xref: /openbmc/linux/drivers/scsi/esp_scsi.c (revision c21b37f6)
1 /* esp_scsi.c: ESP SCSI driver.
2  *
3  * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
17 
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
21 
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
29 
30 #include "esp_scsi.h"
31 
32 #define DRV_MODULE_NAME		"esp"
33 #define PFX DRV_MODULE_NAME	": "
34 #define DRV_VERSION		"2.000"
35 #define DRV_MODULE_RELDATE	"April 19, 2007"
36 
37 /* SCSI bus reset settle time in seconds.  */
38 static int esp_bus_reset_settle = 3;
39 
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR		0x00000001
42 #define ESP_DEBUG_SCSICMD	0x00000002
43 #define ESP_DEBUG_RESET		0x00000004
44 #define ESP_DEBUG_MSGIN		0x00000008
45 #define ESP_DEBUG_MSGOUT	0x00000010
46 #define ESP_DEBUG_CMDDONE	0x00000020
47 #define ESP_DEBUG_DISCONNECT	0x00000040
48 #define ESP_DEBUG_DATASTART	0x00000080
49 #define ESP_DEBUG_DATADONE	0x00000100
50 #define ESP_DEBUG_RECONNECT	0x00000200
51 #define ESP_DEBUG_AUTOSENSE	0x00000400
52 
53 #define esp_log_intr(f, a...) \
54 do {	if (esp_debug & ESP_DEBUG_INTR) \
55 		printk(f, ## a); \
56 } while (0)
57 
58 #define esp_log_reset(f, a...) \
59 do {	if (esp_debug & ESP_DEBUG_RESET) \
60 		printk(f, ## a); \
61 } while (0)
62 
63 #define esp_log_msgin(f, a...) \
64 do {	if (esp_debug & ESP_DEBUG_MSGIN) \
65 		printk(f, ## a); \
66 } while (0)
67 
68 #define esp_log_msgout(f, a...) \
69 do {	if (esp_debug & ESP_DEBUG_MSGOUT) \
70 		printk(f, ## a); \
71 } while (0)
72 
73 #define esp_log_cmddone(f, a...) \
74 do {	if (esp_debug & ESP_DEBUG_CMDDONE) \
75 		printk(f, ## a); \
76 } while (0)
77 
78 #define esp_log_disconnect(f, a...) \
79 do {	if (esp_debug & ESP_DEBUG_DISCONNECT) \
80 		printk(f, ## a); \
81 } while (0)
82 
83 #define esp_log_datastart(f, a...) \
84 do {	if (esp_debug & ESP_DEBUG_DATASTART) \
85 		printk(f, ## a); \
86 } while (0)
87 
88 #define esp_log_datadone(f, a...) \
89 do {	if (esp_debug & ESP_DEBUG_DATADONE) \
90 		printk(f, ## a); \
91 } while (0)
92 
93 #define esp_log_reconnect(f, a...) \
94 do {	if (esp_debug & ESP_DEBUG_RECONNECT) \
95 		printk(f, ## a); \
96 } while (0)
97 
98 #define esp_log_autosense(f, a...) \
99 do {	if (esp_debug & ESP_DEBUG_AUTOSENSE) \
100 		printk(f, ## a); \
101 } while (0)
102 
103 #define esp_read8(REG)		esp->ops->esp_read8(esp, REG)
104 #define esp_write8(VAL,REG)	esp->ops->esp_write8(esp, VAL, REG)
105 
106 static void esp_log_fill_regs(struct esp *esp,
107 			      struct esp_event_ent *p)
108 {
109 	p->sreg = esp->sreg;
110 	p->seqreg = esp->seqreg;
111 	p->sreg2 = esp->sreg2;
112 	p->ireg = esp->ireg;
113 	p->select_state = esp->select_state;
114 	p->event = esp->event;
115 }
116 
117 void scsi_esp_cmd(struct esp *esp, u8 val)
118 {
119 	struct esp_event_ent *p;
120 	int idx = esp->esp_event_cur;
121 
122 	p = &esp->esp_event_log[idx];
123 	p->type = ESP_EVENT_TYPE_CMD;
124 	p->val = val;
125 	esp_log_fill_regs(esp, p);
126 
127 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
128 
129 	esp_write8(val, ESP_CMD);
130 }
131 EXPORT_SYMBOL(scsi_esp_cmd);
132 
133 static void esp_event(struct esp *esp, u8 val)
134 {
135 	struct esp_event_ent *p;
136 	int idx = esp->esp_event_cur;
137 
138 	p = &esp->esp_event_log[idx];
139 	p->type = ESP_EVENT_TYPE_EVENT;
140 	p->val = val;
141 	esp_log_fill_regs(esp, p);
142 
143 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
144 
145 	esp->event = val;
146 }
147 
148 static void esp_dump_cmd_log(struct esp *esp)
149 {
150 	int idx = esp->esp_event_cur;
151 	int stop = idx;
152 
153 	printk(KERN_INFO PFX "esp%d: Dumping command log\n",
154 	       esp->host->unique_id);
155 	do {
156 		struct esp_event_ent *p = &esp->esp_event_log[idx];
157 
158 		printk(KERN_INFO PFX "esp%d: ent[%d] %s ",
159 		       esp->host->unique_id, idx,
160 		       p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT");
161 
162 		printk("val[%02x] sreg[%02x] seqreg[%02x] "
163 		       "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
164 		       p->val, p->sreg, p->seqreg,
165 		       p->sreg2, p->ireg, p->select_state, p->event);
166 
167 		idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
168 	} while (idx != stop);
169 }
170 
171 static void esp_flush_fifo(struct esp *esp)
172 {
173 	scsi_esp_cmd(esp, ESP_CMD_FLUSH);
174 	if (esp->rev == ESP236) {
175 		int lim = 1000;
176 
177 		while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
178 			if (--lim == 0) {
179 				printk(KERN_ALERT PFX "esp%d: ESP_FF_BYTES "
180 				       "will not clear!\n",
181 				       esp->host->unique_id);
182 				break;
183 			}
184 			udelay(1);
185 		}
186 	}
187 }
188 
189 static void hme_read_fifo(struct esp *esp)
190 {
191 	int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
192 	int idx = 0;
193 
194 	while (fcnt--) {
195 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
196 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
197 	}
198 	if (esp->sreg2 & ESP_STAT2_F1BYTE) {
199 		esp_write8(0, ESP_FDATA);
200 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
201 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
202 	}
203 	esp->fifo_cnt = idx;
204 }
205 
206 static void esp_set_all_config3(struct esp *esp, u8 val)
207 {
208 	int i;
209 
210 	for (i = 0; i < ESP_MAX_TARGET; i++)
211 		esp->target[i].esp_config3 = val;
212 }
213 
214 /* Reset the ESP chip, _not_ the SCSI bus. */
215 static void esp_reset_esp(struct esp *esp)
216 {
217 	u8 family_code, version;
218 
219 	/* Now reset the ESP chip */
220 	scsi_esp_cmd(esp, ESP_CMD_RC);
221 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
222 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
223 
224 	/* Reload the configuration registers */
225 	esp_write8(esp->cfact, ESP_CFACT);
226 
227 	esp->prev_stp = 0;
228 	esp_write8(esp->prev_stp, ESP_STP);
229 
230 	esp->prev_soff = 0;
231 	esp_write8(esp->prev_soff, ESP_SOFF);
232 
233 	esp_write8(esp->neg_defp, ESP_TIMEO);
234 
235 	/* This is the only point at which it is reliable to read
236 	 * the ID-code for a fast ESP chip variants.
237 	 */
238 	esp->max_period = ((35 * esp->ccycle) / 1000);
239 	if (esp->rev == FAST) {
240 		version = esp_read8(ESP_UID);
241 		family_code = (version & 0xf8) >> 3;
242 		if (family_code == 0x02)
243 			esp->rev = FAS236;
244 		else if (family_code == 0x0a)
245 			esp->rev = FASHME; /* Version is usually '5'. */
246 		else
247 			esp->rev = FAS100A;
248 		esp->min_period = ((4 * esp->ccycle) / 1000);
249 	} else {
250 		esp->min_period = ((5 * esp->ccycle) / 1000);
251 	}
252 	esp->max_period = (esp->max_period + 3)>>2;
253 	esp->min_period = (esp->min_period + 3)>>2;
254 
255 	esp_write8(esp->config1, ESP_CFG1);
256 	switch (esp->rev) {
257 	case ESP100:
258 		/* nothing to do */
259 		break;
260 
261 	case ESP100A:
262 		esp_write8(esp->config2, ESP_CFG2);
263 		break;
264 
265 	case ESP236:
266 		/* Slow 236 */
267 		esp_write8(esp->config2, ESP_CFG2);
268 		esp->prev_cfg3 = esp->target[0].esp_config3;
269 		esp_write8(esp->prev_cfg3, ESP_CFG3);
270 		break;
271 
272 	case FASHME:
273 		esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
274 		/* fallthrough... */
275 
276 	case FAS236:
277 		/* Fast 236 or HME */
278 		esp_write8(esp->config2, ESP_CFG2);
279 		if (esp->rev == FASHME) {
280 			u8 cfg3 = esp->target[0].esp_config3;
281 
282 			cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
283 			if (esp->scsi_id >= 8)
284 				cfg3 |= ESP_CONFIG3_IDBIT3;
285 			esp_set_all_config3(esp, cfg3);
286 		} else {
287 			u32 cfg3 = esp->target[0].esp_config3;
288 
289 			cfg3 |= ESP_CONFIG3_FCLK;
290 			esp_set_all_config3(esp, cfg3);
291 		}
292 		esp->prev_cfg3 = esp->target[0].esp_config3;
293 		esp_write8(esp->prev_cfg3, ESP_CFG3);
294 		if (esp->rev == FASHME) {
295 			esp->radelay = 80;
296 		} else {
297 			if (esp->flags & ESP_FLAG_DIFFERENTIAL)
298 				esp->radelay = 0;
299 			else
300 				esp->radelay = 96;
301 		}
302 		break;
303 
304 	case FAS100A:
305 		/* Fast 100a */
306 		esp_write8(esp->config2, ESP_CFG2);
307 		esp_set_all_config3(esp,
308 				    (esp->target[0].esp_config3 |
309 				     ESP_CONFIG3_FCLOCK));
310 		esp->prev_cfg3 = esp->target[0].esp_config3;
311 		esp_write8(esp->prev_cfg3, ESP_CFG3);
312 		esp->radelay = 32;
313 		break;
314 
315 	default:
316 		break;
317 	}
318 
319 	/* Eat any bitrot in the chip */
320 	esp_read8(ESP_INTRPT);
321 	udelay(100);
322 }
323 
324 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
325 {
326 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
327 	struct scatterlist *sg = scsi_sglist(cmd);
328 	int dir = cmd->sc_data_direction;
329 	int total, i;
330 
331 	if (dir == DMA_NONE)
332 		return;
333 
334 	spriv->u.num_sg = esp->ops->map_sg(esp, sg, scsi_sg_count(cmd), dir);
335 	spriv->cur_residue = sg_dma_len(sg);
336 	spriv->cur_sg = sg;
337 
338 	total = 0;
339 	for (i = 0; i < spriv->u.num_sg; i++)
340 		total += sg_dma_len(&sg[i]);
341 	spriv->tot_residue = total;
342 }
343 
344 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
345 				   struct scsi_cmnd *cmd)
346 {
347 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
348 
349 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
350 		return ent->sense_dma +
351 			(ent->sense_ptr - cmd->sense_buffer);
352 	}
353 
354 	return sg_dma_address(p->cur_sg) +
355 		(sg_dma_len(p->cur_sg) -
356 		 p->cur_residue);
357 }
358 
359 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
360 				    struct scsi_cmnd *cmd)
361 {
362 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
363 
364 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
365 		return SCSI_SENSE_BUFFERSIZE -
366 			(ent->sense_ptr - cmd->sense_buffer);
367 	}
368 	return p->cur_residue;
369 }
370 
371 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
372 			    struct scsi_cmnd *cmd, unsigned int len)
373 {
374 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
375 
376 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
377 		ent->sense_ptr += len;
378 		return;
379 	}
380 
381 	p->cur_residue -= len;
382 	p->tot_residue -= len;
383 	if (p->cur_residue < 0 || p->tot_residue < 0) {
384 		printk(KERN_ERR PFX "esp%d: Data transfer overflow.\n",
385 		       esp->host->unique_id);
386 		printk(KERN_ERR PFX "esp%d: cur_residue[%d] tot_residue[%d] "
387 		       "len[%u]\n",
388 		       esp->host->unique_id,
389 		       p->cur_residue, p->tot_residue, len);
390 		p->cur_residue = 0;
391 		p->tot_residue = 0;
392 	}
393 	if (!p->cur_residue && p->tot_residue) {
394 		p->cur_sg++;
395 		p->cur_residue = sg_dma_len(p->cur_sg);
396 	}
397 }
398 
399 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
400 {
401 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
402 	int dir = cmd->sc_data_direction;
403 
404 	if (dir == DMA_NONE)
405 		return;
406 
407 	esp->ops->unmap_sg(esp, scsi_sglist(cmd), spriv->u.num_sg, dir);
408 }
409 
410 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
411 {
412 	struct scsi_cmnd *cmd = ent->cmd;
413 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
414 
415 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
416 		ent->saved_sense_ptr = ent->sense_ptr;
417 		return;
418 	}
419 	ent->saved_cur_residue = spriv->cur_residue;
420 	ent->saved_cur_sg = spriv->cur_sg;
421 	ent->saved_tot_residue = spriv->tot_residue;
422 }
423 
424 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
425 {
426 	struct scsi_cmnd *cmd = ent->cmd;
427 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
428 
429 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
430 		ent->sense_ptr = ent->saved_sense_ptr;
431 		return;
432 	}
433 	spriv->cur_residue = ent->saved_cur_residue;
434 	spriv->cur_sg = ent->saved_cur_sg;
435 	spriv->tot_residue = ent->saved_tot_residue;
436 }
437 
438 static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
439 {
440 	if (cmd->cmd_len == 6 ||
441 	    cmd->cmd_len == 10 ||
442 	    cmd->cmd_len == 12) {
443 		esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
444 	} else {
445 		esp->flags |= ESP_FLAG_DOING_SLOWCMD;
446 	}
447 }
448 
449 static void esp_write_tgt_config3(struct esp *esp, int tgt)
450 {
451 	if (esp->rev > ESP100A) {
452 		u8 val = esp->target[tgt].esp_config3;
453 
454 		if (val != esp->prev_cfg3) {
455 			esp->prev_cfg3 = val;
456 			esp_write8(val, ESP_CFG3);
457 		}
458 	}
459 }
460 
461 static void esp_write_tgt_sync(struct esp *esp, int tgt)
462 {
463 	u8 off = esp->target[tgt].esp_offset;
464 	u8 per = esp->target[tgt].esp_period;
465 
466 	if (off != esp->prev_soff) {
467 		esp->prev_soff = off;
468 		esp_write8(off, ESP_SOFF);
469 	}
470 	if (per != esp->prev_stp) {
471 		esp->prev_stp = per;
472 		esp_write8(per, ESP_STP);
473 	}
474 }
475 
476 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
477 {
478 	if (esp->rev == FASHME) {
479 		/* Arbitrary segment boundaries, 24-bit counts.  */
480 		if (dma_len > (1U << 24))
481 			dma_len = (1U << 24);
482 	} else {
483 		u32 base, end;
484 
485 		/* ESP chip limits other variants by 16-bits of transfer
486 		 * count.  Actually on FAS100A and FAS236 we could get
487 		 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
488 		 * in the ESP_CFG2 register but that causes other unwanted
489 		 * changes so we don't use it currently.
490 		 */
491 		if (dma_len > (1U << 16))
492 			dma_len = (1U << 16);
493 
494 		/* All of the DMA variants hooked up to these chips
495 		 * cannot handle crossing a 24-bit address boundary.
496 		 */
497 		base = dma_addr & ((1U << 24) - 1U);
498 		end = base + dma_len;
499 		if (end > (1U << 24))
500 			end = (1U <<24);
501 		dma_len = end - base;
502 	}
503 	return dma_len;
504 }
505 
506 static int esp_need_to_nego_wide(struct esp_target_data *tp)
507 {
508 	struct scsi_target *target = tp->starget;
509 
510 	return spi_width(target) != tp->nego_goal_width;
511 }
512 
513 static int esp_need_to_nego_sync(struct esp_target_data *tp)
514 {
515 	struct scsi_target *target = tp->starget;
516 
517 	/* When offset is zero, period is "don't care".  */
518 	if (!spi_offset(target) && !tp->nego_goal_offset)
519 		return 0;
520 
521 	if (spi_offset(target) == tp->nego_goal_offset &&
522 	    spi_period(target) == tp->nego_goal_period)
523 		return 0;
524 
525 	return 1;
526 }
527 
528 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
529 			     struct esp_lun_data *lp)
530 {
531 	if (!ent->tag[0]) {
532 		/* Non-tagged, slot already taken?  */
533 		if (lp->non_tagged_cmd)
534 			return -EBUSY;
535 
536 		if (lp->hold) {
537 			/* We are being held by active tagged
538 			 * commands.
539 			 */
540 			if (lp->num_tagged)
541 				return -EBUSY;
542 
543 			/* Tagged commands completed, we can unplug
544 			 * the queue and run this untagged command.
545 			 */
546 			lp->hold = 0;
547 		} else if (lp->num_tagged) {
548 			/* Plug the queue until num_tagged decreases
549 			 * to zero in esp_free_lun_tag.
550 			 */
551 			lp->hold = 1;
552 			return -EBUSY;
553 		}
554 
555 		lp->non_tagged_cmd = ent;
556 		return 0;
557 	} else {
558 		/* Tagged command, see if blocked by a
559 		 * non-tagged one.
560 		 */
561 		if (lp->non_tagged_cmd || lp->hold)
562 			return -EBUSY;
563 	}
564 
565 	BUG_ON(lp->tagged_cmds[ent->tag[1]]);
566 
567 	lp->tagged_cmds[ent->tag[1]] = ent;
568 	lp->num_tagged++;
569 
570 	return 0;
571 }
572 
573 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
574 			     struct esp_lun_data *lp)
575 {
576 	if (ent->tag[0]) {
577 		BUG_ON(lp->tagged_cmds[ent->tag[1]] != ent);
578 		lp->tagged_cmds[ent->tag[1]] = NULL;
579 		lp->num_tagged--;
580 	} else {
581 		BUG_ON(lp->non_tagged_cmd != ent);
582 		lp->non_tagged_cmd = NULL;
583 	}
584 }
585 
586 /* When a contingent allegiance conditon is created, we force feed a
587  * REQUEST_SENSE command to the device to fetch the sense data.  I
588  * tried many other schemes, relying on the scsi error handling layer
589  * to send out the REQUEST_SENSE automatically, but this was difficult
590  * to get right especially in the presence of applications like smartd
591  * which use SG_IO to send out their own REQUEST_SENSE commands.
592  */
593 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
594 {
595 	struct scsi_cmnd *cmd = ent->cmd;
596 	struct scsi_device *dev = cmd->device;
597 	int tgt, lun;
598 	u8 *p, val;
599 
600 	tgt = dev->id;
601 	lun = dev->lun;
602 
603 
604 	if (!ent->sense_ptr) {
605 		esp_log_autosense("esp%d: Doing auto-sense for "
606 				  "tgt[%d] lun[%d]\n",
607 				  esp->host->unique_id, tgt, lun);
608 
609 		ent->sense_ptr = cmd->sense_buffer;
610 		ent->sense_dma = esp->ops->map_single(esp,
611 						      ent->sense_ptr,
612 						      SCSI_SENSE_BUFFERSIZE,
613 						      DMA_FROM_DEVICE);
614 	}
615 	ent->saved_sense_ptr = ent->sense_ptr;
616 
617 	esp->active_cmd = ent;
618 
619 	p = esp->command_block;
620 	esp->msg_out_len = 0;
621 
622 	*p++ = IDENTIFY(0, lun);
623 	*p++ = REQUEST_SENSE;
624 	*p++ = ((dev->scsi_level <= SCSI_2) ?
625 		(lun << 5) : 0);
626 	*p++ = 0;
627 	*p++ = 0;
628 	*p++ = SCSI_SENSE_BUFFERSIZE;
629 	*p++ = 0;
630 
631 	esp->select_state = ESP_SELECT_BASIC;
632 
633 	val = tgt;
634 	if (esp->rev == FASHME)
635 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
636 	esp_write8(val, ESP_BUSID);
637 
638 	esp_write_tgt_sync(esp, tgt);
639 	esp_write_tgt_config3(esp, tgt);
640 
641 	val = (p - esp->command_block);
642 
643 	if (esp->rev == FASHME)
644 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
645 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
646 			       val, 16, 0, ESP_CMD_DMA | ESP_CMD_SELA);
647 }
648 
649 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
650 {
651 	struct esp_cmd_entry *ent;
652 
653 	list_for_each_entry(ent, &esp->queued_cmds, list) {
654 		struct scsi_cmnd *cmd = ent->cmd;
655 		struct scsi_device *dev = cmd->device;
656 		struct esp_lun_data *lp = dev->hostdata;
657 
658 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
659 			ent->tag[0] = 0;
660 			ent->tag[1] = 0;
661 			return ent;
662 		}
663 
664 		if (!scsi_populate_tag_msg(cmd, &ent->tag[0])) {
665 			ent->tag[0] = 0;
666 			ent->tag[1] = 0;
667 		}
668 
669 		if (esp_alloc_lun_tag(ent, lp) < 0)
670 			continue;
671 
672 		return ent;
673 	}
674 
675 	return NULL;
676 }
677 
678 static void esp_maybe_execute_command(struct esp *esp)
679 {
680 	struct esp_target_data *tp;
681 	struct esp_lun_data *lp;
682 	struct scsi_device *dev;
683 	struct scsi_cmnd *cmd;
684 	struct esp_cmd_entry *ent;
685 	int tgt, lun, i;
686 	u32 val, start_cmd;
687 	u8 *p;
688 
689 	if (esp->active_cmd ||
690 	    (esp->flags & ESP_FLAG_RESETTING))
691 		return;
692 
693 	ent = find_and_prep_issuable_command(esp);
694 	if (!ent)
695 		return;
696 
697 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
698 		esp_autosense(esp, ent);
699 		return;
700 	}
701 
702 	cmd = ent->cmd;
703 	dev = cmd->device;
704 	tgt = dev->id;
705 	lun = dev->lun;
706 	tp = &esp->target[tgt];
707 	lp = dev->hostdata;
708 
709 	list_del(&ent->list);
710 	list_add(&ent->list, &esp->active_cmds);
711 
712 	esp->active_cmd = ent;
713 
714 	esp_map_dma(esp, cmd);
715 	esp_save_pointers(esp, ent);
716 
717 	esp_check_command_len(esp, cmd);
718 
719 	p = esp->command_block;
720 
721 	esp->msg_out_len = 0;
722 	if (tp->flags & ESP_TGT_CHECK_NEGO) {
723 		/* Need to negotiate.  If the target is broken
724 		 * go for synchronous transfers and non-wide.
725 		 */
726 		if (tp->flags & ESP_TGT_BROKEN) {
727 			tp->flags &= ~ESP_TGT_DISCONNECT;
728 			tp->nego_goal_period = 0;
729 			tp->nego_goal_offset = 0;
730 			tp->nego_goal_width = 0;
731 			tp->nego_goal_tags = 0;
732 		}
733 
734 		/* If the settings are not changing, skip this.  */
735 		if (spi_width(tp->starget) == tp->nego_goal_width &&
736 		    spi_period(tp->starget) == tp->nego_goal_period &&
737 		    spi_offset(tp->starget) == tp->nego_goal_offset) {
738 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
739 			goto build_identify;
740 		}
741 
742 		if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
743 			esp->msg_out_len =
744 				spi_populate_width_msg(&esp->msg_out[0],
745 						       (tp->nego_goal_width ?
746 							1 : 0));
747 			tp->flags |= ESP_TGT_NEGO_WIDE;
748 		} else if (esp_need_to_nego_sync(tp)) {
749 			esp->msg_out_len =
750 				spi_populate_sync_msg(&esp->msg_out[0],
751 						      tp->nego_goal_period,
752 						      tp->nego_goal_offset);
753 			tp->flags |= ESP_TGT_NEGO_SYNC;
754 		} else {
755 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
756 		}
757 
758 		/* Process it like a slow command.  */
759 		if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC))
760 			esp->flags |= ESP_FLAG_DOING_SLOWCMD;
761 	}
762 
763 build_identify:
764 	/* If we don't have a lun-data struct yet, we're probing
765 	 * so do not disconnect.  Also, do not disconnect unless
766 	 * we have a tag on this command.
767 	 */
768 	if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0])
769 		*p++ = IDENTIFY(1, lun);
770 	else
771 		*p++ = IDENTIFY(0, lun);
772 
773 	if (ent->tag[0] && esp->rev == ESP100) {
774 		/* ESP100 lacks select w/atn3 command, use select
775 		 * and stop instead.
776 		 */
777 		esp->flags |= ESP_FLAG_DOING_SLOWCMD;
778 	}
779 
780 	if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
781 		start_cmd = ESP_CMD_DMA | ESP_CMD_SELA;
782 		if (ent->tag[0]) {
783 			*p++ = ent->tag[0];
784 			*p++ = ent->tag[1];
785 
786 			start_cmd = ESP_CMD_DMA | ESP_CMD_SA3;
787 		}
788 
789 		for (i = 0; i < cmd->cmd_len; i++)
790 			*p++ = cmd->cmnd[i];
791 
792 		esp->select_state = ESP_SELECT_BASIC;
793 	} else {
794 		esp->cmd_bytes_left = cmd->cmd_len;
795 		esp->cmd_bytes_ptr = &cmd->cmnd[0];
796 
797 		if (ent->tag[0]) {
798 			for (i = esp->msg_out_len - 1;
799 			     i >= 0; i--)
800 				esp->msg_out[i + 2] = esp->msg_out[i];
801 			esp->msg_out[0] = ent->tag[0];
802 			esp->msg_out[1] = ent->tag[1];
803 			esp->msg_out_len += 2;
804 		}
805 
806 		start_cmd = ESP_CMD_DMA | ESP_CMD_SELAS;
807 		esp->select_state = ESP_SELECT_MSGOUT;
808 	}
809 	val = tgt;
810 	if (esp->rev == FASHME)
811 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
812 	esp_write8(val, ESP_BUSID);
813 
814 	esp_write_tgt_sync(esp, tgt);
815 	esp_write_tgt_config3(esp, tgt);
816 
817 	val = (p - esp->command_block);
818 
819 	if (esp_debug & ESP_DEBUG_SCSICMD) {
820 		printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
821 		for (i = 0; i < cmd->cmd_len; i++)
822 			printk("%02x ", cmd->cmnd[i]);
823 		printk("]\n");
824 	}
825 
826 	if (esp->rev == FASHME)
827 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
828 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
829 			       val, 16, 0, start_cmd);
830 }
831 
832 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
833 {
834 	struct list_head *head = &esp->esp_cmd_pool;
835 	struct esp_cmd_entry *ret;
836 
837 	if (list_empty(head)) {
838 		ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
839 	} else {
840 		ret = list_entry(head->next, struct esp_cmd_entry, list);
841 		list_del(&ret->list);
842 		memset(ret, 0, sizeof(*ret));
843 	}
844 	return ret;
845 }
846 
847 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
848 {
849 	list_add(&ent->list, &esp->esp_cmd_pool);
850 }
851 
852 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
853 			    struct scsi_cmnd *cmd, unsigned int result)
854 {
855 	struct scsi_device *dev = cmd->device;
856 	int tgt = dev->id;
857 	int lun = dev->lun;
858 
859 	esp->active_cmd = NULL;
860 	esp_unmap_dma(esp, cmd);
861 	esp_free_lun_tag(ent, dev->hostdata);
862 	cmd->result = result;
863 
864 	if (ent->eh_done) {
865 		complete(ent->eh_done);
866 		ent->eh_done = NULL;
867 	}
868 
869 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
870 		esp->ops->unmap_single(esp, ent->sense_dma,
871 				       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
872 		ent->sense_ptr = NULL;
873 
874 		/* Restore the message/status bytes to what we actually
875 		 * saw originally.  Also, report that we are providing
876 		 * the sense data.
877 		 */
878 		cmd->result = ((DRIVER_SENSE << 24) |
879 			       (DID_OK << 16) |
880 			       (COMMAND_COMPLETE << 8) |
881 			       (SAM_STAT_CHECK_CONDITION << 0));
882 
883 		ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
884 		if (esp_debug & ESP_DEBUG_AUTOSENSE) {
885 			int i;
886 
887 			printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
888 			       esp->host->unique_id, tgt, lun);
889 			for (i = 0; i < 18; i++)
890 				printk("%02x ", cmd->sense_buffer[i]);
891 			printk("]\n");
892 		}
893 	}
894 
895 	cmd->scsi_done(cmd);
896 
897 	list_del(&ent->list);
898 	esp_put_ent(esp, ent);
899 
900 	esp_maybe_execute_command(esp);
901 }
902 
903 static unsigned int compose_result(unsigned int status, unsigned int message,
904 				   unsigned int driver_code)
905 {
906 	return (status | (message << 8) | (driver_code << 16));
907 }
908 
909 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
910 {
911 	struct scsi_device *dev = ent->cmd->device;
912 	struct esp_lun_data *lp = dev->hostdata;
913 
914 	scsi_track_queue_full(dev, lp->num_tagged - 1);
915 }
916 
917 static int esp_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
918 {
919 	struct scsi_device *dev = cmd->device;
920 	struct esp *esp = shost_priv(dev->host);
921 	struct esp_cmd_priv *spriv;
922 	struct esp_cmd_entry *ent;
923 
924 	ent = esp_get_ent(esp);
925 	if (!ent)
926 		return SCSI_MLQUEUE_HOST_BUSY;
927 
928 	ent->cmd = cmd;
929 
930 	cmd->scsi_done = done;
931 
932 	spriv = ESP_CMD_PRIV(cmd);
933 	spriv->u.dma_addr = ~(dma_addr_t)0x0;
934 
935 	list_add_tail(&ent->list, &esp->queued_cmds);
936 
937 	esp_maybe_execute_command(esp);
938 
939 	return 0;
940 }
941 
942 static int esp_check_gross_error(struct esp *esp)
943 {
944 	if (esp->sreg & ESP_STAT_SPAM) {
945 		/* Gross Error, could be one of:
946 		 * - top of fifo overwritten
947 		 * - top of command register overwritten
948 		 * - DMA programmed with wrong direction
949 		 * - improper phase change
950 		 */
951 		printk(KERN_ERR PFX "esp%d: Gross error sreg[%02x]\n",
952 		       esp->host->unique_id, esp->sreg);
953 		/* XXX Reset the chip. XXX */
954 		return 1;
955 	}
956 	return 0;
957 }
958 
959 static int esp_check_spur_intr(struct esp *esp)
960 {
961 	switch (esp->rev) {
962 	case ESP100:
963 	case ESP100A:
964 		/* The interrupt pending bit of the status register cannot
965 		 * be trusted on these revisions.
966 		 */
967 		esp->sreg &= ~ESP_STAT_INTR;
968 		break;
969 
970 	default:
971 		if (!(esp->sreg & ESP_STAT_INTR)) {
972 			esp->ireg = esp_read8(ESP_INTRPT);
973 			if (esp->ireg & ESP_INTR_SR)
974 				return 1;
975 
976 			/* If the DMA is indicating interrupt pending and the
977 			 * ESP is not, the only possibility is a DMA error.
978 			 */
979 			if (!esp->ops->dma_error(esp)) {
980 				printk(KERN_ERR PFX "esp%d: Spurious irq, "
981 				       "sreg=%x.\n",
982 				       esp->host->unique_id, esp->sreg);
983 				return -1;
984 			}
985 
986 			printk(KERN_ERR PFX "esp%d: DMA error\n",
987 			       esp->host->unique_id);
988 
989 			/* XXX Reset the chip. XXX */
990 			return -1;
991 		}
992 		break;
993 	}
994 
995 	return 0;
996 }
997 
998 static void esp_schedule_reset(struct esp *esp)
999 {
1000 	esp_log_reset("ESP: esp_schedule_reset() from %p\n",
1001 		      __builtin_return_address(0));
1002 	esp->flags |= ESP_FLAG_RESETTING;
1003 	esp_event(esp, ESP_EVENT_RESET);
1004 }
1005 
1006 /* In order to avoid having to add a special half-reconnected state
1007  * into the driver we just sit here and poll through the rest of
1008  * the reselection process to get the tag message bytes.
1009  */
1010 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1011 						    struct esp_lun_data *lp)
1012 {
1013 	struct esp_cmd_entry *ent;
1014 	int i;
1015 
1016 	if (!lp->num_tagged) {
1017 		printk(KERN_ERR PFX "esp%d: Reconnect w/num_tagged==0\n",
1018 		       esp->host->unique_id);
1019 		return NULL;
1020 	}
1021 
1022 	esp_log_reconnect("ESP: reconnect tag, ");
1023 
1024 	for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1025 		if (esp->ops->irq_pending(esp))
1026 			break;
1027 	}
1028 	if (i == ESP_QUICKIRQ_LIMIT) {
1029 		printk(KERN_ERR PFX "esp%d: Reconnect IRQ1 timeout\n",
1030 		       esp->host->unique_id);
1031 		return NULL;
1032 	}
1033 
1034 	esp->sreg = esp_read8(ESP_STATUS);
1035 	esp->ireg = esp_read8(ESP_INTRPT);
1036 
1037 	esp_log_reconnect("IRQ(%d:%x:%x), ",
1038 			  i, esp->ireg, esp->sreg);
1039 
1040 	if (esp->ireg & ESP_INTR_DC) {
1041 		printk(KERN_ERR PFX "esp%d: Reconnect, got disconnect.\n",
1042 		       esp->host->unique_id);
1043 		return NULL;
1044 	}
1045 
1046 	if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1047 		printk(KERN_ERR PFX "esp%d: Reconnect, not MIP sreg[%02x].\n",
1048 		       esp->host->unique_id, esp->sreg);
1049 		return NULL;
1050 	}
1051 
1052 	/* DMA in the tag bytes... */
1053 	esp->command_block[0] = 0xff;
1054 	esp->command_block[1] = 0xff;
1055 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1056 			       2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1057 
1058 	/* ACK the msssage.  */
1059 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1060 
1061 	for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1062 		if (esp->ops->irq_pending(esp)) {
1063 			esp->sreg = esp_read8(ESP_STATUS);
1064 			esp->ireg = esp_read8(ESP_INTRPT);
1065 			if (esp->ireg & ESP_INTR_FDONE)
1066 				break;
1067 		}
1068 		udelay(1);
1069 	}
1070 	if (i == ESP_RESELECT_TAG_LIMIT) {
1071 		printk(KERN_ERR PFX "esp%d: Reconnect IRQ2 timeout\n",
1072 		       esp->host->unique_id);
1073 		return NULL;
1074 	}
1075 	esp->ops->dma_drain(esp);
1076 	esp->ops->dma_invalidate(esp);
1077 
1078 	esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1079 			  i, esp->ireg, esp->sreg,
1080 			  esp->command_block[0],
1081 			  esp->command_block[1]);
1082 
1083 	if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1084 	    esp->command_block[0] > ORDERED_QUEUE_TAG) {
1085 		printk(KERN_ERR PFX "esp%d: Reconnect, bad tag "
1086 		       "type %02x.\n",
1087 		       esp->host->unique_id, esp->command_block[0]);
1088 		return NULL;
1089 	}
1090 
1091 	ent = lp->tagged_cmds[esp->command_block[1]];
1092 	if (!ent) {
1093 		printk(KERN_ERR PFX "esp%d: Reconnect, no entry for "
1094 		       "tag %02x.\n",
1095 		       esp->host->unique_id, esp->command_block[1]);
1096 		return NULL;
1097 	}
1098 
1099 	return ent;
1100 }
1101 
1102 static int esp_reconnect(struct esp *esp)
1103 {
1104 	struct esp_cmd_entry *ent;
1105 	struct esp_target_data *tp;
1106 	struct esp_lun_data *lp;
1107 	struct scsi_device *dev;
1108 	int target, lun;
1109 
1110 	BUG_ON(esp->active_cmd);
1111 	if (esp->rev == FASHME) {
1112 		/* FASHME puts the target and lun numbers directly
1113 		 * into the fifo.
1114 		 */
1115 		target = esp->fifo[0];
1116 		lun = esp->fifo[1] & 0x7;
1117 	} else {
1118 		u8 bits = esp_read8(ESP_FDATA);
1119 
1120 		/* Older chips put the lun directly into the fifo, but
1121 		 * the target is given as a sample of the arbitration
1122 		 * lines on the bus at reselection time.  So we should
1123 		 * see the ID of the ESP and the one reconnecting target
1124 		 * set in the bitmap.
1125 		 */
1126 		if (!(bits & esp->scsi_id_mask))
1127 			goto do_reset;
1128 		bits &= ~esp->scsi_id_mask;
1129 		if (!bits || (bits & (bits - 1)))
1130 			goto do_reset;
1131 
1132 		target = ffs(bits) - 1;
1133 		lun = (esp_read8(ESP_FDATA) & 0x7);
1134 
1135 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1136 		if (esp->rev == ESP100) {
1137 			u8 ireg = esp_read8(ESP_INTRPT);
1138 			/* This chip has a bug during reselection that can
1139 			 * cause a spurious illegal-command interrupt, which
1140 			 * we simply ACK here.  Another possibility is a bus
1141 			 * reset so we must check for that.
1142 			 */
1143 			if (ireg & ESP_INTR_SR)
1144 				goto do_reset;
1145 		}
1146 		scsi_esp_cmd(esp, ESP_CMD_NULL);
1147 	}
1148 
1149 	esp_write_tgt_sync(esp, target);
1150 	esp_write_tgt_config3(esp, target);
1151 
1152 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1153 
1154 	if (esp->rev == FASHME)
1155 		esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1156 			   ESP_BUSID);
1157 
1158 	tp = &esp->target[target];
1159 	dev = __scsi_device_lookup_by_target(tp->starget, lun);
1160 	if (!dev) {
1161 		printk(KERN_ERR PFX "esp%d: Reconnect, no lp "
1162 		       "tgt[%u] lun[%u]\n",
1163 		       esp->host->unique_id, target, lun);
1164 		goto do_reset;
1165 	}
1166 	lp = dev->hostdata;
1167 
1168 	ent = lp->non_tagged_cmd;
1169 	if (!ent) {
1170 		ent = esp_reconnect_with_tag(esp, lp);
1171 		if (!ent)
1172 			goto do_reset;
1173 	}
1174 
1175 	esp->active_cmd = ent;
1176 
1177 	if (ent->flags & ESP_CMD_FLAG_ABORT) {
1178 		esp->msg_out[0] = ABORT_TASK_SET;
1179 		esp->msg_out_len = 1;
1180 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1181 	}
1182 
1183 	esp_event(esp, ESP_EVENT_CHECK_PHASE);
1184 	esp_restore_pointers(esp, ent);
1185 	esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1186 	return 1;
1187 
1188 do_reset:
1189 	esp_schedule_reset(esp);
1190 	return 0;
1191 }
1192 
1193 static int esp_finish_select(struct esp *esp)
1194 {
1195 	struct esp_cmd_entry *ent;
1196 	struct scsi_cmnd *cmd;
1197 	u8 orig_select_state;
1198 
1199 	orig_select_state = esp->select_state;
1200 
1201 	/* No longer selecting.  */
1202 	esp->select_state = ESP_SELECT_NONE;
1203 
1204 	esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1205 	ent = esp->active_cmd;
1206 	cmd = ent->cmd;
1207 
1208 	if (esp->ops->dma_error(esp)) {
1209 		/* If we see a DMA error during or as a result of selection,
1210 		 * all bets are off.
1211 		 */
1212 		esp_schedule_reset(esp);
1213 		esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1214 		return 0;
1215 	}
1216 
1217 	esp->ops->dma_invalidate(esp);
1218 
1219 	if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1220 		struct esp_target_data *tp = &esp->target[cmd->device->id];
1221 
1222 		/* Carefully back out of the selection attempt.  Release
1223 		 * resources (such as DMA mapping & TAG) and reset state (such
1224 		 * as message out and command delivery variables).
1225 		 */
1226 		if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1227 			esp_unmap_dma(esp, cmd);
1228 			esp_free_lun_tag(ent, cmd->device->hostdata);
1229 			tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1230 			esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
1231 			esp->cmd_bytes_ptr = NULL;
1232 			esp->cmd_bytes_left = 0;
1233 		} else {
1234 			esp->ops->unmap_single(esp, ent->sense_dma,
1235 					       SCSI_SENSE_BUFFERSIZE,
1236 					       DMA_FROM_DEVICE);
1237 			ent->sense_ptr = NULL;
1238 		}
1239 
1240 		/* Now that the state is unwound properly, put back onto
1241 		 * the issue queue.  This command is no longer active.
1242 		 */
1243 		list_del(&ent->list);
1244 		list_add(&ent->list, &esp->queued_cmds);
1245 		esp->active_cmd = NULL;
1246 
1247 		/* Return value ignored by caller, it directly invokes
1248 		 * esp_reconnect().
1249 		 */
1250 		return 0;
1251 	}
1252 
1253 	if (esp->ireg == ESP_INTR_DC) {
1254 		struct scsi_device *dev = cmd->device;
1255 
1256 		/* Disconnect.  Make sure we re-negotiate sync and
1257 		 * wide parameters if this target starts responding
1258 		 * again in the future.
1259 		 */
1260 		esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1261 
1262 		scsi_esp_cmd(esp, ESP_CMD_ESEL);
1263 		esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1264 		return 1;
1265 	}
1266 
1267 	if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1268 		/* Selection successful.  On pre-FAST chips we have
1269 		 * to do a NOP and possibly clean out the FIFO.
1270 		 */
1271 		if (esp->rev <= ESP236) {
1272 			int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1273 
1274 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1275 
1276 			if (!fcnt &&
1277 			    (!esp->prev_soff ||
1278 			     ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1279 				esp_flush_fifo(esp);
1280 		}
1281 
1282 		/* If we are doing a slow command, negotiation, etc.
1283 		 * we'll do the right thing as we transition to the
1284 		 * next phase.
1285 		 */
1286 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1287 		return 0;
1288 	}
1289 
1290 	printk("ESP: Unexpected selection completion ireg[%x].\n",
1291 	       esp->ireg);
1292 	esp_schedule_reset(esp);
1293 	return 0;
1294 }
1295 
1296 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1297 			       struct scsi_cmnd *cmd)
1298 {
1299 	int fifo_cnt, ecount, bytes_sent, flush_fifo;
1300 
1301 	fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1302 	if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1303 		fifo_cnt <<= 1;
1304 
1305 	ecount = 0;
1306 	if (!(esp->sreg & ESP_STAT_TCNT)) {
1307 		ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1308 			  (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1309 		if (esp->rev == FASHME)
1310 			ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1311 	}
1312 
1313 	bytes_sent = esp->data_dma_len;
1314 	bytes_sent -= ecount;
1315 
1316 	if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1317 		bytes_sent -= fifo_cnt;
1318 
1319 	flush_fifo = 0;
1320 	if (!esp->prev_soff) {
1321 		/* Synchronous data transfer, always flush fifo. */
1322 		flush_fifo = 1;
1323 	} else {
1324 		if (esp->rev == ESP100) {
1325 			u32 fflags, phase;
1326 
1327 			/* ESP100 has a chip bug where in the synchronous data
1328 			 * phase it can mistake a final long REQ pulse from the
1329 			 * target as an extra data byte.  Fun.
1330 			 *
1331 			 * To detect this case we resample the status register
1332 			 * and fifo flags.  If we're still in a data phase and
1333 			 * we see spurious chunks in the fifo, we return error
1334 			 * to the caller which should reset and set things up
1335 			 * such that we only try future transfers to this
1336 			 * target in synchronous mode.
1337 			 */
1338 			esp->sreg = esp_read8(ESP_STATUS);
1339 			phase = esp->sreg & ESP_STAT_PMASK;
1340 			fflags = esp_read8(ESP_FFLAGS);
1341 
1342 			if ((phase == ESP_DOP &&
1343 			     (fflags & ESP_FF_ONOTZERO)) ||
1344 			    (phase == ESP_DIP &&
1345 			     (fflags & ESP_FF_FBYTES)))
1346 				return -1;
1347 		}
1348 		if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1349 			flush_fifo = 1;
1350 	}
1351 
1352 	if (flush_fifo)
1353 		esp_flush_fifo(esp);
1354 
1355 	return bytes_sent;
1356 }
1357 
1358 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1359 			u8 scsi_period, u8 scsi_offset,
1360 			u8 esp_stp, u8 esp_soff)
1361 {
1362 	spi_period(tp->starget) = scsi_period;
1363 	spi_offset(tp->starget) = scsi_offset;
1364 	spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1365 
1366 	if (esp_soff) {
1367 		esp_stp &= 0x1f;
1368 		esp_soff |= esp->radelay;
1369 		if (esp->rev >= FAS236) {
1370 			u8 bit = ESP_CONFIG3_FSCSI;
1371 			if (esp->rev >= FAS100A)
1372 				bit = ESP_CONFIG3_FAST;
1373 
1374 			if (scsi_period < 50) {
1375 				if (esp->rev == FASHME)
1376 					esp_soff &= ~esp->radelay;
1377 				tp->esp_config3 |= bit;
1378 			} else {
1379 				tp->esp_config3 &= ~bit;
1380 			}
1381 			esp->prev_cfg3 = tp->esp_config3;
1382 			esp_write8(esp->prev_cfg3, ESP_CFG3);
1383 		}
1384 	}
1385 
1386 	tp->esp_period = esp->prev_stp = esp_stp;
1387 	tp->esp_offset = esp->prev_soff = esp_soff;
1388 
1389 	esp_write8(esp_soff, ESP_SOFF);
1390 	esp_write8(esp_stp, ESP_STP);
1391 
1392 	tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1393 
1394 	spi_display_xfer_agreement(tp->starget);
1395 }
1396 
1397 static void esp_msgin_reject(struct esp *esp)
1398 {
1399 	struct esp_cmd_entry *ent = esp->active_cmd;
1400 	struct scsi_cmnd *cmd = ent->cmd;
1401 	struct esp_target_data *tp;
1402 	int tgt;
1403 
1404 	tgt = cmd->device->id;
1405 	tp = &esp->target[tgt];
1406 
1407 	if (tp->flags & ESP_TGT_NEGO_WIDE) {
1408 		tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1409 
1410 		if (!esp_need_to_nego_sync(tp)) {
1411 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
1412 			scsi_esp_cmd(esp, ESP_CMD_RATN);
1413 		} else {
1414 			esp->msg_out_len =
1415 				spi_populate_sync_msg(&esp->msg_out[0],
1416 						      tp->nego_goal_period,
1417 						      tp->nego_goal_offset);
1418 			tp->flags |= ESP_TGT_NEGO_SYNC;
1419 			scsi_esp_cmd(esp, ESP_CMD_SATN);
1420 		}
1421 		return;
1422 	}
1423 
1424 	if (tp->flags & ESP_TGT_NEGO_SYNC) {
1425 		tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1426 		tp->esp_period = 0;
1427 		tp->esp_offset = 0;
1428 		esp_setsync(esp, tp, 0, 0, 0, 0);
1429 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1430 		return;
1431 	}
1432 
1433 	esp->msg_out[0] = ABORT_TASK_SET;
1434 	esp->msg_out_len = 1;
1435 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1436 }
1437 
1438 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1439 {
1440 	u8 period = esp->msg_in[3];
1441 	u8 offset = esp->msg_in[4];
1442 	u8 stp;
1443 
1444 	if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1445 		goto do_reject;
1446 
1447 	if (offset > 15)
1448 		goto do_reject;
1449 
1450 	if (offset) {
1451 		int rounded_up, one_clock;
1452 
1453 		if (period > esp->max_period) {
1454 			period = offset = 0;
1455 			goto do_sdtr;
1456 		}
1457 		if (period < esp->min_period)
1458 			goto do_reject;
1459 
1460 		one_clock = esp->ccycle / 1000;
1461 		rounded_up = (period << 2);
1462 		rounded_up = (rounded_up + one_clock - 1) / one_clock;
1463 		stp = rounded_up;
1464 		if (stp && esp->rev >= FAS236) {
1465 			if (stp >= 50)
1466 				stp--;
1467 		}
1468 	} else {
1469 		stp = 0;
1470 	}
1471 
1472 	esp_setsync(esp, tp, period, offset, stp, offset);
1473 	return;
1474 
1475 do_reject:
1476 	esp->msg_out[0] = MESSAGE_REJECT;
1477 	esp->msg_out_len = 1;
1478 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1479 	return;
1480 
1481 do_sdtr:
1482 	tp->nego_goal_period = period;
1483 	tp->nego_goal_offset = offset;
1484 	esp->msg_out_len =
1485 		spi_populate_sync_msg(&esp->msg_out[0],
1486 				      tp->nego_goal_period,
1487 				      tp->nego_goal_offset);
1488 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1489 }
1490 
1491 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1492 {
1493 	int size = 8 << esp->msg_in[3];
1494 	u8 cfg3;
1495 
1496 	if (esp->rev != FASHME)
1497 		goto do_reject;
1498 
1499 	if (size != 8 && size != 16)
1500 		goto do_reject;
1501 
1502 	if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1503 		goto do_reject;
1504 
1505 	cfg3 = tp->esp_config3;
1506 	if (size == 16) {
1507 		tp->flags |= ESP_TGT_WIDE;
1508 		cfg3 |= ESP_CONFIG3_EWIDE;
1509 	} else {
1510 		tp->flags &= ~ESP_TGT_WIDE;
1511 		cfg3 &= ~ESP_CONFIG3_EWIDE;
1512 	}
1513 	tp->esp_config3 = cfg3;
1514 	esp->prev_cfg3 = cfg3;
1515 	esp_write8(cfg3, ESP_CFG3);
1516 
1517 	tp->flags &= ~ESP_TGT_NEGO_WIDE;
1518 
1519 	spi_period(tp->starget) = 0;
1520 	spi_offset(tp->starget) = 0;
1521 	if (!esp_need_to_nego_sync(tp)) {
1522 		tp->flags &= ~ESP_TGT_CHECK_NEGO;
1523 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1524 	} else {
1525 		esp->msg_out_len =
1526 			spi_populate_sync_msg(&esp->msg_out[0],
1527 					      tp->nego_goal_period,
1528 					      tp->nego_goal_offset);
1529 		tp->flags |= ESP_TGT_NEGO_SYNC;
1530 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1531 	}
1532 	return;
1533 
1534 do_reject:
1535 	esp->msg_out[0] = MESSAGE_REJECT;
1536 	esp->msg_out_len = 1;
1537 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1538 }
1539 
1540 static void esp_msgin_extended(struct esp *esp)
1541 {
1542 	struct esp_cmd_entry *ent = esp->active_cmd;
1543 	struct scsi_cmnd *cmd = ent->cmd;
1544 	struct esp_target_data *tp;
1545 	int tgt = cmd->device->id;
1546 
1547 	tp = &esp->target[tgt];
1548 	if (esp->msg_in[2] == EXTENDED_SDTR) {
1549 		esp_msgin_sdtr(esp, tp);
1550 		return;
1551 	}
1552 	if (esp->msg_in[2] == EXTENDED_WDTR) {
1553 		esp_msgin_wdtr(esp, tp);
1554 		return;
1555 	}
1556 
1557 	printk("ESP: Unexpected extended msg type %x\n",
1558 	       esp->msg_in[2]);
1559 
1560 	esp->msg_out[0] = ABORT_TASK_SET;
1561 	esp->msg_out_len = 1;
1562 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1563 }
1564 
1565 /* Analyze msgin bytes received from target so far.  Return non-zero
1566  * if there are more bytes needed to complete the message.
1567  */
1568 static int esp_msgin_process(struct esp *esp)
1569 {
1570 	u8 msg0 = esp->msg_in[0];
1571 	int len = esp->msg_in_len;
1572 
1573 	if (msg0 & 0x80) {
1574 		/* Identify */
1575 		printk("ESP: Unexpected msgin identify\n");
1576 		return 0;
1577 	}
1578 
1579 	switch (msg0) {
1580 	case EXTENDED_MESSAGE:
1581 		if (len == 1)
1582 			return 1;
1583 		if (len < esp->msg_in[1] + 2)
1584 			return 1;
1585 		esp_msgin_extended(esp);
1586 		return 0;
1587 
1588 	case IGNORE_WIDE_RESIDUE: {
1589 		struct esp_cmd_entry *ent;
1590 		struct esp_cmd_priv *spriv;
1591 		if (len == 1)
1592 			return 1;
1593 
1594 		if (esp->msg_in[1] != 1)
1595 			goto do_reject;
1596 
1597 		ent = esp->active_cmd;
1598 		spriv = ESP_CMD_PRIV(ent->cmd);
1599 
1600 		if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1601 			spriv->cur_sg--;
1602 			spriv->cur_residue = 1;
1603 		} else
1604 			spriv->cur_residue++;
1605 		spriv->tot_residue++;
1606 		return 0;
1607 	}
1608 	case NOP:
1609 		return 0;
1610 	case RESTORE_POINTERS:
1611 		esp_restore_pointers(esp, esp->active_cmd);
1612 		return 0;
1613 	case SAVE_POINTERS:
1614 		esp_save_pointers(esp, esp->active_cmd);
1615 		return 0;
1616 
1617 	case COMMAND_COMPLETE:
1618 	case DISCONNECT: {
1619 		struct esp_cmd_entry *ent = esp->active_cmd;
1620 
1621 		ent->message = msg0;
1622 		esp_event(esp, ESP_EVENT_FREE_BUS);
1623 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1624 		return 0;
1625 	}
1626 	case MESSAGE_REJECT:
1627 		esp_msgin_reject(esp);
1628 		return 0;
1629 
1630 	default:
1631 	do_reject:
1632 		esp->msg_out[0] = MESSAGE_REJECT;
1633 		esp->msg_out_len = 1;
1634 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1635 		return 0;
1636 	}
1637 }
1638 
1639 static int esp_process_event(struct esp *esp)
1640 {
1641 	int write;
1642 
1643 again:
1644 	write = 0;
1645 	switch (esp->event) {
1646 	case ESP_EVENT_CHECK_PHASE:
1647 		switch (esp->sreg & ESP_STAT_PMASK) {
1648 		case ESP_DOP:
1649 			esp_event(esp, ESP_EVENT_DATA_OUT);
1650 			break;
1651 		case ESP_DIP:
1652 			esp_event(esp, ESP_EVENT_DATA_IN);
1653 			break;
1654 		case ESP_STATP:
1655 			esp_flush_fifo(esp);
1656 			scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1657 			esp_event(esp, ESP_EVENT_STATUS);
1658 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1659 			return 1;
1660 
1661 		case ESP_MOP:
1662 			esp_event(esp, ESP_EVENT_MSGOUT);
1663 			break;
1664 
1665 		case ESP_MIP:
1666 			esp_event(esp, ESP_EVENT_MSGIN);
1667 			break;
1668 
1669 		case ESP_CMDP:
1670 			esp_event(esp, ESP_EVENT_CMD_START);
1671 			break;
1672 
1673 		default:
1674 			printk("ESP: Unexpected phase, sreg=%02x\n",
1675 			       esp->sreg);
1676 			esp_schedule_reset(esp);
1677 			return 0;
1678 		}
1679 		goto again;
1680 		break;
1681 
1682 	case ESP_EVENT_DATA_IN:
1683 		write = 1;
1684 		/* fallthru */
1685 
1686 	case ESP_EVENT_DATA_OUT: {
1687 		struct esp_cmd_entry *ent = esp->active_cmd;
1688 		struct scsi_cmnd *cmd = ent->cmd;
1689 		dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1690 		unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1691 
1692 		if (esp->rev == ESP100)
1693 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1694 
1695 		if (write)
1696 			ent->flags |= ESP_CMD_FLAG_WRITE;
1697 		else
1698 			ent->flags &= ~ESP_CMD_FLAG_WRITE;
1699 
1700 		dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1701 		esp->data_dma_len = dma_len;
1702 
1703 		if (!dma_len) {
1704 			printk(KERN_ERR PFX "esp%d: DMA length is zero!\n",
1705 			       esp->host->unique_id);
1706 			printk(KERN_ERR PFX "esp%d: cur adr[%08llx] len[%08x]\n",
1707 			       esp->host->unique_id,
1708 			       (unsigned long long)esp_cur_dma_addr(ent, cmd),
1709 			       esp_cur_dma_len(ent, cmd));
1710 			esp_schedule_reset(esp);
1711 			return 0;
1712 		}
1713 
1714 		esp_log_datastart("ESP: start data addr[%08llx] len[%u] "
1715 				  "write(%d)\n",
1716 				  (unsigned long long)dma_addr, dma_len, write);
1717 
1718 		esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1719 				       write, ESP_CMD_DMA | ESP_CMD_TI);
1720 		esp_event(esp, ESP_EVENT_DATA_DONE);
1721 		break;
1722 	}
1723 	case ESP_EVENT_DATA_DONE: {
1724 		struct esp_cmd_entry *ent = esp->active_cmd;
1725 		struct scsi_cmnd *cmd = ent->cmd;
1726 		int bytes_sent;
1727 
1728 		if (esp->ops->dma_error(esp)) {
1729 			printk("ESP: data done, DMA error, resetting\n");
1730 			esp_schedule_reset(esp);
1731 			return 0;
1732 		}
1733 
1734 		if (ent->flags & ESP_CMD_FLAG_WRITE) {
1735 			/* XXX parity errors, etc. XXX */
1736 
1737 			esp->ops->dma_drain(esp);
1738 		}
1739 		esp->ops->dma_invalidate(esp);
1740 
1741 		if (esp->ireg != ESP_INTR_BSERV) {
1742 			/* We should always see exactly a bus-service
1743 			 * interrupt at the end of a successful transfer.
1744 			 */
1745 			printk("ESP: data done, not BSERV, resetting\n");
1746 			esp_schedule_reset(esp);
1747 			return 0;
1748 		}
1749 
1750 		bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1751 
1752 		esp_log_datadone("ESP: data done flgs[%x] sent[%d]\n",
1753 				 ent->flags, bytes_sent);
1754 
1755 		if (bytes_sent < 0) {
1756 			/* XXX force sync mode for this target XXX */
1757 			esp_schedule_reset(esp);
1758 			return 0;
1759 		}
1760 
1761 		esp_advance_dma(esp, ent, cmd, bytes_sent);
1762 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1763 		goto again;
1764 		break;
1765 	}
1766 
1767 	case ESP_EVENT_STATUS: {
1768 		struct esp_cmd_entry *ent = esp->active_cmd;
1769 
1770 		if (esp->ireg & ESP_INTR_FDONE) {
1771 			ent->status = esp_read8(ESP_FDATA);
1772 			ent->message = esp_read8(ESP_FDATA);
1773 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1774 		} else if (esp->ireg == ESP_INTR_BSERV) {
1775 			ent->status = esp_read8(ESP_FDATA);
1776 			ent->message = 0xff;
1777 			esp_event(esp, ESP_EVENT_MSGIN);
1778 			return 0;
1779 		}
1780 
1781 		if (ent->message != COMMAND_COMPLETE) {
1782 			printk("ESP: Unexpected message %x in status\n",
1783 			       ent->message);
1784 			esp_schedule_reset(esp);
1785 			return 0;
1786 		}
1787 
1788 		esp_event(esp, ESP_EVENT_FREE_BUS);
1789 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1790 		break;
1791 	}
1792 	case ESP_EVENT_FREE_BUS: {
1793 		struct esp_cmd_entry *ent = esp->active_cmd;
1794 		struct scsi_cmnd *cmd = ent->cmd;
1795 
1796 		if (ent->message == COMMAND_COMPLETE ||
1797 		    ent->message == DISCONNECT)
1798 			scsi_esp_cmd(esp, ESP_CMD_ESEL);
1799 
1800 		if (ent->message == COMMAND_COMPLETE) {
1801 			esp_log_cmddone("ESP: Command done status[%x] "
1802 					"message[%x]\n",
1803 					ent->status, ent->message);
1804 			if (ent->status == SAM_STAT_TASK_SET_FULL)
1805 				esp_event_queue_full(esp, ent);
1806 
1807 			if (ent->status == SAM_STAT_CHECK_CONDITION &&
1808 			    !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1809 				ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1810 				esp_autosense(esp, ent);
1811 			} else {
1812 				esp_cmd_is_done(esp, ent, cmd,
1813 						compose_result(ent->status,
1814 							       ent->message,
1815 							       DID_OK));
1816 			}
1817 		} else if (ent->message == DISCONNECT) {
1818 			esp_log_disconnect("ESP: Disconnecting tgt[%d] "
1819 					   "tag[%x:%x]\n",
1820 					   cmd->device->id,
1821 					   ent->tag[0], ent->tag[1]);
1822 
1823 			esp->active_cmd = NULL;
1824 			esp_maybe_execute_command(esp);
1825 		} else {
1826 			printk("ESP: Unexpected message %x in freebus\n",
1827 			       ent->message);
1828 			esp_schedule_reset(esp);
1829 			return 0;
1830 		}
1831 		if (esp->active_cmd)
1832 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1833 		break;
1834 	}
1835 	case ESP_EVENT_MSGOUT: {
1836 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1837 
1838 		if (esp_debug & ESP_DEBUG_MSGOUT) {
1839 			int i;
1840 			printk("ESP: Sending message [ ");
1841 			for (i = 0; i < esp->msg_out_len; i++)
1842 				printk("%02x ", esp->msg_out[i]);
1843 			printk("]\n");
1844 		}
1845 
1846 		if (esp->rev == FASHME) {
1847 			int i;
1848 
1849 			/* Always use the fifo.  */
1850 			for (i = 0; i < esp->msg_out_len; i++) {
1851 				esp_write8(esp->msg_out[i], ESP_FDATA);
1852 				esp_write8(0, ESP_FDATA);
1853 			}
1854 			scsi_esp_cmd(esp, ESP_CMD_TI);
1855 		} else {
1856 			if (esp->msg_out_len == 1) {
1857 				esp_write8(esp->msg_out[0], ESP_FDATA);
1858 				scsi_esp_cmd(esp, ESP_CMD_TI);
1859 			} else {
1860 				/* Use DMA. */
1861 				memcpy(esp->command_block,
1862 				       esp->msg_out,
1863 				       esp->msg_out_len);
1864 
1865 				esp->ops->send_dma_cmd(esp,
1866 						       esp->command_block_dma,
1867 						       esp->msg_out_len,
1868 						       esp->msg_out_len,
1869 						       0,
1870 						       ESP_CMD_DMA|ESP_CMD_TI);
1871 			}
1872 		}
1873 		esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1874 		break;
1875 	}
1876 	case ESP_EVENT_MSGOUT_DONE:
1877 		if (esp->rev == FASHME) {
1878 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1879 		} else {
1880 			if (esp->msg_out_len > 1)
1881 				esp->ops->dma_invalidate(esp);
1882 		}
1883 
1884 		if (!(esp->ireg & ESP_INTR_DC)) {
1885 			if (esp->rev != FASHME)
1886 				scsi_esp_cmd(esp, ESP_CMD_NULL);
1887 		}
1888 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1889 		goto again;
1890 	case ESP_EVENT_MSGIN:
1891 		if (esp->ireg & ESP_INTR_BSERV) {
1892 			if (esp->rev == FASHME) {
1893 				if (!(esp_read8(ESP_STATUS2) &
1894 				      ESP_STAT2_FEMPTY))
1895 					scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1896 			} else {
1897 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1898 				if (esp->rev == ESP100)
1899 					scsi_esp_cmd(esp, ESP_CMD_NULL);
1900 			}
1901 			scsi_esp_cmd(esp, ESP_CMD_TI);
1902 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1903 			return 1;
1904 		}
1905 		if (esp->ireg & ESP_INTR_FDONE) {
1906 			u8 val;
1907 
1908 			if (esp->rev == FASHME)
1909 				val = esp->fifo[0];
1910 			else
1911 				val = esp_read8(ESP_FDATA);
1912 			esp->msg_in[esp->msg_in_len++] = val;
1913 
1914 			esp_log_msgin("ESP: Got msgin byte %x\n", val);
1915 
1916 			if (!esp_msgin_process(esp))
1917 				esp->msg_in_len = 0;
1918 
1919 			if (esp->rev == FASHME)
1920 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1921 
1922 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1923 
1924 			if (esp->event != ESP_EVENT_FREE_BUS)
1925 				esp_event(esp, ESP_EVENT_CHECK_PHASE);
1926 		} else {
1927 			printk("ESP: MSGIN neither BSERV not FDON, resetting");
1928 			esp_schedule_reset(esp);
1929 			return 0;
1930 		}
1931 		break;
1932 	case ESP_EVENT_CMD_START:
1933 		memcpy(esp->command_block, esp->cmd_bytes_ptr,
1934 		       esp->cmd_bytes_left);
1935 		if (esp->rev == FASHME)
1936 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1937 		esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1938 				       esp->cmd_bytes_left, 16, 0,
1939 				       ESP_CMD_DMA | ESP_CMD_TI);
1940 		esp_event(esp, ESP_EVENT_CMD_DONE);
1941 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1942 		break;
1943 	case ESP_EVENT_CMD_DONE:
1944 		esp->ops->dma_invalidate(esp);
1945 		if (esp->ireg & ESP_INTR_BSERV) {
1946 			esp_event(esp, ESP_EVENT_CHECK_PHASE);
1947 			goto again;
1948 		}
1949 		esp_schedule_reset(esp);
1950 		return 0;
1951 		break;
1952 
1953 	case ESP_EVENT_RESET:
1954 		scsi_esp_cmd(esp, ESP_CMD_RS);
1955 		break;
1956 
1957 	default:
1958 		printk("ESP: Unexpected event %x, resetting\n",
1959 		       esp->event);
1960 		esp_schedule_reset(esp);
1961 		return 0;
1962 		break;
1963 	}
1964 	return 1;
1965 }
1966 
1967 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
1968 {
1969 	struct scsi_cmnd *cmd = ent->cmd;
1970 
1971 	esp_unmap_dma(esp, cmd);
1972 	esp_free_lun_tag(ent, cmd->device->hostdata);
1973 	cmd->result = DID_RESET << 16;
1974 
1975 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
1976 		esp->ops->unmap_single(esp, ent->sense_dma,
1977 				       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
1978 		ent->sense_ptr = NULL;
1979 	}
1980 
1981 	cmd->scsi_done(cmd);
1982 	list_del(&ent->list);
1983 	esp_put_ent(esp, ent);
1984 }
1985 
1986 static void esp_clear_hold(struct scsi_device *dev, void *data)
1987 {
1988 	struct esp_lun_data *lp = dev->hostdata;
1989 
1990 	BUG_ON(lp->num_tagged);
1991 	lp->hold = 0;
1992 }
1993 
1994 static void esp_reset_cleanup(struct esp *esp)
1995 {
1996 	struct esp_cmd_entry *ent, *tmp;
1997 	int i;
1998 
1999 	list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2000 		struct scsi_cmnd *cmd = ent->cmd;
2001 
2002 		list_del(&ent->list);
2003 		cmd->result = DID_RESET << 16;
2004 		cmd->scsi_done(cmd);
2005 		esp_put_ent(esp, ent);
2006 	}
2007 
2008 	list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2009 		if (ent == esp->active_cmd)
2010 			esp->active_cmd = NULL;
2011 		esp_reset_cleanup_one(esp, ent);
2012 	}
2013 
2014 	BUG_ON(esp->active_cmd != NULL);
2015 
2016 	/* Force renegotiation of sync/wide transfers.  */
2017 	for (i = 0; i < ESP_MAX_TARGET; i++) {
2018 		struct esp_target_data *tp = &esp->target[i];
2019 
2020 		tp->esp_period = 0;
2021 		tp->esp_offset = 0;
2022 		tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2023 				     ESP_CONFIG3_FSCSI |
2024 				     ESP_CONFIG3_FAST);
2025 		tp->flags &= ~ESP_TGT_WIDE;
2026 		tp->flags |= ESP_TGT_CHECK_NEGO;
2027 
2028 		if (tp->starget)
2029 			starget_for_each_device(tp->starget, NULL,
2030 						esp_clear_hold);
2031 	}
2032 	esp->flags &= ~ESP_FLAG_RESETTING;
2033 }
2034 
2035 /* Runs under host->lock */
2036 static void __esp_interrupt(struct esp *esp)
2037 {
2038 	int finish_reset, intr_done;
2039 	u8 phase;
2040 
2041 	esp->sreg = esp_read8(ESP_STATUS);
2042 
2043 	if (esp->flags & ESP_FLAG_RESETTING) {
2044 		finish_reset = 1;
2045 	} else {
2046 		if (esp_check_gross_error(esp))
2047 			return;
2048 
2049 		finish_reset = esp_check_spur_intr(esp);
2050 		if (finish_reset < 0)
2051 			return;
2052 	}
2053 
2054 	esp->ireg = esp_read8(ESP_INTRPT);
2055 
2056 	if (esp->ireg & ESP_INTR_SR)
2057 		finish_reset = 1;
2058 
2059 	if (finish_reset) {
2060 		esp_reset_cleanup(esp);
2061 		if (esp->eh_reset) {
2062 			complete(esp->eh_reset);
2063 			esp->eh_reset = NULL;
2064 		}
2065 		return;
2066 	}
2067 
2068 	phase = (esp->sreg & ESP_STAT_PMASK);
2069 	if (esp->rev == FASHME) {
2070 		if (((phase != ESP_DIP && phase != ESP_DOP) &&
2071 		     esp->select_state == ESP_SELECT_NONE &&
2072 		     esp->event != ESP_EVENT_STATUS &&
2073 		     esp->event != ESP_EVENT_DATA_DONE) ||
2074 		    (esp->ireg & ESP_INTR_RSEL)) {
2075 			esp->sreg2 = esp_read8(ESP_STATUS2);
2076 			if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2077 			    (esp->sreg2 & ESP_STAT2_F1BYTE))
2078 				hme_read_fifo(esp);
2079 		}
2080 	}
2081 
2082 	esp_log_intr("ESP: intr sreg[%02x] seqreg[%02x] "
2083 		     "sreg2[%02x] ireg[%02x]\n",
2084 		     esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2085 
2086 	intr_done = 0;
2087 
2088 	if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2089 		printk("ESP: unexpected IREG %02x\n", esp->ireg);
2090 		if (esp->ireg & ESP_INTR_IC)
2091 			esp_dump_cmd_log(esp);
2092 
2093 		esp_schedule_reset(esp);
2094 	} else {
2095 		if (!(esp->ireg & ESP_INTR_RSEL)) {
2096 			/* Some combination of FDONE, BSERV, DC.  */
2097 			if (esp->select_state != ESP_SELECT_NONE)
2098 				intr_done = esp_finish_select(esp);
2099 		} else if (esp->ireg & ESP_INTR_RSEL) {
2100 			if (esp->active_cmd)
2101 				(void) esp_finish_select(esp);
2102 			intr_done = esp_reconnect(esp);
2103 		}
2104 	}
2105 	while (!intr_done)
2106 		intr_done = esp_process_event(esp);
2107 }
2108 
2109 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2110 {
2111 	struct esp *esp = dev_id;
2112 	unsigned long flags;
2113 	irqreturn_t ret;
2114 
2115 	spin_lock_irqsave(esp->host->host_lock, flags);
2116 	ret = IRQ_NONE;
2117 	if (esp->ops->irq_pending(esp)) {
2118 		ret = IRQ_HANDLED;
2119 		for (;;) {
2120 			int i;
2121 
2122 			__esp_interrupt(esp);
2123 			if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2124 				break;
2125 			esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2126 
2127 			for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2128 				if (esp->ops->irq_pending(esp))
2129 					break;
2130 			}
2131 			if (i == ESP_QUICKIRQ_LIMIT)
2132 				break;
2133 		}
2134 	}
2135 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2136 
2137 	return ret;
2138 }
2139 EXPORT_SYMBOL(scsi_esp_intr);
2140 
2141 static void __devinit esp_get_revision(struct esp *esp)
2142 {
2143 	u8 val;
2144 
2145 	esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2146 	esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2147 	esp_write8(esp->config2, ESP_CFG2);
2148 
2149 	val = esp_read8(ESP_CFG2);
2150 	val &= ~ESP_CONFIG2_MAGIC;
2151 	if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2152 		/* If what we write to cfg2 does not come back, cfg2 is not
2153 		 * implemented, therefore this must be a plain esp100.
2154 		 */
2155 		esp->rev = ESP100;
2156 	} else {
2157 		esp->config2 = 0;
2158 		esp_set_all_config3(esp, 5);
2159 		esp->prev_cfg3 = 5;
2160 		esp_write8(esp->config2, ESP_CFG2);
2161 		esp_write8(0, ESP_CFG3);
2162 		esp_write8(esp->prev_cfg3, ESP_CFG3);
2163 
2164 		val = esp_read8(ESP_CFG3);
2165 		if (val != 5) {
2166 			/* The cfg2 register is implemented, however
2167 			 * cfg3 is not, must be esp100a.
2168 			 */
2169 			esp->rev = ESP100A;
2170 		} else {
2171 			esp_set_all_config3(esp, 0);
2172 			esp->prev_cfg3 = 0;
2173 			esp_write8(esp->prev_cfg3, ESP_CFG3);
2174 
2175 			/* All of cfg{1,2,3} implemented, must be one of
2176 			 * the fas variants, figure out which one.
2177 			 */
2178 			if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2179 				esp->rev = FAST;
2180 				esp->sync_defp = SYNC_DEFP_FAST;
2181 			} else {
2182 				esp->rev = ESP236;
2183 			}
2184 			esp->config2 = 0;
2185 			esp_write8(esp->config2, ESP_CFG2);
2186 		}
2187 	}
2188 }
2189 
2190 static void __devinit esp_init_swstate(struct esp *esp)
2191 {
2192 	int i;
2193 
2194 	INIT_LIST_HEAD(&esp->queued_cmds);
2195 	INIT_LIST_HEAD(&esp->active_cmds);
2196 	INIT_LIST_HEAD(&esp->esp_cmd_pool);
2197 
2198 	/* Start with a clear state, domain validation (via ->slave_configure,
2199 	 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2200 	 * commands.
2201 	 */
2202 	for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2203 		esp->target[i].flags = 0;
2204 		esp->target[i].nego_goal_period = 0;
2205 		esp->target[i].nego_goal_offset = 0;
2206 		esp->target[i].nego_goal_width = 0;
2207 		esp->target[i].nego_goal_tags = 0;
2208 	}
2209 }
2210 
2211 /* This places the ESP into a known state at boot time. */
2212 static void esp_bootup_reset(struct esp *esp)
2213 {
2214 	u8 val;
2215 
2216 	/* Reset the DMA */
2217 	esp->ops->reset_dma(esp);
2218 
2219 	/* Reset the ESP */
2220 	esp_reset_esp(esp);
2221 
2222 	/* Reset the SCSI bus, but tell ESP not to generate an irq */
2223 	val = esp_read8(ESP_CFG1);
2224 	val |= ESP_CONFIG1_SRRDISAB;
2225 	esp_write8(val, ESP_CFG1);
2226 
2227 	scsi_esp_cmd(esp, ESP_CMD_RS);
2228 	udelay(400);
2229 
2230 	esp_write8(esp->config1, ESP_CFG1);
2231 
2232 	/* Eat any bitrot in the chip and we are done... */
2233 	esp_read8(ESP_INTRPT);
2234 }
2235 
2236 static void __devinit esp_set_clock_params(struct esp *esp)
2237 {
2238 	int fmhz;
2239 	u8 ccf;
2240 
2241 	/* This is getting messy but it has to be done correctly or else
2242 	 * you get weird behavior all over the place.  We are trying to
2243 	 * basically figure out three pieces of information.
2244 	 *
2245 	 * a) Clock Conversion Factor
2246 	 *
2247 	 *    This is a representation of the input crystal clock frequency
2248 	 *    going into the ESP on this machine.  Any operation whose timing
2249 	 *    is longer than 400ns depends on this value being correct.  For
2250 	 *    example, you'll get blips for arbitration/selection during high
2251 	 *    load or with multiple targets if this is not set correctly.
2252 	 *
2253 	 * b) Selection Time-Out
2254 	 *
2255 	 *    The ESP isn't very bright and will arbitrate for the bus and try
2256 	 *    to select a target forever if you let it.  This value tells the
2257 	 *    ESP when it has taken too long to negotiate and that it should
2258 	 *    interrupt the CPU so we can see what happened.  The value is
2259 	 *    computed as follows (from NCR/Symbios chip docs).
2260 	 *
2261 	 *          (Time Out Period) *  (Input Clock)
2262 	 *    STO = ----------------------------------
2263 	 *          (8192) * (Clock Conversion Factor)
2264 	 *
2265 	 *    We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2266 	 *
2267 	 * c) Imperical constants for synchronous offset and transfer period
2268          *    register values
2269 	 *
2270 	 *    This entails the smallest and largest sync period we could ever
2271 	 *    handle on this ESP.
2272 	 */
2273 	fmhz = esp->cfreq;
2274 
2275 	ccf = ((fmhz / 1000000) + 4) / 5;
2276 	if (ccf == 1)
2277 		ccf = 2;
2278 
2279 	/* If we can't find anything reasonable, just assume 20MHZ.
2280 	 * This is the clock frequency of the older sun4c's where I've
2281 	 * been unable to find the clock-frequency PROM property.  All
2282 	 * other machines provide useful values it seems.
2283 	 */
2284 	if (fmhz <= 5000000 || ccf < 1 || ccf > 8) {
2285 		fmhz = 20000000;
2286 		ccf = 4;
2287 	}
2288 
2289 	esp->cfact = (ccf == 8 ? 0 : ccf);
2290 	esp->cfreq = fmhz;
2291 	esp->ccycle = ESP_MHZ_TO_CYCLE(fmhz);
2292 	esp->ctick = ESP_TICK(ccf, esp->ccycle);
2293 	esp->neg_defp = ESP_NEG_DEFP(fmhz, ccf);
2294 	esp->sync_defp = SYNC_DEFP_SLOW;
2295 }
2296 
2297 static const char *esp_chip_names[] = {
2298 	"ESP100",
2299 	"ESP100A",
2300 	"ESP236",
2301 	"FAS236",
2302 	"FAS100A",
2303 	"FAST",
2304 	"FASHME",
2305 };
2306 
2307 static struct scsi_transport_template *esp_transport_template;
2308 
2309 int __devinit scsi_esp_register(struct esp *esp, struct device *dev)
2310 {
2311 	static int instance;
2312 	int err;
2313 
2314 	esp->host->transportt = esp_transport_template;
2315 	esp->host->max_lun = ESP_MAX_LUN;
2316 	esp->host->cmd_per_lun = 2;
2317 
2318 	esp_set_clock_params(esp);
2319 
2320 	esp_get_revision(esp);
2321 
2322 	esp_init_swstate(esp);
2323 
2324 	esp_bootup_reset(esp);
2325 
2326 	printk(KERN_INFO PFX "esp%u, regs[%1p:%1p] irq[%u]\n",
2327 	       esp->host->unique_id, esp->regs, esp->dma_regs,
2328 	       esp->host->irq);
2329 	printk(KERN_INFO PFX "esp%u is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2330 	       esp->host->unique_id, esp_chip_names[esp->rev],
2331 	       esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2332 
2333 	/* Let the SCSI bus reset settle. */
2334 	ssleep(esp_bus_reset_settle);
2335 
2336 	err = scsi_add_host(esp->host, dev);
2337 	if (err)
2338 		return err;
2339 
2340 	esp->host->unique_id = instance++;
2341 
2342 	scsi_scan_host(esp->host);
2343 
2344 	return 0;
2345 }
2346 EXPORT_SYMBOL(scsi_esp_register);
2347 
2348 void __devexit scsi_esp_unregister(struct esp *esp)
2349 {
2350 	scsi_remove_host(esp->host);
2351 }
2352 EXPORT_SYMBOL(scsi_esp_unregister);
2353 
2354 static int esp_slave_alloc(struct scsi_device *dev)
2355 {
2356 	struct esp *esp = shost_priv(dev->host);
2357 	struct esp_target_data *tp = &esp->target[dev->id];
2358 	struct esp_lun_data *lp;
2359 
2360 	lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2361 	if (!lp)
2362 		return -ENOMEM;
2363 	dev->hostdata = lp;
2364 
2365 	tp->starget = dev->sdev_target;
2366 
2367 	spi_min_period(tp->starget) = esp->min_period;
2368 	spi_max_offset(tp->starget) = 15;
2369 
2370 	if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2371 		spi_max_width(tp->starget) = 1;
2372 	else
2373 		spi_max_width(tp->starget) = 0;
2374 
2375 	return 0;
2376 }
2377 
2378 static int esp_slave_configure(struct scsi_device *dev)
2379 {
2380 	struct esp *esp = shost_priv(dev->host);
2381 	struct esp_target_data *tp = &esp->target[dev->id];
2382 	int goal_tags, queue_depth;
2383 
2384 	goal_tags = 0;
2385 
2386 	if (dev->tagged_supported) {
2387 		/* XXX make this configurable somehow XXX */
2388 		goal_tags = ESP_DEFAULT_TAGS;
2389 
2390 		if (goal_tags > ESP_MAX_TAG)
2391 			goal_tags = ESP_MAX_TAG;
2392 	}
2393 
2394 	queue_depth = goal_tags;
2395 	if (queue_depth < dev->host->cmd_per_lun)
2396 		queue_depth = dev->host->cmd_per_lun;
2397 
2398 	if (goal_tags) {
2399 		scsi_set_tag_type(dev, MSG_ORDERED_TAG);
2400 		scsi_activate_tcq(dev, queue_depth);
2401 	} else {
2402 		scsi_deactivate_tcq(dev, queue_depth);
2403 	}
2404 	tp->flags |= ESP_TGT_DISCONNECT;
2405 
2406 	if (!spi_initial_dv(dev->sdev_target))
2407 		spi_dv_device(dev);
2408 
2409 	return 0;
2410 }
2411 
2412 static void esp_slave_destroy(struct scsi_device *dev)
2413 {
2414 	struct esp_lun_data *lp = dev->hostdata;
2415 
2416 	kfree(lp);
2417 	dev->hostdata = NULL;
2418 }
2419 
2420 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2421 {
2422 	struct esp *esp = shost_priv(cmd->device->host);
2423 	struct esp_cmd_entry *ent, *tmp;
2424 	struct completion eh_done;
2425 	unsigned long flags;
2426 
2427 	/* XXX This helps a lot with debugging but might be a bit
2428 	 * XXX much for the final driver.
2429 	 */
2430 	spin_lock_irqsave(esp->host->host_lock, flags);
2431 	printk(KERN_ERR PFX "esp%d: Aborting command [%p:%02x]\n",
2432 	       esp->host->unique_id, cmd, cmd->cmnd[0]);
2433 	ent = esp->active_cmd;
2434 	if (ent)
2435 		printk(KERN_ERR PFX "esp%d: Current command [%p:%02x]\n",
2436 		       esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2437 	list_for_each_entry(ent, &esp->queued_cmds, list) {
2438 		printk(KERN_ERR PFX "esp%d: Queued command [%p:%02x]\n",
2439 		       esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2440 	}
2441 	list_for_each_entry(ent, &esp->active_cmds, list) {
2442 		printk(KERN_ERR PFX "esp%d: Active command [%p:%02x]\n",
2443 		       esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2444 	}
2445 	esp_dump_cmd_log(esp);
2446 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2447 
2448 	spin_lock_irqsave(esp->host->host_lock, flags);
2449 
2450 	ent = NULL;
2451 	list_for_each_entry(tmp, &esp->queued_cmds, list) {
2452 		if (tmp->cmd == cmd) {
2453 			ent = tmp;
2454 			break;
2455 		}
2456 	}
2457 
2458 	if (ent) {
2459 		/* Easiest case, we didn't even issue the command
2460 		 * yet so it is trivial to abort.
2461 		 */
2462 		list_del(&ent->list);
2463 
2464 		cmd->result = DID_ABORT << 16;
2465 		cmd->scsi_done(cmd);
2466 
2467 		esp_put_ent(esp, ent);
2468 
2469 		goto out_success;
2470 	}
2471 
2472 	init_completion(&eh_done);
2473 
2474 	ent = esp->active_cmd;
2475 	if (ent && ent->cmd == cmd) {
2476 		/* Command is the currently active command on
2477 		 * the bus.  If we already have an output message
2478 		 * pending, no dice.
2479 		 */
2480 		if (esp->msg_out_len)
2481 			goto out_failure;
2482 
2483 		/* Send out an abort, encouraging the target to
2484 		 * go to MSGOUT phase by asserting ATN.
2485 		 */
2486 		esp->msg_out[0] = ABORT_TASK_SET;
2487 		esp->msg_out_len = 1;
2488 		ent->eh_done = &eh_done;
2489 
2490 		scsi_esp_cmd(esp, ESP_CMD_SATN);
2491 	} else {
2492 		/* The command is disconnected.  This is not easy to
2493 		 * abort.  For now we fail and let the scsi error
2494 		 * handling layer go try a scsi bus reset or host
2495 		 * reset.
2496 		 *
2497 		 * What we could do is put together a scsi command
2498 		 * solely for the purpose of sending an abort message
2499 		 * to the target.  Coming up with all the code to
2500 		 * cook up scsi commands, special case them everywhere,
2501 		 * etc. is for questionable gain and it would be better
2502 		 * if the generic scsi error handling layer could do at
2503 		 * least some of that for us.
2504 		 *
2505 		 * Anyways this is an area for potential future improvement
2506 		 * in this driver.
2507 		 */
2508 		goto out_failure;
2509 	}
2510 
2511 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2512 
2513 	if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2514 		spin_lock_irqsave(esp->host->host_lock, flags);
2515 		ent->eh_done = NULL;
2516 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2517 
2518 		return FAILED;
2519 	}
2520 
2521 	return SUCCESS;
2522 
2523 out_success:
2524 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2525 	return SUCCESS;
2526 
2527 out_failure:
2528 	/* XXX This might be a good location to set ESP_TGT_BROKEN
2529 	 * XXX since we know which target/lun in particular is
2530 	 * XXX causing trouble.
2531 	 */
2532 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2533 	return FAILED;
2534 }
2535 
2536 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2537 {
2538 	struct esp *esp = shost_priv(cmd->device->host);
2539 	struct completion eh_reset;
2540 	unsigned long flags;
2541 
2542 	init_completion(&eh_reset);
2543 
2544 	spin_lock_irqsave(esp->host->host_lock, flags);
2545 
2546 	esp->eh_reset = &eh_reset;
2547 
2548 	/* XXX This is too simple... We should add lots of
2549 	 * XXX checks here so that if we find that the chip is
2550 	 * XXX very wedged we return failure immediately so
2551 	 * XXX that we can perform a full chip reset.
2552 	 */
2553 	esp->flags |= ESP_FLAG_RESETTING;
2554 	scsi_esp_cmd(esp, ESP_CMD_RS);
2555 
2556 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2557 
2558 	ssleep(esp_bus_reset_settle);
2559 
2560 	if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2561 		spin_lock_irqsave(esp->host->host_lock, flags);
2562 		esp->eh_reset = NULL;
2563 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2564 
2565 		return FAILED;
2566 	}
2567 
2568 	return SUCCESS;
2569 }
2570 
2571 /* All bets are off, reset the entire device.  */
2572 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2573 {
2574 	struct esp *esp = shost_priv(cmd->device->host);
2575 	unsigned long flags;
2576 
2577 	spin_lock_irqsave(esp->host->host_lock, flags);
2578 	esp_bootup_reset(esp);
2579 	esp_reset_cleanup(esp);
2580 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2581 
2582 	ssleep(esp_bus_reset_settle);
2583 
2584 	return SUCCESS;
2585 }
2586 
2587 static const char *esp_info(struct Scsi_Host *host)
2588 {
2589 	return "esp";
2590 }
2591 
2592 struct scsi_host_template scsi_esp_template = {
2593 	.module			= THIS_MODULE,
2594 	.name			= "esp",
2595 	.info			= esp_info,
2596 	.queuecommand		= esp_queuecommand,
2597 	.slave_alloc		= esp_slave_alloc,
2598 	.slave_configure	= esp_slave_configure,
2599 	.slave_destroy		= esp_slave_destroy,
2600 	.eh_abort_handler	= esp_eh_abort_handler,
2601 	.eh_bus_reset_handler	= esp_eh_bus_reset_handler,
2602 	.eh_host_reset_handler	= esp_eh_host_reset_handler,
2603 	.can_queue		= 7,
2604 	.this_id		= 7,
2605 	.sg_tablesize		= SG_ALL,
2606 	.use_clustering		= ENABLE_CLUSTERING,
2607 	.max_sectors		= 0xffff,
2608 	.skip_settle_delay	= 1,
2609 };
2610 EXPORT_SYMBOL(scsi_esp_template);
2611 
2612 static void esp_get_signalling(struct Scsi_Host *host)
2613 {
2614 	struct esp *esp = shost_priv(host);
2615 	enum spi_signal_type type;
2616 
2617 	if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2618 		type = SPI_SIGNAL_HVD;
2619 	else
2620 		type = SPI_SIGNAL_SE;
2621 
2622 	spi_signalling(host) = type;
2623 }
2624 
2625 static void esp_set_offset(struct scsi_target *target, int offset)
2626 {
2627 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2628 	struct esp *esp = shost_priv(host);
2629 	struct esp_target_data *tp = &esp->target[target->id];
2630 
2631 	tp->nego_goal_offset = offset;
2632 	tp->flags |= ESP_TGT_CHECK_NEGO;
2633 }
2634 
2635 static void esp_set_period(struct scsi_target *target, int period)
2636 {
2637 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2638 	struct esp *esp = shost_priv(host);
2639 	struct esp_target_data *tp = &esp->target[target->id];
2640 
2641 	tp->nego_goal_period = period;
2642 	tp->flags |= ESP_TGT_CHECK_NEGO;
2643 }
2644 
2645 static void esp_set_width(struct scsi_target *target, int width)
2646 {
2647 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2648 	struct esp *esp = shost_priv(host);
2649 	struct esp_target_data *tp = &esp->target[target->id];
2650 
2651 	tp->nego_goal_width = (width ? 1 : 0);
2652 	tp->flags |= ESP_TGT_CHECK_NEGO;
2653 }
2654 
2655 static struct spi_function_template esp_transport_ops = {
2656 	.set_offset		= esp_set_offset,
2657 	.show_offset		= 1,
2658 	.set_period		= esp_set_period,
2659 	.show_period		= 1,
2660 	.set_width		= esp_set_width,
2661 	.show_width		= 1,
2662 	.get_signalling		= esp_get_signalling,
2663 };
2664 
2665 static int __init esp_init(void)
2666 {
2667 	BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2668 		     sizeof(struct esp_cmd_priv));
2669 
2670 	esp_transport_template = spi_attach_transport(&esp_transport_ops);
2671 	if (!esp_transport_template)
2672 		return -ENODEV;
2673 
2674 	return 0;
2675 }
2676 
2677 static void __exit esp_exit(void)
2678 {
2679 	spi_release_transport(esp_transport_template);
2680 }
2681 
2682 MODULE_DESCRIPTION("ESP SCSI driver core");
2683 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2684 MODULE_LICENSE("GPL");
2685 MODULE_VERSION(DRV_VERSION);
2686 
2687 module_param(esp_bus_reset_settle, int, 0);
2688 MODULE_PARM_DESC(esp_bus_reset_settle,
2689 		 "ESP scsi bus reset delay in seconds");
2690 
2691 module_param(esp_debug, int, 0);
2692 MODULE_PARM_DESC(esp_debug,
2693 "ESP bitmapped debugging message enable value:\n"
2694 "	0x00000001	Log interrupt events\n"
2695 "	0x00000002	Log scsi commands\n"
2696 "	0x00000004	Log resets\n"
2697 "	0x00000008	Log message in events\n"
2698 "	0x00000010	Log message out events\n"
2699 "	0x00000020	Log command completion\n"
2700 "	0x00000040	Log disconnects\n"
2701 "	0x00000080	Log data start\n"
2702 "	0x00000100	Log data done\n"
2703 "	0x00000200	Log reconnects\n"
2704 "	0x00000400	Log auto-sense data\n"
2705 );
2706 
2707 module_init(esp_init);
2708 module_exit(esp_exit);
2709