1 // SPDX-License-Identifier: GPL-2.0-only 2 /* esp_scsi.c: ESP SCSI driver. 3 * 4 * Copyright (C) 2007 David S. Miller (davem@davemloft.net) 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/delay.h> 11 #include <linux/list.h> 12 #include <linux/completion.h> 13 #include <linux/kallsyms.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/init.h> 17 #include <linux/irqreturn.h> 18 19 #include <asm/irq.h> 20 #include <asm/io.h> 21 #include <asm/dma.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_host.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_tcq.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_transport_spi.h> 30 31 #include "esp_scsi.h" 32 33 #define DRV_MODULE_NAME "esp" 34 #define PFX DRV_MODULE_NAME ": " 35 #define DRV_VERSION "2.000" 36 #define DRV_MODULE_RELDATE "April 19, 2007" 37 38 /* SCSI bus reset settle time in seconds. */ 39 static int esp_bus_reset_settle = 3; 40 41 static u32 esp_debug; 42 #define ESP_DEBUG_INTR 0x00000001 43 #define ESP_DEBUG_SCSICMD 0x00000002 44 #define ESP_DEBUG_RESET 0x00000004 45 #define ESP_DEBUG_MSGIN 0x00000008 46 #define ESP_DEBUG_MSGOUT 0x00000010 47 #define ESP_DEBUG_CMDDONE 0x00000020 48 #define ESP_DEBUG_DISCONNECT 0x00000040 49 #define ESP_DEBUG_DATASTART 0x00000080 50 #define ESP_DEBUG_DATADONE 0x00000100 51 #define ESP_DEBUG_RECONNECT 0x00000200 52 #define ESP_DEBUG_AUTOSENSE 0x00000400 53 #define ESP_DEBUG_EVENT 0x00000800 54 #define ESP_DEBUG_COMMAND 0x00001000 55 56 #define esp_log_intr(f, a...) \ 57 do { if (esp_debug & ESP_DEBUG_INTR) \ 58 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 59 } while (0) 60 61 #define esp_log_reset(f, a...) \ 62 do { if (esp_debug & ESP_DEBUG_RESET) \ 63 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 64 } while (0) 65 66 #define esp_log_msgin(f, a...) \ 67 do { if (esp_debug & ESP_DEBUG_MSGIN) \ 68 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 69 } while (0) 70 71 #define esp_log_msgout(f, a...) \ 72 do { if (esp_debug & ESP_DEBUG_MSGOUT) \ 73 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 74 } while (0) 75 76 #define esp_log_cmddone(f, a...) \ 77 do { if (esp_debug & ESP_DEBUG_CMDDONE) \ 78 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 79 } while (0) 80 81 #define esp_log_disconnect(f, a...) \ 82 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \ 83 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 84 } while (0) 85 86 #define esp_log_datastart(f, a...) \ 87 do { if (esp_debug & ESP_DEBUG_DATASTART) \ 88 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 89 } while (0) 90 91 #define esp_log_datadone(f, a...) \ 92 do { if (esp_debug & ESP_DEBUG_DATADONE) \ 93 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 94 } while (0) 95 96 #define esp_log_reconnect(f, a...) \ 97 do { if (esp_debug & ESP_DEBUG_RECONNECT) \ 98 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 99 } while (0) 100 101 #define esp_log_autosense(f, a...) \ 102 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \ 103 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 104 } while (0) 105 106 #define esp_log_event(f, a...) \ 107 do { if (esp_debug & ESP_DEBUG_EVENT) \ 108 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 109 } while (0) 110 111 #define esp_log_command(f, a...) \ 112 do { if (esp_debug & ESP_DEBUG_COMMAND) \ 113 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 114 } while (0) 115 116 #define esp_read8(REG) esp->ops->esp_read8(esp, REG) 117 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG) 118 119 static void esp_log_fill_regs(struct esp *esp, 120 struct esp_event_ent *p) 121 { 122 p->sreg = esp->sreg; 123 p->seqreg = esp->seqreg; 124 p->sreg2 = esp->sreg2; 125 p->ireg = esp->ireg; 126 p->select_state = esp->select_state; 127 p->event = esp->event; 128 } 129 130 void scsi_esp_cmd(struct esp *esp, u8 val) 131 { 132 struct esp_event_ent *p; 133 int idx = esp->esp_event_cur; 134 135 p = &esp->esp_event_log[idx]; 136 p->type = ESP_EVENT_TYPE_CMD; 137 p->val = val; 138 esp_log_fill_regs(esp, p); 139 140 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1); 141 142 esp_log_command("cmd[%02x]\n", val); 143 esp_write8(val, ESP_CMD); 144 } 145 EXPORT_SYMBOL(scsi_esp_cmd); 146 147 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd) 148 { 149 if (esp->flags & ESP_FLAG_USE_FIFO) { 150 int i; 151 152 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 153 for (i = 0; i < len; i++) 154 esp_write8(esp->command_block[i], ESP_FDATA); 155 scsi_esp_cmd(esp, cmd); 156 } else { 157 if (esp->rev == FASHME) 158 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 159 cmd |= ESP_CMD_DMA; 160 esp->ops->send_dma_cmd(esp, esp->command_block_dma, 161 len, max_len, 0, cmd); 162 } 163 } 164 165 static void esp_event(struct esp *esp, u8 val) 166 { 167 struct esp_event_ent *p; 168 int idx = esp->esp_event_cur; 169 170 p = &esp->esp_event_log[idx]; 171 p->type = ESP_EVENT_TYPE_EVENT; 172 p->val = val; 173 esp_log_fill_regs(esp, p); 174 175 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1); 176 177 esp->event = val; 178 } 179 180 static void esp_dump_cmd_log(struct esp *esp) 181 { 182 int idx = esp->esp_event_cur; 183 int stop = idx; 184 185 shost_printk(KERN_INFO, esp->host, "Dumping command log\n"); 186 do { 187 struct esp_event_ent *p = &esp->esp_event_log[idx]; 188 189 shost_printk(KERN_INFO, esp->host, 190 "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] " 191 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n", 192 idx, 193 p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT", 194 p->val, p->sreg, p->seqreg, 195 p->sreg2, p->ireg, p->select_state, p->event); 196 197 idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1); 198 } while (idx != stop); 199 } 200 201 static void esp_flush_fifo(struct esp *esp) 202 { 203 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 204 if (esp->rev == ESP236) { 205 int lim = 1000; 206 207 while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) { 208 if (--lim == 0) { 209 shost_printk(KERN_ALERT, esp->host, 210 "ESP_FF_BYTES will not clear!\n"); 211 break; 212 } 213 udelay(1); 214 } 215 } 216 } 217 218 static void hme_read_fifo(struct esp *esp) 219 { 220 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; 221 int idx = 0; 222 223 while (fcnt--) { 224 esp->fifo[idx++] = esp_read8(ESP_FDATA); 225 esp->fifo[idx++] = esp_read8(ESP_FDATA); 226 } 227 if (esp->sreg2 & ESP_STAT2_F1BYTE) { 228 esp_write8(0, ESP_FDATA); 229 esp->fifo[idx++] = esp_read8(ESP_FDATA); 230 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 231 } 232 esp->fifo_cnt = idx; 233 } 234 235 static void esp_set_all_config3(struct esp *esp, u8 val) 236 { 237 int i; 238 239 for (i = 0; i < ESP_MAX_TARGET; i++) 240 esp->target[i].esp_config3 = val; 241 } 242 243 /* Reset the ESP chip, _not_ the SCSI bus. */ 244 static void esp_reset_esp(struct esp *esp) 245 { 246 /* Now reset the ESP chip */ 247 scsi_esp_cmd(esp, ESP_CMD_RC); 248 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); 249 if (esp->rev == FAST) 250 esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2); 251 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); 252 253 /* This is the only point at which it is reliable to read 254 * the ID-code for a fast ESP chip variants. 255 */ 256 esp->max_period = ((35 * esp->ccycle) / 1000); 257 if (esp->rev == FAST) { 258 u8 family_code = ESP_FAMILY(esp_read8(ESP_UID)); 259 260 if (family_code == ESP_UID_F236) { 261 esp->rev = FAS236; 262 } else if (family_code == ESP_UID_HME) { 263 esp->rev = FASHME; /* Version is usually '5'. */ 264 } else if (family_code == ESP_UID_FSC) { 265 esp->rev = FSC; 266 /* Enable Active Negation */ 267 esp_write8(ESP_CONFIG4_RADE, ESP_CFG4); 268 } else { 269 esp->rev = FAS100A; 270 } 271 esp->min_period = ((4 * esp->ccycle) / 1000); 272 } else { 273 esp->min_period = ((5 * esp->ccycle) / 1000); 274 } 275 if (esp->rev == FAS236) { 276 /* 277 * The AM53c974 chip returns the same ID as FAS236; 278 * try to configure glitch eater. 279 */ 280 u8 config4 = ESP_CONFIG4_GE1; 281 esp_write8(config4, ESP_CFG4); 282 config4 = esp_read8(ESP_CFG4); 283 if (config4 & ESP_CONFIG4_GE1) { 284 esp->rev = PCSCSI; 285 esp_write8(esp->config4, ESP_CFG4); 286 } 287 } 288 esp->max_period = (esp->max_period + 3)>>2; 289 esp->min_period = (esp->min_period + 3)>>2; 290 291 esp_write8(esp->config1, ESP_CFG1); 292 switch (esp->rev) { 293 case ESP100: 294 /* nothing to do */ 295 break; 296 297 case ESP100A: 298 esp_write8(esp->config2, ESP_CFG2); 299 break; 300 301 case ESP236: 302 /* Slow 236 */ 303 esp_write8(esp->config2, ESP_CFG2); 304 esp->prev_cfg3 = esp->target[0].esp_config3; 305 esp_write8(esp->prev_cfg3, ESP_CFG3); 306 break; 307 308 case FASHME: 309 esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB); 310 fallthrough; 311 312 case FAS236: 313 case PCSCSI: 314 case FSC: 315 esp_write8(esp->config2, ESP_CFG2); 316 if (esp->rev == FASHME) { 317 u8 cfg3 = esp->target[0].esp_config3; 318 319 cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH; 320 if (esp->scsi_id >= 8) 321 cfg3 |= ESP_CONFIG3_IDBIT3; 322 esp_set_all_config3(esp, cfg3); 323 } else { 324 u32 cfg3 = esp->target[0].esp_config3; 325 326 cfg3 |= ESP_CONFIG3_FCLK; 327 esp_set_all_config3(esp, cfg3); 328 } 329 esp->prev_cfg3 = esp->target[0].esp_config3; 330 esp_write8(esp->prev_cfg3, ESP_CFG3); 331 if (esp->rev == FASHME) { 332 esp->radelay = 80; 333 } else { 334 if (esp->flags & ESP_FLAG_DIFFERENTIAL) 335 esp->radelay = 0; 336 else 337 esp->radelay = 96; 338 } 339 break; 340 341 case FAS100A: 342 /* Fast 100a */ 343 esp_write8(esp->config2, ESP_CFG2); 344 esp_set_all_config3(esp, 345 (esp->target[0].esp_config3 | 346 ESP_CONFIG3_FCLOCK)); 347 esp->prev_cfg3 = esp->target[0].esp_config3; 348 esp_write8(esp->prev_cfg3, ESP_CFG3); 349 esp->radelay = 32; 350 break; 351 352 default: 353 break; 354 } 355 356 /* Reload the configuration registers */ 357 esp_write8(esp->cfact, ESP_CFACT); 358 359 esp->prev_stp = 0; 360 esp_write8(esp->prev_stp, ESP_STP); 361 362 esp->prev_soff = 0; 363 esp_write8(esp->prev_soff, ESP_SOFF); 364 365 esp_write8(esp->neg_defp, ESP_TIMEO); 366 367 /* Eat any bitrot in the chip */ 368 esp_read8(ESP_INTRPT); 369 udelay(100); 370 } 371 372 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd) 373 { 374 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); 375 struct scatterlist *sg = scsi_sglist(cmd); 376 int total = 0, i; 377 struct scatterlist *s; 378 379 if (cmd->sc_data_direction == DMA_NONE) 380 return; 381 382 if (esp->flags & ESP_FLAG_NO_DMA_MAP) { 383 /* 384 * For pseudo DMA and PIO we need the virtual address instead of 385 * a dma address, so perform an identity mapping. 386 */ 387 spriv->num_sg = scsi_sg_count(cmd); 388 389 scsi_for_each_sg(cmd, s, spriv->num_sg, i) { 390 s->dma_address = (uintptr_t)sg_virt(s); 391 total += sg_dma_len(s); 392 } 393 } else { 394 spriv->num_sg = scsi_dma_map(cmd); 395 scsi_for_each_sg(cmd, s, spriv->num_sg, i) 396 total += sg_dma_len(s); 397 } 398 spriv->cur_residue = sg_dma_len(sg); 399 spriv->prv_sg = NULL; 400 spriv->cur_sg = sg; 401 spriv->tot_residue = total; 402 } 403 404 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent, 405 struct scsi_cmnd *cmd) 406 { 407 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); 408 409 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 410 return ent->sense_dma + 411 (ent->sense_ptr - cmd->sense_buffer); 412 } 413 414 return sg_dma_address(p->cur_sg) + 415 (sg_dma_len(p->cur_sg) - 416 p->cur_residue); 417 } 418 419 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent, 420 struct scsi_cmnd *cmd) 421 { 422 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); 423 424 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 425 return SCSI_SENSE_BUFFERSIZE - 426 (ent->sense_ptr - cmd->sense_buffer); 427 } 428 return p->cur_residue; 429 } 430 431 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent, 432 struct scsi_cmnd *cmd, unsigned int len) 433 { 434 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); 435 436 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 437 ent->sense_ptr += len; 438 return; 439 } 440 441 p->cur_residue -= len; 442 p->tot_residue -= len; 443 if (p->cur_residue < 0 || p->tot_residue < 0) { 444 shost_printk(KERN_ERR, esp->host, 445 "Data transfer overflow.\n"); 446 shost_printk(KERN_ERR, esp->host, 447 "cur_residue[%d] tot_residue[%d] len[%u]\n", 448 p->cur_residue, p->tot_residue, len); 449 p->cur_residue = 0; 450 p->tot_residue = 0; 451 } 452 if (!p->cur_residue && p->tot_residue) { 453 p->prv_sg = p->cur_sg; 454 p->cur_sg = sg_next(p->cur_sg); 455 p->cur_residue = sg_dma_len(p->cur_sg); 456 } 457 } 458 459 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd) 460 { 461 if (!(esp->flags & ESP_FLAG_NO_DMA_MAP)) 462 scsi_dma_unmap(cmd); 463 } 464 465 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent) 466 { 467 struct scsi_cmnd *cmd = ent->cmd; 468 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); 469 470 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 471 ent->saved_sense_ptr = ent->sense_ptr; 472 return; 473 } 474 ent->saved_cur_residue = spriv->cur_residue; 475 ent->saved_prv_sg = spriv->prv_sg; 476 ent->saved_cur_sg = spriv->cur_sg; 477 ent->saved_tot_residue = spriv->tot_residue; 478 } 479 480 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent) 481 { 482 struct scsi_cmnd *cmd = ent->cmd; 483 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); 484 485 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 486 ent->sense_ptr = ent->saved_sense_ptr; 487 return; 488 } 489 spriv->cur_residue = ent->saved_cur_residue; 490 spriv->prv_sg = ent->saved_prv_sg; 491 spriv->cur_sg = ent->saved_cur_sg; 492 spriv->tot_residue = ent->saved_tot_residue; 493 } 494 495 static void esp_write_tgt_config3(struct esp *esp, int tgt) 496 { 497 if (esp->rev > ESP100A) { 498 u8 val = esp->target[tgt].esp_config3; 499 500 if (val != esp->prev_cfg3) { 501 esp->prev_cfg3 = val; 502 esp_write8(val, ESP_CFG3); 503 } 504 } 505 } 506 507 static void esp_write_tgt_sync(struct esp *esp, int tgt) 508 { 509 u8 off = esp->target[tgt].esp_offset; 510 u8 per = esp->target[tgt].esp_period; 511 512 if (off != esp->prev_soff) { 513 esp->prev_soff = off; 514 esp_write8(off, ESP_SOFF); 515 } 516 if (per != esp->prev_stp) { 517 esp->prev_stp = per; 518 esp_write8(per, ESP_STP); 519 } 520 } 521 522 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len) 523 { 524 if (esp->rev == FASHME) { 525 /* Arbitrary segment boundaries, 24-bit counts. */ 526 if (dma_len > (1U << 24)) 527 dma_len = (1U << 24); 528 } else { 529 u32 base, end; 530 531 /* ESP chip limits other variants by 16-bits of transfer 532 * count. Actually on FAS100A and FAS236 we could get 533 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB 534 * in the ESP_CFG2 register but that causes other unwanted 535 * changes so we don't use it currently. 536 */ 537 if (dma_len > (1U << 16)) 538 dma_len = (1U << 16); 539 540 /* All of the DMA variants hooked up to these chips 541 * cannot handle crossing a 24-bit address boundary. 542 */ 543 base = dma_addr & ((1U << 24) - 1U); 544 end = base + dma_len; 545 if (end > (1U << 24)) 546 end = (1U <<24); 547 dma_len = end - base; 548 } 549 return dma_len; 550 } 551 552 static int esp_need_to_nego_wide(struct esp_target_data *tp) 553 { 554 struct scsi_target *target = tp->starget; 555 556 return spi_width(target) != tp->nego_goal_width; 557 } 558 559 static int esp_need_to_nego_sync(struct esp_target_data *tp) 560 { 561 struct scsi_target *target = tp->starget; 562 563 /* When offset is zero, period is "don't care". */ 564 if (!spi_offset(target) && !tp->nego_goal_offset) 565 return 0; 566 567 if (spi_offset(target) == tp->nego_goal_offset && 568 spi_period(target) == tp->nego_goal_period) 569 return 0; 570 571 return 1; 572 } 573 574 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent, 575 struct esp_lun_data *lp) 576 { 577 if (!ent->orig_tag[0]) { 578 /* Non-tagged, slot already taken? */ 579 if (lp->non_tagged_cmd) 580 return -EBUSY; 581 582 if (lp->hold) { 583 /* We are being held by active tagged 584 * commands. 585 */ 586 if (lp->num_tagged) 587 return -EBUSY; 588 589 /* Tagged commands completed, we can unplug 590 * the queue and run this untagged command. 591 */ 592 lp->hold = 0; 593 } else if (lp->num_tagged) { 594 /* Plug the queue until num_tagged decreases 595 * to zero in esp_free_lun_tag. 596 */ 597 lp->hold = 1; 598 return -EBUSY; 599 } 600 601 lp->non_tagged_cmd = ent; 602 return 0; 603 } 604 605 /* Tagged command. Check that it isn't blocked by a non-tagged one. */ 606 if (lp->non_tagged_cmd || lp->hold) 607 return -EBUSY; 608 609 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]); 610 611 lp->tagged_cmds[ent->orig_tag[1]] = ent; 612 lp->num_tagged++; 613 614 return 0; 615 } 616 617 static void esp_free_lun_tag(struct esp_cmd_entry *ent, 618 struct esp_lun_data *lp) 619 { 620 if (ent->orig_tag[0]) { 621 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent); 622 lp->tagged_cmds[ent->orig_tag[1]] = NULL; 623 lp->num_tagged--; 624 } else { 625 BUG_ON(lp->non_tagged_cmd != ent); 626 lp->non_tagged_cmd = NULL; 627 } 628 } 629 630 static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent) 631 { 632 ent->sense_ptr = ent->cmd->sense_buffer; 633 if (esp->flags & ESP_FLAG_NO_DMA_MAP) { 634 ent->sense_dma = (uintptr_t)ent->sense_ptr; 635 return; 636 } 637 638 ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr, 639 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 640 } 641 642 static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent) 643 { 644 if (!(esp->flags & ESP_FLAG_NO_DMA_MAP)) 645 dma_unmap_single(esp->dev, ent->sense_dma, 646 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 647 ent->sense_ptr = NULL; 648 } 649 650 /* When a contingent allegiance condition is created, we force feed a 651 * REQUEST_SENSE command to the device to fetch the sense data. I 652 * tried many other schemes, relying on the scsi error handling layer 653 * to send out the REQUEST_SENSE automatically, but this was difficult 654 * to get right especially in the presence of applications like smartd 655 * which use SG_IO to send out their own REQUEST_SENSE commands. 656 */ 657 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent) 658 { 659 struct scsi_cmnd *cmd = ent->cmd; 660 struct scsi_device *dev = cmd->device; 661 int tgt, lun; 662 u8 *p, val; 663 664 tgt = dev->id; 665 lun = dev->lun; 666 667 668 if (!ent->sense_ptr) { 669 esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n", 670 tgt, lun); 671 esp_map_sense(esp, ent); 672 } 673 ent->saved_sense_ptr = ent->sense_ptr; 674 675 esp->active_cmd = ent; 676 677 p = esp->command_block; 678 esp->msg_out_len = 0; 679 680 *p++ = IDENTIFY(0, lun); 681 *p++ = REQUEST_SENSE; 682 *p++ = ((dev->scsi_level <= SCSI_2) ? 683 (lun << 5) : 0); 684 *p++ = 0; 685 *p++ = 0; 686 *p++ = SCSI_SENSE_BUFFERSIZE; 687 *p++ = 0; 688 689 esp->select_state = ESP_SELECT_BASIC; 690 691 val = tgt; 692 if (esp->rev == FASHME) 693 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT; 694 esp_write8(val, ESP_BUSID); 695 696 esp_write_tgt_sync(esp, tgt); 697 esp_write_tgt_config3(esp, tgt); 698 699 val = (p - esp->command_block); 700 701 esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA); 702 } 703 704 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp) 705 { 706 struct esp_cmd_entry *ent; 707 708 list_for_each_entry(ent, &esp->queued_cmds, list) { 709 struct scsi_cmnd *cmd = ent->cmd; 710 struct scsi_device *dev = cmd->device; 711 struct esp_lun_data *lp = dev->hostdata; 712 713 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 714 ent->tag[0] = 0; 715 ent->tag[1] = 0; 716 return ent; 717 } 718 719 if (!spi_populate_tag_msg(&ent->tag[0], cmd)) { 720 ent->tag[0] = 0; 721 ent->tag[1] = 0; 722 } 723 ent->orig_tag[0] = ent->tag[0]; 724 ent->orig_tag[1] = ent->tag[1]; 725 726 if (esp_alloc_lun_tag(ent, lp) < 0) 727 continue; 728 729 return ent; 730 } 731 732 return NULL; 733 } 734 735 static void esp_maybe_execute_command(struct esp *esp) 736 { 737 struct esp_target_data *tp; 738 struct scsi_device *dev; 739 struct scsi_cmnd *cmd; 740 struct esp_cmd_entry *ent; 741 bool select_and_stop = false; 742 int tgt, lun, i; 743 u32 val, start_cmd; 744 u8 *p; 745 746 if (esp->active_cmd || 747 (esp->flags & ESP_FLAG_RESETTING)) 748 return; 749 750 ent = find_and_prep_issuable_command(esp); 751 if (!ent) 752 return; 753 754 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 755 esp_autosense(esp, ent); 756 return; 757 } 758 759 cmd = ent->cmd; 760 dev = cmd->device; 761 tgt = dev->id; 762 lun = dev->lun; 763 tp = &esp->target[tgt]; 764 765 list_move(&ent->list, &esp->active_cmds); 766 767 esp->active_cmd = ent; 768 769 esp_map_dma(esp, cmd); 770 esp_save_pointers(esp, ent); 771 772 if (!(cmd->cmd_len == 6 || cmd->cmd_len == 10 || cmd->cmd_len == 12)) 773 select_and_stop = true; 774 775 p = esp->command_block; 776 777 esp->msg_out_len = 0; 778 if (tp->flags & ESP_TGT_CHECK_NEGO) { 779 /* Need to negotiate. If the target is broken 780 * go for synchronous transfers and non-wide. 781 */ 782 if (tp->flags & ESP_TGT_BROKEN) { 783 tp->flags &= ~ESP_TGT_DISCONNECT; 784 tp->nego_goal_period = 0; 785 tp->nego_goal_offset = 0; 786 tp->nego_goal_width = 0; 787 tp->nego_goal_tags = 0; 788 } 789 790 /* If the settings are not changing, skip this. */ 791 if (spi_width(tp->starget) == tp->nego_goal_width && 792 spi_period(tp->starget) == tp->nego_goal_period && 793 spi_offset(tp->starget) == tp->nego_goal_offset) { 794 tp->flags &= ~ESP_TGT_CHECK_NEGO; 795 goto build_identify; 796 } 797 798 if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) { 799 esp->msg_out_len = 800 spi_populate_width_msg(&esp->msg_out[0], 801 (tp->nego_goal_width ? 802 1 : 0)); 803 tp->flags |= ESP_TGT_NEGO_WIDE; 804 } else if (esp_need_to_nego_sync(tp)) { 805 esp->msg_out_len = 806 spi_populate_sync_msg(&esp->msg_out[0], 807 tp->nego_goal_period, 808 tp->nego_goal_offset); 809 tp->flags |= ESP_TGT_NEGO_SYNC; 810 } else { 811 tp->flags &= ~ESP_TGT_CHECK_NEGO; 812 } 813 814 /* If there are multiple message bytes, use Select and Stop */ 815 if (esp->msg_out_len) 816 select_and_stop = true; 817 } 818 819 build_identify: 820 *p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun); 821 822 if (ent->tag[0] && esp->rev == ESP100) { 823 /* ESP100 lacks select w/atn3 command, use select 824 * and stop instead. 825 */ 826 select_and_stop = true; 827 } 828 829 if (select_and_stop) { 830 esp->cmd_bytes_left = cmd->cmd_len; 831 esp->cmd_bytes_ptr = &cmd->cmnd[0]; 832 833 if (ent->tag[0]) { 834 for (i = esp->msg_out_len - 1; 835 i >= 0; i--) 836 esp->msg_out[i + 2] = esp->msg_out[i]; 837 esp->msg_out[0] = ent->tag[0]; 838 esp->msg_out[1] = ent->tag[1]; 839 esp->msg_out_len += 2; 840 } 841 842 start_cmd = ESP_CMD_SELAS; 843 esp->select_state = ESP_SELECT_MSGOUT; 844 } else { 845 start_cmd = ESP_CMD_SELA; 846 if (ent->tag[0]) { 847 *p++ = ent->tag[0]; 848 *p++ = ent->tag[1]; 849 850 start_cmd = ESP_CMD_SA3; 851 } 852 853 for (i = 0; i < cmd->cmd_len; i++) 854 *p++ = cmd->cmnd[i]; 855 856 esp->select_state = ESP_SELECT_BASIC; 857 } 858 val = tgt; 859 if (esp->rev == FASHME) 860 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT; 861 esp_write8(val, ESP_BUSID); 862 863 esp_write_tgt_sync(esp, tgt); 864 esp_write_tgt_config3(esp, tgt); 865 866 val = (p - esp->command_block); 867 868 if (esp_debug & ESP_DEBUG_SCSICMD) { 869 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun); 870 for (i = 0; i < cmd->cmd_len; i++) 871 printk("%02x ", cmd->cmnd[i]); 872 printk("]\n"); 873 } 874 875 esp_send_dma_cmd(esp, val, 16, start_cmd); 876 } 877 878 static struct esp_cmd_entry *esp_get_ent(struct esp *esp) 879 { 880 struct list_head *head = &esp->esp_cmd_pool; 881 struct esp_cmd_entry *ret; 882 883 if (list_empty(head)) { 884 ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC); 885 } else { 886 ret = list_entry(head->next, struct esp_cmd_entry, list); 887 list_del(&ret->list); 888 memset(ret, 0, sizeof(*ret)); 889 } 890 return ret; 891 } 892 893 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent) 894 { 895 list_add(&ent->list, &esp->esp_cmd_pool); 896 } 897 898 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent, 899 struct scsi_cmnd *cmd, unsigned char host_byte) 900 { 901 struct scsi_device *dev = cmd->device; 902 int tgt = dev->id; 903 int lun = dev->lun; 904 905 esp->active_cmd = NULL; 906 esp_unmap_dma(esp, cmd); 907 esp_free_lun_tag(ent, dev->hostdata); 908 cmd->result = 0; 909 set_host_byte(cmd, host_byte); 910 if (host_byte == DID_OK) 911 set_status_byte(cmd, ent->status); 912 913 if (ent->eh_done) { 914 complete(ent->eh_done); 915 ent->eh_done = NULL; 916 } 917 918 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 919 esp_unmap_sense(esp, ent); 920 921 /* Restore the message/status bytes to what we actually 922 * saw originally. Also, report that we are providing 923 * the sense data. 924 */ 925 cmd->result = SAM_STAT_CHECK_CONDITION; 926 927 ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE; 928 if (esp_debug & ESP_DEBUG_AUTOSENSE) { 929 int i; 930 931 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ", 932 esp->host->unique_id, tgt, lun); 933 for (i = 0; i < 18; i++) 934 printk("%02x ", cmd->sense_buffer[i]); 935 printk("]\n"); 936 } 937 } 938 939 scsi_done(cmd); 940 941 list_del(&ent->list); 942 esp_put_ent(esp, ent); 943 944 esp_maybe_execute_command(esp); 945 } 946 947 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent) 948 { 949 struct scsi_device *dev = ent->cmd->device; 950 struct esp_lun_data *lp = dev->hostdata; 951 952 scsi_track_queue_full(dev, lp->num_tagged - 1); 953 } 954 955 static int esp_queuecommand_lck(struct scsi_cmnd *cmd) 956 { 957 struct scsi_device *dev = cmd->device; 958 struct esp *esp = shost_priv(dev->host); 959 struct esp_cmd_priv *spriv; 960 struct esp_cmd_entry *ent; 961 962 ent = esp_get_ent(esp); 963 if (!ent) 964 return SCSI_MLQUEUE_HOST_BUSY; 965 966 ent->cmd = cmd; 967 968 spriv = ESP_CMD_PRIV(cmd); 969 spriv->num_sg = 0; 970 971 list_add_tail(&ent->list, &esp->queued_cmds); 972 973 esp_maybe_execute_command(esp); 974 975 return 0; 976 } 977 978 static DEF_SCSI_QCMD(esp_queuecommand) 979 980 static int esp_check_gross_error(struct esp *esp) 981 { 982 if (esp->sreg & ESP_STAT_SPAM) { 983 /* Gross Error, could be one of: 984 * - top of fifo overwritten 985 * - top of command register overwritten 986 * - DMA programmed with wrong direction 987 * - improper phase change 988 */ 989 shost_printk(KERN_ERR, esp->host, 990 "Gross error sreg[%02x]\n", esp->sreg); 991 /* XXX Reset the chip. XXX */ 992 return 1; 993 } 994 return 0; 995 } 996 997 static int esp_check_spur_intr(struct esp *esp) 998 { 999 switch (esp->rev) { 1000 case ESP100: 1001 case ESP100A: 1002 /* The interrupt pending bit of the status register cannot 1003 * be trusted on these revisions. 1004 */ 1005 esp->sreg &= ~ESP_STAT_INTR; 1006 break; 1007 1008 default: 1009 if (!(esp->sreg & ESP_STAT_INTR)) { 1010 if (esp->ireg & ESP_INTR_SR) 1011 return 1; 1012 1013 /* If the DMA is indicating interrupt pending and the 1014 * ESP is not, the only possibility is a DMA error. 1015 */ 1016 if (!esp->ops->dma_error(esp)) { 1017 shost_printk(KERN_ERR, esp->host, 1018 "Spurious irq, sreg=%02x.\n", 1019 esp->sreg); 1020 return -1; 1021 } 1022 1023 shost_printk(KERN_ERR, esp->host, "DMA error\n"); 1024 1025 /* XXX Reset the chip. XXX */ 1026 return -1; 1027 } 1028 break; 1029 } 1030 1031 return 0; 1032 } 1033 1034 static void esp_schedule_reset(struct esp *esp) 1035 { 1036 esp_log_reset("esp_schedule_reset() from %ps\n", 1037 __builtin_return_address(0)); 1038 esp->flags |= ESP_FLAG_RESETTING; 1039 esp_event(esp, ESP_EVENT_RESET); 1040 } 1041 1042 /* In order to avoid having to add a special half-reconnected state 1043 * into the driver we just sit here and poll through the rest of 1044 * the reselection process to get the tag message bytes. 1045 */ 1046 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp, 1047 struct esp_lun_data *lp) 1048 { 1049 struct esp_cmd_entry *ent; 1050 int i; 1051 1052 if (!lp->num_tagged) { 1053 shost_printk(KERN_ERR, esp->host, 1054 "Reconnect w/num_tagged==0\n"); 1055 return NULL; 1056 } 1057 1058 esp_log_reconnect("reconnect tag, "); 1059 1060 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) { 1061 if (esp->ops->irq_pending(esp)) 1062 break; 1063 } 1064 if (i == ESP_QUICKIRQ_LIMIT) { 1065 shost_printk(KERN_ERR, esp->host, 1066 "Reconnect IRQ1 timeout\n"); 1067 return NULL; 1068 } 1069 1070 esp->sreg = esp_read8(ESP_STATUS); 1071 esp->ireg = esp_read8(ESP_INTRPT); 1072 1073 esp_log_reconnect("IRQ(%d:%x:%x), ", 1074 i, esp->ireg, esp->sreg); 1075 1076 if (esp->ireg & ESP_INTR_DC) { 1077 shost_printk(KERN_ERR, esp->host, 1078 "Reconnect, got disconnect.\n"); 1079 return NULL; 1080 } 1081 1082 if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) { 1083 shost_printk(KERN_ERR, esp->host, 1084 "Reconnect, not MIP sreg[%02x].\n", esp->sreg); 1085 return NULL; 1086 } 1087 1088 /* DMA in the tag bytes... */ 1089 esp->command_block[0] = 0xff; 1090 esp->command_block[1] = 0xff; 1091 esp->ops->send_dma_cmd(esp, esp->command_block_dma, 1092 2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI); 1093 1094 /* ACK the message. */ 1095 scsi_esp_cmd(esp, ESP_CMD_MOK); 1096 1097 for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) { 1098 if (esp->ops->irq_pending(esp)) { 1099 esp->sreg = esp_read8(ESP_STATUS); 1100 esp->ireg = esp_read8(ESP_INTRPT); 1101 if (esp->ireg & ESP_INTR_FDONE) 1102 break; 1103 } 1104 udelay(1); 1105 } 1106 if (i == ESP_RESELECT_TAG_LIMIT) { 1107 shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n"); 1108 return NULL; 1109 } 1110 esp->ops->dma_drain(esp); 1111 esp->ops->dma_invalidate(esp); 1112 1113 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n", 1114 i, esp->ireg, esp->sreg, 1115 esp->command_block[0], 1116 esp->command_block[1]); 1117 1118 if (esp->command_block[0] < SIMPLE_QUEUE_TAG || 1119 esp->command_block[0] > ORDERED_QUEUE_TAG) { 1120 shost_printk(KERN_ERR, esp->host, 1121 "Reconnect, bad tag type %02x.\n", 1122 esp->command_block[0]); 1123 return NULL; 1124 } 1125 1126 ent = lp->tagged_cmds[esp->command_block[1]]; 1127 if (!ent) { 1128 shost_printk(KERN_ERR, esp->host, 1129 "Reconnect, no entry for tag %02x.\n", 1130 esp->command_block[1]); 1131 return NULL; 1132 } 1133 1134 return ent; 1135 } 1136 1137 static int esp_reconnect(struct esp *esp) 1138 { 1139 struct esp_cmd_entry *ent; 1140 struct esp_target_data *tp; 1141 struct esp_lun_data *lp; 1142 struct scsi_device *dev; 1143 int target, lun; 1144 1145 BUG_ON(esp->active_cmd); 1146 if (esp->rev == FASHME) { 1147 /* FASHME puts the target and lun numbers directly 1148 * into the fifo. 1149 */ 1150 target = esp->fifo[0]; 1151 lun = esp->fifo[1] & 0x7; 1152 } else { 1153 u8 bits = esp_read8(ESP_FDATA); 1154 1155 /* Older chips put the lun directly into the fifo, but 1156 * the target is given as a sample of the arbitration 1157 * lines on the bus at reselection time. So we should 1158 * see the ID of the ESP and the one reconnecting target 1159 * set in the bitmap. 1160 */ 1161 if (!(bits & esp->scsi_id_mask)) 1162 goto do_reset; 1163 bits &= ~esp->scsi_id_mask; 1164 if (!bits || (bits & (bits - 1))) 1165 goto do_reset; 1166 1167 target = ffs(bits) - 1; 1168 lun = (esp_read8(ESP_FDATA) & 0x7); 1169 1170 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1171 if (esp->rev == ESP100) { 1172 u8 ireg = esp_read8(ESP_INTRPT); 1173 /* This chip has a bug during reselection that can 1174 * cause a spurious illegal-command interrupt, which 1175 * we simply ACK here. Another possibility is a bus 1176 * reset so we must check for that. 1177 */ 1178 if (ireg & ESP_INTR_SR) 1179 goto do_reset; 1180 } 1181 scsi_esp_cmd(esp, ESP_CMD_NULL); 1182 } 1183 1184 esp_write_tgt_sync(esp, target); 1185 esp_write_tgt_config3(esp, target); 1186 1187 scsi_esp_cmd(esp, ESP_CMD_MOK); 1188 1189 if (esp->rev == FASHME) 1190 esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT, 1191 ESP_BUSID); 1192 1193 tp = &esp->target[target]; 1194 dev = __scsi_device_lookup_by_target(tp->starget, lun); 1195 if (!dev) { 1196 shost_printk(KERN_ERR, esp->host, 1197 "Reconnect, no lp tgt[%u] lun[%u]\n", 1198 target, lun); 1199 goto do_reset; 1200 } 1201 lp = dev->hostdata; 1202 1203 ent = lp->non_tagged_cmd; 1204 if (!ent) { 1205 ent = esp_reconnect_with_tag(esp, lp); 1206 if (!ent) 1207 goto do_reset; 1208 } 1209 1210 esp->active_cmd = ent; 1211 1212 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1213 esp_restore_pointers(esp, ent); 1214 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1215 return 1; 1216 1217 do_reset: 1218 esp_schedule_reset(esp); 1219 return 0; 1220 } 1221 1222 static int esp_finish_select(struct esp *esp) 1223 { 1224 struct esp_cmd_entry *ent; 1225 struct scsi_cmnd *cmd; 1226 1227 /* No longer selecting. */ 1228 esp->select_state = ESP_SELECT_NONE; 1229 1230 esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS; 1231 ent = esp->active_cmd; 1232 cmd = ent->cmd; 1233 1234 if (esp->ops->dma_error(esp)) { 1235 /* If we see a DMA error during or as a result of selection, 1236 * all bets are off. 1237 */ 1238 esp_schedule_reset(esp); 1239 esp_cmd_is_done(esp, ent, cmd, DID_ERROR); 1240 return 0; 1241 } 1242 1243 esp->ops->dma_invalidate(esp); 1244 1245 if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) { 1246 struct esp_target_data *tp = &esp->target[cmd->device->id]; 1247 1248 /* Carefully back out of the selection attempt. Release 1249 * resources (such as DMA mapping & TAG) and reset state (such 1250 * as message out and command delivery variables). 1251 */ 1252 if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) { 1253 esp_unmap_dma(esp, cmd); 1254 esp_free_lun_tag(ent, cmd->device->hostdata); 1255 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE); 1256 esp->cmd_bytes_ptr = NULL; 1257 esp->cmd_bytes_left = 0; 1258 } else { 1259 esp_unmap_sense(esp, ent); 1260 } 1261 1262 /* Now that the state is unwound properly, put back onto 1263 * the issue queue. This command is no longer active. 1264 */ 1265 list_move(&ent->list, &esp->queued_cmds); 1266 esp->active_cmd = NULL; 1267 1268 /* Return value ignored by caller, it directly invokes 1269 * esp_reconnect(). 1270 */ 1271 return 0; 1272 } 1273 1274 if (esp->ireg == ESP_INTR_DC) { 1275 struct scsi_device *dev = cmd->device; 1276 1277 /* Disconnect. Make sure we re-negotiate sync and 1278 * wide parameters if this target starts responding 1279 * again in the future. 1280 */ 1281 esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO; 1282 1283 scsi_esp_cmd(esp, ESP_CMD_ESEL); 1284 esp_cmd_is_done(esp, ent, cmd, DID_BAD_TARGET); 1285 return 1; 1286 } 1287 1288 if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) { 1289 /* Selection successful. On pre-FAST chips we have 1290 * to do a NOP and possibly clean out the FIFO. 1291 */ 1292 if (esp->rev <= ESP236) { 1293 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; 1294 1295 scsi_esp_cmd(esp, ESP_CMD_NULL); 1296 1297 if (!fcnt && 1298 (!esp->prev_soff || 1299 ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP))) 1300 esp_flush_fifo(esp); 1301 } 1302 1303 /* If we are doing a Select And Stop command, negotiation, etc. 1304 * we'll do the right thing as we transition to the next phase. 1305 */ 1306 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1307 return 0; 1308 } 1309 1310 shost_printk(KERN_INFO, esp->host, 1311 "Unexpected selection completion ireg[%x]\n", esp->ireg); 1312 esp_schedule_reset(esp); 1313 return 0; 1314 } 1315 1316 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent, 1317 struct scsi_cmnd *cmd) 1318 { 1319 int fifo_cnt, ecount, bytes_sent, flush_fifo; 1320 1321 fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; 1322 if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE) 1323 fifo_cnt <<= 1; 1324 1325 ecount = 0; 1326 if (!(esp->sreg & ESP_STAT_TCNT)) { 1327 ecount = ((unsigned int)esp_read8(ESP_TCLOW) | 1328 (((unsigned int)esp_read8(ESP_TCMED)) << 8)); 1329 if (esp->rev == FASHME) 1330 ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16; 1331 if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB)) 1332 ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16; 1333 } 1334 1335 bytes_sent = esp->data_dma_len; 1336 bytes_sent -= ecount; 1337 bytes_sent -= esp->send_cmd_residual; 1338 1339 /* 1340 * The am53c974 has a DMA 'peculiarity'. The doc states: 1341 * In some odd byte conditions, one residual byte will 1342 * be left in the SCSI FIFO, and the FIFO Flags will 1343 * never count to '0 '. When this happens, the residual 1344 * byte should be retrieved via PIO following completion 1345 * of the BLAST operation. 1346 */ 1347 if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) { 1348 size_t count = 1; 1349 size_t offset = bytes_sent; 1350 u8 bval = esp_read8(ESP_FDATA); 1351 1352 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) 1353 ent->sense_ptr[bytes_sent] = bval; 1354 else { 1355 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); 1356 u8 *ptr; 1357 1358 ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg, 1359 &offset, &count); 1360 if (likely(ptr)) { 1361 *(ptr + offset) = bval; 1362 scsi_kunmap_atomic_sg(ptr); 1363 } 1364 } 1365 bytes_sent += fifo_cnt; 1366 ent->flags &= ~ESP_CMD_FLAG_RESIDUAL; 1367 } 1368 if (!(ent->flags & ESP_CMD_FLAG_WRITE)) 1369 bytes_sent -= fifo_cnt; 1370 1371 flush_fifo = 0; 1372 if (!esp->prev_soff) { 1373 /* Synchronous data transfer, always flush fifo. */ 1374 flush_fifo = 1; 1375 } else { 1376 if (esp->rev == ESP100) { 1377 u32 fflags, phase; 1378 1379 /* ESP100 has a chip bug where in the synchronous data 1380 * phase it can mistake a final long REQ pulse from the 1381 * target as an extra data byte. Fun. 1382 * 1383 * To detect this case we resample the status register 1384 * and fifo flags. If we're still in a data phase and 1385 * we see spurious chunks in the fifo, we return error 1386 * to the caller which should reset and set things up 1387 * such that we only try future transfers to this 1388 * target in synchronous mode. 1389 */ 1390 esp->sreg = esp_read8(ESP_STATUS); 1391 phase = esp->sreg & ESP_STAT_PMASK; 1392 fflags = esp_read8(ESP_FFLAGS); 1393 1394 if ((phase == ESP_DOP && 1395 (fflags & ESP_FF_ONOTZERO)) || 1396 (phase == ESP_DIP && 1397 (fflags & ESP_FF_FBYTES))) 1398 return -1; 1399 } 1400 if (!(ent->flags & ESP_CMD_FLAG_WRITE)) 1401 flush_fifo = 1; 1402 } 1403 1404 if (flush_fifo) 1405 esp_flush_fifo(esp); 1406 1407 return bytes_sent; 1408 } 1409 1410 static void esp_setsync(struct esp *esp, struct esp_target_data *tp, 1411 u8 scsi_period, u8 scsi_offset, 1412 u8 esp_stp, u8 esp_soff) 1413 { 1414 spi_period(tp->starget) = scsi_period; 1415 spi_offset(tp->starget) = scsi_offset; 1416 spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0; 1417 1418 if (esp_soff) { 1419 esp_stp &= 0x1f; 1420 esp_soff |= esp->radelay; 1421 if (esp->rev >= FAS236) { 1422 u8 bit = ESP_CONFIG3_FSCSI; 1423 if (esp->rev >= FAS100A) 1424 bit = ESP_CONFIG3_FAST; 1425 1426 if (scsi_period < 50) { 1427 if (esp->rev == FASHME) 1428 esp_soff &= ~esp->radelay; 1429 tp->esp_config3 |= bit; 1430 } else { 1431 tp->esp_config3 &= ~bit; 1432 } 1433 esp->prev_cfg3 = tp->esp_config3; 1434 esp_write8(esp->prev_cfg3, ESP_CFG3); 1435 } 1436 } 1437 1438 tp->esp_period = esp->prev_stp = esp_stp; 1439 tp->esp_offset = esp->prev_soff = esp_soff; 1440 1441 esp_write8(esp_soff, ESP_SOFF); 1442 esp_write8(esp_stp, ESP_STP); 1443 1444 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO); 1445 1446 spi_display_xfer_agreement(tp->starget); 1447 } 1448 1449 static void esp_msgin_reject(struct esp *esp) 1450 { 1451 struct esp_cmd_entry *ent = esp->active_cmd; 1452 struct scsi_cmnd *cmd = ent->cmd; 1453 struct esp_target_data *tp; 1454 int tgt; 1455 1456 tgt = cmd->device->id; 1457 tp = &esp->target[tgt]; 1458 1459 if (tp->flags & ESP_TGT_NEGO_WIDE) { 1460 tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE); 1461 1462 if (!esp_need_to_nego_sync(tp)) { 1463 tp->flags &= ~ESP_TGT_CHECK_NEGO; 1464 scsi_esp_cmd(esp, ESP_CMD_RATN); 1465 } else { 1466 esp->msg_out_len = 1467 spi_populate_sync_msg(&esp->msg_out[0], 1468 tp->nego_goal_period, 1469 tp->nego_goal_offset); 1470 tp->flags |= ESP_TGT_NEGO_SYNC; 1471 scsi_esp_cmd(esp, ESP_CMD_SATN); 1472 } 1473 return; 1474 } 1475 1476 if (tp->flags & ESP_TGT_NEGO_SYNC) { 1477 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO); 1478 tp->esp_period = 0; 1479 tp->esp_offset = 0; 1480 esp_setsync(esp, tp, 0, 0, 0, 0); 1481 scsi_esp_cmd(esp, ESP_CMD_RATN); 1482 return; 1483 } 1484 1485 shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n"); 1486 esp_schedule_reset(esp); 1487 } 1488 1489 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp) 1490 { 1491 u8 period = esp->msg_in[3]; 1492 u8 offset = esp->msg_in[4]; 1493 u8 stp; 1494 1495 if (!(tp->flags & ESP_TGT_NEGO_SYNC)) 1496 goto do_reject; 1497 1498 if (offset > 15) 1499 goto do_reject; 1500 1501 if (offset) { 1502 int one_clock; 1503 1504 if (period > esp->max_period) { 1505 period = offset = 0; 1506 goto do_sdtr; 1507 } 1508 if (period < esp->min_period) 1509 goto do_reject; 1510 1511 one_clock = esp->ccycle / 1000; 1512 stp = DIV_ROUND_UP(period << 2, one_clock); 1513 if (stp && esp->rev >= FAS236) { 1514 if (stp >= 50) 1515 stp--; 1516 } 1517 } else { 1518 stp = 0; 1519 } 1520 1521 esp_setsync(esp, tp, period, offset, stp, offset); 1522 return; 1523 1524 do_reject: 1525 esp->msg_out[0] = MESSAGE_REJECT; 1526 esp->msg_out_len = 1; 1527 scsi_esp_cmd(esp, ESP_CMD_SATN); 1528 return; 1529 1530 do_sdtr: 1531 tp->nego_goal_period = period; 1532 tp->nego_goal_offset = offset; 1533 esp->msg_out_len = 1534 spi_populate_sync_msg(&esp->msg_out[0], 1535 tp->nego_goal_period, 1536 tp->nego_goal_offset); 1537 scsi_esp_cmd(esp, ESP_CMD_SATN); 1538 } 1539 1540 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp) 1541 { 1542 int size = 8 << esp->msg_in[3]; 1543 u8 cfg3; 1544 1545 if (esp->rev != FASHME) 1546 goto do_reject; 1547 1548 if (size != 8 && size != 16) 1549 goto do_reject; 1550 1551 if (!(tp->flags & ESP_TGT_NEGO_WIDE)) 1552 goto do_reject; 1553 1554 cfg3 = tp->esp_config3; 1555 if (size == 16) { 1556 tp->flags |= ESP_TGT_WIDE; 1557 cfg3 |= ESP_CONFIG3_EWIDE; 1558 } else { 1559 tp->flags &= ~ESP_TGT_WIDE; 1560 cfg3 &= ~ESP_CONFIG3_EWIDE; 1561 } 1562 tp->esp_config3 = cfg3; 1563 esp->prev_cfg3 = cfg3; 1564 esp_write8(cfg3, ESP_CFG3); 1565 1566 tp->flags &= ~ESP_TGT_NEGO_WIDE; 1567 1568 spi_period(tp->starget) = 0; 1569 spi_offset(tp->starget) = 0; 1570 if (!esp_need_to_nego_sync(tp)) { 1571 tp->flags &= ~ESP_TGT_CHECK_NEGO; 1572 scsi_esp_cmd(esp, ESP_CMD_RATN); 1573 } else { 1574 esp->msg_out_len = 1575 spi_populate_sync_msg(&esp->msg_out[0], 1576 tp->nego_goal_period, 1577 tp->nego_goal_offset); 1578 tp->flags |= ESP_TGT_NEGO_SYNC; 1579 scsi_esp_cmd(esp, ESP_CMD_SATN); 1580 } 1581 return; 1582 1583 do_reject: 1584 esp->msg_out[0] = MESSAGE_REJECT; 1585 esp->msg_out_len = 1; 1586 scsi_esp_cmd(esp, ESP_CMD_SATN); 1587 } 1588 1589 static void esp_msgin_extended(struct esp *esp) 1590 { 1591 struct esp_cmd_entry *ent = esp->active_cmd; 1592 struct scsi_cmnd *cmd = ent->cmd; 1593 struct esp_target_data *tp; 1594 int tgt = cmd->device->id; 1595 1596 tp = &esp->target[tgt]; 1597 if (esp->msg_in[2] == EXTENDED_SDTR) { 1598 esp_msgin_sdtr(esp, tp); 1599 return; 1600 } 1601 if (esp->msg_in[2] == EXTENDED_WDTR) { 1602 esp_msgin_wdtr(esp, tp); 1603 return; 1604 } 1605 1606 shost_printk(KERN_INFO, esp->host, 1607 "Unexpected extended msg type %x\n", esp->msg_in[2]); 1608 1609 esp->msg_out[0] = MESSAGE_REJECT; 1610 esp->msg_out_len = 1; 1611 scsi_esp_cmd(esp, ESP_CMD_SATN); 1612 } 1613 1614 /* Analyze msgin bytes received from target so far. Return non-zero 1615 * if there are more bytes needed to complete the message. 1616 */ 1617 static int esp_msgin_process(struct esp *esp) 1618 { 1619 u8 msg0 = esp->msg_in[0]; 1620 int len = esp->msg_in_len; 1621 1622 if (msg0 & 0x80) { 1623 /* Identify */ 1624 shost_printk(KERN_INFO, esp->host, 1625 "Unexpected msgin identify\n"); 1626 return 0; 1627 } 1628 1629 switch (msg0) { 1630 case EXTENDED_MESSAGE: 1631 if (len == 1) 1632 return 1; 1633 if (len < esp->msg_in[1] + 2) 1634 return 1; 1635 esp_msgin_extended(esp); 1636 return 0; 1637 1638 case IGNORE_WIDE_RESIDUE: { 1639 struct esp_cmd_entry *ent; 1640 struct esp_cmd_priv *spriv; 1641 if (len == 1) 1642 return 1; 1643 1644 if (esp->msg_in[1] != 1) 1645 goto do_reject; 1646 1647 ent = esp->active_cmd; 1648 spriv = ESP_CMD_PRIV(ent->cmd); 1649 1650 if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) { 1651 spriv->cur_sg = spriv->prv_sg; 1652 spriv->cur_residue = 1; 1653 } else 1654 spriv->cur_residue++; 1655 spriv->tot_residue++; 1656 return 0; 1657 } 1658 case NOP: 1659 return 0; 1660 case RESTORE_POINTERS: 1661 esp_restore_pointers(esp, esp->active_cmd); 1662 return 0; 1663 case SAVE_POINTERS: 1664 esp_save_pointers(esp, esp->active_cmd); 1665 return 0; 1666 1667 case COMMAND_COMPLETE: 1668 case DISCONNECT: { 1669 struct esp_cmd_entry *ent = esp->active_cmd; 1670 1671 ent->message = msg0; 1672 esp_event(esp, ESP_EVENT_FREE_BUS); 1673 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1674 return 0; 1675 } 1676 case MESSAGE_REJECT: 1677 esp_msgin_reject(esp); 1678 return 0; 1679 1680 default: 1681 do_reject: 1682 esp->msg_out[0] = MESSAGE_REJECT; 1683 esp->msg_out_len = 1; 1684 scsi_esp_cmd(esp, ESP_CMD_SATN); 1685 return 0; 1686 } 1687 } 1688 1689 static int esp_process_event(struct esp *esp) 1690 { 1691 int write, i; 1692 1693 again: 1694 write = 0; 1695 esp_log_event("process event %d phase %x\n", 1696 esp->event, esp->sreg & ESP_STAT_PMASK); 1697 switch (esp->event) { 1698 case ESP_EVENT_CHECK_PHASE: 1699 switch (esp->sreg & ESP_STAT_PMASK) { 1700 case ESP_DOP: 1701 esp_event(esp, ESP_EVENT_DATA_OUT); 1702 break; 1703 case ESP_DIP: 1704 esp_event(esp, ESP_EVENT_DATA_IN); 1705 break; 1706 case ESP_STATP: 1707 esp_flush_fifo(esp); 1708 scsi_esp_cmd(esp, ESP_CMD_ICCSEQ); 1709 esp_event(esp, ESP_EVENT_STATUS); 1710 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1711 return 1; 1712 1713 case ESP_MOP: 1714 esp_event(esp, ESP_EVENT_MSGOUT); 1715 break; 1716 1717 case ESP_MIP: 1718 esp_event(esp, ESP_EVENT_MSGIN); 1719 break; 1720 1721 case ESP_CMDP: 1722 esp_event(esp, ESP_EVENT_CMD_START); 1723 break; 1724 1725 default: 1726 shost_printk(KERN_INFO, esp->host, 1727 "Unexpected phase, sreg=%02x\n", 1728 esp->sreg); 1729 esp_schedule_reset(esp); 1730 return 0; 1731 } 1732 goto again; 1733 1734 case ESP_EVENT_DATA_IN: 1735 write = 1; 1736 fallthrough; 1737 1738 case ESP_EVENT_DATA_OUT: { 1739 struct esp_cmd_entry *ent = esp->active_cmd; 1740 struct scsi_cmnd *cmd = ent->cmd; 1741 dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd); 1742 unsigned int dma_len = esp_cur_dma_len(ent, cmd); 1743 1744 if (esp->rev == ESP100) 1745 scsi_esp_cmd(esp, ESP_CMD_NULL); 1746 1747 if (write) 1748 ent->flags |= ESP_CMD_FLAG_WRITE; 1749 else 1750 ent->flags &= ~ESP_CMD_FLAG_WRITE; 1751 1752 if (esp->ops->dma_length_limit) 1753 dma_len = esp->ops->dma_length_limit(esp, dma_addr, 1754 dma_len); 1755 else 1756 dma_len = esp_dma_length_limit(esp, dma_addr, dma_len); 1757 1758 esp->data_dma_len = dma_len; 1759 1760 if (!dma_len) { 1761 shost_printk(KERN_ERR, esp->host, 1762 "DMA length is zero!\n"); 1763 shost_printk(KERN_ERR, esp->host, 1764 "cur adr[%08llx] len[%08x]\n", 1765 (unsigned long long)esp_cur_dma_addr(ent, cmd), 1766 esp_cur_dma_len(ent, cmd)); 1767 esp_schedule_reset(esp); 1768 return 0; 1769 } 1770 1771 esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n", 1772 (unsigned long long)dma_addr, dma_len, write); 1773 1774 esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len, 1775 write, ESP_CMD_DMA | ESP_CMD_TI); 1776 esp_event(esp, ESP_EVENT_DATA_DONE); 1777 break; 1778 } 1779 case ESP_EVENT_DATA_DONE: { 1780 struct esp_cmd_entry *ent = esp->active_cmd; 1781 struct scsi_cmnd *cmd = ent->cmd; 1782 int bytes_sent; 1783 1784 if (esp->ops->dma_error(esp)) { 1785 shost_printk(KERN_INFO, esp->host, 1786 "data done, DMA error, resetting\n"); 1787 esp_schedule_reset(esp); 1788 return 0; 1789 } 1790 1791 if (ent->flags & ESP_CMD_FLAG_WRITE) { 1792 /* XXX parity errors, etc. XXX */ 1793 1794 esp->ops->dma_drain(esp); 1795 } 1796 esp->ops->dma_invalidate(esp); 1797 1798 if (esp->ireg != ESP_INTR_BSERV) { 1799 /* We should always see exactly a bus-service 1800 * interrupt at the end of a successful transfer. 1801 */ 1802 shost_printk(KERN_INFO, esp->host, 1803 "data done, not BSERV, resetting\n"); 1804 esp_schedule_reset(esp); 1805 return 0; 1806 } 1807 1808 bytes_sent = esp_data_bytes_sent(esp, ent, cmd); 1809 1810 esp_log_datadone("data done flgs[%x] sent[%d]\n", 1811 ent->flags, bytes_sent); 1812 1813 if (bytes_sent < 0) { 1814 /* XXX force sync mode for this target XXX */ 1815 esp_schedule_reset(esp); 1816 return 0; 1817 } 1818 1819 esp_advance_dma(esp, ent, cmd, bytes_sent); 1820 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1821 goto again; 1822 } 1823 1824 case ESP_EVENT_STATUS: { 1825 struct esp_cmd_entry *ent = esp->active_cmd; 1826 1827 if (esp->ireg & ESP_INTR_FDONE) { 1828 ent->status = esp_read8(ESP_FDATA); 1829 ent->message = esp_read8(ESP_FDATA); 1830 scsi_esp_cmd(esp, ESP_CMD_MOK); 1831 } else if (esp->ireg == ESP_INTR_BSERV) { 1832 ent->status = esp_read8(ESP_FDATA); 1833 ent->message = 0xff; 1834 esp_event(esp, ESP_EVENT_MSGIN); 1835 return 0; 1836 } 1837 1838 if (ent->message != COMMAND_COMPLETE) { 1839 shost_printk(KERN_INFO, esp->host, 1840 "Unexpected message %x in status\n", 1841 ent->message); 1842 esp_schedule_reset(esp); 1843 return 0; 1844 } 1845 1846 esp_event(esp, ESP_EVENT_FREE_BUS); 1847 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1848 break; 1849 } 1850 case ESP_EVENT_FREE_BUS: { 1851 struct esp_cmd_entry *ent = esp->active_cmd; 1852 struct scsi_cmnd *cmd = ent->cmd; 1853 1854 if (ent->message == COMMAND_COMPLETE || 1855 ent->message == DISCONNECT) 1856 scsi_esp_cmd(esp, ESP_CMD_ESEL); 1857 1858 if (ent->message == COMMAND_COMPLETE) { 1859 esp_log_cmddone("Command done status[%x] message[%x]\n", 1860 ent->status, ent->message); 1861 if (ent->status == SAM_STAT_TASK_SET_FULL) 1862 esp_event_queue_full(esp, ent); 1863 1864 if (ent->status == SAM_STAT_CHECK_CONDITION && 1865 !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) { 1866 ent->flags |= ESP_CMD_FLAG_AUTOSENSE; 1867 esp_autosense(esp, ent); 1868 } else { 1869 esp_cmd_is_done(esp, ent, cmd, DID_OK); 1870 } 1871 } else if (ent->message == DISCONNECT) { 1872 esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n", 1873 cmd->device->id, 1874 ent->tag[0], ent->tag[1]); 1875 1876 esp->active_cmd = NULL; 1877 esp_maybe_execute_command(esp); 1878 } else { 1879 shost_printk(KERN_INFO, esp->host, 1880 "Unexpected message %x in freebus\n", 1881 ent->message); 1882 esp_schedule_reset(esp); 1883 return 0; 1884 } 1885 if (esp->active_cmd) 1886 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1887 break; 1888 } 1889 case ESP_EVENT_MSGOUT: { 1890 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1891 1892 if (esp_debug & ESP_DEBUG_MSGOUT) { 1893 int i; 1894 printk("ESP: Sending message [ "); 1895 for (i = 0; i < esp->msg_out_len; i++) 1896 printk("%02x ", esp->msg_out[i]); 1897 printk("]\n"); 1898 } 1899 1900 if (esp->rev == FASHME) { 1901 int i; 1902 1903 /* Always use the fifo. */ 1904 for (i = 0; i < esp->msg_out_len; i++) { 1905 esp_write8(esp->msg_out[i], ESP_FDATA); 1906 esp_write8(0, ESP_FDATA); 1907 } 1908 scsi_esp_cmd(esp, ESP_CMD_TI); 1909 } else { 1910 if (esp->msg_out_len == 1) { 1911 esp_write8(esp->msg_out[0], ESP_FDATA); 1912 scsi_esp_cmd(esp, ESP_CMD_TI); 1913 } else if (esp->flags & ESP_FLAG_USE_FIFO) { 1914 for (i = 0; i < esp->msg_out_len; i++) 1915 esp_write8(esp->msg_out[i], ESP_FDATA); 1916 scsi_esp_cmd(esp, ESP_CMD_TI); 1917 } else { 1918 /* Use DMA. */ 1919 memcpy(esp->command_block, 1920 esp->msg_out, 1921 esp->msg_out_len); 1922 1923 esp->ops->send_dma_cmd(esp, 1924 esp->command_block_dma, 1925 esp->msg_out_len, 1926 esp->msg_out_len, 1927 0, 1928 ESP_CMD_DMA|ESP_CMD_TI); 1929 } 1930 } 1931 esp_event(esp, ESP_EVENT_MSGOUT_DONE); 1932 break; 1933 } 1934 case ESP_EVENT_MSGOUT_DONE: 1935 if (esp->rev == FASHME) { 1936 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1937 } else { 1938 if (esp->msg_out_len > 1) 1939 esp->ops->dma_invalidate(esp); 1940 1941 /* XXX if the chip went into disconnected mode, 1942 * we can't run the phase state machine anyway. 1943 */ 1944 if (!(esp->ireg & ESP_INTR_DC)) 1945 scsi_esp_cmd(esp, ESP_CMD_NULL); 1946 } 1947 1948 esp->msg_out_len = 0; 1949 1950 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1951 goto again; 1952 case ESP_EVENT_MSGIN: 1953 if (esp->ireg & ESP_INTR_BSERV) { 1954 if (esp->rev == FASHME) { 1955 if (!(esp_read8(ESP_STATUS2) & 1956 ESP_STAT2_FEMPTY)) 1957 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1958 } else { 1959 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1960 if (esp->rev == ESP100) 1961 scsi_esp_cmd(esp, ESP_CMD_NULL); 1962 } 1963 scsi_esp_cmd(esp, ESP_CMD_TI); 1964 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1965 return 1; 1966 } 1967 if (esp->ireg & ESP_INTR_FDONE) { 1968 u8 val; 1969 1970 if (esp->rev == FASHME) 1971 val = esp->fifo[0]; 1972 else 1973 val = esp_read8(ESP_FDATA); 1974 esp->msg_in[esp->msg_in_len++] = val; 1975 1976 esp_log_msgin("Got msgin byte %x\n", val); 1977 1978 if (!esp_msgin_process(esp)) 1979 esp->msg_in_len = 0; 1980 1981 if (esp->rev == FASHME) 1982 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1983 1984 scsi_esp_cmd(esp, ESP_CMD_MOK); 1985 1986 /* Check whether a bus reset is to be done next */ 1987 if (esp->event == ESP_EVENT_RESET) 1988 return 0; 1989 1990 if (esp->event != ESP_EVENT_FREE_BUS) 1991 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1992 } else { 1993 shost_printk(KERN_INFO, esp->host, 1994 "MSGIN neither BSERV not FDON, resetting"); 1995 esp_schedule_reset(esp); 1996 return 0; 1997 } 1998 break; 1999 case ESP_EVENT_CMD_START: 2000 memcpy(esp->command_block, esp->cmd_bytes_ptr, 2001 esp->cmd_bytes_left); 2002 esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI); 2003 esp_event(esp, ESP_EVENT_CMD_DONE); 2004 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 2005 break; 2006 case ESP_EVENT_CMD_DONE: 2007 esp->ops->dma_invalidate(esp); 2008 if (esp->ireg & ESP_INTR_BSERV) { 2009 esp_event(esp, ESP_EVENT_CHECK_PHASE); 2010 goto again; 2011 } 2012 esp_schedule_reset(esp); 2013 return 0; 2014 2015 case ESP_EVENT_RESET: 2016 scsi_esp_cmd(esp, ESP_CMD_RS); 2017 break; 2018 2019 default: 2020 shost_printk(KERN_INFO, esp->host, 2021 "Unexpected event %x, resetting\n", esp->event); 2022 esp_schedule_reset(esp); 2023 return 0; 2024 } 2025 return 1; 2026 } 2027 2028 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent) 2029 { 2030 struct scsi_cmnd *cmd = ent->cmd; 2031 2032 esp_unmap_dma(esp, cmd); 2033 esp_free_lun_tag(ent, cmd->device->hostdata); 2034 cmd->result = DID_RESET << 16; 2035 2036 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) 2037 esp_unmap_sense(esp, ent); 2038 2039 scsi_done(cmd); 2040 list_del(&ent->list); 2041 esp_put_ent(esp, ent); 2042 } 2043 2044 static void esp_clear_hold(struct scsi_device *dev, void *data) 2045 { 2046 struct esp_lun_data *lp = dev->hostdata; 2047 2048 BUG_ON(lp->num_tagged); 2049 lp->hold = 0; 2050 } 2051 2052 static void esp_reset_cleanup(struct esp *esp) 2053 { 2054 struct esp_cmd_entry *ent, *tmp; 2055 int i; 2056 2057 list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) { 2058 struct scsi_cmnd *cmd = ent->cmd; 2059 2060 list_del(&ent->list); 2061 cmd->result = DID_RESET << 16; 2062 scsi_done(cmd); 2063 esp_put_ent(esp, ent); 2064 } 2065 2066 list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) { 2067 if (ent == esp->active_cmd) 2068 esp->active_cmd = NULL; 2069 esp_reset_cleanup_one(esp, ent); 2070 } 2071 2072 BUG_ON(esp->active_cmd != NULL); 2073 2074 /* Force renegotiation of sync/wide transfers. */ 2075 for (i = 0; i < ESP_MAX_TARGET; i++) { 2076 struct esp_target_data *tp = &esp->target[i]; 2077 2078 tp->esp_period = 0; 2079 tp->esp_offset = 0; 2080 tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE | 2081 ESP_CONFIG3_FSCSI | 2082 ESP_CONFIG3_FAST); 2083 tp->flags &= ~ESP_TGT_WIDE; 2084 tp->flags |= ESP_TGT_CHECK_NEGO; 2085 2086 if (tp->starget) 2087 __starget_for_each_device(tp->starget, NULL, 2088 esp_clear_hold); 2089 } 2090 esp->flags &= ~ESP_FLAG_RESETTING; 2091 } 2092 2093 /* Runs under host->lock */ 2094 static void __esp_interrupt(struct esp *esp) 2095 { 2096 int finish_reset, intr_done; 2097 u8 phase; 2098 2099 /* 2100 * Once INTRPT is read STATUS and SSTEP are cleared. 2101 */ 2102 esp->sreg = esp_read8(ESP_STATUS); 2103 esp->seqreg = esp_read8(ESP_SSTEP); 2104 esp->ireg = esp_read8(ESP_INTRPT); 2105 2106 if (esp->flags & ESP_FLAG_RESETTING) { 2107 finish_reset = 1; 2108 } else { 2109 if (esp_check_gross_error(esp)) 2110 return; 2111 2112 finish_reset = esp_check_spur_intr(esp); 2113 if (finish_reset < 0) 2114 return; 2115 } 2116 2117 if (esp->ireg & ESP_INTR_SR) 2118 finish_reset = 1; 2119 2120 if (finish_reset) { 2121 esp_reset_cleanup(esp); 2122 if (esp->eh_reset) { 2123 complete(esp->eh_reset); 2124 esp->eh_reset = NULL; 2125 } 2126 return; 2127 } 2128 2129 phase = (esp->sreg & ESP_STAT_PMASK); 2130 if (esp->rev == FASHME) { 2131 if (((phase != ESP_DIP && phase != ESP_DOP) && 2132 esp->select_state == ESP_SELECT_NONE && 2133 esp->event != ESP_EVENT_STATUS && 2134 esp->event != ESP_EVENT_DATA_DONE) || 2135 (esp->ireg & ESP_INTR_RSEL)) { 2136 esp->sreg2 = esp_read8(ESP_STATUS2); 2137 if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || 2138 (esp->sreg2 & ESP_STAT2_F1BYTE)) 2139 hme_read_fifo(esp); 2140 } 2141 } 2142 2143 esp_log_intr("intr sreg[%02x] seqreg[%02x] " 2144 "sreg2[%02x] ireg[%02x]\n", 2145 esp->sreg, esp->seqreg, esp->sreg2, esp->ireg); 2146 2147 intr_done = 0; 2148 2149 if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) { 2150 shost_printk(KERN_INFO, esp->host, 2151 "unexpected IREG %02x\n", esp->ireg); 2152 if (esp->ireg & ESP_INTR_IC) 2153 esp_dump_cmd_log(esp); 2154 2155 esp_schedule_reset(esp); 2156 } else { 2157 if (esp->ireg & ESP_INTR_RSEL) { 2158 if (esp->active_cmd) 2159 (void) esp_finish_select(esp); 2160 intr_done = esp_reconnect(esp); 2161 } else { 2162 /* Some combination of FDONE, BSERV, DC. */ 2163 if (esp->select_state != ESP_SELECT_NONE) 2164 intr_done = esp_finish_select(esp); 2165 } 2166 } 2167 while (!intr_done) 2168 intr_done = esp_process_event(esp); 2169 } 2170 2171 irqreturn_t scsi_esp_intr(int irq, void *dev_id) 2172 { 2173 struct esp *esp = dev_id; 2174 unsigned long flags; 2175 irqreturn_t ret; 2176 2177 spin_lock_irqsave(esp->host->host_lock, flags); 2178 ret = IRQ_NONE; 2179 if (esp->ops->irq_pending(esp)) { 2180 ret = IRQ_HANDLED; 2181 for (;;) { 2182 int i; 2183 2184 __esp_interrupt(esp); 2185 if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK)) 2186 break; 2187 esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK; 2188 2189 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) { 2190 if (esp->ops->irq_pending(esp)) 2191 break; 2192 } 2193 if (i == ESP_QUICKIRQ_LIMIT) 2194 break; 2195 } 2196 } 2197 spin_unlock_irqrestore(esp->host->host_lock, flags); 2198 2199 return ret; 2200 } 2201 EXPORT_SYMBOL(scsi_esp_intr); 2202 2203 static void esp_get_revision(struct esp *esp) 2204 { 2205 u8 val; 2206 2207 esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7)); 2208 if (esp->config2 == 0) { 2209 esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY); 2210 esp_write8(esp->config2, ESP_CFG2); 2211 2212 val = esp_read8(ESP_CFG2); 2213 val &= ~ESP_CONFIG2_MAGIC; 2214 2215 esp->config2 = 0; 2216 if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) { 2217 /* 2218 * If what we write to cfg2 does not come back, 2219 * cfg2 is not implemented. 2220 * Therefore this must be a plain esp100. 2221 */ 2222 esp->rev = ESP100; 2223 return; 2224 } 2225 } 2226 2227 esp_set_all_config3(esp, 5); 2228 esp->prev_cfg3 = 5; 2229 esp_write8(esp->config2, ESP_CFG2); 2230 esp_write8(0, ESP_CFG3); 2231 esp_write8(esp->prev_cfg3, ESP_CFG3); 2232 2233 val = esp_read8(ESP_CFG3); 2234 if (val != 5) { 2235 /* The cfg2 register is implemented, however 2236 * cfg3 is not, must be esp100a. 2237 */ 2238 esp->rev = ESP100A; 2239 } else { 2240 esp_set_all_config3(esp, 0); 2241 esp->prev_cfg3 = 0; 2242 esp_write8(esp->prev_cfg3, ESP_CFG3); 2243 2244 /* All of cfg{1,2,3} implemented, must be one of 2245 * the fas variants, figure out which one. 2246 */ 2247 if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) { 2248 esp->rev = FAST; 2249 esp->sync_defp = SYNC_DEFP_FAST; 2250 } else { 2251 esp->rev = ESP236; 2252 } 2253 } 2254 } 2255 2256 static void esp_init_swstate(struct esp *esp) 2257 { 2258 int i; 2259 2260 INIT_LIST_HEAD(&esp->queued_cmds); 2261 INIT_LIST_HEAD(&esp->active_cmds); 2262 INIT_LIST_HEAD(&esp->esp_cmd_pool); 2263 2264 /* Start with a clear state, domain validation (via ->slave_configure, 2265 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged 2266 * commands. 2267 */ 2268 for (i = 0 ; i < ESP_MAX_TARGET; i++) { 2269 esp->target[i].flags = 0; 2270 esp->target[i].nego_goal_period = 0; 2271 esp->target[i].nego_goal_offset = 0; 2272 esp->target[i].nego_goal_width = 0; 2273 esp->target[i].nego_goal_tags = 0; 2274 } 2275 } 2276 2277 /* This places the ESP into a known state at boot time. */ 2278 static void esp_bootup_reset(struct esp *esp) 2279 { 2280 u8 val; 2281 2282 /* Reset the DMA */ 2283 esp->ops->reset_dma(esp); 2284 2285 /* Reset the ESP */ 2286 esp_reset_esp(esp); 2287 2288 /* Reset the SCSI bus, but tell ESP not to generate an irq */ 2289 val = esp_read8(ESP_CFG1); 2290 val |= ESP_CONFIG1_SRRDISAB; 2291 esp_write8(val, ESP_CFG1); 2292 2293 scsi_esp_cmd(esp, ESP_CMD_RS); 2294 udelay(400); 2295 2296 esp_write8(esp->config1, ESP_CFG1); 2297 2298 /* Eat any bitrot in the chip and we are done... */ 2299 esp_read8(ESP_INTRPT); 2300 } 2301 2302 static void esp_set_clock_params(struct esp *esp) 2303 { 2304 int fhz; 2305 u8 ccf; 2306 2307 /* This is getting messy but it has to be done correctly or else 2308 * you get weird behavior all over the place. We are trying to 2309 * basically figure out three pieces of information. 2310 * 2311 * a) Clock Conversion Factor 2312 * 2313 * This is a representation of the input crystal clock frequency 2314 * going into the ESP on this machine. Any operation whose timing 2315 * is longer than 400ns depends on this value being correct. For 2316 * example, you'll get blips for arbitration/selection during high 2317 * load or with multiple targets if this is not set correctly. 2318 * 2319 * b) Selection Time-Out 2320 * 2321 * The ESP isn't very bright and will arbitrate for the bus and try 2322 * to select a target forever if you let it. This value tells the 2323 * ESP when it has taken too long to negotiate and that it should 2324 * interrupt the CPU so we can see what happened. The value is 2325 * computed as follows (from NCR/Symbios chip docs). 2326 * 2327 * (Time Out Period) * (Input Clock) 2328 * STO = ---------------------------------- 2329 * (8192) * (Clock Conversion Factor) 2330 * 2331 * We use a time out period of 250ms (ESP_BUS_TIMEOUT). 2332 * 2333 * c) Imperical constants for synchronous offset and transfer period 2334 * register values 2335 * 2336 * This entails the smallest and largest sync period we could ever 2337 * handle on this ESP. 2338 */ 2339 fhz = esp->cfreq; 2340 2341 ccf = ((fhz / 1000000) + 4) / 5; 2342 if (ccf == 1) 2343 ccf = 2; 2344 2345 /* If we can't find anything reasonable, just assume 20MHZ. 2346 * This is the clock frequency of the older sun4c's where I've 2347 * been unable to find the clock-frequency PROM property. All 2348 * other machines provide useful values it seems. 2349 */ 2350 if (fhz <= 5000000 || ccf < 1 || ccf > 8) { 2351 fhz = 20000000; 2352 ccf = 4; 2353 } 2354 2355 esp->cfact = (ccf == 8 ? 0 : ccf); 2356 esp->cfreq = fhz; 2357 esp->ccycle = ESP_HZ_TO_CYCLE(fhz); 2358 esp->ctick = ESP_TICK(ccf, esp->ccycle); 2359 esp->neg_defp = ESP_NEG_DEFP(fhz, ccf); 2360 esp->sync_defp = SYNC_DEFP_SLOW; 2361 } 2362 2363 static const char *esp_chip_names[] = { 2364 "ESP100", 2365 "ESP100A", 2366 "ESP236", 2367 "FAS236", 2368 "AM53C974", 2369 "53CF9x-2", 2370 "FAS100A", 2371 "FAST", 2372 "FASHME", 2373 }; 2374 2375 static struct scsi_transport_template *esp_transport_template; 2376 2377 int scsi_esp_register(struct esp *esp) 2378 { 2379 static int instance; 2380 int err; 2381 2382 if (!esp->num_tags) 2383 esp->num_tags = ESP_DEFAULT_TAGS; 2384 esp->host->transportt = esp_transport_template; 2385 esp->host->max_lun = ESP_MAX_LUN; 2386 esp->host->cmd_per_lun = 2; 2387 esp->host->unique_id = instance; 2388 2389 esp_set_clock_params(esp); 2390 2391 esp_get_revision(esp); 2392 2393 esp_init_swstate(esp); 2394 2395 esp_bootup_reset(esp); 2396 2397 dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n", 2398 esp->host->unique_id, esp->regs, esp->dma_regs, 2399 esp->host->irq); 2400 dev_printk(KERN_INFO, esp->dev, 2401 "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n", 2402 esp->host->unique_id, esp_chip_names[esp->rev], 2403 esp->cfreq / 1000000, esp->cfact, esp->scsi_id); 2404 2405 /* Let the SCSI bus reset settle. */ 2406 ssleep(esp_bus_reset_settle); 2407 2408 err = scsi_add_host(esp->host, esp->dev); 2409 if (err) 2410 return err; 2411 2412 instance++; 2413 2414 scsi_scan_host(esp->host); 2415 2416 return 0; 2417 } 2418 EXPORT_SYMBOL(scsi_esp_register); 2419 2420 void scsi_esp_unregister(struct esp *esp) 2421 { 2422 scsi_remove_host(esp->host); 2423 } 2424 EXPORT_SYMBOL(scsi_esp_unregister); 2425 2426 static int esp_target_alloc(struct scsi_target *starget) 2427 { 2428 struct esp *esp = shost_priv(dev_to_shost(&starget->dev)); 2429 struct esp_target_data *tp = &esp->target[starget->id]; 2430 2431 tp->starget = starget; 2432 2433 return 0; 2434 } 2435 2436 static void esp_target_destroy(struct scsi_target *starget) 2437 { 2438 struct esp *esp = shost_priv(dev_to_shost(&starget->dev)); 2439 struct esp_target_data *tp = &esp->target[starget->id]; 2440 2441 tp->starget = NULL; 2442 } 2443 2444 static int esp_slave_alloc(struct scsi_device *dev) 2445 { 2446 struct esp *esp = shost_priv(dev->host); 2447 struct esp_target_data *tp = &esp->target[dev->id]; 2448 struct esp_lun_data *lp; 2449 2450 lp = kzalloc(sizeof(*lp), GFP_KERNEL); 2451 if (!lp) 2452 return -ENOMEM; 2453 dev->hostdata = lp; 2454 2455 spi_min_period(tp->starget) = esp->min_period; 2456 spi_max_offset(tp->starget) = 15; 2457 2458 if (esp->flags & ESP_FLAG_WIDE_CAPABLE) 2459 spi_max_width(tp->starget) = 1; 2460 else 2461 spi_max_width(tp->starget) = 0; 2462 2463 return 0; 2464 } 2465 2466 static int esp_slave_configure(struct scsi_device *dev) 2467 { 2468 struct esp *esp = shost_priv(dev->host); 2469 struct esp_target_data *tp = &esp->target[dev->id]; 2470 2471 if (dev->tagged_supported) 2472 scsi_change_queue_depth(dev, esp->num_tags); 2473 2474 tp->flags |= ESP_TGT_DISCONNECT; 2475 2476 if (!spi_initial_dv(dev->sdev_target)) 2477 spi_dv_device(dev); 2478 2479 return 0; 2480 } 2481 2482 static void esp_slave_destroy(struct scsi_device *dev) 2483 { 2484 struct esp_lun_data *lp = dev->hostdata; 2485 2486 kfree(lp); 2487 dev->hostdata = NULL; 2488 } 2489 2490 static int esp_eh_abort_handler(struct scsi_cmnd *cmd) 2491 { 2492 struct esp *esp = shost_priv(cmd->device->host); 2493 struct esp_cmd_entry *ent, *tmp; 2494 struct completion eh_done; 2495 unsigned long flags; 2496 2497 /* XXX This helps a lot with debugging but might be a bit 2498 * XXX much for the final driver. 2499 */ 2500 spin_lock_irqsave(esp->host->host_lock, flags); 2501 shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n", 2502 cmd, cmd->cmnd[0]); 2503 ent = esp->active_cmd; 2504 if (ent) 2505 shost_printk(KERN_ERR, esp->host, 2506 "Current command [%p:%02x]\n", 2507 ent->cmd, ent->cmd->cmnd[0]); 2508 list_for_each_entry(ent, &esp->queued_cmds, list) { 2509 shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n", 2510 ent->cmd, ent->cmd->cmnd[0]); 2511 } 2512 list_for_each_entry(ent, &esp->active_cmds, list) { 2513 shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n", 2514 ent->cmd, ent->cmd->cmnd[0]); 2515 } 2516 esp_dump_cmd_log(esp); 2517 spin_unlock_irqrestore(esp->host->host_lock, flags); 2518 2519 spin_lock_irqsave(esp->host->host_lock, flags); 2520 2521 ent = NULL; 2522 list_for_each_entry(tmp, &esp->queued_cmds, list) { 2523 if (tmp->cmd == cmd) { 2524 ent = tmp; 2525 break; 2526 } 2527 } 2528 2529 if (ent) { 2530 /* Easiest case, we didn't even issue the command 2531 * yet so it is trivial to abort. 2532 */ 2533 list_del(&ent->list); 2534 2535 cmd->result = DID_ABORT << 16; 2536 scsi_done(cmd); 2537 2538 esp_put_ent(esp, ent); 2539 2540 goto out_success; 2541 } 2542 2543 init_completion(&eh_done); 2544 2545 ent = esp->active_cmd; 2546 if (ent && ent->cmd == cmd) { 2547 /* Command is the currently active command on 2548 * the bus. If we already have an output message 2549 * pending, no dice. 2550 */ 2551 if (esp->msg_out_len) 2552 goto out_failure; 2553 2554 /* Send out an abort, encouraging the target to 2555 * go to MSGOUT phase by asserting ATN. 2556 */ 2557 esp->msg_out[0] = ABORT_TASK_SET; 2558 esp->msg_out_len = 1; 2559 ent->eh_done = &eh_done; 2560 2561 scsi_esp_cmd(esp, ESP_CMD_SATN); 2562 } else { 2563 /* The command is disconnected. This is not easy to 2564 * abort. For now we fail and let the scsi error 2565 * handling layer go try a scsi bus reset or host 2566 * reset. 2567 * 2568 * What we could do is put together a scsi command 2569 * solely for the purpose of sending an abort message 2570 * to the target. Coming up with all the code to 2571 * cook up scsi commands, special case them everywhere, 2572 * etc. is for questionable gain and it would be better 2573 * if the generic scsi error handling layer could do at 2574 * least some of that for us. 2575 * 2576 * Anyways this is an area for potential future improvement 2577 * in this driver. 2578 */ 2579 goto out_failure; 2580 } 2581 2582 spin_unlock_irqrestore(esp->host->host_lock, flags); 2583 2584 if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) { 2585 spin_lock_irqsave(esp->host->host_lock, flags); 2586 ent->eh_done = NULL; 2587 spin_unlock_irqrestore(esp->host->host_lock, flags); 2588 2589 return FAILED; 2590 } 2591 2592 return SUCCESS; 2593 2594 out_success: 2595 spin_unlock_irqrestore(esp->host->host_lock, flags); 2596 return SUCCESS; 2597 2598 out_failure: 2599 /* XXX This might be a good location to set ESP_TGT_BROKEN 2600 * XXX since we know which target/lun in particular is 2601 * XXX causing trouble. 2602 */ 2603 spin_unlock_irqrestore(esp->host->host_lock, flags); 2604 return FAILED; 2605 } 2606 2607 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd) 2608 { 2609 struct esp *esp = shost_priv(cmd->device->host); 2610 struct completion eh_reset; 2611 unsigned long flags; 2612 2613 init_completion(&eh_reset); 2614 2615 spin_lock_irqsave(esp->host->host_lock, flags); 2616 2617 esp->eh_reset = &eh_reset; 2618 2619 /* XXX This is too simple... We should add lots of 2620 * XXX checks here so that if we find that the chip is 2621 * XXX very wedged we return failure immediately so 2622 * XXX that we can perform a full chip reset. 2623 */ 2624 esp->flags |= ESP_FLAG_RESETTING; 2625 scsi_esp_cmd(esp, ESP_CMD_RS); 2626 2627 spin_unlock_irqrestore(esp->host->host_lock, flags); 2628 2629 ssleep(esp_bus_reset_settle); 2630 2631 if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) { 2632 spin_lock_irqsave(esp->host->host_lock, flags); 2633 esp->eh_reset = NULL; 2634 spin_unlock_irqrestore(esp->host->host_lock, flags); 2635 2636 return FAILED; 2637 } 2638 2639 return SUCCESS; 2640 } 2641 2642 /* All bets are off, reset the entire device. */ 2643 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd) 2644 { 2645 struct esp *esp = shost_priv(cmd->device->host); 2646 unsigned long flags; 2647 2648 spin_lock_irqsave(esp->host->host_lock, flags); 2649 esp_bootup_reset(esp); 2650 esp_reset_cleanup(esp); 2651 spin_unlock_irqrestore(esp->host->host_lock, flags); 2652 2653 ssleep(esp_bus_reset_settle); 2654 2655 return SUCCESS; 2656 } 2657 2658 static const char *esp_info(struct Scsi_Host *host) 2659 { 2660 return "esp"; 2661 } 2662 2663 const struct scsi_host_template scsi_esp_template = { 2664 .module = THIS_MODULE, 2665 .name = "esp", 2666 .info = esp_info, 2667 .queuecommand = esp_queuecommand, 2668 .target_alloc = esp_target_alloc, 2669 .target_destroy = esp_target_destroy, 2670 .slave_alloc = esp_slave_alloc, 2671 .slave_configure = esp_slave_configure, 2672 .slave_destroy = esp_slave_destroy, 2673 .eh_abort_handler = esp_eh_abort_handler, 2674 .eh_bus_reset_handler = esp_eh_bus_reset_handler, 2675 .eh_host_reset_handler = esp_eh_host_reset_handler, 2676 .can_queue = 7, 2677 .this_id = 7, 2678 .sg_tablesize = SG_ALL, 2679 .max_sectors = 0xffff, 2680 .skip_settle_delay = 1, 2681 .cmd_size = sizeof(struct esp_cmd_priv), 2682 }; 2683 EXPORT_SYMBOL(scsi_esp_template); 2684 2685 static void esp_get_signalling(struct Scsi_Host *host) 2686 { 2687 struct esp *esp = shost_priv(host); 2688 enum spi_signal_type type; 2689 2690 if (esp->flags & ESP_FLAG_DIFFERENTIAL) 2691 type = SPI_SIGNAL_HVD; 2692 else 2693 type = SPI_SIGNAL_SE; 2694 2695 spi_signalling(host) = type; 2696 } 2697 2698 static void esp_set_offset(struct scsi_target *target, int offset) 2699 { 2700 struct Scsi_Host *host = dev_to_shost(target->dev.parent); 2701 struct esp *esp = shost_priv(host); 2702 struct esp_target_data *tp = &esp->target[target->id]; 2703 2704 if (esp->flags & ESP_FLAG_DISABLE_SYNC) 2705 tp->nego_goal_offset = 0; 2706 else 2707 tp->nego_goal_offset = offset; 2708 tp->flags |= ESP_TGT_CHECK_NEGO; 2709 } 2710 2711 static void esp_set_period(struct scsi_target *target, int period) 2712 { 2713 struct Scsi_Host *host = dev_to_shost(target->dev.parent); 2714 struct esp *esp = shost_priv(host); 2715 struct esp_target_data *tp = &esp->target[target->id]; 2716 2717 tp->nego_goal_period = period; 2718 tp->flags |= ESP_TGT_CHECK_NEGO; 2719 } 2720 2721 static void esp_set_width(struct scsi_target *target, int width) 2722 { 2723 struct Scsi_Host *host = dev_to_shost(target->dev.parent); 2724 struct esp *esp = shost_priv(host); 2725 struct esp_target_data *tp = &esp->target[target->id]; 2726 2727 tp->nego_goal_width = (width ? 1 : 0); 2728 tp->flags |= ESP_TGT_CHECK_NEGO; 2729 } 2730 2731 static struct spi_function_template esp_transport_ops = { 2732 .set_offset = esp_set_offset, 2733 .show_offset = 1, 2734 .set_period = esp_set_period, 2735 .show_period = 1, 2736 .set_width = esp_set_width, 2737 .show_width = 1, 2738 .get_signalling = esp_get_signalling, 2739 }; 2740 2741 static int __init esp_init(void) 2742 { 2743 esp_transport_template = spi_attach_transport(&esp_transport_ops); 2744 if (!esp_transport_template) 2745 return -ENODEV; 2746 2747 return 0; 2748 } 2749 2750 static void __exit esp_exit(void) 2751 { 2752 spi_release_transport(esp_transport_template); 2753 } 2754 2755 MODULE_DESCRIPTION("ESP SCSI driver core"); 2756 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); 2757 MODULE_LICENSE("GPL"); 2758 MODULE_VERSION(DRV_VERSION); 2759 2760 module_param(esp_bus_reset_settle, int, 0); 2761 MODULE_PARM_DESC(esp_bus_reset_settle, 2762 "ESP scsi bus reset delay in seconds"); 2763 2764 module_param(esp_debug, int, 0); 2765 MODULE_PARM_DESC(esp_debug, 2766 "ESP bitmapped debugging message enable value:\n" 2767 " 0x00000001 Log interrupt events\n" 2768 " 0x00000002 Log scsi commands\n" 2769 " 0x00000004 Log resets\n" 2770 " 0x00000008 Log message in events\n" 2771 " 0x00000010 Log message out events\n" 2772 " 0x00000020 Log command completion\n" 2773 " 0x00000040 Log disconnects\n" 2774 " 0x00000080 Log data start\n" 2775 " 0x00000100 Log data done\n" 2776 " 0x00000200 Log reconnects\n" 2777 " 0x00000400 Log auto-sense data\n" 2778 ); 2779 2780 module_init(esp_init); 2781 module_exit(esp_exit); 2782 2783 #ifdef CONFIG_SCSI_ESP_PIO 2784 static inline unsigned int esp_wait_for_fifo(struct esp *esp) 2785 { 2786 int i = 500000; 2787 2788 do { 2789 unsigned int fbytes = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; 2790 2791 if (fbytes) 2792 return fbytes; 2793 2794 udelay(1); 2795 } while (--i); 2796 2797 shost_printk(KERN_ERR, esp->host, "FIFO is empty. sreg [%02x]\n", 2798 esp_read8(ESP_STATUS)); 2799 return 0; 2800 } 2801 2802 static inline int esp_wait_for_intr(struct esp *esp) 2803 { 2804 int i = 500000; 2805 2806 do { 2807 esp->sreg = esp_read8(ESP_STATUS); 2808 if (esp->sreg & ESP_STAT_INTR) 2809 return 0; 2810 2811 udelay(1); 2812 } while (--i); 2813 2814 shost_printk(KERN_ERR, esp->host, "IRQ timeout. sreg [%02x]\n", 2815 esp->sreg); 2816 return 1; 2817 } 2818 2819 #define ESP_FIFO_SIZE 16 2820 2821 void esp_send_pio_cmd(struct esp *esp, u32 addr, u32 esp_count, 2822 u32 dma_count, int write, u8 cmd) 2823 { 2824 u8 phase = esp->sreg & ESP_STAT_PMASK; 2825 2826 cmd &= ~ESP_CMD_DMA; 2827 esp->send_cmd_error = 0; 2828 2829 if (write) { 2830 u8 *dst = (u8 *)addr; 2831 u8 mask = ~(phase == ESP_MIP ? ESP_INTR_FDONE : ESP_INTR_BSERV); 2832 2833 scsi_esp_cmd(esp, cmd); 2834 2835 while (1) { 2836 if (!esp_wait_for_fifo(esp)) 2837 break; 2838 2839 *dst++ = readb(esp->fifo_reg); 2840 --esp_count; 2841 2842 if (!esp_count) 2843 break; 2844 2845 if (esp_wait_for_intr(esp)) { 2846 esp->send_cmd_error = 1; 2847 break; 2848 } 2849 2850 if ((esp->sreg & ESP_STAT_PMASK) != phase) 2851 break; 2852 2853 esp->ireg = esp_read8(ESP_INTRPT); 2854 if (esp->ireg & mask) { 2855 esp->send_cmd_error = 1; 2856 break; 2857 } 2858 2859 if (phase == ESP_MIP) 2860 esp_write8(ESP_CMD_MOK, ESP_CMD); 2861 2862 esp_write8(ESP_CMD_TI, ESP_CMD); 2863 } 2864 } else { 2865 unsigned int n = ESP_FIFO_SIZE; 2866 u8 *src = (u8 *)addr; 2867 2868 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 2869 2870 if (n > esp_count) 2871 n = esp_count; 2872 writesb(esp->fifo_reg, src, n); 2873 src += n; 2874 esp_count -= n; 2875 2876 scsi_esp_cmd(esp, cmd); 2877 2878 while (esp_count) { 2879 if (esp_wait_for_intr(esp)) { 2880 esp->send_cmd_error = 1; 2881 break; 2882 } 2883 2884 if ((esp->sreg & ESP_STAT_PMASK) != phase) 2885 break; 2886 2887 esp->ireg = esp_read8(ESP_INTRPT); 2888 if (esp->ireg & ~ESP_INTR_BSERV) { 2889 esp->send_cmd_error = 1; 2890 break; 2891 } 2892 2893 n = ESP_FIFO_SIZE - 2894 (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES); 2895 2896 if (n > esp_count) 2897 n = esp_count; 2898 writesb(esp->fifo_reg, src, n); 2899 src += n; 2900 esp_count -= n; 2901 2902 esp_write8(ESP_CMD_TI, ESP_CMD); 2903 } 2904 } 2905 2906 esp->send_cmd_residual = esp_count; 2907 } 2908 EXPORT_SYMBOL(esp_send_pio_cmd); 2909 #endif 2910