1 /* 2 * linux/drivers/scsi/esas2r/esas2r_ioctl.c 3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers 4 * 5 * Copyright (c) 2001-2013 ATTO Technology, Inc. 6 * (mailto:linuxdrivers@attotech.com) 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * NO WARRANTY 19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 23 * solely responsible for determining the appropriateness of using and 24 * distributing the Program and assumes all risks associated with its 25 * exercise of rights under this Agreement, including but not limited to 26 * the risks and costs of program errors, damage to or loss of data, 27 * programs or equipment, and unavailability or interruption of operations. 28 * 29 * DISCLAIMER OF LIABILITY 30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 37 * 38 * You should have received a copy of the GNU General Public License 39 * along with this program; if not, write to the Free Software 40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 41 * USA. 42 */ 43 44 #include "esas2r.h" 45 46 /* 47 * Buffered ioctl handlers. A buffered ioctl is one which requires that we 48 * allocate a DMA-able memory area to communicate with the firmware. In 49 * order to prevent continually allocating and freeing consistent memory, 50 * we will allocate a global buffer the first time we need it and re-use 51 * it for subsequent ioctl calls that require it. 52 */ 53 54 u8 *esas2r_buffered_ioctl; 55 dma_addr_t esas2r_buffered_ioctl_addr; 56 u32 esas2r_buffered_ioctl_size; 57 struct pci_dev *esas2r_buffered_ioctl_pcid; 58 59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore); 60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *, 61 struct esas2r_request *, 62 struct esas2r_sg_context *, 63 void *); 64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *, 65 struct esas2r_request *, void *); 66 67 struct esas2r_buffered_ioctl { 68 struct esas2r_adapter *a; 69 void *ioctl; 70 u32 length; 71 u32 control_code; 72 u32 offset; 73 BUFFERED_IOCTL_CALLBACK 74 callback; 75 void *context; 76 BUFFERED_IOCTL_DONE_CALLBACK 77 done_callback; 78 void *done_context; 79 80 }; 81 82 static void complete_fm_api_req(struct esas2r_adapter *a, 83 struct esas2r_request *rq) 84 { 85 a->fm_api_command_done = 1; 86 wake_up_interruptible(&a->fm_api_waiter); 87 } 88 89 /* Callbacks for building scatter/gather lists for FM API requests */ 90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr) 91 { 92 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 93 int offset = sgc->cur_offset - a->save_offset; 94 95 (*addr) = a->firmware.phys + offset; 96 return a->firmware.orig_len - offset; 97 } 98 99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr) 100 { 101 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 102 int offset = sgc->cur_offset - a->save_offset; 103 104 (*addr) = a->firmware.header_buff_phys + offset; 105 return sizeof(struct esas2r_flash_img) - offset; 106 } 107 108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */ 109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi) 110 { 111 struct esas2r_request *rq; 112 113 if (mutex_lock_interruptible(&a->fm_api_mutex)) { 114 fi->status = FI_STAT_BUSY; 115 return; 116 } 117 118 rq = esas2r_alloc_request(a); 119 if (rq == NULL) { 120 fi->status = FI_STAT_BUSY; 121 goto free_sem; 122 } 123 124 if (fi == &a->firmware.header) { 125 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev, 126 (size_t)sizeof( 127 struct 128 esas2r_flash_img), 129 (dma_addr_t *)&a-> 130 firmware. 131 header_buff_phys, 132 GFP_KERNEL); 133 134 if (a->firmware.header_buff == NULL) { 135 esas2r_debug("failed to allocate header buffer!"); 136 fi->status = FI_STAT_BUSY; 137 goto free_req; 138 } 139 140 memcpy(a->firmware.header_buff, fi, 141 sizeof(struct esas2r_flash_img)); 142 a->save_offset = a->firmware.header_buff; 143 a->fm_api_sgc.get_phys_addr = 144 (PGETPHYSADDR)get_physaddr_fm_api_header; 145 } else { 146 a->save_offset = (u8 *)fi; 147 a->fm_api_sgc.get_phys_addr = 148 (PGETPHYSADDR)get_physaddr_fm_api; 149 } 150 151 rq->comp_cb = complete_fm_api_req; 152 a->fm_api_command_done = 0; 153 a->fm_api_sgc.cur_offset = a->save_offset; 154 155 if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq, 156 &a->fm_api_sgc)) 157 goto all_done; 158 159 /* Now wait around for it to complete. */ 160 while (!a->fm_api_command_done) 161 wait_event_interruptible(a->fm_api_waiter, 162 a->fm_api_command_done); 163 all_done: 164 if (fi == &a->firmware.header) { 165 memcpy(fi, a->firmware.header_buff, 166 sizeof(struct esas2r_flash_img)); 167 168 dma_free_coherent(&a->pcid->dev, 169 (size_t)sizeof(struct esas2r_flash_img), 170 a->firmware.header_buff, 171 (dma_addr_t)a->firmware.header_buff_phys); 172 } 173 free_req: 174 esas2r_free_request(a, (struct esas2r_request *)rq); 175 free_sem: 176 mutex_unlock(&a->fm_api_mutex); 177 return; 178 179 } 180 181 static void complete_nvr_req(struct esas2r_adapter *a, 182 struct esas2r_request *rq) 183 { 184 a->nvram_command_done = 1; 185 wake_up_interruptible(&a->nvram_waiter); 186 } 187 188 /* Callback for building scatter/gather lists for buffered ioctls */ 189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc, 190 u64 *addr) 191 { 192 int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl; 193 194 (*addr) = esas2r_buffered_ioctl_addr + offset; 195 return esas2r_buffered_ioctl_size - offset; 196 } 197 198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a, 199 struct esas2r_request *rq) 200 { 201 a->buffered_ioctl_done = 1; 202 wake_up_interruptible(&a->buffered_ioctl_waiter); 203 } 204 205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi) 206 { 207 struct esas2r_adapter *a = bi->a; 208 struct esas2r_request *rq; 209 struct esas2r_sg_context sgc; 210 u8 result = IOCTL_SUCCESS; 211 212 if (down_interruptible(&buffered_ioctl_semaphore)) 213 return IOCTL_OUT_OF_RESOURCES; 214 215 /* allocate a buffer or use the existing buffer. */ 216 if (esas2r_buffered_ioctl) { 217 if (esas2r_buffered_ioctl_size < bi->length) { 218 /* free the too-small buffer and get a new one */ 219 dma_free_coherent(&a->pcid->dev, 220 (size_t)esas2r_buffered_ioctl_size, 221 esas2r_buffered_ioctl, 222 esas2r_buffered_ioctl_addr); 223 224 goto allocate_buffer; 225 } 226 } else { 227 allocate_buffer: 228 esas2r_buffered_ioctl_size = bi->length; 229 esas2r_buffered_ioctl_pcid = a->pcid; 230 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev, 231 (size_t) 232 esas2r_buffered_ioctl_size, 233 & 234 esas2r_buffered_ioctl_addr, 235 GFP_KERNEL); 236 } 237 238 if (!esas2r_buffered_ioctl) { 239 esas2r_log(ESAS2R_LOG_CRIT, 240 "could not allocate %d bytes of consistent memory " 241 "for a buffered ioctl!", 242 bi->length); 243 244 esas2r_debug("buffered ioctl alloc failure"); 245 result = IOCTL_OUT_OF_RESOURCES; 246 goto exit_cleanly; 247 } 248 249 memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length); 250 251 rq = esas2r_alloc_request(a); 252 if (rq == NULL) { 253 esas2r_log(ESAS2R_LOG_CRIT, 254 "could not allocate an internal request"); 255 256 result = IOCTL_OUT_OF_RESOURCES; 257 esas2r_debug("buffered ioctl - no requests"); 258 goto exit_cleanly; 259 } 260 261 a->buffered_ioctl_done = 0; 262 rq->comp_cb = complete_buffered_ioctl_req; 263 sgc.cur_offset = esas2r_buffered_ioctl + bi->offset; 264 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl; 265 sgc.length = esas2r_buffered_ioctl_size; 266 267 if (!(*bi->callback)(a, rq, &sgc, bi->context)) { 268 /* completed immediately, no need to wait */ 269 a->buffered_ioctl_done = 0; 270 goto free_andexit_cleanly; 271 } 272 273 /* now wait around for it to complete. */ 274 while (!a->buffered_ioctl_done) 275 wait_event_interruptible(a->buffered_ioctl_waiter, 276 a->buffered_ioctl_done); 277 278 free_andexit_cleanly: 279 if (result == IOCTL_SUCCESS && bi->done_callback) 280 (*bi->done_callback)(a, rq, bi->done_context); 281 282 esas2r_free_request(a, rq); 283 284 exit_cleanly: 285 if (result == IOCTL_SUCCESS) 286 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length); 287 288 up(&buffered_ioctl_semaphore); 289 return result; 290 } 291 292 /* SMP ioctl support */ 293 static int smp_ioctl_callback(struct esas2r_adapter *a, 294 struct esas2r_request *rq, 295 struct esas2r_sg_context *sgc, void *context) 296 { 297 struct atto_ioctl_smp *si = 298 (struct atto_ioctl_smp *)esas2r_buffered_ioctl; 299 300 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 301 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP); 302 303 if (!esas2r_build_sg_list(a, rq, sgc)) { 304 si->status = ATTO_STS_OUT_OF_RSRC; 305 return false; 306 } 307 308 esas2r_start_request(a, rq); 309 return true; 310 } 311 312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si) 313 { 314 struct esas2r_buffered_ioctl bi; 315 316 memset(&bi, 0, sizeof(bi)); 317 318 bi.a = a; 319 bi.ioctl = si; 320 bi.length = sizeof(struct atto_ioctl_smp) 321 + le32_to_cpu(si->req_length) 322 + le32_to_cpu(si->rsp_length); 323 bi.offset = 0; 324 bi.callback = smp_ioctl_callback; 325 return handle_buffered_ioctl(&bi); 326 } 327 328 329 /* CSMI ioctl support */ 330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a, 331 struct esas2r_request *rq) 332 { 333 rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id); 334 rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun); 335 336 /* Now call the original completion callback. */ 337 (*rq->aux_req_cb)(a, rq); 338 } 339 340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */ 341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a, 342 union atto_ioctl_csmi *ci, 343 struct esas2r_request *rq, 344 struct esas2r_sg_context *sgc, 345 u32 ctrl_code, 346 u16 target_id) 347 { 348 struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl; 349 350 if (test_bit(AF_DEGRADED_MODE, &a->flags)) 351 return false; 352 353 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 354 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI); 355 ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code); 356 ioctl->csmi.target_id = cpu_to_le16(target_id); 357 ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags); 358 359 /* 360 * Always usurp the completion callback since the interrupt callback 361 * mechanism may be used. 362 */ 363 rq->aux_req_cx = ci; 364 rq->aux_req_cb = rq->comp_cb; 365 rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb; 366 367 if (!esas2r_build_sg_list(a, rq, sgc)) 368 return false; 369 370 esas2r_start_request(a, rq); 371 return true; 372 } 373 374 static bool check_lun(struct scsi_lun lun) 375 { 376 bool result; 377 378 result = ((lun.scsi_lun[7] == 0) && 379 (lun.scsi_lun[6] == 0) && 380 (lun.scsi_lun[5] == 0) && 381 (lun.scsi_lun[4] == 0) && 382 (lun.scsi_lun[3] == 0) && 383 (lun.scsi_lun[2] == 0) && 384 /* Byte 1 is intentionally skipped */ 385 (lun.scsi_lun[0] == 0)); 386 387 return result; 388 } 389 390 static int csmi_ioctl_callback(struct esas2r_adapter *a, 391 struct esas2r_request *rq, 392 struct esas2r_sg_context *sgc, void *context) 393 { 394 struct atto_csmi *ci = (struct atto_csmi *)context; 395 union atto_ioctl_csmi *ioctl_csmi = 396 (union atto_ioctl_csmi *)esas2r_buffered_ioctl; 397 u8 path = 0; 398 u8 tid = 0; 399 u8 lun = 0; 400 u32 sts = CSMI_STS_SUCCESS; 401 struct esas2r_target *t; 402 unsigned long flags; 403 404 if (ci->control_code == CSMI_CC_GET_DEV_ADDR) { 405 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr; 406 407 path = gda->path_id; 408 tid = gda->target_id; 409 lun = gda->lun; 410 } else if (ci->control_code == CSMI_CC_TASK_MGT) { 411 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt; 412 413 path = tm->path_id; 414 tid = tm->target_id; 415 lun = tm->lun; 416 } 417 418 if (path > 0) { 419 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32( 420 CSMI_STS_INV_PARAM); 421 return false; 422 } 423 424 rq->target_id = tid; 425 rq->vrq->scsi.flags |= cpu_to_le32(lun); 426 427 switch (ci->control_code) { 428 case CSMI_CC_GET_DRVR_INFO: 429 { 430 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info; 431 432 strcpy(gdi->description, esas2r_get_model_name(a)); 433 gdi->csmi_major_rev = CSMI_MAJOR_REV; 434 gdi->csmi_minor_rev = CSMI_MINOR_REV; 435 break; 436 } 437 438 case CSMI_CC_GET_CNTLR_CFG: 439 { 440 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg; 441 442 gcc->base_io_addr = 0; 443 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2, 444 &gcc->base_memaddr_lo); 445 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3, 446 &gcc->base_memaddr_hi); 447 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device, 448 a->pcid->subsystem_vendor); 449 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN; 450 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA; 451 gcc->io_bus_type = CSMI_BUS_TYPE_PCI; 452 gcc->pci_addr.bus_num = a->pcid->bus->number; 453 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn); 454 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn); 455 456 memset(gcc->serial_num, 0, sizeof(gcc->serial_num)); 457 458 gcc->major_rev = LOBYTE(LOWORD(a->fw_version)); 459 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version)); 460 gcc->build_rev = LOBYTE(HIWORD(a->fw_version)); 461 gcc->release_rev = HIBYTE(HIWORD(a->fw_version)); 462 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver)); 463 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver)); 464 gcc->bios_build_rev = LOWORD(a->flash_ver); 465 466 if (test_bit(AF2_THUNDERLINK, &a->flags2)) 467 gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA 468 | CSMI_CNTLRF_SATA_HBA; 469 else 470 gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID 471 | CSMI_CNTLRF_SATA_RAID; 472 473 gcc->rrom_major_rev = 0; 474 gcc->rrom_minor_rev = 0; 475 gcc->rrom_build_rev = 0; 476 gcc->rrom_release_rev = 0; 477 gcc->rrom_biosmajor_rev = 0; 478 gcc->rrom_biosminor_rev = 0; 479 gcc->rrom_biosbuild_rev = 0; 480 gcc->rrom_biosrelease_rev = 0; 481 break; 482 } 483 484 case CSMI_CC_GET_CNTLR_STS: 485 { 486 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts; 487 488 if (test_bit(AF_DEGRADED_MODE, &a->flags)) 489 gcs->status = CSMI_CNTLR_STS_FAILED; 490 else 491 gcs->status = CSMI_CNTLR_STS_GOOD; 492 493 gcs->offline_reason = CSMI_OFFLINE_NO_REASON; 494 break; 495 } 496 497 case CSMI_CC_FW_DOWNLOAD: 498 case CSMI_CC_GET_RAID_INFO: 499 case CSMI_CC_GET_RAID_CFG: 500 501 sts = CSMI_STS_BAD_CTRL_CODE; 502 break; 503 504 case CSMI_CC_SMP_PASSTHRU: 505 case CSMI_CC_SSP_PASSTHRU: 506 case CSMI_CC_STP_PASSTHRU: 507 case CSMI_CC_GET_PHY_INFO: 508 case CSMI_CC_SET_PHY_INFO: 509 case CSMI_CC_GET_LINK_ERRORS: 510 case CSMI_CC_GET_SATA_SIG: 511 case CSMI_CC_GET_CONN_INFO: 512 case CSMI_CC_PHY_CTRL: 513 514 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, 515 ci->control_code, 516 ESAS2R_TARG_ID_INV)) { 517 sts = CSMI_STS_FAILED; 518 break; 519 } 520 521 return true; 522 523 case CSMI_CC_GET_SCSI_ADDR: 524 { 525 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; 526 527 struct scsi_lun lun; 528 529 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun)); 530 531 if (!check_lun(lun)) { 532 sts = CSMI_STS_NO_SCSI_ADDR; 533 break; 534 } 535 536 /* make sure the device is present */ 537 spin_lock_irqsave(&a->mem_lock, flags); 538 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr); 539 spin_unlock_irqrestore(&a->mem_lock, flags); 540 541 if (t == NULL) { 542 sts = CSMI_STS_NO_SCSI_ADDR; 543 break; 544 } 545 546 gsa->host_index = 0xFF; 547 gsa->lun = gsa->sas_lun[1]; 548 rq->target_id = esas2r_targ_get_id(t, a); 549 break; 550 } 551 552 case CSMI_CC_GET_DEV_ADDR: 553 { 554 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr; 555 556 /* make sure the target is present */ 557 t = a->targetdb + rq->target_id; 558 559 if (t >= a->targetdb_end 560 || t->target_state != TS_PRESENT 561 || t->sas_addr == 0) { 562 sts = CSMI_STS_NO_DEV_ADDR; 563 break; 564 } 565 566 /* fill in the result */ 567 *(u64 *)gda->sas_addr = t->sas_addr; 568 memset(gda->sas_lun, 0, sizeof(gda->sas_lun)); 569 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags); 570 break; 571 } 572 573 case CSMI_CC_TASK_MGT: 574 575 /* make sure the target is present */ 576 t = a->targetdb + rq->target_id; 577 578 if (t >= a->targetdb_end 579 || t->target_state != TS_PRESENT 580 || !(t->flags & TF_PASS_THRU)) { 581 sts = CSMI_STS_NO_DEV_ADDR; 582 break; 583 } 584 585 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, 586 ci->control_code, 587 t->phys_targ_id)) { 588 sts = CSMI_STS_FAILED; 589 break; 590 } 591 592 return true; 593 594 default: 595 596 sts = CSMI_STS_BAD_CTRL_CODE; 597 break; 598 } 599 600 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts); 601 602 return false; 603 } 604 605 606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a, 607 struct esas2r_request *rq, void *context) 608 { 609 struct atto_csmi *ci = (struct atto_csmi *)context; 610 union atto_ioctl_csmi *ioctl_csmi = 611 (union atto_ioctl_csmi *)esas2r_buffered_ioctl; 612 613 switch (ci->control_code) { 614 case CSMI_CC_GET_DRVR_INFO: 615 { 616 struct atto_csmi_get_driver_info *gdi = 617 &ioctl_csmi->drvr_info; 618 619 strcpy(gdi->name, ESAS2R_VERSION_STR); 620 621 gdi->major_rev = ESAS2R_MAJOR_REV; 622 gdi->minor_rev = ESAS2R_MINOR_REV; 623 gdi->build_rev = 0; 624 gdi->release_rev = 0; 625 break; 626 } 627 628 case CSMI_CC_GET_SCSI_ADDR: 629 { 630 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; 631 632 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) == 633 CSMI_STS_SUCCESS) { 634 gsa->target_id = rq->target_id; 635 gsa->path_id = 0; 636 } 637 638 break; 639 } 640 } 641 642 ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status); 643 } 644 645 646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci) 647 { 648 struct esas2r_buffered_ioctl bi; 649 650 memset(&bi, 0, sizeof(bi)); 651 652 bi.a = a; 653 bi.ioctl = &ci->data; 654 bi.length = sizeof(union atto_ioctl_csmi); 655 bi.offset = 0; 656 bi.callback = csmi_ioctl_callback; 657 bi.context = ci; 658 bi.done_callback = csmi_ioctl_done_callback; 659 bi.done_context = ci; 660 661 return handle_buffered_ioctl(&bi); 662 } 663 664 /* ATTO HBA ioctl support */ 665 666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */ 667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a, 668 struct atto_ioctl *hi, 669 struct esas2r_request *rq, 670 struct esas2r_sg_context *sgc) 671 { 672 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 673 674 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA); 675 676 if (!esas2r_build_sg_list(a, rq, sgc)) { 677 hi->status = ATTO_STS_OUT_OF_RSRC; 678 679 return false; 680 } 681 682 esas2r_start_request(a, rq); 683 684 return true; 685 } 686 687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a, 688 struct esas2r_request *rq) 689 { 690 struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx; 691 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; 692 u8 sts = ATTO_SPT_RS_FAILED; 693 694 spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat; 695 spt->sense_length = rq->sense_len; 696 spt->residual_length = 697 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length); 698 699 switch (rq->req_stat) { 700 case RS_SUCCESS: 701 case RS_SCSI_ERROR: 702 sts = ATTO_SPT_RS_SUCCESS; 703 break; 704 case RS_UNDERRUN: 705 sts = ATTO_SPT_RS_UNDERRUN; 706 break; 707 case RS_OVERRUN: 708 sts = ATTO_SPT_RS_OVERRUN; 709 break; 710 case RS_SEL: 711 case RS_SEL2: 712 sts = ATTO_SPT_RS_NO_DEVICE; 713 break; 714 case RS_NO_LUN: 715 sts = ATTO_SPT_RS_NO_LUN; 716 break; 717 case RS_TIMEOUT: 718 sts = ATTO_SPT_RS_TIMEOUT; 719 break; 720 case RS_DEGRADED: 721 sts = ATTO_SPT_RS_DEGRADED; 722 break; 723 case RS_BUSY: 724 sts = ATTO_SPT_RS_BUSY; 725 break; 726 case RS_ABORTED: 727 sts = ATTO_SPT_RS_ABORTED; 728 break; 729 case RS_RESET: 730 sts = ATTO_SPT_RS_BUS_RESET; 731 break; 732 } 733 734 spt->req_status = sts; 735 736 /* Update the target ID to the next one present. */ 737 spt->target_id = 738 esas2r_targ_db_find_next_present(a, (u16)spt->target_id); 739 740 /* Done, call the completion callback. */ 741 (*rq->aux_req_cb)(a, rq); 742 } 743 744 static int hba_ioctl_callback(struct esas2r_adapter *a, 745 struct esas2r_request *rq, 746 struct esas2r_sg_context *sgc, 747 void *context) 748 { 749 struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl; 750 751 hi->status = ATTO_STS_SUCCESS; 752 753 switch (hi->function) { 754 case ATTO_FUNC_GET_ADAP_INFO: 755 { 756 u8 *class_code = (u8 *)&a->pcid->class; 757 758 struct atto_hba_get_adapter_info *gai = 759 &hi->data.get_adap_info; 760 761 if (hi->flags & HBAF_TUNNEL) { 762 hi->status = ATTO_STS_UNSUPPORTED; 763 break; 764 } 765 766 if (hi->version > ATTO_VER_GET_ADAP_INFO0) { 767 hi->status = ATTO_STS_INV_VERSION; 768 hi->version = ATTO_VER_GET_ADAP_INFO0; 769 break; 770 } 771 772 memset(gai, 0, sizeof(*gai)); 773 774 gai->pci.vendor_id = a->pcid->vendor; 775 gai->pci.device_id = a->pcid->device; 776 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor; 777 gai->pci.ss_device_id = a->pcid->subsystem_device; 778 gai->pci.class_code[0] = class_code[0]; 779 gai->pci.class_code[1] = class_code[1]; 780 gai->pci.class_code[2] = class_code[2]; 781 gai->pci.rev_id = a->pcid->revision; 782 gai->pci.bus_num = a->pcid->bus->number; 783 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn); 784 gai->pci.func_num = PCI_FUNC(a->pcid->devfn); 785 786 if (pci_is_pcie(a->pcid)) { 787 u16 stat; 788 u32 caps; 789 790 pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA, 791 &stat); 792 pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP, 793 &caps); 794 795 gai->pci.link_speed_curr = 796 (u8)(stat & PCI_EXP_LNKSTA_CLS); 797 gai->pci.link_speed_max = 798 (u8)(caps & PCI_EXP_LNKCAP_SLS); 799 gai->pci.link_width_curr = 800 (u8)((stat & PCI_EXP_LNKSTA_NLW) 801 >> PCI_EXP_LNKSTA_NLW_SHIFT); 802 gai->pci.link_width_max = 803 (u8)((caps & PCI_EXP_LNKCAP_MLW) 804 >> 4); 805 } 806 807 gai->pci.msi_vector_cnt = 1; 808 809 if (a->pcid->msix_enabled) 810 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX; 811 else if (a->pcid->msi_enabled) 812 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI; 813 else 814 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY; 815 816 gai->adap_type = ATTO_GAI_AT_ESASRAID2; 817 818 if (test_bit(AF2_THUNDERLINK, &a->flags2)) 819 gai->adap_type = ATTO_GAI_AT_TLSASHBA; 820 821 if (test_bit(AF_DEGRADED_MODE, &a->flags)) 822 gai->adap_flags |= ATTO_GAI_AF_DEGRADED; 823 824 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP | 825 ATTO_GAI_AF_DEVADDR_SUPP; 826 827 if (a->pcid->subsystem_device == ATTO_ESAS_R60F 828 || a->pcid->subsystem_device == ATTO_ESAS_R608 829 || a->pcid->subsystem_device == ATTO_ESAS_R644 830 || a->pcid->subsystem_device == ATTO_TSSC_3808E) 831 gai->adap_flags |= ATTO_GAI_AF_VIRT_SES; 832 833 gai->num_ports = ESAS2R_NUM_PHYS; 834 gai->num_phys = ESAS2R_NUM_PHYS; 835 836 strcpy(gai->firmware_rev, a->fw_rev); 837 strcpy(gai->flash_rev, a->flash_rev); 838 strcpy(gai->model_name_short, esas2r_get_model_name_short(a)); 839 strcpy(gai->model_name, esas2r_get_model_name(a)); 840 841 gai->num_targets = ESAS2R_MAX_TARGETS; 842 843 gai->num_busses = 1; 844 gai->num_targsper_bus = gai->num_targets; 845 gai->num_lunsper_targ = 256; 846 847 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0 848 || a->pcid->subsystem_device == ATTO_ESAS_R60F) 849 gai->num_connectors = 4; 850 else 851 gai->num_connectors = 2; 852 853 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP; 854 855 gai->num_targets_backend = a->num_targets_backend; 856 857 gai->tunnel_flags = a->ioctl_tunnel 858 & (ATTO_GAI_TF_MEM_RW 859 | ATTO_GAI_TF_TRACE 860 | ATTO_GAI_TF_SCSI_PASS_THRU 861 | ATTO_GAI_TF_GET_DEV_ADDR 862 | ATTO_GAI_TF_PHY_CTRL 863 | ATTO_GAI_TF_CONN_CTRL 864 | ATTO_GAI_TF_GET_DEV_INFO); 865 break; 866 } 867 868 case ATTO_FUNC_GET_ADAP_ADDR: 869 { 870 struct atto_hba_get_adapter_address *gaa = 871 &hi->data.get_adap_addr; 872 873 if (hi->flags & HBAF_TUNNEL) { 874 hi->status = ATTO_STS_UNSUPPORTED; 875 break; 876 } 877 878 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) { 879 hi->status = ATTO_STS_INV_VERSION; 880 hi->version = ATTO_VER_GET_ADAP_ADDR0; 881 } else if (gaa->addr_type == ATTO_GAA_AT_PORT 882 || gaa->addr_type == ATTO_GAA_AT_NODE) { 883 if (gaa->addr_type == ATTO_GAA_AT_PORT 884 && gaa->port_id >= ESAS2R_NUM_PHYS) { 885 hi->status = ATTO_STS_NOT_APPL; 886 } else { 887 memcpy((u64 *)gaa->address, 888 &a->nvram->sas_addr[0], sizeof(u64)); 889 gaa->addr_len = sizeof(u64); 890 } 891 } else { 892 hi->status = ATTO_STS_INV_PARAM; 893 } 894 895 break; 896 } 897 898 case ATTO_FUNC_MEM_RW: 899 { 900 if (hi->flags & HBAF_TUNNEL) { 901 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 902 return true; 903 904 break; 905 } 906 907 hi->status = ATTO_STS_UNSUPPORTED; 908 909 break; 910 } 911 912 case ATTO_FUNC_TRACE: 913 { 914 struct atto_hba_trace *trc = &hi->data.trace; 915 916 if (hi->flags & HBAF_TUNNEL) { 917 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 918 return true; 919 920 break; 921 } 922 923 if (hi->version > ATTO_VER_TRACE1) { 924 hi->status = ATTO_STS_INV_VERSION; 925 hi->version = ATTO_VER_TRACE1; 926 break; 927 } 928 929 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP 930 && hi->version >= ATTO_VER_TRACE1) { 931 if (trc->trace_func == ATTO_TRC_TF_UPLOAD) { 932 u32 len = hi->data_length; 933 u32 offset = trc->current_offset; 934 u32 total_len = ESAS2R_FWCOREDUMP_SZ; 935 936 /* Size is zero if a core dump isn't present */ 937 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2)) 938 total_len = 0; 939 940 if (len > total_len) 941 len = total_len; 942 943 if (offset >= total_len 944 || offset + len > total_len 945 || len == 0) { 946 hi->status = ATTO_STS_INV_PARAM; 947 break; 948 } 949 950 memcpy(trc + 1, 951 a->fw_coredump_buff + offset, 952 len); 953 954 hi->data_length = len; 955 } else if (trc->trace_func == ATTO_TRC_TF_RESET) { 956 memset(a->fw_coredump_buff, 0, 957 ESAS2R_FWCOREDUMP_SZ); 958 959 clear_bit(AF2_COREDUMP_SAVED, &a->flags2); 960 } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) { 961 hi->status = ATTO_STS_UNSUPPORTED; 962 break; 963 } 964 965 /* Always return all the info we can. */ 966 trc->trace_mask = 0; 967 trc->current_offset = 0; 968 trc->total_length = ESAS2R_FWCOREDUMP_SZ; 969 970 /* Return zero length buffer if core dump not present */ 971 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2)) 972 trc->total_length = 0; 973 } else { 974 hi->status = ATTO_STS_UNSUPPORTED; 975 } 976 977 break; 978 } 979 980 case ATTO_FUNC_SCSI_PASS_THRU: 981 { 982 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; 983 struct scsi_lun lun; 984 985 memcpy(&lun, spt->lun, sizeof(struct scsi_lun)); 986 987 if (hi->flags & HBAF_TUNNEL) { 988 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 989 return true; 990 991 break; 992 } 993 994 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) { 995 hi->status = ATTO_STS_INV_VERSION; 996 hi->version = ATTO_VER_SCSI_PASS_THRU0; 997 break; 998 } 999 1000 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) { 1001 hi->status = ATTO_STS_INV_PARAM; 1002 break; 1003 } 1004 1005 esas2r_sgc_init(sgc, a, rq, NULL); 1006 1007 sgc->length = hi->data_length; 1008 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte) 1009 + sizeof(struct atto_hba_scsi_pass_thru); 1010 1011 /* Finish request initialization */ 1012 rq->target_id = (u16)spt->target_id; 1013 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]); 1014 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16); 1015 rq->vrq->scsi.length = cpu_to_le32(hi->data_length); 1016 rq->sense_len = spt->sense_length; 1017 rq->sense_buf = (u8 *)spt->sense_data; 1018 /* NOTE: we ignore spt->timeout */ 1019 1020 /* 1021 * always usurp the completion callback since the interrupt 1022 * callback mechanism may be used. 1023 */ 1024 1025 rq->aux_req_cx = hi; 1026 rq->aux_req_cb = rq->comp_cb; 1027 rq->comp_cb = scsi_passthru_comp_cb; 1028 1029 if (spt->flags & ATTO_SPTF_DATA_IN) { 1030 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD); 1031 } else if (spt->flags & ATTO_SPTF_DATA_OUT) { 1032 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD); 1033 } else { 1034 if (sgc->length) { 1035 hi->status = ATTO_STS_INV_PARAM; 1036 break; 1037 } 1038 } 1039 1040 if (spt->flags & ATTO_SPTF_ORDERED_Q) 1041 rq->vrq->scsi.flags |= 1042 cpu_to_le32(FCP_CMND_TA_ORDRD_Q); 1043 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q) 1044 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q); 1045 1046 1047 if (!esas2r_build_sg_list(a, rq, sgc)) { 1048 hi->status = ATTO_STS_OUT_OF_RSRC; 1049 break; 1050 } 1051 1052 esas2r_start_request(a, rq); 1053 1054 return true; 1055 } 1056 1057 case ATTO_FUNC_GET_DEV_ADDR: 1058 { 1059 struct atto_hba_get_device_address *gda = 1060 &hi->data.get_dev_addr; 1061 struct esas2r_target *t; 1062 1063 if (hi->flags & HBAF_TUNNEL) { 1064 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1065 return true; 1066 1067 break; 1068 } 1069 1070 if (hi->version > ATTO_VER_GET_DEV_ADDR0) { 1071 hi->status = ATTO_STS_INV_VERSION; 1072 hi->version = ATTO_VER_GET_DEV_ADDR0; 1073 break; 1074 } 1075 1076 if (gda->target_id >= ESAS2R_MAX_TARGETS) { 1077 hi->status = ATTO_STS_INV_PARAM; 1078 break; 1079 } 1080 1081 t = a->targetdb + (u16)gda->target_id; 1082 1083 if (t->target_state != TS_PRESENT) { 1084 hi->status = ATTO_STS_FAILED; 1085 } else if (gda->addr_type == ATTO_GDA_AT_PORT) { 1086 if (t->sas_addr == 0) { 1087 hi->status = ATTO_STS_UNSUPPORTED; 1088 } else { 1089 *(u64 *)gda->address = t->sas_addr; 1090 1091 gda->addr_len = sizeof(u64); 1092 } 1093 } else if (gda->addr_type == ATTO_GDA_AT_NODE) { 1094 hi->status = ATTO_STS_NOT_APPL; 1095 } else { 1096 hi->status = ATTO_STS_INV_PARAM; 1097 } 1098 1099 /* update the target ID to the next one present. */ 1100 1101 gda->target_id = 1102 esas2r_targ_db_find_next_present(a, 1103 (u16)gda->target_id); 1104 break; 1105 } 1106 1107 case ATTO_FUNC_PHY_CTRL: 1108 case ATTO_FUNC_CONN_CTRL: 1109 { 1110 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1111 return true; 1112 1113 break; 1114 } 1115 1116 case ATTO_FUNC_ADAP_CTRL: 1117 { 1118 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl; 1119 1120 if (hi->flags & HBAF_TUNNEL) { 1121 hi->status = ATTO_STS_UNSUPPORTED; 1122 break; 1123 } 1124 1125 if (hi->version > ATTO_VER_ADAP_CTRL0) { 1126 hi->status = ATTO_STS_INV_VERSION; 1127 hi->version = ATTO_VER_ADAP_CTRL0; 1128 break; 1129 } 1130 1131 if (ac->adap_func == ATTO_AC_AF_HARD_RST) { 1132 esas2r_reset_adapter(a); 1133 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) { 1134 hi->status = ATTO_STS_UNSUPPORTED; 1135 break; 1136 } 1137 1138 if (test_bit(AF_CHPRST_NEEDED, &a->flags)) 1139 ac->adap_state = ATTO_AC_AS_RST_SCHED; 1140 else if (test_bit(AF_CHPRST_PENDING, &a->flags)) 1141 ac->adap_state = ATTO_AC_AS_RST_IN_PROG; 1142 else if (test_bit(AF_DISC_PENDING, &a->flags)) 1143 ac->adap_state = ATTO_AC_AS_RST_DISC; 1144 else if (test_bit(AF_DISABLED, &a->flags)) 1145 ac->adap_state = ATTO_AC_AS_DISABLED; 1146 else if (test_bit(AF_DEGRADED_MODE, &a->flags)) 1147 ac->adap_state = ATTO_AC_AS_DEGRADED; 1148 else 1149 ac->adap_state = ATTO_AC_AS_OK; 1150 1151 break; 1152 } 1153 1154 case ATTO_FUNC_GET_DEV_INFO: 1155 { 1156 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info; 1157 struct esas2r_target *t; 1158 1159 if (hi->flags & HBAF_TUNNEL) { 1160 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1161 return true; 1162 1163 break; 1164 } 1165 1166 if (hi->version > ATTO_VER_GET_DEV_INFO0) { 1167 hi->status = ATTO_STS_INV_VERSION; 1168 hi->version = ATTO_VER_GET_DEV_INFO0; 1169 break; 1170 } 1171 1172 if (gdi->target_id >= ESAS2R_MAX_TARGETS) { 1173 hi->status = ATTO_STS_INV_PARAM; 1174 break; 1175 } 1176 1177 t = a->targetdb + (u16)gdi->target_id; 1178 1179 /* update the target ID to the next one present. */ 1180 1181 gdi->target_id = 1182 esas2r_targ_db_find_next_present(a, 1183 (u16)gdi->target_id); 1184 1185 if (t->target_state != TS_PRESENT) { 1186 hi->status = ATTO_STS_FAILED; 1187 break; 1188 } 1189 1190 hi->status = ATTO_STS_UNSUPPORTED; 1191 break; 1192 } 1193 1194 default: 1195 1196 hi->status = ATTO_STS_INV_FUNC; 1197 break; 1198 } 1199 1200 return false; 1201 } 1202 1203 static void hba_ioctl_done_callback(struct esas2r_adapter *a, 1204 struct esas2r_request *rq, void *context) 1205 { 1206 struct atto_ioctl *ioctl_hba = 1207 (struct atto_ioctl *)esas2r_buffered_ioctl; 1208 1209 esas2r_debug("hba_ioctl_done_callback %d", a->index); 1210 1211 if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) { 1212 struct atto_hba_get_adapter_info *gai = 1213 &ioctl_hba->data.get_adap_info; 1214 1215 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO"); 1216 1217 gai->drvr_rev_major = ESAS2R_MAJOR_REV; 1218 gai->drvr_rev_minor = ESAS2R_MINOR_REV; 1219 1220 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR); 1221 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME); 1222 1223 gai->num_busses = 1; 1224 gai->num_targsper_bus = ESAS2R_MAX_ID + 1; 1225 gai->num_lunsper_targ = 1; 1226 } 1227 } 1228 1229 u8 handle_hba_ioctl(struct esas2r_adapter *a, 1230 struct atto_ioctl *ioctl_hba) 1231 { 1232 struct esas2r_buffered_ioctl bi; 1233 1234 memset(&bi, 0, sizeof(bi)); 1235 1236 bi.a = a; 1237 bi.ioctl = ioctl_hba; 1238 bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length; 1239 bi.callback = hba_ioctl_callback; 1240 bi.context = NULL; 1241 bi.done_callback = hba_ioctl_done_callback; 1242 bi.done_context = NULL; 1243 bi.offset = 0; 1244 1245 return handle_buffered_ioctl(&bi); 1246 } 1247 1248 1249 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq, 1250 struct esas2r_sas_nvram *data) 1251 { 1252 int result = 0; 1253 1254 a->nvram_command_done = 0; 1255 rq->comp_cb = complete_nvr_req; 1256 1257 if (esas2r_nvram_write(a, rq, data)) { 1258 /* now wait around for it to complete. */ 1259 while (!a->nvram_command_done) 1260 wait_event_interruptible(a->nvram_waiter, 1261 a->nvram_command_done); 1262 ; 1263 1264 /* done, check the status. */ 1265 if (rq->req_stat == RS_SUCCESS) 1266 result = 1; 1267 } 1268 return result; 1269 } 1270 1271 1272 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */ 1273 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg) 1274 { 1275 struct atto_express_ioctl *ioctl = NULL; 1276 struct esas2r_adapter *a; 1277 struct esas2r_request *rq; 1278 u16 code; 1279 int err; 1280 1281 esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg); 1282 1283 if ((arg == NULL) 1284 || (cmd < EXPRESS_IOCTL_MIN) 1285 || (cmd > EXPRESS_IOCTL_MAX)) 1286 return -ENOTSUPP; 1287 1288 ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl)); 1289 if (IS_ERR(ioctl)) { 1290 esas2r_log(ESAS2R_LOG_WARN, 1291 "ioctl_handler access_ok failed for cmd %u, address %p", 1292 cmd, arg); 1293 return PTR_ERR(ioctl); 1294 } 1295 1296 /* verify the signature */ 1297 1298 if (memcmp(ioctl->header.signature, 1299 EXPRESS_IOCTL_SIGNATURE, 1300 EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) { 1301 esas2r_log(ESAS2R_LOG_WARN, "invalid signature"); 1302 kfree(ioctl); 1303 1304 return -ENOTSUPP; 1305 } 1306 1307 /* assume success */ 1308 1309 ioctl->header.return_code = IOCTL_SUCCESS; 1310 err = 0; 1311 1312 /* 1313 * handle EXPRESS_IOCTL_GET_CHANNELS 1314 * without paying attention to channel 1315 */ 1316 1317 if (cmd == EXPRESS_IOCTL_GET_CHANNELS) { 1318 int i = 0, k = 0; 1319 1320 ioctl->data.chanlist.num_channels = 0; 1321 1322 while (i < MAX_ADAPTERS) { 1323 if (esas2r_adapters[i]) { 1324 ioctl->data.chanlist.num_channels++; 1325 ioctl->data.chanlist.channel[k] = i; 1326 k++; 1327 } 1328 i++; 1329 } 1330 1331 goto ioctl_done; 1332 } 1333 1334 /* get the channel */ 1335 1336 if (ioctl->header.channel == 0xFF) { 1337 a = (struct esas2r_adapter *)hostdata; 1338 } else { 1339 if (ioctl->header.channel >= MAX_ADAPTERS || 1340 esas2r_adapters[ioctl->header.channel] == NULL) { 1341 ioctl->header.return_code = IOCTL_BAD_CHANNEL; 1342 esas2r_log(ESAS2R_LOG_WARN, "bad channel value"); 1343 kfree(ioctl); 1344 1345 return -ENOTSUPP; 1346 } 1347 a = esas2r_adapters[ioctl->header.channel]; 1348 } 1349 1350 switch (cmd) { 1351 case EXPRESS_IOCTL_RW_FIRMWARE: 1352 1353 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) { 1354 err = esas2r_write_fw(a, 1355 (char *)ioctl->data.fwrw.image, 1356 0, 1357 sizeof(struct 1358 atto_express_ioctl)); 1359 1360 if (err >= 0) { 1361 err = esas2r_read_fw(a, 1362 (char *)ioctl->data.fwrw. 1363 image, 1364 0, 1365 sizeof(struct 1366 atto_express_ioctl)); 1367 } 1368 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) { 1369 err = esas2r_write_fs(a, 1370 (char *)ioctl->data.fwrw.image, 1371 0, 1372 sizeof(struct 1373 atto_express_ioctl)); 1374 1375 if (err >= 0) { 1376 err = esas2r_read_fs(a, 1377 (char *)ioctl->data.fwrw. 1378 image, 1379 0, 1380 sizeof(struct 1381 atto_express_ioctl)); 1382 } 1383 } else { 1384 ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE; 1385 } 1386 1387 break; 1388 1389 case EXPRESS_IOCTL_READ_PARAMS: 1390 1391 memcpy(ioctl->data.prw.data_buffer, a->nvram, 1392 sizeof(struct esas2r_sas_nvram)); 1393 ioctl->data.prw.code = 1; 1394 break; 1395 1396 case EXPRESS_IOCTL_WRITE_PARAMS: 1397 1398 rq = esas2r_alloc_request(a); 1399 if (rq == NULL) { 1400 kfree(ioctl); 1401 esas2r_log(ESAS2R_LOG_WARN, 1402 "could not allocate an internal request"); 1403 return -ENOMEM; 1404 } 1405 1406 code = esas2r_write_params(a, rq, 1407 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); 1408 ioctl->data.prw.code = code; 1409 1410 esas2r_free_request(a, rq); 1411 1412 break; 1413 1414 case EXPRESS_IOCTL_DEFAULT_PARAMS: 1415 1416 esas2r_nvram_get_defaults(a, 1417 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); 1418 ioctl->data.prw.code = 1; 1419 break; 1420 1421 case EXPRESS_IOCTL_CHAN_INFO: 1422 1423 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV; 1424 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV; 1425 ioctl->data.chaninfo.IRQ = a->pcid->irq; 1426 ioctl->data.chaninfo.device_id = a->pcid->device; 1427 ioctl->data.chaninfo.vendor_id = a->pcid->vendor; 1428 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device; 1429 ioctl->data.chaninfo.revision_id = a->pcid->revision; 1430 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number; 1431 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn; 1432 ioctl->data.chaninfo.core_rev = 0; 1433 ioctl->data.chaninfo.host_no = a->host->host_no; 1434 ioctl->data.chaninfo.hbaapi_rev = 0; 1435 break; 1436 1437 case EXPRESS_IOCTL_SMP: 1438 ioctl->header.return_code = handle_smp_ioctl(a, 1439 &ioctl->data. 1440 ioctl_smp); 1441 break; 1442 1443 case EXPRESS_CSMI: 1444 ioctl->header.return_code = 1445 handle_csmi_ioctl(a, &ioctl->data.csmi); 1446 break; 1447 1448 case EXPRESS_IOCTL_HBA: 1449 ioctl->header.return_code = handle_hba_ioctl(a, 1450 &ioctl->data. 1451 ioctl_hba); 1452 break; 1453 1454 case EXPRESS_IOCTL_VDA: 1455 err = esas2r_write_vda(a, 1456 (char *)&ioctl->data.ioctl_vda, 1457 0, 1458 sizeof(struct atto_ioctl_vda) + 1459 ioctl->data.ioctl_vda.data_length); 1460 1461 if (err >= 0) { 1462 err = esas2r_read_vda(a, 1463 (char *)&ioctl->data.ioctl_vda, 1464 0, 1465 sizeof(struct atto_ioctl_vda) + 1466 ioctl->data.ioctl_vda.data_length); 1467 } 1468 1469 1470 1471 1472 break; 1473 1474 case EXPRESS_IOCTL_GET_MOD_INFO: 1475 1476 ioctl->data.modinfo.adapter = a; 1477 ioctl->data.modinfo.pci_dev = a->pcid; 1478 ioctl->data.modinfo.scsi_host = a->host; 1479 ioctl->data.modinfo.host_no = a->host->host_no; 1480 1481 break; 1482 1483 default: 1484 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd); 1485 ioctl->header.return_code = IOCTL_ERR_INVCMD; 1486 } 1487 1488 ioctl_done: 1489 1490 if (err < 0) { 1491 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err, 1492 cmd); 1493 1494 switch (err) { 1495 case -ENOMEM: 1496 case -EBUSY: 1497 ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES; 1498 break; 1499 1500 case -ENOSYS: 1501 case -EINVAL: 1502 ioctl->header.return_code = IOCTL_INVALID_PARAM; 1503 break; 1504 1505 default: 1506 ioctl->header.return_code = IOCTL_GENERAL_ERROR; 1507 break; 1508 } 1509 1510 } 1511 1512 /* Always copy the buffer back, if only to pick up the status */ 1513 err = copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl)); 1514 if (err != 0) { 1515 esas2r_log(ESAS2R_LOG_WARN, 1516 "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)", 1517 err, cmd); 1518 kfree(ioctl); 1519 1520 return -EFAULT; 1521 } 1522 1523 kfree(ioctl); 1524 1525 return 0; 1526 } 1527 1528 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg) 1529 { 1530 return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg); 1531 } 1532 1533 static void free_fw_buffers(struct esas2r_adapter *a) 1534 { 1535 if (a->firmware.data) { 1536 dma_free_coherent(&a->pcid->dev, 1537 (size_t)a->firmware.orig_len, 1538 a->firmware.data, 1539 (dma_addr_t)a->firmware.phys); 1540 1541 a->firmware.data = NULL; 1542 } 1543 } 1544 1545 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length) 1546 { 1547 free_fw_buffers(a); 1548 1549 a->firmware.orig_len = length; 1550 1551 a->firmware.data = dma_alloc_coherent(&a->pcid->dev, 1552 (size_t)length, 1553 (dma_addr_t *)&a->firmware.phys, 1554 GFP_KERNEL); 1555 1556 if (!a->firmware.data) { 1557 esas2r_debug("buffer alloc failed!"); 1558 return 0; 1559 } 1560 1561 return 1; 1562 } 1563 1564 /* Handle a call to read firmware. */ 1565 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count) 1566 { 1567 esas2r_trace_enter(); 1568 /* if the cached header is a status, simply copy it over and return. */ 1569 if (a->firmware.state == FW_STATUS_ST) { 1570 int size = min_t(int, count, sizeof(a->firmware.header)); 1571 esas2r_trace_exit(); 1572 memcpy(buf, &a->firmware.header, size); 1573 esas2r_debug("esas2r_read_fw: STATUS size %d", size); 1574 return size; 1575 } 1576 1577 /* 1578 * if the cached header is a command, do it if at 1579 * offset 0, otherwise copy the pieces. 1580 */ 1581 1582 if (a->firmware.state == FW_COMMAND_ST) { 1583 u32 length = a->firmware.header.length; 1584 esas2r_trace_exit(); 1585 1586 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d", 1587 length, 1588 off); 1589 1590 if (off == 0) { 1591 if (a->firmware.header.action == FI_ACT_UP) { 1592 if (!allocate_fw_buffers(a, length)) 1593 return -ENOMEM; 1594 1595 1596 /* copy header over */ 1597 1598 memcpy(a->firmware.data, 1599 &a->firmware.header, 1600 sizeof(a->firmware.header)); 1601 1602 do_fm_api(a, 1603 (struct esas2r_flash_img *)a->firmware.data); 1604 } else if (a->firmware.header.action == FI_ACT_UPSZ) { 1605 int size = 1606 min((int)count, 1607 (int)sizeof(a->firmware.header)); 1608 do_fm_api(a, &a->firmware.header); 1609 memcpy(buf, &a->firmware.header, size); 1610 esas2r_debug("FI_ACT_UPSZ size %d", size); 1611 return size; 1612 } else { 1613 esas2r_debug("invalid action %d", 1614 a->firmware.header.action); 1615 return -ENOSYS; 1616 } 1617 } 1618 1619 if (count + off > length) 1620 count = length - off; 1621 1622 if (count < 0) 1623 return 0; 1624 1625 if (!a->firmware.data) { 1626 esas2r_debug( 1627 "read: nonzero offset but no buffer available!"); 1628 return -ENOMEM; 1629 } 1630 1631 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off, 1632 count, 1633 length); 1634 1635 memcpy(buf, &a->firmware.data[off], count); 1636 1637 /* when done, release the buffer */ 1638 1639 if (length <= off + count) { 1640 esas2r_debug("esas2r_read_fw: freeing buffer!"); 1641 1642 free_fw_buffers(a); 1643 } 1644 1645 return count; 1646 } 1647 1648 esas2r_trace_exit(); 1649 esas2r_debug("esas2r_read_fw: invalid firmware state %d", 1650 a->firmware.state); 1651 1652 return -EINVAL; 1653 } 1654 1655 /* Handle a call to write firmware. */ 1656 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off, 1657 int count) 1658 { 1659 u32 length; 1660 1661 if (off == 0) { 1662 struct esas2r_flash_img *header = 1663 (struct esas2r_flash_img *)buf; 1664 1665 /* assume version 0 flash image */ 1666 1667 int min_size = sizeof(struct esas2r_flash_img_v0); 1668 1669 a->firmware.state = FW_INVALID_ST; 1670 1671 /* validate the version field first */ 1672 1673 if (count < 4 1674 || header->fi_version > FI_VERSION_1) { 1675 esas2r_debug( 1676 "esas2r_write_fw: short header or invalid version"); 1677 return -EINVAL; 1678 } 1679 1680 /* See if its a version 1 flash image */ 1681 1682 if (header->fi_version == FI_VERSION_1) 1683 min_size = sizeof(struct esas2r_flash_img); 1684 1685 /* If this is the start, the header must be full and valid. */ 1686 if (count < min_size) { 1687 esas2r_debug("esas2r_write_fw: short header, aborting"); 1688 return -EINVAL; 1689 } 1690 1691 /* Make sure the size is reasonable. */ 1692 length = header->length; 1693 1694 if (length > 1024 * 1024) { 1695 esas2r_debug( 1696 "esas2r_write_fw: hosed, length %d fi_version %d", 1697 length, header->fi_version); 1698 return -EINVAL; 1699 } 1700 1701 /* 1702 * If this is a write command, allocate memory because 1703 * we have to cache everything. otherwise, just cache 1704 * the header, because the read op will do the command. 1705 */ 1706 1707 if (header->action == FI_ACT_DOWN) { 1708 if (!allocate_fw_buffers(a, length)) 1709 return -ENOMEM; 1710 1711 /* 1712 * Store the command, so there is context on subsequent 1713 * calls. 1714 */ 1715 memcpy(&a->firmware.header, 1716 buf, 1717 sizeof(*header)); 1718 } else if (header->action == FI_ACT_UP 1719 || header->action == FI_ACT_UPSZ) { 1720 /* Save the command, result will be picked up on read */ 1721 memcpy(&a->firmware.header, 1722 buf, 1723 sizeof(*header)); 1724 1725 a->firmware.state = FW_COMMAND_ST; 1726 1727 esas2r_debug( 1728 "esas2r_write_fw: COMMAND, count %d, action %d ", 1729 count, header->action); 1730 1731 /* 1732 * Pretend we took the whole buffer, 1733 * so we don't get bothered again. 1734 */ 1735 1736 return count; 1737 } else { 1738 esas2r_debug("esas2r_write_fw: invalid action %d ", 1739 a->firmware.header.action); 1740 return -ENOSYS; 1741 } 1742 } else { 1743 length = a->firmware.header.length; 1744 } 1745 1746 /* 1747 * We only get here on a download command, regardless of offset. 1748 * the chunks written by the system need to be cached, and when 1749 * the final one arrives, issue the fmapi command. 1750 */ 1751 1752 if (off + count > length) 1753 count = length - off; 1754 1755 if (count > 0) { 1756 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off, 1757 count, 1758 length); 1759 1760 /* 1761 * On a full upload, the system tries sending the whole buffer. 1762 * there's nothing to do with it, so just drop it here, before 1763 * trying to copy over into unallocated memory! 1764 */ 1765 if (a->firmware.header.action == FI_ACT_UP) 1766 return count; 1767 1768 if (!a->firmware.data) { 1769 esas2r_debug( 1770 "write: nonzero offset but no buffer available!"); 1771 return -ENOMEM; 1772 } 1773 1774 memcpy(&a->firmware.data[off], buf, count); 1775 1776 if (length == off + count) { 1777 do_fm_api(a, 1778 (struct esas2r_flash_img *)a->firmware.data); 1779 1780 /* 1781 * Now copy the header result to be picked up by the 1782 * next read 1783 */ 1784 memcpy(&a->firmware.header, 1785 a->firmware.data, 1786 sizeof(a->firmware.header)); 1787 1788 a->firmware.state = FW_STATUS_ST; 1789 1790 esas2r_debug("write completed"); 1791 1792 /* 1793 * Since the system has the data buffered, the only way 1794 * this can leak is if a root user writes a program 1795 * that writes a shorter buffer than it claims, and the 1796 * copyin fails. 1797 */ 1798 free_fw_buffers(a); 1799 } 1800 } 1801 1802 return count; 1803 } 1804 1805 /* Callback for the completion of a VDA request. */ 1806 static void vda_complete_req(struct esas2r_adapter *a, 1807 struct esas2r_request *rq) 1808 { 1809 a->vda_command_done = 1; 1810 wake_up_interruptible(&a->vda_waiter); 1811 } 1812 1813 /* Scatter/gather callback for VDA requests */ 1814 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr) 1815 { 1816 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 1817 int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer; 1818 1819 (*addr) = a->ppvda_buffer + offset; 1820 return VDA_MAX_BUFFER_SIZE - offset; 1821 } 1822 1823 /* Handle a call to read a VDA command. */ 1824 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count) 1825 { 1826 if (!a->vda_buffer) 1827 return -ENOMEM; 1828 1829 if (off == 0) { 1830 struct esas2r_request *rq; 1831 struct atto_ioctl_vda *vi = 1832 (struct atto_ioctl_vda *)a->vda_buffer; 1833 struct esas2r_sg_context sgc; 1834 bool wait_for_completion; 1835 1836 /* 1837 * Presumeably, someone has already written to the vda_buffer, 1838 * and now they are reading the node the response, so now we 1839 * will actually issue the request to the chip and reply. 1840 */ 1841 1842 /* allocate a request */ 1843 rq = esas2r_alloc_request(a); 1844 if (rq == NULL) { 1845 esas2r_debug("esas2r_read_vda: out of requests"); 1846 return -EBUSY; 1847 } 1848 1849 rq->comp_cb = vda_complete_req; 1850 1851 sgc.first_req = rq; 1852 sgc.adapter = a; 1853 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ; 1854 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda; 1855 1856 a->vda_command_done = 0; 1857 1858 wait_for_completion = 1859 esas2r_process_vda_ioctl(a, vi, rq, &sgc); 1860 1861 if (wait_for_completion) { 1862 /* now wait around for it to complete. */ 1863 1864 while (!a->vda_command_done) 1865 wait_event_interruptible(a->vda_waiter, 1866 a->vda_command_done); 1867 } 1868 1869 esas2r_free_request(a, (struct esas2r_request *)rq); 1870 } 1871 1872 if (off > VDA_MAX_BUFFER_SIZE) 1873 return 0; 1874 1875 if (count + off > VDA_MAX_BUFFER_SIZE) 1876 count = VDA_MAX_BUFFER_SIZE - off; 1877 1878 if (count < 0) 1879 return 0; 1880 1881 memcpy(buf, a->vda_buffer + off, count); 1882 1883 return count; 1884 } 1885 1886 /* Handle a call to write a VDA command. */ 1887 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off, 1888 int count) 1889 { 1890 /* 1891 * allocate memory for it, if not already done. once allocated, 1892 * we will keep it around until the driver is unloaded. 1893 */ 1894 1895 if (!a->vda_buffer) { 1896 dma_addr_t dma_addr; 1897 a->vda_buffer = dma_alloc_coherent(&a->pcid->dev, 1898 (size_t) 1899 VDA_MAX_BUFFER_SIZE, 1900 &dma_addr, 1901 GFP_KERNEL); 1902 1903 a->ppvda_buffer = dma_addr; 1904 } 1905 1906 if (!a->vda_buffer) 1907 return -ENOMEM; 1908 1909 if (off > VDA_MAX_BUFFER_SIZE) 1910 return 0; 1911 1912 if (count + off > VDA_MAX_BUFFER_SIZE) 1913 count = VDA_MAX_BUFFER_SIZE - off; 1914 1915 if (count < 1) 1916 return 0; 1917 1918 memcpy(a->vda_buffer + off, buf, count); 1919 1920 return count; 1921 } 1922 1923 /* Callback for the completion of an FS_API request.*/ 1924 static void fs_api_complete_req(struct esas2r_adapter *a, 1925 struct esas2r_request *rq) 1926 { 1927 a->fs_api_command_done = 1; 1928 1929 wake_up_interruptible(&a->fs_api_waiter); 1930 } 1931 1932 /* Scatter/gather callback for VDA requests */ 1933 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr) 1934 { 1935 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 1936 struct esas2r_ioctl_fs *fs = 1937 (struct esas2r_ioctl_fs *)a->fs_api_buffer; 1938 u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs; 1939 1940 (*addr) = a->ppfs_api_buffer + offset; 1941 1942 return a->fs_api_buffer_size - offset; 1943 } 1944 1945 /* Handle a call to read firmware via FS_API. */ 1946 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count) 1947 { 1948 if (!a->fs_api_buffer) 1949 return -ENOMEM; 1950 1951 if (off == 0) { 1952 struct esas2r_request *rq; 1953 struct esas2r_sg_context sgc; 1954 struct esas2r_ioctl_fs *fs = 1955 (struct esas2r_ioctl_fs *)a->fs_api_buffer; 1956 1957 /* If another flash request is already in progress, return. */ 1958 if (mutex_lock_interruptible(&a->fs_api_mutex)) { 1959 busy: 1960 fs->status = ATTO_STS_OUT_OF_RSRC; 1961 return -EBUSY; 1962 } 1963 1964 /* 1965 * Presumeably, someone has already written to the 1966 * fs_api_buffer, and now they are reading the node the 1967 * response, so now we will actually issue the request to the 1968 * chip and reply. Allocate a request 1969 */ 1970 1971 rq = esas2r_alloc_request(a); 1972 if (rq == NULL) { 1973 esas2r_debug("esas2r_read_fs: out of requests"); 1974 mutex_unlock(&a->fs_api_mutex); 1975 goto busy; 1976 } 1977 1978 rq->comp_cb = fs_api_complete_req; 1979 1980 /* Set up the SGCONTEXT for to build the s/g table */ 1981 1982 sgc.cur_offset = fs->data; 1983 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api; 1984 1985 a->fs_api_command_done = 0; 1986 1987 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) { 1988 if (fs->status == ATTO_STS_OUT_OF_RSRC) 1989 count = -EBUSY; 1990 1991 goto dont_wait; 1992 } 1993 1994 /* Now wait around for it to complete. */ 1995 1996 while (!a->fs_api_command_done) 1997 wait_event_interruptible(a->fs_api_waiter, 1998 a->fs_api_command_done); 1999 ; 2000 dont_wait: 2001 /* Free the request and keep going */ 2002 mutex_unlock(&a->fs_api_mutex); 2003 esas2r_free_request(a, (struct esas2r_request *)rq); 2004 2005 /* Pick up possible error code from above */ 2006 if (count < 0) 2007 return count; 2008 } 2009 2010 if (off > a->fs_api_buffer_size) 2011 return 0; 2012 2013 if (count + off > a->fs_api_buffer_size) 2014 count = a->fs_api_buffer_size - off; 2015 2016 if (count < 0) 2017 return 0; 2018 2019 memcpy(buf, a->fs_api_buffer + off, count); 2020 2021 return count; 2022 } 2023 2024 /* Handle a call to write firmware via FS_API. */ 2025 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off, 2026 int count) 2027 { 2028 if (off == 0) { 2029 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf; 2030 u32 length = fs->command.length + offsetof( 2031 struct esas2r_ioctl_fs, 2032 data); 2033 2034 /* 2035 * Special case, for BEGIN commands, the length field 2036 * is lying to us, so just get enough for the header. 2037 */ 2038 2039 if (fs->command.command == ESAS2R_FS_CMD_BEGINW) 2040 length = offsetof(struct esas2r_ioctl_fs, data); 2041 2042 /* 2043 * Beginning a command. We assume we'll get at least 2044 * enough in the first write so we can look at the 2045 * header and see how much we need to alloc. 2046 */ 2047 2048 if (count < offsetof(struct esas2r_ioctl_fs, data)) 2049 return -EINVAL; 2050 2051 /* Allocate a buffer or use the existing buffer. */ 2052 if (a->fs_api_buffer) { 2053 if (a->fs_api_buffer_size < length) { 2054 /* Free too-small buffer and get a new one */ 2055 dma_free_coherent(&a->pcid->dev, 2056 (size_t)a->fs_api_buffer_size, 2057 a->fs_api_buffer, 2058 (dma_addr_t)a->ppfs_api_buffer); 2059 2060 goto re_allocate_buffer; 2061 } 2062 } else { 2063 re_allocate_buffer: 2064 a->fs_api_buffer_size = length; 2065 2066 a->fs_api_buffer = dma_alloc_coherent(&a->pcid->dev, 2067 (size_t)a->fs_api_buffer_size, 2068 (dma_addr_t *)&a->ppfs_api_buffer, 2069 GFP_KERNEL); 2070 } 2071 } 2072 2073 if (!a->fs_api_buffer) 2074 return -ENOMEM; 2075 2076 if (off > a->fs_api_buffer_size) 2077 return 0; 2078 2079 if (count + off > a->fs_api_buffer_size) 2080 count = a->fs_api_buffer_size - off; 2081 2082 if (count < 1) 2083 return 0; 2084 2085 memcpy(a->fs_api_buffer + off, buf, count); 2086 2087 return count; 2088 } 2089