1 // SPDX-License-Identifier: GPL-2.0-only 2 /* esp_scsi.c: ESP SCSI driver. 3 * 4 * Copyright (C) 2007 David S. Miller (davem@davemloft.net) 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/delay.h> 11 #include <linux/list.h> 12 #include <linux/completion.h> 13 #include <linux/kallsyms.h> 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/init.h> 17 #include <linux/irqreturn.h> 18 19 #include <asm/irq.h> 20 #include <asm/io.h> 21 #include <asm/dma.h> 22 23 #include <scsi/scsi.h> 24 #include <scsi/scsi_host.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_device.h> 27 #include <scsi/scsi_tcq.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_transport_spi.h> 30 31 #include "esp_scsi.h" 32 33 #define DRV_MODULE_NAME "esp" 34 #define PFX DRV_MODULE_NAME ": " 35 #define DRV_VERSION "2.000" 36 #define DRV_MODULE_RELDATE "April 19, 2007" 37 38 /* SCSI bus reset settle time in seconds. */ 39 static int esp_bus_reset_settle = 3; 40 41 static u32 esp_debug; 42 #define ESP_DEBUG_INTR 0x00000001 43 #define ESP_DEBUG_SCSICMD 0x00000002 44 #define ESP_DEBUG_RESET 0x00000004 45 #define ESP_DEBUG_MSGIN 0x00000008 46 #define ESP_DEBUG_MSGOUT 0x00000010 47 #define ESP_DEBUG_CMDDONE 0x00000020 48 #define ESP_DEBUG_DISCONNECT 0x00000040 49 #define ESP_DEBUG_DATASTART 0x00000080 50 #define ESP_DEBUG_DATADONE 0x00000100 51 #define ESP_DEBUG_RECONNECT 0x00000200 52 #define ESP_DEBUG_AUTOSENSE 0x00000400 53 #define ESP_DEBUG_EVENT 0x00000800 54 #define ESP_DEBUG_COMMAND 0x00001000 55 56 #define esp_log_intr(f, a...) \ 57 do { if (esp_debug & ESP_DEBUG_INTR) \ 58 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 59 } while (0) 60 61 #define esp_log_reset(f, a...) \ 62 do { if (esp_debug & ESP_DEBUG_RESET) \ 63 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 64 } while (0) 65 66 #define esp_log_msgin(f, a...) \ 67 do { if (esp_debug & ESP_DEBUG_MSGIN) \ 68 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 69 } while (0) 70 71 #define esp_log_msgout(f, a...) \ 72 do { if (esp_debug & ESP_DEBUG_MSGOUT) \ 73 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 74 } while (0) 75 76 #define esp_log_cmddone(f, a...) \ 77 do { if (esp_debug & ESP_DEBUG_CMDDONE) \ 78 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 79 } while (0) 80 81 #define esp_log_disconnect(f, a...) \ 82 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \ 83 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 84 } while (0) 85 86 #define esp_log_datastart(f, a...) \ 87 do { if (esp_debug & ESP_DEBUG_DATASTART) \ 88 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 89 } while (0) 90 91 #define esp_log_datadone(f, a...) \ 92 do { if (esp_debug & ESP_DEBUG_DATADONE) \ 93 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 94 } while (0) 95 96 #define esp_log_reconnect(f, a...) \ 97 do { if (esp_debug & ESP_DEBUG_RECONNECT) \ 98 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 99 } while (0) 100 101 #define esp_log_autosense(f, a...) \ 102 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \ 103 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 104 } while (0) 105 106 #define esp_log_event(f, a...) \ 107 do { if (esp_debug & ESP_DEBUG_EVENT) \ 108 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 109 } while (0) 110 111 #define esp_log_command(f, a...) \ 112 do { if (esp_debug & ESP_DEBUG_COMMAND) \ 113 shost_printk(KERN_DEBUG, esp->host, f, ## a); \ 114 } while (0) 115 116 #define esp_read8(REG) esp->ops->esp_read8(esp, REG) 117 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG) 118 119 static void esp_log_fill_regs(struct esp *esp, 120 struct esp_event_ent *p) 121 { 122 p->sreg = esp->sreg; 123 p->seqreg = esp->seqreg; 124 p->sreg2 = esp->sreg2; 125 p->ireg = esp->ireg; 126 p->select_state = esp->select_state; 127 p->event = esp->event; 128 } 129 130 void scsi_esp_cmd(struct esp *esp, u8 val) 131 { 132 struct esp_event_ent *p; 133 int idx = esp->esp_event_cur; 134 135 p = &esp->esp_event_log[idx]; 136 p->type = ESP_EVENT_TYPE_CMD; 137 p->val = val; 138 esp_log_fill_regs(esp, p); 139 140 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1); 141 142 esp_log_command("cmd[%02x]\n", val); 143 esp_write8(val, ESP_CMD); 144 } 145 EXPORT_SYMBOL(scsi_esp_cmd); 146 147 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd) 148 { 149 if (esp->flags & ESP_FLAG_USE_FIFO) { 150 int i; 151 152 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 153 for (i = 0; i < len; i++) 154 esp_write8(esp->command_block[i], ESP_FDATA); 155 scsi_esp_cmd(esp, cmd); 156 } else { 157 if (esp->rev == FASHME) 158 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 159 cmd |= ESP_CMD_DMA; 160 esp->ops->send_dma_cmd(esp, esp->command_block_dma, 161 len, max_len, 0, cmd); 162 } 163 } 164 165 static void esp_event(struct esp *esp, u8 val) 166 { 167 struct esp_event_ent *p; 168 int idx = esp->esp_event_cur; 169 170 p = &esp->esp_event_log[idx]; 171 p->type = ESP_EVENT_TYPE_EVENT; 172 p->val = val; 173 esp_log_fill_regs(esp, p); 174 175 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1); 176 177 esp->event = val; 178 } 179 180 static void esp_dump_cmd_log(struct esp *esp) 181 { 182 int idx = esp->esp_event_cur; 183 int stop = idx; 184 185 shost_printk(KERN_INFO, esp->host, "Dumping command log\n"); 186 do { 187 struct esp_event_ent *p = &esp->esp_event_log[idx]; 188 189 shost_printk(KERN_INFO, esp->host, 190 "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] " 191 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n", 192 idx, 193 p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT", 194 p->val, p->sreg, p->seqreg, 195 p->sreg2, p->ireg, p->select_state, p->event); 196 197 idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1); 198 } while (idx != stop); 199 } 200 201 static void esp_flush_fifo(struct esp *esp) 202 { 203 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 204 if (esp->rev == ESP236) { 205 int lim = 1000; 206 207 while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) { 208 if (--lim == 0) { 209 shost_printk(KERN_ALERT, esp->host, 210 "ESP_FF_BYTES will not clear!\n"); 211 break; 212 } 213 udelay(1); 214 } 215 } 216 } 217 218 static void hme_read_fifo(struct esp *esp) 219 { 220 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; 221 int idx = 0; 222 223 while (fcnt--) { 224 esp->fifo[idx++] = esp_read8(ESP_FDATA); 225 esp->fifo[idx++] = esp_read8(ESP_FDATA); 226 } 227 if (esp->sreg2 & ESP_STAT2_F1BYTE) { 228 esp_write8(0, ESP_FDATA); 229 esp->fifo[idx++] = esp_read8(ESP_FDATA); 230 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 231 } 232 esp->fifo_cnt = idx; 233 } 234 235 static void esp_set_all_config3(struct esp *esp, u8 val) 236 { 237 int i; 238 239 for (i = 0; i < ESP_MAX_TARGET; i++) 240 esp->target[i].esp_config3 = val; 241 } 242 243 /* Reset the ESP chip, _not_ the SCSI bus. */ 244 static void esp_reset_esp(struct esp *esp) 245 { 246 /* Now reset the ESP chip */ 247 scsi_esp_cmd(esp, ESP_CMD_RC); 248 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); 249 if (esp->rev == FAST) 250 esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2); 251 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); 252 253 /* This is the only point at which it is reliable to read 254 * the ID-code for a fast ESP chip variants. 255 */ 256 esp->max_period = ((35 * esp->ccycle) / 1000); 257 if (esp->rev == FAST) { 258 u8 family_code = ESP_FAMILY(esp_read8(ESP_UID)); 259 260 if (family_code == ESP_UID_F236) { 261 esp->rev = FAS236; 262 } else if (family_code == ESP_UID_HME) { 263 esp->rev = FASHME; /* Version is usually '5'. */ 264 } else if (family_code == ESP_UID_FSC) { 265 esp->rev = FSC; 266 /* Enable Active Negation */ 267 esp_write8(ESP_CONFIG4_RADE, ESP_CFG4); 268 } else { 269 esp->rev = FAS100A; 270 } 271 esp->min_period = ((4 * esp->ccycle) / 1000); 272 } else { 273 esp->min_period = ((5 * esp->ccycle) / 1000); 274 } 275 if (esp->rev == FAS236) { 276 /* 277 * The AM53c974 chip returns the same ID as FAS236; 278 * try to configure glitch eater. 279 */ 280 u8 config4 = ESP_CONFIG4_GE1; 281 esp_write8(config4, ESP_CFG4); 282 config4 = esp_read8(ESP_CFG4); 283 if (config4 & ESP_CONFIG4_GE1) { 284 esp->rev = PCSCSI; 285 esp_write8(esp->config4, ESP_CFG4); 286 } 287 } 288 esp->max_period = (esp->max_period + 3)>>2; 289 esp->min_period = (esp->min_period + 3)>>2; 290 291 esp_write8(esp->config1, ESP_CFG1); 292 switch (esp->rev) { 293 case ESP100: 294 /* nothing to do */ 295 break; 296 297 case ESP100A: 298 esp_write8(esp->config2, ESP_CFG2); 299 break; 300 301 case ESP236: 302 /* Slow 236 */ 303 esp_write8(esp->config2, ESP_CFG2); 304 esp->prev_cfg3 = esp->target[0].esp_config3; 305 esp_write8(esp->prev_cfg3, ESP_CFG3); 306 break; 307 308 case FASHME: 309 esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB); 310 fallthrough; 311 312 case FAS236: 313 case PCSCSI: 314 case FSC: 315 esp_write8(esp->config2, ESP_CFG2); 316 if (esp->rev == FASHME) { 317 u8 cfg3 = esp->target[0].esp_config3; 318 319 cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH; 320 if (esp->scsi_id >= 8) 321 cfg3 |= ESP_CONFIG3_IDBIT3; 322 esp_set_all_config3(esp, cfg3); 323 } else { 324 u32 cfg3 = esp->target[0].esp_config3; 325 326 cfg3 |= ESP_CONFIG3_FCLK; 327 esp_set_all_config3(esp, cfg3); 328 } 329 esp->prev_cfg3 = esp->target[0].esp_config3; 330 esp_write8(esp->prev_cfg3, ESP_CFG3); 331 if (esp->rev == FASHME) { 332 esp->radelay = 80; 333 } else { 334 if (esp->flags & ESP_FLAG_DIFFERENTIAL) 335 esp->radelay = 0; 336 else 337 esp->radelay = 96; 338 } 339 break; 340 341 case FAS100A: 342 /* Fast 100a */ 343 esp_write8(esp->config2, ESP_CFG2); 344 esp_set_all_config3(esp, 345 (esp->target[0].esp_config3 | 346 ESP_CONFIG3_FCLOCK)); 347 esp->prev_cfg3 = esp->target[0].esp_config3; 348 esp_write8(esp->prev_cfg3, ESP_CFG3); 349 esp->radelay = 32; 350 break; 351 352 default: 353 break; 354 } 355 356 /* Reload the configuration registers */ 357 esp_write8(esp->cfact, ESP_CFACT); 358 359 esp->prev_stp = 0; 360 esp_write8(esp->prev_stp, ESP_STP); 361 362 esp->prev_soff = 0; 363 esp_write8(esp->prev_soff, ESP_SOFF); 364 365 esp_write8(esp->neg_defp, ESP_TIMEO); 366 367 /* Eat any bitrot in the chip */ 368 esp_read8(ESP_INTRPT); 369 udelay(100); 370 } 371 372 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd) 373 { 374 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); 375 struct scatterlist *sg = scsi_sglist(cmd); 376 int total = 0, i; 377 struct scatterlist *s; 378 379 if (cmd->sc_data_direction == DMA_NONE) 380 return; 381 382 if (esp->flags & ESP_FLAG_NO_DMA_MAP) { 383 /* 384 * For pseudo DMA and PIO we need the virtual address instead of 385 * a dma address, so perform an identity mapping. 386 */ 387 spriv->num_sg = scsi_sg_count(cmd); 388 389 scsi_for_each_sg(cmd, s, spriv->num_sg, i) { 390 s->dma_address = (uintptr_t)sg_virt(s); 391 total += sg_dma_len(s); 392 } 393 } else { 394 spriv->num_sg = scsi_dma_map(cmd); 395 scsi_for_each_sg(cmd, s, spriv->num_sg, i) 396 total += sg_dma_len(s); 397 } 398 spriv->cur_residue = sg_dma_len(sg); 399 spriv->prv_sg = NULL; 400 spriv->cur_sg = sg; 401 spriv->tot_residue = total; 402 } 403 404 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent, 405 struct scsi_cmnd *cmd) 406 { 407 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); 408 409 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 410 return ent->sense_dma + 411 (ent->sense_ptr - cmd->sense_buffer); 412 } 413 414 return sg_dma_address(p->cur_sg) + 415 (sg_dma_len(p->cur_sg) - 416 p->cur_residue); 417 } 418 419 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent, 420 struct scsi_cmnd *cmd) 421 { 422 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); 423 424 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 425 return SCSI_SENSE_BUFFERSIZE - 426 (ent->sense_ptr - cmd->sense_buffer); 427 } 428 return p->cur_residue; 429 } 430 431 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent, 432 struct scsi_cmnd *cmd, unsigned int len) 433 { 434 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); 435 436 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 437 ent->sense_ptr += len; 438 return; 439 } 440 441 p->cur_residue -= len; 442 p->tot_residue -= len; 443 if (p->cur_residue < 0 || p->tot_residue < 0) { 444 shost_printk(KERN_ERR, esp->host, 445 "Data transfer overflow.\n"); 446 shost_printk(KERN_ERR, esp->host, 447 "cur_residue[%d] tot_residue[%d] len[%u]\n", 448 p->cur_residue, p->tot_residue, len); 449 p->cur_residue = 0; 450 p->tot_residue = 0; 451 } 452 if (!p->cur_residue && p->tot_residue) { 453 p->prv_sg = p->cur_sg; 454 p->cur_sg = sg_next(p->cur_sg); 455 p->cur_residue = sg_dma_len(p->cur_sg); 456 } 457 } 458 459 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd) 460 { 461 if (!(esp->flags & ESP_FLAG_NO_DMA_MAP)) 462 scsi_dma_unmap(cmd); 463 } 464 465 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent) 466 { 467 struct scsi_cmnd *cmd = ent->cmd; 468 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); 469 470 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 471 ent->saved_sense_ptr = ent->sense_ptr; 472 return; 473 } 474 ent->saved_cur_residue = spriv->cur_residue; 475 ent->saved_prv_sg = spriv->prv_sg; 476 ent->saved_cur_sg = spriv->cur_sg; 477 ent->saved_tot_residue = spriv->tot_residue; 478 } 479 480 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent) 481 { 482 struct scsi_cmnd *cmd = ent->cmd; 483 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); 484 485 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 486 ent->sense_ptr = ent->saved_sense_ptr; 487 return; 488 } 489 spriv->cur_residue = ent->saved_cur_residue; 490 spriv->prv_sg = ent->saved_prv_sg; 491 spriv->cur_sg = ent->saved_cur_sg; 492 spriv->tot_residue = ent->saved_tot_residue; 493 } 494 495 static void esp_write_tgt_config3(struct esp *esp, int tgt) 496 { 497 if (esp->rev > ESP100A) { 498 u8 val = esp->target[tgt].esp_config3; 499 500 if (val != esp->prev_cfg3) { 501 esp->prev_cfg3 = val; 502 esp_write8(val, ESP_CFG3); 503 } 504 } 505 } 506 507 static void esp_write_tgt_sync(struct esp *esp, int tgt) 508 { 509 u8 off = esp->target[tgt].esp_offset; 510 u8 per = esp->target[tgt].esp_period; 511 512 if (off != esp->prev_soff) { 513 esp->prev_soff = off; 514 esp_write8(off, ESP_SOFF); 515 } 516 if (per != esp->prev_stp) { 517 esp->prev_stp = per; 518 esp_write8(per, ESP_STP); 519 } 520 } 521 522 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len) 523 { 524 if (esp->rev == FASHME) { 525 /* Arbitrary segment boundaries, 24-bit counts. */ 526 if (dma_len > (1U << 24)) 527 dma_len = (1U << 24); 528 } else { 529 u32 base, end; 530 531 /* ESP chip limits other variants by 16-bits of transfer 532 * count. Actually on FAS100A and FAS236 we could get 533 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB 534 * in the ESP_CFG2 register but that causes other unwanted 535 * changes so we don't use it currently. 536 */ 537 if (dma_len > (1U << 16)) 538 dma_len = (1U << 16); 539 540 /* All of the DMA variants hooked up to these chips 541 * cannot handle crossing a 24-bit address boundary. 542 */ 543 base = dma_addr & ((1U << 24) - 1U); 544 end = base + dma_len; 545 if (end > (1U << 24)) 546 end = (1U <<24); 547 dma_len = end - base; 548 } 549 return dma_len; 550 } 551 552 static int esp_need_to_nego_wide(struct esp_target_data *tp) 553 { 554 struct scsi_target *target = tp->starget; 555 556 return spi_width(target) != tp->nego_goal_width; 557 } 558 559 static int esp_need_to_nego_sync(struct esp_target_data *tp) 560 { 561 struct scsi_target *target = tp->starget; 562 563 /* When offset is zero, period is "don't care". */ 564 if (!spi_offset(target) && !tp->nego_goal_offset) 565 return 0; 566 567 if (spi_offset(target) == tp->nego_goal_offset && 568 spi_period(target) == tp->nego_goal_period) 569 return 0; 570 571 return 1; 572 } 573 574 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent, 575 struct esp_lun_data *lp) 576 { 577 if (!ent->orig_tag[0]) { 578 /* Non-tagged, slot already taken? */ 579 if (lp->non_tagged_cmd) 580 return -EBUSY; 581 582 if (lp->hold) { 583 /* We are being held by active tagged 584 * commands. 585 */ 586 if (lp->num_tagged) 587 return -EBUSY; 588 589 /* Tagged commands completed, we can unplug 590 * the queue and run this untagged command. 591 */ 592 lp->hold = 0; 593 } else if (lp->num_tagged) { 594 /* Plug the queue until num_tagged decreases 595 * to zero in esp_free_lun_tag. 596 */ 597 lp->hold = 1; 598 return -EBUSY; 599 } 600 601 lp->non_tagged_cmd = ent; 602 return 0; 603 } 604 605 /* Tagged command. Check that it isn't blocked by a non-tagged one. */ 606 if (lp->non_tagged_cmd || lp->hold) 607 return -EBUSY; 608 609 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]); 610 611 lp->tagged_cmds[ent->orig_tag[1]] = ent; 612 lp->num_tagged++; 613 614 return 0; 615 } 616 617 static void esp_free_lun_tag(struct esp_cmd_entry *ent, 618 struct esp_lun_data *lp) 619 { 620 if (ent->orig_tag[0]) { 621 BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent); 622 lp->tagged_cmds[ent->orig_tag[1]] = NULL; 623 lp->num_tagged--; 624 } else { 625 BUG_ON(lp->non_tagged_cmd != ent); 626 lp->non_tagged_cmd = NULL; 627 } 628 } 629 630 static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent) 631 { 632 ent->sense_ptr = ent->cmd->sense_buffer; 633 if (esp->flags & ESP_FLAG_NO_DMA_MAP) { 634 ent->sense_dma = (uintptr_t)ent->sense_ptr; 635 return; 636 } 637 638 ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr, 639 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 640 } 641 642 static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent) 643 { 644 if (!(esp->flags & ESP_FLAG_NO_DMA_MAP)) 645 dma_unmap_single(esp->dev, ent->sense_dma, 646 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 647 ent->sense_ptr = NULL; 648 } 649 650 /* When a contingent allegiance condition is created, we force feed a 651 * REQUEST_SENSE command to the device to fetch the sense data. I 652 * tried many other schemes, relying on the scsi error handling layer 653 * to send out the REQUEST_SENSE automatically, but this was difficult 654 * to get right especially in the presence of applications like smartd 655 * which use SG_IO to send out their own REQUEST_SENSE commands. 656 */ 657 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent) 658 { 659 struct scsi_cmnd *cmd = ent->cmd; 660 struct scsi_device *dev = cmd->device; 661 int tgt, lun; 662 u8 *p, val; 663 664 tgt = dev->id; 665 lun = dev->lun; 666 667 668 if (!ent->sense_ptr) { 669 esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n", 670 tgt, lun); 671 esp_map_sense(esp, ent); 672 } 673 ent->saved_sense_ptr = ent->sense_ptr; 674 675 esp->active_cmd = ent; 676 677 p = esp->command_block; 678 esp->msg_out_len = 0; 679 680 *p++ = IDENTIFY(0, lun); 681 *p++ = REQUEST_SENSE; 682 *p++ = ((dev->scsi_level <= SCSI_2) ? 683 (lun << 5) : 0); 684 *p++ = 0; 685 *p++ = 0; 686 *p++ = SCSI_SENSE_BUFFERSIZE; 687 *p++ = 0; 688 689 esp->select_state = ESP_SELECT_BASIC; 690 691 val = tgt; 692 if (esp->rev == FASHME) 693 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT; 694 esp_write8(val, ESP_BUSID); 695 696 esp_write_tgt_sync(esp, tgt); 697 esp_write_tgt_config3(esp, tgt); 698 699 val = (p - esp->command_block); 700 701 esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA); 702 } 703 704 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp) 705 { 706 struct esp_cmd_entry *ent; 707 708 list_for_each_entry(ent, &esp->queued_cmds, list) { 709 struct scsi_cmnd *cmd = ent->cmd; 710 struct scsi_device *dev = cmd->device; 711 struct esp_lun_data *lp = dev->hostdata; 712 713 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 714 ent->tag[0] = 0; 715 ent->tag[1] = 0; 716 return ent; 717 } 718 719 if (!spi_populate_tag_msg(&ent->tag[0], cmd)) { 720 ent->tag[0] = 0; 721 ent->tag[1] = 0; 722 } 723 ent->orig_tag[0] = ent->tag[0]; 724 ent->orig_tag[1] = ent->tag[1]; 725 726 if (esp_alloc_lun_tag(ent, lp) < 0) 727 continue; 728 729 return ent; 730 } 731 732 return NULL; 733 } 734 735 static void esp_maybe_execute_command(struct esp *esp) 736 { 737 struct esp_target_data *tp; 738 struct scsi_device *dev; 739 struct scsi_cmnd *cmd; 740 struct esp_cmd_entry *ent; 741 bool select_and_stop = false; 742 int tgt, lun, i; 743 u32 val, start_cmd; 744 u8 *p; 745 746 if (esp->active_cmd || 747 (esp->flags & ESP_FLAG_RESETTING)) 748 return; 749 750 ent = find_and_prep_issuable_command(esp); 751 if (!ent) 752 return; 753 754 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 755 esp_autosense(esp, ent); 756 return; 757 } 758 759 cmd = ent->cmd; 760 dev = cmd->device; 761 tgt = dev->id; 762 lun = dev->lun; 763 tp = &esp->target[tgt]; 764 765 list_move(&ent->list, &esp->active_cmds); 766 767 esp->active_cmd = ent; 768 769 esp_map_dma(esp, cmd); 770 esp_save_pointers(esp, ent); 771 772 if (!(cmd->cmd_len == 6 || cmd->cmd_len == 10 || cmd->cmd_len == 12)) 773 select_and_stop = true; 774 775 p = esp->command_block; 776 777 esp->msg_out_len = 0; 778 if (tp->flags & ESP_TGT_CHECK_NEGO) { 779 /* Need to negotiate. If the target is broken 780 * go for synchronous transfers and non-wide. 781 */ 782 if (tp->flags & ESP_TGT_BROKEN) { 783 tp->flags &= ~ESP_TGT_DISCONNECT; 784 tp->nego_goal_period = 0; 785 tp->nego_goal_offset = 0; 786 tp->nego_goal_width = 0; 787 tp->nego_goal_tags = 0; 788 } 789 790 /* If the settings are not changing, skip this. */ 791 if (spi_width(tp->starget) == tp->nego_goal_width && 792 spi_period(tp->starget) == tp->nego_goal_period && 793 spi_offset(tp->starget) == tp->nego_goal_offset) { 794 tp->flags &= ~ESP_TGT_CHECK_NEGO; 795 goto build_identify; 796 } 797 798 if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) { 799 esp->msg_out_len = 800 spi_populate_width_msg(&esp->msg_out[0], 801 (tp->nego_goal_width ? 802 1 : 0)); 803 tp->flags |= ESP_TGT_NEGO_WIDE; 804 } else if (esp_need_to_nego_sync(tp)) { 805 esp->msg_out_len = 806 spi_populate_sync_msg(&esp->msg_out[0], 807 tp->nego_goal_period, 808 tp->nego_goal_offset); 809 tp->flags |= ESP_TGT_NEGO_SYNC; 810 } else { 811 tp->flags &= ~ESP_TGT_CHECK_NEGO; 812 } 813 814 /* If there are multiple message bytes, use Select and Stop */ 815 if (esp->msg_out_len) 816 select_and_stop = true; 817 } 818 819 build_identify: 820 *p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun); 821 822 if (ent->tag[0] && esp->rev == ESP100) { 823 /* ESP100 lacks select w/atn3 command, use select 824 * and stop instead. 825 */ 826 select_and_stop = true; 827 } 828 829 if (select_and_stop) { 830 esp->cmd_bytes_left = cmd->cmd_len; 831 esp->cmd_bytes_ptr = &cmd->cmnd[0]; 832 833 if (ent->tag[0]) { 834 for (i = esp->msg_out_len - 1; 835 i >= 0; i--) 836 esp->msg_out[i + 2] = esp->msg_out[i]; 837 esp->msg_out[0] = ent->tag[0]; 838 esp->msg_out[1] = ent->tag[1]; 839 esp->msg_out_len += 2; 840 } 841 842 start_cmd = ESP_CMD_SELAS; 843 esp->select_state = ESP_SELECT_MSGOUT; 844 } else { 845 start_cmd = ESP_CMD_SELA; 846 if (ent->tag[0]) { 847 *p++ = ent->tag[0]; 848 *p++ = ent->tag[1]; 849 850 start_cmd = ESP_CMD_SA3; 851 } 852 853 for (i = 0; i < cmd->cmd_len; i++) 854 *p++ = cmd->cmnd[i]; 855 856 esp->select_state = ESP_SELECT_BASIC; 857 } 858 val = tgt; 859 if (esp->rev == FASHME) 860 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT; 861 esp_write8(val, ESP_BUSID); 862 863 esp_write_tgt_sync(esp, tgt); 864 esp_write_tgt_config3(esp, tgt); 865 866 val = (p - esp->command_block); 867 868 if (esp_debug & ESP_DEBUG_SCSICMD) { 869 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun); 870 for (i = 0; i < cmd->cmd_len; i++) 871 printk("%02x ", cmd->cmnd[i]); 872 printk("]\n"); 873 } 874 875 esp_send_dma_cmd(esp, val, 16, start_cmd); 876 } 877 878 static struct esp_cmd_entry *esp_get_ent(struct esp *esp) 879 { 880 struct list_head *head = &esp->esp_cmd_pool; 881 struct esp_cmd_entry *ret; 882 883 if (list_empty(head)) { 884 ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC); 885 } else { 886 ret = list_entry(head->next, struct esp_cmd_entry, list); 887 list_del(&ret->list); 888 memset(ret, 0, sizeof(*ret)); 889 } 890 return ret; 891 } 892 893 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent) 894 { 895 list_add(&ent->list, &esp->esp_cmd_pool); 896 } 897 898 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent, 899 struct scsi_cmnd *cmd, unsigned char host_byte) 900 { 901 struct scsi_device *dev = cmd->device; 902 int tgt = dev->id; 903 int lun = dev->lun; 904 905 esp->active_cmd = NULL; 906 esp_unmap_dma(esp, cmd); 907 esp_free_lun_tag(ent, dev->hostdata); 908 cmd->result = 0; 909 set_host_byte(cmd, host_byte); 910 if (host_byte == DID_OK) 911 set_status_byte(cmd, ent->status); 912 913 if (ent->eh_done) { 914 complete(ent->eh_done); 915 ent->eh_done = NULL; 916 } 917 918 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { 919 esp_unmap_sense(esp, ent); 920 921 /* Restore the message/status bytes to what we actually 922 * saw originally. Also, report that we are providing 923 * the sense data. 924 */ 925 cmd->result = SAM_STAT_CHECK_CONDITION; 926 927 ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE; 928 if (esp_debug & ESP_DEBUG_AUTOSENSE) { 929 int i; 930 931 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ", 932 esp->host->unique_id, tgt, lun); 933 for (i = 0; i < 18; i++) 934 printk("%02x ", cmd->sense_buffer[i]); 935 printk("]\n"); 936 } 937 } 938 939 cmd->scsi_done(cmd); 940 941 list_del(&ent->list); 942 esp_put_ent(esp, ent); 943 944 esp_maybe_execute_command(esp); 945 } 946 947 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent) 948 { 949 struct scsi_device *dev = ent->cmd->device; 950 struct esp_lun_data *lp = dev->hostdata; 951 952 scsi_track_queue_full(dev, lp->num_tagged - 1); 953 } 954 955 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) 956 { 957 struct scsi_device *dev = cmd->device; 958 struct esp *esp = shost_priv(dev->host); 959 struct esp_cmd_priv *spriv; 960 struct esp_cmd_entry *ent; 961 962 ent = esp_get_ent(esp); 963 if (!ent) 964 return SCSI_MLQUEUE_HOST_BUSY; 965 966 ent->cmd = cmd; 967 968 cmd->scsi_done = done; 969 970 spriv = ESP_CMD_PRIV(cmd); 971 spriv->num_sg = 0; 972 973 list_add_tail(&ent->list, &esp->queued_cmds); 974 975 esp_maybe_execute_command(esp); 976 977 return 0; 978 } 979 980 static DEF_SCSI_QCMD(esp_queuecommand) 981 982 static int esp_check_gross_error(struct esp *esp) 983 { 984 if (esp->sreg & ESP_STAT_SPAM) { 985 /* Gross Error, could be one of: 986 * - top of fifo overwritten 987 * - top of command register overwritten 988 * - DMA programmed with wrong direction 989 * - improper phase change 990 */ 991 shost_printk(KERN_ERR, esp->host, 992 "Gross error sreg[%02x]\n", esp->sreg); 993 /* XXX Reset the chip. XXX */ 994 return 1; 995 } 996 return 0; 997 } 998 999 static int esp_check_spur_intr(struct esp *esp) 1000 { 1001 switch (esp->rev) { 1002 case ESP100: 1003 case ESP100A: 1004 /* The interrupt pending bit of the status register cannot 1005 * be trusted on these revisions. 1006 */ 1007 esp->sreg &= ~ESP_STAT_INTR; 1008 break; 1009 1010 default: 1011 if (!(esp->sreg & ESP_STAT_INTR)) { 1012 if (esp->ireg & ESP_INTR_SR) 1013 return 1; 1014 1015 /* If the DMA is indicating interrupt pending and the 1016 * ESP is not, the only possibility is a DMA error. 1017 */ 1018 if (!esp->ops->dma_error(esp)) { 1019 shost_printk(KERN_ERR, esp->host, 1020 "Spurious irq, sreg=%02x.\n", 1021 esp->sreg); 1022 return -1; 1023 } 1024 1025 shost_printk(KERN_ERR, esp->host, "DMA error\n"); 1026 1027 /* XXX Reset the chip. XXX */ 1028 return -1; 1029 } 1030 break; 1031 } 1032 1033 return 0; 1034 } 1035 1036 static void esp_schedule_reset(struct esp *esp) 1037 { 1038 esp_log_reset("esp_schedule_reset() from %ps\n", 1039 __builtin_return_address(0)); 1040 esp->flags |= ESP_FLAG_RESETTING; 1041 esp_event(esp, ESP_EVENT_RESET); 1042 } 1043 1044 /* In order to avoid having to add a special half-reconnected state 1045 * into the driver we just sit here and poll through the rest of 1046 * the reselection process to get the tag message bytes. 1047 */ 1048 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp, 1049 struct esp_lun_data *lp) 1050 { 1051 struct esp_cmd_entry *ent; 1052 int i; 1053 1054 if (!lp->num_tagged) { 1055 shost_printk(KERN_ERR, esp->host, 1056 "Reconnect w/num_tagged==0\n"); 1057 return NULL; 1058 } 1059 1060 esp_log_reconnect("reconnect tag, "); 1061 1062 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) { 1063 if (esp->ops->irq_pending(esp)) 1064 break; 1065 } 1066 if (i == ESP_QUICKIRQ_LIMIT) { 1067 shost_printk(KERN_ERR, esp->host, 1068 "Reconnect IRQ1 timeout\n"); 1069 return NULL; 1070 } 1071 1072 esp->sreg = esp_read8(ESP_STATUS); 1073 esp->ireg = esp_read8(ESP_INTRPT); 1074 1075 esp_log_reconnect("IRQ(%d:%x:%x), ", 1076 i, esp->ireg, esp->sreg); 1077 1078 if (esp->ireg & ESP_INTR_DC) { 1079 shost_printk(KERN_ERR, esp->host, 1080 "Reconnect, got disconnect.\n"); 1081 return NULL; 1082 } 1083 1084 if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) { 1085 shost_printk(KERN_ERR, esp->host, 1086 "Reconnect, not MIP sreg[%02x].\n", esp->sreg); 1087 return NULL; 1088 } 1089 1090 /* DMA in the tag bytes... */ 1091 esp->command_block[0] = 0xff; 1092 esp->command_block[1] = 0xff; 1093 esp->ops->send_dma_cmd(esp, esp->command_block_dma, 1094 2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI); 1095 1096 /* ACK the message. */ 1097 scsi_esp_cmd(esp, ESP_CMD_MOK); 1098 1099 for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) { 1100 if (esp->ops->irq_pending(esp)) { 1101 esp->sreg = esp_read8(ESP_STATUS); 1102 esp->ireg = esp_read8(ESP_INTRPT); 1103 if (esp->ireg & ESP_INTR_FDONE) 1104 break; 1105 } 1106 udelay(1); 1107 } 1108 if (i == ESP_RESELECT_TAG_LIMIT) { 1109 shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n"); 1110 return NULL; 1111 } 1112 esp->ops->dma_drain(esp); 1113 esp->ops->dma_invalidate(esp); 1114 1115 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n", 1116 i, esp->ireg, esp->sreg, 1117 esp->command_block[0], 1118 esp->command_block[1]); 1119 1120 if (esp->command_block[0] < SIMPLE_QUEUE_TAG || 1121 esp->command_block[0] > ORDERED_QUEUE_TAG) { 1122 shost_printk(KERN_ERR, esp->host, 1123 "Reconnect, bad tag type %02x.\n", 1124 esp->command_block[0]); 1125 return NULL; 1126 } 1127 1128 ent = lp->tagged_cmds[esp->command_block[1]]; 1129 if (!ent) { 1130 shost_printk(KERN_ERR, esp->host, 1131 "Reconnect, no entry for tag %02x.\n", 1132 esp->command_block[1]); 1133 return NULL; 1134 } 1135 1136 return ent; 1137 } 1138 1139 static int esp_reconnect(struct esp *esp) 1140 { 1141 struct esp_cmd_entry *ent; 1142 struct esp_target_data *tp; 1143 struct esp_lun_data *lp; 1144 struct scsi_device *dev; 1145 int target, lun; 1146 1147 BUG_ON(esp->active_cmd); 1148 if (esp->rev == FASHME) { 1149 /* FASHME puts the target and lun numbers directly 1150 * into the fifo. 1151 */ 1152 target = esp->fifo[0]; 1153 lun = esp->fifo[1] & 0x7; 1154 } else { 1155 u8 bits = esp_read8(ESP_FDATA); 1156 1157 /* Older chips put the lun directly into the fifo, but 1158 * the target is given as a sample of the arbitration 1159 * lines on the bus at reselection time. So we should 1160 * see the ID of the ESP and the one reconnecting target 1161 * set in the bitmap. 1162 */ 1163 if (!(bits & esp->scsi_id_mask)) 1164 goto do_reset; 1165 bits &= ~esp->scsi_id_mask; 1166 if (!bits || (bits & (bits - 1))) 1167 goto do_reset; 1168 1169 target = ffs(bits) - 1; 1170 lun = (esp_read8(ESP_FDATA) & 0x7); 1171 1172 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1173 if (esp->rev == ESP100) { 1174 u8 ireg = esp_read8(ESP_INTRPT); 1175 /* This chip has a bug during reselection that can 1176 * cause a spurious illegal-command interrupt, which 1177 * we simply ACK here. Another possibility is a bus 1178 * reset so we must check for that. 1179 */ 1180 if (ireg & ESP_INTR_SR) 1181 goto do_reset; 1182 } 1183 scsi_esp_cmd(esp, ESP_CMD_NULL); 1184 } 1185 1186 esp_write_tgt_sync(esp, target); 1187 esp_write_tgt_config3(esp, target); 1188 1189 scsi_esp_cmd(esp, ESP_CMD_MOK); 1190 1191 if (esp->rev == FASHME) 1192 esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT, 1193 ESP_BUSID); 1194 1195 tp = &esp->target[target]; 1196 dev = __scsi_device_lookup_by_target(tp->starget, lun); 1197 if (!dev) { 1198 shost_printk(KERN_ERR, esp->host, 1199 "Reconnect, no lp tgt[%u] lun[%u]\n", 1200 target, lun); 1201 goto do_reset; 1202 } 1203 lp = dev->hostdata; 1204 1205 ent = lp->non_tagged_cmd; 1206 if (!ent) { 1207 ent = esp_reconnect_with_tag(esp, lp); 1208 if (!ent) 1209 goto do_reset; 1210 } 1211 1212 esp->active_cmd = ent; 1213 1214 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1215 esp_restore_pointers(esp, ent); 1216 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1217 return 1; 1218 1219 do_reset: 1220 esp_schedule_reset(esp); 1221 return 0; 1222 } 1223 1224 static int esp_finish_select(struct esp *esp) 1225 { 1226 struct esp_cmd_entry *ent; 1227 struct scsi_cmnd *cmd; 1228 1229 /* No longer selecting. */ 1230 esp->select_state = ESP_SELECT_NONE; 1231 1232 esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS; 1233 ent = esp->active_cmd; 1234 cmd = ent->cmd; 1235 1236 if (esp->ops->dma_error(esp)) { 1237 /* If we see a DMA error during or as a result of selection, 1238 * all bets are off. 1239 */ 1240 esp_schedule_reset(esp); 1241 esp_cmd_is_done(esp, ent, cmd, DID_ERROR); 1242 return 0; 1243 } 1244 1245 esp->ops->dma_invalidate(esp); 1246 1247 if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) { 1248 struct esp_target_data *tp = &esp->target[cmd->device->id]; 1249 1250 /* Carefully back out of the selection attempt. Release 1251 * resources (such as DMA mapping & TAG) and reset state (such 1252 * as message out and command delivery variables). 1253 */ 1254 if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) { 1255 esp_unmap_dma(esp, cmd); 1256 esp_free_lun_tag(ent, cmd->device->hostdata); 1257 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE); 1258 esp->cmd_bytes_ptr = NULL; 1259 esp->cmd_bytes_left = 0; 1260 } else { 1261 esp_unmap_sense(esp, ent); 1262 } 1263 1264 /* Now that the state is unwound properly, put back onto 1265 * the issue queue. This command is no longer active. 1266 */ 1267 list_move(&ent->list, &esp->queued_cmds); 1268 esp->active_cmd = NULL; 1269 1270 /* Return value ignored by caller, it directly invokes 1271 * esp_reconnect(). 1272 */ 1273 return 0; 1274 } 1275 1276 if (esp->ireg == ESP_INTR_DC) { 1277 struct scsi_device *dev = cmd->device; 1278 1279 /* Disconnect. Make sure we re-negotiate sync and 1280 * wide parameters if this target starts responding 1281 * again in the future. 1282 */ 1283 esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO; 1284 1285 scsi_esp_cmd(esp, ESP_CMD_ESEL); 1286 esp_cmd_is_done(esp, ent, cmd, DID_BAD_TARGET); 1287 return 1; 1288 } 1289 1290 if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) { 1291 /* Selection successful. On pre-FAST chips we have 1292 * to do a NOP and possibly clean out the FIFO. 1293 */ 1294 if (esp->rev <= ESP236) { 1295 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; 1296 1297 scsi_esp_cmd(esp, ESP_CMD_NULL); 1298 1299 if (!fcnt && 1300 (!esp->prev_soff || 1301 ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP))) 1302 esp_flush_fifo(esp); 1303 } 1304 1305 /* If we are doing a Select And Stop command, negotiation, etc. 1306 * we'll do the right thing as we transition to the next phase. 1307 */ 1308 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1309 return 0; 1310 } 1311 1312 shost_printk(KERN_INFO, esp->host, 1313 "Unexpected selection completion ireg[%x]\n", esp->ireg); 1314 esp_schedule_reset(esp); 1315 return 0; 1316 } 1317 1318 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent, 1319 struct scsi_cmnd *cmd) 1320 { 1321 int fifo_cnt, ecount, bytes_sent, flush_fifo; 1322 1323 fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; 1324 if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE) 1325 fifo_cnt <<= 1; 1326 1327 ecount = 0; 1328 if (!(esp->sreg & ESP_STAT_TCNT)) { 1329 ecount = ((unsigned int)esp_read8(ESP_TCLOW) | 1330 (((unsigned int)esp_read8(ESP_TCMED)) << 8)); 1331 if (esp->rev == FASHME) 1332 ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16; 1333 if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB)) 1334 ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16; 1335 } 1336 1337 bytes_sent = esp->data_dma_len; 1338 bytes_sent -= ecount; 1339 bytes_sent -= esp->send_cmd_residual; 1340 1341 /* 1342 * The am53c974 has a DMA 'peculiarity'. The doc states: 1343 * In some odd byte conditions, one residual byte will 1344 * be left in the SCSI FIFO, and the FIFO Flags will 1345 * never count to '0 '. When this happens, the residual 1346 * byte should be retrieved via PIO following completion 1347 * of the BLAST operation. 1348 */ 1349 if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) { 1350 size_t count = 1; 1351 size_t offset = bytes_sent; 1352 u8 bval = esp_read8(ESP_FDATA); 1353 1354 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) 1355 ent->sense_ptr[bytes_sent] = bval; 1356 else { 1357 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); 1358 u8 *ptr; 1359 1360 ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg, 1361 &offset, &count); 1362 if (likely(ptr)) { 1363 *(ptr + offset) = bval; 1364 scsi_kunmap_atomic_sg(ptr); 1365 } 1366 } 1367 bytes_sent += fifo_cnt; 1368 ent->flags &= ~ESP_CMD_FLAG_RESIDUAL; 1369 } 1370 if (!(ent->flags & ESP_CMD_FLAG_WRITE)) 1371 bytes_sent -= fifo_cnt; 1372 1373 flush_fifo = 0; 1374 if (!esp->prev_soff) { 1375 /* Synchronous data transfer, always flush fifo. */ 1376 flush_fifo = 1; 1377 } else { 1378 if (esp->rev == ESP100) { 1379 u32 fflags, phase; 1380 1381 /* ESP100 has a chip bug where in the synchronous data 1382 * phase it can mistake a final long REQ pulse from the 1383 * target as an extra data byte. Fun. 1384 * 1385 * To detect this case we resample the status register 1386 * and fifo flags. If we're still in a data phase and 1387 * we see spurious chunks in the fifo, we return error 1388 * to the caller which should reset and set things up 1389 * such that we only try future transfers to this 1390 * target in synchronous mode. 1391 */ 1392 esp->sreg = esp_read8(ESP_STATUS); 1393 phase = esp->sreg & ESP_STAT_PMASK; 1394 fflags = esp_read8(ESP_FFLAGS); 1395 1396 if ((phase == ESP_DOP && 1397 (fflags & ESP_FF_ONOTZERO)) || 1398 (phase == ESP_DIP && 1399 (fflags & ESP_FF_FBYTES))) 1400 return -1; 1401 } 1402 if (!(ent->flags & ESP_CMD_FLAG_WRITE)) 1403 flush_fifo = 1; 1404 } 1405 1406 if (flush_fifo) 1407 esp_flush_fifo(esp); 1408 1409 return bytes_sent; 1410 } 1411 1412 static void esp_setsync(struct esp *esp, struct esp_target_data *tp, 1413 u8 scsi_period, u8 scsi_offset, 1414 u8 esp_stp, u8 esp_soff) 1415 { 1416 spi_period(tp->starget) = scsi_period; 1417 spi_offset(tp->starget) = scsi_offset; 1418 spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0; 1419 1420 if (esp_soff) { 1421 esp_stp &= 0x1f; 1422 esp_soff |= esp->radelay; 1423 if (esp->rev >= FAS236) { 1424 u8 bit = ESP_CONFIG3_FSCSI; 1425 if (esp->rev >= FAS100A) 1426 bit = ESP_CONFIG3_FAST; 1427 1428 if (scsi_period < 50) { 1429 if (esp->rev == FASHME) 1430 esp_soff &= ~esp->radelay; 1431 tp->esp_config3 |= bit; 1432 } else { 1433 tp->esp_config3 &= ~bit; 1434 } 1435 esp->prev_cfg3 = tp->esp_config3; 1436 esp_write8(esp->prev_cfg3, ESP_CFG3); 1437 } 1438 } 1439 1440 tp->esp_period = esp->prev_stp = esp_stp; 1441 tp->esp_offset = esp->prev_soff = esp_soff; 1442 1443 esp_write8(esp_soff, ESP_SOFF); 1444 esp_write8(esp_stp, ESP_STP); 1445 1446 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO); 1447 1448 spi_display_xfer_agreement(tp->starget); 1449 } 1450 1451 static void esp_msgin_reject(struct esp *esp) 1452 { 1453 struct esp_cmd_entry *ent = esp->active_cmd; 1454 struct scsi_cmnd *cmd = ent->cmd; 1455 struct esp_target_data *tp; 1456 int tgt; 1457 1458 tgt = cmd->device->id; 1459 tp = &esp->target[tgt]; 1460 1461 if (tp->flags & ESP_TGT_NEGO_WIDE) { 1462 tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE); 1463 1464 if (!esp_need_to_nego_sync(tp)) { 1465 tp->flags &= ~ESP_TGT_CHECK_NEGO; 1466 scsi_esp_cmd(esp, ESP_CMD_RATN); 1467 } else { 1468 esp->msg_out_len = 1469 spi_populate_sync_msg(&esp->msg_out[0], 1470 tp->nego_goal_period, 1471 tp->nego_goal_offset); 1472 tp->flags |= ESP_TGT_NEGO_SYNC; 1473 scsi_esp_cmd(esp, ESP_CMD_SATN); 1474 } 1475 return; 1476 } 1477 1478 if (tp->flags & ESP_TGT_NEGO_SYNC) { 1479 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO); 1480 tp->esp_period = 0; 1481 tp->esp_offset = 0; 1482 esp_setsync(esp, tp, 0, 0, 0, 0); 1483 scsi_esp_cmd(esp, ESP_CMD_RATN); 1484 return; 1485 } 1486 1487 shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n"); 1488 esp_schedule_reset(esp); 1489 } 1490 1491 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp) 1492 { 1493 u8 period = esp->msg_in[3]; 1494 u8 offset = esp->msg_in[4]; 1495 u8 stp; 1496 1497 if (!(tp->flags & ESP_TGT_NEGO_SYNC)) 1498 goto do_reject; 1499 1500 if (offset > 15) 1501 goto do_reject; 1502 1503 if (offset) { 1504 int one_clock; 1505 1506 if (period > esp->max_period) { 1507 period = offset = 0; 1508 goto do_sdtr; 1509 } 1510 if (period < esp->min_period) 1511 goto do_reject; 1512 1513 one_clock = esp->ccycle / 1000; 1514 stp = DIV_ROUND_UP(period << 2, one_clock); 1515 if (stp && esp->rev >= FAS236) { 1516 if (stp >= 50) 1517 stp--; 1518 } 1519 } else { 1520 stp = 0; 1521 } 1522 1523 esp_setsync(esp, tp, period, offset, stp, offset); 1524 return; 1525 1526 do_reject: 1527 esp->msg_out[0] = MESSAGE_REJECT; 1528 esp->msg_out_len = 1; 1529 scsi_esp_cmd(esp, ESP_CMD_SATN); 1530 return; 1531 1532 do_sdtr: 1533 tp->nego_goal_period = period; 1534 tp->nego_goal_offset = offset; 1535 esp->msg_out_len = 1536 spi_populate_sync_msg(&esp->msg_out[0], 1537 tp->nego_goal_period, 1538 tp->nego_goal_offset); 1539 scsi_esp_cmd(esp, ESP_CMD_SATN); 1540 } 1541 1542 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp) 1543 { 1544 int size = 8 << esp->msg_in[3]; 1545 u8 cfg3; 1546 1547 if (esp->rev != FASHME) 1548 goto do_reject; 1549 1550 if (size != 8 && size != 16) 1551 goto do_reject; 1552 1553 if (!(tp->flags & ESP_TGT_NEGO_WIDE)) 1554 goto do_reject; 1555 1556 cfg3 = tp->esp_config3; 1557 if (size == 16) { 1558 tp->flags |= ESP_TGT_WIDE; 1559 cfg3 |= ESP_CONFIG3_EWIDE; 1560 } else { 1561 tp->flags &= ~ESP_TGT_WIDE; 1562 cfg3 &= ~ESP_CONFIG3_EWIDE; 1563 } 1564 tp->esp_config3 = cfg3; 1565 esp->prev_cfg3 = cfg3; 1566 esp_write8(cfg3, ESP_CFG3); 1567 1568 tp->flags &= ~ESP_TGT_NEGO_WIDE; 1569 1570 spi_period(tp->starget) = 0; 1571 spi_offset(tp->starget) = 0; 1572 if (!esp_need_to_nego_sync(tp)) { 1573 tp->flags &= ~ESP_TGT_CHECK_NEGO; 1574 scsi_esp_cmd(esp, ESP_CMD_RATN); 1575 } else { 1576 esp->msg_out_len = 1577 spi_populate_sync_msg(&esp->msg_out[0], 1578 tp->nego_goal_period, 1579 tp->nego_goal_offset); 1580 tp->flags |= ESP_TGT_NEGO_SYNC; 1581 scsi_esp_cmd(esp, ESP_CMD_SATN); 1582 } 1583 return; 1584 1585 do_reject: 1586 esp->msg_out[0] = MESSAGE_REJECT; 1587 esp->msg_out_len = 1; 1588 scsi_esp_cmd(esp, ESP_CMD_SATN); 1589 } 1590 1591 static void esp_msgin_extended(struct esp *esp) 1592 { 1593 struct esp_cmd_entry *ent = esp->active_cmd; 1594 struct scsi_cmnd *cmd = ent->cmd; 1595 struct esp_target_data *tp; 1596 int tgt = cmd->device->id; 1597 1598 tp = &esp->target[tgt]; 1599 if (esp->msg_in[2] == EXTENDED_SDTR) { 1600 esp_msgin_sdtr(esp, tp); 1601 return; 1602 } 1603 if (esp->msg_in[2] == EXTENDED_WDTR) { 1604 esp_msgin_wdtr(esp, tp); 1605 return; 1606 } 1607 1608 shost_printk(KERN_INFO, esp->host, 1609 "Unexpected extended msg type %x\n", esp->msg_in[2]); 1610 1611 esp->msg_out[0] = MESSAGE_REJECT; 1612 esp->msg_out_len = 1; 1613 scsi_esp_cmd(esp, ESP_CMD_SATN); 1614 } 1615 1616 /* Analyze msgin bytes received from target so far. Return non-zero 1617 * if there are more bytes needed to complete the message. 1618 */ 1619 static int esp_msgin_process(struct esp *esp) 1620 { 1621 u8 msg0 = esp->msg_in[0]; 1622 int len = esp->msg_in_len; 1623 1624 if (msg0 & 0x80) { 1625 /* Identify */ 1626 shost_printk(KERN_INFO, esp->host, 1627 "Unexpected msgin identify\n"); 1628 return 0; 1629 } 1630 1631 switch (msg0) { 1632 case EXTENDED_MESSAGE: 1633 if (len == 1) 1634 return 1; 1635 if (len < esp->msg_in[1] + 2) 1636 return 1; 1637 esp_msgin_extended(esp); 1638 return 0; 1639 1640 case IGNORE_WIDE_RESIDUE: { 1641 struct esp_cmd_entry *ent; 1642 struct esp_cmd_priv *spriv; 1643 if (len == 1) 1644 return 1; 1645 1646 if (esp->msg_in[1] != 1) 1647 goto do_reject; 1648 1649 ent = esp->active_cmd; 1650 spriv = ESP_CMD_PRIV(ent->cmd); 1651 1652 if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) { 1653 spriv->cur_sg = spriv->prv_sg; 1654 spriv->cur_residue = 1; 1655 } else 1656 spriv->cur_residue++; 1657 spriv->tot_residue++; 1658 return 0; 1659 } 1660 case NOP: 1661 return 0; 1662 case RESTORE_POINTERS: 1663 esp_restore_pointers(esp, esp->active_cmd); 1664 return 0; 1665 case SAVE_POINTERS: 1666 esp_save_pointers(esp, esp->active_cmd); 1667 return 0; 1668 1669 case COMMAND_COMPLETE: 1670 case DISCONNECT: { 1671 struct esp_cmd_entry *ent = esp->active_cmd; 1672 1673 ent->message = msg0; 1674 esp_event(esp, ESP_EVENT_FREE_BUS); 1675 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1676 return 0; 1677 } 1678 case MESSAGE_REJECT: 1679 esp_msgin_reject(esp); 1680 return 0; 1681 1682 default: 1683 do_reject: 1684 esp->msg_out[0] = MESSAGE_REJECT; 1685 esp->msg_out_len = 1; 1686 scsi_esp_cmd(esp, ESP_CMD_SATN); 1687 return 0; 1688 } 1689 } 1690 1691 static int esp_process_event(struct esp *esp) 1692 { 1693 int write, i; 1694 1695 again: 1696 write = 0; 1697 esp_log_event("process event %d phase %x\n", 1698 esp->event, esp->sreg & ESP_STAT_PMASK); 1699 switch (esp->event) { 1700 case ESP_EVENT_CHECK_PHASE: 1701 switch (esp->sreg & ESP_STAT_PMASK) { 1702 case ESP_DOP: 1703 esp_event(esp, ESP_EVENT_DATA_OUT); 1704 break; 1705 case ESP_DIP: 1706 esp_event(esp, ESP_EVENT_DATA_IN); 1707 break; 1708 case ESP_STATP: 1709 esp_flush_fifo(esp); 1710 scsi_esp_cmd(esp, ESP_CMD_ICCSEQ); 1711 esp_event(esp, ESP_EVENT_STATUS); 1712 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1713 return 1; 1714 1715 case ESP_MOP: 1716 esp_event(esp, ESP_EVENT_MSGOUT); 1717 break; 1718 1719 case ESP_MIP: 1720 esp_event(esp, ESP_EVENT_MSGIN); 1721 break; 1722 1723 case ESP_CMDP: 1724 esp_event(esp, ESP_EVENT_CMD_START); 1725 break; 1726 1727 default: 1728 shost_printk(KERN_INFO, esp->host, 1729 "Unexpected phase, sreg=%02x\n", 1730 esp->sreg); 1731 esp_schedule_reset(esp); 1732 return 0; 1733 } 1734 goto again; 1735 1736 case ESP_EVENT_DATA_IN: 1737 write = 1; 1738 fallthrough; 1739 1740 case ESP_EVENT_DATA_OUT: { 1741 struct esp_cmd_entry *ent = esp->active_cmd; 1742 struct scsi_cmnd *cmd = ent->cmd; 1743 dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd); 1744 unsigned int dma_len = esp_cur_dma_len(ent, cmd); 1745 1746 if (esp->rev == ESP100) 1747 scsi_esp_cmd(esp, ESP_CMD_NULL); 1748 1749 if (write) 1750 ent->flags |= ESP_CMD_FLAG_WRITE; 1751 else 1752 ent->flags &= ~ESP_CMD_FLAG_WRITE; 1753 1754 if (esp->ops->dma_length_limit) 1755 dma_len = esp->ops->dma_length_limit(esp, dma_addr, 1756 dma_len); 1757 else 1758 dma_len = esp_dma_length_limit(esp, dma_addr, dma_len); 1759 1760 esp->data_dma_len = dma_len; 1761 1762 if (!dma_len) { 1763 shost_printk(KERN_ERR, esp->host, 1764 "DMA length is zero!\n"); 1765 shost_printk(KERN_ERR, esp->host, 1766 "cur adr[%08llx] len[%08x]\n", 1767 (unsigned long long)esp_cur_dma_addr(ent, cmd), 1768 esp_cur_dma_len(ent, cmd)); 1769 esp_schedule_reset(esp); 1770 return 0; 1771 } 1772 1773 esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n", 1774 (unsigned long long)dma_addr, dma_len, write); 1775 1776 esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len, 1777 write, ESP_CMD_DMA | ESP_CMD_TI); 1778 esp_event(esp, ESP_EVENT_DATA_DONE); 1779 break; 1780 } 1781 case ESP_EVENT_DATA_DONE: { 1782 struct esp_cmd_entry *ent = esp->active_cmd; 1783 struct scsi_cmnd *cmd = ent->cmd; 1784 int bytes_sent; 1785 1786 if (esp->ops->dma_error(esp)) { 1787 shost_printk(KERN_INFO, esp->host, 1788 "data done, DMA error, resetting\n"); 1789 esp_schedule_reset(esp); 1790 return 0; 1791 } 1792 1793 if (ent->flags & ESP_CMD_FLAG_WRITE) { 1794 /* XXX parity errors, etc. XXX */ 1795 1796 esp->ops->dma_drain(esp); 1797 } 1798 esp->ops->dma_invalidate(esp); 1799 1800 if (esp->ireg != ESP_INTR_BSERV) { 1801 /* We should always see exactly a bus-service 1802 * interrupt at the end of a successful transfer. 1803 */ 1804 shost_printk(KERN_INFO, esp->host, 1805 "data done, not BSERV, resetting\n"); 1806 esp_schedule_reset(esp); 1807 return 0; 1808 } 1809 1810 bytes_sent = esp_data_bytes_sent(esp, ent, cmd); 1811 1812 esp_log_datadone("data done flgs[%x] sent[%d]\n", 1813 ent->flags, bytes_sent); 1814 1815 if (bytes_sent < 0) { 1816 /* XXX force sync mode for this target XXX */ 1817 esp_schedule_reset(esp); 1818 return 0; 1819 } 1820 1821 esp_advance_dma(esp, ent, cmd, bytes_sent); 1822 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1823 goto again; 1824 } 1825 1826 case ESP_EVENT_STATUS: { 1827 struct esp_cmd_entry *ent = esp->active_cmd; 1828 1829 if (esp->ireg & ESP_INTR_FDONE) { 1830 ent->status = esp_read8(ESP_FDATA); 1831 ent->message = esp_read8(ESP_FDATA); 1832 scsi_esp_cmd(esp, ESP_CMD_MOK); 1833 } else if (esp->ireg == ESP_INTR_BSERV) { 1834 ent->status = esp_read8(ESP_FDATA); 1835 ent->message = 0xff; 1836 esp_event(esp, ESP_EVENT_MSGIN); 1837 return 0; 1838 } 1839 1840 if (ent->message != COMMAND_COMPLETE) { 1841 shost_printk(KERN_INFO, esp->host, 1842 "Unexpected message %x in status\n", 1843 ent->message); 1844 esp_schedule_reset(esp); 1845 return 0; 1846 } 1847 1848 esp_event(esp, ESP_EVENT_FREE_BUS); 1849 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1850 break; 1851 } 1852 case ESP_EVENT_FREE_BUS: { 1853 struct esp_cmd_entry *ent = esp->active_cmd; 1854 struct scsi_cmnd *cmd = ent->cmd; 1855 1856 if (ent->message == COMMAND_COMPLETE || 1857 ent->message == DISCONNECT) 1858 scsi_esp_cmd(esp, ESP_CMD_ESEL); 1859 1860 if (ent->message == COMMAND_COMPLETE) { 1861 esp_log_cmddone("Command done status[%x] message[%x]\n", 1862 ent->status, ent->message); 1863 if (ent->status == SAM_STAT_TASK_SET_FULL) 1864 esp_event_queue_full(esp, ent); 1865 1866 if (ent->status == SAM_STAT_CHECK_CONDITION && 1867 !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) { 1868 ent->flags |= ESP_CMD_FLAG_AUTOSENSE; 1869 esp_autosense(esp, ent); 1870 } else { 1871 esp_cmd_is_done(esp, ent, cmd, DID_OK); 1872 } 1873 } else if (ent->message == DISCONNECT) { 1874 esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n", 1875 cmd->device->id, 1876 ent->tag[0], ent->tag[1]); 1877 1878 esp->active_cmd = NULL; 1879 esp_maybe_execute_command(esp); 1880 } else { 1881 shost_printk(KERN_INFO, esp->host, 1882 "Unexpected message %x in freebus\n", 1883 ent->message); 1884 esp_schedule_reset(esp); 1885 return 0; 1886 } 1887 if (esp->active_cmd) 1888 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1889 break; 1890 } 1891 case ESP_EVENT_MSGOUT: { 1892 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1893 1894 if (esp_debug & ESP_DEBUG_MSGOUT) { 1895 int i; 1896 printk("ESP: Sending message [ "); 1897 for (i = 0; i < esp->msg_out_len; i++) 1898 printk("%02x ", esp->msg_out[i]); 1899 printk("]\n"); 1900 } 1901 1902 if (esp->rev == FASHME) { 1903 int i; 1904 1905 /* Always use the fifo. */ 1906 for (i = 0; i < esp->msg_out_len; i++) { 1907 esp_write8(esp->msg_out[i], ESP_FDATA); 1908 esp_write8(0, ESP_FDATA); 1909 } 1910 scsi_esp_cmd(esp, ESP_CMD_TI); 1911 } else { 1912 if (esp->msg_out_len == 1) { 1913 esp_write8(esp->msg_out[0], ESP_FDATA); 1914 scsi_esp_cmd(esp, ESP_CMD_TI); 1915 } else if (esp->flags & ESP_FLAG_USE_FIFO) { 1916 for (i = 0; i < esp->msg_out_len; i++) 1917 esp_write8(esp->msg_out[i], ESP_FDATA); 1918 scsi_esp_cmd(esp, ESP_CMD_TI); 1919 } else { 1920 /* Use DMA. */ 1921 memcpy(esp->command_block, 1922 esp->msg_out, 1923 esp->msg_out_len); 1924 1925 esp->ops->send_dma_cmd(esp, 1926 esp->command_block_dma, 1927 esp->msg_out_len, 1928 esp->msg_out_len, 1929 0, 1930 ESP_CMD_DMA|ESP_CMD_TI); 1931 } 1932 } 1933 esp_event(esp, ESP_EVENT_MSGOUT_DONE); 1934 break; 1935 } 1936 case ESP_EVENT_MSGOUT_DONE: 1937 if (esp->rev == FASHME) { 1938 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1939 } else { 1940 if (esp->msg_out_len > 1) 1941 esp->ops->dma_invalidate(esp); 1942 1943 /* XXX if the chip went into disconnected mode, 1944 * we can't run the phase state machine anyway. 1945 */ 1946 if (!(esp->ireg & ESP_INTR_DC)) 1947 scsi_esp_cmd(esp, ESP_CMD_NULL); 1948 } 1949 1950 esp->msg_out_len = 0; 1951 1952 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1953 goto again; 1954 case ESP_EVENT_MSGIN: 1955 if (esp->ireg & ESP_INTR_BSERV) { 1956 if (esp->rev == FASHME) { 1957 if (!(esp_read8(ESP_STATUS2) & 1958 ESP_STAT2_FEMPTY)) 1959 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1960 } else { 1961 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1962 if (esp->rev == ESP100) 1963 scsi_esp_cmd(esp, ESP_CMD_NULL); 1964 } 1965 scsi_esp_cmd(esp, ESP_CMD_TI); 1966 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 1967 return 1; 1968 } 1969 if (esp->ireg & ESP_INTR_FDONE) { 1970 u8 val; 1971 1972 if (esp->rev == FASHME) 1973 val = esp->fifo[0]; 1974 else 1975 val = esp_read8(ESP_FDATA); 1976 esp->msg_in[esp->msg_in_len++] = val; 1977 1978 esp_log_msgin("Got msgin byte %x\n", val); 1979 1980 if (!esp_msgin_process(esp)) 1981 esp->msg_in_len = 0; 1982 1983 if (esp->rev == FASHME) 1984 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 1985 1986 scsi_esp_cmd(esp, ESP_CMD_MOK); 1987 1988 /* Check whether a bus reset is to be done next */ 1989 if (esp->event == ESP_EVENT_RESET) 1990 return 0; 1991 1992 if (esp->event != ESP_EVENT_FREE_BUS) 1993 esp_event(esp, ESP_EVENT_CHECK_PHASE); 1994 } else { 1995 shost_printk(KERN_INFO, esp->host, 1996 "MSGIN neither BSERV not FDON, resetting"); 1997 esp_schedule_reset(esp); 1998 return 0; 1999 } 2000 break; 2001 case ESP_EVENT_CMD_START: 2002 memcpy(esp->command_block, esp->cmd_bytes_ptr, 2003 esp->cmd_bytes_left); 2004 esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI); 2005 esp_event(esp, ESP_EVENT_CMD_DONE); 2006 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; 2007 break; 2008 case ESP_EVENT_CMD_DONE: 2009 esp->ops->dma_invalidate(esp); 2010 if (esp->ireg & ESP_INTR_BSERV) { 2011 esp_event(esp, ESP_EVENT_CHECK_PHASE); 2012 goto again; 2013 } 2014 esp_schedule_reset(esp); 2015 return 0; 2016 2017 case ESP_EVENT_RESET: 2018 scsi_esp_cmd(esp, ESP_CMD_RS); 2019 break; 2020 2021 default: 2022 shost_printk(KERN_INFO, esp->host, 2023 "Unexpected event %x, resetting\n", esp->event); 2024 esp_schedule_reset(esp); 2025 return 0; 2026 } 2027 return 1; 2028 } 2029 2030 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent) 2031 { 2032 struct scsi_cmnd *cmd = ent->cmd; 2033 2034 esp_unmap_dma(esp, cmd); 2035 esp_free_lun_tag(ent, cmd->device->hostdata); 2036 cmd->result = DID_RESET << 16; 2037 2038 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) 2039 esp_unmap_sense(esp, ent); 2040 2041 cmd->scsi_done(cmd); 2042 list_del(&ent->list); 2043 esp_put_ent(esp, ent); 2044 } 2045 2046 static void esp_clear_hold(struct scsi_device *dev, void *data) 2047 { 2048 struct esp_lun_data *lp = dev->hostdata; 2049 2050 BUG_ON(lp->num_tagged); 2051 lp->hold = 0; 2052 } 2053 2054 static void esp_reset_cleanup(struct esp *esp) 2055 { 2056 struct esp_cmd_entry *ent, *tmp; 2057 int i; 2058 2059 list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) { 2060 struct scsi_cmnd *cmd = ent->cmd; 2061 2062 list_del(&ent->list); 2063 cmd->result = DID_RESET << 16; 2064 cmd->scsi_done(cmd); 2065 esp_put_ent(esp, ent); 2066 } 2067 2068 list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) { 2069 if (ent == esp->active_cmd) 2070 esp->active_cmd = NULL; 2071 esp_reset_cleanup_one(esp, ent); 2072 } 2073 2074 BUG_ON(esp->active_cmd != NULL); 2075 2076 /* Force renegotiation of sync/wide transfers. */ 2077 for (i = 0; i < ESP_MAX_TARGET; i++) { 2078 struct esp_target_data *tp = &esp->target[i]; 2079 2080 tp->esp_period = 0; 2081 tp->esp_offset = 0; 2082 tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE | 2083 ESP_CONFIG3_FSCSI | 2084 ESP_CONFIG3_FAST); 2085 tp->flags &= ~ESP_TGT_WIDE; 2086 tp->flags |= ESP_TGT_CHECK_NEGO; 2087 2088 if (tp->starget) 2089 __starget_for_each_device(tp->starget, NULL, 2090 esp_clear_hold); 2091 } 2092 esp->flags &= ~ESP_FLAG_RESETTING; 2093 } 2094 2095 /* Runs under host->lock */ 2096 static void __esp_interrupt(struct esp *esp) 2097 { 2098 int finish_reset, intr_done; 2099 u8 phase; 2100 2101 /* 2102 * Once INTRPT is read STATUS and SSTEP are cleared. 2103 */ 2104 esp->sreg = esp_read8(ESP_STATUS); 2105 esp->seqreg = esp_read8(ESP_SSTEP); 2106 esp->ireg = esp_read8(ESP_INTRPT); 2107 2108 if (esp->flags & ESP_FLAG_RESETTING) { 2109 finish_reset = 1; 2110 } else { 2111 if (esp_check_gross_error(esp)) 2112 return; 2113 2114 finish_reset = esp_check_spur_intr(esp); 2115 if (finish_reset < 0) 2116 return; 2117 } 2118 2119 if (esp->ireg & ESP_INTR_SR) 2120 finish_reset = 1; 2121 2122 if (finish_reset) { 2123 esp_reset_cleanup(esp); 2124 if (esp->eh_reset) { 2125 complete(esp->eh_reset); 2126 esp->eh_reset = NULL; 2127 } 2128 return; 2129 } 2130 2131 phase = (esp->sreg & ESP_STAT_PMASK); 2132 if (esp->rev == FASHME) { 2133 if (((phase != ESP_DIP && phase != ESP_DOP) && 2134 esp->select_state == ESP_SELECT_NONE && 2135 esp->event != ESP_EVENT_STATUS && 2136 esp->event != ESP_EVENT_DATA_DONE) || 2137 (esp->ireg & ESP_INTR_RSEL)) { 2138 esp->sreg2 = esp_read8(ESP_STATUS2); 2139 if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || 2140 (esp->sreg2 & ESP_STAT2_F1BYTE)) 2141 hme_read_fifo(esp); 2142 } 2143 } 2144 2145 esp_log_intr("intr sreg[%02x] seqreg[%02x] " 2146 "sreg2[%02x] ireg[%02x]\n", 2147 esp->sreg, esp->seqreg, esp->sreg2, esp->ireg); 2148 2149 intr_done = 0; 2150 2151 if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) { 2152 shost_printk(KERN_INFO, esp->host, 2153 "unexpected IREG %02x\n", esp->ireg); 2154 if (esp->ireg & ESP_INTR_IC) 2155 esp_dump_cmd_log(esp); 2156 2157 esp_schedule_reset(esp); 2158 } else { 2159 if (esp->ireg & ESP_INTR_RSEL) { 2160 if (esp->active_cmd) 2161 (void) esp_finish_select(esp); 2162 intr_done = esp_reconnect(esp); 2163 } else { 2164 /* Some combination of FDONE, BSERV, DC. */ 2165 if (esp->select_state != ESP_SELECT_NONE) 2166 intr_done = esp_finish_select(esp); 2167 } 2168 } 2169 while (!intr_done) 2170 intr_done = esp_process_event(esp); 2171 } 2172 2173 irqreturn_t scsi_esp_intr(int irq, void *dev_id) 2174 { 2175 struct esp *esp = dev_id; 2176 unsigned long flags; 2177 irqreturn_t ret; 2178 2179 spin_lock_irqsave(esp->host->host_lock, flags); 2180 ret = IRQ_NONE; 2181 if (esp->ops->irq_pending(esp)) { 2182 ret = IRQ_HANDLED; 2183 for (;;) { 2184 int i; 2185 2186 __esp_interrupt(esp); 2187 if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK)) 2188 break; 2189 esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK; 2190 2191 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) { 2192 if (esp->ops->irq_pending(esp)) 2193 break; 2194 } 2195 if (i == ESP_QUICKIRQ_LIMIT) 2196 break; 2197 } 2198 } 2199 spin_unlock_irqrestore(esp->host->host_lock, flags); 2200 2201 return ret; 2202 } 2203 EXPORT_SYMBOL(scsi_esp_intr); 2204 2205 static void esp_get_revision(struct esp *esp) 2206 { 2207 u8 val; 2208 2209 esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7)); 2210 if (esp->config2 == 0) { 2211 esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY); 2212 esp_write8(esp->config2, ESP_CFG2); 2213 2214 val = esp_read8(ESP_CFG2); 2215 val &= ~ESP_CONFIG2_MAGIC; 2216 2217 esp->config2 = 0; 2218 if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) { 2219 /* 2220 * If what we write to cfg2 does not come back, 2221 * cfg2 is not implemented. 2222 * Therefore this must be a plain esp100. 2223 */ 2224 esp->rev = ESP100; 2225 return; 2226 } 2227 } 2228 2229 esp_set_all_config3(esp, 5); 2230 esp->prev_cfg3 = 5; 2231 esp_write8(esp->config2, ESP_CFG2); 2232 esp_write8(0, ESP_CFG3); 2233 esp_write8(esp->prev_cfg3, ESP_CFG3); 2234 2235 val = esp_read8(ESP_CFG3); 2236 if (val != 5) { 2237 /* The cfg2 register is implemented, however 2238 * cfg3 is not, must be esp100a. 2239 */ 2240 esp->rev = ESP100A; 2241 } else { 2242 esp_set_all_config3(esp, 0); 2243 esp->prev_cfg3 = 0; 2244 esp_write8(esp->prev_cfg3, ESP_CFG3); 2245 2246 /* All of cfg{1,2,3} implemented, must be one of 2247 * the fas variants, figure out which one. 2248 */ 2249 if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) { 2250 esp->rev = FAST; 2251 esp->sync_defp = SYNC_DEFP_FAST; 2252 } else { 2253 esp->rev = ESP236; 2254 } 2255 } 2256 } 2257 2258 static void esp_init_swstate(struct esp *esp) 2259 { 2260 int i; 2261 2262 INIT_LIST_HEAD(&esp->queued_cmds); 2263 INIT_LIST_HEAD(&esp->active_cmds); 2264 INIT_LIST_HEAD(&esp->esp_cmd_pool); 2265 2266 /* Start with a clear state, domain validation (via ->slave_configure, 2267 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged 2268 * commands. 2269 */ 2270 for (i = 0 ; i < ESP_MAX_TARGET; i++) { 2271 esp->target[i].flags = 0; 2272 esp->target[i].nego_goal_period = 0; 2273 esp->target[i].nego_goal_offset = 0; 2274 esp->target[i].nego_goal_width = 0; 2275 esp->target[i].nego_goal_tags = 0; 2276 } 2277 } 2278 2279 /* This places the ESP into a known state at boot time. */ 2280 static void esp_bootup_reset(struct esp *esp) 2281 { 2282 u8 val; 2283 2284 /* Reset the DMA */ 2285 esp->ops->reset_dma(esp); 2286 2287 /* Reset the ESP */ 2288 esp_reset_esp(esp); 2289 2290 /* Reset the SCSI bus, but tell ESP not to generate an irq */ 2291 val = esp_read8(ESP_CFG1); 2292 val |= ESP_CONFIG1_SRRDISAB; 2293 esp_write8(val, ESP_CFG1); 2294 2295 scsi_esp_cmd(esp, ESP_CMD_RS); 2296 udelay(400); 2297 2298 esp_write8(esp->config1, ESP_CFG1); 2299 2300 /* Eat any bitrot in the chip and we are done... */ 2301 esp_read8(ESP_INTRPT); 2302 } 2303 2304 static void esp_set_clock_params(struct esp *esp) 2305 { 2306 int fhz; 2307 u8 ccf; 2308 2309 /* This is getting messy but it has to be done correctly or else 2310 * you get weird behavior all over the place. We are trying to 2311 * basically figure out three pieces of information. 2312 * 2313 * a) Clock Conversion Factor 2314 * 2315 * This is a representation of the input crystal clock frequency 2316 * going into the ESP on this machine. Any operation whose timing 2317 * is longer than 400ns depends on this value being correct. For 2318 * example, you'll get blips for arbitration/selection during high 2319 * load or with multiple targets if this is not set correctly. 2320 * 2321 * b) Selection Time-Out 2322 * 2323 * The ESP isn't very bright and will arbitrate for the bus and try 2324 * to select a target forever if you let it. This value tells the 2325 * ESP when it has taken too long to negotiate and that it should 2326 * interrupt the CPU so we can see what happened. The value is 2327 * computed as follows (from NCR/Symbios chip docs). 2328 * 2329 * (Time Out Period) * (Input Clock) 2330 * STO = ---------------------------------- 2331 * (8192) * (Clock Conversion Factor) 2332 * 2333 * We use a time out period of 250ms (ESP_BUS_TIMEOUT). 2334 * 2335 * c) Imperical constants for synchronous offset and transfer period 2336 * register values 2337 * 2338 * This entails the smallest and largest sync period we could ever 2339 * handle on this ESP. 2340 */ 2341 fhz = esp->cfreq; 2342 2343 ccf = ((fhz / 1000000) + 4) / 5; 2344 if (ccf == 1) 2345 ccf = 2; 2346 2347 /* If we can't find anything reasonable, just assume 20MHZ. 2348 * This is the clock frequency of the older sun4c's where I've 2349 * been unable to find the clock-frequency PROM property. All 2350 * other machines provide useful values it seems. 2351 */ 2352 if (fhz <= 5000000 || ccf < 1 || ccf > 8) { 2353 fhz = 20000000; 2354 ccf = 4; 2355 } 2356 2357 esp->cfact = (ccf == 8 ? 0 : ccf); 2358 esp->cfreq = fhz; 2359 esp->ccycle = ESP_HZ_TO_CYCLE(fhz); 2360 esp->ctick = ESP_TICK(ccf, esp->ccycle); 2361 esp->neg_defp = ESP_NEG_DEFP(fhz, ccf); 2362 esp->sync_defp = SYNC_DEFP_SLOW; 2363 } 2364 2365 static const char *esp_chip_names[] = { 2366 "ESP100", 2367 "ESP100A", 2368 "ESP236", 2369 "FAS236", 2370 "AM53C974", 2371 "53CF9x-2", 2372 "FAS100A", 2373 "FAST", 2374 "FASHME", 2375 }; 2376 2377 static struct scsi_transport_template *esp_transport_template; 2378 2379 int scsi_esp_register(struct esp *esp) 2380 { 2381 static int instance; 2382 int err; 2383 2384 if (!esp->num_tags) 2385 esp->num_tags = ESP_DEFAULT_TAGS; 2386 esp->host->transportt = esp_transport_template; 2387 esp->host->max_lun = ESP_MAX_LUN; 2388 esp->host->cmd_per_lun = 2; 2389 esp->host->unique_id = instance; 2390 2391 esp_set_clock_params(esp); 2392 2393 esp_get_revision(esp); 2394 2395 esp_init_swstate(esp); 2396 2397 esp_bootup_reset(esp); 2398 2399 dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n", 2400 esp->host->unique_id, esp->regs, esp->dma_regs, 2401 esp->host->irq); 2402 dev_printk(KERN_INFO, esp->dev, 2403 "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n", 2404 esp->host->unique_id, esp_chip_names[esp->rev], 2405 esp->cfreq / 1000000, esp->cfact, esp->scsi_id); 2406 2407 /* Let the SCSI bus reset settle. */ 2408 ssleep(esp_bus_reset_settle); 2409 2410 err = scsi_add_host(esp->host, esp->dev); 2411 if (err) 2412 return err; 2413 2414 instance++; 2415 2416 scsi_scan_host(esp->host); 2417 2418 return 0; 2419 } 2420 EXPORT_SYMBOL(scsi_esp_register); 2421 2422 void scsi_esp_unregister(struct esp *esp) 2423 { 2424 scsi_remove_host(esp->host); 2425 } 2426 EXPORT_SYMBOL(scsi_esp_unregister); 2427 2428 static int esp_target_alloc(struct scsi_target *starget) 2429 { 2430 struct esp *esp = shost_priv(dev_to_shost(&starget->dev)); 2431 struct esp_target_data *tp = &esp->target[starget->id]; 2432 2433 tp->starget = starget; 2434 2435 return 0; 2436 } 2437 2438 static void esp_target_destroy(struct scsi_target *starget) 2439 { 2440 struct esp *esp = shost_priv(dev_to_shost(&starget->dev)); 2441 struct esp_target_data *tp = &esp->target[starget->id]; 2442 2443 tp->starget = NULL; 2444 } 2445 2446 static int esp_slave_alloc(struct scsi_device *dev) 2447 { 2448 struct esp *esp = shost_priv(dev->host); 2449 struct esp_target_data *tp = &esp->target[dev->id]; 2450 struct esp_lun_data *lp; 2451 2452 lp = kzalloc(sizeof(*lp), GFP_KERNEL); 2453 if (!lp) 2454 return -ENOMEM; 2455 dev->hostdata = lp; 2456 2457 spi_min_period(tp->starget) = esp->min_period; 2458 spi_max_offset(tp->starget) = 15; 2459 2460 if (esp->flags & ESP_FLAG_WIDE_CAPABLE) 2461 spi_max_width(tp->starget) = 1; 2462 else 2463 spi_max_width(tp->starget) = 0; 2464 2465 return 0; 2466 } 2467 2468 static int esp_slave_configure(struct scsi_device *dev) 2469 { 2470 struct esp *esp = shost_priv(dev->host); 2471 struct esp_target_data *tp = &esp->target[dev->id]; 2472 2473 if (dev->tagged_supported) 2474 scsi_change_queue_depth(dev, esp->num_tags); 2475 2476 tp->flags |= ESP_TGT_DISCONNECT; 2477 2478 if (!spi_initial_dv(dev->sdev_target)) 2479 spi_dv_device(dev); 2480 2481 return 0; 2482 } 2483 2484 static void esp_slave_destroy(struct scsi_device *dev) 2485 { 2486 struct esp_lun_data *lp = dev->hostdata; 2487 2488 kfree(lp); 2489 dev->hostdata = NULL; 2490 } 2491 2492 static int esp_eh_abort_handler(struct scsi_cmnd *cmd) 2493 { 2494 struct esp *esp = shost_priv(cmd->device->host); 2495 struct esp_cmd_entry *ent, *tmp; 2496 struct completion eh_done; 2497 unsigned long flags; 2498 2499 /* XXX This helps a lot with debugging but might be a bit 2500 * XXX much for the final driver. 2501 */ 2502 spin_lock_irqsave(esp->host->host_lock, flags); 2503 shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n", 2504 cmd, cmd->cmnd[0]); 2505 ent = esp->active_cmd; 2506 if (ent) 2507 shost_printk(KERN_ERR, esp->host, 2508 "Current command [%p:%02x]\n", 2509 ent->cmd, ent->cmd->cmnd[0]); 2510 list_for_each_entry(ent, &esp->queued_cmds, list) { 2511 shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n", 2512 ent->cmd, ent->cmd->cmnd[0]); 2513 } 2514 list_for_each_entry(ent, &esp->active_cmds, list) { 2515 shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n", 2516 ent->cmd, ent->cmd->cmnd[0]); 2517 } 2518 esp_dump_cmd_log(esp); 2519 spin_unlock_irqrestore(esp->host->host_lock, flags); 2520 2521 spin_lock_irqsave(esp->host->host_lock, flags); 2522 2523 ent = NULL; 2524 list_for_each_entry(tmp, &esp->queued_cmds, list) { 2525 if (tmp->cmd == cmd) { 2526 ent = tmp; 2527 break; 2528 } 2529 } 2530 2531 if (ent) { 2532 /* Easiest case, we didn't even issue the command 2533 * yet so it is trivial to abort. 2534 */ 2535 list_del(&ent->list); 2536 2537 cmd->result = DID_ABORT << 16; 2538 cmd->scsi_done(cmd); 2539 2540 esp_put_ent(esp, ent); 2541 2542 goto out_success; 2543 } 2544 2545 init_completion(&eh_done); 2546 2547 ent = esp->active_cmd; 2548 if (ent && ent->cmd == cmd) { 2549 /* Command is the currently active command on 2550 * the bus. If we already have an output message 2551 * pending, no dice. 2552 */ 2553 if (esp->msg_out_len) 2554 goto out_failure; 2555 2556 /* Send out an abort, encouraging the target to 2557 * go to MSGOUT phase by asserting ATN. 2558 */ 2559 esp->msg_out[0] = ABORT_TASK_SET; 2560 esp->msg_out_len = 1; 2561 ent->eh_done = &eh_done; 2562 2563 scsi_esp_cmd(esp, ESP_CMD_SATN); 2564 } else { 2565 /* The command is disconnected. This is not easy to 2566 * abort. For now we fail and let the scsi error 2567 * handling layer go try a scsi bus reset or host 2568 * reset. 2569 * 2570 * What we could do is put together a scsi command 2571 * solely for the purpose of sending an abort message 2572 * to the target. Coming up with all the code to 2573 * cook up scsi commands, special case them everywhere, 2574 * etc. is for questionable gain and it would be better 2575 * if the generic scsi error handling layer could do at 2576 * least some of that for us. 2577 * 2578 * Anyways this is an area for potential future improvement 2579 * in this driver. 2580 */ 2581 goto out_failure; 2582 } 2583 2584 spin_unlock_irqrestore(esp->host->host_lock, flags); 2585 2586 if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) { 2587 spin_lock_irqsave(esp->host->host_lock, flags); 2588 ent->eh_done = NULL; 2589 spin_unlock_irqrestore(esp->host->host_lock, flags); 2590 2591 return FAILED; 2592 } 2593 2594 return SUCCESS; 2595 2596 out_success: 2597 spin_unlock_irqrestore(esp->host->host_lock, flags); 2598 return SUCCESS; 2599 2600 out_failure: 2601 /* XXX This might be a good location to set ESP_TGT_BROKEN 2602 * XXX since we know which target/lun in particular is 2603 * XXX causing trouble. 2604 */ 2605 spin_unlock_irqrestore(esp->host->host_lock, flags); 2606 return FAILED; 2607 } 2608 2609 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd) 2610 { 2611 struct esp *esp = shost_priv(cmd->device->host); 2612 struct completion eh_reset; 2613 unsigned long flags; 2614 2615 init_completion(&eh_reset); 2616 2617 spin_lock_irqsave(esp->host->host_lock, flags); 2618 2619 esp->eh_reset = &eh_reset; 2620 2621 /* XXX This is too simple... We should add lots of 2622 * XXX checks here so that if we find that the chip is 2623 * XXX very wedged we return failure immediately so 2624 * XXX that we can perform a full chip reset. 2625 */ 2626 esp->flags |= ESP_FLAG_RESETTING; 2627 scsi_esp_cmd(esp, ESP_CMD_RS); 2628 2629 spin_unlock_irqrestore(esp->host->host_lock, flags); 2630 2631 ssleep(esp_bus_reset_settle); 2632 2633 if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) { 2634 spin_lock_irqsave(esp->host->host_lock, flags); 2635 esp->eh_reset = NULL; 2636 spin_unlock_irqrestore(esp->host->host_lock, flags); 2637 2638 return FAILED; 2639 } 2640 2641 return SUCCESS; 2642 } 2643 2644 /* All bets are off, reset the entire device. */ 2645 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd) 2646 { 2647 struct esp *esp = shost_priv(cmd->device->host); 2648 unsigned long flags; 2649 2650 spin_lock_irqsave(esp->host->host_lock, flags); 2651 esp_bootup_reset(esp); 2652 esp_reset_cleanup(esp); 2653 spin_unlock_irqrestore(esp->host->host_lock, flags); 2654 2655 ssleep(esp_bus_reset_settle); 2656 2657 return SUCCESS; 2658 } 2659 2660 static const char *esp_info(struct Scsi_Host *host) 2661 { 2662 return "esp"; 2663 } 2664 2665 struct scsi_host_template scsi_esp_template = { 2666 .module = THIS_MODULE, 2667 .name = "esp", 2668 .info = esp_info, 2669 .queuecommand = esp_queuecommand, 2670 .target_alloc = esp_target_alloc, 2671 .target_destroy = esp_target_destroy, 2672 .slave_alloc = esp_slave_alloc, 2673 .slave_configure = esp_slave_configure, 2674 .slave_destroy = esp_slave_destroy, 2675 .eh_abort_handler = esp_eh_abort_handler, 2676 .eh_bus_reset_handler = esp_eh_bus_reset_handler, 2677 .eh_host_reset_handler = esp_eh_host_reset_handler, 2678 .can_queue = 7, 2679 .this_id = 7, 2680 .sg_tablesize = SG_ALL, 2681 .max_sectors = 0xffff, 2682 .skip_settle_delay = 1, 2683 }; 2684 EXPORT_SYMBOL(scsi_esp_template); 2685 2686 static void esp_get_signalling(struct Scsi_Host *host) 2687 { 2688 struct esp *esp = shost_priv(host); 2689 enum spi_signal_type type; 2690 2691 if (esp->flags & ESP_FLAG_DIFFERENTIAL) 2692 type = SPI_SIGNAL_HVD; 2693 else 2694 type = SPI_SIGNAL_SE; 2695 2696 spi_signalling(host) = type; 2697 } 2698 2699 static void esp_set_offset(struct scsi_target *target, int offset) 2700 { 2701 struct Scsi_Host *host = dev_to_shost(target->dev.parent); 2702 struct esp *esp = shost_priv(host); 2703 struct esp_target_data *tp = &esp->target[target->id]; 2704 2705 if (esp->flags & ESP_FLAG_DISABLE_SYNC) 2706 tp->nego_goal_offset = 0; 2707 else 2708 tp->nego_goal_offset = offset; 2709 tp->flags |= ESP_TGT_CHECK_NEGO; 2710 } 2711 2712 static void esp_set_period(struct scsi_target *target, int period) 2713 { 2714 struct Scsi_Host *host = dev_to_shost(target->dev.parent); 2715 struct esp *esp = shost_priv(host); 2716 struct esp_target_data *tp = &esp->target[target->id]; 2717 2718 tp->nego_goal_period = period; 2719 tp->flags |= ESP_TGT_CHECK_NEGO; 2720 } 2721 2722 static void esp_set_width(struct scsi_target *target, int width) 2723 { 2724 struct Scsi_Host *host = dev_to_shost(target->dev.parent); 2725 struct esp *esp = shost_priv(host); 2726 struct esp_target_data *tp = &esp->target[target->id]; 2727 2728 tp->nego_goal_width = (width ? 1 : 0); 2729 tp->flags |= ESP_TGT_CHECK_NEGO; 2730 } 2731 2732 static struct spi_function_template esp_transport_ops = { 2733 .set_offset = esp_set_offset, 2734 .show_offset = 1, 2735 .set_period = esp_set_period, 2736 .show_period = 1, 2737 .set_width = esp_set_width, 2738 .show_width = 1, 2739 .get_signalling = esp_get_signalling, 2740 }; 2741 2742 static int __init esp_init(void) 2743 { 2744 BUILD_BUG_ON(sizeof(struct scsi_pointer) < 2745 sizeof(struct esp_cmd_priv)); 2746 2747 esp_transport_template = spi_attach_transport(&esp_transport_ops); 2748 if (!esp_transport_template) 2749 return -ENODEV; 2750 2751 return 0; 2752 } 2753 2754 static void __exit esp_exit(void) 2755 { 2756 spi_release_transport(esp_transport_template); 2757 } 2758 2759 MODULE_DESCRIPTION("ESP SCSI driver core"); 2760 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); 2761 MODULE_LICENSE("GPL"); 2762 MODULE_VERSION(DRV_VERSION); 2763 2764 module_param(esp_bus_reset_settle, int, 0); 2765 MODULE_PARM_DESC(esp_bus_reset_settle, 2766 "ESP scsi bus reset delay in seconds"); 2767 2768 module_param(esp_debug, int, 0); 2769 MODULE_PARM_DESC(esp_debug, 2770 "ESP bitmapped debugging message enable value:\n" 2771 " 0x00000001 Log interrupt events\n" 2772 " 0x00000002 Log scsi commands\n" 2773 " 0x00000004 Log resets\n" 2774 " 0x00000008 Log message in events\n" 2775 " 0x00000010 Log message out events\n" 2776 " 0x00000020 Log command completion\n" 2777 " 0x00000040 Log disconnects\n" 2778 " 0x00000080 Log data start\n" 2779 " 0x00000100 Log data done\n" 2780 " 0x00000200 Log reconnects\n" 2781 " 0x00000400 Log auto-sense data\n" 2782 ); 2783 2784 module_init(esp_init); 2785 module_exit(esp_exit); 2786 2787 #ifdef CONFIG_SCSI_ESP_PIO 2788 static inline unsigned int esp_wait_for_fifo(struct esp *esp) 2789 { 2790 int i = 500000; 2791 2792 do { 2793 unsigned int fbytes = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; 2794 2795 if (fbytes) 2796 return fbytes; 2797 2798 udelay(1); 2799 } while (--i); 2800 2801 shost_printk(KERN_ERR, esp->host, "FIFO is empty. sreg [%02x]\n", 2802 esp_read8(ESP_STATUS)); 2803 return 0; 2804 } 2805 2806 static inline int esp_wait_for_intr(struct esp *esp) 2807 { 2808 int i = 500000; 2809 2810 do { 2811 esp->sreg = esp_read8(ESP_STATUS); 2812 if (esp->sreg & ESP_STAT_INTR) 2813 return 0; 2814 2815 udelay(1); 2816 } while (--i); 2817 2818 shost_printk(KERN_ERR, esp->host, "IRQ timeout. sreg [%02x]\n", 2819 esp->sreg); 2820 return 1; 2821 } 2822 2823 #define ESP_FIFO_SIZE 16 2824 2825 void esp_send_pio_cmd(struct esp *esp, u32 addr, u32 esp_count, 2826 u32 dma_count, int write, u8 cmd) 2827 { 2828 u8 phase = esp->sreg & ESP_STAT_PMASK; 2829 2830 cmd &= ~ESP_CMD_DMA; 2831 esp->send_cmd_error = 0; 2832 2833 if (write) { 2834 u8 *dst = (u8 *)addr; 2835 u8 mask = ~(phase == ESP_MIP ? ESP_INTR_FDONE : ESP_INTR_BSERV); 2836 2837 scsi_esp_cmd(esp, cmd); 2838 2839 while (1) { 2840 if (!esp_wait_for_fifo(esp)) 2841 break; 2842 2843 *dst++ = readb(esp->fifo_reg); 2844 --esp_count; 2845 2846 if (!esp_count) 2847 break; 2848 2849 if (esp_wait_for_intr(esp)) { 2850 esp->send_cmd_error = 1; 2851 break; 2852 } 2853 2854 if ((esp->sreg & ESP_STAT_PMASK) != phase) 2855 break; 2856 2857 esp->ireg = esp_read8(ESP_INTRPT); 2858 if (esp->ireg & mask) { 2859 esp->send_cmd_error = 1; 2860 break; 2861 } 2862 2863 if (phase == ESP_MIP) 2864 esp_write8(ESP_CMD_MOK, ESP_CMD); 2865 2866 esp_write8(ESP_CMD_TI, ESP_CMD); 2867 } 2868 } else { 2869 unsigned int n = ESP_FIFO_SIZE; 2870 u8 *src = (u8 *)addr; 2871 2872 scsi_esp_cmd(esp, ESP_CMD_FLUSH); 2873 2874 if (n > esp_count) 2875 n = esp_count; 2876 writesb(esp->fifo_reg, src, n); 2877 src += n; 2878 esp_count -= n; 2879 2880 scsi_esp_cmd(esp, cmd); 2881 2882 while (esp_count) { 2883 if (esp_wait_for_intr(esp)) { 2884 esp->send_cmd_error = 1; 2885 break; 2886 } 2887 2888 if ((esp->sreg & ESP_STAT_PMASK) != phase) 2889 break; 2890 2891 esp->ireg = esp_read8(ESP_INTRPT); 2892 if (esp->ireg & ~ESP_INTR_BSERV) { 2893 esp->send_cmd_error = 1; 2894 break; 2895 } 2896 2897 n = ESP_FIFO_SIZE - 2898 (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES); 2899 2900 if (n > esp_count) 2901 n = esp_count; 2902 writesb(esp->fifo_reg, src, n); 2903 src += n; 2904 esp_count -= n; 2905 2906 esp_write8(ESP_CMD_TI, ESP_CMD); 2907 } 2908 } 2909 2910 esp->send_cmd_residual = esp_count; 2911 } 2912 EXPORT_SYMBOL(esp_send_pio_cmd); 2913 #endif 2914