xref: /openbmc/linux/drivers/scsi/esp_scsi.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* esp_scsi.c: ESP SCSI driver.
3  *
4  * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <linux/list.h>
12 #include <linux/completion.h>
13 #include <linux/kallsyms.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/irqreturn.h>
18 
19 #include <asm/irq.h>
20 #include <asm/io.h>
21 #include <asm/dma.h>
22 
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_host.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_tcq.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_transport_spi.h>
30 
31 #include "esp_scsi.h"
32 
33 #define DRV_MODULE_NAME		"esp"
34 #define PFX DRV_MODULE_NAME	": "
35 #define DRV_VERSION		"2.000"
36 #define DRV_MODULE_RELDATE	"April 19, 2007"
37 
38 /* SCSI bus reset settle time in seconds.  */
39 static int esp_bus_reset_settle = 3;
40 
41 static u32 esp_debug;
42 #define ESP_DEBUG_INTR		0x00000001
43 #define ESP_DEBUG_SCSICMD	0x00000002
44 #define ESP_DEBUG_RESET		0x00000004
45 #define ESP_DEBUG_MSGIN		0x00000008
46 #define ESP_DEBUG_MSGOUT	0x00000010
47 #define ESP_DEBUG_CMDDONE	0x00000020
48 #define ESP_DEBUG_DISCONNECT	0x00000040
49 #define ESP_DEBUG_DATASTART	0x00000080
50 #define ESP_DEBUG_DATADONE	0x00000100
51 #define ESP_DEBUG_RECONNECT	0x00000200
52 #define ESP_DEBUG_AUTOSENSE	0x00000400
53 #define ESP_DEBUG_EVENT		0x00000800
54 #define ESP_DEBUG_COMMAND	0x00001000
55 
56 #define esp_log_intr(f, a...) \
57 do {	if (esp_debug & ESP_DEBUG_INTR) \
58 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
59 } while (0)
60 
61 #define esp_log_reset(f, a...) \
62 do {	if (esp_debug & ESP_DEBUG_RESET) \
63 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
64 } while (0)
65 
66 #define esp_log_msgin(f, a...) \
67 do {	if (esp_debug & ESP_DEBUG_MSGIN) \
68 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
69 } while (0)
70 
71 #define esp_log_msgout(f, a...) \
72 do {	if (esp_debug & ESP_DEBUG_MSGOUT) \
73 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
74 } while (0)
75 
76 #define esp_log_cmddone(f, a...) \
77 do {	if (esp_debug & ESP_DEBUG_CMDDONE) \
78 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
79 } while (0)
80 
81 #define esp_log_disconnect(f, a...) \
82 do {	if (esp_debug & ESP_DEBUG_DISCONNECT) \
83 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
84 } while (0)
85 
86 #define esp_log_datastart(f, a...) \
87 do {	if (esp_debug & ESP_DEBUG_DATASTART) \
88 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
89 } while (0)
90 
91 #define esp_log_datadone(f, a...) \
92 do {	if (esp_debug & ESP_DEBUG_DATADONE) \
93 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
94 } while (0)
95 
96 #define esp_log_reconnect(f, a...) \
97 do {	if (esp_debug & ESP_DEBUG_RECONNECT) \
98 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
99 } while (0)
100 
101 #define esp_log_autosense(f, a...) \
102 do {	if (esp_debug & ESP_DEBUG_AUTOSENSE) \
103 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
104 } while (0)
105 
106 #define esp_log_event(f, a...) \
107 do {   if (esp_debug & ESP_DEBUG_EVENT)	\
108 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
109 } while (0)
110 
111 #define esp_log_command(f, a...) \
112 do {   if (esp_debug & ESP_DEBUG_COMMAND)	\
113 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
114 } while (0)
115 
116 #define esp_read8(REG)		esp->ops->esp_read8(esp, REG)
117 #define esp_write8(VAL,REG)	esp->ops->esp_write8(esp, VAL, REG)
118 
119 static void esp_log_fill_regs(struct esp *esp,
120 			      struct esp_event_ent *p)
121 {
122 	p->sreg = esp->sreg;
123 	p->seqreg = esp->seqreg;
124 	p->sreg2 = esp->sreg2;
125 	p->ireg = esp->ireg;
126 	p->select_state = esp->select_state;
127 	p->event = esp->event;
128 }
129 
130 void scsi_esp_cmd(struct esp *esp, u8 val)
131 {
132 	struct esp_event_ent *p;
133 	int idx = esp->esp_event_cur;
134 
135 	p = &esp->esp_event_log[idx];
136 	p->type = ESP_EVENT_TYPE_CMD;
137 	p->val = val;
138 	esp_log_fill_regs(esp, p);
139 
140 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
141 
142 	esp_log_command("cmd[%02x]\n", val);
143 	esp_write8(val, ESP_CMD);
144 }
145 EXPORT_SYMBOL(scsi_esp_cmd);
146 
147 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
148 {
149 	if (esp->flags & ESP_FLAG_USE_FIFO) {
150 		int i;
151 
152 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
153 		for (i = 0; i < len; i++)
154 			esp_write8(esp->command_block[i], ESP_FDATA);
155 		scsi_esp_cmd(esp, cmd);
156 	} else {
157 		if (esp->rev == FASHME)
158 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
159 		cmd |= ESP_CMD_DMA;
160 		esp->ops->send_dma_cmd(esp, esp->command_block_dma,
161 				       len, max_len, 0, cmd);
162 	}
163 }
164 
165 static void esp_event(struct esp *esp, u8 val)
166 {
167 	struct esp_event_ent *p;
168 	int idx = esp->esp_event_cur;
169 
170 	p = &esp->esp_event_log[idx];
171 	p->type = ESP_EVENT_TYPE_EVENT;
172 	p->val = val;
173 	esp_log_fill_regs(esp, p);
174 
175 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
176 
177 	esp->event = val;
178 }
179 
180 static void esp_dump_cmd_log(struct esp *esp)
181 {
182 	int idx = esp->esp_event_cur;
183 	int stop = idx;
184 
185 	shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
186 	do {
187 		struct esp_event_ent *p = &esp->esp_event_log[idx];
188 
189 		shost_printk(KERN_INFO, esp->host,
190 			     "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
191 			     "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
192 			     idx,
193 			     p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
194 			     p->val, p->sreg, p->seqreg,
195 			     p->sreg2, p->ireg, p->select_state, p->event);
196 
197 		idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
198 	} while (idx != stop);
199 }
200 
201 static void esp_flush_fifo(struct esp *esp)
202 {
203 	scsi_esp_cmd(esp, ESP_CMD_FLUSH);
204 	if (esp->rev == ESP236) {
205 		int lim = 1000;
206 
207 		while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
208 			if (--lim == 0) {
209 				shost_printk(KERN_ALERT, esp->host,
210 					     "ESP_FF_BYTES will not clear!\n");
211 				break;
212 			}
213 			udelay(1);
214 		}
215 	}
216 }
217 
218 static void hme_read_fifo(struct esp *esp)
219 {
220 	int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
221 	int idx = 0;
222 
223 	while (fcnt--) {
224 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
225 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
226 	}
227 	if (esp->sreg2 & ESP_STAT2_F1BYTE) {
228 		esp_write8(0, ESP_FDATA);
229 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
230 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
231 	}
232 	esp->fifo_cnt = idx;
233 }
234 
235 static void esp_set_all_config3(struct esp *esp, u8 val)
236 {
237 	int i;
238 
239 	for (i = 0; i < ESP_MAX_TARGET; i++)
240 		esp->target[i].esp_config3 = val;
241 }
242 
243 /* Reset the ESP chip, _not_ the SCSI bus. */
244 static void esp_reset_esp(struct esp *esp)
245 {
246 	u8 family_code, version;
247 
248 	/* Now reset the ESP chip */
249 	scsi_esp_cmd(esp, ESP_CMD_RC);
250 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
251 	if (esp->rev == FAST)
252 		esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
253 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
254 
255 	/* This is the only point at which it is reliable to read
256 	 * the ID-code for a fast ESP chip variants.
257 	 */
258 	esp->max_period = ((35 * esp->ccycle) / 1000);
259 	if (esp->rev == FAST) {
260 		version = esp_read8(ESP_UID);
261 		family_code = (version & 0xf8) >> 3;
262 		if (family_code == 0x02)
263 			esp->rev = FAS236;
264 		else if (family_code == 0x0a)
265 			esp->rev = FASHME; /* Version is usually '5'. */
266 		else
267 			esp->rev = FAS100A;
268 		esp->min_period = ((4 * esp->ccycle) / 1000);
269 	} else {
270 		esp->min_period = ((5 * esp->ccycle) / 1000);
271 	}
272 	if (esp->rev == FAS236) {
273 		/*
274 		 * The AM53c974 chip returns the same ID as FAS236;
275 		 * try to configure glitch eater.
276 		 */
277 		u8 config4 = ESP_CONFIG4_GE1;
278 		esp_write8(config4, ESP_CFG4);
279 		config4 = esp_read8(ESP_CFG4);
280 		if (config4 & ESP_CONFIG4_GE1) {
281 			esp->rev = PCSCSI;
282 			esp_write8(esp->config4, ESP_CFG4);
283 		}
284 	}
285 	esp->max_period = (esp->max_period + 3)>>2;
286 	esp->min_period = (esp->min_period + 3)>>2;
287 
288 	esp_write8(esp->config1, ESP_CFG1);
289 	switch (esp->rev) {
290 	case ESP100:
291 		/* nothing to do */
292 		break;
293 
294 	case ESP100A:
295 		esp_write8(esp->config2, ESP_CFG2);
296 		break;
297 
298 	case ESP236:
299 		/* Slow 236 */
300 		esp_write8(esp->config2, ESP_CFG2);
301 		esp->prev_cfg3 = esp->target[0].esp_config3;
302 		esp_write8(esp->prev_cfg3, ESP_CFG3);
303 		break;
304 
305 	case FASHME:
306 		esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
307 		/* fallthrough... */
308 
309 	case FAS236:
310 	case PCSCSI:
311 		/* Fast 236, AM53c974 or HME */
312 		esp_write8(esp->config2, ESP_CFG2);
313 		if (esp->rev == FASHME) {
314 			u8 cfg3 = esp->target[0].esp_config3;
315 
316 			cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
317 			if (esp->scsi_id >= 8)
318 				cfg3 |= ESP_CONFIG3_IDBIT3;
319 			esp_set_all_config3(esp, cfg3);
320 		} else {
321 			u32 cfg3 = esp->target[0].esp_config3;
322 
323 			cfg3 |= ESP_CONFIG3_FCLK;
324 			esp_set_all_config3(esp, cfg3);
325 		}
326 		esp->prev_cfg3 = esp->target[0].esp_config3;
327 		esp_write8(esp->prev_cfg3, ESP_CFG3);
328 		if (esp->rev == FASHME) {
329 			esp->radelay = 80;
330 		} else {
331 			if (esp->flags & ESP_FLAG_DIFFERENTIAL)
332 				esp->radelay = 0;
333 			else
334 				esp->radelay = 96;
335 		}
336 		break;
337 
338 	case FAS100A:
339 		/* Fast 100a */
340 		esp_write8(esp->config2, ESP_CFG2);
341 		esp_set_all_config3(esp,
342 				    (esp->target[0].esp_config3 |
343 				     ESP_CONFIG3_FCLOCK));
344 		esp->prev_cfg3 = esp->target[0].esp_config3;
345 		esp_write8(esp->prev_cfg3, ESP_CFG3);
346 		esp->radelay = 32;
347 		break;
348 
349 	default:
350 		break;
351 	}
352 
353 	/* Reload the configuration registers */
354 	esp_write8(esp->cfact, ESP_CFACT);
355 
356 	esp->prev_stp = 0;
357 	esp_write8(esp->prev_stp, ESP_STP);
358 
359 	esp->prev_soff = 0;
360 	esp_write8(esp->prev_soff, ESP_SOFF);
361 
362 	esp_write8(esp->neg_defp, ESP_TIMEO);
363 
364 	/* Eat any bitrot in the chip */
365 	esp_read8(ESP_INTRPT);
366 	udelay(100);
367 }
368 
369 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
370 {
371 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
372 	struct scatterlist *sg = scsi_sglist(cmd);
373 	int total = 0, i;
374 	struct scatterlist *s;
375 
376 	if (cmd->sc_data_direction == DMA_NONE)
377 		return;
378 
379 	if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
380 		/*
381 		 * For pseudo DMA and PIO we need the virtual address instead of
382 		 * a dma address, so perform an identity mapping.
383 		 */
384 		spriv->num_sg = scsi_sg_count(cmd);
385 
386 		scsi_for_each_sg(cmd, s, spriv->num_sg, i) {
387 			s->dma_address = (uintptr_t)sg_virt(s);
388 			total += sg_dma_len(s);
389 		}
390 	} else {
391 		spriv->num_sg = scsi_dma_map(cmd);
392 		scsi_for_each_sg(cmd, s, spriv->num_sg, i)
393 			total += sg_dma_len(s);
394 	}
395 	spriv->cur_residue = sg_dma_len(sg);
396 	spriv->prv_sg = NULL;
397 	spriv->cur_sg = sg;
398 	spriv->tot_residue = total;
399 }
400 
401 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
402 				   struct scsi_cmnd *cmd)
403 {
404 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
405 
406 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
407 		return ent->sense_dma +
408 			(ent->sense_ptr - cmd->sense_buffer);
409 	}
410 
411 	return sg_dma_address(p->cur_sg) +
412 		(sg_dma_len(p->cur_sg) -
413 		 p->cur_residue);
414 }
415 
416 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
417 				    struct scsi_cmnd *cmd)
418 {
419 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
420 
421 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
422 		return SCSI_SENSE_BUFFERSIZE -
423 			(ent->sense_ptr - cmd->sense_buffer);
424 	}
425 	return p->cur_residue;
426 }
427 
428 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
429 			    struct scsi_cmnd *cmd, unsigned int len)
430 {
431 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
432 
433 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
434 		ent->sense_ptr += len;
435 		return;
436 	}
437 
438 	p->cur_residue -= len;
439 	p->tot_residue -= len;
440 	if (p->cur_residue < 0 || p->tot_residue < 0) {
441 		shost_printk(KERN_ERR, esp->host,
442 			     "Data transfer overflow.\n");
443 		shost_printk(KERN_ERR, esp->host,
444 			     "cur_residue[%d] tot_residue[%d] len[%u]\n",
445 			     p->cur_residue, p->tot_residue, len);
446 		p->cur_residue = 0;
447 		p->tot_residue = 0;
448 	}
449 	if (!p->cur_residue && p->tot_residue) {
450 		p->prv_sg = p->cur_sg;
451 		p->cur_sg = sg_next(p->cur_sg);
452 		p->cur_residue = sg_dma_len(p->cur_sg);
453 	}
454 }
455 
456 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
457 {
458 	if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
459 		scsi_dma_unmap(cmd);
460 }
461 
462 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
463 {
464 	struct scsi_cmnd *cmd = ent->cmd;
465 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
466 
467 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
468 		ent->saved_sense_ptr = ent->sense_ptr;
469 		return;
470 	}
471 	ent->saved_cur_residue = spriv->cur_residue;
472 	ent->saved_prv_sg = spriv->prv_sg;
473 	ent->saved_cur_sg = spriv->cur_sg;
474 	ent->saved_tot_residue = spriv->tot_residue;
475 }
476 
477 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
478 {
479 	struct scsi_cmnd *cmd = ent->cmd;
480 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
481 
482 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
483 		ent->sense_ptr = ent->saved_sense_ptr;
484 		return;
485 	}
486 	spriv->cur_residue = ent->saved_cur_residue;
487 	spriv->prv_sg = ent->saved_prv_sg;
488 	spriv->cur_sg = ent->saved_cur_sg;
489 	spriv->tot_residue = ent->saved_tot_residue;
490 }
491 
492 static void esp_write_tgt_config3(struct esp *esp, int tgt)
493 {
494 	if (esp->rev > ESP100A) {
495 		u8 val = esp->target[tgt].esp_config3;
496 
497 		if (val != esp->prev_cfg3) {
498 			esp->prev_cfg3 = val;
499 			esp_write8(val, ESP_CFG3);
500 		}
501 	}
502 }
503 
504 static void esp_write_tgt_sync(struct esp *esp, int tgt)
505 {
506 	u8 off = esp->target[tgt].esp_offset;
507 	u8 per = esp->target[tgt].esp_period;
508 
509 	if (off != esp->prev_soff) {
510 		esp->prev_soff = off;
511 		esp_write8(off, ESP_SOFF);
512 	}
513 	if (per != esp->prev_stp) {
514 		esp->prev_stp = per;
515 		esp_write8(per, ESP_STP);
516 	}
517 }
518 
519 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
520 {
521 	if (esp->rev == FASHME) {
522 		/* Arbitrary segment boundaries, 24-bit counts.  */
523 		if (dma_len > (1U << 24))
524 			dma_len = (1U << 24);
525 	} else {
526 		u32 base, end;
527 
528 		/* ESP chip limits other variants by 16-bits of transfer
529 		 * count.  Actually on FAS100A and FAS236 we could get
530 		 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
531 		 * in the ESP_CFG2 register but that causes other unwanted
532 		 * changes so we don't use it currently.
533 		 */
534 		if (dma_len > (1U << 16))
535 			dma_len = (1U << 16);
536 
537 		/* All of the DMA variants hooked up to these chips
538 		 * cannot handle crossing a 24-bit address boundary.
539 		 */
540 		base = dma_addr & ((1U << 24) - 1U);
541 		end = base + dma_len;
542 		if (end > (1U << 24))
543 			end = (1U <<24);
544 		dma_len = end - base;
545 	}
546 	return dma_len;
547 }
548 
549 static int esp_need_to_nego_wide(struct esp_target_data *tp)
550 {
551 	struct scsi_target *target = tp->starget;
552 
553 	return spi_width(target) != tp->nego_goal_width;
554 }
555 
556 static int esp_need_to_nego_sync(struct esp_target_data *tp)
557 {
558 	struct scsi_target *target = tp->starget;
559 
560 	/* When offset is zero, period is "don't care".  */
561 	if (!spi_offset(target) && !tp->nego_goal_offset)
562 		return 0;
563 
564 	if (spi_offset(target) == tp->nego_goal_offset &&
565 	    spi_period(target) == tp->nego_goal_period)
566 		return 0;
567 
568 	return 1;
569 }
570 
571 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
572 			     struct esp_lun_data *lp)
573 {
574 	if (!ent->orig_tag[0]) {
575 		/* Non-tagged, slot already taken?  */
576 		if (lp->non_tagged_cmd)
577 			return -EBUSY;
578 
579 		if (lp->hold) {
580 			/* We are being held by active tagged
581 			 * commands.
582 			 */
583 			if (lp->num_tagged)
584 				return -EBUSY;
585 
586 			/* Tagged commands completed, we can unplug
587 			 * the queue and run this untagged command.
588 			 */
589 			lp->hold = 0;
590 		} else if (lp->num_tagged) {
591 			/* Plug the queue until num_tagged decreases
592 			 * to zero in esp_free_lun_tag.
593 			 */
594 			lp->hold = 1;
595 			return -EBUSY;
596 		}
597 
598 		lp->non_tagged_cmd = ent;
599 		return 0;
600 	}
601 
602 	/* Tagged command. Check that it isn't blocked by a non-tagged one. */
603 	if (lp->non_tagged_cmd || lp->hold)
604 		return -EBUSY;
605 
606 	BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
607 
608 	lp->tagged_cmds[ent->orig_tag[1]] = ent;
609 	lp->num_tagged++;
610 
611 	return 0;
612 }
613 
614 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
615 			     struct esp_lun_data *lp)
616 {
617 	if (ent->orig_tag[0]) {
618 		BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
619 		lp->tagged_cmds[ent->orig_tag[1]] = NULL;
620 		lp->num_tagged--;
621 	} else {
622 		BUG_ON(lp->non_tagged_cmd != ent);
623 		lp->non_tagged_cmd = NULL;
624 	}
625 }
626 
627 static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent)
628 {
629 	ent->sense_ptr = ent->cmd->sense_buffer;
630 	if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
631 		ent->sense_dma = (uintptr_t)ent->sense_ptr;
632 		return;
633 	}
634 
635 	ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr,
636 					SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
637 }
638 
639 static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent)
640 {
641 	if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
642 		dma_unmap_single(esp->dev, ent->sense_dma,
643 				 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
644 	ent->sense_ptr = NULL;
645 }
646 
647 /* When a contingent allegiance conditon is created, we force feed a
648  * REQUEST_SENSE command to the device to fetch the sense data.  I
649  * tried many other schemes, relying on the scsi error handling layer
650  * to send out the REQUEST_SENSE automatically, but this was difficult
651  * to get right especially in the presence of applications like smartd
652  * which use SG_IO to send out their own REQUEST_SENSE commands.
653  */
654 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
655 {
656 	struct scsi_cmnd *cmd = ent->cmd;
657 	struct scsi_device *dev = cmd->device;
658 	int tgt, lun;
659 	u8 *p, val;
660 
661 	tgt = dev->id;
662 	lun = dev->lun;
663 
664 
665 	if (!ent->sense_ptr) {
666 		esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
667 				  tgt, lun);
668 		esp_map_sense(esp, ent);
669 	}
670 	ent->saved_sense_ptr = ent->sense_ptr;
671 
672 	esp->active_cmd = ent;
673 
674 	p = esp->command_block;
675 	esp->msg_out_len = 0;
676 
677 	*p++ = IDENTIFY(0, lun);
678 	*p++ = REQUEST_SENSE;
679 	*p++ = ((dev->scsi_level <= SCSI_2) ?
680 		(lun << 5) : 0);
681 	*p++ = 0;
682 	*p++ = 0;
683 	*p++ = SCSI_SENSE_BUFFERSIZE;
684 	*p++ = 0;
685 
686 	esp->select_state = ESP_SELECT_BASIC;
687 
688 	val = tgt;
689 	if (esp->rev == FASHME)
690 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
691 	esp_write8(val, ESP_BUSID);
692 
693 	esp_write_tgt_sync(esp, tgt);
694 	esp_write_tgt_config3(esp, tgt);
695 
696 	val = (p - esp->command_block);
697 
698 	esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
699 }
700 
701 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
702 {
703 	struct esp_cmd_entry *ent;
704 
705 	list_for_each_entry(ent, &esp->queued_cmds, list) {
706 		struct scsi_cmnd *cmd = ent->cmd;
707 		struct scsi_device *dev = cmd->device;
708 		struct esp_lun_data *lp = dev->hostdata;
709 
710 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
711 			ent->tag[0] = 0;
712 			ent->tag[1] = 0;
713 			return ent;
714 		}
715 
716 		if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
717 			ent->tag[0] = 0;
718 			ent->tag[1] = 0;
719 		}
720 		ent->orig_tag[0] = ent->tag[0];
721 		ent->orig_tag[1] = ent->tag[1];
722 
723 		if (esp_alloc_lun_tag(ent, lp) < 0)
724 			continue;
725 
726 		return ent;
727 	}
728 
729 	return NULL;
730 }
731 
732 static void esp_maybe_execute_command(struct esp *esp)
733 {
734 	struct esp_target_data *tp;
735 	struct scsi_device *dev;
736 	struct scsi_cmnd *cmd;
737 	struct esp_cmd_entry *ent;
738 	bool select_and_stop = false;
739 	int tgt, lun, i;
740 	u32 val, start_cmd;
741 	u8 *p;
742 
743 	if (esp->active_cmd ||
744 	    (esp->flags & ESP_FLAG_RESETTING))
745 		return;
746 
747 	ent = find_and_prep_issuable_command(esp);
748 	if (!ent)
749 		return;
750 
751 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
752 		esp_autosense(esp, ent);
753 		return;
754 	}
755 
756 	cmd = ent->cmd;
757 	dev = cmd->device;
758 	tgt = dev->id;
759 	lun = dev->lun;
760 	tp = &esp->target[tgt];
761 
762 	list_move(&ent->list, &esp->active_cmds);
763 
764 	esp->active_cmd = ent;
765 
766 	esp_map_dma(esp, cmd);
767 	esp_save_pointers(esp, ent);
768 
769 	if (!(cmd->cmd_len == 6 || cmd->cmd_len == 10 || cmd->cmd_len == 12))
770 		select_and_stop = true;
771 
772 	p = esp->command_block;
773 
774 	esp->msg_out_len = 0;
775 	if (tp->flags & ESP_TGT_CHECK_NEGO) {
776 		/* Need to negotiate.  If the target is broken
777 		 * go for synchronous transfers and non-wide.
778 		 */
779 		if (tp->flags & ESP_TGT_BROKEN) {
780 			tp->flags &= ~ESP_TGT_DISCONNECT;
781 			tp->nego_goal_period = 0;
782 			tp->nego_goal_offset = 0;
783 			tp->nego_goal_width = 0;
784 			tp->nego_goal_tags = 0;
785 		}
786 
787 		/* If the settings are not changing, skip this.  */
788 		if (spi_width(tp->starget) == tp->nego_goal_width &&
789 		    spi_period(tp->starget) == tp->nego_goal_period &&
790 		    spi_offset(tp->starget) == tp->nego_goal_offset) {
791 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
792 			goto build_identify;
793 		}
794 
795 		if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
796 			esp->msg_out_len =
797 				spi_populate_width_msg(&esp->msg_out[0],
798 						       (tp->nego_goal_width ?
799 							1 : 0));
800 			tp->flags |= ESP_TGT_NEGO_WIDE;
801 		} else if (esp_need_to_nego_sync(tp)) {
802 			esp->msg_out_len =
803 				spi_populate_sync_msg(&esp->msg_out[0],
804 						      tp->nego_goal_period,
805 						      tp->nego_goal_offset);
806 			tp->flags |= ESP_TGT_NEGO_SYNC;
807 		} else {
808 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
809 		}
810 
811 		/* If there are multiple message bytes, use Select and Stop */
812 		if (esp->msg_out_len)
813 			select_and_stop = true;
814 	}
815 
816 build_identify:
817 	*p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun);
818 
819 	if (ent->tag[0] && esp->rev == ESP100) {
820 		/* ESP100 lacks select w/atn3 command, use select
821 		 * and stop instead.
822 		 */
823 		select_and_stop = true;
824 	}
825 
826 	if (select_and_stop) {
827 		esp->cmd_bytes_left = cmd->cmd_len;
828 		esp->cmd_bytes_ptr = &cmd->cmnd[0];
829 
830 		if (ent->tag[0]) {
831 			for (i = esp->msg_out_len - 1;
832 			     i >= 0; i--)
833 				esp->msg_out[i + 2] = esp->msg_out[i];
834 			esp->msg_out[0] = ent->tag[0];
835 			esp->msg_out[1] = ent->tag[1];
836 			esp->msg_out_len += 2;
837 		}
838 
839 		start_cmd = ESP_CMD_SELAS;
840 		esp->select_state = ESP_SELECT_MSGOUT;
841 	} else {
842 		start_cmd = ESP_CMD_SELA;
843 		if (ent->tag[0]) {
844 			*p++ = ent->tag[0];
845 			*p++ = ent->tag[1];
846 
847 			start_cmd = ESP_CMD_SA3;
848 		}
849 
850 		for (i = 0; i < cmd->cmd_len; i++)
851 			*p++ = cmd->cmnd[i];
852 
853 		esp->select_state = ESP_SELECT_BASIC;
854 	}
855 	val = tgt;
856 	if (esp->rev == FASHME)
857 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
858 	esp_write8(val, ESP_BUSID);
859 
860 	esp_write_tgt_sync(esp, tgt);
861 	esp_write_tgt_config3(esp, tgt);
862 
863 	val = (p - esp->command_block);
864 
865 	if (esp_debug & ESP_DEBUG_SCSICMD) {
866 		printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
867 		for (i = 0; i < cmd->cmd_len; i++)
868 			printk("%02x ", cmd->cmnd[i]);
869 		printk("]\n");
870 	}
871 
872 	esp_send_dma_cmd(esp, val, 16, start_cmd);
873 }
874 
875 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
876 {
877 	struct list_head *head = &esp->esp_cmd_pool;
878 	struct esp_cmd_entry *ret;
879 
880 	if (list_empty(head)) {
881 		ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
882 	} else {
883 		ret = list_entry(head->next, struct esp_cmd_entry, list);
884 		list_del(&ret->list);
885 		memset(ret, 0, sizeof(*ret));
886 	}
887 	return ret;
888 }
889 
890 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
891 {
892 	list_add(&ent->list, &esp->esp_cmd_pool);
893 }
894 
895 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
896 			    struct scsi_cmnd *cmd, unsigned int result)
897 {
898 	struct scsi_device *dev = cmd->device;
899 	int tgt = dev->id;
900 	int lun = dev->lun;
901 
902 	esp->active_cmd = NULL;
903 	esp_unmap_dma(esp, cmd);
904 	esp_free_lun_tag(ent, dev->hostdata);
905 	cmd->result = result;
906 
907 	if (ent->eh_done) {
908 		complete(ent->eh_done);
909 		ent->eh_done = NULL;
910 	}
911 
912 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
913 		esp_unmap_sense(esp, ent);
914 
915 		/* Restore the message/status bytes to what we actually
916 		 * saw originally.  Also, report that we are providing
917 		 * the sense data.
918 		 */
919 		cmd->result = ((DRIVER_SENSE << 24) |
920 			       (DID_OK << 16) |
921 			       (COMMAND_COMPLETE << 8) |
922 			       (SAM_STAT_CHECK_CONDITION << 0));
923 
924 		ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
925 		if (esp_debug & ESP_DEBUG_AUTOSENSE) {
926 			int i;
927 
928 			printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
929 			       esp->host->unique_id, tgt, lun);
930 			for (i = 0; i < 18; i++)
931 				printk("%02x ", cmd->sense_buffer[i]);
932 			printk("]\n");
933 		}
934 	}
935 
936 	cmd->scsi_done(cmd);
937 
938 	list_del(&ent->list);
939 	esp_put_ent(esp, ent);
940 
941 	esp_maybe_execute_command(esp);
942 }
943 
944 static unsigned int compose_result(unsigned int status, unsigned int message,
945 				   unsigned int driver_code)
946 {
947 	return (status | (message << 8) | (driver_code << 16));
948 }
949 
950 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
951 {
952 	struct scsi_device *dev = ent->cmd->device;
953 	struct esp_lun_data *lp = dev->hostdata;
954 
955 	scsi_track_queue_full(dev, lp->num_tagged - 1);
956 }
957 
958 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
959 {
960 	struct scsi_device *dev = cmd->device;
961 	struct esp *esp = shost_priv(dev->host);
962 	struct esp_cmd_priv *spriv;
963 	struct esp_cmd_entry *ent;
964 
965 	ent = esp_get_ent(esp);
966 	if (!ent)
967 		return SCSI_MLQUEUE_HOST_BUSY;
968 
969 	ent->cmd = cmd;
970 
971 	cmd->scsi_done = done;
972 
973 	spriv = ESP_CMD_PRIV(cmd);
974 	spriv->num_sg = 0;
975 
976 	list_add_tail(&ent->list, &esp->queued_cmds);
977 
978 	esp_maybe_execute_command(esp);
979 
980 	return 0;
981 }
982 
983 static DEF_SCSI_QCMD(esp_queuecommand)
984 
985 static int esp_check_gross_error(struct esp *esp)
986 {
987 	if (esp->sreg & ESP_STAT_SPAM) {
988 		/* Gross Error, could be one of:
989 		 * - top of fifo overwritten
990 		 * - top of command register overwritten
991 		 * - DMA programmed with wrong direction
992 		 * - improper phase change
993 		 */
994 		shost_printk(KERN_ERR, esp->host,
995 			     "Gross error sreg[%02x]\n", esp->sreg);
996 		/* XXX Reset the chip. XXX */
997 		return 1;
998 	}
999 	return 0;
1000 }
1001 
1002 static int esp_check_spur_intr(struct esp *esp)
1003 {
1004 	switch (esp->rev) {
1005 	case ESP100:
1006 	case ESP100A:
1007 		/* The interrupt pending bit of the status register cannot
1008 		 * be trusted on these revisions.
1009 		 */
1010 		esp->sreg &= ~ESP_STAT_INTR;
1011 		break;
1012 
1013 	default:
1014 		if (!(esp->sreg & ESP_STAT_INTR)) {
1015 			if (esp->ireg & ESP_INTR_SR)
1016 				return 1;
1017 
1018 			/* If the DMA is indicating interrupt pending and the
1019 			 * ESP is not, the only possibility is a DMA error.
1020 			 */
1021 			if (!esp->ops->dma_error(esp)) {
1022 				shost_printk(KERN_ERR, esp->host,
1023 					     "Spurious irq, sreg=%02x.\n",
1024 					     esp->sreg);
1025 				return -1;
1026 			}
1027 
1028 			shost_printk(KERN_ERR, esp->host, "DMA error\n");
1029 
1030 			/* XXX Reset the chip. XXX */
1031 			return -1;
1032 		}
1033 		break;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 static void esp_schedule_reset(struct esp *esp)
1040 {
1041 	esp_log_reset("esp_schedule_reset() from %ps\n",
1042 		      __builtin_return_address(0));
1043 	esp->flags |= ESP_FLAG_RESETTING;
1044 	esp_event(esp, ESP_EVENT_RESET);
1045 }
1046 
1047 /* In order to avoid having to add a special half-reconnected state
1048  * into the driver we just sit here and poll through the rest of
1049  * the reselection process to get the tag message bytes.
1050  */
1051 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1052 						    struct esp_lun_data *lp)
1053 {
1054 	struct esp_cmd_entry *ent;
1055 	int i;
1056 
1057 	if (!lp->num_tagged) {
1058 		shost_printk(KERN_ERR, esp->host,
1059 			     "Reconnect w/num_tagged==0\n");
1060 		return NULL;
1061 	}
1062 
1063 	esp_log_reconnect("reconnect tag, ");
1064 
1065 	for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1066 		if (esp->ops->irq_pending(esp))
1067 			break;
1068 	}
1069 	if (i == ESP_QUICKIRQ_LIMIT) {
1070 		shost_printk(KERN_ERR, esp->host,
1071 			     "Reconnect IRQ1 timeout\n");
1072 		return NULL;
1073 	}
1074 
1075 	esp->sreg = esp_read8(ESP_STATUS);
1076 	esp->ireg = esp_read8(ESP_INTRPT);
1077 
1078 	esp_log_reconnect("IRQ(%d:%x:%x), ",
1079 			  i, esp->ireg, esp->sreg);
1080 
1081 	if (esp->ireg & ESP_INTR_DC) {
1082 		shost_printk(KERN_ERR, esp->host,
1083 			     "Reconnect, got disconnect.\n");
1084 		return NULL;
1085 	}
1086 
1087 	if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1088 		shost_printk(KERN_ERR, esp->host,
1089 			     "Reconnect, not MIP sreg[%02x].\n", esp->sreg);
1090 		return NULL;
1091 	}
1092 
1093 	/* DMA in the tag bytes... */
1094 	esp->command_block[0] = 0xff;
1095 	esp->command_block[1] = 0xff;
1096 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1097 			       2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1098 
1099 	/* ACK the message.  */
1100 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1101 
1102 	for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1103 		if (esp->ops->irq_pending(esp)) {
1104 			esp->sreg = esp_read8(ESP_STATUS);
1105 			esp->ireg = esp_read8(ESP_INTRPT);
1106 			if (esp->ireg & ESP_INTR_FDONE)
1107 				break;
1108 		}
1109 		udelay(1);
1110 	}
1111 	if (i == ESP_RESELECT_TAG_LIMIT) {
1112 		shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
1113 		return NULL;
1114 	}
1115 	esp->ops->dma_drain(esp);
1116 	esp->ops->dma_invalidate(esp);
1117 
1118 	esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1119 			  i, esp->ireg, esp->sreg,
1120 			  esp->command_block[0],
1121 			  esp->command_block[1]);
1122 
1123 	if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1124 	    esp->command_block[0] > ORDERED_QUEUE_TAG) {
1125 		shost_printk(KERN_ERR, esp->host,
1126 			     "Reconnect, bad tag type %02x.\n",
1127 			     esp->command_block[0]);
1128 		return NULL;
1129 	}
1130 
1131 	ent = lp->tagged_cmds[esp->command_block[1]];
1132 	if (!ent) {
1133 		shost_printk(KERN_ERR, esp->host,
1134 			     "Reconnect, no entry for tag %02x.\n",
1135 			     esp->command_block[1]);
1136 		return NULL;
1137 	}
1138 
1139 	return ent;
1140 }
1141 
1142 static int esp_reconnect(struct esp *esp)
1143 {
1144 	struct esp_cmd_entry *ent;
1145 	struct esp_target_data *tp;
1146 	struct esp_lun_data *lp;
1147 	struct scsi_device *dev;
1148 	int target, lun;
1149 
1150 	BUG_ON(esp->active_cmd);
1151 	if (esp->rev == FASHME) {
1152 		/* FASHME puts the target and lun numbers directly
1153 		 * into the fifo.
1154 		 */
1155 		target = esp->fifo[0];
1156 		lun = esp->fifo[1] & 0x7;
1157 	} else {
1158 		u8 bits = esp_read8(ESP_FDATA);
1159 
1160 		/* Older chips put the lun directly into the fifo, but
1161 		 * the target is given as a sample of the arbitration
1162 		 * lines on the bus at reselection time.  So we should
1163 		 * see the ID of the ESP and the one reconnecting target
1164 		 * set in the bitmap.
1165 		 */
1166 		if (!(bits & esp->scsi_id_mask))
1167 			goto do_reset;
1168 		bits &= ~esp->scsi_id_mask;
1169 		if (!bits || (bits & (bits - 1)))
1170 			goto do_reset;
1171 
1172 		target = ffs(bits) - 1;
1173 		lun = (esp_read8(ESP_FDATA) & 0x7);
1174 
1175 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1176 		if (esp->rev == ESP100) {
1177 			u8 ireg = esp_read8(ESP_INTRPT);
1178 			/* This chip has a bug during reselection that can
1179 			 * cause a spurious illegal-command interrupt, which
1180 			 * we simply ACK here.  Another possibility is a bus
1181 			 * reset so we must check for that.
1182 			 */
1183 			if (ireg & ESP_INTR_SR)
1184 				goto do_reset;
1185 		}
1186 		scsi_esp_cmd(esp, ESP_CMD_NULL);
1187 	}
1188 
1189 	esp_write_tgt_sync(esp, target);
1190 	esp_write_tgt_config3(esp, target);
1191 
1192 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1193 
1194 	if (esp->rev == FASHME)
1195 		esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1196 			   ESP_BUSID);
1197 
1198 	tp = &esp->target[target];
1199 	dev = __scsi_device_lookup_by_target(tp->starget, lun);
1200 	if (!dev) {
1201 		shost_printk(KERN_ERR, esp->host,
1202 			     "Reconnect, no lp tgt[%u] lun[%u]\n",
1203 			     target, lun);
1204 		goto do_reset;
1205 	}
1206 	lp = dev->hostdata;
1207 
1208 	ent = lp->non_tagged_cmd;
1209 	if (!ent) {
1210 		ent = esp_reconnect_with_tag(esp, lp);
1211 		if (!ent)
1212 			goto do_reset;
1213 	}
1214 
1215 	esp->active_cmd = ent;
1216 
1217 	esp_event(esp, ESP_EVENT_CHECK_PHASE);
1218 	esp_restore_pointers(esp, ent);
1219 	esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1220 	return 1;
1221 
1222 do_reset:
1223 	esp_schedule_reset(esp);
1224 	return 0;
1225 }
1226 
1227 static int esp_finish_select(struct esp *esp)
1228 {
1229 	struct esp_cmd_entry *ent;
1230 	struct scsi_cmnd *cmd;
1231 
1232 	/* No longer selecting.  */
1233 	esp->select_state = ESP_SELECT_NONE;
1234 
1235 	esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1236 	ent = esp->active_cmd;
1237 	cmd = ent->cmd;
1238 
1239 	if (esp->ops->dma_error(esp)) {
1240 		/* If we see a DMA error during or as a result of selection,
1241 		 * all bets are off.
1242 		 */
1243 		esp_schedule_reset(esp);
1244 		esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1245 		return 0;
1246 	}
1247 
1248 	esp->ops->dma_invalidate(esp);
1249 
1250 	if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1251 		struct esp_target_data *tp = &esp->target[cmd->device->id];
1252 
1253 		/* Carefully back out of the selection attempt.  Release
1254 		 * resources (such as DMA mapping & TAG) and reset state (such
1255 		 * as message out and command delivery variables).
1256 		 */
1257 		if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1258 			esp_unmap_dma(esp, cmd);
1259 			esp_free_lun_tag(ent, cmd->device->hostdata);
1260 			tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1261 			esp->cmd_bytes_ptr = NULL;
1262 			esp->cmd_bytes_left = 0;
1263 		} else {
1264 			esp_unmap_sense(esp, ent);
1265 		}
1266 
1267 		/* Now that the state is unwound properly, put back onto
1268 		 * the issue queue.  This command is no longer active.
1269 		 */
1270 		list_move(&ent->list, &esp->queued_cmds);
1271 		esp->active_cmd = NULL;
1272 
1273 		/* Return value ignored by caller, it directly invokes
1274 		 * esp_reconnect().
1275 		 */
1276 		return 0;
1277 	}
1278 
1279 	if (esp->ireg == ESP_INTR_DC) {
1280 		struct scsi_device *dev = cmd->device;
1281 
1282 		/* Disconnect.  Make sure we re-negotiate sync and
1283 		 * wide parameters if this target starts responding
1284 		 * again in the future.
1285 		 */
1286 		esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1287 
1288 		scsi_esp_cmd(esp, ESP_CMD_ESEL);
1289 		esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1290 		return 1;
1291 	}
1292 
1293 	if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1294 		/* Selection successful.  On pre-FAST chips we have
1295 		 * to do a NOP and possibly clean out the FIFO.
1296 		 */
1297 		if (esp->rev <= ESP236) {
1298 			int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1299 
1300 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1301 
1302 			if (!fcnt &&
1303 			    (!esp->prev_soff ||
1304 			     ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1305 				esp_flush_fifo(esp);
1306 		}
1307 
1308 		/* If we are doing a Select And Stop command, negotiation, etc.
1309 		 * we'll do the right thing as we transition to the next phase.
1310 		 */
1311 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1312 		return 0;
1313 	}
1314 
1315 	shost_printk(KERN_INFO, esp->host,
1316 		     "Unexpected selection completion ireg[%x]\n", esp->ireg);
1317 	esp_schedule_reset(esp);
1318 	return 0;
1319 }
1320 
1321 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1322 			       struct scsi_cmnd *cmd)
1323 {
1324 	int fifo_cnt, ecount, bytes_sent, flush_fifo;
1325 
1326 	fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1327 	if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1328 		fifo_cnt <<= 1;
1329 
1330 	ecount = 0;
1331 	if (!(esp->sreg & ESP_STAT_TCNT)) {
1332 		ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1333 			  (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1334 		if (esp->rev == FASHME)
1335 			ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1336 		if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
1337 			ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
1338 	}
1339 
1340 	bytes_sent = esp->data_dma_len;
1341 	bytes_sent -= ecount;
1342 	bytes_sent -= esp->send_cmd_residual;
1343 
1344 	/*
1345 	 * The am53c974 has a DMA 'pecularity'. The doc states:
1346 	 * In some odd byte conditions, one residual byte will
1347 	 * be left in the SCSI FIFO, and the FIFO Flags will
1348 	 * never count to '0 '. When this happens, the residual
1349 	 * byte should be retrieved via PIO following completion
1350 	 * of the BLAST operation.
1351 	 */
1352 	if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
1353 		size_t count = 1;
1354 		size_t offset = bytes_sent;
1355 		u8 bval = esp_read8(ESP_FDATA);
1356 
1357 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
1358 			ent->sense_ptr[bytes_sent] = bval;
1359 		else {
1360 			struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
1361 			u8 *ptr;
1362 
1363 			ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg,
1364 						  &offset, &count);
1365 			if (likely(ptr)) {
1366 				*(ptr + offset) = bval;
1367 				scsi_kunmap_atomic_sg(ptr);
1368 			}
1369 		}
1370 		bytes_sent += fifo_cnt;
1371 		ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
1372 	}
1373 	if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1374 		bytes_sent -= fifo_cnt;
1375 
1376 	flush_fifo = 0;
1377 	if (!esp->prev_soff) {
1378 		/* Synchronous data transfer, always flush fifo. */
1379 		flush_fifo = 1;
1380 	} else {
1381 		if (esp->rev == ESP100) {
1382 			u32 fflags, phase;
1383 
1384 			/* ESP100 has a chip bug where in the synchronous data
1385 			 * phase it can mistake a final long REQ pulse from the
1386 			 * target as an extra data byte.  Fun.
1387 			 *
1388 			 * To detect this case we resample the status register
1389 			 * and fifo flags.  If we're still in a data phase and
1390 			 * we see spurious chunks in the fifo, we return error
1391 			 * to the caller which should reset and set things up
1392 			 * such that we only try future transfers to this
1393 			 * target in synchronous mode.
1394 			 */
1395 			esp->sreg = esp_read8(ESP_STATUS);
1396 			phase = esp->sreg & ESP_STAT_PMASK;
1397 			fflags = esp_read8(ESP_FFLAGS);
1398 
1399 			if ((phase == ESP_DOP &&
1400 			     (fflags & ESP_FF_ONOTZERO)) ||
1401 			    (phase == ESP_DIP &&
1402 			     (fflags & ESP_FF_FBYTES)))
1403 				return -1;
1404 		}
1405 		if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1406 			flush_fifo = 1;
1407 	}
1408 
1409 	if (flush_fifo)
1410 		esp_flush_fifo(esp);
1411 
1412 	return bytes_sent;
1413 }
1414 
1415 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1416 			u8 scsi_period, u8 scsi_offset,
1417 			u8 esp_stp, u8 esp_soff)
1418 {
1419 	spi_period(tp->starget) = scsi_period;
1420 	spi_offset(tp->starget) = scsi_offset;
1421 	spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1422 
1423 	if (esp_soff) {
1424 		esp_stp &= 0x1f;
1425 		esp_soff |= esp->radelay;
1426 		if (esp->rev >= FAS236) {
1427 			u8 bit = ESP_CONFIG3_FSCSI;
1428 			if (esp->rev >= FAS100A)
1429 				bit = ESP_CONFIG3_FAST;
1430 
1431 			if (scsi_period < 50) {
1432 				if (esp->rev == FASHME)
1433 					esp_soff &= ~esp->radelay;
1434 				tp->esp_config3 |= bit;
1435 			} else {
1436 				tp->esp_config3 &= ~bit;
1437 			}
1438 			esp->prev_cfg3 = tp->esp_config3;
1439 			esp_write8(esp->prev_cfg3, ESP_CFG3);
1440 		}
1441 	}
1442 
1443 	tp->esp_period = esp->prev_stp = esp_stp;
1444 	tp->esp_offset = esp->prev_soff = esp_soff;
1445 
1446 	esp_write8(esp_soff, ESP_SOFF);
1447 	esp_write8(esp_stp, ESP_STP);
1448 
1449 	tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1450 
1451 	spi_display_xfer_agreement(tp->starget);
1452 }
1453 
1454 static void esp_msgin_reject(struct esp *esp)
1455 {
1456 	struct esp_cmd_entry *ent = esp->active_cmd;
1457 	struct scsi_cmnd *cmd = ent->cmd;
1458 	struct esp_target_data *tp;
1459 	int tgt;
1460 
1461 	tgt = cmd->device->id;
1462 	tp = &esp->target[tgt];
1463 
1464 	if (tp->flags & ESP_TGT_NEGO_WIDE) {
1465 		tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1466 
1467 		if (!esp_need_to_nego_sync(tp)) {
1468 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
1469 			scsi_esp_cmd(esp, ESP_CMD_RATN);
1470 		} else {
1471 			esp->msg_out_len =
1472 				spi_populate_sync_msg(&esp->msg_out[0],
1473 						      tp->nego_goal_period,
1474 						      tp->nego_goal_offset);
1475 			tp->flags |= ESP_TGT_NEGO_SYNC;
1476 			scsi_esp_cmd(esp, ESP_CMD_SATN);
1477 		}
1478 		return;
1479 	}
1480 
1481 	if (tp->flags & ESP_TGT_NEGO_SYNC) {
1482 		tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1483 		tp->esp_period = 0;
1484 		tp->esp_offset = 0;
1485 		esp_setsync(esp, tp, 0, 0, 0, 0);
1486 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1487 		return;
1488 	}
1489 
1490 	shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n");
1491 	esp_schedule_reset(esp);
1492 }
1493 
1494 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1495 {
1496 	u8 period = esp->msg_in[3];
1497 	u8 offset = esp->msg_in[4];
1498 	u8 stp;
1499 
1500 	if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1501 		goto do_reject;
1502 
1503 	if (offset > 15)
1504 		goto do_reject;
1505 
1506 	if (offset) {
1507 		int one_clock;
1508 
1509 		if (period > esp->max_period) {
1510 			period = offset = 0;
1511 			goto do_sdtr;
1512 		}
1513 		if (period < esp->min_period)
1514 			goto do_reject;
1515 
1516 		one_clock = esp->ccycle / 1000;
1517 		stp = DIV_ROUND_UP(period << 2, one_clock);
1518 		if (stp && esp->rev >= FAS236) {
1519 			if (stp >= 50)
1520 				stp--;
1521 		}
1522 	} else {
1523 		stp = 0;
1524 	}
1525 
1526 	esp_setsync(esp, tp, period, offset, stp, offset);
1527 	return;
1528 
1529 do_reject:
1530 	esp->msg_out[0] = MESSAGE_REJECT;
1531 	esp->msg_out_len = 1;
1532 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1533 	return;
1534 
1535 do_sdtr:
1536 	tp->nego_goal_period = period;
1537 	tp->nego_goal_offset = offset;
1538 	esp->msg_out_len =
1539 		spi_populate_sync_msg(&esp->msg_out[0],
1540 				      tp->nego_goal_period,
1541 				      tp->nego_goal_offset);
1542 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1543 }
1544 
1545 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1546 {
1547 	int size = 8 << esp->msg_in[3];
1548 	u8 cfg3;
1549 
1550 	if (esp->rev != FASHME)
1551 		goto do_reject;
1552 
1553 	if (size != 8 && size != 16)
1554 		goto do_reject;
1555 
1556 	if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1557 		goto do_reject;
1558 
1559 	cfg3 = tp->esp_config3;
1560 	if (size == 16) {
1561 		tp->flags |= ESP_TGT_WIDE;
1562 		cfg3 |= ESP_CONFIG3_EWIDE;
1563 	} else {
1564 		tp->flags &= ~ESP_TGT_WIDE;
1565 		cfg3 &= ~ESP_CONFIG3_EWIDE;
1566 	}
1567 	tp->esp_config3 = cfg3;
1568 	esp->prev_cfg3 = cfg3;
1569 	esp_write8(cfg3, ESP_CFG3);
1570 
1571 	tp->flags &= ~ESP_TGT_NEGO_WIDE;
1572 
1573 	spi_period(tp->starget) = 0;
1574 	spi_offset(tp->starget) = 0;
1575 	if (!esp_need_to_nego_sync(tp)) {
1576 		tp->flags &= ~ESP_TGT_CHECK_NEGO;
1577 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1578 	} else {
1579 		esp->msg_out_len =
1580 			spi_populate_sync_msg(&esp->msg_out[0],
1581 					      tp->nego_goal_period,
1582 					      tp->nego_goal_offset);
1583 		tp->flags |= ESP_TGT_NEGO_SYNC;
1584 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1585 	}
1586 	return;
1587 
1588 do_reject:
1589 	esp->msg_out[0] = MESSAGE_REJECT;
1590 	esp->msg_out_len = 1;
1591 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1592 }
1593 
1594 static void esp_msgin_extended(struct esp *esp)
1595 {
1596 	struct esp_cmd_entry *ent = esp->active_cmd;
1597 	struct scsi_cmnd *cmd = ent->cmd;
1598 	struct esp_target_data *tp;
1599 	int tgt = cmd->device->id;
1600 
1601 	tp = &esp->target[tgt];
1602 	if (esp->msg_in[2] == EXTENDED_SDTR) {
1603 		esp_msgin_sdtr(esp, tp);
1604 		return;
1605 	}
1606 	if (esp->msg_in[2] == EXTENDED_WDTR) {
1607 		esp_msgin_wdtr(esp, tp);
1608 		return;
1609 	}
1610 
1611 	shost_printk(KERN_INFO, esp->host,
1612 		     "Unexpected extended msg type %x\n", esp->msg_in[2]);
1613 
1614 	esp->msg_out[0] = MESSAGE_REJECT;
1615 	esp->msg_out_len = 1;
1616 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1617 }
1618 
1619 /* Analyze msgin bytes received from target so far.  Return non-zero
1620  * if there are more bytes needed to complete the message.
1621  */
1622 static int esp_msgin_process(struct esp *esp)
1623 {
1624 	u8 msg0 = esp->msg_in[0];
1625 	int len = esp->msg_in_len;
1626 
1627 	if (msg0 & 0x80) {
1628 		/* Identify */
1629 		shost_printk(KERN_INFO, esp->host,
1630 			     "Unexpected msgin identify\n");
1631 		return 0;
1632 	}
1633 
1634 	switch (msg0) {
1635 	case EXTENDED_MESSAGE:
1636 		if (len == 1)
1637 			return 1;
1638 		if (len < esp->msg_in[1] + 2)
1639 			return 1;
1640 		esp_msgin_extended(esp);
1641 		return 0;
1642 
1643 	case IGNORE_WIDE_RESIDUE: {
1644 		struct esp_cmd_entry *ent;
1645 		struct esp_cmd_priv *spriv;
1646 		if (len == 1)
1647 			return 1;
1648 
1649 		if (esp->msg_in[1] != 1)
1650 			goto do_reject;
1651 
1652 		ent = esp->active_cmd;
1653 		spriv = ESP_CMD_PRIV(ent->cmd);
1654 
1655 		if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1656 			spriv->cur_sg = spriv->prv_sg;
1657 			spriv->cur_residue = 1;
1658 		} else
1659 			spriv->cur_residue++;
1660 		spriv->tot_residue++;
1661 		return 0;
1662 	}
1663 	case NOP:
1664 		return 0;
1665 	case RESTORE_POINTERS:
1666 		esp_restore_pointers(esp, esp->active_cmd);
1667 		return 0;
1668 	case SAVE_POINTERS:
1669 		esp_save_pointers(esp, esp->active_cmd);
1670 		return 0;
1671 
1672 	case COMMAND_COMPLETE:
1673 	case DISCONNECT: {
1674 		struct esp_cmd_entry *ent = esp->active_cmd;
1675 
1676 		ent->message = msg0;
1677 		esp_event(esp, ESP_EVENT_FREE_BUS);
1678 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1679 		return 0;
1680 	}
1681 	case MESSAGE_REJECT:
1682 		esp_msgin_reject(esp);
1683 		return 0;
1684 
1685 	default:
1686 	do_reject:
1687 		esp->msg_out[0] = MESSAGE_REJECT;
1688 		esp->msg_out_len = 1;
1689 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1690 		return 0;
1691 	}
1692 }
1693 
1694 static int esp_process_event(struct esp *esp)
1695 {
1696 	int write, i;
1697 
1698 again:
1699 	write = 0;
1700 	esp_log_event("process event %d phase %x\n",
1701 		      esp->event, esp->sreg & ESP_STAT_PMASK);
1702 	switch (esp->event) {
1703 	case ESP_EVENT_CHECK_PHASE:
1704 		switch (esp->sreg & ESP_STAT_PMASK) {
1705 		case ESP_DOP:
1706 			esp_event(esp, ESP_EVENT_DATA_OUT);
1707 			break;
1708 		case ESP_DIP:
1709 			esp_event(esp, ESP_EVENT_DATA_IN);
1710 			break;
1711 		case ESP_STATP:
1712 			esp_flush_fifo(esp);
1713 			scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1714 			esp_event(esp, ESP_EVENT_STATUS);
1715 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1716 			return 1;
1717 
1718 		case ESP_MOP:
1719 			esp_event(esp, ESP_EVENT_MSGOUT);
1720 			break;
1721 
1722 		case ESP_MIP:
1723 			esp_event(esp, ESP_EVENT_MSGIN);
1724 			break;
1725 
1726 		case ESP_CMDP:
1727 			esp_event(esp, ESP_EVENT_CMD_START);
1728 			break;
1729 
1730 		default:
1731 			shost_printk(KERN_INFO, esp->host,
1732 				     "Unexpected phase, sreg=%02x\n",
1733 				     esp->sreg);
1734 			esp_schedule_reset(esp);
1735 			return 0;
1736 		}
1737 		goto again;
1738 
1739 	case ESP_EVENT_DATA_IN:
1740 		write = 1;
1741 		/* fallthru */
1742 
1743 	case ESP_EVENT_DATA_OUT: {
1744 		struct esp_cmd_entry *ent = esp->active_cmd;
1745 		struct scsi_cmnd *cmd = ent->cmd;
1746 		dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1747 		unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1748 
1749 		if (esp->rev == ESP100)
1750 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1751 
1752 		if (write)
1753 			ent->flags |= ESP_CMD_FLAG_WRITE;
1754 		else
1755 			ent->flags &= ~ESP_CMD_FLAG_WRITE;
1756 
1757 		if (esp->ops->dma_length_limit)
1758 			dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1759 							     dma_len);
1760 		else
1761 			dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1762 
1763 		esp->data_dma_len = dma_len;
1764 
1765 		if (!dma_len) {
1766 			shost_printk(KERN_ERR, esp->host,
1767 				     "DMA length is zero!\n");
1768 			shost_printk(KERN_ERR, esp->host,
1769 				     "cur adr[%08llx] len[%08x]\n",
1770 				     (unsigned long long)esp_cur_dma_addr(ent, cmd),
1771 				     esp_cur_dma_len(ent, cmd));
1772 			esp_schedule_reset(esp);
1773 			return 0;
1774 		}
1775 
1776 		esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
1777 				  (unsigned long long)dma_addr, dma_len, write);
1778 
1779 		esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1780 				       write, ESP_CMD_DMA | ESP_CMD_TI);
1781 		esp_event(esp, ESP_EVENT_DATA_DONE);
1782 		break;
1783 	}
1784 	case ESP_EVENT_DATA_DONE: {
1785 		struct esp_cmd_entry *ent = esp->active_cmd;
1786 		struct scsi_cmnd *cmd = ent->cmd;
1787 		int bytes_sent;
1788 
1789 		if (esp->ops->dma_error(esp)) {
1790 			shost_printk(KERN_INFO, esp->host,
1791 				     "data done, DMA error, resetting\n");
1792 			esp_schedule_reset(esp);
1793 			return 0;
1794 		}
1795 
1796 		if (ent->flags & ESP_CMD_FLAG_WRITE) {
1797 			/* XXX parity errors, etc. XXX */
1798 
1799 			esp->ops->dma_drain(esp);
1800 		}
1801 		esp->ops->dma_invalidate(esp);
1802 
1803 		if (esp->ireg != ESP_INTR_BSERV) {
1804 			/* We should always see exactly a bus-service
1805 			 * interrupt at the end of a successful transfer.
1806 			 */
1807 			shost_printk(KERN_INFO, esp->host,
1808 				     "data done, not BSERV, resetting\n");
1809 			esp_schedule_reset(esp);
1810 			return 0;
1811 		}
1812 
1813 		bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1814 
1815 		esp_log_datadone("data done flgs[%x] sent[%d]\n",
1816 				 ent->flags, bytes_sent);
1817 
1818 		if (bytes_sent < 0) {
1819 			/* XXX force sync mode for this target XXX */
1820 			esp_schedule_reset(esp);
1821 			return 0;
1822 		}
1823 
1824 		esp_advance_dma(esp, ent, cmd, bytes_sent);
1825 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1826 		goto again;
1827 	}
1828 
1829 	case ESP_EVENT_STATUS: {
1830 		struct esp_cmd_entry *ent = esp->active_cmd;
1831 
1832 		if (esp->ireg & ESP_INTR_FDONE) {
1833 			ent->status = esp_read8(ESP_FDATA);
1834 			ent->message = esp_read8(ESP_FDATA);
1835 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1836 		} else if (esp->ireg == ESP_INTR_BSERV) {
1837 			ent->status = esp_read8(ESP_FDATA);
1838 			ent->message = 0xff;
1839 			esp_event(esp, ESP_EVENT_MSGIN);
1840 			return 0;
1841 		}
1842 
1843 		if (ent->message != COMMAND_COMPLETE) {
1844 			shost_printk(KERN_INFO, esp->host,
1845 				     "Unexpected message %x in status\n",
1846 				     ent->message);
1847 			esp_schedule_reset(esp);
1848 			return 0;
1849 		}
1850 
1851 		esp_event(esp, ESP_EVENT_FREE_BUS);
1852 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1853 		break;
1854 	}
1855 	case ESP_EVENT_FREE_BUS: {
1856 		struct esp_cmd_entry *ent = esp->active_cmd;
1857 		struct scsi_cmnd *cmd = ent->cmd;
1858 
1859 		if (ent->message == COMMAND_COMPLETE ||
1860 		    ent->message == DISCONNECT)
1861 			scsi_esp_cmd(esp, ESP_CMD_ESEL);
1862 
1863 		if (ent->message == COMMAND_COMPLETE) {
1864 			esp_log_cmddone("Command done status[%x] message[%x]\n",
1865 					ent->status, ent->message);
1866 			if (ent->status == SAM_STAT_TASK_SET_FULL)
1867 				esp_event_queue_full(esp, ent);
1868 
1869 			if (ent->status == SAM_STAT_CHECK_CONDITION &&
1870 			    !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1871 				ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1872 				esp_autosense(esp, ent);
1873 			} else {
1874 				esp_cmd_is_done(esp, ent, cmd,
1875 						compose_result(ent->status,
1876 							       ent->message,
1877 							       DID_OK));
1878 			}
1879 		} else if (ent->message == DISCONNECT) {
1880 			esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
1881 					   cmd->device->id,
1882 					   ent->tag[0], ent->tag[1]);
1883 
1884 			esp->active_cmd = NULL;
1885 			esp_maybe_execute_command(esp);
1886 		} else {
1887 			shost_printk(KERN_INFO, esp->host,
1888 				     "Unexpected message %x in freebus\n",
1889 				     ent->message);
1890 			esp_schedule_reset(esp);
1891 			return 0;
1892 		}
1893 		if (esp->active_cmd)
1894 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1895 		break;
1896 	}
1897 	case ESP_EVENT_MSGOUT: {
1898 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1899 
1900 		if (esp_debug & ESP_DEBUG_MSGOUT) {
1901 			int i;
1902 			printk("ESP: Sending message [ ");
1903 			for (i = 0; i < esp->msg_out_len; i++)
1904 				printk("%02x ", esp->msg_out[i]);
1905 			printk("]\n");
1906 		}
1907 
1908 		if (esp->rev == FASHME) {
1909 			int i;
1910 
1911 			/* Always use the fifo.  */
1912 			for (i = 0; i < esp->msg_out_len; i++) {
1913 				esp_write8(esp->msg_out[i], ESP_FDATA);
1914 				esp_write8(0, ESP_FDATA);
1915 			}
1916 			scsi_esp_cmd(esp, ESP_CMD_TI);
1917 		} else {
1918 			if (esp->msg_out_len == 1) {
1919 				esp_write8(esp->msg_out[0], ESP_FDATA);
1920 				scsi_esp_cmd(esp, ESP_CMD_TI);
1921 			} else if (esp->flags & ESP_FLAG_USE_FIFO) {
1922 				for (i = 0; i < esp->msg_out_len; i++)
1923 					esp_write8(esp->msg_out[i], ESP_FDATA);
1924 				scsi_esp_cmd(esp, ESP_CMD_TI);
1925 			} else {
1926 				/* Use DMA. */
1927 				memcpy(esp->command_block,
1928 				       esp->msg_out,
1929 				       esp->msg_out_len);
1930 
1931 				esp->ops->send_dma_cmd(esp,
1932 						       esp->command_block_dma,
1933 						       esp->msg_out_len,
1934 						       esp->msg_out_len,
1935 						       0,
1936 						       ESP_CMD_DMA|ESP_CMD_TI);
1937 			}
1938 		}
1939 		esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1940 		break;
1941 	}
1942 	case ESP_EVENT_MSGOUT_DONE:
1943 		if (esp->rev == FASHME) {
1944 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1945 		} else {
1946 			if (esp->msg_out_len > 1)
1947 				esp->ops->dma_invalidate(esp);
1948 
1949 			/* XXX if the chip went into disconnected mode,
1950 			 * we can't run the phase state machine anyway.
1951 			 */
1952 			if (!(esp->ireg & ESP_INTR_DC))
1953 				scsi_esp_cmd(esp, ESP_CMD_NULL);
1954 		}
1955 
1956 		esp->msg_out_len = 0;
1957 
1958 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1959 		goto again;
1960 	case ESP_EVENT_MSGIN:
1961 		if (esp->ireg & ESP_INTR_BSERV) {
1962 			if (esp->rev == FASHME) {
1963 				if (!(esp_read8(ESP_STATUS2) &
1964 				      ESP_STAT2_FEMPTY))
1965 					scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1966 			} else {
1967 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1968 				if (esp->rev == ESP100)
1969 					scsi_esp_cmd(esp, ESP_CMD_NULL);
1970 			}
1971 			scsi_esp_cmd(esp, ESP_CMD_TI);
1972 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1973 			return 1;
1974 		}
1975 		if (esp->ireg & ESP_INTR_FDONE) {
1976 			u8 val;
1977 
1978 			if (esp->rev == FASHME)
1979 				val = esp->fifo[0];
1980 			else
1981 				val = esp_read8(ESP_FDATA);
1982 			esp->msg_in[esp->msg_in_len++] = val;
1983 
1984 			esp_log_msgin("Got msgin byte %x\n", val);
1985 
1986 			if (!esp_msgin_process(esp))
1987 				esp->msg_in_len = 0;
1988 
1989 			if (esp->rev == FASHME)
1990 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1991 
1992 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1993 
1994 			/* Check whether a bus reset is to be done next */
1995 			if (esp->event == ESP_EVENT_RESET)
1996 				return 0;
1997 
1998 			if (esp->event != ESP_EVENT_FREE_BUS)
1999 				esp_event(esp, ESP_EVENT_CHECK_PHASE);
2000 		} else {
2001 			shost_printk(KERN_INFO, esp->host,
2002 				     "MSGIN neither BSERV not FDON, resetting");
2003 			esp_schedule_reset(esp);
2004 			return 0;
2005 		}
2006 		break;
2007 	case ESP_EVENT_CMD_START:
2008 		memcpy(esp->command_block, esp->cmd_bytes_ptr,
2009 		       esp->cmd_bytes_left);
2010 		esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
2011 		esp_event(esp, ESP_EVENT_CMD_DONE);
2012 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
2013 		break;
2014 	case ESP_EVENT_CMD_DONE:
2015 		esp->ops->dma_invalidate(esp);
2016 		if (esp->ireg & ESP_INTR_BSERV) {
2017 			esp_event(esp, ESP_EVENT_CHECK_PHASE);
2018 			goto again;
2019 		}
2020 		esp_schedule_reset(esp);
2021 		return 0;
2022 
2023 	case ESP_EVENT_RESET:
2024 		scsi_esp_cmd(esp, ESP_CMD_RS);
2025 		break;
2026 
2027 	default:
2028 		shost_printk(KERN_INFO, esp->host,
2029 			     "Unexpected event %x, resetting\n", esp->event);
2030 		esp_schedule_reset(esp);
2031 		return 0;
2032 	}
2033 	return 1;
2034 }
2035 
2036 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
2037 {
2038 	struct scsi_cmnd *cmd = ent->cmd;
2039 
2040 	esp_unmap_dma(esp, cmd);
2041 	esp_free_lun_tag(ent, cmd->device->hostdata);
2042 	cmd->result = DID_RESET << 16;
2043 
2044 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
2045 		esp_unmap_sense(esp, ent);
2046 
2047 	cmd->scsi_done(cmd);
2048 	list_del(&ent->list);
2049 	esp_put_ent(esp, ent);
2050 }
2051 
2052 static void esp_clear_hold(struct scsi_device *dev, void *data)
2053 {
2054 	struct esp_lun_data *lp = dev->hostdata;
2055 
2056 	BUG_ON(lp->num_tagged);
2057 	lp->hold = 0;
2058 }
2059 
2060 static void esp_reset_cleanup(struct esp *esp)
2061 {
2062 	struct esp_cmd_entry *ent, *tmp;
2063 	int i;
2064 
2065 	list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2066 		struct scsi_cmnd *cmd = ent->cmd;
2067 
2068 		list_del(&ent->list);
2069 		cmd->result = DID_RESET << 16;
2070 		cmd->scsi_done(cmd);
2071 		esp_put_ent(esp, ent);
2072 	}
2073 
2074 	list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2075 		if (ent == esp->active_cmd)
2076 			esp->active_cmd = NULL;
2077 		esp_reset_cleanup_one(esp, ent);
2078 	}
2079 
2080 	BUG_ON(esp->active_cmd != NULL);
2081 
2082 	/* Force renegotiation of sync/wide transfers.  */
2083 	for (i = 0; i < ESP_MAX_TARGET; i++) {
2084 		struct esp_target_data *tp = &esp->target[i];
2085 
2086 		tp->esp_period = 0;
2087 		tp->esp_offset = 0;
2088 		tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2089 				     ESP_CONFIG3_FSCSI |
2090 				     ESP_CONFIG3_FAST);
2091 		tp->flags &= ~ESP_TGT_WIDE;
2092 		tp->flags |= ESP_TGT_CHECK_NEGO;
2093 
2094 		if (tp->starget)
2095 			__starget_for_each_device(tp->starget, NULL,
2096 						  esp_clear_hold);
2097 	}
2098 	esp->flags &= ~ESP_FLAG_RESETTING;
2099 }
2100 
2101 /* Runs under host->lock */
2102 static void __esp_interrupt(struct esp *esp)
2103 {
2104 	int finish_reset, intr_done;
2105 	u8 phase;
2106 
2107        /*
2108 	* Once INTRPT is read STATUS and SSTEP are cleared.
2109 	*/
2110 	esp->sreg = esp_read8(ESP_STATUS);
2111 	esp->seqreg = esp_read8(ESP_SSTEP);
2112 	esp->ireg = esp_read8(ESP_INTRPT);
2113 
2114 	if (esp->flags & ESP_FLAG_RESETTING) {
2115 		finish_reset = 1;
2116 	} else {
2117 		if (esp_check_gross_error(esp))
2118 			return;
2119 
2120 		finish_reset = esp_check_spur_intr(esp);
2121 		if (finish_reset < 0)
2122 			return;
2123 	}
2124 
2125 	if (esp->ireg & ESP_INTR_SR)
2126 		finish_reset = 1;
2127 
2128 	if (finish_reset) {
2129 		esp_reset_cleanup(esp);
2130 		if (esp->eh_reset) {
2131 			complete(esp->eh_reset);
2132 			esp->eh_reset = NULL;
2133 		}
2134 		return;
2135 	}
2136 
2137 	phase = (esp->sreg & ESP_STAT_PMASK);
2138 	if (esp->rev == FASHME) {
2139 		if (((phase != ESP_DIP && phase != ESP_DOP) &&
2140 		     esp->select_state == ESP_SELECT_NONE &&
2141 		     esp->event != ESP_EVENT_STATUS &&
2142 		     esp->event != ESP_EVENT_DATA_DONE) ||
2143 		    (esp->ireg & ESP_INTR_RSEL)) {
2144 			esp->sreg2 = esp_read8(ESP_STATUS2);
2145 			if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2146 			    (esp->sreg2 & ESP_STAT2_F1BYTE))
2147 				hme_read_fifo(esp);
2148 		}
2149 	}
2150 
2151 	esp_log_intr("intr sreg[%02x] seqreg[%02x] "
2152 		     "sreg2[%02x] ireg[%02x]\n",
2153 		     esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2154 
2155 	intr_done = 0;
2156 
2157 	if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2158 		shost_printk(KERN_INFO, esp->host,
2159 			     "unexpected IREG %02x\n", esp->ireg);
2160 		if (esp->ireg & ESP_INTR_IC)
2161 			esp_dump_cmd_log(esp);
2162 
2163 		esp_schedule_reset(esp);
2164 	} else {
2165 		if (esp->ireg & ESP_INTR_RSEL) {
2166 			if (esp->active_cmd)
2167 				(void) esp_finish_select(esp);
2168 			intr_done = esp_reconnect(esp);
2169 		} else {
2170 			/* Some combination of FDONE, BSERV, DC. */
2171 			if (esp->select_state != ESP_SELECT_NONE)
2172 				intr_done = esp_finish_select(esp);
2173 		}
2174 	}
2175 	while (!intr_done)
2176 		intr_done = esp_process_event(esp);
2177 }
2178 
2179 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2180 {
2181 	struct esp *esp = dev_id;
2182 	unsigned long flags;
2183 	irqreturn_t ret;
2184 
2185 	spin_lock_irqsave(esp->host->host_lock, flags);
2186 	ret = IRQ_NONE;
2187 	if (esp->ops->irq_pending(esp)) {
2188 		ret = IRQ_HANDLED;
2189 		for (;;) {
2190 			int i;
2191 
2192 			__esp_interrupt(esp);
2193 			if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2194 				break;
2195 			esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2196 
2197 			for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2198 				if (esp->ops->irq_pending(esp))
2199 					break;
2200 			}
2201 			if (i == ESP_QUICKIRQ_LIMIT)
2202 				break;
2203 		}
2204 	}
2205 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2206 
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL(scsi_esp_intr);
2210 
2211 static void esp_get_revision(struct esp *esp)
2212 {
2213 	u8 val;
2214 
2215 	esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2216 	if (esp->config2 == 0) {
2217 		esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2218 		esp_write8(esp->config2, ESP_CFG2);
2219 
2220 		val = esp_read8(ESP_CFG2);
2221 		val &= ~ESP_CONFIG2_MAGIC;
2222 
2223 		esp->config2 = 0;
2224 		if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2225 			/*
2226 			 * If what we write to cfg2 does not come back,
2227 			 * cfg2 is not implemented.
2228 			 * Therefore this must be a plain esp100.
2229 			 */
2230 			esp->rev = ESP100;
2231 			return;
2232 		}
2233 	}
2234 
2235 	esp_set_all_config3(esp, 5);
2236 	esp->prev_cfg3 = 5;
2237 	esp_write8(esp->config2, ESP_CFG2);
2238 	esp_write8(0, ESP_CFG3);
2239 	esp_write8(esp->prev_cfg3, ESP_CFG3);
2240 
2241 	val = esp_read8(ESP_CFG3);
2242 	if (val != 5) {
2243 		/* The cfg2 register is implemented, however
2244 		 * cfg3 is not, must be esp100a.
2245 		 */
2246 		esp->rev = ESP100A;
2247 	} else {
2248 		esp_set_all_config3(esp, 0);
2249 		esp->prev_cfg3 = 0;
2250 		esp_write8(esp->prev_cfg3, ESP_CFG3);
2251 
2252 		/* All of cfg{1,2,3} implemented, must be one of
2253 		 * the fas variants, figure out which one.
2254 		 */
2255 		if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2256 			esp->rev = FAST;
2257 			esp->sync_defp = SYNC_DEFP_FAST;
2258 		} else {
2259 			esp->rev = ESP236;
2260 		}
2261 	}
2262 }
2263 
2264 static void esp_init_swstate(struct esp *esp)
2265 {
2266 	int i;
2267 
2268 	INIT_LIST_HEAD(&esp->queued_cmds);
2269 	INIT_LIST_HEAD(&esp->active_cmds);
2270 	INIT_LIST_HEAD(&esp->esp_cmd_pool);
2271 
2272 	/* Start with a clear state, domain validation (via ->slave_configure,
2273 	 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2274 	 * commands.
2275 	 */
2276 	for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2277 		esp->target[i].flags = 0;
2278 		esp->target[i].nego_goal_period = 0;
2279 		esp->target[i].nego_goal_offset = 0;
2280 		esp->target[i].nego_goal_width = 0;
2281 		esp->target[i].nego_goal_tags = 0;
2282 	}
2283 }
2284 
2285 /* This places the ESP into a known state at boot time. */
2286 static void esp_bootup_reset(struct esp *esp)
2287 {
2288 	u8 val;
2289 
2290 	/* Reset the DMA */
2291 	esp->ops->reset_dma(esp);
2292 
2293 	/* Reset the ESP */
2294 	esp_reset_esp(esp);
2295 
2296 	/* Reset the SCSI bus, but tell ESP not to generate an irq */
2297 	val = esp_read8(ESP_CFG1);
2298 	val |= ESP_CONFIG1_SRRDISAB;
2299 	esp_write8(val, ESP_CFG1);
2300 
2301 	scsi_esp_cmd(esp, ESP_CMD_RS);
2302 	udelay(400);
2303 
2304 	esp_write8(esp->config1, ESP_CFG1);
2305 
2306 	/* Eat any bitrot in the chip and we are done... */
2307 	esp_read8(ESP_INTRPT);
2308 }
2309 
2310 static void esp_set_clock_params(struct esp *esp)
2311 {
2312 	int fhz;
2313 	u8 ccf;
2314 
2315 	/* This is getting messy but it has to be done correctly or else
2316 	 * you get weird behavior all over the place.  We are trying to
2317 	 * basically figure out three pieces of information.
2318 	 *
2319 	 * a) Clock Conversion Factor
2320 	 *
2321 	 *    This is a representation of the input crystal clock frequency
2322 	 *    going into the ESP on this machine.  Any operation whose timing
2323 	 *    is longer than 400ns depends on this value being correct.  For
2324 	 *    example, you'll get blips for arbitration/selection during high
2325 	 *    load or with multiple targets if this is not set correctly.
2326 	 *
2327 	 * b) Selection Time-Out
2328 	 *
2329 	 *    The ESP isn't very bright and will arbitrate for the bus and try
2330 	 *    to select a target forever if you let it.  This value tells the
2331 	 *    ESP when it has taken too long to negotiate and that it should
2332 	 *    interrupt the CPU so we can see what happened.  The value is
2333 	 *    computed as follows (from NCR/Symbios chip docs).
2334 	 *
2335 	 *          (Time Out Period) *  (Input Clock)
2336 	 *    STO = ----------------------------------
2337 	 *          (8192) * (Clock Conversion Factor)
2338 	 *
2339 	 *    We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2340 	 *
2341 	 * c) Imperical constants for synchronous offset and transfer period
2342          *    register values
2343 	 *
2344 	 *    This entails the smallest and largest sync period we could ever
2345 	 *    handle on this ESP.
2346 	 */
2347 	fhz = esp->cfreq;
2348 
2349 	ccf = ((fhz / 1000000) + 4) / 5;
2350 	if (ccf == 1)
2351 		ccf = 2;
2352 
2353 	/* If we can't find anything reasonable, just assume 20MHZ.
2354 	 * This is the clock frequency of the older sun4c's where I've
2355 	 * been unable to find the clock-frequency PROM property.  All
2356 	 * other machines provide useful values it seems.
2357 	 */
2358 	if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2359 		fhz = 20000000;
2360 		ccf = 4;
2361 	}
2362 
2363 	esp->cfact = (ccf == 8 ? 0 : ccf);
2364 	esp->cfreq = fhz;
2365 	esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2366 	esp->ctick = ESP_TICK(ccf, esp->ccycle);
2367 	esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2368 	esp->sync_defp = SYNC_DEFP_SLOW;
2369 }
2370 
2371 static const char *esp_chip_names[] = {
2372 	"ESP100",
2373 	"ESP100A",
2374 	"ESP236",
2375 	"FAS236",
2376 	"FAS100A",
2377 	"FAST",
2378 	"FASHME",
2379 	"AM53C974",
2380 };
2381 
2382 static struct scsi_transport_template *esp_transport_template;
2383 
2384 int scsi_esp_register(struct esp *esp)
2385 {
2386 	static int instance;
2387 	int err;
2388 
2389 	if (!esp->num_tags)
2390 		esp->num_tags = ESP_DEFAULT_TAGS;
2391 	esp->host->transportt = esp_transport_template;
2392 	esp->host->max_lun = ESP_MAX_LUN;
2393 	esp->host->cmd_per_lun = 2;
2394 	esp->host->unique_id = instance;
2395 
2396 	esp_set_clock_params(esp);
2397 
2398 	esp_get_revision(esp);
2399 
2400 	esp_init_swstate(esp);
2401 
2402 	esp_bootup_reset(esp);
2403 
2404 	dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
2405 		   esp->host->unique_id, esp->regs, esp->dma_regs,
2406 		   esp->host->irq);
2407 	dev_printk(KERN_INFO, esp->dev,
2408 		   "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2409 		   esp->host->unique_id, esp_chip_names[esp->rev],
2410 		   esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2411 
2412 	/* Let the SCSI bus reset settle. */
2413 	ssleep(esp_bus_reset_settle);
2414 
2415 	err = scsi_add_host(esp->host, esp->dev);
2416 	if (err)
2417 		return err;
2418 
2419 	instance++;
2420 
2421 	scsi_scan_host(esp->host);
2422 
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL(scsi_esp_register);
2426 
2427 void scsi_esp_unregister(struct esp *esp)
2428 {
2429 	scsi_remove_host(esp->host);
2430 }
2431 EXPORT_SYMBOL(scsi_esp_unregister);
2432 
2433 static int esp_target_alloc(struct scsi_target *starget)
2434 {
2435 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2436 	struct esp_target_data *tp = &esp->target[starget->id];
2437 
2438 	tp->starget = starget;
2439 
2440 	return 0;
2441 }
2442 
2443 static void esp_target_destroy(struct scsi_target *starget)
2444 {
2445 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2446 	struct esp_target_data *tp = &esp->target[starget->id];
2447 
2448 	tp->starget = NULL;
2449 }
2450 
2451 static int esp_slave_alloc(struct scsi_device *dev)
2452 {
2453 	struct esp *esp = shost_priv(dev->host);
2454 	struct esp_target_data *tp = &esp->target[dev->id];
2455 	struct esp_lun_data *lp;
2456 
2457 	lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2458 	if (!lp)
2459 		return -ENOMEM;
2460 	dev->hostdata = lp;
2461 
2462 	spi_min_period(tp->starget) = esp->min_period;
2463 	spi_max_offset(tp->starget) = 15;
2464 
2465 	if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2466 		spi_max_width(tp->starget) = 1;
2467 	else
2468 		spi_max_width(tp->starget) = 0;
2469 
2470 	return 0;
2471 }
2472 
2473 static int esp_slave_configure(struct scsi_device *dev)
2474 {
2475 	struct esp *esp = shost_priv(dev->host);
2476 	struct esp_target_data *tp = &esp->target[dev->id];
2477 
2478 	if (dev->tagged_supported)
2479 		scsi_change_queue_depth(dev, esp->num_tags);
2480 
2481 	tp->flags |= ESP_TGT_DISCONNECT;
2482 
2483 	if (!spi_initial_dv(dev->sdev_target))
2484 		spi_dv_device(dev);
2485 
2486 	return 0;
2487 }
2488 
2489 static void esp_slave_destroy(struct scsi_device *dev)
2490 {
2491 	struct esp_lun_data *lp = dev->hostdata;
2492 
2493 	kfree(lp);
2494 	dev->hostdata = NULL;
2495 }
2496 
2497 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2498 {
2499 	struct esp *esp = shost_priv(cmd->device->host);
2500 	struct esp_cmd_entry *ent, *tmp;
2501 	struct completion eh_done;
2502 	unsigned long flags;
2503 
2504 	/* XXX This helps a lot with debugging but might be a bit
2505 	 * XXX much for the final driver.
2506 	 */
2507 	spin_lock_irqsave(esp->host->host_lock, flags);
2508 	shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
2509 		     cmd, cmd->cmnd[0]);
2510 	ent = esp->active_cmd;
2511 	if (ent)
2512 		shost_printk(KERN_ERR, esp->host,
2513 			     "Current command [%p:%02x]\n",
2514 			     ent->cmd, ent->cmd->cmnd[0]);
2515 	list_for_each_entry(ent, &esp->queued_cmds, list) {
2516 		shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
2517 			     ent->cmd, ent->cmd->cmnd[0]);
2518 	}
2519 	list_for_each_entry(ent, &esp->active_cmds, list) {
2520 		shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
2521 			     ent->cmd, ent->cmd->cmnd[0]);
2522 	}
2523 	esp_dump_cmd_log(esp);
2524 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2525 
2526 	spin_lock_irqsave(esp->host->host_lock, flags);
2527 
2528 	ent = NULL;
2529 	list_for_each_entry(tmp, &esp->queued_cmds, list) {
2530 		if (tmp->cmd == cmd) {
2531 			ent = tmp;
2532 			break;
2533 		}
2534 	}
2535 
2536 	if (ent) {
2537 		/* Easiest case, we didn't even issue the command
2538 		 * yet so it is trivial to abort.
2539 		 */
2540 		list_del(&ent->list);
2541 
2542 		cmd->result = DID_ABORT << 16;
2543 		cmd->scsi_done(cmd);
2544 
2545 		esp_put_ent(esp, ent);
2546 
2547 		goto out_success;
2548 	}
2549 
2550 	init_completion(&eh_done);
2551 
2552 	ent = esp->active_cmd;
2553 	if (ent && ent->cmd == cmd) {
2554 		/* Command is the currently active command on
2555 		 * the bus.  If we already have an output message
2556 		 * pending, no dice.
2557 		 */
2558 		if (esp->msg_out_len)
2559 			goto out_failure;
2560 
2561 		/* Send out an abort, encouraging the target to
2562 		 * go to MSGOUT phase by asserting ATN.
2563 		 */
2564 		esp->msg_out[0] = ABORT_TASK_SET;
2565 		esp->msg_out_len = 1;
2566 		ent->eh_done = &eh_done;
2567 
2568 		scsi_esp_cmd(esp, ESP_CMD_SATN);
2569 	} else {
2570 		/* The command is disconnected.  This is not easy to
2571 		 * abort.  For now we fail and let the scsi error
2572 		 * handling layer go try a scsi bus reset or host
2573 		 * reset.
2574 		 *
2575 		 * What we could do is put together a scsi command
2576 		 * solely for the purpose of sending an abort message
2577 		 * to the target.  Coming up with all the code to
2578 		 * cook up scsi commands, special case them everywhere,
2579 		 * etc. is for questionable gain and it would be better
2580 		 * if the generic scsi error handling layer could do at
2581 		 * least some of that for us.
2582 		 *
2583 		 * Anyways this is an area for potential future improvement
2584 		 * in this driver.
2585 		 */
2586 		goto out_failure;
2587 	}
2588 
2589 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2590 
2591 	if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2592 		spin_lock_irqsave(esp->host->host_lock, flags);
2593 		ent->eh_done = NULL;
2594 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2595 
2596 		return FAILED;
2597 	}
2598 
2599 	return SUCCESS;
2600 
2601 out_success:
2602 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2603 	return SUCCESS;
2604 
2605 out_failure:
2606 	/* XXX This might be a good location to set ESP_TGT_BROKEN
2607 	 * XXX since we know which target/lun in particular is
2608 	 * XXX causing trouble.
2609 	 */
2610 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2611 	return FAILED;
2612 }
2613 
2614 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2615 {
2616 	struct esp *esp = shost_priv(cmd->device->host);
2617 	struct completion eh_reset;
2618 	unsigned long flags;
2619 
2620 	init_completion(&eh_reset);
2621 
2622 	spin_lock_irqsave(esp->host->host_lock, flags);
2623 
2624 	esp->eh_reset = &eh_reset;
2625 
2626 	/* XXX This is too simple... We should add lots of
2627 	 * XXX checks here so that if we find that the chip is
2628 	 * XXX very wedged we return failure immediately so
2629 	 * XXX that we can perform a full chip reset.
2630 	 */
2631 	esp->flags |= ESP_FLAG_RESETTING;
2632 	scsi_esp_cmd(esp, ESP_CMD_RS);
2633 
2634 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2635 
2636 	ssleep(esp_bus_reset_settle);
2637 
2638 	if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2639 		spin_lock_irqsave(esp->host->host_lock, flags);
2640 		esp->eh_reset = NULL;
2641 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2642 
2643 		return FAILED;
2644 	}
2645 
2646 	return SUCCESS;
2647 }
2648 
2649 /* All bets are off, reset the entire device.  */
2650 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2651 {
2652 	struct esp *esp = shost_priv(cmd->device->host);
2653 	unsigned long flags;
2654 
2655 	spin_lock_irqsave(esp->host->host_lock, flags);
2656 	esp_bootup_reset(esp);
2657 	esp_reset_cleanup(esp);
2658 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2659 
2660 	ssleep(esp_bus_reset_settle);
2661 
2662 	return SUCCESS;
2663 }
2664 
2665 static const char *esp_info(struct Scsi_Host *host)
2666 {
2667 	return "esp";
2668 }
2669 
2670 struct scsi_host_template scsi_esp_template = {
2671 	.module			= THIS_MODULE,
2672 	.name			= "esp",
2673 	.info			= esp_info,
2674 	.queuecommand		= esp_queuecommand,
2675 	.target_alloc		= esp_target_alloc,
2676 	.target_destroy		= esp_target_destroy,
2677 	.slave_alloc		= esp_slave_alloc,
2678 	.slave_configure	= esp_slave_configure,
2679 	.slave_destroy		= esp_slave_destroy,
2680 	.eh_abort_handler	= esp_eh_abort_handler,
2681 	.eh_bus_reset_handler	= esp_eh_bus_reset_handler,
2682 	.eh_host_reset_handler	= esp_eh_host_reset_handler,
2683 	.can_queue		= 7,
2684 	.this_id		= 7,
2685 	.sg_tablesize		= SG_ALL,
2686 	.max_sectors		= 0xffff,
2687 	.skip_settle_delay	= 1,
2688 };
2689 EXPORT_SYMBOL(scsi_esp_template);
2690 
2691 static void esp_get_signalling(struct Scsi_Host *host)
2692 {
2693 	struct esp *esp = shost_priv(host);
2694 	enum spi_signal_type type;
2695 
2696 	if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2697 		type = SPI_SIGNAL_HVD;
2698 	else
2699 		type = SPI_SIGNAL_SE;
2700 
2701 	spi_signalling(host) = type;
2702 }
2703 
2704 static void esp_set_offset(struct scsi_target *target, int offset)
2705 {
2706 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2707 	struct esp *esp = shost_priv(host);
2708 	struct esp_target_data *tp = &esp->target[target->id];
2709 
2710 	if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2711 		tp->nego_goal_offset = 0;
2712 	else
2713 		tp->nego_goal_offset = offset;
2714 	tp->flags |= ESP_TGT_CHECK_NEGO;
2715 }
2716 
2717 static void esp_set_period(struct scsi_target *target, int period)
2718 {
2719 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2720 	struct esp *esp = shost_priv(host);
2721 	struct esp_target_data *tp = &esp->target[target->id];
2722 
2723 	tp->nego_goal_period = period;
2724 	tp->flags |= ESP_TGT_CHECK_NEGO;
2725 }
2726 
2727 static void esp_set_width(struct scsi_target *target, int width)
2728 {
2729 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2730 	struct esp *esp = shost_priv(host);
2731 	struct esp_target_data *tp = &esp->target[target->id];
2732 
2733 	tp->nego_goal_width = (width ? 1 : 0);
2734 	tp->flags |= ESP_TGT_CHECK_NEGO;
2735 }
2736 
2737 static struct spi_function_template esp_transport_ops = {
2738 	.set_offset		= esp_set_offset,
2739 	.show_offset		= 1,
2740 	.set_period		= esp_set_period,
2741 	.show_period		= 1,
2742 	.set_width		= esp_set_width,
2743 	.show_width		= 1,
2744 	.get_signalling		= esp_get_signalling,
2745 };
2746 
2747 static int __init esp_init(void)
2748 {
2749 	BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2750 		     sizeof(struct esp_cmd_priv));
2751 
2752 	esp_transport_template = spi_attach_transport(&esp_transport_ops);
2753 	if (!esp_transport_template)
2754 		return -ENODEV;
2755 
2756 	return 0;
2757 }
2758 
2759 static void __exit esp_exit(void)
2760 {
2761 	spi_release_transport(esp_transport_template);
2762 }
2763 
2764 MODULE_DESCRIPTION("ESP SCSI driver core");
2765 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2766 MODULE_LICENSE("GPL");
2767 MODULE_VERSION(DRV_VERSION);
2768 
2769 module_param(esp_bus_reset_settle, int, 0);
2770 MODULE_PARM_DESC(esp_bus_reset_settle,
2771 		 "ESP scsi bus reset delay in seconds");
2772 
2773 module_param(esp_debug, int, 0);
2774 MODULE_PARM_DESC(esp_debug,
2775 "ESP bitmapped debugging message enable value:\n"
2776 "	0x00000001	Log interrupt events\n"
2777 "	0x00000002	Log scsi commands\n"
2778 "	0x00000004	Log resets\n"
2779 "	0x00000008	Log message in events\n"
2780 "	0x00000010	Log message out events\n"
2781 "	0x00000020	Log command completion\n"
2782 "	0x00000040	Log disconnects\n"
2783 "	0x00000080	Log data start\n"
2784 "	0x00000100	Log data done\n"
2785 "	0x00000200	Log reconnects\n"
2786 "	0x00000400	Log auto-sense data\n"
2787 );
2788 
2789 module_init(esp_init);
2790 module_exit(esp_exit);
2791 
2792 #ifdef CONFIG_SCSI_ESP_PIO
2793 static inline unsigned int esp_wait_for_fifo(struct esp *esp)
2794 {
2795 	int i = 500000;
2796 
2797 	do {
2798 		unsigned int fbytes = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
2799 
2800 		if (fbytes)
2801 			return fbytes;
2802 
2803 		udelay(1);
2804 	} while (--i);
2805 
2806 	shost_printk(KERN_ERR, esp->host, "FIFO is empty. sreg [%02x]\n",
2807 		     esp_read8(ESP_STATUS));
2808 	return 0;
2809 }
2810 
2811 static inline int esp_wait_for_intr(struct esp *esp)
2812 {
2813 	int i = 500000;
2814 
2815 	do {
2816 		esp->sreg = esp_read8(ESP_STATUS);
2817 		if (esp->sreg & ESP_STAT_INTR)
2818 			return 0;
2819 
2820 		udelay(1);
2821 	} while (--i);
2822 
2823 	shost_printk(KERN_ERR, esp->host, "IRQ timeout. sreg [%02x]\n",
2824 		     esp->sreg);
2825 	return 1;
2826 }
2827 
2828 #define ESP_FIFO_SIZE 16
2829 
2830 void esp_send_pio_cmd(struct esp *esp, u32 addr, u32 esp_count,
2831 		      u32 dma_count, int write, u8 cmd)
2832 {
2833 	u8 phase = esp->sreg & ESP_STAT_PMASK;
2834 
2835 	cmd &= ~ESP_CMD_DMA;
2836 	esp->send_cmd_error = 0;
2837 
2838 	if (write) {
2839 		u8 *dst = (u8 *)addr;
2840 		u8 mask = ~(phase == ESP_MIP ? ESP_INTR_FDONE : ESP_INTR_BSERV);
2841 
2842 		scsi_esp_cmd(esp, cmd);
2843 
2844 		while (1) {
2845 			if (!esp_wait_for_fifo(esp))
2846 				break;
2847 
2848 			*dst++ = readb(esp->fifo_reg);
2849 			--esp_count;
2850 
2851 			if (!esp_count)
2852 				break;
2853 
2854 			if (esp_wait_for_intr(esp)) {
2855 				esp->send_cmd_error = 1;
2856 				break;
2857 			}
2858 
2859 			if ((esp->sreg & ESP_STAT_PMASK) != phase)
2860 				break;
2861 
2862 			esp->ireg = esp_read8(ESP_INTRPT);
2863 			if (esp->ireg & mask) {
2864 				esp->send_cmd_error = 1;
2865 				break;
2866 			}
2867 
2868 			if (phase == ESP_MIP)
2869 				esp_write8(ESP_CMD_MOK, ESP_CMD);
2870 
2871 			esp_write8(ESP_CMD_TI, ESP_CMD);
2872 		}
2873 	} else {
2874 		unsigned int n = ESP_FIFO_SIZE;
2875 		u8 *src = (u8 *)addr;
2876 
2877 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
2878 
2879 		if (n > esp_count)
2880 			n = esp_count;
2881 		writesb(esp->fifo_reg, src, n);
2882 		src += n;
2883 		esp_count -= n;
2884 
2885 		scsi_esp_cmd(esp, cmd);
2886 
2887 		while (esp_count) {
2888 			if (esp_wait_for_intr(esp)) {
2889 				esp->send_cmd_error = 1;
2890 				break;
2891 			}
2892 
2893 			if ((esp->sreg & ESP_STAT_PMASK) != phase)
2894 				break;
2895 
2896 			esp->ireg = esp_read8(ESP_INTRPT);
2897 			if (esp->ireg & ~ESP_INTR_BSERV) {
2898 				esp->send_cmd_error = 1;
2899 				break;
2900 			}
2901 
2902 			n = ESP_FIFO_SIZE -
2903 			    (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES);
2904 
2905 			if (n > esp_count)
2906 				n = esp_count;
2907 			writesb(esp->fifo_reg, src, n);
2908 			src += n;
2909 			esp_count -= n;
2910 
2911 			esp_write8(ESP_CMD_TI, ESP_CMD);
2912 		}
2913 	}
2914 
2915 	esp->send_cmd_residual = esp_count;
2916 }
2917 EXPORT_SYMBOL(esp_send_pio_cmd);
2918 #endif
2919