xref: /openbmc/linux/drivers/scsi/esp_scsi.c (revision c8ac8212)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* esp_scsi.c: ESP SCSI driver.
3  *
4  * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <linux/list.h>
12 #include <linux/completion.h>
13 #include <linux/kallsyms.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/irqreturn.h>
18 
19 #include <asm/irq.h>
20 #include <asm/io.h>
21 #include <asm/dma.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_host.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_tcq.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_transport_spi.h>
30 
31 #include "esp_scsi.h"
32 
33 #define DRV_MODULE_NAME		"esp"
34 #define PFX DRV_MODULE_NAME	": "
35 #define DRV_VERSION		"2.000"
36 #define DRV_MODULE_RELDATE	"April 19, 2007"
37 
38 /* SCSI bus reset settle time in seconds.  */
39 static int esp_bus_reset_settle = 3;
40 
41 static u32 esp_debug;
42 #define ESP_DEBUG_INTR		0x00000001
43 #define ESP_DEBUG_SCSICMD	0x00000002
44 #define ESP_DEBUG_RESET		0x00000004
45 #define ESP_DEBUG_MSGIN		0x00000008
46 #define ESP_DEBUG_MSGOUT	0x00000010
47 #define ESP_DEBUG_CMDDONE	0x00000020
48 #define ESP_DEBUG_DISCONNECT	0x00000040
49 #define ESP_DEBUG_DATASTART	0x00000080
50 #define ESP_DEBUG_DATADONE	0x00000100
51 #define ESP_DEBUG_RECONNECT	0x00000200
52 #define ESP_DEBUG_AUTOSENSE	0x00000400
53 #define ESP_DEBUG_EVENT		0x00000800
54 #define ESP_DEBUG_COMMAND	0x00001000
55 
56 #define esp_log_intr(f, a...) \
57 do {	if (esp_debug & ESP_DEBUG_INTR) \
58 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
59 } while (0)
60 
61 #define esp_log_reset(f, a...) \
62 do {	if (esp_debug & ESP_DEBUG_RESET) \
63 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
64 } while (0)
65 
66 #define esp_log_msgin(f, a...) \
67 do {	if (esp_debug & ESP_DEBUG_MSGIN) \
68 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
69 } while (0)
70 
71 #define esp_log_msgout(f, a...) \
72 do {	if (esp_debug & ESP_DEBUG_MSGOUT) \
73 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
74 } while (0)
75 
76 #define esp_log_cmddone(f, a...) \
77 do {	if (esp_debug & ESP_DEBUG_CMDDONE) \
78 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
79 } while (0)
80 
81 #define esp_log_disconnect(f, a...) \
82 do {	if (esp_debug & ESP_DEBUG_DISCONNECT) \
83 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
84 } while (0)
85 
86 #define esp_log_datastart(f, a...) \
87 do {	if (esp_debug & ESP_DEBUG_DATASTART) \
88 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
89 } while (0)
90 
91 #define esp_log_datadone(f, a...) \
92 do {	if (esp_debug & ESP_DEBUG_DATADONE) \
93 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
94 } while (0)
95 
96 #define esp_log_reconnect(f, a...) \
97 do {	if (esp_debug & ESP_DEBUG_RECONNECT) \
98 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
99 } while (0)
100 
101 #define esp_log_autosense(f, a...) \
102 do {	if (esp_debug & ESP_DEBUG_AUTOSENSE) \
103 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
104 } while (0)
105 
106 #define esp_log_event(f, a...) \
107 do {   if (esp_debug & ESP_DEBUG_EVENT)	\
108 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
109 } while (0)
110 
111 #define esp_log_command(f, a...) \
112 do {   if (esp_debug & ESP_DEBUG_COMMAND)	\
113 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
114 } while (0)
115 
116 #define esp_read8(REG)		esp->ops->esp_read8(esp, REG)
117 #define esp_write8(VAL,REG)	esp->ops->esp_write8(esp, VAL, REG)
118 
119 static void esp_log_fill_regs(struct esp *esp,
120 			      struct esp_event_ent *p)
121 {
122 	p->sreg = esp->sreg;
123 	p->seqreg = esp->seqreg;
124 	p->sreg2 = esp->sreg2;
125 	p->ireg = esp->ireg;
126 	p->select_state = esp->select_state;
127 	p->event = esp->event;
128 }
129 
130 void scsi_esp_cmd(struct esp *esp, u8 val)
131 {
132 	struct esp_event_ent *p;
133 	int idx = esp->esp_event_cur;
134 
135 	p = &esp->esp_event_log[idx];
136 	p->type = ESP_EVENT_TYPE_CMD;
137 	p->val = val;
138 	esp_log_fill_regs(esp, p);
139 
140 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
141 
142 	esp_log_command("cmd[%02x]\n", val);
143 	esp_write8(val, ESP_CMD);
144 }
145 EXPORT_SYMBOL(scsi_esp_cmd);
146 
147 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
148 {
149 	if (esp->flags & ESP_FLAG_USE_FIFO) {
150 		int i;
151 
152 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
153 		for (i = 0; i < len; i++)
154 			esp_write8(esp->command_block[i], ESP_FDATA);
155 		scsi_esp_cmd(esp, cmd);
156 	} else {
157 		if (esp->rev == FASHME)
158 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
159 		cmd |= ESP_CMD_DMA;
160 		esp->ops->send_dma_cmd(esp, esp->command_block_dma,
161 				       len, max_len, 0, cmd);
162 	}
163 }
164 
165 static void esp_event(struct esp *esp, u8 val)
166 {
167 	struct esp_event_ent *p;
168 	int idx = esp->esp_event_cur;
169 
170 	p = &esp->esp_event_log[idx];
171 	p->type = ESP_EVENT_TYPE_EVENT;
172 	p->val = val;
173 	esp_log_fill_regs(esp, p);
174 
175 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
176 
177 	esp->event = val;
178 }
179 
180 static void esp_dump_cmd_log(struct esp *esp)
181 {
182 	int idx = esp->esp_event_cur;
183 	int stop = idx;
184 
185 	shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
186 	do {
187 		struct esp_event_ent *p = &esp->esp_event_log[idx];
188 
189 		shost_printk(KERN_INFO, esp->host,
190 			     "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
191 			     "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
192 			     idx,
193 			     p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
194 			     p->val, p->sreg, p->seqreg,
195 			     p->sreg2, p->ireg, p->select_state, p->event);
196 
197 		idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
198 	} while (idx != stop);
199 }
200 
201 static void esp_flush_fifo(struct esp *esp)
202 {
203 	scsi_esp_cmd(esp, ESP_CMD_FLUSH);
204 	if (esp->rev == ESP236) {
205 		int lim = 1000;
206 
207 		while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
208 			if (--lim == 0) {
209 				shost_printk(KERN_ALERT, esp->host,
210 					     "ESP_FF_BYTES will not clear!\n");
211 				break;
212 			}
213 			udelay(1);
214 		}
215 	}
216 }
217 
218 static void hme_read_fifo(struct esp *esp)
219 {
220 	int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
221 	int idx = 0;
222 
223 	while (fcnt--) {
224 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
225 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
226 	}
227 	if (esp->sreg2 & ESP_STAT2_F1BYTE) {
228 		esp_write8(0, ESP_FDATA);
229 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
230 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
231 	}
232 	esp->fifo_cnt = idx;
233 }
234 
235 static void esp_set_all_config3(struct esp *esp, u8 val)
236 {
237 	int i;
238 
239 	for (i = 0; i < ESP_MAX_TARGET; i++)
240 		esp->target[i].esp_config3 = val;
241 }
242 
243 /* Reset the ESP chip, _not_ the SCSI bus. */
244 static void esp_reset_esp(struct esp *esp)
245 {
246 	/* Now reset the ESP chip */
247 	scsi_esp_cmd(esp, ESP_CMD_RC);
248 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
249 	if (esp->rev == FAST)
250 		esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
251 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
252 
253 	/* This is the only point at which it is reliable to read
254 	 * the ID-code for a fast ESP chip variants.
255 	 */
256 	esp->max_period = ((35 * esp->ccycle) / 1000);
257 	if (esp->rev == FAST) {
258 		u8 family_code = ESP_FAMILY(esp_read8(ESP_UID));
259 
260 		if (family_code == ESP_UID_F236) {
261 			esp->rev = FAS236;
262 		} else if (family_code == ESP_UID_HME) {
263 			esp->rev = FASHME; /* Version is usually '5'. */
264 		} else if (family_code == ESP_UID_FSC) {
265 			esp->rev = FSC;
266 			/* Enable Active Negation */
267 			esp_write8(ESP_CONFIG4_RADE, ESP_CFG4);
268 		} else {
269 			esp->rev = FAS100A;
270 		}
271 		esp->min_period = ((4 * esp->ccycle) / 1000);
272 	} else {
273 		esp->min_period = ((5 * esp->ccycle) / 1000);
274 	}
275 	if (esp->rev == FAS236) {
276 		/*
277 		 * The AM53c974 chip returns the same ID as FAS236;
278 		 * try to configure glitch eater.
279 		 */
280 		u8 config4 = ESP_CONFIG4_GE1;
281 		esp_write8(config4, ESP_CFG4);
282 		config4 = esp_read8(ESP_CFG4);
283 		if (config4 & ESP_CONFIG4_GE1) {
284 			esp->rev = PCSCSI;
285 			esp_write8(esp->config4, ESP_CFG4);
286 		}
287 	}
288 	esp->max_period = (esp->max_period + 3)>>2;
289 	esp->min_period = (esp->min_period + 3)>>2;
290 
291 	esp_write8(esp->config1, ESP_CFG1);
292 	switch (esp->rev) {
293 	case ESP100:
294 		/* nothing to do */
295 		break;
296 
297 	case ESP100A:
298 		esp_write8(esp->config2, ESP_CFG2);
299 		break;
300 
301 	case ESP236:
302 		/* Slow 236 */
303 		esp_write8(esp->config2, ESP_CFG2);
304 		esp->prev_cfg3 = esp->target[0].esp_config3;
305 		esp_write8(esp->prev_cfg3, ESP_CFG3);
306 		break;
307 
308 	case FASHME:
309 		esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
310 		/* fallthrough... */
311 
312 	case FAS236:
313 	case PCSCSI:
314 	case FSC:
315 		esp_write8(esp->config2, ESP_CFG2);
316 		if (esp->rev == FASHME) {
317 			u8 cfg3 = esp->target[0].esp_config3;
318 
319 			cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
320 			if (esp->scsi_id >= 8)
321 				cfg3 |= ESP_CONFIG3_IDBIT3;
322 			esp_set_all_config3(esp, cfg3);
323 		} else {
324 			u32 cfg3 = esp->target[0].esp_config3;
325 
326 			cfg3 |= ESP_CONFIG3_FCLK;
327 			esp_set_all_config3(esp, cfg3);
328 		}
329 		esp->prev_cfg3 = esp->target[0].esp_config3;
330 		esp_write8(esp->prev_cfg3, ESP_CFG3);
331 		if (esp->rev == FASHME) {
332 			esp->radelay = 80;
333 		} else {
334 			if (esp->flags & ESP_FLAG_DIFFERENTIAL)
335 				esp->radelay = 0;
336 			else
337 				esp->radelay = 96;
338 		}
339 		break;
340 
341 	case FAS100A:
342 		/* Fast 100a */
343 		esp_write8(esp->config2, ESP_CFG2);
344 		esp_set_all_config3(esp,
345 				    (esp->target[0].esp_config3 |
346 				     ESP_CONFIG3_FCLOCK));
347 		esp->prev_cfg3 = esp->target[0].esp_config3;
348 		esp_write8(esp->prev_cfg3, ESP_CFG3);
349 		esp->radelay = 32;
350 		break;
351 
352 	default:
353 		break;
354 	}
355 
356 	/* Reload the configuration registers */
357 	esp_write8(esp->cfact, ESP_CFACT);
358 
359 	esp->prev_stp = 0;
360 	esp_write8(esp->prev_stp, ESP_STP);
361 
362 	esp->prev_soff = 0;
363 	esp_write8(esp->prev_soff, ESP_SOFF);
364 
365 	esp_write8(esp->neg_defp, ESP_TIMEO);
366 
367 	/* Eat any bitrot in the chip */
368 	esp_read8(ESP_INTRPT);
369 	udelay(100);
370 }
371 
372 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
373 {
374 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
375 	struct scatterlist *sg = scsi_sglist(cmd);
376 	int total = 0, i;
377 	struct scatterlist *s;
378 
379 	if (cmd->sc_data_direction == DMA_NONE)
380 		return;
381 
382 	if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
383 		/*
384 		 * For pseudo DMA and PIO we need the virtual address instead of
385 		 * a dma address, so perform an identity mapping.
386 		 */
387 		spriv->num_sg = scsi_sg_count(cmd);
388 
389 		scsi_for_each_sg(cmd, s, spriv->num_sg, i) {
390 			s->dma_address = (uintptr_t)sg_virt(s);
391 			total += sg_dma_len(s);
392 		}
393 	} else {
394 		spriv->num_sg = scsi_dma_map(cmd);
395 		scsi_for_each_sg(cmd, s, spriv->num_sg, i)
396 			total += sg_dma_len(s);
397 	}
398 	spriv->cur_residue = sg_dma_len(sg);
399 	spriv->prv_sg = NULL;
400 	spriv->cur_sg = sg;
401 	spriv->tot_residue = total;
402 }
403 
404 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
405 				   struct scsi_cmnd *cmd)
406 {
407 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
408 
409 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
410 		return ent->sense_dma +
411 			(ent->sense_ptr - cmd->sense_buffer);
412 	}
413 
414 	return sg_dma_address(p->cur_sg) +
415 		(sg_dma_len(p->cur_sg) -
416 		 p->cur_residue);
417 }
418 
419 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
420 				    struct scsi_cmnd *cmd)
421 {
422 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
423 
424 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
425 		return SCSI_SENSE_BUFFERSIZE -
426 			(ent->sense_ptr - cmd->sense_buffer);
427 	}
428 	return p->cur_residue;
429 }
430 
431 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
432 			    struct scsi_cmnd *cmd, unsigned int len)
433 {
434 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
435 
436 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
437 		ent->sense_ptr += len;
438 		return;
439 	}
440 
441 	p->cur_residue -= len;
442 	p->tot_residue -= len;
443 	if (p->cur_residue < 0 || p->tot_residue < 0) {
444 		shost_printk(KERN_ERR, esp->host,
445 			     "Data transfer overflow.\n");
446 		shost_printk(KERN_ERR, esp->host,
447 			     "cur_residue[%d] tot_residue[%d] len[%u]\n",
448 			     p->cur_residue, p->tot_residue, len);
449 		p->cur_residue = 0;
450 		p->tot_residue = 0;
451 	}
452 	if (!p->cur_residue && p->tot_residue) {
453 		p->prv_sg = p->cur_sg;
454 		p->cur_sg = sg_next(p->cur_sg);
455 		p->cur_residue = sg_dma_len(p->cur_sg);
456 	}
457 }
458 
459 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
460 {
461 	if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
462 		scsi_dma_unmap(cmd);
463 }
464 
465 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
466 {
467 	struct scsi_cmnd *cmd = ent->cmd;
468 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
469 
470 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
471 		ent->saved_sense_ptr = ent->sense_ptr;
472 		return;
473 	}
474 	ent->saved_cur_residue = spriv->cur_residue;
475 	ent->saved_prv_sg = spriv->prv_sg;
476 	ent->saved_cur_sg = spriv->cur_sg;
477 	ent->saved_tot_residue = spriv->tot_residue;
478 }
479 
480 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
481 {
482 	struct scsi_cmnd *cmd = ent->cmd;
483 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
484 
485 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
486 		ent->sense_ptr = ent->saved_sense_ptr;
487 		return;
488 	}
489 	spriv->cur_residue = ent->saved_cur_residue;
490 	spriv->prv_sg = ent->saved_prv_sg;
491 	spriv->cur_sg = ent->saved_cur_sg;
492 	spriv->tot_residue = ent->saved_tot_residue;
493 }
494 
495 static void esp_write_tgt_config3(struct esp *esp, int tgt)
496 {
497 	if (esp->rev > ESP100A) {
498 		u8 val = esp->target[tgt].esp_config3;
499 
500 		if (val != esp->prev_cfg3) {
501 			esp->prev_cfg3 = val;
502 			esp_write8(val, ESP_CFG3);
503 		}
504 	}
505 }
506 
507 static void esp_write_tgt_sync(struct esp *esp, int tgt)
508 {
509 	u8 off = esp->target[tgt].esp_offset;
510 	u8 per = esp->target[tgt].esp_period;
511 
512 	if (off != esp->prev_soff) {
513 		esp->prev_soff = off;
514 		esp_write8(off, ESP_SOFF);
515 	}
516 	if (per != esp->prev_stp) {
517 		esp->prev_stp = per;
518 		esp_write8(per, ESP_STP);
519 	}
520 }
521 
522 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
523 {
524 	if (esp->rev == FASHME) {
525 		/* Arbitrary segment boundaries, 24-bit counts.  */
526 		if (dma_len > (1U << 24))
527 			dma_len = (1U << 24);
528 	} else {
529 		u32 base, end;
530 
531 		/* ESP chip limits other variants by 16-bits of transfer
532 		 * count.  Actually on FAS100A and FAS236 we could get
533 		 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
534 		 * in the ESP_CFG2 register but that causes other unwanted
535 		 * changes so we don't use it currently.
536 		 */
537 		if (dma_len > (1U << 16))
538 			dma_len = (1U << 16);
539 
540 		/* All of the DMA variants hooked up to these chips
541 		 * cannot handle crossing a 24-bit address boundary.
542 		 */
543 		base = dma_addr & ((1U << 24) - 1U);
544 		end = base + dma_len;
545 		if (end > (1U << 24))
546 			end = (1U <<24);
547 		dma_len = end - base;
548 	}
549 	return dma_len;
550 }
551 
552 static int esp_need_to_nego_wide(struct esp_target_data *tp)
553 {
554 	struct scsi_target *target = tp->starget;
555 
556 	return spi_width(target) != tp->nego_goal_width;
557 }
558 
559 static int esp_need_to_nego_sync(struct esp_target_data *tp)
560 {
561 	struct scsi_target *target = tp->starget;
562 
563 	/* When offset is zero, period is "don't care".  */
564 	if (!spi_offset(target) && !tp->nego_goal_offset)
565 		return 0;
566 
567 	if (spi_offset(target) == tp->nego_goal_offset &&
568 	    spi_period(target) == tp->nego_goal_period)
569 		return 0;
570 
571 	return 1;
572 }
573 
574 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
575 			     struct esp_lun_data *lp)
576 {
577 	if (!ent->orig_tag[0]) {
578 		/* Non-tagged, slot already taken?  */
579 		if (lp->non_tagged_cmd)
580 			return -EBUSY;
581 
582 		if (lp->hold) {
583 			/* We are being held by active tagged
584 			 * commands.
585 			 */
586 			if (lp->num_tagged)
587 				return -EBUSY;
588 
589 			/* Tagged commands completed, we can unplug
590 			 * the queue and run this untagged command.
591 			 */
592 			lp->hold = 0;
593 		} else if (lp->num_tagged) {
594 			/* Plug the queue until num_tagged decreases
595 			 * to zero in esp_free_lun_tag.
596 			 */
597 			lp->hold = 1;
598 			return -EBUSY;
599 		}
600 
601 		lp->non_tagged_cmd = ent;
602 		return 0;
603 	}
604 
605 	/* Tagged command. Check that it isn't blocked by a non-tagged one. */
606 	if (lp->non_tagged_cmd || lp->hold)
607 		return -EBUSY;
608 
609 	BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
610 
611 	lp->tagged_cmds[ent->orig_tag[1]] = ent;
612 	lp->num_tagged++;
613 
614 	return 0;
615 }
616 
617 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
618 			     struct esp_lun_data *lp)
619 {
620 	if (ent->orig_tag[0]) {
621 		BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
622 		lp->tagged_cmds[ent->orig_tag[1]] = NULL;
623 		lp->num_tagged--;
624 	} else {
625 		BUG_ON(lp->non_tagged_cmd != ent);
626 		lp->non_tagged_cmd = NULL;
627 	}
628 }
629 
630 static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent)
631 {
632 	ent->sense_ptr = ent->cmd->sense_buffer;
633 	if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
634 		ent->sense_dma = (uintptr_t)ent->sense_ptr;
635 		return;
636 	}
637 
638 	ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr,
639 					SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
640 }
641 
642 static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent)
643 {
644 	if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
645 		dma_unmap_single(esp->dev, ent->sense_dma,
646 				 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
647 	ent->sense_ptr = NULL;
648 }
649 
650 /* When a contingent allegiance conditon is created, we force feed a
651  * REQUEST_SENSE command to the device to fetch the sense data.  I
652  * tried many other schemes, relying on the scsi error handling layer
653  * to send out the REQUEST_SENSE automatically, but this was difficult
654  * to get right especially in the presence of applications like smartd
655  * which use SG_IO to send out their own REQUEST_SENSE commands.
656  */
657 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
658 {
659 	struct scsi_cmnd *cmd = ent->cmd;
660 	struct scsi_device *dev = cmd->device;
661 	int tgt, lun;
662 	u8 *p, val;
663 
664 	tgt = dev->id;
665 	lun = dev->lun;
666 
667 
668 	if (!ent->sense_ptr) {
669 		esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
670 				  tgt, lun);
671 		esp_map_sense(esp, ent);
672 	}
673 	ent->saved_sense_ptr = ent->sense_ptr;
674 
675 	esp->active_cmd = ent;
676 
677 	p = esp->command_block;
678 	esp->msg_out_len = 0;
679 
680 	*p++ = IDENTIFY(0, lun);
681 	*p++ = REQUEST_SENSE;
682 	*p++ = ((dev->scsi_level <= SCSI_2) ?
683 		(lun << 5) : 0);
684 	*p++ = 0;
685 	*p++ = 0;
686 	*p++ = SCSI_SENSE_BUFFERSIZE;
687 	*p++ = 0;
688 
689 	esp->select_state = ESP_SELECT_BASIC;
690 
691 	val = tgt;
692 	if (esp->rev == FASHME)
693 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
694 	esp_write8(val, ESP_BUSID);
695 
696 	esp_write_tgt_sync(esp, tgt);
697 	esp_write_tgt_config3(esp, tgt);
698 
699 	val = (p - esp->command_block);
700 
701 	esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
702 }
703 
704 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
705 {
706 	struct esp_cmd_entry *ent;
707 
708 	list_for_each_entry(ent, &esp->queued_cmds, list) {
709 		struct scsi_cmnd *cmd = ent->cmd;
710 		struct scsi_device *dev = cmd->device;
711 		struct esp_lun_data *lp = dev->hostdata;
712 
713 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
714 			ent->tag[0] = 0;
715 			ent->tag[1] = 0;
716 			return ent;
717 		}
718 
719 		if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
720 			ent->tag[0] = 0;
721 			ent->tag[1] = 0;
722 		}
723 		ent->orig_tag[0] = ent->tag[0];
724 		ent->orig_tag[1] = ent->tag[1];
725 
726 		if (esp_alloc_lun_tag(ent, lp) < 0)
727 			continue;
728 
729 		return ent;
730 	}
731 
732 	return NULL;
733 }
734 
735 static void esp_maybe_execute_command(struct esp *esp)
736 {
737 	struct esp_target_data *tp;
738 	struct scsi_device *dev;
739 	struct scsi_cmnd *cmd;
740 	struct esp_cmd_entry *ent;
741 	bool select_and_stop = false;
742 	int tgt, lun, i;
743 	u32 val, start_cmd;
744 	u8 *p;
745 
746 	if (esp->active_cmd ||
747 	    (esp->flags & ESP_FLAG_RESETTING))
748 		return;
749 
750 	ent = find_and_prep_issuable_command(esp);
751 	if (!ent)
752 		return;
753 
754 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
755 		esp_autosense(esp, ent);
756 		return;
757 	}
758 
759 	cmd = ent->cmd;
760 	dev = cmd->device;
761 	tgt = dev->id;
762 	lun = dev->lun;
763 	tp = &esp->target[tgt];
764 
765 	list_move(&ent->list, &esp->active_cmds);
766 
767 	esp->active_cmd = ent;
768 
769 	esp_map_dma(esp, cmd);
770 	esp_save_pointers(esp, ent);
771 
772 	if (!(cmd->cmd_len == 6 || cmd->cmd_len == 10 || cmd->cmd_len == 12))
773 		select_and_stop = true;
774 
775 	p = esp->command_block;
776 
777 	esp->msg_out_len = 0;
778 	if (tp->flags & ESP_TGT_CHECK_NEGO) {
779 		/* Need to negotiate.  If the target is broken
780 		 * go for synchronous transfers and non-wide.
781 		 */
782 		if (tp->flags & ESP_TGT_BROKEN) {
783 			tp->flags &= ~ESP_TGT_DISCONNECT;
784 			tp->nego_goal_period = 0;
785 			tp->nego_goal_offset = 0;
786 			tp->nego_goal_width = 0;
787 			tp->nego_goal_tags = 0;
788 		}
789 
790 		/* If the settings are not changing, skip this.  */
791 		if (spi_width(tp->starget) == tp->nego_goal_width &&
792 		    spi_period(tp->starget) == tp->nego_goal_period &&
793 		    spi_offset(tp->starget) == tp->nego_goal_offset) {
794 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
795 			goto build_identify;
796 		}
797 
798 		if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
799 			esp->msg_out_len =
800 				spi_populate_width_msg(&esp->msg_out[0],
801 						       (tp->nego_goal_width ?
802 							1 : 0));
803 			tp->flags |= ESP_TGT_NEGO_WIDE;
804 		} else if (esp_need_to_nego_sync(tp)) {
805 			esp->msg_out_len =
806 				spi_populate_sync_msg(&esp->msg_out[0],
807 						      tp->nego_goal_period,
808 						      tp->nego_goal_offset);
809 			tp->flags |= ESP_TGT_NEGO_SYNC;
810 		} else {
811 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
812 		}
813 
814 		/* If there are multiple message bytes, use Select and Stop */
815 		if (esp->msg_out_len)
816 			select_and_stop = true;
817 	}
818 
819 build_identify:
820 	*p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun);
821 
822 	if (ent->tag[0] && esp->rev == ESP100) {
823 		/* ESP100 lacks select w/atn3 command, use select
824 		 * and stop instead.
825 		 */
826 		select_and_stop = true;
827 	}
828 
829 	if (select_and_stop) {
830 		esp->cmd_bytes_left = cmd->cmd_len;
831 		esp->cmd_bytes_ptr = &cmd->cmnd[0];
832 
833 		if (ent->tag[0]) {
834 			for (i = esp->msg_out_len - 1;
835 			     i >= 0; i--)
836 				esp->msg_out[i + 2] = esp->msg_out[i];
837 			esp->msg_out[0] = ent->tag[0];
838 			esp->msg_out[1] = ent->tag[1];
839 			esp->msg_out_len += 2;
840 		}
841 
842 		start_cmd = ESP_CMD_SELAS;
843 		esp->select_state = ESP_SELECT_MSGOUT;
844 	} else {
845 		start_cmd = ESP_CMD_SELA;
846 		if (ent->tag[0]) {
847 			*p++ = ent->tag[0];
848 			*p++ = ent->tag[1];
849 
850 			start_cmd = ESP_CMD_SA3;
851 		}
852 
853 		for (i = 0; i < cmd->cmd_len; i++)
854 			*p++ = cmd->cmnd[i];
855 
856 		esp->select_state = ESP_SELECT_BASIC;
857 	}
858 	val = tgt;
859 	if (esp->rev == FASHME)
860 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
861 	esp_write8(val, ESP_BUSID);
862 
863 	esp_write_tgt_sync(esp, tgt);
864 	esp_write_tgt_config3(esp, tgt);
865 
866 	val = (p - esp->command_block);
867 
868 	if (esp_debug & ESP_DEBUG_SCSICMD) {
869 		printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
870 		for (i = 0; i < cmd->cmd_len; i++)
871 			printk("%02x ", cmd->cmnd[i]);
872 		printk("]\n");
873 	}
874 
875 	esp_send_dma_cmd(esp, val, 16, start_cmd);
876 }
877 
878 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
879 {
880 	struct list_head *head = &esp->esp_cmd_pool;
881 	struct esp_cmd_entry *ret;
882 
883 	if (list_empty(head)) {
884 		ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
885 	} else {
886 		ret = list_entry(head->next, struct esp_cmd_entry, list);
887 		list_del(&ret->list);
888 		memset(ret, 0, sizeof(*ret));
889 	}
890 	return ret;
891 }
892 
893 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
894 {
895 	list_add(&ent->list, &esp->esp_cmd_pool);
896 }
897 
898 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
899 			    struct scsi_cmnd *cmd, unsigned int result)
900 {
901 	struct scsi_device *dev = cmd->device;
902 	int tgt = dev->id;
903 	int lun = dev->lun;
904 
905 	esp->active_cmd = NULL;
906 	esp_unmap_dma(esp, cmd);
907 	esp_free_lun_tag(ent, dev->hostdata);
908 	cmd->result = result;
909 
910 	if (ent->eh_done) {
911 		complete(ent->eh_done);
912 		ent->eh_done = NULL;
913 	}
914 
915 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
916 		esp_unmap_sense(esp, ent);
917 
918 		/* Restore the message/status bytes to what we actually
919 		 * saw originally.  Also, report that we are providing
920 		 * the sense data.
921 		 */
922 		cmd->result = ((DRIVER_SENSE << 24) |
923 			       (DID_OK << 16) |
924 			       (COMMAND_COMPLETE << 8) |
925 			       (SAM_STAT_CHECK_CONDITION << 0));
926 
927 		ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
928 		if (esp_debug & ESP_DEBUG_AUTOSENSE) {
929 			int i;
930 
931 			printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
932 			       esp->host->unique_id, tgt, lun);
933 			for (i = 0; i < 18; i++)
934 				printk("%02x ", cmd->sense_buffer[i]);
935 			printk("]\n");
936 		}
937 	}
938 
939 	cmd->scsi_done(cmd);
940 
941 	list_del(&ent->list);
942 	esp_put_ent(esp, ent);
943 
944 	esp_maybe_execute_command(esp);
945 }
946 
947 static unsigned int compose_result(unsigned int status, unsigned int message,
948 				   unsigned int driver_code)
949 {
950 	return (status | (message << 8) | (driver_code << 16));
951 }
952 
953 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
954 {
955 	struct scsi_device *dev = ent->cmd->device;
956 	struct esp_lun_data *lp = dev->hostdata;
957 
958 	scsi_track_queue_full(dev, lp->num_tagged - 1);
959 }
960 
961 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
962 {
963 	struct scsi_device *dev = cmd->device;
964 	struct esp *esp = shost_priv(dev->host);
965 	struct esp_cmd_priv *spriv;
966 	struct esp_cmd_entry *ent;
967 
968 	ent = esp_get_ent(esp);
969 	if (!ent)
970 		return SCSI_MLQUEUE_HOST_BUSY;
971 
972 	ent->cmd = cmd;
973 
974 	cmd->scsi_done = done;
975 
976 	spriv = ESP_CMD_PRIV(cmd);
977 	spriv->num_sg = 0;
978 
979 	list_add_tail(&ent->list, &esp->queued_cmds);
980 
981 	esp_maybe_execute_command(esp);
982 
983 	return 0;
984 }
985 
986 static DEF_SCSI_QCMD(esp_queuecommand)
987 
988 static int esp_check_gross_error(struct esp *esp)
989 {
990 	if (esp->sreg & ESP_STAT_SPAM) {
991 		/* Gross Error, could be one of:
992 		 * - top of fifo overwritten
993 		 * - top of command register overwritten
994 		 * - DMA programmed with wrong direction
995 		 * - improper phase change
996 		 */
997 		shost_printk(KERN_ERR, esp->host,
998 			     "Gross error sreg[%02x]\n", esp->sreg);
999 		/* XXX Reset the chip. XXX */
1000 		return 1;
1001 	}
1002 	return 0;
1003 }
1004 
1005 static int esp_check_spur_intr(struct esp *esp)
1006 {
1007 	switch (esp->rev) {
1008 	case ESP100:
1009 	case ESP100A:
1010 		/* The interrupt pending bit of the status register cannot
1011 		 * be trusted on these revisions.
1012 		 */
1013 		esp->sreg &= ~ESP_STAT_INTR;
1014 		break;
1015 
1016 	default:
1017 		if (!(esp->sreg & ESP_STAT_INTR)) {
1018 			if (esp->ireg & ESP_INTR_SR)
1019 				return 1;
1020 
1021 			/* If the DMA is indicating interrupt pending and the
1022 			 * ESP is not, the only possibility is a DMA error.
1023 			 */
1024 			if (!esp->ops->dma_error(esp)) {
1025 				shost_printk(KERN_ERR, esp->host,
1026 					     "Spurious irq, sreg=%02x.\n",
1027 					     esp->sreg);
1028 				return -1;
1029 			}
1030 
1031 			shost_printk(KERN_ERR, esp->host, "DMA error\n");
1032 
1033 			/* XXX Reset the chip. XXX */
1034 			return -1;
1035 		}
1036 		break;
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static void esp_schedule_reset(struct esp *esp)
1043 {
1044 	esp_log_reset("esp_schedule_reset() from %ps\n",
1045 		      __builtin_return_address(0));
1046 	esp->flags |= ESP_FLAG_RESETTING;
1047 	esp_event(esp, ESP_EVENT_RESET);
1048 }
1049 
1050 /* In order to avoid having to add a special half-reconnected state
1051  * into the driver we just sit here and poll through the rest of
1052  * the reselection process to get the tag message bytes.
1053  */
1054 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1055 						    struct esp_lun_data *lp)
1056 {
1057 	struct esp_cmd_entry *ent;
1058 	int i;
1059 
1060 	if (!lp->num_tagged) {
1061 		shost_printk(KERN_ERR, esp->host,
1062 			     "Reconnect w/num_tagged==0\n");
1063 		return NULL;
1064 	}
1065 
1066 	esp_log_reconnect("reconnect tag, ");
1067 
1068 	for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1069 		if (esp->ops->irq_pending(esp))
1070 			break;
1071 	}
1072 	if (i == ESP_QUICKIRQ_LIMIT) {
1073 		shost_printk(KERN_ERR, esp->host,
1074 			     "Reconnect IRQ1 timeout\n");
1075 		return NULL;
1076 	}
1077 
1078 	esp->sreg = esp_read8(ESP_STATUS);
1079 	esp->ireg = esp_read8(ESP_INTRPT);
1080 
1081 	esp_log_reconnect("IRQ(%d:%x:%x), ",
1082 			  i, esp->ireg, esp->sreg);
1083 
1084 	if (esp->ireg & ESP_INTR_DC) {
1085 		shost_printk(KERN_ERR, esp->host,
1086 			     "Reconnect, got disconnect.\n");
1087 		return NULL;
1088 	}
1089 
1090 	if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1091 		shost_printk(KERN_ERR, esp->host,
1092 			     "Reconnect, not MIP sreg[%02x].\n", esp->sreg);
1093 		return NULL;
1094 	}
1095 
1096 	/* DMA in the tag bytes... */
1097 	esp->command_block[0] = 0xff;
1098 	esp->command_block[1] = 0xff;
1099 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1100 			       2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1101 
1102 	/* ACK the message.  */
1103 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1104 
1105 	for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1106 		if (esp->ops->irq_pending(esp)) {
1107 			esp->sreg = esp_read8(ESP_STATUS);
1108 			esp->ireg = esp_read8(ESP_INTRPT);
1109 			if (esp->ireg & ESP_INTR_FDONE)
1110 				break;
1111 		}
1112 		udelay(1);
1113 	}
1114 	if (i == ESP_RESELECT_TAG_LIMIT) {
1115 		shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
1116 		return NULL;
1117 	}
1118 	esp->ops->dma_drain(esp);
1119 	esp->ops->dma_invalidate(esp);
1120 
1121 	esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1122 			  i, esp->ireg, esp->sreg,
1123 			  esp->command_block[0],
1124 			  esp->command_block[1]);
1125 
1126 	if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1127 	    esp->command_block[0] > ORDERED_QUEUE_TAG) {
1128 		shost_printk(KERN_ERR, esp->host,
1129 			     "Reconnect, bad tag type %02x.\n",
1130 			     esp->command_block[0]);
1131 		return NULL;
1132 	}
1133 
1134 	ent = lp->tagged_cmds[esp->command_block[1]];
1135 	if (!ent) {
1136 		shost_printk(KERN_ERR, esp->host,
1137 			     "Reconnect, no entry for tag %02x.\n",
1138 			     esp->command_block[1]);
1139 		return NULL;
1140 	}
1141 
1142 	return ent;
1143 }
1144 
1145 static int esp_reconnect(struct esp *esp)
1146 {
1147 	struct esp_cmd_entry *ent;
1148 	struct esp_target_data *tp;
1149 	struct esp_lun_data *lp;
1150 	struct scsi_device *dev;
1151 	int target, lun;
1152 
1153 	BUG_ON(esp->active_cmd);
1154 	if (esp->rev == FASHME) {
1155 		/* FASHME puts the target and lun numbers directly
1156 		 * into the fifo.
1157 		 */
1158 		target = esp->fifo[0];
1159 		lun = esp->fifo[1] & 0x7;
1160 	} else {
1161 		u8 bits = esp_read8(ESP_FDATA);
1162 
1163 		/* Older chips put the lun directly into the fifo, but
1164 		 * the target is given as a sample of the arbitration
1165 		 * lines on the bus at reselection time.  So we should
1166 		 * see the ID of the ESP and the one reconnecting target
1167 		 * set in the bitmap.
1168 		 */
1169 		if (!(bits & esp->scsi_id_mask))
1170 			goto do_reset;
1171 		bits &= ~esp->scsi_id_mask;
1172 		if (!bits || (bits & (bits - 1)))
1173 			goto do_reset;
1174 
1175 		target = ffs(bits) - 1;
1176 		lun = (esp_read8(ESP_FDATA) & 0x7);
1177 
1178 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1179 		if (esp->rev == ESP100) {
1180 			u8 ireg = esp_read8(ESP_INTRPT);
1181 			/* This chip has a bug during reselection that can
1182 			 * cause a spurious illegal-command interrupt, which
1183 			 * we simply ACK here.  Another possibility is a bus
1184 			 * reset so we must check for that.
1185 			 */
1186 			if (ireg & ESP_INTR_SR)
1187 				goto do_reset;
1188 		}
1189 		scsi_esp_cmd(esp, ESP_CMD_NULL);
1190 	}
1191 
1192 	esp_write_tgt_sync(esp, target);
1193 	esp_write_tgt_config3(esp, target);
1194 
1195 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1196 
1197 	if (esp->rev == FASHME)
1198 		esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1199 			   ESP_BUSID);
1200 
1201 	tp = &esp->target[target];
1202 	dev = __scsi_device_lookup_by_target(tp->starget, lun);
1203 	if (!dev) {
1204 		shost_printk(KERN_ERR, esp->host,
1205 			     "Reconnect, no lp tgt[%u] lun[%u]\n",
1206 			     target, lun);
1207 		goto do_reset;
1208 	}
1209 	lp = dev->hostdata;
1210 
1211 	ent = lp->non_tagged_cmd;
1212 	if (!ent) {
1213 		ent = esp_reconnect_with_tag(esp, lp);
1214 		if (!ent)
1215 			goto do_reset;
1216 	}
1217 
1218 	esp->active_cmd = ent;
1219 
1220 	esp_event(esp, ESP_EVENT_CHECK_PHASE);
1221 	esp_restore_pointers(esp, ent);
1222 	esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1223 	return 1;
1224 
1225 do_reset:
1226 	esp_schedule_reset(esp);
1227 	return 0;
1228 }
1229 
1230 static int esp_finish_select(struct esp *esp)
1231 {
1232 	struct esp_cmd_entry *ent;
1233 	struct scsi_cmnd *cmd;
1234 
1235 	/* No longer selecting.  */
1236 	esp->select_state = ESP_SELECT_NONE;
1237 
1238 	esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1239 	ent = esp->active_cmd;
1240 	cmd = ent->cmd;
1241 
1242 	if (esp->ops->dma_error(esp)) {
1243 		/* If we see a DMA error during or as a result of selection,
1244 		 * all bets are off.
1245 		 */
1246 		esp_schedule_reset(esp);
1247 		esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1248 		return 0;
1249 	}
1250 
1251 	esp->ops->dma_invalidate(esp);
1252 
1253 	if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1254 		struct esp_target_data *tp = &esp->target[cmd->device->id];
1255 
1256 		/* Carefully back out of the selection attempt.  Release
1257 		 * resources (such as DMA mapping & TAG) and reset state (such
1258 		 * as message out and command delivery variables).
1259 		 */
1260 		if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1261 			esp_unmap_dma(esp, cmd);
1262 			esp_free_lun_tag(ent, cmd->device->hostdata);
1263 			tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1264 			esp->cmd_bytes_ptr = NULL;
1265 			esp->cmd_bytes_left = 0;
1266 		} else {
1267 			esp_unmap_sense(esp, ent);
1268 		}
1269 
1270 		/* Now that the state is unwound properly, put back onto
1271 		 * the issue queue.  This command is no longer active.
1272 		 */
1273 		list_move(&ent->list, &esp->queued_cmds);
1274 		esp->active_cmd = NULL;
1275 
1276 		/* Return value ignored by caller, it directly invokes
1277 		 * esp_reconnect().
1278 		 */
1279 		return 0;
1280 	}
1281 
1282 	if (esp->ireg == ESP_INTR_DC) {
1283 		struct scsi_device *dev = cmd->device;
1284 
1285 		/* Disconnect.  Make sure we re-negotiate sync and
1286 		 * wide parameters if this target starts responding
1287 		 * again in the future.
1288 		 */
1289 		esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1290 
1291 		scsi_esp_cmd(esp, ESP_CMD_ESEL);
1292 		esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1293 		return 1;
1294 	}
1295 
1296 	if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1297 		/* Selection successful.  On pre-FAST chips we have
1298 		 * to do a NOP and possibly clean out the FIFO.
1299 		 */
1300 		if (esp->rev <= ESP236) {
1301 			int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1302 
1303 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1304 
1305 			if (!fcnt &&
1306 			    (!esp->prev_soff ||
1307 			     ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1308 				esp_flush_fifo(esp);
1309 		}
1310 
1311 		/* If we are doing a Select And Stop command, negotiation, etc.
1312 		 * we'll do the right thing as we transition to the next phase.
1313 		 */
1314 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1315 		return 0;
1316 	}
1317 
1318 	shost_printk(KERN_INFO, esp->host,
1319 		     "Unexpected selection completion ireg[%x]\n", esp->ireg);
1320 	esp_schedule_reset(esp);
1321 	return 0;
1322 }
1323 
1324 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1325 			       struct scsi_cmnd *cmd)
1326 {
1327 	int fifo_cnt, ecount, bytes_sent, flush_fifo;
1328 
1329 	fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1330 	if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1331 		fifo_cnt <<= 1;
1332 
1333 	ecount = 0;
1334 	if (!(esp->sreg & ESP_STAT_TCNT)) {
1335 		ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1336 			  (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1337 		if (esp->rev == FASHME)
1338 			ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1339 		if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
1340 			ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
1341 	}
1342 
1343 	bytes_sent = esp->data_dma_len;
1344 	bytes_sent -= ecount;
1345 	bytes_sent -= esp->send_cmd_residual;
1346 
1347 	/*
1348 	 * The am53c974 has a DMA 'pecularity'. The doc states:
1349 	 * In some odd byte conditions, one residual byte will
1350 	 * be left in the SCSI FIFO, and the FIFO Flags will
1351 	 * never count to '0 '. When this happens, the residual
1352 	 * byte should be retrieved via PIO following completion
1353 	 * of the BLAST operation.
1354 	 */
1355 	if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
1356 		size_t count = 1;
1357 		size_t offset = bytes_sent;
1358 		u8 bval = esp_read8(ESP_FDATA);
1359 
1360 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
1361 			ent->sense_ptr[bytes_sent] = bval;
1362 		else {
1363 			struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
1364 			u8 *ptr;
1365 
1366 			ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg,
1367 						  &offset, &count);
1368 			if (likely(ptr)) {
1369 				*(ptr + offset) = bval;
1370 				scsi_kunmap_atomic_sg(ptr);
1371 			}
1372 		}
1373 		bytes_sent += fifo_cnt;
1374 		ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
1375 	}
1376 	if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1377 		bytes_sent -= fifo_cnt;
1378 
1379 	flush_fifo = 0;
1380 	if (!esp->prev_soff) {
1381 		/* Synchronous data transfer, always flush fifo. */
1382 		flush_fifo = 1;
1383 	} else {
1384 		if (esp->rev == ESP100) {
1385 			u32 fflags, phase;
1386 
1387 			/* ESP100 has a chip bug where in the synchronous data
1388 			 * phase it can mistake a final long REQ pulse from the
1389 			 * target as an extra data byte.  Fun.
1390 			 *
1391 			 * To detect this case we resample the status register
1392 			 * and fifo flags.  If we're still in a data phase and
1393 			 * we see spurious chunks in the fifo, we return error
1394 			 * to the caller which should reset and set things up
1395 			 * such that we only try future transfers to this
1396 			 * target in synchronous mode.
1397 			 */
1398 			esp->sreg = esp_read8(ESP_STATUS);
1399 			phase = esp->sreg & ESP_STAT_PMASK;
1400 			fflags = esp_read8(ESP_FFLAGS);
1401 
1402 			if ((phase == ESP_DOP &&
1403 			     (fflags & ESP_FF_ONOTZERO)) ||
1404 			    (phase == ESP_DIP &&
1405 			     (fflags & ESP_FF_FBYTES)))
1406 				return -1;
1407 		}
1408 		if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1409 			flush_fifo = 1;
1410 	}
1411 
1412 	if (flush_fifo)
1413 		esp_flush_fifo(esp);
1414 
1415 	return bytes_sent;
1416 }
1417 
1418 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1419 			u8 scsi_period, u8 scsi_offset,
1420 			u8 esp_stp, u8 esp_soff)
1421 {
1422 	spi_period(tp->starget) = scsi_period;
1423 	spi_offset(tp->starget) = scsi_offset;
1424 	spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1425 
1426 	if (esp_soff) {
1427 		esp_stp &= 0x1f;
1428 		esp_soff |= esp->radelay;
1429 		if (esp->rev >= FAS236) {
1430 			u8 bit = ESP_CONFIG3_FSCSI;
1431 			if (esp->rev >= FAS100A)
1432 				bit = ESP_CONFIG3_FAST;
1433 
1434 			if (scsi_period < 50) {
1435 				if (esp->rev == FASHME)
1436 					esp_soff &= ~esp->radelay;
1437 				tp->esp_config3 |= bit;
1438 			} else {
1439 				tp->esp_config3 &= ~bit;
1440 			}
1441 			esp->prev_cfg3 = tp->esp_config3;
1442 			esp_write8(esp->prev_cfg3, ESP_CFG3);
1443 		}
1444 	}
1445 
1446 	tp->esp_period = esp->prev_stp = esp_stp;
1447 	tp->esp_offset = esp->prev_soff = esp_soff;
1448 
1449 	esp_write8(esp_soff, ESP_SOFF);
1450 	esp_write8(esp_stp, ESP_STP);
1451 
1452 	tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1453 
1454 	spi_display_xfer_agreement(tp->starget);
1455 }
1456 
1457 static void esp_msgin_reject(struct esp *esp)
1458 {
1459 	struct esp_cmd_entry *ent = esp->active_cmd;
1460 	struct scsi_cmnd *cmd = ent->cmd;
1461 	struct esp_target_data *tp;
1462 	int tgt;
1463 
1464 	tgt = cmd->device->id;
1465 	tp = &esp->target[tgt];
1466 
1467 	if (tp->flags & ESP_TGT_NEGO_WIDE) {
1468 		tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1469 
1470 		if (!esp_need_to_nego_sync(tp)) {
1471 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
1472 			scsi_esp_cmd(esp, ESP_CMD_RATN);
1473 		} else {
1474 			esp->msg_out_len =
1475 				spi_populate_sync_msg(&esp->msg_out[0],
1476 						      tp->nego_goal_period,
1477 						      tp->nego_goal_offset);
1478 			tp->flags |= ESP_TGT_NEGO_SYNC;
1479 			scsi_esp_cmd(esp, ESP_CMD_SATN);
1480 		}
1481 		return;
1482 	}
1483 
1484 	if (tp->flags & ESP_TGT_NEGO_SYNC) {
1485 		tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1486 		tp->esp_period = 0;
1487 		tp->esp_offset = 0;
1488 		esp_setsync(esp, tp, 0, 0, 0, 0);
1489 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1490 		return;
1491 	}
1492 
1493 	shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n");
1494 	esp_schedule_reset(esp);
1495 }
1496 
1497 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1498 {
1499 	u8 period = esp->msg_in[3];
1500 	u8 offset = esp->msg_in[4];
1501 	u8 stp;
1502 
1503 	if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1504 		goto do_reject;
1505 
1506 	if (offset > 15)
1507 		goto do_reject;
1508 
1509 	if (offset) {
1510 		int one_clock;
1511 
1512 		if (period > esp->max_period) {
1513 			period = offset = 0;
1514 			goto do_sdtr;
1515 		}
1516 		if (period < esp->min_period)
1517 			goto do_reject;
1518 
1519 		one_clock = esp->ccycle / 1000;
1520 		stp = DIV_ROUND_UP(period << 2, one_clock);
1521 		if (stp && esp->rev >= FAS236) {
1522 			if (stp >= 50)
1523 				stp--;
1524 		}
1525 	} else {
1526 		stp = 0;
1527 	}
1528 
1529 	esp_setsync(esp, tp, period, offset, stp, offset);
1530 	return;
1531 
1532 do_reject:
1533 	esp->msg_out[0] = MESSAGE_REJECT;
1534 	esp->msg_out_len = 1;
1535 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1536 	return;
1537 
1538 do_sdtr:
1539 	tp->nego_goal_period = period;
1540 	tp->nego_goal_offset = offset;
1541 	esp->msg_out_len =
1542 		spi_populate_sync_msg(&esp->msg_out[0],
1543 				      tp->nego_goal_period,
1544 				      tp->nego_goal_offset);
1545 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1546 }
1547 
1548 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1549 {
1550 	int size = 8 << esp->msg_in[3];
1551 	u8 cfg3;
1552 
1553 	if (esp->rev != FASHME)
1554 		goto do_reject;
1555 
1556 	if (size != 8 && size != 16)
1557 		goto do_reject;
1558 
1559 	if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1560 		goto do_reject;
1561 
1562 	cfg3 = tp->esp_config3;
1563 	if (size == 16) {
1564 		tp->flags |= ESP_TGT_WIDE;
1565 		cfg3 |= ESP_CONFIG3_EWIDE;
1566 	} else {
1567 		tp->flags &= ~ESP_TGT_WIDE;
1568 		cfg3 &= ~ESP_CONFIG3_EWIDE;
1569 	}
1570 	tp->esp_config3 = cfg3;
1571 	esp->prev_cfg3 = cfg3;
1572 	esp_write8(cfg3, ESP_CFG3);
1573 
1574 	tp->flags &= ~ESP_TGT_NEGO_WIDE;
1575 
1576 	spi_period(tp->starget) = 0;
1577 	spi_offset(tp->starget) = 0;
1578 	if (!esp_need_to_nego_sync(tp)) {
1579 		tp->flags &= ~ESP_TGT_CHECK_NEGO;
1580 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1581 	} else {
1582 		esp->msg_out_len =
1583 			spi_populate_sync_msg(&esp->msg_out[0],
1584 					      tp->nego_goal_period,
1585 					      tp->nego_goal_offset);
1586 		tp->flags |= ESP_TGT_NEGO_SYNC;
1587 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1588 	}
1589 	return;
1590 
1591 do_reject:
1592 	esp->msg_out[0] = MESSAGE_REJECT;
1593 	esp->msg_out_len = 1;
1594 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1595 }
1596 
1597 static void esp_msgin_extended(struct esp *esp)
1598 {
1599 	struct esp_cmd_entry *ent = esp->active_cmd;
1600 	struct scsi_cmnd *cmd = ent->cmd;
1601 	struct esp_target_data *tp;
1602 	int tgt = cmd->device->id;
1603 
1604 	tp = &esp->target[tgt];
1605 	if (esp->msg_in[2] == EXTENDED_SDTR) {
1606 		esp_msgin_sdtr(esp, tp);
1607 		return;
1608 	}
1609 	if (esp->msg_in[2] == EXTENDED_WDTR) {
1610 		esp_msgin_wdtr(esp, tp);
1611 		return;
1612 	}
1613 
1614 	shost_printk(KERN_INFO, esp->host,
1615 		     "Unexpected extended msg type %x\n", esp->msg_in[2]);
1616 
1617 	esp->msg_out[0] = MESSAGE_REJECT;
1618 	esp->msg_out_len = 1;
1619 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1620 }
1621 
1622 /* Analyze msgin bytes received from target so far.  Return non-zero
1623  * if there are more bytes needed to complete the message.
1624  */
1625 static int esp_msgin_process(struct esp *esp)
1626 {
1627 	u8 msg0 = esp->msg_in[0];
1628 	int len = esp->msg_in_len;
1629 
1630 	if (msg0 & 0x80) {
1631 		/* Identify */
1632 		shost_printk(KERN_INFO, esp->host,
1633 			     "Unexpected msgin identify\n");
1634 		return 0;
1635 	}
1636 
1637 	switch (msg0) {
1638 	case EXTENDED_MESSAGE:
1639 		if (len == 1)
1640 			return 1;
1641 		if (len < esp->msg_in[1] + 2)
1642 			return 1;
1643 		esp_msgin_extended(esp);
1644 		return 0;
1645 
1646 	case IGNORE_WIDE_RESIDUE: {
1647 		struct esp_cmd_entry *ent;
1648 		struct esp_cmd_priv *spriv;
1649 		if (len == 1)
1650 			return 1;
1651 
1652 		if (esp->msg_in[1] != 1)
1653 			goto do_reject;
1654 
1655 		ent = esp->active_cmd;
1656 		spriv = ESP_CMD_PRIV(ent->cmd);
1657 
1658 		if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1659 			spriv->cur_sg = spriv->prv_sg;
1660 			spriv->cur_residue = 1;
1661 		} else
1662 			spriv->cur_residue++;
1663 		spriv->tot_residue++;
1664 		return 0;
1665 	}
1666 	case NOP:
1667 		return 0;
1668 	case RESTORE_POINTERS:
1669 		esp_restore_pointers(esp, esp->active_cmd);
1670 		return 0;
1671 	case SAVE_POINTERS:
1672 		esp_save_pointers(esp, esp->active_cmd);
1673 		return 0;
1674 
1675 	case COMMAND_COMPLETE:
1676 	case DISCONNECT: {
1677 		struct esp_cmd_entry *ent = esp->active_cmd;
1678 
1679 		ent->message = msg0;
1680 		esp_event(esp, ESP_EVENT_FREE_BUS);
1681 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1682 		return 0;
1683 	}
1684 	case MESSAGE_REJECT:
1685 		esp_msgin_reject(esp);
1686 		return 0;
1687 
1688 	default:
1689 	do_reject:
1690 		esp->msg_out[0] = MESSAGE_REJECT;
1691 		esp->msg_out_len = 1;
1692 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1693 		return 0;
1694 	}
1695 }
1696 
1697 static int esp_process_event(struct esp *esp)
1698 {
1699 	int write, i;
1700 
1701 again:
1702 	write = 0;
1703 	esp_log_event("process event %d phase %x\n",
1704 		      esp->event, esp->sreg & ESP_STAT_PMASK);
1705 	switch (esp->event) {
1706 	case ESP_EVENT_CHECK_PHASE:
1707 		switch (esp->sreg & ESP_STAT_PMASK) {
1708 		case ESP_DOP:
1709 			esp_event(esp, ESP_EVENT_DATA_OUT);
1710 			break;
1711 		case ESP_DIP:
1712 			esp_event(esp, ESP_EVENT_DATA_IN);
1713 			break;
1714 		case ESP_STATP:
1715 			esp_flush_fifo(esp);
1716 			scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1717 			esp_event(esp, ESP_EVENT_STATUS);
1718 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1719 			return 1;
1720 
1721 		case ESP_MOP:
1722 			esp_event(esp, ESP_EVENT_MSGOUT);
1723 			break;
1724 
1725 		case ESP_MIP:
1726 			esp_event(esp, ESP_EVENT_MSGIN);
1727 			break;
1728 
1729 		case ESP_CMDP:
1730 			esp_event(esp, ESP_EVENT_CMD_START);
1731 			break;
1732 
1733 		default:
1734 			shost_printk(KERN_INFO, esp->host,
1735 				     "Unexpected phase, sreg=%02x\n",
1736 				     esp->sreg);
1737 			esp_schedule_reset(esp);
1738 			return 0;
1739 		}
1740 		goto again;
1741 
1742 	case ESP_EVENT_DATA_IN:
1743 		write = 1;
1744 		/* fallthru */
1745 
1746 	case ESP_EVENT_DATA_OUT: {
1747 		struct esp_cmd_entry *ent = esp->active_cmd;
1748 		struct scsi_cmnd *cmd = ent->cmd;
1749 		dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1750 		unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1751 
1752 		if (esp->rev == ESP100)
1753 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1754 
1755 		if (write)
1756 			ent->flags |= ESP_CMD_FLAG_WRITE;
1757 		else
1758 			ent->flags &= ~ESP_CMD_FLAG_WRITE;
1759 
1760 		if (esp->ops->dma_length_limit)
1761 			dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1762 							     dma_len);
1763 		else
1764 			dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1765 
1766 		esp->data_dma_len = dma_len;
1767 
1768 		if (!dma_len) {
1769 			shost_printk(KERN_ERR, esp->host,
1770 				     "DMA length is zero!\n");
1771 			shost_printk(KERN_ERR, esp->host,
1772 				     "cur adr[%08llx] len[%08x]\n",
1773 				     (unsigned long long)esp_cur_dma_addr(ent, cmd),
1774 				     esp_cur_dma_len(ent, cmd));
1775 			esp_schedule_reset(esp);
1776 			return 0;
1777 		}
1778 
1779 		esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
1780 				  (unsigned long long)dma_addr, dma_len, write);
1781 
1782 		esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1783 				       write, ESP_CMD_DMA | ESP_CMD_TI);
1784 		esp_event(esp, ESP_EVENT_DATA_DONE);
1785 		break;
1786 	}
1787 	case ESP_EVENT_DATA_DONE: {
1788 		struct esp_cmd_entry *ent = esp->active_cmd;
1789 		struct scsi_cmnd *cmd = ent->cmd;
1790 		int bytes_sent;
1791 
1792 		if (esp->ops->dma_error(esp)) {
1793 			shost_printk(KERN_INFO, esp->host,
1794 				     "data done, DMA error, resetting\n");
1795 			esp_schedule_reset(esp);
1796 			return 0;
1797 		}
1798 
1799 		if (ent->flags & ESP_CMD_FLAG_WRITE) {
1800 			/* XXX parity errors, etc. XXX */
1801 
1802 			esp->ops->dma_drain(esp);
1803 		}
1804 		esp->ops->dma_invalidate(esp);
1805 
1806 		if (esp->ireg != ESP_INTR_BSERV) {
1807 			/* We should always see exactly a bus-service
1808 			 * interrupt at the end of a successful transfer.
1809 			 */
1810 			shost_printk(KERN_INFO, esp->host,
1811 				     "data done, not BSERV, resetting\n");
1812 			esp_schedule_reset(esp);
1813 			return 0;
1814 		}
1815 
1816 		bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1817 
1818 		esp_log_datadone("data done flgs[%x] sent[%d]\n",
1819 				 ent->flags, bytes_sent);
1820 
1821 		if (bytes_sent < 0) {
1822 			/* XXX force sync mode for this target XXX */
1823 			esp_schedule_reset(esp);
1824 			return 0;
1825 		}
1826 
1827 		esp_advance_dma(esp, ent, cmd, bytes_sent);
1828 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1829 		goto again;
1830 	}
1831 
1832 	case ESP_EVENT_STATUS: {
1833 		struct esp_cmd_entry *ent = esp->active_cmd;
1834 
1835 		if (esp->ireg & ESP_INTR_FDONE) {
1836 			ent->status = esp_read8(ESP_FDATA);
1837 			ent->message = esp_read8(ESP_FDATA);
1838 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1839 		} else if (esp->ireg == ESP_INTR_BSERV) {
1840 			ent->status = esp_read8(ESP_FDATA);
1841 			ent->message = 0xff;
1842 			esp_event(esp, ESP_EVENT_MSGIN);
1843 			return 0;
1844 		}
1845 
1846 		if (ent->message != COMMAND_COMPLETE) {
1847 			shost_printk(KERN_INFO, esp->host,
1848 				     "Unexpected message %x in status\n",
1849 				     ent->message);
1850 			esp_schedule_reset(esp);
1851 			return 0;
1852 		}
1853 
1854 		esp_event(esp, ESP_EVENT_FREE_BUS);
1855 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1856 		break;
1857 	}
1858 	case ESP_EVENT_FREE_BUS: {
1859 		struct esp_cmd_entry *ent = esp->active_cmd;
1860 		struct scsi_cmnd *cmd = ent->cmd;
1861 
1862 		if (ent->message == COMMAND_COMPLETE ||
1863 		    ent->message == DISCONNECT)
1864 			scsi_esp_cmd(esp, ESP_CMD_ESEL);
1865 
1866 		if (ent->message == COMMAND_COMPLETE) {
1867 			esp_log_cmddone("Command done status[%x] message[%x]\n",
1868 					ent->status, ent->message);
1869 			if (ent->status == SAM_STAT_TASK_SET_FULL)
1870 				esp_event_queue_full(esp, ent);
1871 
1872 			if (ent->status == SAM_STAT_CHECK_CONDITION &&
1873 			    !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1874 				ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1875 				esp_autosense(esp, ent);
1876 			} else {
1877 				esp_cmd_is_done(esp, ent, cmd,
1878 						compose_result(ent->status,
1879 							       ent->message,
1880 							       DID_OK));
1881 			}
1882 		} else if (ent->message == DISCONNECT) {
1883 			esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
1884 					   cmd->device->id,
1885 					   ent->tag[0], ent->tag[1]);
1886 
1887 			esp->active_cmd = NULL;
1888 			esp_maybe_execute_command(esp);
1889 		} else {
1890 			shost_printk(KERN_INFO, esp->host,
1891 				     "Unexpected message %x in freebus\n",
1892 				     ent->message);
1893 			esp_schedule_reset(esp);
1894 			return 0;
1895 		}
1896 		if (esp->active_cmd)
1897 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1898 		break;
1899 	}
1900 	case ESP_EVENT_MSGOUT: {
1901 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1902 
1903 		if (esp_debug & ESP_DEBUG_MSGOUT) {
1904 			int i;
1905 			printk("ESP: Sending message [ ");
1906 			for (i = 0; i < esp->msg_out_len; i++)
1907 				printk("%02x ", esp->msg_out[i]);
1908 			printk("]\n");
1909 		}
1910 
1911 		if (esp->rev == FASHME) {
1912 			int i;
1913 
1914 			/* Always use the fifo.  */
1915 			for (i = 0; i < esp->msg_out_len; i++) {
1916 				esp_write8(esp->msg_out[i], ESP_FDATA);
1917 				esp_write8(0, ESP_FDATA);
1918 			}
1919 			scsi_esp_cmd(esp, ESP_CMD_TI);
1920 		} else {
1921 			if (esp->msg_out_len == 1) {
1922 				esp_write8(esp->msg_out[0], ESP_FDATA);
1923 				scsi_esp_cmd(esp, ESP_CMD_TI);
1924 			} else if (esp->flags & ESP_FLAG_USE_FIFO) {
1925 				for (i = 0; i < esp->msg_out_len; i++)
1926 					esp_write8(esp->msg_out[i], ESP_FDATA);
1927 				scsi_esp_cmd(esp, ESP_CMD_TI);
1928 			} else {
1929 				/* Use DMA. */
1930 				memcpy(esp->command_block,
1931 				       esp->msg_out,
1932 				       esp->msg_out_len);
1933 
1934 				esp->ops->send_dma_cmd(esp,
1935 						       esp->command_block_dma,
1936 						       esp->msg_out_len,
1937 						       esp->msg_out_len,
1938 						       0,
1939 						       ESP_CMD_DMA|ESP_CMD_TI);
1940 			}
1941 		}
1942 		esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1943 		break;
1944 	}
1945 	case ESP_EVENT_MSGOUT_DONE:
1946 		if (esp->rev == FASHME) {
1947 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1948 		} else {
1949 			if (esp->msg_out_len > 1)
1950 				esp->ops->dma_invalidate(esp);
1951 
1952 			/* XXX if the chip went into disconnected mode,
1953 			 * we can't run the phase state machine anyway.
1954 			 */
1955 			if (!(esp->ireg & ESP_INTR_DC))
1956 				scsi_esp_cmd(esp, ESP_CMD_NULL);
1957 		}
1958 
1959 		esp->msg_out_len = 0;
1960 
1961 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1962 		goto again;
1963 	case ESP_EVENT_MSGIN:
1964 		if (esp->ireg & ESP_INTR_BSERV) {
1965 			if (esp->rev == FASHME) {
1966 				if (!(esp_read8(ESP_STATUS2) &
1967 				      ESP_STAT2_FEMPTY))
1968 					scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1969 			} else {
1970 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1971 				if (esp->rev == ESP100)
1972 					scsi_esp_cmd(esp, ESP_CMD_NULL);
1973 			}
1974 			scsi_esp_cmd(esp, ESP_CMD_TI);
1975 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1976 			return 1;
1977 		}
1978 		if (esp->ireg & ESP_INTR_FDONE) {
1979 			u8 val;
1980 
1981 			if (esp->rev == FASHME)
1982 				val = esp->fifo[0];
1983 			else
1984 				val = esp_read8(ESP_FDATA);
1985 			esp->msg_in[esp->msg_in_len++] = val;
1986 
1987 			esp_log_msgin("Got msgin byte %x\n", val);
1988 
1989 			if (!esp_msgin_process(esp))
1990 				esp->msg_in_len = 0;
1991 
1992 			if (esp->rev == FASHME)
1993 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1994 
1995 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1996 
1997 			/* Check whether a bus reset is to be done next */
1998 			if (esp->event == ESP_EVENT_RESET)
1999 				return 0;
2000 
2001 			if (esp->event != ESP_EVENT_FREE_BUS)
2002 				esp_event(esp, ESP_EVENT_CHECK_PHASE);
2003 		} else {
2004 			shost_printk(KERN_INFO, esp->host,
2005 				     "MSGIN neither BSERV not FDON, resetting");
2006 			esp_schedule_reset(esp);
2007 			return 0;
2008 		}
2009 		break;
2010 	case ESP_EVENT_CMD_START:
2011 		memcpy(esp->command_block, esp->cmd_bytes_ptr,
2012 		       esp->cmd_bytes_left);
2013 		esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
2014 		esp_event(esp, ESP_EVENT_CMD_DONE);
2015 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
2016 		break;
2017 	case ESP_EVENT_CMD_DONE:
2018 		esp->ops->dma_invalidate(esp);
2019 		if (esp->ireg & ESP_INTR_BSERV) {
2020 			esp_event(esp, ESP_EVENT_CHECK_PHASE);
2021 			goto again;
2022 		}
2023 		esp_schedule_reset(esp);
2024 		return 0;
2025 
2026 	case ESP_EVENT_RESET:
2027 		scsi_esp_cmd(esp, ESP_CMD_RS);
2028 		break;
2029 
2030 	default:
2031 		shost_printk(KERN_INFO, esp->host,
2032 			     "Unexpected event %x, resetting\n", esp->event);
2033 		esp_schedule_reset(esp);
2034 		return 0;
2035 	}
2036 	return 1;
2037 }
2038 
2039 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
2040 {
2041 	struct scsi_cmnd *cmd = ent->cmd;
2042 
2043 	esp_unmap_dma(esp, cmd);
2044 	esp_free_lun_tag(ent, cmd->device->hostdata);
2045 	cmd->result = DID_RESET << 16;
2046 
2047 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
2048 		esp_unmap_sense(esp, ent);
2049 
2050 	cmd->scsi_done(cmd);
2051 	list_del(&ent->list);
2052 	esp_put_ent(esp, ent);
2053 }
2054 
2055 static void esp_clear_hold(struct scsi_device *dev, void *data)
2056 {
2057 	struct esp_lun_data *lp = dev->hostdata;
2058 
2059 	BUG_ON(lp->num_tagged);
2060 	lp->hold = 0;
2061 }
2062 
2063 static void esp_reset_cleanup(struct esp *esp)
2064 {
2065 	struct esp_cmd_entry *ent, *tmp;
2066 	int i;
2067 
2068 	list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2069 		struct scsi_cmnd *cmd = ent->cmd;
2070 
2071 		list_del(&ent->list);
2072 		cmd->result = DID_RESET << 16;
2073 		cmd->scsi_done(cmd);
2074 		esp_put_ent(esp, ent);
2075 	}
2076 
2077 	list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2078 		if (ent == esp->active_cmd)
2079 			esp->active_cmd = NULL;
2080 		esp_reset_cleanup_one(esp, ent);
2081 	}
2082 
2083 	BUG_ON(esp->active_cmd != NULL);
2084 
2085 	/* Force renegotiation of sync/wide transfers.  */
2086 	for (i = 0; i < ESP_MAX_TARGET; i++) {
2087 		struct esp_target_data *tp = &esp->target[i];
2088 
2089 		tp->esp_period = 0;
2090 		tp->esp_offset = 0;
2091 		tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2092 				     ESP_CONFIG3_FSCSI |
2093 				     ESP_CONFIG3_FAST);
2094 		tp->flags &= ~ESP_TGT_WIDE;
2095 		tp->flags |= ESP_TGT_CHECK_NEGO;
2096 
2097 		if (tp->starget)
2098 			__starget_for_each_device(tp->starget, NULL,
2099 						  esp_clear_hold);
2100 	}
2101 	esp->flags &= ~ESP_FLAG_RESETTING;
2102 }
2103 
2104 /* Runs under host->lock */
2105 static void __esp_interrupt(struct esp *esp)
2106 {
2107 	int finish_reset, intr_done;
2108 	u8 phase;
2109 
2110        /*
2111 	* Once INTRPT is read STATUS and SSTEP are cleared.
2112 	*/
2113 	esp->sreg = esp_read8(ESP_STATUS);
2114 	esp->seqreg = esp_read8(ESP_SSTEP);
2115 	esp->ireg = esp_read8(ESP_INTRPT);
2116 
2117 	if (esp->flags & ESP_FLAG_RESETTING) {
2118 		finish_reset = 1;
2119 	} else {
2120 		if (esp_check_gross_error(esp))
2121 			return;
2122 
2123 		finish_reset = esp_check_spur_intr(esp);
2124 		if (finish_reset < 0)
2125 			return;
2126 	}
2127 
2128 	if (esp->ireg & ESP_INTR_SR)
2129 		finish_reset = 1;
2130 
2131 	if (finish_reset) {
2132 		esp_reset_cleanup(esp);
2133 		if (esp->eh_reset) {
2134 			complete(esp->eh_reset);
2135 			esp->eh_reset = NULL;
2136 		}
2137 		return;
2138 	}
2139 
2140 	phase = (esp->sreg & ESP_STAT_PMASK);
2141 	if (esp->rev == FASHME) {
2142 		if (((phase != ESP_DIP && phase != ESP_DOP) &&
2143 		     esp->select_state == ESP_SELECT_NONE &&
2144 		     esp->event != ESP_EVENT_STATUS &&
2145 		     esp->event != ESP_EVENT_DATA_DONE) ||
2146 		    (esp->ireg & ESP_INTR_RSEL)) {
2147 			esp->sreg2 = esp_read8(ESP_STATUS2);
2148 			if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2149 			    (esp->sreg2 & ESP_STAT2_F1BYTE))
2150 				hme_read_fifo(esp);
2151 		}
2152 	}
2153 
2154 	esp_log_intr("intr sreg[%02x] seqreg[%02x] "
2155 		     "sreg2[%02x] ireg[%02x]\n",
2156 		     esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2157 
2158 	intr_done = 0;
2159 
2160 	if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2161 		shost_printk(KERN_INFO, esp->host,
2162 			     "unexpected IREG %02x\n", esp->ireg);
2163 		if (esp->ireg & ESP_INTR_IC)
2164 			esp_dump_cmd_log(esp);
2165 
2166 		esp_schedule_reset(esp);
2167 	} else {
2168 		if (esp->ireg & ESP_INTR_RSEL) {
2169 			if (esp->active_cmd)
2170 				(void) esp_finish_select(esp);
2171 			intr_done = esp_reconnect(esp);
2172 		} else {
2173 			/* Some combination of FDONE, BSERV, DC. */
2174 			if (esp->select_state != ESP_SELECT_NONE)
2175 				intr_done = esp_finish_select(esp);
2176 		}
2177 	}
2178 	while (!intr_done)
2179 		intr_done = esp_process_event(esp);
2180 }
2181 
2182 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2183 {
2184 	struct esp *esp = dev_id;
2185 	unsigned long flags;
2186 	irqreturn_t ret;
2187 
2188 	spin_lock_irqsave(esp->host->host_lock, flags);
2189 	ret = IRQ_NONE;
2190 	if (esp->ops->irq_pending(esp)) {
2191 		ret = IRQ_HANDLED;
2192 		for (;;) {
2193 			int i;
2194 
2195 			__esp_interrupt(esp);
2196 			if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2197 				break;
2198 			esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2199 
2200 			for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2201 				if (esp->ops->irq_pending(esp))
2202 					break;
2203 			}
2204 			if (i == ESP_QUICKIRQ_LIMIT)
2205 				break;
2206 		}
2207 	}
2208 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2209 
2210 	return ret;
2211 }
2212 EXPORT_SYMBOL(scsi_esp_intr);
2213 
2214 static void esp_get_revision(struct esp *esp)
2215 {
2216 	u8 val;
2217 
2218 	esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2219 	if (esp->config2 == 0) {
2220 		esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2221 		esp_write8(esp->config2, ESP_CFG2);
2222 
2223 		val = esp_read8(ESP_CFG2);
2224 		val &= ~ESP_CONFIG2_MAGIC;
2225 
2226 		esp->config2 = 0;
2227 		if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2228 			/*
2229 			 * If what we write to cfg2 does not come back,
2230 			 * cfg2 is not implemented.
2231 			 * Therefore this must be a plain esp100.
2232 			 */
2233 			esp->rev = ESP100;
2234 			return;
2235 		}
2236 	}
2237 
2238 	esp_set_all_config3(esp, 5);
2239 	esp->prev_cfg3 = 5;
2240 	esp_write8(esp->config2, ESP_CFG2);
2241 	esp_write8(0, ESP_CFG3);
2242 	esp_write8(esp->prev_cfg3, ESP_CFG3);
2243 
2244 	val = esp_read8(ESP_CFG3);
2245 	if (val != 5) {
2246 		/* The cfg2 register is implemented, however
2247 		 * cfg3 is not, must be esp100a.
2248 		 */
2249 		esp->rev = ESP100A;
2250 	} else {
2251 		esp_set_all_config3(esp, 0);
2252 		esp->prev_cfg3 = 0;
2253 		esp_write8(esp->prev_cfg3, ESP_CFG3);
2254 
2255 		/* All of cfg{1,2,3} implemented, must be one of
2256 		 * the fas variants, figure out which one.
2257 		 */
2258 		if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2259 			esp->rev = FAST;
2260 			esp->sync_defp = SYNC_DEFP_FAST;
2261 		} else {
2262 			esp->rev = ESP236;
2263 		}
2264 	}
2265 }
2266 
2267 static void esp_init_swstate(struct esp *esp)
2268 {
2269 	int i;
2270 
2271 	INIT_LIST_HEAD(&esp->queued_cmds);
2272 	INIT_LIST_HEAD(&esp->active_cmds);
2273 	INIT_LIST_HEAD(&esp->esp_cmd_pool);
2274 
2275 	/* Start with a clear state, domain validation (via ->slave_configure,
2276 	 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2277 	 * commands.
2278 	 */
2279 	for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2280 		esp->target[i].flags = 0;
2281 		esp->target[i].nego_goal_period = 0;
2282 		esp->target[i].nego_goal_offset = 0;
2283 		esp->target[i].nego_goal_width = 0;
2284 		esp->target[i].nego_goal_tags = 0;
2285 	}
2286 }
2287 
2288 /* This places the ESP into a known state at boot time. */
2289 static void esp_bootup_reset(struct esp *esp)
2290 {
2291 	u8 val;
2292 
2293 	/* Reset the DMA */
2294 	esp->ops->reset_dma(esp);
2295 
2296 	/* Reset the ESP */
2297 	esp_reset_esp(esp);
2298 
2299 	/* Reset the SCSI bus, but tell ESP not to generate an irq */
2300 	val = esp_read8(ESP_CFG1);
2301 	val |= ESP_CONFIG1_SRRDISAB;
2302 	esp_write8(val, ESP_CFG1);
2303 
2304 	scsi_esp_cmd(esp, ESP_CMD_RS);
2305 	udelay(400);
2306 
2307 	esp_write8(esp->config1, ESP_CFG1);
2308 
2309 	/* Eat any bitrot in the chip and we are done... */
2310 	esp_read8(ESP_INTRPT);
2311 }
2312 
2313 static void esp_set_clock_params(struct esp *esp)
2314 {
2315 	int fhz;
2316 	u8 ccf;
2317 
2318 	/* This is getting messy but it has to be done correctly or else
2319 	 * you get weird behavior all over the place.  We are trying to
2320 	 * basically figure out three pieces of information.
2321 	 *
2322 	 * a) Clock Conversion Factor
2323 	 *
2324 	 *    This is a representation of the input crystal clock frequency
2325 	 *    going into the ESP on this machine.  Any operation whose timing
2326 	 *    is longer than 400ns depends on this value being correct.  For
2327 	 *    example, you'll get blips for arbitration/selection during high
2328 	 *    load or with multiple targets if this is not set correctly.
2329 	 *
2330 	 * b) Selection Time-Out
2331 	 *
2332 	 *    The ESP isn't very bright and will arbitrate for the bus and try
2333 	 *    to select a target forever if you let it.  This value tells the
2334 	 *    ESP when it has taken too long to negotiate and that it should
2335 	 *    interrupt the CPU so we can see what happened.  The value is
2336 	 *    computed as follows (from NCR/Symbios chip docs).
2337 	 *
2338 	 *          (Time Out Period) *  (Input Clock)
2339 	 *    STO = ----------------------------------
2340 	 *          (8192) * (Clock Conversion Factor)
2341 	 *
2342 	 *    We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2343 	 *
2344 	 * c) Imperical constants for synchronous offset and transfer period
2345          *    register values
2346 	 *
2347 	 *    This entails the smallest and largest sync period we could ever
2348 	 *    handle on this ESP.
2349 	 */
2350 	fhz = esp->cfreq;
2351 
2352 	ccf = ((fhz / 1000000) + 4) / 5;
2353 	if (ccf == 1)
2354 		ccf = 2;
2355 
2356 	/* If we can't find anything reasonable, just assume 20MHZ.
2357 	 * This is the clock frequency of the older sun4c's where I've
2358 	 * been unable to find the clock-frequency PROM property.  All
2359 	 * other machines provide useful values it seems.
2360 	 */
2361 	if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2362 		fhz = 20000000;
2363 		ccf = 4;
2364 	}
2365 
2366 	esp->cfact = (ccf == 8 ? 0 : ccf);
2367 	esp->cfreq = fhz;
2368 	esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2369 	esp->ctick = ESP_TICK(ccf, esp->ccycle);
2370 	esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2371 	esp->sync_defp = SYNC_DEFP_SLOW;
2372 }
2373 
2374 static const char *esp_chip_names[] = {
2375 	"ESP100",
2376 	"ESP100A",
2377 	"ESP236",
2378 	"FAS236",
2379 	"AM53C974",
2380 	"53CF9x-2",
2381 	"FAS100A",
2382 	"FAST",
2383 	"FASHME",
2384 };
2385 
2386 static struct scsi_transport_template *esp_transport_template;
2387 
2388 int scsi_esp_register(struct esp *esp)
2389 {
2390 	static int instance;
2391 	int err;
2392 
2393 	if (!esp->num_tags)
2394 		esp->num_tags = ESP_DEFAULT_TAGS;
2395 	esp->host->transportt = esp_transport_template;
2396 	esp->host->max_lun = ESP_MAX_LUN;
2397 	esp->host->cmd_per_lun = 2;
2398 	esp->host->unique_id = instance;
2399 
2400 	esp_set_clock_params(esp);
2401 
2402 	esp_get_revision(esp);
2403 
2404 	esp_init_swstate(esp);
2405 
2406 	esp_bootup_reset(esp);
2407 
2408 	dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
2409 		   esp->host->unique_id, esp->regs, esp->dma_regs,
2410 		   esp->host->irq);
2411 	dev_printk(KERN_INFO, esp->dev,
2412 		   "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2413 		   esp->host->unique_id, esp_chip_names[esp->rev],
2414 		   esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2415 
2416 	/* Let the SCSI bus reset settle. */
2417 	ssleep(esp_bus_reset_settle);
2418 
2419 	err = scsi_add_host(esp->host, esp->dev);
2420 	if (err)
2421 		return err;
2422 
2423 	instance++;
2424 
2425 	scsi_scan_host(esp->host);
2426 
2427 	return 0;
2428 }
2429 EXPORT_SYMBOL(scsi_esp_register);
2430 
2431 void scsi_esp_unregister(struct esp *esp)
2432 {
2433 	scsi_remove_host(esp->host);
2434 }
2435 EXPORT_SYMBOL(scsi_esp_unregister);
2436 
2437 static int esp_target_alloc(struct scsi_target *starget)
2438 {
2439 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2440 	struct esp_target_data *tp = &esp->target[starget->id];
2441 
2442 	tp->starget = starget;
2443 
2444 	return 0;
2445 }
2446 
2447 static void esp_target_destroy(struct scsi_target *starget)
2448 {
2449 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2450 	struct esp_target_data *tp = &esp->target[starget->id];
2451 
2452 	tp->starget = NULL;
2453 }
2454 
2455 static int esp_slave_alloc(struct scsi_device *dev)
2456 {
2457 	struct esp *esp = shost_priv(dev->host);
2458 	struct esp_target_data *tp = &esp->target[dev->id];
2459 	struct esp_lun_data *lp;
2460 
2461 	lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2462 	if (!lp)
2463 		return -ENOMEM;
2464 	dev->hostdata = lp;
2465 
2466 	spi_min_period(tp->starget) = esp->min_period;
2467 	spi_max_offset(tp->starget) = 15;
2468 
2469 	if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2470 		spi_max_width(tp->starget) = 1;
2471 	else
2472 		spi_max_width(tp->starget) = 0;
2473 
2474 	return 0;
2475 }
2476 
2477 static int esp_slave_configure(struct scsi_device *dev)
2478 {
2479 	struct esp *esp = shost_priv(dev->host);
2480 	struct esp_target_data *tp = &esp->target[dev->id];
2481 
2482 	if (dev->tagged_supported)
2483 		scsi_change_queue_depth(dev, esp->num_tags);
2484 
2485 	tp->flags |= ESP_TGT_DISCONNECT;
2486 
2487 	if (!spi_initial_dv(dev->sdev_target))
2488 		spi_dv_device(dev);
2489 
2490 	return 0;
2491 }
2492 
2493 static void esp_slave_destroy(struct scsi_device *dev)
2494 {
2495 	struct esp_lun_data *lp = dev->hostdata;
2496 
2497 	kfree(lp);
2498 	dev->hostdata = NULL;
2499 }
2500 
2501 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2502 {
2503 	struct esp *esp = shost_priv(cmd->device->host);
2504 	struct esp_cmd_entry *ent, *tmp;
2505 	struct completion eh_done;
2506 	unsigned long flags;
2507 
2508 	/* XXX This helps a lot with debugging but might be a bit
2509 	 * XXX much for the final driver.
2510 	 */
2511 	spin_lock_irqsave(esp->host->host_lock, flags);
2512 	shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
2513 		     cmd, cmd->cmnd[0]);
2514 	ent = esp->active_cmd;
2515 	if (ent)
2516 		shost_printk(KERN_ERR, esp->host,
2517 			     "Current command [%p:%02x]\n",
2518 			     ent->cmd, ent->cmd->cmnd[0]);
2519 	list_for_each_entry(ent, &esp->queued_cmds, list) {
2520 		shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
2521 			     ent->cmd, ent->cmd->cmnd[0]);
2522 	}
2523 	list_for_each_entry(ent, &esp->active_cmds, list) {
2524 		shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
2525 			     ent->cmd, ent->cmd->cmnd[0]);
2526 	}
2527 	esp_dump_cmd_log(esp);
2528 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2529 
2530 	spin_lock_irqsave(esp->host->host_lock, flags);
2531 
2532 	ent = NULL;
2533 	list_for_each_entry(tmp, &esp->queued_cmds, list) {
2534 		if (tmp->cmd == cmd) {
2535 			ent = tmp;
2536 			break;
2537 		}
2538 	}
2539 
2540 	if (ent) {
2541 		/* Easiest case, we didn't even issue the command
2542 		 * yet so it is trivial to abort.
2543 		 */
2544 		list_del(&ent->list);
2545 
2546 		cmd->result = DID_ABORT << 16;
2547 		cmd->scsi_done(cmd);
2548 
2549 		esp_put_ent(esp, ent);
2550 
2551 		goto out_success;
2552 	}
2553 
2554 	init_completion(&eh_done);
2555 
2556 	ent = esp->active_cmd;
2557 	if (ent && ent->cmd == cmd) {
2558 		/* Command is the currently active command on
2559 		 * the bus.  If we already have an output message
2560 		 * pending, no dice.
2561 		 */
2562 		if (esp->msg_out_len)
2563 			goto out_failure;
2564 
2565 		/* Send out an abort, encouraging the target to
2566 		 * go to MSGOUT phase by asserting ATN.
2567 		 */
2568 		esp->msg_out[0] = ABORT_TASK_SET;
2569 		esp->msg_out_len = 1;
2570 		ent->eh_done = &eh_done;
2571 
2572 		scsi_esp_cmd(esp, ESP_CMD_SATN);
2573 	} else {
2574 		/* The command is disconnected.  This is not easy to
2575 		 * abort.  For now we fail and let the scsi error
2576 		 * handling layer go try a scsi bus reset or host
2577 		 * reset.
2578 		 *
2579 		 * What we could do is put together a scsi command
2580 		 * solely for the purpose of sending an abort message
2581 		 * to the target.  Coming up with all the code to
2582 		 * cook up scsi commands, special case them everywhere,
2583 		 * etc. is for questionable gain and it would be better
2584 		 * if the generic scsi error handling layer could do at
2585 		 * least some of that for us.
2586 		 *
2587 		 * Anyways this is an area for potential future improvement
2588 		 * in this driver.
2589 		 */
2590 		goto out_failure;
2591 	}
2592 
2593 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2594 
2595 	if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2596 		spin_lock_irqsave(esp->host->host_lock, flags);
2597 		ent->eh_done = NULL;
2598 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2599 
2600 		return FAILED;
2601 	}
2602 
2603 	return SUCCESS;
2604 
2605 out_success:
2606 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2607 	return SUCCESS;
2608 
2609 out_failure:
2610 	/* XXX This might be a good location to set ESP_TGT_BROKEN
2611 	 * XXX since we know which target/lun in particular is
2612 	 * XXX causing trouble.
2613 	 */
2614 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2615 	return FAILED;
2616 }
2617 
2618 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2619 {
2620 	struct esp *esp = shost_priv(cmd->device->host);
2621 	struct completion eh_reset;
2622 	unsigned long flags;
2623 
2624 	init_completion(&eh_reset);
2625 
2626 	spin_lock_irqsave(esp->host->host_lock, flags);
2627 
2628 	esp->eh_reset = &eh_reset;
2629 
2630 	/* XXX This is too simple... We should add lots of
2631 	 * XXX checks here so that if we find that the chip is
2632 	 * XXX very wedged we return failure immediately so
2633 	 * XXX that we can perform a full chip reset.
2634 	 */
2635 	esp->flags |= ESP_FLAG_RESETTING;
2636 	scsi_esp_cmd(esp, ESP_CMD_RS);
2637 
2638 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2639 
2640 	ssleep(esp_bus_reset_settle);
2641 
2642 	if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2643 		spin_lock_irqsave(esp->host->host_lock, flags);
2644 		esp->eh_reset = NULL;
2645 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2646 
2647 		return FAILED;
2648 	}
2649 
2650 	return SUCCESS;
2651 }
2652 
2653 /* All bets are off, reset the entire device.  */
2654 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2655 {
2656 	struct esp *esp = shost_priv(cmd->device->host);
2657 	unsigned long flags;
2658 
2659 	spin_lock_irqsave(esp->host->host_lock, flags);
2660 	esp_bootup_reset(esp);
2661 	esp_reset_cleanup(esp);
2662 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2663 
2664 	ssleep(esp_bus_reset_settle);
2665 
2666 	return SUCCESS;
2667 }
2668 
2669 static const char *esp_info(struct Scsi_Host *host)
2670 {
2671 	return "esp";
2672 }
2673 
2674 struct scsi_host_template scsi_esp_template = {
2675 	.module			= THIS_MODULE,
2676 	.name			= "esp",
2677 	.info			= esp_info,
2678 	.queuecommand		= esp_queuecommand,
2679 	.target_alloc		= esp_target_alloc,
2680 	.target_destroy		= esp_target_destroy,
2681 	.slave_alloc		= esp_slave_alloc,
2682 	.slave_configure	= esp_slave_configure,
2683 	.slave_destroy		= esp_slave_destroy,
2684 	.eh_abort_handler	= esp_eh_abort_handler,
2685 	.eh_bus_reset_handler	= esp_eh_bus_reset_handler,
2686 	.eh_host_reset_handler	= esp_eh_host_reset_handler,
2687 	.can_queue		= 7,
2688 	.this_id		= 7,
2689 	.sg_tablesize		= SG_ALL,
2690 	.max_sectors		= 0xffff,
2691 	.skip_settle_delay	= 1,
2692 };
2693 EXPORT_SYMBOL(scsi_esp_template);
2694 
2695 static void esp_get_signalling(struct Scsi_Host *host)
2696 {
2697 	struct esp *esp = shost_priv(host);
2698 	enum spi_signal_type type;
2699 
2700 	if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2701 		type = SPI_SIGNAL_HVD;
2702 	else
2703 		type = SPI_SIGNAL_SE;
2704 
2705 	spi_signalling(host) = type;
2706 }
2707 
2708 static void esp_set_offset(struct scsi_target *target, int offset)
2709 {
2710 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2711 	struct esp *esp = shost_priv(host);
2712 	struct esp_target_data *tp = &esp->target[target->id];
2713 
2714 	if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2715 		tp->nego_goal_offset = 0;
2716 	else
2717 		tp->nego_goal_offset = offset;
2718 	tp->flags |= ESP_TGT_CHECK_NEGO;
2719 }
2720 
2721 static void esp_set_period(struct scsi_target *target, int period)
2722 {
2723 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2724 	struct esp *esp = shost_priv(host);
2725 	struct esp_target_data *tp = &esp->target[target->id];
2726 
2727 	tp->nego_goal_period = period;
2728 	tp->flags |= ESP_TGT_CHECK_NEGO;
2729 }
2730 
2731 static void esp_set_width(struct scsi_target *target, int width)
2732 {
2733 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2734 	struct esp *esp = shost_priv(host);
2735 	struct esp_target_data *tp = &esp->target[target->id];
2736 
2737 	tp->nego_goal_width = (width ? 1 : 0);
2738 	tp->flags |= ESP_TGT_CHECK_NEGO;
2739 }
2740 
2741 static struct spi_function_template esp_transport_ops = {
2742 	.set_offset		= esp_set_offset,
2743 	.show_offset		= 1,
2744 	.set_period		= esp_set_period,
2745 	.show_period		= 1,
2746 	.set_width		= esp_set_width,
2747 	.show_width		= 1,
2748 	.get_signalling		= esp_get_signalling,
2749 };
2750 
2751 static int __init esp_init(void)
2752 {
2753 	BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2754 		     sizeof(struct esp_cmd_priv));
2755 
2756 	esp_transport_template = spi_attach_transport(&esp_transport_ops);
2757 	if (!esp_transport_template)
2758 		return -ENODEV;
2759 
2760 	return 0;
2761 }
2762 
2763 static void __exit esp_exit(void)
2764 {
2765 	spi_release_transport(esp_transport_template);
2766 }
2767 
2768 MODULE_DESCRIPTION("ESP SCSI driver core");
2769 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2770 MODULE_LICENSE("GPL");
2771 MODULE_VERSION(DRV_VERSION);
2772 
2773 module_param(esp_bus_reset_settle, int, 0);
2774 MODULE_PARM_DESC(esp_bus_reset_settle,
2775 		 "ESP scsi bus reset delay in seconds");
2776 
2777 module_param(esp_debug, int, 0);
2778 MODULE_PARM_DESC(esp_debug,
2779 "ESP bitmapped debugging message enable value:\n"
2780 "	0x00000001	Log interrupt events\n"
2781 "	0x00000002	Log scsi commands\n"
2782 "	0x00000004	Log resets\n"
2783 "	0x00000008	Log message in events\n"
2784 "	0x00000010	Log message out events\n"
2785 "	0x00000020	Log command completion\n"
2786 "	0x00000040	Log disconnects\n"
2787 "	0x00000080	Log data start\n"
2788 "	0x00000100	Log data done\n"
2789 "	0x00000200	Log reconnects\n"
2790 "	0x00000400	Log auto-sense data\n"
2791 );
2792 
2793 module_init(esp_init);
2794 module_exit(esp_exit);
2795 
2796 #ifdef CONFIG_SCSI_ESP_PIO
2797 static inline unsigned int esp_wait_for_fifo(struct esp *esp)
2798 {
2799 	int i = 500000;
2800 
2801 	do {
2802 		unsigned int fbytes = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
2803 
2804 		if (fbytes)
2805 			return fbytes;
2806 
2807 		udelay(1);
2808 	} while (--i);
2809 
2810 	shost_printk(KERN_ERR, esp->host, "FIFO is empty. sreg [%02x]\n",
2811 		     esp_read8(ESP_STATUS));
2812 	return 0;
2813 }
2814 
2815 static inline int esp_wait_for_intr(struct esp *esp)
2816 {
2817 	int i = 500000;
2818 
2819 	do {
2820 		esp->sreg = esp_read8(ESP_STATUS);
2821 		if (esp->sreg & ESP_STAT_INTR)
2822 			return 0;
2823 
2824 		udelay(1);
2825 	} while (--i);
2826 
2827 	shost_printk(KERN_ERR, esp->host, "IRQ timeout. sreg [%02x]\n",
2828 		     esp->sreg);
2829 	return 1;
2830 }
2831 
2832 #define ESP_FIFO_SIZE 16
2833 
2834 void esp_send_pio_cmd(struct esp *esp, u32 addr, u32 esp_count,
2835 		      u32 dma_count, int write, u8 cmd)
2836 {
2837 	u8 phase = esp->sreg & ESP_STAT_PMASK;
2838 
2839 	cmd &= ~ESP_CMD_DMA;
2840 	esp->send_cmd_error = 0;
2841 
2842 	if (write) {
2843 		u8 *dst = (u8 *)addr;
2844 		u8 mask = ~(phase == ESP_MIP ? ESP_INTR_FDONE : ESP_INTR_BSERV);
2845 
2846 		scsi_esp_cmd(esp, cmd);
2847 
2848 		while (1) {
2849 			if (!esp_wait_for_fifo(esp))
2850 				break;
2851 
2852 			*dst++ = readb(esp->fifo_reg);
2853 			--esp_count;
2854 
2855 			if (!esp_count)
2856 				break;
2857 
2858 			if (esp_wait_for_intr(esp)) {
2859 				esp->send_cmd_error = 1;
2860 				break;
2861 			}
2862 
2863 			if ((esp->sreg & ESP_STAT_PMASK) != phase)
2864 				break;
2865 
2866 			esp->ireg = esp_read8(ESP_INTRPT);
2867 			if (esp->ireg & mask) {
2868 				esp->send_cmd_error = 1;
2869 				break;
2870 			}
2871 
2872 			if (phase == ESP_MIP)
2873 				esp_write8(ESP_CMD_MOK, ESP_CMD);
2874 
2875 			esp_write8(ESP_CMD_TI, ESP_CMD);
2876 		}
2877 	} else {
2878 		unsigned int n = ESP_FIFO_SIZE;
2879 		u8 *src = (u8 *)addr;
2880 
2881 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
2882 
2883 		if (n > esp_count)
2884 			n = esp_count;
2885 		writesb(esp->fifo_reg, src, n);
2886 		src += n;
2887 		esp_count -= n;
2888 
2889 		scsi_esp_cmd(esp, cmd);
2890 
2891 		while (esp_count) {
2892 			if (esp_wait_for_intr(esp)) {
2893 				esp->send_cmd_error = 1;
2894 				break;
2895 			}
2896 
2897 			if ((esp->sreg & ESP_STAT_PMASK) != phase)
2898 				break;
2899 
2900 			esp->ireg = esp_read8(ESP_INTRPT);
2901 			if (esp->ireg & ~ESP_INTR_BSERV) {
2902 				esp->send_cmd_error = 1;
2903 				break;
2904 			}
2905 
2906 			n = ESP_FIFO_SIZE -
2907 			    (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES);
2908 
2909 			if (n > esp_count)
2910 				n = esp_count;
2911 			writesb(esp->fifo_reg, src, n);
2912 			src += n;
2913 			esp_count -= n;
2914 
2915 			esp_write8(ESP_CMD_TI, ESP_CMD);
2916 		}
2917 	}
2918 
2919 	esp->send_cmd_residual = esp_count;
2920 }
2921 EXPORT_SYMBOL(esp_send_pio_cmd);
2922 #endif
2923