1 /* 2 * linux/drivers/scsi/esas2r/esas2r_ioctl.c 3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers 4 * 5 * Copyright (c) 2001-2013 ATTO Technology, Inc. 6 * (mailto:linuxdrivers@attotech.com) 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * NO WARRANTY 19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 23 * solely responsible for determining the appropriateness of using and 24 * distributing the Program and assumes all risks associated with its 25 * exercise of rights under this Agreement, including but not limited to 26 * the risks and costs of program errors, damage to or loss of data, 27 * programs or equipment, and unavailability or interruption of operations. 28 * 29 * DISCLAIMER OF LIABILITY 30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 37 * 38 * You should have received a copy of the GNU General Public License 39 * along with this program; if not, write to the Free Software 40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 41 * USA. 42 */ 43 44 #include "esas2r.h" 45 46 /* 47 * Buffered ioctl handlers. A buffered ioctl is one which requires that we 48 * allocate a DMA-able memory area to communicate with the firmware. In 49 * order to prevent continually allocating and freeing consistent memory, 50 * we will allocate a global buffer the first time we need it and re-use 51 * it for subsequent ioctl calls that require it. 52 */ 53 54 u8 *esas2r_buffered_ioctl; 55 dma_addr_t esas2r_buffered_ioctl_addr; 56 u32 esas2r_buffered_ioctl_size; 57 struct pci_dev *esas2r_buffered_ioctl_pcid; 58 59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore); 60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *, 61 struct esas2r_request *, 62 struct esas2r_sg_context *, 63 void *); 64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *, 65 struct esas2r_request *, void *); 66 67 struct esas2r_buffered_ioctl { 68 struct esas2r_adapter *a; 69 void *ioctl; 70 u32 length; 71 u32 control_code; 72 u32 offset; 73 BUFFERED_IOCTL_CALLBACK 74 callback; 75 void *context; 76 BUFFERED_IOCTL_DONE_CALLBACK 77 done_callback; 78 void *done_context; 79 80 }; 81 82 static void complete_fm_api_req(struct esas2r_adapter *a, 83 struct esas2r_request *rq) 84 { 85 a->fm_api_command_done = 1; 86 wake_up_interruptible(&a->fm_api_waiter); 87 } 88 89 /* Callbacks for building scatter/gather lists for FM API requests */ 90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr) 91 { 92 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 93 int offset = sgc->cur_offset - a->save_offset; 94 95 (*addr) = a->firmware.phys + offset; 96 return a->firmware.orig_len - offset; 97 } 98 99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr) 100 { 101 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 102 int offset = sgc->cur_offset - a->save_offset; 103 104 (*addr) = a->firmware.header_buff_phys + offset; 105 return sizeof(struct esas2r_flash_img) - offset; 106 } 107 108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */ 109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi) 110 { 111 struct esas2r_request *rq; 112 113 if (mutex_lock_interruptible(&a->fm_api_mutex)) { 114 fi->status = FI_STAT_BUSY; 115 return; 116 } 117 118 rq = esas2r_alloc_request(a); 119 if (rq == NULL) { 120 fi->status = FI_STAT_BUSY; 121 goto free_sem; 122 } 123 124 if (fi == &a->firmware.header) { 125 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev, 126 (size_t)sizeof( 127 struct 128 esas2r_flash_img), 129 (dma_addr_t *)&a-> 130 firmware. 131 header_buff_phys, 132 GFP_KERNEL); 133 134 if (a->firmware.header_buff == NULL) { 135 esas2r_debug("failed to allocate header buffer!"); 136 fi->status = FI_STAT_BUSY; 137 goto free_req; 138 } 139 140 memcpy(a->firmware.header_buff, fi, 141 sizeof(struct esas2r_flash_img)); 142 a->save_offset = a->firmware.header_buff; 143 a->fm_api_sgc.get_phys_addr = 144 (PGETPHYSADDR)get_physaddr_fm_api_header; 145 } else { 146 a->save_offset = (u8 *)fi; 147 a->fm_api_sgc.get_phys_addr = 148 (PGETPHYSADDR)get_physaddr_fm_api; 149 } 150 151 rq->comp_cb = complete_fm_api_req; 152 a->fm_api_command_done = 0; 153 a->fm_api_sgc.cur_offset = a->save_offset; 154 155 if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq, 156 &a->fm_api_sgc)) 157 goto all_done; 158 159 /* Now wait around for it to complete. */ 160 while (!a->fm_api_command_done) 161 wait_event_interruptible(a->fm_api_waiter, 162 a->fm_api_command_done); 163 all_done: 164 if (fi == &a->firmware.header) { 165 memcpy(fi, a->firmware.header_buff, 166 sizeof(struct esas2r_flash_img)); 167 168 dma_free_coherent(&a->pcid->dev, 169 (size_t)sizeof(struct esas2r_flash_img), 170 a->firmware.header_buff, 171 (dma_addr_t)a->firmware.header_buff_phys); 172 } 173 free_req: 174 esas2r_free_request(a, (struct esas2r_request *)rq); 175 free_sem: 176 mutex_unlock(&a->fm_api_mutex); 177 return; 178 179 } 180 181 static void complete_nvr_req(struct esas2r_adapter *a, 182 struct esas2r_request *rq) 183 { 184 a->nvram_command_done = 1; 185 wake_up_interruptible(&a->nvram_waiter); 186 } 187 188 /* Callback for building scatter/gather lists for buffered ioctls */ 189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc, 190 u64 *addr) 191 { 192 int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl; 193 194 (*addr) = esas2r_buffered_ioctl_addr + offset; 195 return esas2r_buffered_ioctl_size - offset; 196 } 197 198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a, 199 struct esas2r_request *rq) 200 { 201 a->buffered_ioctl_done = 1; 202 wake_up_interruptible(&a->buffered_ioctl_waiter); 203 } 204 205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi) 206 { 207 struct esas2r_adapter *a = bi->a; 208 struct esas2r_request *rq; 209 struct esas2r_sg_context sgc; 210 u8 result = IOCTL_SUCCESS; 211 212 if (down_interruptible(&buffered_ioctl_semaphore)) 213 return IOCTL_OUT_OF_RESOURCES; 214 215 /* allocate a buffer or use the existing buffer. */ 216 if (esas2r_buffered_ioctl) { 217 if (esas2r_buffered_ioctl_size < bi->length) { 218 /* free the too-small buffer and get a new one */ 219 dma_free_coherent(&a->pcid->dev, 220 (size_t)esas2r_buffered_ioctl_size, 221 esas2r_buffered_ioctl, 222 esas2r_buffered_ioctl_addr); 223 224 goto allocate_buffer; 225 } 226 } else { 227 allocate_buffer: 228 esas2r_buffered_ioctl_size = bi->length; 229 esas2r_buffered_ioctl_pcid = a->pcid; 230 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev, 231 (size_t) 232 esas2r_buffered_ioctl_size, 233 & 234 esas2r_buffered_ioctl_addr, 235 GFP_KERNEL); 236 } 237 238 if (!esas2r_buffered_ioctl) { 239 esas2r_log(ESAS2R_LOG_CRIT, 240 "could not allocate %d bytes of consistent memory " 241 "for a buffered ioctl!", 242 bi->length); 243 244 esas2r_debug("buffered ioctl alloc failure"); 245 result = IOCTL_OUT_OF_RESOURCES; 246 goto exit_cleanly; 247 } 248 249 memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length); 250 251 rq = esas2r_alloc_request(a); 252 if (rq == NULL) { 253 esas2r_log(ESAS2R_LOG_CRIT, 254 "could not allocate an internal request"); 255 256 result = IOCTL_OUT_OF_RESOURCES; 257 esas2r_debug("buffered ioctl - no requests"); 258 goto exit_cleanly; 259 } 260 261 a->buffered_ioctl_done = 0; 262 rq->comp_cb = complete_buffered_ioctl_req; 263 sgc.cur_offset = esas2r_buffered_ioctl + bi->offset; 264 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl; 265 sgc.length = esas2r_buffered_ioctl_size; 266 267 if (!(*bi->callback)(a, rq, &sgc, bi->context)) { 268 /* completed immediately, no need to wait */ 269 a->buffered_ioctl_done = 0; 270 goto free_andexit_cleanly; 271 } 272 273 /* now wait around for it to complete. */ 274 while (!a->buffered_ioctl_done) 275 wait_event_interruptible(a->buffered_ioctl_waiter, 276 a->buffered_ioctl_done); 277 278 free_andexit_cleanly: 279 if (result == IOCTL_SUCCESS && bi->done_callback) 280 (*bi->done_callback)(a, rq, bi->done_context); 281 282 esas2r_free_request(a, rq); 283 284 exit_cleanly: 285 if (result == IOCTL_SUCCESS) 286 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length); 287 288 up(&buffered_ioctl_semaphore); 289 return result; 290 } 291 292 /* SMP ioctl support */ 293 static int smp_ioctl_callback(struct esas2r_adapter *a, 294 struct esas2r_request *rq, 295 struct esas2r_sg_context *sgc, void *context) 296 { 297 struct atto_ioctl_smp *si = 298 (struct atto_ioctl_smp *)esas2r_buffered_ioctl; 299 300 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 301 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP); 302 303 if (!esas2r_build_sg_list(a, rq, sgc)) { 304 si->status = ATTO_STS_OUT_OF_RSRC; 305 return false; 306 } 307 308 esas2r_start_request(a, rq); 309 return true; 310 } 311 312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si) 313 { 314 struct esas2r_buffered_ioctl bi; 315 316 memset(&bi, 0, sizeof(bi)); 317 318 bi.a = a; 319 bi.ioctl = si; 320 bi.length = sizeof(struct atto_ioctl_smp) 321 + le32_to_cpu(si->req_length) 322 + le32_to_cpu(si->rsp_length); 323 bi.offset = 0; 324 bi.callback = smp_ioctl_callback; 325 return handle_buffered_ioctl(&bi); 326 } 327 328 329 /* CSMI ioctl support */ 330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a, 331 struct esas2r_request *rq) 332 { 333 rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id); 334 rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun); 335 336 /* Now call the original completion callback. */ 337 (*rq->aux_req_cb)(a, rq); 338 } 339 340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */ 341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a, 342 union atto_ioctl_csmi *ci, 343 struct esas2r_request *rq, 344 struct esas2r_sg_context *sgc, 345 u32 ctrl_code, 346 u16 target_id) 347 { 348 struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl; 349 350 if (test_bit(AF_DEGRADED_MODE, &a->flags)) 351 return false; 352 353 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 354 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI); 355 ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code); 356 ioctl->csmi.target_id = cpu_to_le16(target_id); 357 ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags); 358 359 /* 360 * Always usurp the completion callback since the interrupt callback 361 * mechanism may be used. 362 */ 363 rq->aux_req_cx = ci; 364 rq->aux_req_cb = rq->comp_cb; 365 rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb; 366 367 if (!esas2r_build_sg_list(a, rq, sgc)) 368 return false; 369 370 esas2r_start_request(a, rq); 371 return true; 372 } 373 374 static bool check_lun(struct scsi_lun lun) 375 { 376 bool result; 377 378 result = ((lun.scsi_lun[7] == 0) && 379 (lun.scsi_lun[6] == 0) && 380 (lun.scsi_lun[5] == 0) && 381 (lun.scsi_lun[4] == 0) && 382 (lun.scsi_lun[3] == 0) && 383 (lun.scsi_lun[2] == 0) && 384 /* Byte 1 is intentionally skipped */ 385 (lun.scsi_lun[0] == 0)); 386 387 return result; 388 } 389 390 static int csmi_ioctl_callback(struct esas2r_adapter *a, 391 struct esas2r_request *rq, 392 struct esas2r_sg_context *sgc, void *context) 393 { 394 struct atto_csmi *ci = (struct atto_csmi *)context; 395 union atto_ioctl_csmi *ioctl_csmi = 396 (union atto_ioctl_csmi *)esas2r_buffered_ioctl; 397 u8 path = 0; 398 u8 tid = 0; 399 u8 lun = 0; 400 u32 sts = CSMI_STS_SUCCESS; 401 struct esas2r_target *t; 402 unsigned long flags; 403 404 if (ci->control_code == CSMI_CC_GET_DEV_ADDR) { 405 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr; 406 407 path = gda->path_id; 408 tid = gda->target_id; 409 lun = gda->lun; 410 } else if (ci->control_code == CSMI_CC_TASK_MGT) { 411 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt; 412 413 path = tm->path_id; 414 tid = tm->target_id; 415 lun = tm->lun; 416 } 417 418 if (path > 0) { 419 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32( 420 CSMI_STS_INV_PARAM); 421 return false; 422 } 423 424 rq->target_id = tid; 425 rq->vrq->scsi.flags |= cpu_to_le32(lun); 426 427 switch (ci->control_code) { 428 case CSMI_CC_GET_DRVR_INFO: 429 { 430 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info; 431 432 strcpy(gdi->description, esas2r_get_model_name(a)); 433 gdi->csmi_major_rev = CSMI_MAJOR_REV; 434 gdi->csmi_minor_rev = CSMI_MINOR_REV; 435 break; 436 } 437 438 case CSMI_CC_GET_CNTLR_CFG: 439 { 440 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg; 441 442 gcc->base_io_addr = 0; 443 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2, 444 &gcc->base_memaddr_lo); 445 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3, 446 &gcc->base_memaddr_hi); 447 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device, 448 a->pcid->subsystem_vendor); 449 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN; 450 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA; 451 gcc->io_bus_type = CSMI_BUS_TYPE_PCI; 452 gcc->pci_addr.bus_num = a->pcid->bus->number; 453 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn); 454 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn); 455 456 memset(gcc->serial_num, 0, sizeof(gcc->serial_num)); 457 458 gcc->major_rev = LOBYTE(LOWORD(a->fw_version)); 459 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version)); 460 gcc->build_rev = LOBYTE(HIWORD(a->fw_version)); 461 gcc->release_rev = HIBYTE(HIWORD(a->fw_version)); 462 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver)); 463 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver)); 464 gcc->bios_build_rev = LOWORD(a->flash_ver); 465 466 if (test_bit(AF2_THUNDERLINK, &a->flags2)) 467 gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA 468 | CSMI_CNTLRF_SATA_HBA; 469 else 470 gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID 471 | CSMI_CNTLRF_SATA_RAID; 472 473 gcc->rrom_major_rev = 0; 474 gcc->rrom_minor_rev = 0; 475 gcc->rrom_build_rev = 0; 476 gcc->rrom_release_rev = 0; 477 gcc->rrom_biosmajor_rev = 0; 478 gcc->rrom_biosminor_rev = 0; 479 gcc->rrom_biosbuild_rev = 0; 480 gcc->rrom_biosrelease_rev = 0; 481 break; 482 } 483 484 case CSMI_CC_GET_CNTLR_STS: 485 { 486 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts; 487 488 if (test_bit(AF_DEGRADED_MODE, &a->flags)) 489 gcs->status = CSMI_CNTLR_STS_FAILED; 490 else 491 gcs->status = CSMI_CNTLR_STS_GOOD; 492 493 gcs->offline_reason = CSMI_OFFLINE_NO_REASON; 494 break; 495 } 496 497 case CSMI_CC_FW_DOWNLOAD: 498 case CSMI_CC_GET_RAID_INFO: 499 case CSMI_CC_GET_RAID_CFG: 500 501 sts = CSMI_STS_BAD_CTRL_CODE; 502 break; 503 504 case CSMI_CC_SMP_PASSTHRU: 505 case CSMI_CC_SSP_PASSTHRU: 506 case CSMI_CC_STP_PASSTHRU: 507 case CSMI_CC_GET_PHY_INFO: 508 case CSMI_CC_SET_PHY_INFO: 509 case CSMI_CC_GET_LINK_ERRORS: 510 case CSMI_CC_GET_SATA_SIG: 511 case CSMI_CC_GET_CONN_INFO: 512 case CSMI_CC_PHY_CTRL: 513 514 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, 515 ci->control_code, 516 ESAS2R_TARG_ID_INV)) { 517 sts = CSMI_STS_FAILED; 518 break; 519 } 520 521 return true; 522 523 case CSMI_CC_GET_SCSI_ADDR: 524 { 525 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; 526 527 struct scsi_lun lun; 528 529 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun)); 530 531 if (!check_lun(lun)) { 532 sts = CSMI_STS_NO_SCSI_ADDR; 533 break; 534 } 535 536 /* make sure the device is present */ 537 spin_lock_irqsave(&a->mem_lock, flags); 538 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr); 539 spin_unlock_irqrestore(&a->mem_lock, flags); 540 541 if (t == NULL) { 542 sts = CSMI_STS_NO_SCSI_ADDR; 543 break; 544 } 545 546 gsa->host_index = 0xFF; 547 gsa->lun = gsa->sas_lun[1]; 548 rq->target_id = esas2r_targ_get_id(t, a); 549 break; 550 } 551 552 case CSMI_CC_GET_DEV_ADDR: 553 { 554 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr; 555 556 /* make sure the target is present */ 557 t = a->targetdb + rq->target_id; 558 559 if (t >= a->targetdb_end 560 || t->target_state != TS_PRESENT 561 || t->sas_addr == 0) { 562 sts = CSMI_STS_NO_DEV_ADDR; 563 break; 564 } 565 566 /* fill in the result */ 567 *(u64 *)gda->sas_addr = t->sas_addr; 568 memset(gda->sas_lun, 0, sizeof(gda->sas_lun)); 569 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags); 570 break; 571 } 572 573 case CSMI_CC_TASK_MGT: 574 575 /* make sure the target is present */ 576 t = a->targetdb + rq->target_id; 577 578 if (t >= a->targetdb_end 579 || t->target_state != TS_PRESENT 580 || !(t->flags & TF_PASS_THRU)) { 581 sts = CSMI_STS_NO_DEV_ADDR; 582 break; 583 } 584 585 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, 586 ci->control_code, 587 t->phys_targ_id)) { 588 sts = CSMI_STS_FAILED; 589 break; 590 } 591 592 return true; 593 594 default: 595 596 sts = CSMI_STS_BAD_CTRL_CODE; 597 break; 598 } 599 600 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts); 601 602 return false; 603 } 604 605 606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a, 607 struct esas2r_request *rq, void *context) 608 { 609 struct atto_csmi *ci = (struct atto_csmi *)context; 610 union atto_ioctl_csmi *ioctl_csmi = 611 (union atto_ioctl_csmi *)esas2r_buffered_ioctl; 612 613 switch (ci->control_code) { 614 case CSMI_CC_GET_DRVR_INFO: 615 { 616 struct atto_csmi_get_driver_info *gdi = 617 &ioctl_csmi->drvr_info; 618 619 strcpy(gdi->name, ESAS2R_VERSION_STR); 620 621 gdi->major_rev = ESAS2R_MAJOR_REV; 622 gdi->minor_rev = ESAS2R_MINOR_REV; 623 gdi->build_rev = 0; 624 gdi->release_rev = 0; 625 break; 626 } 627 628 case CSMI_CC_GET_SCSI_ADDR: 629 { 630 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; 631 632 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) == 633 CSMI_STS_SUCCESS) { 634 gsa->target_id = rq->target_id; 635 gsa->path_id = 0; 636 } 637 638 break; 639 } 640 } 641 642 ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status); 643 } 644 645 646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci) 647 { 648 struct esas2r_buffered_ioctl bi; 649 650 memset(&bi, 0, sizeof(bi)); 651 652 bi.a = a; 653 bi.ioctl = &ci->data; 654 bi.length = sizeof(union atto_ioctl_csmi); 655 bi.offset = 0; 656 bi.callback = csmi_ioctl_callback; 657 bi.context = ci; 658 bi.done_callback = csmi_ioctl_done_callback; 659 bi.done_context = ci; 660 661 return handle_buffered_ioctl(&bi); 662 } 663 664 /* ATTO HBA ioctl support */ 665 666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */ 667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a, 668 struct atto_ioctl *hi, 669 struct esas2r_request *rq, 670 struct esas2r_sg_context *sgc) 671 { 672 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 673 674 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA); 675 676 if (!esas2r_build_sg_list(a, rq, sgc)) { 677 hi->status = ATTO_STS_OUT_OF_RSRC; 678 679 return false; 680 } 681 682 esas2r_start_request(a, rq); 683 684 return true; 685 } 686 687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a, 688 struct esas2r_request *rq) 689 { 690 struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx; 691 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; 692 u8 sts = ATTO_SPT_RS_FAILED; 693 694 spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat; 695 spt->sense_length = rq->sense_len; 696 spt->residual_length = 697 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length); 698 699 switch (rq->req_stat) { 700 case RS_SUCCESS: 701 case RS_SCSI_ERROR: 702 sts = ATTO_SPT_RS_SUCCESS; 703 break; 704 case RS_UNDERRUN: 705 sts = ATTO_SPT_RS_UNDERRUN; 706 break; 707 case RS_OVERRUN: 708 sts = ATTO_SPT_RS_OVERRUN; 709 break; 710 case RS_SEL: 711 case RS_SEL2: 712 sts = ATTO_SPT_RS_NO_DEVICE; 713 break; 714 case RS_NO_LUN: 715 sts = ATTO_SPT_RS_NO_LUN; 716 break; 717 case RS_TIMEOUT: 718 sts = ATTO_SPT_RS_TIMEOUT; 719 break; 720 case RS_DEGRADED: 721 sts = ATTO_SPT_RS_DEGRADED; 722 break; 723 case RS_BUSY: 724 sts = ATTO_SPT_RS_BUSY; 725 break; 726 case RS_ABORTED: 727 sts = ATTO_SPT_RS_ABORTED; 728 break; 729 case RS_RESET: 730 sts = ATTO_SPT_RS_BUS_RESET; 731 break; 732 } 733 734 spt->req_status = sts; 735 736 /* Update the target ID to the next one present. */ 737 spt->target_id = 738 esas2r_targ_db_find_next_present(a, (u16)spt->target_id); 739 740 /* Done, call the completion callback. */ 741 (*rq->aux_req_cb)(a, rq); 742 } 743 744 static int hba_ioctl_callback(struct esas2r_adapter *a, 745 struct esas2r_request *rq, 746 struct esas2r_sg_context *sgc, 747 void *context) 748 { 749 struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl; 750 751 hi->status = ATTO_STS_SUCCESS; 752 753 switch (hi->function) { 754 case ATTO_FUNC_GET_ADAP_INFO: 755 { 756 u8 *class_code = (u8 *)&a->pcid->class; 757 758 struct atto_hba_get_adapter_info *gai = 759 &hi->data.get_adap_info; 760 int pcie_cap_reg; 761 762 if (hi->flags & HBAF_TUNNEL) { 763 hi->status = ATTO_STS_UNSUPPORTED; 764 break; 765 } 766 767 if (hi->version > ATTO_VER_GET_ADAP_INFO0) { 768 hi->status = ATTO_STS_INV_VERSION; 769 hi->version = ATTO_VER_GET_ADAP_INFO0; 770 break; 771 } 772 773 memset(gai, 0, sizeof(*gai)); 774 775 gai->pci.vendor_id = a->pcid->vendor; 776 gai->pci.device_id = a->pcid->device; 777 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor; 778 gai->pci.ss_device_id = a->pcid->subsystem_device; 779 gai->pci.class_code[0] = class_code[0]; 780 gai->pci.class_code[1] = class_code[1]; 781 gai->pci.class_code[2] = class_code[2]; 782 gai->pci.rev_id = a->pcid->revision; 783 gai->pci.bus_num = a->pcid->bus->number; 784 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn); 785 gai->pci.func_num = PCI_FUNC(a->pcid->devfn); 786 787 pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP); 788 if (pcie_cap_reg) { 789 u16 stat; 790 u32 caps; 791 792 pci_read_config_word(a->pcid, 793 pcie_cap_reg + PCI_EXP_LNKSTA, 794 &stat); 795 pci_read_config_dword(a->pcid, 796 pcie_cap_reg + PCI_EXP_LNKCAP, 797 &caps); 798 799 gai->pci.link_speed_curr = 800 (u8)(stat & PCI_EXP_LNKSTA_CLS); 801 gai->pci.link_speed_max = 802 (u8)(caps & PCI_EXP_LNKCAP_SLS); 803 gai->pci.link_width_curr = 804 (u8)((stat & PCI_EXP_LNKSTA_NLW) 805 >> PCI_EXP_LNKSTA_NLW_SHIFT); 806 gai->pci.link_width_max = 807 (u8)((caps & PCI_EXP_LNKCAP_MLW) 808 >> 4); 809 } 810 811 gai->pci.msi_vector_cnt = 1; 812 813 if (a->pcid->msix_enabled) 814 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX; 815 else if (a->pcid->msi_enabled) 816 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI; 817 else 818 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY; 819 820 gai->adap_type = ATTO_GAI_AT_ESASRAID2; 821 822 if (test_bit(AF2_THUNDERLINK, &a->flags2)) 823 gai->adap_type = ATTO_GAI_AT_TLSASHBA; 824 825 if (test_bit(AF_DEGRADED_MODE, &a->flags)) 826 gai->adap_flags |= ATTO_GAI_AF_DEGRADED; 827 828 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP | 829 ATTO_GAI_AF_DEVADDR_SUPP; 830 831 if (a->pcid->subsystem_device == ATTO_ESAS_R60F 832 || a->pcid->subsystem_device == ATTO_ESAS_R608 833 || a->pcid->subsystem_device == ATTO_ESAS_R644 834 || a->pcid->subsystem_device == ATTO_TSSC_3808E) 835 gai->adap_flags |= ATTO_GAI_AF_VIRT_SES; 836 837 gai->num_ports = ESAS2R_NUM_PHYS; 838 gai->num_phys = ESAS2R_NUM_PHYS; 839 840 strcpy(gai->firmware_rev, a->fw_rev); 841 strcpy(gai->flash_rev, a->flash_rev); 842 strcpy(gai->model_name_short, esas2r_get_model_name_short(a)); 843 strcpy(gai->model_name, esas2r_get_model_name(a)); 844 845 gai->num_targets = ESAS2R_MAX_TARGETS; 846 847 gai->num_busses = 1; 848 gai->num_targsper_bus = gai->num_targets; 849 gai->num_lunsper_targ = 256; 850 851 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0 852 || a->pcid->subsystem_device == ATTO_ESAS_R60F) 853 gai->num_connectors = 4; 854 else 855 gai->num_connectors = 2; 856 857 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP; 858 859 gai->num_targets_backend = a->num_targets_backend; 860 861 gai->tunnel_flags = a->ioctl_tunnel 862 & (ATTO_GAI_TF_MEM_RW 863 | ATTO_GAI_TF_TRACE 864 | ATTO_GAI_TF_SCSI_PASS_THRU 865 | ATTO_GAI_TF_GET_DEV_ADDR 866 | ATTO_GAI_TF_PHY_CTRL 867 | ATTO_GAI_TF_CONN_CTRL 868 | ATTO_GAI_TF_GET_DEV_INFO); 869 break; 870 } 871 872 case ATTO_FUNC_GET_ADAP_ADDR: 873 { 874 struct atto_hba_get_adapter_address *gaa = 875 &hi->data.get_adap_addr; 876 877 if (hi->flags & HBAF_TUNNEL) { 878 hi->status = ATTO_STS_UNSUPPORTED; 879 break; 880 } 881 882 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) { 883 hi->status = ATTO_STS_INV_VERSION; 884 hi->version = ATTO_VER_GET_ADAP_ADDR0; 885 } else if (gaa->addr_type == ATTO_GAA_AT_PORT 886 || gaa->addr_type == ATTO_GAA_AT_NODE) { 887 if (gaa->addr_type == ATTO_GAA_AT_PORT 888 && gaa->port_id >= ESAS2R_NUM_PHYS) { 889 hi->status = ATTO_STS_NOT_APPL; 890 } else { 891 memcpy((u64 *)gaa->address, 892 &a->nvram->sas_addr[0], sizeof(u64)); 893 gaa->addr_len = sizeof(u64); 894 } 895 } else { 896 hi->status = ATTO_STS_INV_PARAM; 897 } 898 899 break; 900 } 901 902 case ATTO_FUNC_MEM_RW: 903 { 904 if (hi->flags & HBAF_TUNNEL) { 905 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 906 return true; 907 908 break; 909 } 910 911 hi->status = ATTO_STS_UNSUPPORTED; 912 913 break; 914 } 915 916 case ATTO_FUNC_TRACE: 917 { 918 struct atto_hba_trace *trc = &hi->data.trace; 919 920 if (hi->flags & HBAF_TUNNEL) { 921 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 922 return true; 923 924 break; 925 } 926 927 if (hi->version > ATTO_VER_TRACE1) { 928 hi->status = ATTO_STS_INV_VERSION; 929 hi->version = ATTO_VER_TRACE1; 930 break; 931 } 932 933 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP 934 && hi->version >= ATTO_VER_TRACE1) { 935 if (trc->trace_func == ATTO_TRC_TF_UPLOAD) { 936 u32 len = hi->data_length; 937 u32 offset = trc->current_offset; 938 u32 total_len = ESAS2R_FWCOREDUMP_SZ; 939 940 /* Size is zero if a core dump isn't present */ 941 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2)) 942 total_len = 0; 943 944 if (len > total_len) 945 len = total_len; 946 947 if (offset >= total_len 948 || offset + len > total_len 949 || len == 0) { 950 hi->status = ATTO_STS_INV_PARAM; 951 break; 952 } 953 954 memcpy(trc + 1, 955 a->fw_coredump_buff + offset, 956 len); 957 958 hi->data_length = len; 959 } else if (trc->trace_func == ATTO_TRC_TF_RESET) { 960 memset(a->fw_coredump_buff, 0, 961 ESAS2R_FWCOREDUMP_SZ); 962 963 clear_bit(AF2_COREDUMP_SAVED, &a->flags2); 964 } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) { 965 hi->status = ATTO_STS_UNSUPPORTED; 966 break; 967 } 968 969 /* Always return all the info we can. */ 970 trc->trace_mask = 0; 971 trc->current_offset = 0; 972 trc->total_length = ESAS2R_FWCOREDUMP_SZ; 973 974 /* Return zero length buffer if core dump not present */ 975 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2)) 976 trc->total_length = 0; 977 } else { 978 hi->status = ATTO_STS_UNSUPPORTED; 979 } 980 981 break; 982 } 983 984 case ATTO_FUNC_SCSI_PASS_THRU: 985 { 986 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; 987 struct scsi_lun lun; 988 989 memcpy(&lun, spt->lun, sizeof(struct scsi_lun)); 990 991 if (hi->flags & HBAF_TUNNEL) { 992 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 993 return true; 994 995 break; 996 } 997 998 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) { 999 hi->status = ATTO_STS_INV_VERSION; 1000 hi->version = ATTO_VER_SCSI_PASS_THRU0; 1001 break; 1002 } 1003 1004 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) { 1005 hi->status = ATTO_STS_INV_PARAM; 1006 break; 1007 } 1008 1009 esas2r_sgc_init(sgc, a, rq, NULL); 1010 1011 sgc->length = hi->data_length; 1012 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte) 1013 + sizeof(struct atto_hba_scsi_pass_thru); 1014 1015 /* Finish request initialization */ 1016 rq->target_id = (u16)spt->target_id; 1017 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]); 1018 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16); 1019 rq->vrq->scsi.length = cpu_to_le32(hi->data_length); 1020 rq->sense_len = spt->sense_length; 1021 rq->sense_buf = (u8 *)spt->sense_data; 1022 /* NOTE: we ignore spt->timeout */ 1023 1024 /* 1025 * always usurp the completion callback since the interrupt 1026 * callback mechanism may be used. 1027 */ 1028 1029 rq->aux_req_cx = hi; 1030 rq->aux_req_cb = rq->comp_cb; 1031 rq->comp_cb = scsi_passthru_comp_cb; 1032 1033 if (spt->flags & ATTO_SPTF_DATA_IN) { 1034 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD); 1035 } else if (spt->flags & ATTO_SPTF_DATA_OUT) { 1036 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD); 1037 } else { 1038 if (sgc->length) { 1039 hi->status = ATTO_STS_INV_PARAM; 1040 break; 1041 } 1042 } 1043 1044 if (spt->flags & ATTO_SPTF_ORDERED_Q) 1045 rq->vrq->scsi.flags |= 1046 cpu_to_le32(FCP_CMND_TA_ORDRD_Q); 1047 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q) 1048 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q); 1049 1050 1051 if (!esas2r_build_sg_list(a, rq, sgc)) { 1052 hi->status = ATTO_STS_OUT_OF_RSRC; 1053 break; 1054 } 1055 1056 esas2r_start_request(a, rq); 1057 1058 return true; 1059 } 1060 1061 case ATTO_FUNC_GET_DEV_ADDR: 1062 { 1063 struct atto_hba_get_device_address *gda = 1064 &hi->data.get_dev_addr; 1065 struct esas2r_target *t; 1066 1067 if (hi->flags & HBAF_TUNNEL) { 1068 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1069 return true; 1070 1071 break; 1072 } 1073 1074 if (hi->version > ATTO_VER_GET_DEV_ADDR0) { 1075 hi->status = ATTO_STS_INV_VERSION; 1076 hi->version = ATTO_VER_GET_DEV_ADDR0; 1077 break; 1078 } 1079 1080 if (gda->target_id >= ESAS2R_MAX_TARGETS) { 1081 hi->status = ATTO_STS_INV_PARAM; 1082 break; 1083 } 1084 1085 t = a->targetdb + (u16)gda->target_id; 1086 1087 if (t->target_state != TS_PRESENT) { 1088 hi->status = ATTO_STS_FAILED; 1089 } else if (gda->addr_type == ATTO_GDA_AT_PORT) { 1090 if (t->sas_addr == 0) { 1091 hi->status = ATTO_STS_UNSUPPORTED; 1092 } else { 1093 *(u64 *)gda->address = t->sas_addr; 1094 1095 gda->addr_len = sizeof(u64); 1096 } 1097 } else if (gda->addr_type == ATTO_GDA_AT_NODE) { 1098 hi->status = ATTO_STS_NOT_APPL; 1099 } else { 1100 hi->status = ATTO_STS_INV_PARAM; 1101 } 1102 1103 /* update the target ID to the next one present. */ 1104 1105 gda->target_id = 1106 esas2r_targ_db_find_next_present(a, 1107 (u16)gda->target_id); 1108 break; 1109 } 1110 1111 case ATTO_FUNC_PHY_CTRL: 1112 case ATTO_FUNC_CONN_CTRL: 1113 { 1114 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1115 return true; 1116 1117 break; 1118 } 1119 1120 case ATTO_FUNC_ADAP_CTRL: 1121 { 1122 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl; 1123 1124 if (hi->flags & HBAF_TUNNEL) { 1125 hi->status = ATTO_STS_UNSUPPORTED; 1126 break; 1127 } 1128 1129 if (hi->version > ATTO_VER_ADAP_CTRL0) { 1130 hi->status = ATTO_STS_INV_VERSION; 1131 hi->version = ATTO_VER_ADAP_CTRL0; 1132 break; 1133 } 1134 1135 if (ac->adap_func == ATTO_AC_AF_HARD_RST) { 1136 esas2r_reset_adapter(a); 1137 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) { 1138 hi->status = ATTO_STS_UNSUPPORTED; 1139 break; 1140 } 1141 1142 if (test_bit(AF_CHPRST_NEEDED, &a->flags)) 1143 ac->adap_state = ATTO_AC_AS_RST_SCHED; 1144 else if (test_bit(AF_CHPRST_PENDING, &a->flags)) 1145 ac->adap_state = ATTO_AC_AS_RST_IN_PROG; 1146 else if (test_bit(AF_DISC_PENDING, &a->flags)) 1147 ac->adap_state = ATTO_AC_AS_RST_DISC; 1148 else if (test_bit(AF_DISABLED, &a->flags)) 1149 ac->adap_state = ATTO_AC_AS_DISABLED; 1150 else if (test_bit(AF_DEGRADED_MODE, &a->flags)) 1151 ac->adap_state = ATTO_AC_AS_DEGRADED; 1152 else 1153 ac->adap_state = ATTO_AC_AS_OK; 1154 1155 break; 1156 } 1157 1158 case ATTO_FUNC_GET_DEV_INFO: 1159 { 1160 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info; 1161 struct esas2r_target *t; 1162 1163 if (hi->flags & HBAF_TUNNEL) { 1164 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1165 return true; 1166 1167 break; 1168 } 1169 1170 if (hi->version > ATTO_VER_GET_DEV_INFO0) { 1171 hi->status = ATTO_STS_INV_VERSION; 1172 hi->version = ATTO_VER_GET_DEV_INFO0; 1173 break; 1174 } 1175 1176 if (gdi->target_id >= ESAS2R_MAX_TARGETS) { 1177 hi->status = ATTO_STS_INV_PARAM; 1178 break; 1179 } 1180 1181 t = a->targetdb + (u16)gdi->target_id; 1182 1183 /* update the target ID to the next one present. */ 1184 1185 gdi->target_id = 1186 esas2r_targ_db_find_next_present(a, 1187 (u16)gdi->target_id); 1188 1189 if (t->target_state != TS_PRESENT) { 1190 hi->status = ATTO_STS_FAILED; 1191 break; 1192 } 1193 1194 hi->status = ATTO_STS_UNSUPPORTED; 1195 break; 1196 } 1197 1198 default: 1199 1200 hi->status = ATTO_STS_INV_FUNC; 1201 break; 1202 } 1203 1204 return false; 1205 } 1206 1207 static void hba_ioctl_done_callback(struct esas2r_adapter *a, 1208 struct esas2r_request *rq, void *context) 1209 { 1210 struct atto_ioctl *ioctl_hba = 1211 (struct atto_ioctl *)esas2r_buffered_ioctl; 1212 1213 esas2r_debug("hba_ioctl_done_callback %d", a->index); 1214 1215 if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) { 1216 struct atto_hba_get_adapter_info *gai = 1217 &ioctl_hba->data.get_adap_info; 1218 1219 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO"); 1220 1221 gai->drvr_rev_major = ESAS2R_MAJOR_REV; 1222 gai->drvr_rev_minor = ESAS2R_MINOR_REV; 1223 1224 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR); 1225 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME); 1226 1227 gai->num_busses = 1; 1228 gai->num_targsper_bus = ESAS2R_MAX_ID + 1; 1229 gai->num_lunsper_targ = 1; 1230 } 1231 } 1232 1233 u8 handle_hba_ioctl(struct esas2r_adapter *a, 1234 struct atto_ioctl *ioctl_hba) 1235 { 1236 struct esas2r_buffered_ioctl bi; 1237 1238 memset(&bi, 0, sizeof(bi)); 1239 1240 bi.a = a; 1241 bi.ioctl = ioctl_hba; 1242 bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length; 1243 bi.callback = hba_ioctl_callback; 1244 bi.context = NULL; 1245 bi.done_callback = hba_ioctl_done_callback; 1246 bi.done_context = NULL; 1247 bi.offset = 0; 1248 1249 return handle_buffered_ioctl(&bi); 1250 } 1251 1252 1253 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq, 1254 struct esas2r_sas_nvram *data) 1255 { 1256 int result = 0; 1257 1258 a->nvram_command_done = 0; 1259 rq->comp_cb = complete_nvr_req; 1260 1261 if (esas2r_nvram_write(a, rq, data)) { 1262 /* now wait around for it to complete. */ 1263 while (!a->nvram_command_done) 1264 wait_event_interruptible(a->nvram_waiter, 1265 a->nvram_command_done); 1266 ; 1267 1268 /* done, check the status. */ 1269 if (rq->req_stat == RS_SUCCESS) 1270 result = 1; 1271 } 1272 return result; 1273 } 1274 1275 1276 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */ 1277 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg) 1278 { 1279 struct atto_express_ioctl *ioctl = NULL; 1280 struct esas2r_adapter *a; 1281 struct esas2r_request *rq; 1282 u16 code; 1283 int err; 1284 1285 esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg); 1286 1287 if ((arg == NULL) 1288 || (cmd < EXPRESS_IOCTL_MIN) 1289 || (cmd > EXPRESS_IOCTL_MAX)) 1290 return -ENOTSUPP; 1291 1292 ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl)); 1293 if (IS_ERR(ioctl)) { 1294 esas2r_log(ESAS2R_LOG_WARN, 1295 "ioctl_handler access_ok failed for cmd %u, address %p", 1296 cmd, arg); 1297 return PTR_ERR(ioctl); 1298 } 1299 1300 /* verify the signature */ 1301 1302 if (memcmp(ioctl->header.signature, 1303 EXPRESS_IOCTL_SIGNATURE, 1304 EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) { 1305 esas2r_log(ESAS2R_LOG_WARN, "invalid signature"); 1306 kfree(ioctl); 1307 1308 return -ENOTSUPP; 1309 } 1310 1311 /* assume success */ 1312 1313 ioctl->header.return_code = IOCTL_SUCCESS; 1314 err = 0; 1315 1316 /* 1317 * handle EXPRESS_IOCTL_GET_CHANNELS 1318 * without paying attention to channel 1319 */ 1320 1321 if (cmd == EXPRESS_IOCTL_GET_CHANNELS) { 1322 int i = 0, k = 0; 1323 1324 ioctl->data.chanlist.num_channels = 0; 1325 1326 while (i < MAX_ADAPTERS) { 1327 if (esas2r_adapters[i]) { 1328 ioctl->data.chanlist.num_channels++; 1329 ioctl->data.chanlist.channel[k] = i; 1330 k++; 1331 } 1332 i++; 1333 } 1334 1335 goto ioctl_done; 1336 } 1337 1338 /* get the channel */ 1339 1340 if (ioctl->header.channel == 0xFF) { 1341 a = (struct esas2r_adapter *)hostdata; 1342 } else { 1343 if (ioctl->header.channel >= MAX_ADAPTERS || 1344 esas2r_adapters[ioctl->header.channel] == NULL) { 1345 ioctl->header.return_code = IOCTL_BAD_CHANNEL; 1346 esas2r_log(ESAS2R_LOG_WARN, "bad channel value"); 1347 kfree(ioctl); 1348 1349 return -ENOTSUPP; 1350 } 1351 a = esas2r_adapters[ioctl->header.channel]; 1352 } 1353 1354 switch (cmd) { 1355 case EXPRESS_IOCTL_RW_FIRMWARE: 1356 1357 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) { 1358 err = esas2r_write_fw(a, 1359 (char *)ioctl->data.fwrw.image, 1360 0, 1361 sizeof(struct 1362 atto_express_ioctl)); 1363 1364 if (err >= 0) { 1365 err = esas2r_read_fw(a, 1366 (char *)ioctl->data.fwrw. 1367 image, 1368 0, 1369 sizeof(struct 1370 atto_express_ioctl)); 1371 } 1372 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) { 1373 err = esas2r_write_fs(a, 1374 (char *)ioctl->data.fwrw.image, 1375 0, 1376 sizeof(struct 1377 atto_express_ioctl)); 1378 1379 if (err >= 0) { 1380 err = esas2r_read_fs(a, 1381 (char *)ioctl->data.fwrw. 1382 image, 1383 0, 1384 sizeof(struct 1385 atto_express_ioctl)); 1386 } 1387 } else { 1388 ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE; 1389 } 1390 1391 break; 1392 1393 case EXPRESS_IOCTL_READ_PARAMS: 1394 1395 memcpy(ioctl->data.prw.data_buffer, a->nvram, 1396 sizeof(struct esas2r_sas_nvram)); 1397 ioctl->data.prw.code = 1; 1398 break; 1399 1400 case EXPRESS_IOCTL_WRITE_PARAMS: 1401 1402 rq = esas2r_alloc_request(a); 1403 if (rq == NULL) { 1404 kfree(ioctl); 1405 esas2r_log(ESAS2R_LOG_WARN, 1406 "could not allocate an internal request"); 1407 return -ENOMEM; 1408 } 1409 1410 code = esas2r_write_params(a, rq, 1411 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); 1412 ioctl->data.prw.code = code; 1413 1414 esas2r_free_request(a, rq); 1415 1416 break; 1417 1418 case EXPRESS_IOCTL_DEFAULT_PARAMS: 1419 1420 esas2r_nvram_get_defaults(a, 1421 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); 1422 ioctl->data.prw.code = 1; 1423 break; 1424 1425 case EXPRESS_IOCTL_CHAN_INFO: 1426 1427 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV; 1428 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV; 1429 ioctl->data.chaninfo.IRQ = a->pcid->irq; 1430 ioctl->data.chaninfo.device_id = a->pcid->device; 1431 ioctl->data.chaninfo.vendor_id = a->pcid->vendor; 1432 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device; 1433 ioctl->data.chaninfo.revision_id = a->pcid->revision; 1434 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number; 1435 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn; 1436 ioctl->data.chaninfo.core_rev = 0; 1437 ioctl->data.chaninfo.host_no = a->host->host_no; 1438 ioctl->data.chaninfo.hbaapi_rev = 0; 1439 break; 1440 1441 case EXPRESS_IOCTL_SMP: 1442 ioctl->header.return_code = handle_smp_ioctl(a, 1443 &ioctl->data. 1444 ioctl_smp); 1445 break; 1446 1447 case EXPRESS_CSMI: 1448 ioctl->header.return_code = 1449 handle_csmi_ioctl(a, &ioctl->data.csmi); 1450 break; 1451 1452 case EXPRESS_IOCTL_HBA: 1453 ioctl->header.return_code = handle_hba_ioctl(a, 1454 &ioctl->data. 1455 ioctl_hba); 1456 break; 1457 1458 case EXPRESS_IOCTL_VDA: 1459 err = esas2r_write_vda(a, 1460 (char *)&ioctl->data.ioctl_vda, 1461 0, 1462 sizeof(struct atto_ioctl_vda) + 1463 ioctl->data.ioctl_vda.data_length); 1464 1465 if (err >= 0) { 1466 err = esas2r_read_vda(a, 1467 (char *)&ioctl->data.ioctl_vda, 1468 0, 1469 sizeof(struct atto_ioctl_vda) + 1470 ioctl->data.ioctl_vda.data_length); 1471 } 1472 1473 1474 1475 1476 break; 1477 1478 case EXPRESS_IOCTL_GET_MOD_INFO: 1479 1480 ioctl->data.modinfo.adapter = a; 1481 ioctl->data.modinfo.pci_dev = a->pcid; 1482 ioctl->data.modinfo.scsi_host = a->host; 1483 ioctl->data.modinfo.host_no = a->host->host_no; 1484 1485 break; 1486 1487 default: 1488 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd); 1489 ioctl->header.return_code = IOCTL_ERR_INVCMD; 1490 } 1491 1492 ioctl_done: 1493 1494 if (err < 0) { 1495 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err, 1496 cmd); 1497 1498 switch (err) { 1499 case -ENOMEM: 1500 case -EBUSY: 1501 ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES; 1502 break; 1503 1504 case -ENOSYS: 1505 case -EINVAL: 1506 ioctl->header.return_code = IOCTL_INVALID_PARAM; 1507 break; 1508 1509 default: 1510 ioctl->header.return_code = IOCTL_GENERAL_ERROR; 1511 break; 1512 } 1513 1514 } 1515 1516 /* Always copy the buffer back, if only to pick up the status */ 1517 err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl)); 1518 if (err != 0) { 1519 esas2r_log(ESAS2R_LOG_WARN, 1520 "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)", 1521 err, cmd); 1522 kfree(ioctl); 1523 1524 return -EFAULT; 1525 } 1526 1527 kfree(ioctl); 1528 1529 return 0; 1530 } 1531 1532 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg) 1533 { 1534 return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg); 1535 } 1536 1537 static void free_fw_buffers(struct esas2r_adapter *a) 1538 { 1539 if (a->firmware.data) { 1540 dma_free_coherent(&a->pcid->dev, 1541 (size_t)a->firmware.orig_len, 1542 a->firmware.data, 1543 (dma_addr_t)a->firmware.phys); 1544 1545 a->firmware.data = NULL; 1546 } 1547 } 1548 1549 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length) 1550 { 1551 free_fw_buffers(a); 1552 1553 a->firmware.orig_len = length; 1554 1555 a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev, 1556 (size_t)length, 1557 (dma_addr_t *)&a->firmware. 1558 phys, 1559 GFP_KERNEL); 1560 1561 if (!a->firmware.data) { 1562 esas2r_debug("buffer alloc failed!"); 1563 return 0; 1564 } 1565 1566 return 1; 1567 } 1568 1569 /* Handle a call to read firmware. */ 1570 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count) 1571 { 1572 esas2r_trace_enter(); 1573 /* if the cached header is a status, simply copy it over and return. */ 1574 if (a->firmware.state == FW_STATUS_ST) { 1575 int size = min_t(int, count, sizeof(a->firmware.header)); 1576 esas2r_trace_exit(); 1577 memcpy(buf, &a->firmware.header, size); 1578 esas2r_debug("esas2r_read_fw: STATUS size %d", size); 1579 return size; 1580 } 1581 1582 /* 1583 * if the cached header is a command, do it if at 1584 * offset 0, otherwise copy the pieces. 1585 */ 1586 1587 if (a->firmware.state == FW_COMMAND_ST) { 1588 u32 length = a->firmware.header.length; 1589 esas2r_trace_exit(); 1590 1591 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d", 1592 length, 1593 off); 1594 1595 if (off == 0) { 1596 if (a->firmware.header.action == FI_ACT_UP) { 1597 if (!allocate_fw_buffers(a, length)) 1598 return -ENOMEM; 1599 1600 1601 /* copy header over */ 1602 1603 memcpy(a->firmware.data, 1604 &a->firmware.header, 1605 sizeof(a->firmware.header)); 1606 1607 do_fm_api(a, 1608 (struct esas2r_flash_img *)a->firmware.data); 1609 } else if (a->firmware.header.action == FI_ACT_UPSZ) { 1610 int size = 1611 min((int)count, 1612 (int)sizeof(a->firmware.header)); 1613 do_fm_api(a, &a->firmware.header); 1614 memcpy(buf, &a->firmware.header, size); 1615 esas2r_debug("FI_ACT_UPSZ size %d", size); 1616 return size; 1617 } else { 1618 esas2r_debug("invalid action %d", 1619 a->firmware.header.action); 1620 return -ENOSYS; 1621 } 1622 } 1623 1624 if (count + off > length) 1625 count = length - off; 1626 1627 if (count < 0) 1628 return 0; 1629 1630 if (!a->firmware.data) { 1631 esas2r_debug( 1632 "read: nonzero offset but no buffer available!"); 1633 return -ENOMEM; 1634 } 1635 1636 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off, 1637 count, 1638 length); 1639 1640 memcpy(buf, &a->firmware.data[off], count); 1641 1642 /* when done, release the buffer */ 1643 1644 if (length <= off + count) { 1645 esas2r_debug("esas2r_read_fw: freeing buffer!"); 1646 1647 free_fw_buffers(a); 1648 } 1649 1650 return count; 1651 } 1652 1653 esas2r_trace_exit(); 1654 esas2r_debug("esas2r_read_fw: invalid firmware state %d", 1655 a->firmware.state); 1656 1657 return -EINVAL; 1658 } 1659 1660 /* Handle a call to write firmware. */ 1661 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off, 1662 int count) 1663 { 1664 u32 length; 1665 1666 if (off == 0) { 1667 struct esas2r_flash_img *header = 1668 (struct esas2r_flash_img *)buf; 1669 1670 /* assume version 0 flash image */ 1671 1672 int min_size = sizeof(struct esas2r_flash_img_v0); 1673 1674 a->firmware.state = FW_INVALID_ST; 1675 1676 /* validate the version field first */ 1677 1678 if (count < 4 1679 || header->fi_version > FI_VERSION_1) { 1680 esas2r_debug( 1681 "esas2r_write_fw: short header or invalid version"); 1682 return -EINVAL; 1683 } 1684 1685 /* See if its a version 1 flash image */ 1686 1687 if (header->fi_version == FI_VERSION_1) 1688 min_size = sizeof(struct esas2r_flash_img); 1689 1690 /* If this is the start, the header must be full and valid. */ 1691 if (count < min_size) { 1692 esas2r_debug("esas2r_write_fw: short header, aborting"); 1693 return -EINVAL; 1694 } 1695 1696 /* Make sure the size is reasonable. */ 1697 length = header->length; 1698 1699 if (length > 1024 * 1024) { 1700 esas2r_debug( 1701 "esas2r_write_fw: hosed, length %d fi_version %d", 1702 length, header->fi_version); 1703 return -EINVAL; 1704 } 1705 1706 /* 1707 * If this is a write command, allocate memory because 1708 * we have to cache everything. otherwise, just cache 1709 * the header, because the read op will do the command. 1710 */ 1711 1712 if (header->action == FI_ACT_DOWN) { 1713 if (!allocate_fw_buffers(a, length)) 1714 return -ENOMEM; 1715 1716 /* 1717 * Store the command, so there is context on subsequent 1718 * calls. 1719 */ 1720 memcpy(&a->firmware.header, 1721 buf, 1722 sizeof(*header)); 1723 } else if (header->action == FI_ACT_UP 1724 || header->action == FI_ACT_UPSZ) { 1725 /* Save the command, result will be picked up on read */ 1726 memcpy(&a->firmware.header, 1727 buf, 1728 sizeof(*header)); 1729 1730 a->firmware.state = FW_COMMAND_ST; 1731 1732 esas2r_debug( 1733 "esas2r_write_fw: COMMAND, count %d, action %d ", 1734 count, header->action); 1735 1736 /* 1737 * Pretend we took the whole buffer, 1738 * so we don't get bothered again. 1739 */ 1740 1741 return count; 1742 } else { 1743 esas2r_debug("esas2r_write_fw: invalid action %d ", 1744 a->firmware.header.action); 1745 return -ENOSYS; 1746 } 1747 } else { 1748 length = a->firmware.header.length; 1749 } 1750 1751 /* 1752 * We only get here on a download command, regardless of offset. 1753 * the chunks written by the system need to be cached, and when 1754 * the final one arrives, issue the fmapi command. 1755 */ 1756 1757 if (off + count > length) 1758 count = length - off; 1759 1760 if (count > 0) { 1761 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off, 1762 count, 1763 length); 1764 1765 /* 1766 * On a full upload, the system tries sending the whole buffer. 1767 * there's nothing to do with it, so just drop it here, before 1768 * trying to copy over into unallocated memory! 1769 */ 1770 if (a->firmware.header.action == FI_ACT_UP) 1771 return count; 1772 1773 if (!a->firmware.data) { 1774 esas2r_debug( 1775 "write: nonzero offset but no buffer available!"); 1776 return -ENOMEM; 1777 } 1778 1779 memcpy(&a->firmware.data[off], buf, count); 1780 1781 if (length == off + count) { 1782 do_fm_api(a, 1783 (struct esas2r_flash_img *)a->firmware.data); 1784 1785 /* 1786 * Now copy the header result to be picked up by the 1787 * next read 1788 */ 1789 memcpy(&a->firmware.header, 1790 a->firmware.data, 1791 sizeof(a->firmware.header)); 1792 1793 a->firmware.state = FW_STATUS_ST; 1794 1795 esas2r_debug("write completed"); 1796 1797 /* 1798 * Since the system has the data buffered, the only way 1799 * this can leak is if a root user writes a program 1800 * that writes a shorter buffer than it claims, and the 1801 * copyin fails. 1802 */ 1803 free_fw_buffers(a); 1804 } 1805 } 1806 1807 return count; 1808 } 1809 1810 /* Callback for the completion of a VDA request. */ 1811 static void vda_complete_req(struct esas2r_adapter *a, 1812 struct esas2r_request *rq) 1813 { 1814 a->vda_command_done = 1; 1815 wake_up_interruptible(&a->vda_waiter); 1816 } 1817 1818 /* Scatter/gather callback for VDA requests */ 1819 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr) 1820 { 1821 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 1822 int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer; 1823 1824 (*addr) = a->ppvda_buffer + offset; 1825 return VDA_MAX_BUFFER_SIZE - offset; 1826 } 1827 1828 /* Handle a call to read a VDA command. */ 1829 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count) 1830 { 1831 if (!a->vda_buffer) 1832 return -ENOMEM; 1833 1834 if (off == 0) { 1835 struct esas2r_request *rq; 1836 struct atto_ioctl_vda *vi = 1837 (struct atto_ioctl_vda *)a->vda_buffer; 1838 struct esas2r_sg_context sgc; 1839 bool wait_for_completion; 1840 1841 /* 1842 * Presumeably, someone has already written to the vda_buffer, 1843 * and now they are reading the node the response, so now we 1844 * will actually issue the request to the chip and reply. 1845 */ 1846 1847 /* allocate a request */ 1848 rq = esas2r_alloc_request(a); 1849 if (rq == NULL) { 1850 esas2r_debug("esas2r_read_vda: out of requests"); 1851 return -EBUSY; 1852 } 1853 1854 rq->comp_cb = vda_complete_req; 1855 1856 sgc.first_req = rq; 1857 sgc.adapter = a; 1858 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ; 1859 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda; 1860 1861 a->vda_command_done = 0; 1862 1863 wait_for_completion = 1864 esas2r_process_vda_ioctl(a, vi, rq, &sgc); 1865 1866 if (wait_for_completion) { 1867 /* now wait around for it to complete. */ 1868 1869 while (!a->vda_command_done) 1870 wait_event_interruptible(a->vda_waiter, 1871 a->vda_command_done); 1872 } 1873 1874 esas2r_free_request(a, (struct esas2r_request *)rq); 1875 } 1876 1877 if (off > VDA_MAX_BUFFER_SIZE) 1878 return 0; 1879 1880 if (count + off > VDA_MAX_BUFFER_SIZE) 1881 count = VDA_MAX_BUFFER_SIZE - off; 1882 1883 if (count < 0) 1884 return 0; 1885 1886 memcpy(buf, a->vda_buffer + off, count); 1887 1888 return count; 1889 } 1890 1891 /* Handle a call to write a VDA command. */ 1892 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off, 1893 int count) 1894 { 1895 /* 1896 * allocate memory for it, if not already done. once allocated, 1897 * we will keep it around until the driver is unloaded. 1898 */ 1899 1900 if (!a->vda_buffer) { 1901 dma_addr_t dma_addr; 1902 a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev, 1903 (size_t) 1904 VDA_MAX_BUFFER_SIZE, 1905 &dma_addr, 1906 GFP_KERNEL); 1907 1908 a->ppvda_buffer = dma_addr; 1909 } 1910 1911 if (!a->vda_buffer) 1912 return -ENOMEM; 1913 1914 if (off > VDA_MAX_BUFFER_SIZE) 1915 return 0; 1916 1917 if (count + off > VDA_MAX_BUFFER_SIZE) 1918 count = VDA_MAX_BUFFER_SIZE - off; 1919 1920 if (count < 1) 1921 return 0; 1922 1923 memcpy(a->vda_buffer + off, buf, count); 1924 1925 return count; 1926 } 1927 1928 /* Callback for the completion of an FS_API request.*/ 1929 static void fs_api_complete_req(struct esas2r_adapter *a, 1930 struct esas2r_request *rq) 1931 { 1932 a->fs_api_command_done = 1; 1933 1934 wake_up_interruptible(&a->fs_api_waiter); 1935 } 1936 1937 /* Scatter/gather callback for VDA requests */ 1938 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr) 1939 { 1940 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 1941 struct esas2r_ioctl_fs *fs = 1942 (struct esas2r_ioctl_fs *)a->fs_api_buffer; 1943 u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs; 1944 1945 (*addr) = a->ppfs_api_buffer + offset; 1946 1947 return a->fs_api_buffer_size - offset; 1948 } 1949 1950 /* Handle a call to read firmware via FS_API. */ 1951 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count) 1952 { 1953 if (!a->fs_api_buffer) 1954 return -ENOMEM; 1955 1956 if (off == 0) { 1957 struct esas2r_request *rq; 1958 struct esas2r_sg_context sgc; 1959 struct esas2r_ioctl_fs *fs = 1960 (struct esas2r_ioctl_fs *)a->fs_api_buffer; 1961 1962 /* If another flash request is already in progress, return. */ 1963 if (mutex_lock_interruptible(&a->fs_api_mutex)) { 1964 busy: 1965 fs->status = ATTO_STS_OUT_OF_RSRC; 1966 return -EBUSY; 1967 } 1968 1969 /* 1970 * Presumeably, someone has already written to the 1971 * fs_api_buffer, and now they are reading the node the 1972 * response, so now we will actually issue the request to the 1973 * chip and reply. Allocate a request 1974 */ 1975 1976 rq = esas2r_alloc_request(a); 1977 if (rq == NULL) { 1978 esas2r_debug("esas2r_read_fs: out of requests"); 1979 mutex_unlock(&a->fs_api_mutex); 1980 goto busy; 1981 } 1982 1983 rq->comp_cb = fs_api_complete_req; 1984 1985 /* Set up the SGCONTEXT for to build the s/g table */ 1986 1987 sgc.cur_offset = fs->data; 1988 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api; 1989 1990 a->fs_api_command_done = 0; 1991 1992 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) { 1993 if (fs->status == ATTO_STS_OUT_OF_RSRC) 1994 count = -EBUSY; 1995 1996 goto dont_wait; 1997 } 1998 1999 /* Now wait around for it to complete. */ 2000 2001 while (!a->fs_api_command_done) 2002 wait_event_interruptible(a->fs_api_waiter, 2003 a->fs_api_command_done); 2004 ; 2005 dont_wait: 2006 /* Free the request and keep going */ 2007 mutex_unlock(&a->fs_api_mutex); 2008 esas2r_free_request(a, (struct esas2r_request *)rq); 2009 2010 /* Pick up possible error code from above */ 2011 if (count < 0) 2012 return count; 2013 } 2014 2015 if (off > a->fs_api_buffer_size) 2016 return 0; 2017 2018 if (count + off > a->fs_api_buffer_size) 2019 count = a->fs_api_buffer_size - off; 2020 2021 if (count < 0) 2022 return 0; 2023 2024 memcpy(buf, a->fs_api_buffer + off, count); 2025 2026 return count; 2027 } 2028 2029 /* Handle a call to write firmware via FS_API. */ 2030 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off, 2031 int count) 2032 { 2033 if (off == 0) { 2034 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf; 2035 u32 length = fs->command.length + offsetof( 2036 struct esas2r_ioctl_fs, 2037 data); 2038 2039 /* 2040 * Special case, for BEGIN commands, the length field 2041 * is lying to us, so just get enough for the header. 2042 */ 2043 2044 if (fs->command.command == ESAS2R_FS_CMD_BEGINW) 2045 length = offsetof(struct esas2r_ioctl_fs, data); 2046 2047 /* 2048 * Beginning a command. We assume we'll get at least 2049 * enough in the first write so we can look at the 2050 * header and see how much we need to alloc. 2051 */ 2052 2053 if (count < offsetof(struct esas2r_ioctl_fs, data)) 2054 return -EINVAL; 2055 2056 /* Allocate a buffer or use the existing buffer. */ 2057 if (a->fs_api_buffer) { 2058 if (a->fs_api_buffer_size < length) { 2059 /* Free too-small buffer and get a new one */ 2060 dma_free_coherent(&a->pcid->dev, 2061 (size_t)a->fs_api_buffer_size, 2062 a->fs_api_buffer, 2063 (dma_addr_t)a->ppfs_api_buffer); 2064 2065 goto re_allocate_buffer; 2066 } 2067 } else { 2068 re_allocate_buffer: 2069 a->fs_api_buffer_size = length; 2070 2071 a->fs_api_buffer = (u8 *)dma_alloc_coherent( 2072 &a->pcid->dev, 2073 (size_t)a->fs_api_buffer_size, 2074 (dma_addr_t *)&a->ppfs_api_buffer, 2075 GFP_KERNEL); 2076 } 2077 } 2078 2079 if (!a->fs_api_buffer) 2080 return -ENOMEM; 2081 2082 if (off > a->fs_api_buffer_size) 2083 return 0; 2084 2085 if (count + off > a->fs_api_buffer_size) 2086 count = a->fs_api_buffer_size - off; 2087 2088 if (count < 1) 2089 return 0; 2090 2091 memcpy(a->fs_api_buffer + off, buf, count); 2092 2093 return count; 2094 } 2095