xref: /openbmc/linux/drivers/scsi/esp_scsi.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /* esp_scsi.c: ESP SCSI driver.
2  *
3  * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
17 
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
21 
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
29 
30 #include "esp_scsi.h"
31 
32 #define DRV_MODULE_NAME		"esp"
33 #define PFX DRV_MODULE_NAME	": "
34 #define DRV_VERSION		"2.000"
35 #define DRV_MODULE_RELDATE	"April 19, 2007"
36 
37 /* SCSI bus reset settle time in seconds.  */
38 static int esp_bus_reset_settle = 3;
39 
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR		0x00000001
42 #define ESP_DEBUG_SCSICMD	0x00000002
43 #define ESP_DEBUG_RESET		0x00000004
44 #define ESP_DEBUG_MSGIN		0x00000008
45 #define ESP_DEBUG_MSGOUT	0x00000010
46 #define ESP_DEBUG_CMDDONE	0x00000020
47 #define ESP_DEBUG_DISCONNECT	0x00000040
48 #define ESP_DEBUG_DATASTART	0x00000080
49 #define ESP_DEBUG_DATADONE	0x00000100
50 #define ESP_DEBUG_RECONNECT	0x00000200
51 #define ESP_DEBUG_AUTOSENSE	0x00000400
52 #define ESP_DEBUG_EVENT		0x00000800
53 #define ESP_DEBUG_COMMAND	0x00001000
54 
55 #define esp_log_intr(f, a...) \
56 do {	if (esp_debug & ESP_DEBUG_INTR) \
57 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
58 } while (0)
59 
60 #define esp_log_reset(f, a...) \
61 do {	if (esp_debug & ESP_DEBUG_RESET) \
62 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
63 } while (0)
64 
65 #define esp_log_msgin(f, a...) \
66 do {	if (esp_debug & ESP_DEBUG_MSGIN) \
67 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
68 } while (0)
69 
70 #define esp_log_msgout(f, a...) \
71 do {	if (esp_debug & ESP_DEBUG_MSGOUT) \
72 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
73 } while (0)
74 
75 #define esp_log_cmddone(f, a...) \
76 do {	if (esp_debug & ESP_DEBUG_CMDDONE) \
77 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
78 } while (0)
79 
80 #define esp_log_disconnect(f, a...) \
81 do {	if (esp_debug & ESP_DEBUG_DISCONNECT) \
82 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
83 } while (0)
84 
85 #define esp_log_datastart(f, a...) \
86 do {	if (esp_debug & ESP_DEBUG_DATASTART) \
87 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
88 } while (0)
89 
90 #define esp_log_datadone(f, a...) \
91 do {	if (esp_debug & ESP_DEBUG_DATADONE) \
92 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
93 } while (0)
94 
95 #define esp_log_reconnect(f, a...) \
96 do {	if (esp_debug & ESP_DEBUG_RECONNECT) \
97 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
98 } while (0)
99 
100 #define esp_log_autosense(f, a...) \
101 do {	if (esp_debug & ESP_DEBUG_AUTOSENSE) \
102 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
103 } while (0)
104 
105 #define esp_log_event(f, a...) \
106 do {   if (esp_debug & ESP_DEBUG_EVENT)	\
107 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
108 } while (0)
109 
110 #define esp_log_command(f, a...) \
111 do {   if (esp_debug & ESP_DEBUG_COMMAND)	\
112 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
113 } while (0)
114 
115 #define esp_read8(REG)		esp->ops->esp_read8(esp, REG)
116 #define esp_write8(VAL,REG)	esp->ops->esp_write8(esp, VAL, REG)
117 
118 static void esp_log_fill_regs(struct esp *esp,
119 			      struct esp_event_ent *p)
120 {
121 	p->sreg = esp->sreg;
122 	p->seqreg = esp->seqreg;
123 	p->sreg2 = esp->sreg2;
124 	p->ireg = esp->ireg;
125 	p->select_state = esp->select_state;
126 	p->event = esp->event;
127 }
128 
129 void scsi_esp_cmd(struct esp *esp, u8 val)
130 {
131 	struct esp_event_ent *p;
132 	int idx = esp->esp_event_cur;
133 
134 	p = &esp->esp_event_log[idx];
135 	p->type = ESP_EVENT_TYPE_CMD;
136 	p->val = val;
137 	esp_log_fill_regs(esp, p);
138 
139 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
140 
141 	esp_log_command("cmd[%02x]\n", val);
142 	esp_write8(val, ESP_CMD);
143 }
144 EXPORT_SYMBOL(scsi_esp_cmd);
145 
146 static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
147 {
148 	if (esp->flags & ESP_FLAG_USE_FIFO) {
149 		int i;
150 
151 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
152 		for (i = 0; i < len; i++)
153 			esp_write8(esp->command_block[i], ESP_FDATA);
154 		scsi_esp_cmd(esp, cmd);
155 	} else {
156 		if (esp->rev == FASHME)
157 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
158 		cmd |= ESP_CMD_DMA;
159 		esp->ops->send_dma_cmd(esp, esp->command_block_dma,
160 				       len, max_len, 0, cmd);
161 	}
162 }
163 
164 static void esp_event(struct esp *esp, u8 val)
165 {
166 	struct esp_event_ent *p;
167 	int idx = esp->esp_event_cur;
168 
169 	p = &esp->esp_event_log[idx];
170 	p->type = ESP_EVENT_TYPE_EVENT;
171 	p->val = val;
172 	esp_log_fill_regs(esp, p);
173 
174 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
175 
176 	esp->event = val;
177 }
178 
179 static void esp_dump_cmd_log(struct esp *esp)
180 {
181 	int idx = esp->esp_event_cur;
182 	int stop = idx;
183 
184 	shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
185 	do {
186 		struct esp_event_ent *p = &esp->esp_event_log[idx];
187 
188 		shost_printk(KERN_INFO, esp->host,
189 			     "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
190 			     "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
191 			     idx,
192 			     p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
193 			     p->val, p->sreg, p->seqreg,
194 			     p->sreg2, p->ireg, p->select_state, p->event);
195 
196 		idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
197 	} while (idx != stop);
198 }
199 
200 static void esp_flush_fifo(struct esp *esp)
201 {
202 	scsi_esp_cmd(esp, ESP_CMD_FLUSH);
203 	if (esp->rev == ESP236) {
204 		int lim = 1000;
205 
206 		while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
207 			if (--lim == 0) {
208 				shost_printk(KERN_ALERT, esp->host,
209 					     "ESP_FF_BYTES will not clear!\n");
210 				break;
211 			}
212 			udelay(1);
213 		}
214 	}
215 }
216 
217 static void hme_read_fifo(struct esp *esp)
218 {
219 	int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
220 	int idx = 0;
221 
222 	while (fcnt--) {
223 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
224 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
225 	}
226 	if (esp->sreg2 & ESP_STAT2_F1BYTE) {
227 		esp_write8(0, ESP_FDATA);
228 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
229 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
230 	}
231 	esp->fifo_cnt = idx;
232 }
233 
234 static void esp_set_all_config3(struct esp *esp, u8 val)
235 {
236 	int i;
237 
238 	for (i = 0; i < ESP_MAX_TARGET; i++)
239 		esp->target[i].esp_config3 = val;
240 }
241 
242 /* Reset the ESP chip, _not_ the SCSI bus. */
243 static void esp_reset_esp(struct esp *esp)
244 {
245 	u8 family_code, version;
246 
247 	/* Now reset the ESP chip */
248 	scsi_esp_cmd(esp, ESP_CMD_RC);
249 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
250 	if (esp->rev == FAST)
251 		esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
252 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
253 
254 	/* This is the only point at which it is reliable to read
255 	 * the ID-code for a fast ESP chip variants.
256 	 */
257 	esp->max_period = ((35 * esp->ccycle) / 1000);
258 	if (esp->rev == FAST) {
259 		version = esp_read8(ESP_UID);
260 		family_code = (version & 0xf8) >> 3;
261 		if (family_code == 0x02)
262 			esp->rev = FAS236;
263 		else if (family_code == 0x0a)
264 			esp->rev = FASHME; /* Version is usually '5'. */
265 		else
266 			esp->rev = FAS100A;
267 		esp->min_period = ((4 * esp->ccycle) / 1000);
268 	} else {
269 		esp->min_period = ((5 * esp->ccycle) / 1000);
270 	}
271 	if (esp->rev == FAS236) {
272 		/*
273 		 * The AM53c974 chip returns the same ID as FAS236;
274 		 * try to configure glitch eater.
275 		 */
276 		u8 config4 = ESP_CONFIG4_GE1;
277 		esp_write8(config4, ESP_CFG4);
278 		config4 = esp_read8(ESP_CFG4);
279 		if (config4 & ESP_CONFIG4_GE1) {
280 			esp->rev = PCSCSI;
281 			esp_write8(esp->config4, ESP_CFG4);
282 		}
283 	}
284 	esp->max_period = (esp->max_period + 3)>>2;
285 	esp->min_period = (esp->min_period + 3)>>2;
286 
287 	esp_write8(esp->config1, ESP_CFG1);
288 	switch (esp->rev) {
289 	case ESP100:
290 		/* nothing to do */
291 		break;
292 
293 	case ESP100A:
294 		esp_write8(esp->config2, ESP_CFG2);
295 		break;
296 
297 	case ESP236:
298 		/* Slow 236 */
299 		esp_write8(esp->config2, ESP_CFG2);
300 		esp->prev_cfg3 = esp->target[0].esp_config3;
301 		esp_write8(esp->prev_cfg3, ESP_CFG3);
302 		break;
303 
304 	case FASHME:
305 		esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
306 		/* fallthrough... */
307 
308 	case FAS236:
309 	case PCSCSI:
310 		/* Fast 236, AM53c974 or HME */
311 		esp_write8(esp->config2, ESP_CFG2);
312 		if (esp->rev == FASHME) {
313 			u8 cfg3 = esp->target[0].esp_config3;
314 
315 			cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
316 			if (esp->scsi_id >= 8)
317 				cfg3 |= ESP_CONFIG3_IDBIT3;
318 			esp_set_all_config3(esp, cfg3);
319 		} else {
320 			u32 cfg3 = esp->target[0].esp_config3;
321 
322 			cfg3 |= ESP_CONFIG3_FCLK;
323 			esp_set_all_config3(esp, cfg3);
324 		}
325 		esp->prev_cfg3 = esp->target[0].esp_config3;
326 		esp_write8(esp->prev_cfg3, ESP_CFG3);
327 		if (esp->rev == FASHME) {
328 			esp->radelay = 80;
329 		} else {
330 			if (esp->flags & ESP_FLAG_DIFFERENTIAL)
331 				esp->radelay = 0;
332 			else
333 				esp->radelay = 96;
334 		}
335 		break;
336 
337 	case FAS100A:
338 		/* Fast 100a */
339 		esp_write8(esp->config2, ESP_CFG2);
340 		esp_set_all_config3(esp,
341 				    (esp->target[0].esp_config3 |
342 				     ESP_CONFIG3_FCLOCK));
343 		esp->prev_cfg3 = esp->target[0].esp_config3;
344 		esp_write8(esp->prev_cfg3, ESP_CFG3);
345 		esp->radelay = 32;
346 		break;
347 
348 	default:
349 		break;
350 	}
351 
352 	/* Reload the configuration registers */
353 	esp_write8(esp->cfact, ESP_CFACT);
354 
355 	esp->prev_stp = 0;
356 	esp_write8(esp->prev_stp, ESP_STP);
357 
358 	esp->prev_soff = 0;
359 	esp_write8(esp->prev_soff, ESP_SOFF);
360 
361 	esp_write8(esp->neg_defp, ESP_TIMEO);
362 
363 	/* Eat any bitrot in the chip */
364 	esp_read8(ESP_INTRPT);
365 	udelay(100);
366 }
367 
368 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
369 {
370 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
371 	struct scatterlist *sg = scsi_sglist(cmd);
372 	int total = 0, i;
373 
374 	if (cmd->sc_data_direction == DMA_NONE)
375 		return;
376 
377 	if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
378 		/*
379 		 * For pseudo DMA and PIO we need the virtual address instead of
380 		 * a dma address, so perform an identity mapping.
381 		 */
382 		spriv->num_sg = scsi_sg_count(cmd);
383 		for (i = 0; i < spriv->num_sg; i++) {
384 			sg[i].dma_address = (uintptr_t)sg_virt(&sg[i]);
385 			total += sg_dma_len(&sg[i]);
386 		}
387 	} else {
388 		spriv->num_sg = scsi_dma_map(cmd);
389 		for (i = 0; i < spriv->num_sg; i++)
390 			total += sg_dma_len(&sg[i]);
391 	}
392 	spriv->cur_residue = sg_dma_len(sg);
393 	spriv->cur_sg = sg;
394 	spriv->tot_residue = total;
395 }
396 
397 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
398 				   struct scsi_cmnd *cmd)
399 {
400 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
401 
402 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
403 		return ent->sense_dma +
404 			(ent->sense_ptr - cmd->sense_buffer);
405 	}
406 
407 	return sg_dma_address(p->cur_sg) +
408 		(sg_dma_len(p->cur_sg) -
409 		 p->cur_residue);
410 }
411 
412 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
413 				    struct scsi_cmnd *cmd)
414 {
415 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
416 
417 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
418 		return SCSI_SENSE_BUFFERSIZE -
419 			(ent->sense_ptr - cmd->sense_buffer);
420 	}
421 	return p->cur_residue;
422 }
423 
424 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
425 			    struct scsi_cmnd *cmd, unsigned int len)
426 {
427 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
428 
429 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
430 		ent->sense_ptr += len;
431 		return;
432 	}
433 
434 	p->cur_residue -= len;
435 	p->tot_residue -= len;
436 	if (p->cur_residue < 0 || p->tot_residue < 0) {
437 		shost_printk(KERN_ERR, esp->host,
438 			     "Data transfer overflow.\n");
439 		shost_printk(KERN_ERR, esp->host,
440 			     "cur_residue[%d] tot_residue[%d] len[%u]\n",
441 			     p->cur_residue, p->tot_residue, len);
442 		p->cur_residue = 0;
443 		p->tot_residue = 0;
444 	}
445 	if (!p->cur_residue && p->tot_residue) {
446 		p->cur_sg++;
447 		p->cur_residue = sg_dma_len(p->cur_sg);
448 	}
449 }
450 
451 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
452 {
453 	if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
454 		scsi_dma_unmap(cmd);
455 }
456 
457 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
458 {
459 	struct scsi_cmnd *cmd = ent->cmd;
460 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
461 
462 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
463 		ent->saved_sense_ptr = ent->sense_ptr;
464 		return;
465 	}
466 	ent->saved_cur_residue = spriv->cur_residue;
467 	ent->saved_cur_sg = spriv->cur_sg;
468 	ent->saved_tot_residue = spriv->tot_residue;
469 }
470 
471 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
472 {
473 	struct scsi_cmnd *cmd = ent->cmd;
474 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
475 
476 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
477 		ent->sense_ptr = ent->saved_sense_ptr;
478 		return;
479 	}
480 	spriv->cur_residue = ent->saved_cur_residue;
481 	spriv->cur_sg = ent->saved_cur_sg;
482 	spriv->tot_residue = ent->saved_tot_residue;
483 }
484 
485 static void esp_write_tgt_config3(struct esp *esp, int tgt)
486 {
487 	if (esp->rev > ESP100A) {
488 		u8 val = esp->target[tgt].esp_config3;
489 
490 		if (val != esp->prev_cfg3) {
491 			esp->prev_cfg3 = val;
492 			esp_write8(val, ESP_CFG3);
493 		}
494 	}
495 }
496 
497 static void esp_write_tgt_sync(struct esp *esp, int tgt)
498 {
499 	u8 off = esp->target[tgt].esp_offset;
500 	u8 per = esp->target[tgt].esp_period;
501 
502 	if (off != esp->prev_soff) {
503 		esp->prev_soff = off;
504 		esp_write8(off, ESP_SOFF);
505 	}
506 	if (per != esp->prev_stp) {
507 		esp->prev_stp = per;
508 		esp_write8(per, ESP_STP);
509 	}
510 }
511 
512 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
513 {
514 	if (esp->rev == FASHME) {
515 		/* Arbitrary segment boundaries, 24-bit counts.  */
516 		if (dma_len > (1U << 24))
517 			dma_len = (1U << 24);
518 	} else {
519 		u32 base, end;
520 
521 		/* ESP chip limits other variants by 16-bits of transfer
522 		 * count.  Actually on FAS100A and FAS236 we could get
523 		 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
524 		 * in the ESP_CFG2 register but that causes other unwanted
525 		 * changes so we don't use it currently.
526 		 */
527 		if (dma_len > (1U << 16))
528 			dma_len = (1U << 16);
529 
530 		/* All of the DMA variants hooked up to these chips
531 		 * cannot handle crossing a 24-bit address boundary.
532 		 */
533 		base = dma_addr & ((1U << 24) - 1U);
534 		end = base + dma_len;
535 		if (end > (1U << 24))
536 			end = (1U <<24);
537 		dma_len = end - base;
538 	}
539 	return dma_len;
540 }
541 
542 static int esp_need_to_nego_wide(struct esp_target_data *tp)
543 {
544 	struct scsi_target *target = tp->starget;
545 
546 	return spi_width(target) != tp->nego_goal_width;
547 }
548 
549 static int esp_need_to_nego_sync(struct esp_target_data *tp)
550 {
551 	struct scsi_target *target = tp->starget;
552 
553 	/* When offset is zero, period is "don't care".  */
554 	if (!spi_offset(target) && !tp->nego_goal_offset)
555 		return 0;
556 
557 	if (spi_offset(target) == tp->nego_goal_offset &&
558 	    spi_period(target) == tp->nego_goal_period)
559 		return 0;
560 
561 	return 1;
562 }
563 
564 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
565 			     struct esp_lun_data *lp)
566 {
567 	if (!ent->orig_tag[0]) {
568 		/* Non-tagged, slot already taken?  */
569 		if (lp->non_tagged_cmd)
570 			return -EBUSY;
571 
572 		if (lp->hold) {
573 			/* We are being held by active tagged
574 			 * commands.
575 			 */
576 			if (lp->num_tagged)
577 				return -EBUSY;
578 
579 			/* Tagged commands completed, we can unplug
580 			 * the queue and run this untagged command.
581 			 */
582 			lp->hold = 0;
583 		} else if (lp->num_tagged) {
584 			/* Plug the queue until num_tagged decreases
585 			 * to zero in esp_free_lun_tag.
586 			 */
587 			lp->hold = 1;
588 			return -EBUSY;
589 		}
590 
591 		lp->non_tagged_cmd = ent;
592 		return 0;
593 	}
594 
595 	/* Tagged command. Check that it isn't blocked by a non-tagged one. */
596 	if (lp->non_tagged_cmd || lp->hold)
597 		return -EBUSY;
598 
599 	BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
600 
601 	lp->tagged_cmds[ent->orig_tag[1]] = ent;
602 	lp->num_tagged++;
603 
604 	return 0;
605 }
606 
607 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
608 			     struct esp_lun_data *lp)
609 {
610 	if (ent->orig_tag[0]) {
611 		BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
612 		lp->tagged_cmds[ent->orig_tag[1]] = NULL;
613 		lp->num_tagged--;
614 	} else {
615 		BUG_ON(lp->non_tagged_cmd != ent);
616 		lp->non_tagged_cmd = NULL;
617 	}
618 }
619 
620 static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent)
621 {
622 	ent->sense_ptr = ent->cmd->sense_buffer;
623 	if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
624 		ent->sense_dma = (uintptr_t)ent->sense_ptr;
625 		return;
626 	}
627 
628 	ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr,
629 					SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
630 }
631 
632 static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent)
633 {
634 	if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
635 		dma_unmap_single(esp->dev, ent->sense_dma,
636 				 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
637 	ent->sense_ptr = NULL;
638 }
639 
640 /* When a contingent allegiance conditon is created, we force feed a
641  * REQUEST_SENSE command to the device to fetch the sense data.  I
642  * tried many other schemes, relying on the scsi error handling layer
643  * to send out the REQUEST_SENSE automatically, but this was difficult
644  * to get right especially in the presence of applications like smartd
645  * which use SG_IO to send out their own REQUEST_SENSE commands.
646  */
647 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
648 {
649 	struct scsi_cmnd *cmd = ent->cmd;
650 	struct scsi_device *dev = cmd->device;
651 	int tgt, lun;
652 	u8 *p, val;
653 
654 	tgt = dev->id;
655 	lun = dev->lun;
656 
657 
658 	if (!ent->sense_ptr) {
659 		esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
660 				  tgt, lun);
661 		esp_map_sense(esp, ent);
662 	}
663 	ent->saved_sense_ptr = ent->sense_ptr;
664 
665 	esp->active_cmd = ent;
666 
667 	p = esp->command_block;
668 	esp->msg_out_len = 0;
669 
670 	*p++ = IDENTIFY(0, lun);
671 	*p++ = REQUEST_SENSE;
672 	*p++ = ((dev->scsi_level <= SCSI_2) ?
673 		(lun << 5) : 0);
674 	*p++ = 0;
675 	*p++ = 0;
676 	*p++ = SCSI_SENSE_BUFFERSIZE;
677 	*p++ = 0;
678 
679 	esp->select_state = ESP_SELECT_BASIC;
680 
681 	val = tgt;
682 	if (esp->rev == FASHME)
683 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
684 	esp_write8(val, ESP_BUSID);
685 
686 	esp_write_tgt_sync(esp, tgt);
687 	esp_write_tgt_config3(esp, tgt);
688 
689 	val = (p - esp->command_block);
690 
691 	esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
692 }
693 
694 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
695 {
696 	struct esp_cmd_entry *ent;
697 
698 	list_for_each_entry(ent, &esp->queued_cmds, list) {
699 		struct scsi_cmnd *cmd = ent->cmd;
700 		struct scsi_device *dev = cmd->device;
701 		struct esp_lun_data *lp = dev->hostdata;
702 
703 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
704 			ent->tag[0] = 0;
705 			ent->tag[1] = 0;
706 			return ent;
707 		}
708 
709 		if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
710 			ent->tag[0] = 0;
711 			ent->tag[1] = 0;
712 		}
713 		ent->orig_tag[0] = ent->tag[0];
714 		ent->orig_tag[1] = ent->tag[1];
715 
716 		if (esp_alloc_lun_tag(ent, lp) < 0)
717 			continue;
718 
719 		return ent;
720 	}
721 
722 	return NULL;
723 }
724 
725 static void esp_maybe_execute_command(struct esp *esp)
726 {
727 	struct esp_target_data *tp;
728 	struct scsi_device *dev;
729 	struct scsi_cmnd *cmd;
730 	struct esp_cmd_entry *ent;
731 	bool select_and_stop = false;
732 	int tgt, lun, i;
733 	u32 val, start_cmd;
734 	u8 *p;
735 
736 	if (esp->active_cmd ||
737 	    (esp->flags & ESP_FLAG_RESETTING))
738 		return;
739 
740 	ent = find_and_prep_issuable_command(esp);
741 	if (!ent)
742 		return;
743 
744 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
745 		esp_autosense(esp, ent);
746 		return;
747 	}
748 
749 	cmd = ent->cmd;
750 	dev = cmd->device;
751 	tgt = dev->id;
752 	lun = dev->lun;
753 	tp = &esp->target[tgt];
754 
755 	list_move(&ent->list, &esp->active_cmds);
756 
757 	esp->active_cmd = ent;
758 
759 	esp_map_dma(esp, cmd);
760 	esp_save_pointers(esp, ent);
761 
762 	if (!(cmd->cmd_len == 6 || cmd->cmd_len == 10 || cmd->cmd_len == 12))
763 		select_and_stop = true;
764 
765 	p = esp->command_block;
766 
767 	esp->msg_out_len = 0;
768 	if (tp->flags & ESP_TGT_CHECK_NEGO) {
769 		/* Need to negotiate.  If the target is broken
770 		 * go for synchronous transfers and non-wide.
771 		 */
772 		if (tp->flags & ESP_TGT_BROKEN) {
773 			tp->flags &= ~ESP_TGT_DISCONNECT;
774 			tp->nego_goal_period = 0;
775 			tp->nego_goal_offset = 0;
776 			tp->nego_goal_width = 0;
777 			tp->nego_goal_tags = 0;
778 		}
779 
780 		/* If the settings are not changing, skip this.  */
781 		if (spi_width(tp->starget) == tp->nego_goal_width &&
782 		    spi_period(tp->starget) == tp->nego_goal_period &&
783 		    spi_offset(tp->starget) == tp->nego_goal_offset) {
784 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
785 			goto build_identify;
786 		}
787 
788 		if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
789 			esp->msg_out_len =
790 				spi_populate_width_msg(&esp->msg_out[0],
791 						       (tp->nego_goal_width ?
792 							1 : 0));
793 			tp->flags |= ESP_TGT_NEGO_WIDE;
794 		} else if (esp_need_to_nego_sync(tp)) {
795 			esp->msg_out_len =
796 				spi_populate_sync_msg(&esp->msg_out[0],
797 						      tp->nego_goal_period,
798 						      tp->nego_goal_offset);
799 			tp->flags |= ESP_TGT_NEGO_SYNC;
800 		} else {
801 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
802 		}
803 
804 		/* If there are multiple message bytes, use Select and Stop */
805 		if (esp->msg_out_len)
806 			select_and_stop = true;
807 	}
808 
809 build_identify:
810 	*p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun);
811 
812 	if (ent->tag[0] && esp->rev == ESP100) {
813 		/* ESP100 lacks select w/atn3 command, use select
814 		 * and stop instead.
815 		 */
816 		select_and_stop = true;
817 	}
818 
819 	if (select_and_stop) {
820 		esp->cmd_bytes_left = cmd->cmd_len;
821 		esp->cmd_bytes_ptr = &cmd->cmnd[0];
822 
823 		if (ent->tag[0]) {
824 			for (i = esp->msg_out_len - 1;
825 			     i >= 0; i--)
826 				esp->msg_out[i + 2] = esp->msg_out[i];
827 			esp->msg_out[0] = ent->tag[0];
828 			esp->msg_out[1] = ent->tag[1];
829 			esp->msg_out_len += 2;
830 		}
831 
832 		start_cmd = ESP_CMD_SELAS;
833 		esp->select_state = ESP_SELECT_MSGOUT;
834 	} else {
835 		start_cmd = ESP_CMD_SELA;
836 		if (ent->tag[0]) {
837 			*p++ = ent->tag[0];
838 			*p++ = ent->tag[1];
839 
840 			start_cmd = ESP_CMD_SA3;
841 		}
842 
843 		for (i = 0; i < cmd->cmd_len; i++)
844 			*p++ = cmd->cmnd[i];
845 
846 		esp->select_state = ESP_SELECT_BASIC;
847 	}
848 	val = tgt;
849 	if (esp->rev == FASHME)
850 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
851 	esp_write8(val, ESP_BUSID);
852 
853 	esp_write_tgt_sync(esp, tgt);
854 	esp_write_tgt_config3(esp, tgt);
855 
856 	val = (p - esp->command_block);
857 
858 	if (esp_debug & ESP_DEBUG_SCSICMD) {
859 		printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
860 		for (i = 0; i < cmd->cmd_len; i++)
861 			printk("%02x ", cmd->cmnd[i]);
862 		printk("]\n");
863 	}
864 
865 	esp_send_dma_cmd(esp, val, 16, start_cmd);
866 }
867 
868 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
869 {
870 	struct list_head *head = &esp->esp_cmd_pool;
871 	struct esp_cmd_entry *ret;
872 
873 	if (list_empty(head)) {
874 		ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
875 	} else {
876 		ret = list_entry(head->next, struct esp_cmd_entry, list);
877 		list_del(&ret->list);
878 		memset(ret, 0, sizeof(*ret));
879 	}
880 	return ret;
881 }
882 
883 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
884 {
885 	list_add(&ent->list, &esp->esp_cmd_pool);
886 }
887 
888 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
889 			    struct scsi_cmnd *cmd, unsigned int result)
890 {
891 	struct scsi_device *dev = cmd->device;
892 	int tgt = dev->id;
893 	int lun = dev->lun;
894 
895 	esp->active_cmd = NULL;
896 	esp_unmap_dma(esp, cmd);
897 	esp_free_lun_tag(ent, dev->hostdata);
898 	cmd->result = result;
899 
900 	if (ent->eh_done) {
901 		complete(ent->eh_done);
902 		ent->eh_done = NULL;
903 	}
904 
905 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
906 		esp_unmap_sense(esp, ent);
907 
908 		/* Restore the message/status bytes to what we actually
909 		 * saw originally.  Also, report that we are providing
910 		 * the sense data.
911 		 */
912 		cmd->result = ((DRIVER_SENSE << 24) |
913 			       (DID_OK << 16) |
914 			       (COMMAND_COMPLETE << 8) |
915 			       (SAM_STAT_CHECK_CONDITION << 0));
916 
917 		ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
918 		if (esp_debug & ESP_DEBUG_AUTOSENSE) {
919 			int i;
920 
921 			printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
922 			       esp->host->unique_id, tgt, lun);
923 			for (i = 0; i < 18; i++)
924 				printk("%02x ", cmd->sense_buffer[i]);
925 			printk("]\n");
926 		}
927 	}
928 
929 	cmd->scsi_done(cmd);
930 
931 	list_del(&ent->list);
932 	esp_put_ent(esp, ent);
933 
934 	esp_maybe_execute_command(esp);
935 }
936 
937 static unsigned int compose_result(unsigned int status, unsigned int message,
938 				   unsigned int driver_code)
939 {
940 	return (status | (message << 8) | (driver_code << 16));
941 }
942 
943 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
944 {
945 	struct scsi_device *dev = ent->cmd->device;
946 	struct esp_lun_data *lp = dev->hostdata;
947 
948 	scsi_track_queue_full(dev, lp->num_tagged - 1);
949 }
950 
951 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
952 {
953 	struct scsi_device *dev = cmd->device;
954 	struct esp *esp = shost_priv(dev->host);
955 	struct esp_cmd_priv *spriv;
956 	struct esp_cmd_entry *ent;
957 
958 	ent = esp_get_ent(esp);
959 	if (!ent)
960 		return SCSI_MLQUEUE_HOST_BUSY;
961 
962 	ent->cmd = cmd;
963 
964 	cmd->scsi_done = done;
965 
966 	spriv = ESP_CMD_PRIV(cmd);
967 	spriv->num_sg = 0;
968 
969 	list_add_tail(&ent->list, &esp->queued_cmds);
970 
971 	esp_maybe_execute_command(esp);
972 
973 	return 0;
974 }
975 
976 static DEF_SCSI_QCMD(esp_queuecommand)
977 
978 static int esp_check_gross_error(struct esp *esp)
979 {
980 	if (esp->sreg & ESP_STAT_SPAM) {
981 		/* Gross Error, could be one of:
982 		 * - top of fifo overwritten
983 		 * - top of command register overwritten
984 		 * - DMA programmed with wrong direction
985 		 * - improper phase change
986 		 */
987 		shost_printk(KERN_ERR, esp->host,
988 			     "Gross error sreg[%02x]\n", esp->sreg);
989 		/* XXX Reset the chip. XXX */
990 		return 1;
991 	}
992 	return 0;
993 }
994 
995 static int esp_check_spur_intr(struct esp *esp)
996 {
997 	switch (esp->rev) {
998 	case ESP100:
999 	case ESP100A:
1000 		/* The interrupt pending bit of the status register cannot
1001 		 * be trusted on these revisions.
1002 		 */
1003 		esp->sreg &= ~ESP_STAT_INTR;
1004 		break;
1005 
1006 	default:
1007 		if (!(esp->sreg & ESP_STAT_INTR)) {
1008 			if (esp->ireg & ESP_INTR_SR)
1009 				return 1;
1010 
1011 			/* If the DMA is indicating interrupt pending and the
1012 			 * ESP is not, the only possibility is a DMA error.
1013 			 */
1014 			if (!esp->ops->dma_error(esp)) {
1015 				shost_printk(KERN_ERR, esp->host,
1016 					     "Spurious irq, sreg=%02x.\n",
1017 					     esp->sreg);
1018 				return -1;
1019 			}
1020 
1021 			shost_printk(KERN_ERR, esp->host, "DMA error\n");
1022 
1023 			/* XXX Reset the chip. XXX */
1024 			return -1;
1025 		}
1026 		break;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static void esp_schedule_reset(struct esp *esp)
1033 {
1034 	esp_log_reset("esp_schedule_reset() from %pf\n",
1035 		      __builtin_return_address(0));
1036 	esp->flags |= ESP_FLAG_RESETTING;
1037 	esp_event(esp, ESP_EVENT_RESET);
1038 }
1039 
1040 /* In order to avoid having to add a special half-reconnected state
1041  * into the driver we just sit here and poll through the rest of
1042  * the reselection process to get the tag message bytes.
1043  */
1044 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1045 						    struct esp_lun_data *lp)
1046 {
1047 	struct esp_cmd_entry *ent;
1048 	int i;
1049 
1050 	if (!lp->num_tagged) {
1051 		shost_printk(KERN_ERR, esp->host,
1052 			     "Reconnect w/num_tagged==0\n");
1053 		return NULL;
1054 	}
1055 
1056 	esp_log_reconnect("reconnect tag, ");
1057 
1058 	for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1059 		if (esp->ops->irq_pending(esp))
1060 			break;
1061 	}
1062 	if (i == ESP_QUICKIRQ_LIMIT) {
1063 		shost_printk(KERN_ERR, esp->host,
1064 			     "Reconnect IRQ1 timeout\n");
1065 		return NULL;
1066 	}
1067 
1068 	esp->sreg = esp_read8(ESP_STATUS);
1069 	esp->ireg = esp_read8(ESP_INTRPT);
1070 
1071 	esp_log_reconnect("IRQ(%d:%x:%x), ",
1072 			  i, esp->ireg, esp->sreg);
1073 
1074 	if (esp->ireg & ESP_INTR_DC) {
1075 		shost_printk(KERN_ERR, esp->host,
1076 			     "Reconnect, got disconnect.\n");
1077 		return NULL;
1078 	}
1079 
1080 	if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1081 		shost_printk(KERN_ERR, esp->host,
1082 			     "Reconnect, not MIP sreg[%02x].\n", esp->sreg);
1083 		return NULL;
1084 	}
1085 
1086 	/* DMA in the tag bytes... */
1087 	esp->command_block[0] = 0xff;
1088 	esp->command_block[1] = 0xff;
1089 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1090 			       2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1091 
1092 	/* ACK the message.  */
1093 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1094 
1095 	for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1096 		if (esp->ops->irq_pending(esp)) {
1097 			esp->sreg = esp_read8(ESP_STATUS);
1098 			esp->ireg = esp_read8(ESP_INTRPT);
1099 			if (esp->ireg & ESP_INTR_FDONE)
1100 				break;
1101 		}
1102 		udelay(1);
1103 	}
1104 	if (i == ESP_RESELECT_TAG_LIMIT) {
1105 		shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
1106 		return NULL;
1107 	}
1108 	esp->ops->dma_drain(esp);
1109 	esp->ops->dma_invalidate(esp);
1110 
1111 	esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1112 			  i, esp->ireg, esp->sreg,
1113 			  esp->command_block[0],
1114 			  esp->command_block[1]);
1115 
1116 	if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1117 	    esp->command_block[0] > ORDERED_QUEUE_TAG) {
1118 		shost_printk(KERN_ERR, esp->host,
1119 			     "Reconnect, bad tag type %02x.\n",
1120 			     esp->command_block[0]);
1121 		return NULL;
1122 	}
1123 
1124 	ent = lp->tagged_cmds[esp->command_block[1]];
1125 	if (!ent) {
1126 		shost_printk(KERN_ERR, esp->host,
1127 			     "Reconnect, no entry for tag %02x.\n",
1128 			     esp->command_block[1]);
1129 		return NULL;
1130 	}
1131 
1132 	return ent;
1133 }
1134 
1135 static int esp_reconnect(struct esp *esp)
1136 {
1137 	struct esp_cmd_entry *ent;
1138 	struct esp_target_data *tp;
1139 	struct esp_lun_data *lp;
1140 	struct scsi_device *dev;
1141 	int target, lun;
1142 
1143 	BUG_ON(esp->active_cmd);
1144 	if (esp->rev == FASHME) {
1145 		/* FASHME puts the target and lun numbers directly
1146 		 * into the fifo.
1147 		 */
1148 		target = esp->fifo[0];
1149 		lun = esp->fifo[1] & 0x7;
1150 	} else {
1151 		u8 bits = esp_read8(ESP_FDATA);
1152 
1153 		/* Older chips put the lun directly into the fifo, but
1154 		 * the target is given as a sample of the arbitration
1155 		 * lines on the bus at reselection time.  So we should
1156 		 * see the ID of the ESP and the one reconnecting target
1157 		 * set in the bitmap.
1158 		 */
1159 		if (!(bits & esp->scsi_id_mask))
1160 			goto do_reset;
1161 		bits &= ~esp->scsi_id_mask;
1162 		if (!bits || (bits & (bits - 1)))
1163 			goto do_reset;
1164 
1165 		target = ffs(bits) - 1;
1166 		lun = (esp_read8(ESP_FDATA) & 0x7);
1167 
1168 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1169 		if (esp->rev == ESP100) {
1170 			u8 ireg = esp_read8(ESP_INTRPT);
1171 			/* This chip has a bug during reselection that can
1172 			 * cause a spurious illegal-command interrupt, which
1173 			 * we simply ACK here.  Another possibility is a bus
1174 			 * reset so we must check for that.
1175 			 */
1176 			if (ireg & ESP_INTR_SR)
1177 				goto do_reset;
1178 		}
1179 		scsi_esp_cmd(esp, ESP_CMD_NULL);
1180 	}
1181 
1182 	esp_write_tgt_sync(esp, target);
1183 	esp_write_tgt_config3(esp, target);
1184 
1185 	scsi_esp_cmd(esp, ESP_CMD_MOK);
1186 
1187 	if (esp->rev == FASHME)
1188 		esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1189 			   ESP_BUSID);
1190 
1191 	tp = &esp->target[target];
1192 	dev = __scsi_device_lookup_by_target(tp->starget, lun);
1193 	if (!dev) {
1194 		shost_printk(KERN_ERR, esp->host,
1195 			     "Reconnect, no lp tgt[%u] lun[%u]\n",
1196 			     target, lun);
1197 		goto do_reset;
1198 	}
1199 	lp = dev->hostdata;
1200 
1201 	ent = lp->non_tagged_cmd;
1202 	if (!ent) {
1203 		ent = esp_reconnect_with_tag(esp, lp);
1204 		if (!ent)
1205 			goto do_reset;
1206 	}
1207 
1208 	esp->active_cmd = ent;
1209 
1210 	esp_event(esp, ESP_EVENT_CHECK_PHASE);
1211 	esp_restore_pointers(esp, ent);
1212 	esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1213 	return 1;
1214 
1215 do_reset:
1216 	esp_schedule_reset(esp);
1217 	return 0;
1218 }
1219 
1220 static int esp_finish_select(struct esp *esp)
1221 {
1222 	struct esp_cmd_entry *ent;
1223 	struct scsi_cmnd *cmd;
1224 
1225 	/* No longer selecting.  */
1226 	esp->select_state = ESP_SELECT_NONE;
1227 
1228 	esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1229 	ent = esp->active_cmd;
1230 	cmd = ent->cmd;
1231 
1232 	if (esp->ops->dma_error(esp)) {
1233 		/* If we see a DMA error during or as a result of selection,
1234 		 * all bets are off.
1235 		 */
1236 		esp_schedule_reset(esp);
1237 		esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1238 		return 0;
1239 	}
1240 
1241 	esp->ops->dma_invalidate(esp);
1242 
1243 	if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1244 		struct esp_target_data *tp = &esp->target[cmd->device->id];
1245 
1246 		/* Carefully back out of the selection attempt.  Release
1247 		 * resources (such as DMA mapping & TAG) and reset state (such
1248 		 * as message out and command delivery variables).
1249 		 */
1250 		if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1251 			esp_unmap_dma(esp, cmd);
1252 			esp_free_lun_tag(ent, cmd->device->hostdata);
1253 			tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1254 			esp->cmd_bytes_ptr = NULL;
1255 			esp->cmd_bytes_left = 0;
1256 		} else {
1257 			esp_unmap_sense(esp, ent);
1258 		}
1259 
1260 		/* Now that the state is unwound properly, put back onto
1261 		 * the issue queue.  This command is no longer active.
1262 		 */
1263 		list_move(&ent->list, &esp->queued_cmds);
1264 		esp->active_cmd = NULL;
1265 
1266 		/* Return value ignored by caller, it directly invokes
1267 		 * esp_reconnect().
1268 		 */
1269 		return 0;
1270 	}
1271 
1272 	if (esp->ireg == ESP_INTR_DC) {
1273 		struct scsi_device *dev = cmd->device;
1274 
1275 		/* Disconnect.  Make sure we re-negotiate sync and
1276 		 * wide parameters if this target starts responding
1277 		 * again in the future.
1278 		 */
1279 		esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1280 
1281 		scsi_esp_cmd(esp, ESP_CMD_ESEL);
1282 		esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1283 		return 1;
1284 	}
1285 
1286 	if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1287 		/* Selection successful.  On pre-FAST chips we have
1288 		 * to do a NOP and possibly clean out the FIFO.
1289 		 */
1290 		if (esp->rev <= ESP236) {
1291 			int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1292 
1293 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1294 
1295 			if (!fcnt &&
1296 			    (!esp->prev_soff ||
1297 			     ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1298 				esp_flush_fifo(esp);
1299 		}
1300 
1301 		/* If we are doing a Select And Stop command, negotiation, etc.
1302 		 * we'll do the right thing as we transition to the next phase.
1303 		 */
1304 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1305 		return 0;
1306 	}
1307 
1308 	shost_printk(KERN_INFO, esp->host,
1309 		     "Unexpected selection completion ireg[%x]\n", esp->ireg);
1310 	esp_schedule_reset(esp);
1311 	return 0;
1312 }
1313 
1314 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1315 			       struct scsi_cmnd *cmd)
1316 {
1317 	int fifo_cnt, ecount, bytes_sent, flush_fifo;
1318 
1319 	fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1320 	if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1321 		fifo_cnt <<= 1;
1322 
1323 	ecount = 0;
1324 	if (!(esp->sreg & ESP_STAT_TCNT)) {
1325 		ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1326 			  (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1327 		if (esp->rev == FASHME)
1328 			ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1329 		if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
1330 			ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
1331 	}
1332 
1333 	bytes_sent = esp->data_dma_len;
1334 	bytes_sent -= ecount;
1335 	bytes_sent -= esp->send_cmd_residual;
1336 
1337 	/*
1338 	 * The am53c974 has a DMA 'pecularity'. The doc states:
1339 	 * In some odd byte conditions, one residual byte will
1340 	 * be left in the SCSI FIFO, and the FIFO Flags will
1341 	 * never count to '0 '. When this happens, the residual
1342 	 * byte should be retrieved via PIO following completion
1343 	 * of the BLAST operation.
1344 	 */
1345 	if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
1346 		size_t count = 1;
1347 		size_t offset = bytes_sent;
1348 		u8 bval = esp_read8(ESP_FDATA);
1349 
1350 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
1351 			ent->sense_ptr[bytes_sent] = bval;
1352 		else {
1353 			struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
1354 			u8 *ptr;
1355 
1356 			ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg,
1357 						  &offset, &count);
1358 			if (likely(ptr)) {
1359 				*(ptr + offset) = bval;
1360 				scsi_kunmap_atomic_sg(ptr);
1361 			}
1362 		}
1363 		bytes_sent += fifo_cnt;
1364 		ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
1365 	}
1366 	if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1367 		bytes_sent -= fifo_cnt;
1368 
1369 	flush_fifo = 0;
1370 	if (!esp->prev_soff) {
1371 		/* Synchronous data transfer, always flush fifo. */
1372 		flush_fifo = 1;
1373 	} else {
1374 		if (esp->rev == ESP100) {
1375 			u32 fflags, phase;
1376 
1377 			/* ESP100 has a chip bug where in the synchronous data
1378 			 * phase it can mistake a final long REQ pulse from the
1379 			 * target as an extra data byte.  Fun.
1380 			 *
1381 			 * To detect this case we resample the status register
1382 			 * and fifo flags.  If we're still in a data phase and
1383 			 * we see spurious chunks in the fifo, we return error
1384 			 * to the caller which should reset and set things up
1385 			 * such that we only try future transfers to this
1386 			 * target in synchronous mode.
1387 			 */
1388 			esp->sreg = esp_read8(ESP_STATUS);
1389 			phase = esp->sreg & ESP_STAT_PMASK;
1390 			fflags = esp_read8(ESP_FFLAGS);
1391 
1392 			if ((phase == ESP_DOP &&
1393 			     (fflags & ESP_FF_ONOTZERO)) ||
1394 			    (phase == ESP_DIP &&
1395 			     (fflags & ESP_FF_FBYTES)))
1396 				return -1;
1397 		}
1398 		if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1399 			flush_fifo = 1;
1400 	}
1401 
1402 	if (flush_fifo)
1403 		esp_flush_fifo(esp);
1404 
1405 	return bytes_sent;
1406 }
1407 
1408 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1409 			u8 scsi_period, u8 scsi_offset,
1410 			u8 esp_stp, u8 esp_soff)
1411 {
1412 	spi_period(tp->starget) = scsi_period;
1413 	spi_offset(tp->starget) = scsi_offset;
1414 	spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1415 
1416 	if (esp_soff) {
1417 		esp_stp &= 0x1f;
1418 		esp_soff |= esp->radelay;
1419 		if (esp->rev >= FAS236) {
1420 			u8 bit = ESP_CONFIG3_FSCSI;
1421 			if (esp->rev >= FAS100A)
1422 				bit = ESP_CONFIG3_FAST;
1423 
1424 			if (scsi_period < 50) {
1425 				if (esp->rev == FASHME)
1426 					esp_soff &= ~esp->radelay;
1427 				tp->esp_config3 |= bit;
1428 			} else {
1429 				tp->esp_config3 &= ~bit;
1430 			}
1431 			esp->prev_cfg3 = tp->esp_config3;
1432 			esp_write8(esp->prev_cfg3, ESP_CFG3);
1433 		}
1434 	}
1435 
1436 	tp->esp_period = esp->prev_stp = esp_stp;
1437 	tp->esp_offset = esp->prev_soff = esp_soff;
1438 
1439 	esp_write8(esp_soff, ESP_SOFF);
1440 	esp_write8(esp_stp, ESP_STP);
1441 
1442 	tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1443 
1444 	spi_display_xfer_agreement(tp->starget);
1445 }
1446 
1447 static void esp_msgin_reject(struct esp *esp)
1448 {
1449 	struct esp_cmd_entry *ent = esp->active_cmd;
1450 	struct scsi_cmnd *cmd = ent->cmd;
1451 	struct esp_target_data *tp;
1452 	int tgt;
1453 
1454 	tgt = cmd->device->id;
1455 	tp = &esp->target[tgt];
1456 
1457 	if (tp->flags & ESP_TGT_NEGO_WIDE) {
1458 		tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1459 
1460 		if (!esp_need_to_nego_sync(tp)) {
1461 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
1462 			scsi_esp_cmd(esp, ESP_CMD_RATN);
1463 		} else {
1464 			esp->msg_out_len =
1465 				spi_populate_sync_msg(&esp->msg_out[0],
1466 						      tp->nego_goal_period,
1467 						      tp->nego_goal_offset);
1468 			tp->flags |= ESP_TGT_NEGO_SYNC;
1469 			scsi_esp_cmd(esp, ESP_CMD_SATN);
1470 		}
1471 		return;
1472 	}
1473 
1474 	if (tp->flags & ESP_TGT_NEGO_SYNC) {
1475 		tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1476 		tp->esp_period = 0;
1477 		tp->esp_offset = 0;
1478 		esp_setsync(esp, tp, 0, 0, 0, 0);
1479 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1480 		return;
1481 	}
1482 
1483 	shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n");
1484 	esp_schedule_reset(esp);
1485 }
1486 
1487 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1488 {
1489 	u8 period = esp->msg_in[3];
1490 	u8 offset = esp->msg_in[4];
1491 	u8 stp;
1492 
1493 	if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1494 		goto do_reject;
1495 
1496 	if (offset > 15)
1497 		goto do_reject;
1498 
1499 	if (offset) {
1500 		int one_clock;
1501 
1502 		if (period > esp->max_period) {
1503 			period = offset = 0;
1504 			goto do_sdtr;
1505 		}
1506 		if (period < esp->min_period)
1507 			goto do_reject;
1508 
1509 		one_clock = esp->ccycle / 1000;
1510 		stp = DIV_ROUND_UP(period << 2, one_clock);
1511 		if (stp && esp->rev >= FAS236) {
1512 			if (stp >= 50)
1513 				stp--;
1514 		}
1515 	} else {
1516 		stp = 0;
1517 	}
1518 
1519 	esp_setsync(esp, tp, period, offset, stp, offset);
1520 	return;
1521 
1522 do_reject:
1523 	esp->msg_out[0] = MESSAGE_REJECT;
1524 	esp->msg_out_len = 1;
1525 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1526 	return;
1527 
1528 do_sdtr:
1529 	tp->nego_goal_period = period;
1530 	tp->nego_goal_offset = offset;
1531 	esp->msg_out_len =
1532 		spi_populate_sync_msg(&esp->msg_out[0],
1533 				      tp->nego_goal_period,
1534 				      tp->nego_goal_offset);
1535 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1536 }
1537 
1538 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1539 {
1540 	int size = 8 << esp->msg_in[3];
1541 	u8 cfg3;
1542 
1543 	if (esp->rev != FASHME)
1544 		goto do_reject;
1545 
1546 	if (size != 8 && size != 16)
1547 		goto do_reject;
1548 
1549 	if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1550 		goto do_reject;
1551 
1552 	cfg3 = tp->esp_config3;
1553 	if (size == 16) {
1554 		tp->flags |= ESP_TGT_WIDE;
1555 		cfg3 |= ESP_CONFIG3_EWIDE;
1556 	} else {
1557 		tp->flags &= ~ESP_TGT_WIDE;
1558 		cfg3 &= ~ESP_CONFIG3_EWIDE;
1559 	}
1560 	tp->esp_config3 = cfg3;
1561 	esp->prev_cfg3 = cfg3;
1562 	esp_write8(cfg3, ESP_CFG3);
1563 
1564 	tp->flags &= ~ESP_TGT_NEGO_WIDE;
1565 
1566 	spi_period(tp->starget) = 0;
1567 	spi_offset(tp->starget) = 0;
1568 	if (!esp_need_to_nego_sync(tp)) {
1569 		tp->flags &= ~ESP_TGT_CHECK_NEGO;
1570 		scsi_esp_cmd(esp, ESP_CMD_RATN);
1571 	} else {
1572 		esp->msg_out_len =
1573 			spi_populate_sync_msg(&esp->msg_out[0],
1574 					      tp->nego_goal_period,
1575 					      tp->nego_goal_offset);
1576 		tp->flags |= ESP_TGT_NEGO_SYNC;
1577 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1578 	}
1579 	return;
1580 
1581 do_reject:
1582 	esp->msg_out[0] = MESSAGE_REJECT;
1583 	esp->msg_out_len = 1;
1584 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1585 }
1586 
1587 static void esp_msgin_extended(struct esp *esp)
1588 {
1589 	struct esp_cmd_entry *ent = esp->active_cmd;
1590 	struct scsi_cmnd *cmd = ent->cmd;
1591 	struct esp_target_data *tp;
1592 	int tgt = cmd->device->id;
1593 
1594 	tp = &esp->target[tgt];
1595 	if (esp->msg_in[2] == EXTENDED_SDTR) {
1596 		esp_msgin_sdtr(esp, tp);
1597 		return;
1598 	}
1599 	if (esp->msg_in[2] == EXTENDED_WDTR) {
1600 		esp_msgin_wdtr(esp, tp);
1601 		return;
1602 	}
1603 
1604 	shost_printk(KERN_INFO, esp->host,
1605 		     "Unexpected extended msg type %x\n", esp->msg_in[2]);
1606 
1607 	esp->msg_out[0] = MESSAGE_REJECT;
1608 	esp->msg_out_len = 1;
1609 	scsi_esp_cmd(esp, ESP_CMD_SATN);
1610 }
1611 
1612 /* Analyze msgin bytes received from target so far.  Return non-zero
1613  * if there are more bytes needed to complete the message.
1614  */
1615 static int esp_msgin_process(struct esp *esp)
1616 {
1617 	u8 msg0 = esp->msg_in[0];
1618 	int len = esp->msg_in_len;
1619 
1620 	if (msg0 & 0x80) {
1621 		/* Identify */
1622 		shost_printk(KERN_INFO, esp->host,
1623 			     "Unexpected msgin identify\n");
1624 		return 0;
1625 	}
1626 
1627 	switch (msg0) {
1628 	case EXTENDED_MESSAGE:
1629 		if (len == 1)
1630 			return 1;
1631 		if (len < esp->msg_in[1] + 2)
1632 			return 1;
1633 		esp_msgin_extended(esp);
1634 		return 0;
1635 
1636 	case IGNORE_WIDE_RESIDUE: {
1637 		struct esp_cmd_entry *ent;
1638 		struct esp_cmd_priv *spriv;
1639 		if (len == 1)
1640 			return 1;
1641 
1642 		if (esp->msg_in[1] != 1)
1643 			goto do_reject;
1644 
1645 		ent = esp->active_cmd;
1646 		spriv = ESP_CMD_PRIV(ent->cmd);
1647 
1648 		if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1649 			spriv->cur_sg--;
1650 			spriv->cur_residue = 1;
1651 		} else
1652 			spriv->cur_residue++;
1653 		spriv->tot_residue++;
1654 		return 0;
1655 	}
1656 	case NOP:
1657 		return 0;
1658 	case RESTORE_POINTERS:
1659 		esp_restore_pointers(esp, esp->active_cmd);
1660 		return 0;
1661 	case SAVE_POINTERS:
1662 		esp_save_pointers(esp, esp->active_cmd);
1663 		return 0;
1664 
1665 	case COMMAND_COMPLETE:
1666 	case DISCONNECT: {
1667 		struct esp_cmd_entry *ent = esp->active_cmd;
1668 
1669 		ent->message = msg0;
1670 		esp_event(esp, ESP_EVENT_FREE_BUS);
1671 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1672 		return 0;
1673 	}
1674 	case MESSAGE_REJECT:
1675 		esp_msgin_reject(esp);
1676 		return 0;
1677 
1678 	default:
1679 	do_reject:
1680 		esp->msg_out[0] = MESSAGE_REJECT;
1681 		esp->msg_out_len = 1;
1682 		scsi_esp_cmd(esp, ESP_CMD_SATN);
1683 		return 0;
1684 	}
1685 }
1686 
1687 static int esp_process_event(struct esp *esp)
1688 {
1689 	int write, i;
1690 
1691 again:
1692 	write = 0;
1693 	esp_log_event("process event %d phase %x\n",
1694 		      esp->event, esp->sreg & ESP_STAT_PMASK);
1695 	switch (esp->event) {
1696 	case ESP_EVENT_CHECK_PHASE:
1697 		switch (esp->sreg & ESP_STAT_PMASK) {
1698 		case ESP_DOP:
1699 			esp_event(esp, ESP_EVENT_DATA_OUT);
1700 			break;
1701 		case ESP_DIP:
1702 			esp_event(esp, ESP_EVENT_DATA_IN);
1703 			break;
1704 		case ESP_STATP:
1705 			esp_flush_fifo(esp);
1706 			scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1707 			esp_event(esp, ESP_EVENT_STATUS);
1708 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1709 			return 1;
1710 
1711 		case ESP_MOP:
1712 			esp_event(esp, ESP_EVENT_MSGOUT);
1713 			break;
1714 
1715 		case ESP_MIP:
1716 			esp_event(esp, ESP_EVENT_MSGIN);
1717 			break;
1718 
1719 		case ESP_CMDP:
1720 			esp_event(esp, ESP_EVENT_CMD_START);
1721 			break;
1722 
1723 		default:
1724 			shost_printk(KERN_INFO, esp->host,
1725 				     "Unexpected phase, sreg=%02x\n",
1726 				     esp->sreg);
1727 			esp_schedule_reset(esp);
1728 			return 0;
1729 		}
1730 		goto again;
1731 
1732 	case ESP_EVENT_DATA_IN:
1733 		write = 1;
1734 		/* fallthru */
1735 
1736 	case ESP_EVENT_DATA_OUT: {
1737 		struct esp_cmd_entry *ent = esp->active_cmd;
1738 		struct scsi_cmnd *cmd = ent->cmd;
1739 		dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1740 		unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1741 
1742 		if (esp->rev == ESP100)
1743 			scsi_esp_cmd(esp, ESP_CMD_NULL);
1744 
1745 		if (write)
1746 			ent->flags |= ESP_CMD_FLAG_WRITE;
1747 		else
1748 			ent->flags &= ~ESP_CMD_FLAG_WRITE;
1749 
1750 		if (esp->ops->dma_length_limit)
1751 			dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1752 							     dma_len);
1753 		else
1754 			dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1755 
1756 		esp->data_dma_len = dma_len;
1757 
1758 		if (!dma_len) {
1759 			shost_printk(KERN_ERR, esp->host,
1760 				     "DMA length is zero!\n");
1761 			shost_printk(KERN_ERR, esp->host,
1762 				     "cur adr[%08llx] len[%08x]\n",
1763 				     (unsigned long long)esp_cur_dma_addr(ent, cmd),
1764 				     esp_cur_dma_len(ent, cmd));
1765 			esp_schedule_reset(esp);
1766 			return 0;
1767 		}
1768 
1769 		esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
1770 				  (unsigned long long)dma_addr, dma_len, write);
1771 
1772 		esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1773 				       write, ESP_CMD_DMA | ESP_CMD_TI);
1774 		esp_event(esp, ESP_EVENT_DATA_DONE);
1775 		break;
1776 	}
1777 	case ESP_EVENT_DATA_DONE: {
1778 		struct esp_cmd_entry *ent = esp->active_cmd;
1779 		struct scsi_cmnd *cmd = ent->cmd;
1780 		int bytes_sent;
1781 
1782 		if (esp->ops->dma_error(esp)) {
1783 			shost_printk(KERN_INFO, esp->host,
1784 				     "data done, DMA error, resetting\n");
1785 			esp_schedule_reset(esp);
1786 			return 0;
1787 		}
1788 
1789 		if (ent->flags & ESP_CMD_FLAG_WRITE) {
1790 			/* XXX parity errors, etc. XXX */
1791 
1792 			esp->ops->dma_drain(esp);
1793 		}
1794 		esp->ops->dma_invalidate(esp);
1795 
1796 		if (esp->ireg != ESP_INTR_BSERV) {
1797 			/* We should always see exactly a bus-service
1798 			 * interrupt at the end of a successful transfer.
1799 			 */
1800 			shost_printk(KERN_INFO, esp->host,
1801 				     "data done, not BSERV, resetting\n");
1802 			esp_schedule_reset(esp);
1803 			return 0;
1804 		}
1805 
1806 		bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1807 
1808 		esp_log_datadone("data done flgs[%x] sent[%d]\n",
1809 				 ent->flags, bytes_sent);
1810 
1811 		if (bytes_sent < 0) {
1812 			/* XXX force sync mode for this target XXX */
1813 			esp_schedule_reset(esp);
1814 			return 0;
1815 		}
1816 
1817 		esp_advance_dma(esp, ent, cmd, bytes_sent);
1818 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1819 		goto again;
1820 	}
1821 
1822 	case ESP_EVENT_STATUS: {
1823 		struct esp_cmd_entry *ent = esp->active_cmd;
1824 
1825 		if (esp->ireg & ESP_INTR_FDONE) {
1826 			ent->status = esp_read8(ESP_FDATA);
1827 			ent->message = esp_read8(ESP_FDATA);
1828 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1829 		} else if (esp->ireg == ESP_INTR_BSERV) {
1830 			ent->status = esp_read8(ESP_FDATA);
1831 			ent->message = 0xff;
1832 			esp_event(esp, ESP_EVENT_MSGIN);
1833 			return 0;
1834 		}
1835 
1836 		if (ent->message != COMMAND_COMPLETE) {
1837 			shost_printk(KERN_INFO, esp->host,
1838 				     "Unexpected message %x in status\n",
1839 				     ent->message);
1840 			esp_schedule_reset(esp);
1841 			return 0;
1842 		}
1843 
1844 		esp_event(esp, ESP_EVENT_FREE_BUS);
1845 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1846 		break;
1847 	}
1848 	case ESP_EVENT_FREE_BUS: {
1849 		struct esp_cmd_entry *ent = esp->active_cmd;
1850 		struct scsi_cmnd *cmd = ent->cmd;
1851 
1852 		if (ent->message == COMMAND_COMPLETE ||
1853 		    ent->message == DISCONNECT)
1854 			scsi_esp_cmd(esp, ESP_CMD_ESEL);
1855 
1856 		if (ent->message == COMMAND_COMPLETE) {
1857 			esp_log_cmddone("Command done status[%x] message[%x]\n",
1858 					ent->status, ent->message);
1859 			if (ent->status == SAM_STAT_TASK_SET_FULL)
1860 				esp_event_queue_full(esp, ent);
1861 
1862 			if (ent->status == SAM_STAT_CHECK_CONDITION &&
1863 			    !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1864 				ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1865 				esp_autosense(esp, ent);
1866 			} else {
1867 				esp_cmd_is_done(esp, ent, cmd,
1868 						compose_result(ent->status,
1869 							       ent->message,
1870 							       DID_OK));
1871 			}
1872 		} else if (ent->message == DISCONNECT) {
1873 			esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
1874 					   cmd->device->id,
1875 					   ent->tag[0], ent->tag[1]);
1876 
1877 			esp->active_cmd = NULL;
1878 			esp_maybe_execute_command(esp);
1879 		} else {
1880 			shost_printk(KERN_INFO, esp->host,
1881 				     "Unexpected message %x in freebus\n",
1882 				     ent->message);
1883 			esp_schedule_reset(esp);
1884 			return 0;
1885 		}
1886 		if (esp->active_cmd)
1887 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1888 		break;
1889 	}
1890 	case ESP_EVENT_MSGOUT: {
1891 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1892 
1893 		if (esp_debug & ESP_DEBUG_MSGOUT) {
1894 			int i;
1895 			printk("ESP: Sending message [ ");
1896 			for (i = 0; i < esp->msg_out_len; i++)
1897 				printk("%02x ", esp->msg_out[i]);
1898 			printk("]\n");
1899 		}
1900 
1901 		if (esp->rev == FASHME) {
1902 			int i;
1903 
1904 			/* Always use the fifo.  */
1905 			for (i = 0; i < esp->msg_out_len; i++) {
1906 				esp_write8(esp->msg_out[i], ESP_FDATA);
1907 				esp_write8(0, ESP_FDATA);
1908 			}
1909 			scsi_esp_cmd(esp, ESP_CMD_TI);
1910 		} else {
1911 			if (esp->msg_out_len == 1) {
1912 				esp_write8(esp->msg_out[0], ESP_FDATA);
1913 				scsi_esp_cmd(esp, ESP_CMD_TI);
1914 			} else if (esp->flags & ESP_FLAG_USE_FIFO) {
1915 				for (i = 0; i < esp->msg_out_len; i++)
1916 					esp_write8(esp->msg_out[i], ESP_FDATA);
1917 				scsi_esp_cmd(esp, ESP_CMD_TI);
1918 			} else {
1919 				/* Use DMA. */
1920 				memcpy(esp->command_block,
1921 				       esp->msg_out,
1922 				       esp->msg_out_len);
1923 
1924 				esp->ops->send_dma_cmd(esp,
1925 						       esp->command_block_dma,
1926 						       esp->msg_out_len,
1927 						       esp->msg_out_len,
1928 						       0,
1929 						       ESP_CMD_DMA|ESP_CMD_TI);
1930 			}
1931 		}
1932 		esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1933 		break;
1934 	}
1935 	case ESP_EVENT_MSGOUT_DONE:
1936 		if (esp->rev == FASHME) {
1937 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1938 		} else {
1939 			if (esp->msg_out_len > 1)
1940 				esp->ops->dma_invalidate(esp);
1941 
1942 			/* XXX if the chip went into disconnected mode,
1943 			 * we can't run the phase state machine anyway.
1944 			 */
1945 			if (!(esp->ireg & ESP_INTR_DC))
1946 				scsi_esp_cmd(esp, ESP_CMD_NULL);
1947 		}
1948 
1949 		esp->msg_out_len = 0;
1950 
1951 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
1952 		goto again;
1953 	case ESP_EVENT_MSGIN:
1954 		if (esp->ireg & ESP_INTR_BSERV) {
1955 			if (esp->rev == FASHME) {
1956 				if (!(esp_read8(ESP_STATUS2) &
1957 				      ESP_STAT2_FEMPTY))
1958 					scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1959 			} else {
1960 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1961 				if (esp->rev == ESP100)
1962 					scsi_esp_cmd(esp, ESP_CMD_NULL);
1963 			}
1964 			scsi_esp_cmd(esp, ESP_CMD_TI);
1965 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1966 			return 1;
1967 		}
1968 		if (esp->ireg & ESP_INTR_FDONE) {
1969 			u8 val;
1970 
1971 			if (esp->rev == FASHME)
1972 				val = esp->fifo[0];
1973 			else
1974 				val = esp_read8(ESP_FDATA);
1975 			esp->msg_in[esp->msg_in_len++] = val;
1976 
1977 			esp_log_msgin("Got msgin byte %x\n", val);
1978 
1979 			if (!esp_msgin_process(esp))
1980 				esp->msg_in_len = 0;
1981 
1982 			if (esp->rev == FASHME)
1983 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1984 
1985 			scsi_esp_cmd(esp, ESP_CMD_MOK);
1986 
1987 			/* Check whether a bus reset is to be done next */
1988 			if (esp->event == ESP_EVENT_RESET)
1989 				return 0;
1990 
1991 			if (esp->event != ESP_EVENT_FREE_BUS)
1992 				esp_event(esp, ESP_EVENT_CHECK_PHASE);
1993 		} else {
1994 			shost_printk(KERN_INFO, esp->host,
1995 				     "MSGIN neither BSERV not FDON, resetting");
1996 			esp_schedule_reset(esp);
1997 			return 0;
1998 		}
1999 		break;
2000 	case ESP_EVENT_CMD_START:
2001 		memcpy(esp->command_block, esp->cmd_bytes_ptr,
2002 		       esp->cmd_bytes_left);
2003 		esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
2004 		esp_event(esp, ESP_EVENT_CMD_DONE);
2005 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
2006 		break;
2007 	case ESP_EVENT_CMD_DONE:
2008 		esp->ops->dma_invalidate(esp);
2009 		if (esp->ireg & ESP_INTR_BSERV) {
2010 			esp_event(esp, ESP_EVENT_CHECK_PHASE);
2011 			goto again;
2012 		}
2013 		esp_schedule_reset(esp);
2014 		return 0;
2015 
2016 	case ESP_EVENT_RESET:
2017 		scsi_esp_cmd(esp, ESP_CMD_RS);
2018 		break;
2019 
2020 	default:
2021 		shost_printk(KERN_INFO, esp->host,
2022 			     "Unexpected event %x, resetting\n", esp->event);
2023 		esp_schedule_reset(esp);
2024 		return 0;
2025 	}
2026 	return 1;
2027 }
2028 
2029 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
2030 {
2031 	struct scsi_cmnd *cmd = ent->cmd;
2032 
2033 	esp_unmap_dma(esp, cmd);
2034 	esp_free_lun_tag(ent, cmd->device->hostdata);
2035 	cmd->result = DID_RESET << 16;
2036 
2037 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
2038 		esp_unmap_sense(esp, ent);
2039 
2040 	cmd->scsi_done(cmd);
2041 	list_del(&ent->list);
2042 	esp_put_ent(esp, ent);
2043 }
2044 
2045 static void esp_clear_hold(struct scsi_device *dev, void *data)
2046 {
2047 	struct esp_lun_data *lp = dev->hostdata;
2048 
2049 	BUG_ON(lp->num_tagged);
2050 	lp->hold = 0;
2051 }
2052 
2053 static void esp_reset_cleanup(struct esp *esp)
2054 {
2055 	struct esp_cmd_entry *ent, *tmp;
2056 	int i;
2057 
2058 	list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2059 		struct scsi_cmnd *cmd = ent->cmd;
2060 
2061 		list_del(&ent->list);
2062 		cmd->result = DID_RESET << 16;
2063 		cmd->scsi_done(cmd);
2064 		esp_put_ent(esp, ent);
2065 	}
2066 
2067 	list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2068 		if (ent == esp->active_cmd)
2069 			esp->active_cmd = NULL;
2070 		esp_reset_cleanup_one(esp, ent);
2071 	}
2072 
2073 	BUG_ON(esp->active_cmd != NULL);
2074 
2075 	/* Force renegotiation of sync/wide transfers.  */
2076 	for (i = 0; i < ESP_MAX_TARGET; i++) {
2077 		struct esp_target_data *tp = &esp->target[i];
2078 
2079 		tp->esp_period = 0;
2080 		tp->esp_offset = 0;
2081 		tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2082 				     ESP_CONFIG3_FSCSI |
2083 				     ESP_CONFIG3_FAST);
2084 		tp->flags &= ~ESP_TGT_WIDE;
2085 		tp->flags |= ESP_TGT_CHECK_NEGO;
2086 
2087 		if (tp->starget)
2088 			__starget_for_each_device(tp->starget, NULL,
2089 						  esp_clear_hold);
2090 	}
2091 	esp->flags &= ~ESP_FLAG_RESETTING;
2092 }
2093 
2094 /* Runs under host->lock */
2095 static void __esp_interrupt(struct esp *esp)
2096 {
2097 	int finish_reset, intr_done;
2098 	u8 phase;
2099 
2100        /*
2101 	* Once INTRPT is read STATUS and SSTEP are cleared.
2102 	*/
2103 	esp->sreg = esp_read8(ESP_STATUS);
2104 	esp->seqreg = esp_read8(ESP_SSTEP);
2105 	esp->ireg = esp_read8(ESP_INTRPT);
2106 
2107 	if (esp->flags & ESP_FLAG_RESETTING) {
2108 		finish_reset = 1;
2109 	} else {
2110 		if (esp_check_gross_error(esp))
2111 			return;
2112 
2113 		finish_reset = esp_check_spur_intr(esp);
2114 		if (finish_reset < 0)
2115 			return;
2116 	}
2117 
2118 	if (esp->ireg & ESP_INTR_SR)
2119 		finish_reset = 1;
2120 
2121 	if (finish_reset) {
2122 		esp_reset_cleanup(esp);
2123 		if (esp->eh_reset) {
2124 			complete(esp->eh_reset);
2125 			esp->eh_reset = NULL;
2126 		}
2127 		return;
2128 	}
2129 
2130 	phase = (esp->sreg & ESP_STAT_PMASK);
2131 	if (esp->rev == FASHME) {
2132 		if (((phase != ESP_DIP && phase != ESP_DOP) &&
2133 		     esp->select_state == ESP_SELECT_NONE &&
2134 		     esp->event != ESP_EVENT_STATUS &&
2135 		     esp->event != ESP_EVENT_DATA_DONE) ||
2136 		    (esp->ireg & ESP_INTR_RSEL)) {
2137 			esp->sreg2 = esp_read8(ESP_STATUS2);
2138 			if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2139 			    (esp->sreg2 & ESP_STAT2_F1BYTE))
2140 				hme_read_fifo(esp);
2141 		}
2142 	}
2143 
2144 	esp_log_intr("intr sreg[%02x] seqreg[%02x] "
2145 		     "sreg2[%02x] ireg[%02x]\n",
2146 		     esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2147 
2148 	intr_done = 0;
2149 
2150 	if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2151 		shost_printk(KERN_INFO, esp->host,
2152 			     "unexpected IREG %02x\n", esp->ireg);
2153 		if (esp->ireg & ESP_INTR_IC)
2154 			esp_dump_cmd_log(esp);
2155 
2156 		esp_schedule_reset(esp);
2157 	} else {
2158 		if (esp->ireg & ESP_INTR_RSEL) {
2159 			if (esp->active_cmd)
2160 				(void) esp_finish_select(esp);
2161 			intr_done = esp_reconnect(esp);
2162 		} else {
2163 			/* Some combination of FDONE, BSERV, DC. */
2164 			if (esp->select_state != ESP_SELECT_NONE)
2165 				intr_done = esp_finish_select(esp);
2166 		}
2167 	}
2168 	while (!intr_done)
2169 		intr_done = esp_process_event(esp);
2170 }
2171 
2172 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2173 {
2174 	struct esp *esp = dev_id;
2175 	unsigned long flags;
2176 	irqreturn_t ret;
2177 
2178 	spin_lock_irqsave(esp->host->host_lock, flags);
2179 	ret = IRQ_NONE;
2180 	if (esp->ops->irq_pending(esp)) {
2181 		ret = IRQ_HANDLED;
2182 		for (;;) {
2183 			int i;
2184 
2185 			__esp_interrupt(esp);
2186 			if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2187 				break;
2188 			esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2189 
2190 			for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2191 				if (esp->ops->irq_pending(esp))
2192 					break;
2193 			}
2194 			if (i == ESP_QUICKIRQ_LIMIT)
2195 				break;
2196 		}
2197 	}
2198 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2199 
2200 	return ret;
2201 }
2202 EXPORT_SYMBOL(scsi_esp_intr);
2203 
2204 static void esp_get_revision(struct esp *esp)
2205 {
2206 	u8 val;
2207 
2208 	esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2209 	if (esp->config2 == 0) {
2210 		esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2211 		esp_write8(esp->config2, ESP_CFG2);
2212 
2213 		val = esp_read8(ESP_CFG2);
2214 		val &= ~ESP_CONFIG2_MAGIC;
2215 
2216 		esp->config2 = 0;
2217 		if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2218 			/*
2219 			 * If what we write to cfg2 does not come back,
2220 			 * cfg2 is not implemented.
2221 			 * Therefore this must be a plain esp100.
2222 			 */
2223 			esp->rev = ESP100;
2224 			return;
2225 		}
2226 	}
2227 
2228 	esp_set_all_config3(esp, 5);
2229 	esp->prev_cfg3 = 5;
2230 	esp_write8(esp->config2, ESP_CFG2);
2231 	esp_write8(0, ESP_CFG3);
2232 	esp_write8(esp->prev_cfg3, ESP_CFG3);
2233 
2234 	val = esp_read8(ESP_CFG3);
2235 	if (val != 5) {
2236 		/* The cfg2 register is implemented, however
2237 		 * cfg3 is not, must be esp100a.
2238 		 */
2239 		esp->rev = ESP100A;
2240 	} else {
2241 		esp_set_all_config3(esp, 0);
2242 		esp->prev_cfg3 = 0;
2243 		esp_write8(esp->prev_cfg3, ESP_CFG3);
2244 
2245 		/* All of cfg{1,2,3} implemented, must be one of
2246 		 * the fas variants, figure out which one.
2247 		 */
2248 		if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2249 			esp->rev = FAST;
2250 			esp->sync_defp = SYNC_DEFP_FAST;
2251 		} else {
2252 			esp->rev = ESP236;
2253 		}
2254 	}
2255 }
2256 
2257 static void esp_init_swstate(struct esp *esp)
2258 {
2259 	int i;
2260 
2261 	INIT_LIST_HEAD(&esp->queued_cmds);
2262 	INIT_LIST_HEAD(&esp->active_cmds);
2263 	INIT_LIST_HEAD(&esp->esp_cmd_pool);
2264 
2265 	/* Start with a clear state, domain validation (via ->slave_configure,
2266 	 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2267 	 * commands.
2268 	 */
2269 	for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2270 		esp->target[i].flags = 0;
2271 		esp->target[i].nego_goal_period = 0;
2272 		esp->target[i].nego_goal_offset = 0;
2273 		esp->target[i].nego_goal_width = 0;
2274 		esp->target[i].nego_goal_tags = 0;
2275 	}
2276 }
2277 
2278 /* This places the ESP into a known state at boot time. */
2279 static void esp_bootup_reset(struct esp *esp)
2280 {
2281 	u8 val;
2282 
2283 	/* Reset the DMA */
2284 	esp->ops->reset_dma(esp);
2285 
2286 	/* Reset the ESP */
2287 	esp_reset_esp(esp);
2288 
2289 	/* Reset the SCSI bus, but tell ESP not to generate an irq */
2290 	val = esp_read8(ESP_CFG1);
2291 	val |= ESP_CONFIG1_SRRDISAB;
2292 	esp_write8(val, ESP_CFG1);
2293 
2294 	scsi_esp_cmd(esp, ESP_CMD_RS);
2295 	udelay(400);
2296 
2297 	esp_write8(esp->config1, ESP_CFG1);
2298 
2299 	/* Eat any bitrot in the chip and we are done... */
2300 	esp_read8(ESP_INTRPT);
2301 }
2302 
2303 static void esp_set_clock_params(struct esp *esp)
2304 {
2305 	int fhz;
2306 	u8 ccf;
2307 
2308 	/* This is getting messy but it has to be done correctly or else
2309 	 * you get weird behavior all over the place.  We are trying to
2310 	 * basically figure out three pieces of information.
2311 	 *
2312 	 * a) Clock Conversion Factor
2313 	 *
2314 	 *    This is a representation of the input crystal clock frequency
2315 	 *    going into the ESP on this machine.  Any operation whose timing
2316 	 *    is longer than 400ns depends on this value being correct.  For
2317 	 *    example, you'll get blips for arbitration/selection during high
2318 	 *    load or with multiple targets if this is not set correctly.
2319 	 *
2320 	 * b) Selection Time-Out
2321 	 *
2322 	 *    The ESP isn't very bright and will arbitrate for the bus and try
2323 	 *    to select a target forever if you let it.  This value tells the
2324 	 *    ESP when it has taken too long to negotiate and that it should
2325 	 *    interrupt the CPU so we can see what happened.  The value is
2326 	 *    computed as follows (from NCR/Symbios chip docs).
2327 	 *
2328 	 *          (Time Out Period) *  (Input Clock)
2329 	 *    STO = ----------------------------------
2330 	 *          (8192) * (Clock Conversion Factor)
2331 	 *
2332 	 *    We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2333 	 *
2334 	 * c) Imperical constants for synchronous offset and transfer period
2335          *    register values
2336 	 *
2337 	 *    This entails the smallest and largest sync period we could ever
2338 	 *    handle on this ESP.
2339 	 */
2340 	fhz = esp->cfreq;
2341 
2342 	ccf = ((fhz / 1000000) + 4) / 5;
2343 	if (ccf == 1)
2344 		ccf = 2;
2345 
2346 	/* If we can't find anything reasonable, just assume 20MHZ.
2347 	 * This is the clock frequency of the older sun4c's where I've
2348 	 * been unable to find the clock-frequency PROM property.  All
2349 	 * other machines provide useful values it seems.
2350 	 */
2351 	if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2352 		fhz = 20000000;
2353 		ccf = 4;
2354 	}
2355 
2356 	esp->cfact = (ccf == 8 ? 0 : ccf);
2357 	esp->cfreq = fhz;
2358 	esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2359 	esp->ctick = ESP_TICK(ccf, esp->ccycle);
2360 	esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2361 	esp->sync_defp = SYNC_DEFP_SLOW;
2362 }
2363 
2364 static const char *esp_chip_names[] = {
2365 	"ESP100",
2366 	"ESP100A",
2367 	"ESP236",
2368 	"FAS236",
2369 	"FAS100A",
2370 	"FAST",
2371 	"FASHME",
2372 	"AM53C974",
2373 };
2374 
2375 static struct scsi_transport_template *esp_transport_template;
2376 
2377 int scsi_esp_register(struct esp *esp)
2378 {
2379 	static int instance;
2380 	int err;
2381 
2382 	if (!esp->num_tags)
2383 		esp->num_tags = ESP_DEFAULT_TAGS;
2384 	esp->host->transportt = esp_transport_template;
2385 	esp->host->max_lun = ESP_MAX_LUN;
2386 	esp->host->cmd_per_lun = 2;
2387 	esp->host->unique_id = instance;
2388 
2389 	esp_set_clock_params(esp);
2390 
2391 	esp_get_revision(esp);
2392 
2393 	esp_init_swstate(esp);
2394 
2395 	esp_bootup_reset(esp);
2396 
2397 	dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
2398 		   esp->host->unique_id, esp->regs, esp->dma_regs,
2399 		   esp->host->irq);
2400 	dev_printk(KERN_INFO, esp->dev,
2401 		   "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2402 		   esp->host->unique_id, esp_chip_names[esp->rev],
2403 		   esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2404 
2405 	/* Let the SCSI bus reset settle. */
2406 	ssleep(esp_bus_reset_settle);
2407 
2408 	err = scsi_add_host(esp->host, esp->dev);
2409 	if (err)
2410 		return err;
2411 
2412 	instance++;
2413 
2414 	scsi_scan_host(esp->host);
2415 
2416 	return 0;
2417 }
2418 EXPORT_SYMBOL(scsi_esp_register);
2419 
2420 void scsi_esp_unregister(struct esp *esp)
2421 {
2422 	scsi_remove_host(esp->host);
2423 }
2424 EXPORT_SYMBOL(scsi_esp_unregister);
2425 
2426 static int esp_target_alloc(struct scsi_target *starget)
2427 {
2428 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2429 	struct esp_target_data *tp = &esp->target[starget->id];
2430 
2431 	tp->starget = starget;
2432 
2433 	return 0;
2434 }
2435 
2436 static void esp_target_destroy(struct scsi_target *starget)
2437 {
2438 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2439 	struct esp_target_data *tp = &esp->target[starget->id];
2440 
2441 	tp->starget = NULL;
2442 }
2443 
2444 static int esp_slave_alloc(struct scsi_device *dev)
2445 {
2446 	struct esp *esp = shost_priv(dev->host);
2447 	struct esp_target_data *tp = &esp->target[dev->id];
2448 	struct esp_lun_data *lp;
2449 
2450 	lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2451 	if (!lp)
2452 		return -ENOMEM;
2453 	dev->hostdata = lp;
2454 
2455 	spi_min_period(tp->starget) = esp->min_period;
2456 	spi_max_offset(tp->starget) = 15;
2457 
2458 	if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2459 		spi_max_width(tp->starget) = 1;
2460 	else
2461 		spi_max_width(tp->starget) = 0;
2462 
2463 	return 0;
2464 }
2465 
2466 static int esp_slave_configure(struct scsi_device *dev)
2467 {
2468 	struct esp *esp = shost_priv(dev->host);
2469 	struct esp_target_data *tp = &esp->target[dev->id];
2470 
2471 	if (dev->tagged_supported)
2472 		scsi_change_queue_depth(dev, esp->num_tags);
2473 
2474 	tp->flags |= ESP_TGT_DISCONNECT;
2475 
2476 	if (!spi_initial_dv(dev->sdev_target))
2477 		spi_dv_device(dev);
2478 
2479 	return 0;
2480 }
2481 
2482 static void esp_slave_destroy(struct scsi_device *dev)
2483 {
2484 	struct esp_lun_data *lp = dev->hostdata;
2485 
2486 	kfree(lp);
2487 	dev->hostdata = NULL;
2488 }
2489 
2490 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2491 {
2492 	struct esp *esp = shost_priv(cmd->device->host);
2493 	struct esp_cmd_entry *ent, *tmp;
2494 	struct completion eh_done;
2495 	unsigned long flags;
2496 
2497 	/* XXX This helps a lot with debugging but might be a bit
2498 	 * XXX much for the final driver.
2499 	 */
2500 	spin_lock_irqsave(esp->host->host_lock, flags);
2501 	shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
2502 		     cmd, cmd->cmnd[0]);
2503 	ent = esp->active_cmd;
2504 	if (ent)
2505 		shost_printk(KERN_ERR, esp->host,
2506 			     "Current command [%p:%02x]\n",
2507 			     ent->cmd, ent->cmd->cmnd[0]);
2508 	list_for_each_entry(ent, &esp->queued_cmds, list) {
2509 		shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
2510 			     ent->cmd, ent->cmd->cmnd[0]);
2511 	}
2512 	list_for_each_entry(ent, &esp->active_cmds, list) {
2513 		shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
2514 			     ent->cmd, ent->cmd->cmnd[0]);
2515 	}
2516 	esp_dump_cmd_log(esp);
2517 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2518 
2519 	spin_lock_irqsave(esp->host->host_lock, flags);
2520 
2521 	ent = NULL;
2522 	list_for_each_entry(tmp, &esp->queued_cmds, list) {
2523 		if (tmp->cmd == cmd) {
2524 			ent = tmp;
2525 			break;
2526 		}
2527 	}
2528 
2529 	if (ent) {
2530 		/* Easiest case, we didn't even issue the command
2531 		 * yet so it is trivial to abort.
2532 		 */
2533 		list_del(&ent->list);
2534 
2535 		cmd->result = DID_ABORT << 16;
2536 		cmd->scsi_done(cmd);
2537 
2538 		esp_put_ent(esp, ent);
2539 
2540 		goto out_success;
2541 	}
2542 
2543 	init_completion(&eh_done);
2544 
2545 	ent = esp->active_cmd;
2546 	if (ent && ent->cmd == cmd) {
2547 		/* Command is the currently active command on
2548 		 * the bus.  If we already have an output message
2549 		 * pending, no dice.
2550 		 */
2551 		if (esp->msg_out_len)
2552 			goto out_failure;
2553 
2554 		/* Send out an abort, encouraging the target to
2555 		 * go to MSGOUT phase by asserting ATN.
2556 		 */
2557 		esp->msg_out[0] = ABORT_TASK_SET;
2558 		esp->msg_out_len = 1;
2559 		ent->eh_done = &eh_done;
2560 
2561 		scsi_esp_cmd(esp, ESP_CMD_SATN);
2562 	} else {
2563 		/* The command is disconnected.  This is not easy to
2564 		 * abort.  For now we fail and let the scsi error
2565 		 * handling layer go try a scsi bus reset or host
2566 		 * reset.
2567 		 *
2568 		 * What we could do is put together a scsi command
2569 		 * solely for the purpose of sending an abort message
2570 		 * to the target.  Coming up with all the code to
2571 		 * cook up scsi commands, special case them everywhere,
2572 		 * etc. is for questionable gain and it would be better
2573 		 * if the generic scsi error handling layer could do at
2574 		 * least some of that for us.
2575 		 *
2576 		 * Anyways this is an area for potential future improvement
2577 		 * in this driver.
2578 		 */
2579 		goto out_failure;
2580 	}
2581 
2582 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2583 
2584 	if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2585 		spin_lock_irqsave(esp->host->host_lock, flags);
2586 		ent->eh_done = NULL;
2587 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2588 
2589 		return FAILED;
2590 	}
2591 
2592 	return SUCCESS;
2593 
2594 out_success:
2595 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2596 	return SUCCESS;
2597 
2598 out_failure:
2599 	/* XXX This might be a good location to set ESP_TGT_BROKEN
2600 	 * XXX since we know which target/lun in particular is
2601 	 * XXX causing trouble.
2602 	 */
2603 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2604 	return FAILED;
2605 }
2606 
2607 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2608 {
2609 	struct esp *esp = shost_priv(cmd->device->host);
2610 	struct completion eh_reset;
2611 	unsigned long flags;
2612 
2613 	init_completion(&eh_reset);
2614 
2615 	spin_lock_irqsave(esp->host->host_lock, flags);
2616 
2617 	esp->eh_reset = &eh_reset;
2618 
2619 	/* XXX This is too simple... We should add lots of
2620 	 * XXX checks here so that if we find that the chip is
2621 	 * XXX very wedged we return failure immediately so
2622 	 * XXX that we can perform a full chip reset.
2623 	 */
2624 	esp->flags |= ESP_FLAG_RESETTING;
2625 	scsi_esp_cmd(esp, ESP_CMD_RS);
2626 
2627 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2628 
2629 	ssleep(esp_bus_reset_settle);
2630 
2631 	if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2632 		spin_lock_irqsave(esp->host->host_lock, flags);
2633 		esp->eh_reset = NULL;
2634 		spin_unlock_irqrestore(esp->host->host_lock, flags);
2635 
2636 		return FAILED;
2637 	}
2638 
2639 	return SUCCESS;
2640 }
2641 
2642 /* All bets are off, reset the entire device.  */
2643 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2644 {
2645 	struct esp *esp = shost_priv(cmd->device->host);
2646 	unsigned long flags;
2647 
2648 	spin_lock_irqsave(esp->host->host_lock, flags);
2649 	esp_bootup_reset(esp);
2650 	esp_reset_cleanup(esp);
2651 	spin_unlock_irqrestore(esp->host->host_lock, flags);
2652 
2653 	ssleep(esp_bus_reset_settle);
2654 
2655 	return SUCCESS;
2656 }
2657 
2658 static const char *esp_info(struct Scsi_Host *host)
2659 {
2660 	return "esp";
2661 }
2662 
2663 struct scsi_host_template scsi_esp_template = {
2664 	.module			= THIS_MODULE,
2665 	.name			= "esp",
2666 	.info			= esp_info,
2667 	.queuecommand		= esp_queuecommand,
2668 	.target_alloc		= esp_target_alloc,
2669 	.target_destroy		= esp_target_destroy,
2670 	.slave_alloc		= esp_slave_alloc,
2671 	.slave_configure	= esp_slave_configure,
2672 	.slave_destroy		= esp_slave_destroy,
2673 	.eh_abort_handler	= esp_eh_abort_handler,
2674 	.eh_bus_reset_handler	= esp_eh_bus_reset_handler,
2675 	.eh_host_reset_handler	= esp_eh_host_reset_handler,
2676 	.can_queue		= 7,
2677 	.this_id		= 7,
2678 	.sg_tablesize		= SG_ALL,
2679 	.use_clustering		= ENABLE_CLUSTERING,
2680 	.max_sectors		= 0xffff,
2681 	.skip_settle_delay	= 1,
2682 };
2683 EXPORT_SYMBOL(scsi_esp_template);
2684 
2685 static void esp_get_signalling(struct Scsi_Host *host)
2686 {
2687 	struct esp *esp = shost_priv(host);
2688 	enum spi_signal_type type;
2689 
2690 	if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2691 		type = SPI_SIGNAL_HVD;
2692 	else
2693 		type = SPI_SIGNAL_SE;
2694 
2695 	spi_signalling(host) = type;
2696 }
2697 
2698 static void esp_set_offset(struct scsi_target *target, int offset)
2699 {
2700 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2701 	struct esp *esp = shost_priv(host);
2702 	struct esp_target_data *tp = &esp->target[target->id];
2703 
2704 	if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2705 		tp->nego_goal_offset = 0;
2706 	else
2707 		tp->nego_goal_offset = offset;
2708 	tp->flags |= ESP_TGT_CHECK_NEGO;
2709 }
2710 
2711 static void esp_set_period(struct scsi_target *target, int period)
2712 {
2713 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2714 	struct esp *esp = shost_priv(host);
2715 	struct esp_target_data *tp = &esp->target[target->id];
2716 
2717 	tp->nego_goal_period = period;
2718 	tp->flags |= ESP_TGT_CHECK_NEGO;
2719 }
2720 
2721 static void esp_set_width(struct scsi_target *target, int width)
2722 {
2723 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2724 	struct esp *esp = shost_priv(host);
2725 	struct esp_target_data *tp = &esp->target[target->id];
2726 
2727 	tp->nego_goal_width = (width ? 1 : 0);
2728 	tp->flags |= ESP_TGT_CHECK_NEGO;
2729 }
2730 
2731 static struct spi_function_template esp_transport_ops = {
2732 	.set_offset		= esp_set_offset,
2733 	.show_offset		= 1,
2734 	.set_period		= esp_set_period,
2735 	.show_period		= 1,
2736 	.set_width		= esp_set_width,
2737 	.show_width		= 1,
2738 	.get_signalling		= esp_get_signalling,
2739 };
2740 
2741 static int __init esp_init(void)
2742 {
2743 	BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2744 		     sizeof(struct esp_cmd_priv));
2745 
2746 	esp_transport_template = spi_attach_transport(&esp_transport_ops);
2747 	if (!esp_transport_template)
2748 		return -ENODEV;
2749 
2750 	return 0;
2751 }
2752 
2753 static void __exit esp_exit(void)
2754 {
2755 	spi_release_transport(esp_transport_template);
2756 }
2757 
2758 MODULE_DESCRIPTION("ESP SCSI driver core");
2759 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2760 MODULE_LICENSE("GPL");
2761 MODULE_VERSION(DRV_VERSION);
2762 
2763 module_param(esp_bus_reset_settle, int, 0);
2764 MODULE_PARM_DESC(esp_bus_reset_settle,
2765 		 "ESP scsi bus reset delay in seconds");
2766 
2767 module_param(esp_debug, int, 0);
2768 MODULE_PARM_DESC(esp_debug,
2769 "ESP bitmapped debugging message enable value:\n"
2770 "	0x00000001	Log interrupt events\n"
2771 "	0x00000002	Log scsi commands\n"
2772 "	0x00000004	Log resets\n"
2773 "	0x00000008	Log message in events\n"
2774 "	0x00000010	Log message out events\n"
2775 "	0x00000020	Log command completion\n"
2776 "	0x00000040	Log disconnects\n"
2777 "	0x00000080	Log data start\n"
2778 "	0x00000100	Log data done\n"
2779 "	0x00000200	Log reconnects\n"
2780 "	0x00000400	Log auto-sense data\n"
2781 );
2782 
2783 module_init(esp_init);
2784 module_exit(esp_exit);
2785 
2786 #ifdef CONFIG_SCSI_ESP_PIO
2787 static inline unsigned int esp_wait_for_fifo(struct esp *esp)
2788 {
2789 	int i = 500000;
2790 
2791 	do {
2792 		unsigned int fbytes = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
2793 
2794 		if (fbytes)
2795 			return fbytes;
2796 
2797 		udelay(1);
2798 	} while (--i);
2799 
2800 	shost_printk(KERN_ERR, esp->host, "FIFO is empty. sreg [%02x]\n",
2801 		     esp_read8(ESP_STATUS));
2802 	return 0;
2803 }
2804 
2805 static inline int esp_wait_for_intr(struct esp *esp)
2806 {
2807 	int i = 500000;
2808 
2809 	do {
2810 		esp->sreg = esp_read8(ESP_STATUS);
2811 		if (esp->sreg & ESP_STAT_INTR)
2812 			return 0;
2813 
2814 		udelay(1);
2815 	} while (--i);
2816 
2817 	shost_printk(KERN_ERR, esp->host, "IRQ timeout. sreg [%02x]\n",
2818 		     esp->sreg);
2819 	return 1;
2820 }
2821 
2822 #define ESP_FIFO_SIZE 16
2823 
2824 void esp_send_pio_cmd(struct esp *esp, u32 addr, u32 esp_count,
2825 		      u32 dma_count, int write, u8 cmd)
2826 {
2827 	u8 phase = esp->sreg & ESP_STAT_PMASK;
2828 
2829 	cmd &= ~ESP_CMD_DMA;
2830 	esp->send_cmd_error = 0;
2831 
2832 	if (write) {
2833 		u8 *dst = (u8 *)addr;
2834 		u8 mask = ~(phase == ESP_MIP ? ESP_INTR_FDONE : ESP_INTR_BSERV);
2835 
2836 		scsi_esp_cmd(esp, cmd);
2837 
2838 		while (1) {
2839 			if (!esp_wait_for_fifo(esp))
2840 				break;
2841 
2842 			*dst++ = readb(esp->fifo_reg);
2843 			--esp_count;
2844 
2845 			if (!esp_count)
2846 				break;
2847 
2848 			if (esp_wait_for_intr(esp)) {
2849 				esp->send_cmd_error = 1;
2850 				break;
2851 			}
2852 
2853 			if ((esp->sreg & ESP_STAT_PMASK) != phase)
2854 				break;
2855 
2856 			esp->ireg = esp_read8(ESP_INTRPT);
2857 			if (esp->ireg & mask) {
2858 				esp->send_cmd_error = 1;
2859 				break;
2860 			}
2861 
2862 			if (phase == ESP_MIP)
2863 				esp_write8(ESP_CMD_MOK, ESP_CMD);
2864 
2865 			esp_write8(ESP_CMD_TI, ESP_CMD);
2866 		}
2867 	} else {
2868 		unsigned int n = ESP_FIFO_SIZE;
2869 		u8 *src = (u8 *)addr;
2870 
2871 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
2872 
2873 		if (n > esp_count)
2874 			n = esp_count;
2875 		writesb(esp->fifo_reg, src, n);
2876 		src += n;
2877 		esp_count -= n;
2878 
2879 		scsi_esp_cmd(esp, cmd);
2880 
2881 		while (esp_count) {
2882 			if (esp_wait_for_intr(esp)) {
2883 				esp->send_cmd_error = 1;
2884 				break;
2885 			}
2886 
2887 			if ((esp->sreg & ESP_STAT_PMASK) != phase)
2888 				break;
2889 
2890 			esp->ireg = esp_read8(ESP_INTRPT);
2891 			if (esp->ireg & ~ESP_INTR_BSERV) {
2892 				esp->send_cmd_error = 1;
2893 				break;
2894 			}
2895 
2896 			n = ESP_FIFO_SIZE -
2897 			    (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES);
2898 
2899 			if (n > esp_count)
2900 				n = esp_count;
2901 			writesb(esp->fifo_reg, src, n);
2902 			src += n;
2903 			esp_count -= n;
2904 
2905 			esp_write8(ESP_CMD_TI, ESP_CMD);
2906 		}
2907 	}
2908 
2909 	esp->send_cmd_residual = esp_count;
2910 }
2911 EXPORT_SYMBOL(esp_send_pio_cmd);
2912 #endif
2913