ);
8286 if (lockup_detected == 0xffff0000) {
8287 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8288 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8289 }
8290 pci_disable_device(h->pdev);
8291 fail_all_outstanding_cmds(h);
8292 }
8293
detect_controller_lockup(struct ctlr_info * h)8294 static int detect_controller_lockup(struct ctlr_info *h)
8295 {
8296 u64 now;
8297 u32 heartbeat;
8298 unsigned long flags;
8299
8300 now = get_jiffies_64();
8301 /* If we've received an interrupt recently, we're ok. */
8302 if (time_after64(h->last_intr_timestamp +
8303 (h->heartbeat_sample_interval), now))
8304 return false;
8305
8306 /*
8307 * If we've already checked the heartbeat recently, we're ok.
8308 * This could happen if someone sends us a signal. We
8309 * otherwise don't care about signals in this thread.
8310 */
8311 if (time_after64(h->last_heartbeat_timestamp +
8312 (h->heartbeat_sample_interval), now))
8313 return false;
8314
8315 /* If heartbeat has not changed since we last looked, we're not ok. */
8316 spin_lock_irqsave(&h->lock, flags);
8317 heartbeat = readl(&h->cfgtable->HeartBeat);
8318 spin_unlock_irqrestore(&h->lock, flags);
8319 if (h->last_heartbeat == heartbeat) {
8320 controller_lockup_detected(h);
8321 return true;
8322 }
8323
8324 /* We're ok. */
8325 h->last_heartbeat = heartbeat;
8326 h->last_heartbeat_timestamp = now;
8327 return false;
8328 }
8329
8330 /*
8331 * Set ioaccel status for all ioaccel volumes.
8332 *
8333 * Called from monitor controller worker (hpsa_event_monitor_worker)
8334 *
8335 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8336 * transformation, so we will be turning off ioaccel for all volumes that
8337 * make up the Array.
8338 */
hpsa_set_ioaccel_status(struct ctlr_info * h)8339 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8340 {
8341 int rc;
8342 int i;
8343 u8 ioaccel_status;
8344 unsigned char *buf;
8345 struct hpsa_scsi_dev_t *device;
8346
8347 if (!h)
8348 return;
8349
8350 buf = kmalloc(64, GFP_KERNEL);
8351 if (!buf)
8352 return;
8353
8354 /*
8355 * Run through current device list used during I/O requests.
8356 */
8357 for (i = 0; i < h->ndevices; i++) {
8358 int offload_to_be_enabled = 0;
8359 int offload_config = 0;
8360
8361 device = h->dev[i];
8362
8363 if (!device)
8364 continue;
8365 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8366 HPSA_VPD_LV_IOACCEL_STATUS))
8367 continue;
8368
8369 memset(buf, 0, 64);
8370
8371 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8372 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8373 buf, 64);
8374 if (rc != 0)
8375 continue;
8376
8377 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8378
8379 /*
8380 * Check if offload is still configured on
8381 */
8382 offload_config =
8383 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8384 /*
8385 * If offload is configured on, check to see if ioaccel
8386 * needs to be enabled.
8387 */
8388 if (offload_config)
8389 offload_to_be_enabled =
8390 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8391
8392 /*
8393 * If ioaccel is to be re-enabled, re-enable later during the
8394 * scan operation so the driver can get a fresh raidmap
8395 * before turning ioaccel back on.
8396 */
8397 if (offload_to_be_enabled)
8398 continue;
8399
8400 /*
8401 * Immediately turn off ioaccel for any volume the
8402 * controller tells us to. Some of the reasons could be:
8403 * transformation - change to the LVs of an Array.
8404 * degraded volume - component failure
8405 */
8406 hpsa_turn_off_ioaccel_for_device(device);
8407 }
8408
8409 kfree(buf);
8410 }
8411
hpsa_ack_ctlr_events(struct ctlr_info * h)8412 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8413 {
8414 char *event_type;
8415
8416 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8417 return;
8418
8419 /* Ask the controller to clear the events we're handling. */
8420 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8421 | CFGTBL_Trans_io_accel2)) &&
8422 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8423 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8424
8425 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8426 event_type = "state change";
8427 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8428 event_type = "configuration change";
8429 /* Stop sending new RAID offload reqs via the IO accelerator */
8430 scsi_block_requests(h->scsi_host);
8431 hpsa_set_ioaccel_status(h);
8432 hpsa_drain_accel_commands(h);
8433 /* Set 'accelerator path config change' bit */
8434 dev_warn(&h->pdev->dev,
8435 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8436 h->events, event_type);
8437 writel(h->events, &(h->cfgtable->clear_event_notify));
8438 /* Set the "clear event notify field update" bit 6 */
8439 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8440 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8441 hpsa_wait_for_clear_event_notify_ack(h);
8442 scsi_unblock_requests(h->scsi_host);
8443 } else {
8444 /* Acknowledge controller notification events. */
8445 writel(h->events, &(h->cfgtable->clear_event_notify));
8446 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8447 hpsa_wait_for_clear_event_notify_ack(h);
8448 }
8449 return;
8450 }
8451
8452 /* Check a register on the controller to see if there are configuration
8453 * changes (added/changed/removed logical drives, etc.) which mean that
8454 * we should rescan the controller for devices.
8455 * Also check flag for driver-initiated rescan.
8456 */
hpsa_ctlr_needs_rescan(struct ctlr_info * h)8457 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8458 {
8459 if (h->drv_req_rescan) {
8460 h->drv_req_rescan = 0;
8461 return 1;
8462 }
8463
8464 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8465 return 0;
8466
8467 h->events = readl(&(h->cfgtable->event_notify));
8468 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8469 }
8470
8471 /*
8472 * Check if any of the offline devices have become ready
8473 */
hpsa_offline_devices_ready(struct ctlr_info * h)8474 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8475 {
8476 unsigned long flags;
8477 struct offline_device_entry *d;
8478 struct list_head *this, *tmp;
8479
8480 spin_lock_irqsave(&h->offline_device_lock, flags);
8481 list_for_each_safe(this, tmp, &h->offline_device_list) {
8482 d = list_entry(this, struct offline_device_entry,
8483 offline_list);
8484 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8485 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8486 spin_lock_irqsave(&h->offline_device_lock, flags);
8487 list_del(&d->offline_list);
8488 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8489 return 1;
8490 }
8491 spin_lock_irqsave(&h->offline_device_lock, flags);
8492 }
8493 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8494 return 0;
8495 }
8496
hpsa_luns_changed(struct ctlr_info * h)8497 static int hpsa_luns_changed(struct ctlr_info *h)
8498 {
8499 int rc = 1; /* assume there are changes */
8500 struct ReportLUNdata *logdev = NULL;
8501
8502 /* if we can't find out if lun data has changed,
8503 * assume that it has.
8504 */
8505
8506 if (!h->lastlogicals)
8507 return rc;
8508
8509 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8510 if (!logdev)
8511 return rc;
8512
8513 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8514 dev_warn(&h->pdev->dev,
8515 "report luns failed, can't track lun changes.\n");
8516 goto out;
8517 }
8518 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8519 dev_info(&h->pdev->dev,
8520 "Lun changes detected.\n");
8521 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8522 goto out;
8523 } else
8524 rc = 0; /* no changes detected. */
8525 out:
8526 kfree(logdev);
8527 return rc;
8528 }
8529
hpsa_perform_rescan(struct ctlr_info * h)8530 static void hpsa_perform_rescan(struct ctlr_info *h)
8531 {
8532 struct Scsi_Host *sh = NULL;
8533 unsigned long flags;
8534
8535 /*
8536 * Do the scan after the reset
8537 */
8538 spin_lock_irqsave(&h->reset_lock, flags);
8539 if (h->reset_in_progress) {
8540 h->drv_req_rescan = 1;
8541 spin_unlock_irqrestore(&h->reset_lock, flags);
8542 return;
8543 }
8544 spin_unlock_irqrestore(&h->reset_lock, flags);
8545
8546 sh = scsi_host_get(h->scsi_host);
8547 if (sh != NULL) {
8548 hpsa_scan_start(sh);
8549 scsi_host_put(sh);
8550 h->drv_req_rescan = 0;
8551 }
8552 }
8553
8554 /*
8555 * watch for controller events
8556 */
hpsa_event_monitor_worker(struct work_struct * work)8557 static void hpsa_event_monitor_worker(struct work_struct *work)
8558 {
8559 struct ctlr_info *h = container_of(to_delayed_work(work),
8560 struct ctlr_info, event_monitor_work);
8561 unsigned long flags;
8562
8563 spin_lock_irqsave(&h->lock, flags);
8564 if (h->remove_in_progress) {
8565 spin_unlock_irqrestore(&h->lock, flags);
8566 return;
8567 }
8568 spin_unlock_irqrestore(&h->lock, flags);
8569
8570 if (hpsa_ctlr_needs_rescan(h)) {
8571 hpsa_ack_ctlr_events(h);
8572 hpsa_perform_rescan(h);
8573 }
8574
8575 spin_lock_irqsave(&h->lock, flags);
8576 if (!h->remove_in_progress)
8577 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8578 HPSA_EVENT_MONITOR_INTERVAL);
8579 spin_unlock_irqrestore(&h->lock, flags);
8580 }
8581
hpsa_rescan_ctlr_worker(struct work_struct * work)8582 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8583 {
8584 unsigned long flags;
8585 struct ctlr_info *h = container_of(to_delayed_work(work),
8586 struct ctlr_info, rescan_ctlr_work);
8587
8588 spin_lock_irqsave(&h->lock, flags);
8589 if (h->remove_in_progress) {
8590 spin_unlock_irqrestore(&h->lock, flags);
8591 return;
8592 }
8593 spin_unlock_irqrestore(&h->lock, flags);
8594
8595 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8596 hpsa_perform_rescan(h);
8597 } else if (h->discovery_polling) {
8598 if (hpsa_luns_changed(h)) {
8599 dev_info(&h->pdev->dev,
8600 "driver discovery polling rescan.\n");
8601 hpsa_perform_rescan(h);
8602 }
8603 }
8604 spin_lock_irqsave(&h->lock, flags);
8605 if (!h->remove_in_progress)
8606 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8607 h->heartbeat_sample_interval);
8608 spin_unlock_irqrestore(&h->lock, flags);
8609 }
8610
hpsa_monitor_ctlr_worker(struct work_struct * work)8611 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8612 {
8613 unsigned long flags;
8614 struct ctlr_info *h = container_of(to_delayed_work(work),
8615 struct ctlr_info, monitor_ctlr_work);
8616
8617 detect_controller_lockup(h);
8618 if (lockup_detected(h))
8619 return;
8620
8621 spin_lock_irqsave(&h->lock, flags);
8622 if (!h->remove_in_progress)
8623 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8624 h->heartbeat_sample_interval);
8625 spin_unlock_irqrestore(&h->lock, flags);
8626 }
8627
hpsa_create_controller_wq(struct ctlr_info * h,char * name)8628 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8629 char *name)
8630 {
8631 struct workqueue_struct *wq = NULL;
8632
8633 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8634 if (!wq)
8635 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8636
8637 return wq;
8638 }
8639
hpda_free_ctlr_info(struct ctlr_info * h)8640 static void hpda_free_ctlr_info(struct ctlr_info *h)
8641 {
8642 kfree(h->reply_map);
8643 kfree(h);
8644 }
8645
hpda_alloc_ctlr_info(void)8646 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8647 {
8648 struct ctlr_info *h;
8649
8650 h = kzalloc(sizeof(*h), GFP_KERNEL);
8651 if (!h)
8652 return NULL;
8653
8654 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8655 if (!h->reply_map) {
8656 kfree(h);
8657 return NULL;
8658 }
8659 return h;
8660 }
8661
hpsa_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)8662 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8663 {
8664 int rc;
8665 struct ctlr_info *h;
8666 int try_soft_reset = 0;
8667 unsigned long flags;
8668 u32 board_id;
8669
8670 if (number_of_controllers == 0)
8671 printk(KERN_INFO DRIVER_NAME "\n");
8672
8673 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8674 if (rc < 0) {
8675 dev_warn(&pdev->dev, "Board ID not found\n");
8676 return rc;
8677 }
8678
8679 rc = hpsa_init_reset_devices(pdev, board_id);
8680 if (rc) {
8681 if (rc != -ENOTSUPP)
8682 return rc;
8683 /* If the reset fails in a particular way (it has no way to do
8684 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8685 * a soft reset once we get the controller configured up to the
8686 * point that it can accept a command.
8687 */
8688 try_soft_reset = 1;
8689 rc = 0;
8690 }
8691
8692 reinit_after_soft_reset:
8693
8694 /* Command structures must be aligned on a 32-byte boundary because
8695 * the 5 lower bits of the address are used by the hardware. and by
8696 * the driver. See comments in hpsa.h for more info.
8697 */
8698 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8699 h = hpda_alloc_ctlr_info();
8700 if (!h) {
8701 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8702 return -ENOMEM;
8703 }
8704
8705 h->pdev = pdev;
8706
8707 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8708 INIT_LIST_HEAD(&h->offline_device_list);
8709 spin_lock_init(&h->lock);
8710 spin_lock_init(&h->offline_device_lock);
8711 spin_lock_init(&h->scan_lock);
8712 spin_lock_init(&h->reset_lock);
8713 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8714
8715 /* Allocate and clear per-cpu variable lockup_detected */
8716 h->lockup_detected = alloc_percpu(u32);
8717 if (!h->lockup_detected) {
8718 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8719 rc = -ENOMEM;
8720 goto clean1; /* aer/h */
8721 }
8722 set_lockup_detected_for_all_cpus(h, 0);
8723
8724 rc = hpsa_pci_init(h);
8725 if (rc)
8726 goto clean2; /* lu, aer/h */
8727
8728 /* relies on h-> settings made by hpsa_pci_init, including
8729 * interrupt_mode h->intr */
8730 rc = hpsa_scsi_host_alloc(h);
8731 if (rc)
8732 goto clean2_5; /* pci, lu, aer/h */
8733
8734 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8735 h->ctlr = number_of_controllers;
8736 number_of_controllers++;
8737
8738 /* configure PCI DMA stuff */
8739 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8740 if (rc != 0) {
8741 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8742 if (rc != 0) {
8743 dev_err(&pdev->dev, "no suitable DMA available\n");
8744 goto clean3; /* shost, pci, lu, aer/h */
8745 }
8746 }
8747
8748 /* make sure the board interrupts are off */
8749 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8750
8751 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8752 if (rc)
8753 goto clean3; /* shost, pci, lu, aer/h */
8754 rc = hpsa_alloc_cmd_pool(h);
8755 if (rc)
8756 goto clean4; /* irq, shost, pci, lu, aer/h */
8757 rc = hpsa_alloc_sg_chain_blocks(h);
8758 if (rc)
8759 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8760 init_waitqueue_head(&h->scan_wait_queue);
8761 init_waitqueue_head(&h->event_sync_wait_queue);
8762 mutex_init(&h->reset_mutex);
8763 h->scan_finished = 1; /* no scan currently in progress */
8764 h->scan_waiting = 0;
8765
8766 pci_set_drvdata(pdev, h);
8767 h->ndevices = 0;
8768
8769 spin_lock_init(&h->devlock);
8770 rc = hpsa_put_ctlr_into_performant_mode(h);
8771 if (rc)
8772 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8773
8774 /* create the resubmit workqueue */
8775 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8776 if (!h->rescan_ctlr_wq) {
8777 rc = -ENOMEM;
8778 goto clean7;
8779 }
8780
8781 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8782 if (!h->resubmit_wq) {
8783 rc = -ENOMEM;
8784 goto clean7; /* aer/h */
8785 }
8786
8787 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8788 if (!h->monitor_ctlr_wq) {
8789 rc = -ENOMEM;
8790 goto clean7;
8791 }
8792
8793 /*
8794 * At this point, the controller is ready to take commands.
8795 * Now, if reset_devices and the hard reset didn't work, try
8796 * the soft reset and see if that works.
8797 */
8798 if (try_soft_reset) {
8799
8800 /* This is kind of gross. We may or may not get a completion
8801 * from the soft reset command, and if we do, then the value
8802 * from the fifo may or may not be valid. So, we wait 10 secs
8803 * after the reset throwing away any completions we get during
8804 * that time. Unregister the interrupt handler and register
8805 * fake ones to scoop up any residual completions.
8806 */
8807 spin_lock_irqsave(&h->lock, flags);
8808 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8809 spin_unlock_irqrestore(&h->lock, flags);
8810 hpsa_free_irqs(h);
8811 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8812 hpsa_intx_discard_completions);
8813 if (rc) {
8814 dev_warn(&h->pdev->dev,
8815 "Failed to request_irq after soft reset.\n");
8816 /*
8817 * cannot goto clean7 or free_irqs will be called
8818 * again. Instead, do its work
8819 */
8820 hpsa_free_performant_mode(h); /* clean7 */
8821 hpsa_free_sg_chain_blocks(h); /* clean6 */
8822 hpsa_free_cmd_pool(h); /* clean5 */
8823 /*
8824 * skip hpsa_free_irqs(h) clean4 since that
8825 * was just called before request_irqs failed
8826 */
8827 goto clean3;
8828 }
8829
8830 rc = hpsa_kdump_soft_reset(h);
8831 if (rc)
8832 /* Neither hard nor soft reset worked, we're hosed. */
8833 goto clean7;
8834
8835 dev_info(&h->pdev->dev, "Board READY.\n");
8836 dev_info(&h->pdev->dev,
8837 "Waiting for stale completions to drain.\n");
8838 h->access.set_intr_mask(h, HPSA_INTR_ON);
8839 msleep(10000);
8840 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8841
8842 rc = controller_reset_failed(h->cfgtable);
8843 if (rc)
8844 dev_info(&h->pdev->dev,
8845 "Soft reset appears to have failed.\n");
8846
8847 /* since the controller's reset, we have to go back and re-init
8848 * everything. Easiest to just forget what we've done and do it
8849 * all over again.
8850 */
8851 hpsa_undo_allocations_after_kdump_soft_reset(h);
8852 try_soft_reset = 0;
8853 if (rc)
8854 /* don't goto clean, we already unallocated */
8855 return -ENODEV;
8856
8857 goto reinit_after_soft_reset;
8858 }
8859
8860 /* Enable Accelerated IO path at driver layer */
8861 h->acciopath_status = 1;
8862 /* Disable discovery polling.*/
8863 h->discovery_polling = 0;
8864
8865
8866 /* Turn the interrupts on so we can service requests */
8867 h->access.set_intr_mask(h, HPSA_INTR_ON);
8868
8869 hpsa_hba_inquiry(h);
8870
8871 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8872 if (!h->lastlogicals)
8873 dev_info(&h->pdev->dev,
8874 "Can't track change to report lun data\n");
8875
8876 /* hook into SCSI subsystem */
8877 rc = hpsa_scsi_add_host(h);
8878 if (rc)
8879 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8880
8881 /* Monitor the controller for firmware lockups */
8882 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8883 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8884 schedule_delayed_work(&h->monitor_ctlr_work,
8885 h->heartbeat_sample_interval);
8886 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8887 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8888 h->heartbeat_sample_interval);
8889 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8890 schedule_delayed_work(&h->event_monitor_work,
8891 HPSA_EVENT_MONITOR_INTERVAL);
8892 return 0;
8893
8894 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8895 kfree(h->lastlogicals);
8896 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8897 hpsa_free_performant_mode(h);
8898 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8899 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8900 hpsa_free_sg_chain_blocks(h);
8901 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8902 hpsa_free_cmd_pool(h);
8903 clean4: /* irq, shost, pci, lu, aer/h */
8904 hpsa_free_irqs(h);
8905 clean3: /* shost, pci, lu, aer/h */
8906 scsi_host_put(h->scsi_host);
8907 h->scsi_host = NULL;
8908 clean2_5: /* pci, lu, aer/h */
8909 hpsa_free_pci_init(h);
8910 clean2: /* lu, aer/h */
8911 if (h->lockup_detected) {
8912 free_percpu(h->lockup_detected);
8913 h->lockup_detected = NULL;
8914 }
8915 clean1: /* wq/aer/h */
8916 if (h->resubmit_wq) {
8917 destroy_workqueue(h->resubmit_wq);
8918 h->resubmit_wq = NULL;
8919 }
8920 if (h->rescan_ctlr_wq) {
8921 destroy_workqueue(h->rescan_ctlr_wq);
8922 h->rescan_ctlr_wq = NULL;
8923 }
8924 if (h->monitor_ctlr_wq) {
8925 destroy_workqueue(h->monitor_ctlr_wq);
8926 h->monitor_ctlr_wq = NULL;
8927 }
8928 hpda_free_ctlr_info(h);
8929 return rc;
8930 }
8931
hpsa_flush_cache(struct ctlr_info * h)8932 static void hpsa_flush_cache(struct ctlr_info *h)
8933 {
8934 char *flush_buf;
8935 struct CommandList *c;
8936 int rc;
8937
8938 if (unlikely(lockup_detected(h)))
8939 return;
8940 flush_buf = kzalloc(4, GFP_KERNEL);
8941 if (!flush_buf)
8942 return;
8943
8944 c = cmd_alloc(h);
8945
8946 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8947 RAID_CTLR_LUNID, TYPE_CMD)) {
8948 goto out;
8949 }
8950 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8951 DEFAULT_TIMEOUT);
8952 if (rc)
8953 goto out;
8954 if (c->err_info->CommandStatus != 0)
8955 out:
8956 dev_warn(&h->pdev->dev,
8957 "error flushing cache on controller\n");
8958 cmd_free(h, c);
8959 kfree(flush_buf);
8960 }
8961
8962 /* Make controller gather fresh report lun data each time we
8963 * send down a report luns request
8964 */
hpsa_disable_rld_caching(struct ctlr_info * h)8965 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8966 {
8967 u32 *options;
8968 struct CommandList *c;
8969 int rc;
8970
8971 /* Don't bother trying to set diag options if locked up */
8972 if (unlikely(h->lockup_detected))
8973 return;
8974
8975 options = kzalloc(sizeof(*options), GFP_KERNEL);
8976 if (!options)
8977 return;
8978
8979 c = cmd_alloc(h);
8980
8981 /* first, get the current diag options settings */
8982 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8983 RAID_CTLR_LUNID, TYPE_CMD))
8984 goto errout;
8985
8986 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8987 NO_TIMEOUT);
8988 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8989 goto errout;
8990
8991 /* Now, set the bit for disabling the RLD caching */
8992 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8993
8994 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8995 RAID_CTLR_LUNID, TYPE_CMD))
8996 goto errout;
8997
8998 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8999 NO_TIMEOUT);
9000 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9001 goto errout;
9002
9003 /* Now verify that it got set: */
9004 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9005 RAID_CTLR_LUNID, TYPE_CMD))
9006 goto errout;
9007
9008 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9009 NO_TIMEOUT);
9010 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9011 goto errout;
9012
9013 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9014 goto out;
9015
9016 errout:
9017 dev_err(&h->pdev->dev,
9018 "Error: failed to disable report lun data caching.\n");
9019 out:
9020 cmd_free(h, c);
9021 kfree(options);
9022 }
9023
__hpsa_shutdown(struct pci_dev * pdev)9024 static void __hpsa_shutdown(struct pci_dev *pdev)
9025 {
9026 struct ctlr_info *h;
9027
9028 h = pci_get_drvdata(pdev);
9029 /* Turn board interrupts off and send the flush cache command
9030 * sendcmd will turn off interrupt, and send the flush...
9031 * To write all data in the battery backed cache to disks
9032 */
9033 hpsa_flush_cache(h);
9034 h->access.set_intr_mask(h, HPSA_INTR_OFF);
9035 hpsa_free_irqs(h); /* init_one 4 */
9036 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
9037 }
9038
hpsa_shutdown(struct pci_dev * pdev)9039 static void hpsa_shutdown(struct pci_dev *pdev)
9040 {
9041 __hpsa_shutdown(pdev);
9042 pci_disable_device(pdev);
9043 }
9044
hpsa_free_device_info(struct ctlr_info * h)9045 static void hpsa_free_device_info(struct ctlr_info *h)
9046 {
9047 int i;
9048
9049 for (i = 0; i < h->ndevices; i++) {
9050 kfree(h->dev[i]);
9051 h->dev[i] = NULL;
9052 }
9053 }
9054
hpsa_remove_one(struct pci_dev * pdev)9055 static void hpsa_remove_one(struct pci_dev *pdev)
9056 {
9057 struct ctlr_info *h;
9058 unsigned long flags;
9059
9060 if (pci_get_drvdata(pdev) == NULL) {
9061 dev_err(&pdev->dev, "unable to remove device\n");
9062 return;
9063 }
9064 h = pci_get_drvdata(pdev);
9065
9066 /* Get rid of any controller monitoring work items */
9067 spin_lock_irqsave(&h->lock, flags);
9068 h->remove_in_progress = 1;
9069 spin_unlock_irqrestore(&h->lock, flags);
9070 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9071 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9072 cancel_delayed_work_sync(&h->event_monitor_work);
9073 destroy_workqueue(h->rescan_ctlr_wq);
9074 destroy_workqueue(h->resubmit_wq);
9075 destroy_workqueue(h->monitor_ctlr_wq);
9076
9077 hpsa_delete_sas_host(h);
9078
9079 /*
9080 * Call before disabling interrupts.
9081 * scsi_remove_host can trigger I/O operations especially
9082 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9083 * operations which cannot complete and will hang the system.
9084 */
9085 if (h->scsi_host)
9086 scsi_remove_host(h->scsi_host); /* init_one 8 */
9087 /* includes hpsa_free_irqs - init_one 4 */
9088 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9089 __hpsa_shutdown(pdev);
9090
9091 hpsa_free_device_info(h); /* scan */
9092
9093 kfree(h->hba_inquiry_data); /* init_one 10 */
9094 h->hba_inquiry_data = NULL; /* init_one 10 */
9095 hpsa_free_ioaccel2_sg_chain_blocks(h);
9096 hpsa_free_performant_mode(h); /* init_one 7 */
9097 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9098 hpsa_free_cmd_pool(h); /* init_one 5 */
9099 kfree(h->lastlogicals);
9100
9101 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9102
9103 scsi_host_put(h->scsi_host); /* init_one 3 */
9104 h->scsi_host = NULL; /* init_one 3 */
9105
9106 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9107 hpsa_free_pci_init(h); /* init_one 2.5 */
9108
9109 free_percpu(h->lockup_detected); /* init_one 2 */
9110 h->lockup_detected = NULL; /* init_one 2 */
9111
9112 hpda_free_ctlr_info(h); /* init_one 1 */
9113 }
9114
hpsa_suspend(struct device * dev)9115 static int __maybe_unused hpsa_suspend(
9116 __attribute__((unused)) struct device *dev)
9117 {
9118 return -ENOSYS;
9119 }
9120
hpsa_resume(struct device * dev)9121 static int __maybe_unused hpsa_resume
9122 (__attribute__((unused)) struct device *dev)
9123 {
9124 return -ENOSYS;
9125 }
9126
9127 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9128
9129 static struct pci_driver hpsa_pci_driver = {
9130 .name = HPSA,
9131 .probe = hpsa_init_one,
9132 .remove = hpsa_remove_one,
9133 .id_table = hpsa_pci_device_id, /* id_table */
9134 .shutdown = hpsa_shutdown,
9135 .driver.pm = &hpsa_pm_ops,
9136 };
9137
9138 /* Fill in bucket_map[], given nsgs (the max number of
9139 * scatter gather elements supported) and bucket[],
9140 * which is an array of 8 integers. The bucket[] array
9141 * contains 8 different DMA transfer sizes (in 16
9142 * byte increments) which the controller uses to fetch
9143 * commands. This function fills in bucket_map[], which
9144 * maps a given number of scatter gather elements to one of
9145 * the 8 DMA transfer sizes. The point of it is to allow the
9146 * controller to only do as much DMA as needed to fetch the
9147 * command, with the DMA transfer size encoded in the lower
9148 * bits of the command address.
9149 */
calc_bucket_map(int bucket[],int num_buckets,int nsgs,int min_blocks,u32 * bucket_map)9150 static void calc_bucket_map(int bucket[], int num_buckets,
9151 int nsgs, int min_blocks, u32 *bucket_map)
9152 {
9153 int i, j, b, size;
9154
9155 /* Note, bucket_map must have nsgs+1 entries. */
9156 for (i = 0; i <= nsgs; i++) {
9157 /* Compute size of a command with i SG entries */
9158 size = i + min_blocks;
9159 b = num_buckets; /* Assume the biggest bucket */
9160 /* Find the bucket that is just big enough */
9161 for (j = 0; j < num_buckets; j++) {
9162 if (bucket[j] >= size) {
9163 b = j;
9164 break;
9165 }
9166 }
9167 /* for a command with i SG entries, use bucket b. */
9168 bucket_map[i] = b;
9169 }
9170 }
9171
9172 /*
9173 * return -ENODEV on err, 0 on success (or no action)
9174 * allocates numerous items that must be freed later
9175 */
hpsa_enter_performant_mode(struct ctlr_info * h,u32 trans_support)9176 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9177 {
9178 int i;
9179 unsigned long register_value;
9180 unsigned long transMethod = CFGTBL_Trans_Performant |
9181 (trans_support & CFGTBL_Trans_use_short_tags) |
9182 CFGTBL_Trans_enable_directed_msix |
9183 (trans_support & (CFGTBL_Trans_io_accel1 |
9184 CFGTBL_Trans_io_accel2));
9185 struct access_method access = SA5_performant_access;
9186
9187 /* This is a bit complicated. There are 8 registers on
9188 * the controller which we write to to tell it 8 different
9189 * sizes of commands which there may be. It's a way of
9190 * reducing the DMA done to fetch each command. Encoded into
9191 * each command's tag are 3 bits which communicate to the controller
9192 * which of the eight sizes that command fits within. The size of
9193 * each command depends on how many scatter gather entries there are.
9194 * Each SG entry requires 16 bytes. The eight registers are programmed
9195 * with the number of 16-byte blocks a command of that size requires.
9196 * The smallest command possible requires 5 such 16 byte blocks.
9197 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9198 * blocks. Note, this only extends to the SG entries contained
9199 * within the command block, and does not extend to chained blocks
9200 * of SG elements. bft[] contains the eight values we write to
9201 * the registers. They are not evenly distributed, but have more
9202 * sizes for small commands, and fewer sizes for larger commands.
9203 */
9204 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9205 #define MIN_IOACCEL2_BFT_ENTRY 5
9206 #define HPSA_IOACCEL2_HEADER_SZ 4
9207 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9208 13, 14, 15, 16, 17, 18, 19,
9209 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9210 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9211 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9212 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9213 16 * MIN_IOACCEL2_BFT_ENTRY);
9214 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9215 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9216 /* 5 = 1 s/g entry or 4k
9217 * 6 = 2 s/g entry or 8k
9218 * 8 = 4 s/g entry or 16k
9219 * 10 = 6 s/g entry or 24k
9220 */
9221
9222 /* If the controller supports either ioaccel method then
9223 * we can also use the RAID stack submit path that does not
9224 * perform the superfluous readl() after each command submission.
9225 */
9226 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9227 access = SA5_performant_access_no_read;
9228
9229 /* Controller spec: zero out this buffer. */
9230 for (i = 0; i < h->nreply_queues; i++)
9231 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9232
9233 bft[7] = SG_ENTRIES_IN_CMD + 4;
9234 calc_bucket_map(bft, ARRAY_SIZE(bft),
9235 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9236 for (i = 0; i < 8; i++)
9237 writel(bft[i], &h->transtable->BlockFetch[i]);
9238
9239 /* size of controller ring buffer */
9240 writel(h->max_commands, &h->transtable->RepQSize);
9241 writel(h->nreply_queues, &h->transtable->RepQCount);
9242 writel(0, &h->transtable->RepQCtrAddrLow32);
9243 writel(0, &h->transtable->RepQCtrAddrHigh32);
9244
9245 for (i = 0; i < h->nreply_queues; i++) {
9246 writel(0, &h->transtable->RepQAddr[i].upper);
9247 writel(h->reply_queue[i].busaddr,
9248 &h->transtable->RepQAddr[i].lower);
9249 }
9250
9251 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9252 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9253 /*
9254 * enable outbound interrupt coalescing in accelerator mode;
9255 */
9256 if (trans_support & CFGTBL_Trans_io_accel1) {
9257 access = SA5_ioaccel_mode1_access;
9258 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9259 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9260 } else
9261 if (trans_support & CFGTBL_Trans_io_accel2)
9262 access = SA5_ioaccel_mode2_access;
9263 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9264 if (hpsa_wait_for_mode_change_ack(h)) {
9265 dev_err(&h->pdev->dev,
9266 "performant mode problem - doorbell timeout\n");
9267 return -ENODEV;
9268 }
9269 register_value = readl(&(h->cfgtable->TransportActive));
9270 if (!(register_value & CFGTBL_Trans_Performant)) {
9271 dev_err(&h->pdev->dev,
9272 "performant mode problem - transport not active\n");
9273 return -ENODEV;
9274 }
9275 /* Change the access methods to the performant access methods */
9276 h->access = access;
9277 h->transMethod = transMethod;
9278
9279 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9280 (trans_support & CFGTBL_Trans_io_accel2)))
9281 return 0;
9282
9283 if (trans_support & CFGTBL_Trans_io_accel1) {
9284 /* Set up I/O accelerator mode */
9285 for (i = 0; i < h->nreply_queues; i++) {
9286 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9287 h->reply_queue[i].current_entry =
9288 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9289 }
9290 bft[7] = h->ioaccel_maxsg + 8;
9291 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9292 h->ioaccel1_blockFetchTable);
9293
9294 /* initialize all reply queue entries to unused */
9295 for (i = 0; i < h->nreply_queues; i++)
9296 memset(h->reply_queue[i].head,
9297 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9298 h->reply_queue_size);
9299
9300 /* set all the constant fields in the accelerator command
9301 * frames once at init time to save CPU cycles later.
9302 */
9303 for (i = 0; i < h->nr_cmds; i++) {
9304 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9305
9306 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9307 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9308 (i * sizeof(struct ErrorInfo)));
9309 cp->err_info_len = sizeof(struct ErrorInfo);
9310 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9311 cp->host_context_flags =
9312 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9313 cp->timeout_sec = 0;
9314 cp->ReplyQueue = 0;
9315 cp->tag =
9316 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9317 cp->host_addr =
9318 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9319 (i * sizeof(struct io_accel1_cmd)));
9320 }
9321 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9322 u64 cfg_offset, cfg_base_addr_index;
9323 u32 bft2_offset, cfg_base_addr;
9324
9325 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9326 &cfg_base_addr_index, &cfg_offset);
9327 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9328 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9329 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9330 4, h->ioaccel2_blockFetchTable);
9331 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9332 BUILD_BUG_ON(offsetof(struct CfgTable,
9333 io_accel_request_size_offset) != 0xb8);
9334 h->ioaccel2_bft2_regs =
9335 remap_pci_mem(pci_resource_start(h->pdev,
9336 cfg_base_addr_index) +
9337 cfg_offset + bft2_offset,
9338 ARRAY_SIZE(bft2) *
9339 sizeof(*h->ioaccel2_bft2_regs));
9340 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9341 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9342 }
9343 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9344 if (hpsa_wait_for_mode_change_ack(h)) {
9345 dev_err(&h->pdev->dev,
9346 "performant mode problem - enabling ioaccel mode\n");
9347 return -ENODEV;
9348 }
9349 return 0;
9350 }
9351
9352 /* Free ioaccel1 mode command blocks and block fetch table */
hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info * h)9353 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9354 {
9355 if (h->ioaccel_cmd_pool) {
9356 dma_free_coherent(&h->pdev->dev,
9357 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9358 h->ioaccel_cmd_pool,
9359 h->ioaccel_cmd_pool_dhandle);
9360 h->ioaccel_cmd_pool = NULL;
9361 h->ioaccel_cmd_pool_dhandle = 0;
9362 }
9363 kfree(h->ioaccel1_blockFetchTable);
9364 h->ioaccel1_blockFetchTable = NULL;
9365 }
9366
9367 /* Allocate ioaccel1 mode command blocks and block fetch table */
hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info * h)9368 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9369 {
9370 h->ioaccel_maxsg =
9371 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9372 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9373 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9374
9375 /* Command structures must be aligned on a 128-byte boundary
9376 * because the 7 lower bits of the address are used by the
9377 * hardware.
9378 */
9379 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9380 IOACCEL1_COMMANDLIST_ALIGNMENT);
9381 h->ioaccel_cmd_pool =
9382 dma_alloc_coherent(&h->pdev->dev,
9383 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9384 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9385
9386 h->ioaccel1_blockFetchTable =
9387 kmalloc(((h->ioaccel_maxsg + 1) *
9388 sizeof(u32)), GFP_KERNEL);
9389
9390 if ((h->ioaccel_cmd_pool == NULL) ||
9391 (h->ioaccel1_blockFetchTable == NULL))
9392 goto clean_up;
9393
9394 memset(h->ioaccel_cmd_pool, 0,
9395 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9396 return 0;
9397
9398 clean_up:
9399 hpsa_free_ioaccel1_cmd_and_bft(h);
9400 return -ENOMEM;
9401 }
9402
9403 /* Free ioaccel2 mode command blocks and block fetch table */
hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info * h)9404 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9405 {
9406 hpsa_free_ioaccel2_sg_chain_blocks(h);
9407
9408 if (h->ioaccel2_cmd_pool) {
9409 dma_free_coherent(&h->pdev->dev,
9410 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9411 h->ioaccel2_cmd_pool,
9412 h->ioaccel2_cmd_pool_dhandle);
9413 h->ioaccel2_cmd_pool = NULL;
9414 h->ioaccel2_cmd_pool_dhandle = 0;
9415 }
9416 kfree(h->ioaccel2_blockFetchTable);
9417 h->ioaccel2_blockFetchTable = NULL;
9418 }
9419
9420 /* Allocate ioaccel2 mode command blocks and block fetch table */
hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info * h)9421 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9422 {
9423 int rc;
9424
9425 /* Allocate ioaccel2 mode command blocks and block fetch table */
9426
9427 h->ioaccel_maxsg =
9428 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9429 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9430 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9431
9432 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9433 IOACCEL2_COMMANDLIST_ALIGNMENT);
9434 h->ioaccel2_cmd_pool =
9435 dma_alloc_coherent(&h->pdev->dev,
9436 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9437 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9438
9439 h->ioaccel2_blockFetchTable =
9440 kmalloc(((h->ioaccel_maxsg + 1) *
9441 sizeof(u32)), GFP_KERNEL);
9442
9443 if ((h->ioaccel2_cmd_pool == NULL) ||
9444 (h->ioaccel2_blockFetchTable == NULL)) {
9445 rc = -ENOMEM;
9446 goto clean_up;
9447 }
9448
9449 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9450 if (rc)
9451 goto clean_up;
9452
9453 memset(h->ioaccel2_cmd_pool, 0,
9454 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9455 return 0;
9456
9457 clean_up:
9458 hpsa_free_ioaccel2_cmd_and_bft(h);
9459 return rc;
9460 }
9461
9462 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
hpsa_free_performant_mode(struct ctlr_info * h)9463 static void hpsa_free_performant_mode(struct ctlr_info *h)
9464 {
9465 kfree(h->blockFetchTable);
9466 h->blockFetchTable = NULL;
9467 hpsa_free_reply_queues(h);
9468 hpsa_free_ioaccel1_cmd_and_bft(h);
9469 hpsa_free_ioaccel2_cmd_and_bft(h);
9470 }
9471
9472 /* return -ENODEV on error, 0 on success (or no action)
9473 * allocates numerous items that must be freed later
9474 */
hpsa_put_ctlr_into_performant_mode(struct ctlr_info * h)9475 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9476 {
9477 u32 trans_support;
9478 int i, rc;
9479
9480 if (hpsa_simple_mode)
9481 return 0;
9482
9483 trans_support = readl(&(h->cfgtable->TransportSupport));
9484 if (!(trans_support & PERFORMANT_MODE))
9485 return 0;
9486
9487 /* Check for I/O accelerator mode support */
9488 if (trans_support & CFGTBL_Trans_io_accel1) {
9489 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9490 if (rc)
9491 return rc;
9492 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9493 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9494 if (rc)
9495 return rc;
9496 }
9497
9498 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9499 hpsa_get_max_perf_mode_cmds(h);
9500 /* Performant mode ring buffer and supporting data structures */
9501 h->reply_queue_size = h->max_commands * sizeof(u64);
9502
9503 for (i = 0; i < h->nreply_queues; i++) {
9504 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9505 h->reply_queue_size,
9506 &h->reply_queue[i].busaddr,
9507 GFP_KERNEL);
9508 if (!h->reply_queue[i].head) {
9509 rc = -ENOMEM;
9510 goto clean1; /* rq, ioaccel */
9511 }
9512 h->reply_queue[i].size = h->max_commands;
9513 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9514 h->reply_queue[i].current_entry = 0;
9515 }
9516
9517 /* Need a block fetch table for performant mode */
9518 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9519 sizeof(u32)), GFP_KERNEL);
9520 if (!h->blockFetchTable) {
9521 rc = -ENOMEM;
9522 goto clean1; /* rq, ioaccel */
9523 }
9524
9525 rc = hpsa_enter_performant_mode(h, trans_support);
9526 if (rc)
9527 goto clean2; /* bft, rq, ioaccel */
9528 return 0;
9529
9530 clean2: /* bft, rq, ioaccel */
9531 kfree(h->blockFetchTable);
9532 h->blockFetchTable = NULL;
9533 clean1: /* rq, ioaccel */
9534 hpsa_free_reply_queues(h);
9535 hpsa_free_ioaccel1_cmd_and_bft(h);
9536 hpsa_free_ioaccel2_cmd_and_bft(h);
9537 return rc;
9538 }
9539
is_accelerated_cmd(struct CommandList * c)9540 static int is_accelerated_cmd(struct CommandList *c)
9541 {
9542 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9543 }
9544
hpsa_drain_accel_commands(struct ctlr_info * h)9545 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9546 {
9547 struct CommandList *c = NULL;
9548 int i, accel_cmds_out;
9549 int refcount;
9550
9551 do { /* wait for all outstanding ioaccel commands to drain out */
9552 accel_cmds_out = 0;
9553 for (i = 0; i < h->nr_cmds; i++) {
9554 c = h->cmd_pool + i;
9555 refcount = atomic_inc_return(&c->refcount);
9556 if (refcount > 1) /* Command is allocated */
9557 accel_cmds_out += is_accelerated_cmd(c);
9558 cmd_free(h, c);
9559 }
9560 if (accel_cmds_out <= 0)
9561 break;
9562 msleep(100);
9563 } while (1);
9564 }
9565
hpsa_alloc_sas_phy(struct hpsa_sas_port * hpsa_sas_port)9566 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9567 struct hpsa_sas_port *hpsa_sas_port)
9568 {
9569 struct hpsa_sas_phy *hpsa_sas_phy;
9570 struct sas_phy *phy;
9571
9572 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9573 if (!hpsa_sas_phy)
9574 return NULL;
9575
9576 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9577 hpsa_sas_port->next_phy_index);
9578 if (!phy) {
9579 kfree(hpsa_sas_phy);
9580 return NULL;
9581 }
9582
9583 hpsa_sas_port->next_phy_index++;
9584 hpsa_sas_phy->phy = phy;
9585 hpsa_sas_phy->parent_port = hpsa_sas_port;
9586
9587 return hpsa_sas_phy;
9588 }
9589
hpsa_free_sas_phy(struct hpsa_sas_phy * hpsa_sas_phy)9590 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9591 {
9592 struct sas_phy *phy = hpsa_sas_phy->phy;
9593
9594 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9595 if (hpsa_sas_phy->added_to_port)
9596 list_del(&hpsa_sas_phy->phy_list_entry);
9597 sas_phy_delete(phy);
9598 kfree(hpsa_sas_phy);
9599 }
9600
hpsa_sas_port_add_phy(struct hpsa_sas_phy * hpsa_sas_phy)9601 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9602 {
9603 int rc;
9604 struct hpsa_sas_port *hpsa_sas_port;
9605 struct sas_phy *phy;
9606 struct sas_identify *identify;
9607
9608 hpsa_sas_port = hpsa_sas_phy->parent_port;
9609 phy = hpsa_sas_phy->phy;
9610
9611 identify = &phy->identify;
9612 memset(identify, 0, sizeof(*identify));
9613 identify->sas_address = hpsa_sas_port->sas_address;
9614 identify->device_type = SAS_END_DEVICE;
9615 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9616 identify->target_port_protocols = SAS_PROTOCOL_STP;
9617 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9618 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9619 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9620 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9621 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9622
9623 rc = sas_phy_add(hpsa_sas_phy->phy);
9624 if (rc)
9625 return rc;
9626
9627 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9628 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9629 &hpsa_sas_port->phy_list_head);
9630 hpsa_sas_phy->added_to_port = true;
9631
9632 return 0;
9633 }
9634
9635 static int
hpsa_sas_port_add_rphy(struct hpsa_sas_port * hpsa_sas_port,struct sas_rphy * rphy)9636 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9637 struct sas_rphy *rphy)
9638 {
9639 struct sas_identify *identify;
9640
9641 identify = &rphy->identify;
9642 identify->sas_address = hpsa_sas_port->sas_address;
9643 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9644 identify->target_port_protocols = SAS_PROTOCOL_STP;
9645
9646 return sas_rphy_add(rphy);
9647 }
9648
9649 static struct hpsa_sas_port
hpsa_alloc_sas_port(struct hpsa_sas_node * hpsa_sas_node,u64 sas_address)9650 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9651 u64 sas_address)
9652 {
9653 int rc;
9654 struct hpsa_sas_port *hpsa_sas_port;
9655 struct sas_port *port;
9656
9657 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9658 if (!hpsa_sas_port)
9659 return NULL;
9660
9661 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9662 hpsa_sas_port->parent_node = hpsa_sas_node;
9663
9664 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9665 if (!port)
9666 goto free_hpsa_port;
9667
9668 rc = sas_port_add(port);
9669 if (rc)
9670 goto free_sas_port;
9671
9672 hpsa_sas_port->port = port;
9673 hpsa_sas_port->sas_address = sas_address;
9674 list_add_tail(&hpsa_sas_port->port_list_entry,
9675 &hpsa_sas_node->port_list_head);
9676
9677 return hpsa_sas_port;
9678
9679 free_sas_port:
9680 sas_port_free(port);
9681 free_hpsa_port:
9682 kfree(hpsa_sas_port);
9683
9684 return NULL;
9685 }
9686
hpsa_free_sas_port(struct hpsa_sas_port * hpsa_sas_port)9687 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9688 {
9689 struct hpsa_sas_phy *hpsa_sas_phy;
9690 struct hpsa_sas_phy *next;
9691
9692 list_for_each_entry_safe(hpsa_sas_phy, next,
9693 &hpsa_sas_port->phy_list_head, phy_list_entry)
9694 hpsa_free_sas_phy(hpsa_sas_phy);
9695
9696 sas_port_delete(hpsa_sas_port->port);
9697 list_del(&hpsa_sas_port->port_list_entry);
9698 kfree(hpsa_sas_port);
9699 }
9700
hpsa_alloc_sas_node(struct device * parent_dev)9701 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9702 {
9703 struct hpsa_sas_node *hpsa_sas_node;
9704
9705 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9706 if (hpsa_sas_node) {
9707 hpsa_sas_node->parent_dev = parent_dev;
9708 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9709 }
9710
9711 return hpsa_sas_node;
9712 }
9713
hpsa_free_sas_node(struct hpsa_sas_node * hpsa_sas_node)9714 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9715 {
9716 struct hpsa_sas_port *hpsa_sas_port;
9717 struct hpsa_sas_port *next;
9718
9719 if (!hpsa_sas_node)
9720 return;
9721
9722 list_for_each_entry_safe(hpsa_sas_port, next,
9723 &hpsa_sas_node->port_list_head, port_list_entry)
9724 hpsa_free_sas_port(hpsa_sas_port);
9725
9726 kfree(hpsa_sas_node);
9727 }
9728
9729 static struct hpsa_scsi_dev_t
hpsa_find_device_by_sas_rphy(struct ctlr_info * h,struct sas_rphy * rphy)9730 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9731 struct sas_rphy *rphy)
9732 {
9733 int i;
9734 struct hpsa_scsi_dev_t *device;
9735
9736 for (i = 0; i < h->ndevices; i++) {
9737 device = h->dev[i];
9738 if (!device->sas_port)
9739 continue;
9740 if (device->sas_port->rphy == rphy)
9741 return device;
9742 }
9743
9744 return NULL;
9745 }
9746
hpsa_add_sas_host(struct ctlr_info * h)9747 static int hpsa_add_sas_host(struct ctlr_info *h)
9748 {
9749 int rc;
9750 struct device *parent_dev;
9751 struct hpsa_sas_node *hpsa_sas_node;
9752 struct hpsa_sas_port *hpsa_sas_port;
9753 struct hpsa_sas_phy *hpsa_sas_phy;
9754
9755 parent_dev = &h->scsi_host->shost_dev;
9756
9757 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9758 if (!hpsa_sas_node)
9759 return -ENOMEM;
9760
9761 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9762 if (!hpsa_sas_port) {
9763 rc = -ENODEV;
9764 goto free_sas_node;
9765 }
9766
9767 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9768 if (!hpsa_sas_phy) {
9769 rc = -ENODEV;
9770 goto free_sas_port;
9771 }
9772
9773 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9774 if (rc)
9775 goto free_sas_phy;
9776
9777 h->sas_host = hpsa_sas_node;
9778
9779 return 0;
9780
9781 free_sas_phy:
9782 sas_phy_free(hpsa_sas_phy->phy);
9783 kfree(hpsa_sas_phy);
9784 free_sas_port:
9785 hpsa_free_sas_port(hpsa_sas_port);
9786 free_sas_node:
9787 hpsa_free_sas_node(hpsa_sas_node);
9788
9789 return rc;
9790 }
9791
hpsa_delete_sas_host(struct ctlr_info * h)9792 static void hpsa_delete_sas_host(struct ctlr_info *h)
9793 {
9794 hpsa_free_sas_node(h->sas_host);
9795 }
9796
hpsa_add_sas_device(struct hpsa_sas_node * hpsa_sas_node,struct hpsa_scsi_dev_t * device)9797 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9798 struct hpsa_scsi_dev_t *device)
9799 {
9800 int rc;
9801 struct hpsa_sas_port *hpsa_sas_port;
9802 struct sas_rphy *rphy;
9803
9804 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9805 if (!hpsa_sas_port)
9806 return -ENOMEM;
9807
9808 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9809 if (!rphy) {
9810 rc = -ENODEV;
9811 goto free_sas_port;
9812 }
9813
9814 hpsa_sas_port->rphy = rphy;
9815 device->sas_port = hpsa_sas_port;
9816
9817 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9818 if (rc)
9819 goto free_sas_rphy;
9820
9821 return 0;
9822
9823 free_sas_rphy:
9824 sas_rphy_free(rphy);
9825 free_sas_port:
9826 hpsa_free_sas_port(hpsa_sas_port);
9827 device->sas_port = NULL;
9828
9829 return rc;
9830 }
9831
hpsa_remove_sas_device(struct hpsa_scsi_dev_t * device)9832 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9833 {
9834 if (device->sas_port) {
9835 hpsa_free_sas_port(device->sas_port);
9836 device->sas_port = NULL;
9837 }
9838 }
9839
9840 static int
hpsa_sas_get_linkerrors(struct sas_phy * phy)9841 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9842 {
9843 return 0;
9844 }
9845
9846 static int
hpsa_sas_get_enclosure_identifier(struct sas_rphy * rphy,u64 * identifier)9847 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9848 {
9849 struct Scsi_Host *shost = phy_to_shost(rphy);
9850 struct ctlr_info *h;
9851 struct hpsa_scsi_dev_t *sd;
9852
9853 if (!shost)
9854 return -ENXIO;
9855
9856 h = shost_to_hba(shost);
9857
9858 if (!h)
9859 return -ENXIO;
9860
9861 sd = hpsa_find_device_by_sas_rphy(h, rphy);
9862 if (!sd)
9863 return -ENXIO;
9864
9865 *identifier = sd->eli;
9866
9867 return 0;
9868 }
9869
9870 static int
hpsa_sas_get_bay_identifier(struct sas_rphy * rphy)9871 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9872 {
9873 return -ENXIO;
9874 }
9875
9876 static int
hpsa_sas_phy_reset(struct sas_phy * phy,int hard_reset)9877 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9878 {
9879 return 0;
9880 }
9881
9882 static int
hpsa_sas_phy_enable(struct sas_phy * phy,int enable)9883 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9884 {
9885 return 0;
9886 }
9887
9888 static int
hpsa_sas_phy_setup(struct sas_phy * phy)9889 hpsa_sas_phy_setup(struct sas_phy *phy)
9890 {
9891 return 0;
9892 }
9893
9894 static void
hpsa_sas_phy_release(struct sas_phy * phy)9895 hpsa_sas_phy_release(struct sas_phy *phy)
9896 {
9897 }
9898
9899 static int
hpsa_sas_phy_speed(struct sas_phy * phy,struct sas_phy_linkrates * rates)9900 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9901 {
9902 return -EINVAL;
9903 }
9904
9905 static struct sas_function_template hpsa_sas_transport_functions = {
9906 .get_linkerrors = hpsa_sas_get_linkerrors,
9907 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9908 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9909 .phy_reset = hpsa_sas_phy_reset,
9910 .phy_enable = hpsa_sas_phy_enable,
9911 .phy_setup = hpsa_sas_phy_setup,
9912 .phy_release = hpsa_sas_phy_release,
9913 .set_phy_speed = hpsa_sas_phy_speed,
9914 };
9915
9916 /*
9917 * This is it. Register the PCI driver information for the cards we control
9918 * the OS will call our registered routines when it finds one of our cards.
9919 */
hpsa_init(void)9920 static int __init hpsa_init(void)
9921 {
9922 int rc;
9923
9924 hpsa_sas_transport_template =
9925 sas_attach_transport(&hpsa_sas_transport_functions);
9926 if (!hpsa_sas_transport_template)
9927 return -ENODEV;
9928
9929 rc = pci_register_driver(&hpsa_pci_driver);
9930
9931 if (rc)
9932 sas_release_transport(hpsa_sas_transport_template);
9933
9934 return rc;
9935 }
9936
hpsa_cleanup(void)9937 static void __exit hpsa_cleanup(void)
9938 {
9939 pci_unregister_driver(&hpsa_pci_driver);
9940 sas_release_transport(hpsa_sas_transport_template);
9941 }
9942
verify_offsets(void)9943 static void __attribute__((unused)) verify_offsets(void)
9944 {
9945 #define VERIFY_OFFSET(member, offset) \
9946 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9947
9948 VERIFY_OFFSET(structure_size, 0);
9949 VERIFY_OFFSET(volume_blk_size, 4);
9950 VERIFY_OFFSET(volume_blk_cnt, 8);
9951 VERIFY_OFFSET(phys_blk_shift, 16);
9952 VERIFY_OFFSET(parity_rotation_shift, 17);
9953 VERIFY_OFFSET(strip_size, 18);
9954 VERIFY_OFFSET(disk_starting_blk, 20);
9955 VERIFY_OFFSET(disk_blk_cnt, 28);
9956 VERIFY_OFFSET(data_disks_per_row, 36);
9957 VERIFY_OFFSET(metadata_disks_per_row, 38);
9958 VERIFY_OFFSET(row_cnt, 40);
9959 VERIFY_OFFSET(layout_map_count, 42);
9960 VERIFY_OFFSET(flags, 44);
9961 VERIFY_OFFSET(dekindex, 46);
9962 /* VERIFY_OFFSET(reserved, 48 */
9963 VERIFY_OFFSET(data, 64);
9964
9965 #undef VERIFY_OFFSET
9966
9967 #define VERIFY_OFFSET(member, offset) \
9968 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9969
9970 VERIFY_OFFSET(IU_type, 0);
9971 VERIFY_OFFSET(direction, 1);
9972 VERIFY_OFFSET(reply_queue, 2);
9973 /* VERIFY_OFFSET(reserved1, 3); */
9974 VERIFY_OFFSET(scsi_nexus, 4);
9975 VERIFY_OFFSET(Tag, 8);
9976 VERIFY_OFFSET(cdb, 16);
9977 VERIFY_OFFSET(cciss_lun, 32);
9978 VERIFY_OFFSET(data_len, 40);
9979 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9980 VERIFY_OFFSET(sg_count, 45);
9981 /* VERIFY_OFFSET(reserved3 */
9982 VERIFY_OFFSET(err_ptr, 48);
9983 VERIFY_OFFSET(err_len, 56);
9984 /* VERIFY_OFFSET(reserved4 */
9985 VERIFY_OFFSET(sg, 64);
9986
9987 #undef VERIFY_OFFSET
9988
9989 #define VERIFY_OFFSET(member, offset) \
9990 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9991
9992 VERIFY_OFFSET(dev_handle, 0x00);
9993 VERIFY_OFFSET(reserved1, 0x02);
9994 VERIFY_OFFSET(function, 0x03);
9995 VERIFY_OFFSET(reserved2, 0x04);
9996 VERIFY_OFFSET(err_info, 0x0C);
9997 VERIFY_OFFSET(reserved3, 0x10);
9998 VERIFY_OFFSET(err_info_len, 0x12);
9999 VERIFY_OFFSET(reserved4, 0x13);
10000 VERIFY_OFFSET(sgl_offset, 0x14);
10001 VERIFY_OFFSET(reserved5, 0x15);
10002 VERIFY_OFFSET(transfer_len, 0x1C);
10003 VERIFY_OFFSET(reserved6, 0x20);
10004 VERIFY_OFFSET(io_flags, 0x24);
10005 VERIFY_OFFSET(reserved7, 0x26);
10006 VERIFY_OFFSET(LUN, 0x34);
10007 VERIFY_OFFSET(control, 0x3C);
10008 VERIFY_OFFSET(CDB, 0x40);
10009 VERIFY_OFFSET(reserved8, 0x50);
10010 VERIFY_OFFSET(host_context_flags, 0x60);
10011 VERIFY_OFFSET(timeout_sec, 0x62);
10012 VERIFY_OFFSET(ReplyQueue, 0x64);
10013 VERIFY_OFFSET(reserved9, 0x65);
10014 VERIFY_OFFSET(tag, 0x68);
10015 VERIFY_OFFSET(host_addr, 0x70);
10016 VERIFY_OFFSET(CISS_LUN, 0x78);
10017 VERIFY_OFFSET(SG, 0x78 + 8);
10018 #undef VERIFY_OFFSET
10019 }
10020
10021 module_init(hpsa_init);
10022 module_exit(hpsa_cleanup);
10023