1 /*
2  *  linux/drivers/scsi/esas2r/esas2r_ioctl.c
3  *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4  *
5  *  Copyright (c) 2001-2013 ATTO Technology, Inc.
6  *  (mailto:linuxdrivers@attotech.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * NO WARRANTY
19  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23  * solely responsible for determining the appropriateness of using and
24  * distributing the Program and assumes all risks associated with its
25  * exercise of rights under this Agreement, including but not limited to
26  * the risks and costs of program errors, damage to or loss of data,
27  * programs or equipment, and unavailability or interruption of operations.
28  *
29  * DISCLAIMER OF LIABILITY
30  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37  *
38  * You should have received a copy of the GNU General Public License
39  * along with this program; if not, write to the Free Software
40  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
41  * USA.
42  */
43 
44 #include "esas2r.h"
45 
46 /*
47  * Buffered ioctl handlers.  A buffered ioctl is one which requires that we
48  * allocate a DMA-able memory area to communicate with the firmware.  In
49  * order to prevent continually allocating and freeing consistent memory,
50  * we will allocate a global buffer the first time we need it and re-use
51  * it for subsequent ioctl calls that require it.
52  */
53 
54 u8 *esas2r_buffered_ioctl;
55 dma_addr_t esas2r_buffered_ioctl_addr;
56 u32 esas2r_buffered_ioctl_size;
57 struct pci_dev *esas2r_buffered_ioctl_pcid;
58 
59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61 				       struct esas2r_request *,
62 				       struct esas2r_sg_context *,
63 				       void *);
64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65 					     struct esas2r_request *, void *);
66 
67 struct esas2r_buffered_ioctl {
68 	struct esas2r_adapter *a;
69 	void *ioctl;
70 	u32 length;
71 	u32 control_code;
72 	u32 offset;
73 	BUFFERED_IOCTL_CALLBACK
74 		callback;
75 	void *context;
76 	BUFFERED_IOCTL_DONE_CALLBACK
77 		done_callback;
78 	void *done_context;
79 
80 };
81 
82 static void complete_fm_api_req(struct esas2r_adapter *a,
83 				struct esas2r_request *rq)
84 {
85 	a->fm_api_command_done = 1;
86 	wake_up_interruptible(&a->fm_api_waiter);
87 }
88 
89 /* Callbacks for building scatter/gather lists for FM API requests */
90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
91 {
92 	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93 	int offset = sgc->cur_offset - a->save_offset;
94 
95 	(*addr) = a->firmware.phys + offset;
96 	return a->firmware.orig_len - offset;
97 }
98 
99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
100 {
101 	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102 	int offset = sgc->cur_offset - a->save_offset;
103 
104 	(*addr) = a->firmware.header_buff_phys + offset;
105 	return sizeof(struct esas2r_flash_img) - offset;
106 }
107 
108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
110 {
111 	struct esas2r_request *rq;
112 
113 	if (mutex_lock_interruptible(&a->fm_api_mutex)) {
114 		fi->status = FI_STAT_BUSY;
115 		return;
116 	}
117 
118 	rq = esas2r_alloc_request(a);
119 	if (rq == NULL) {
120 		fi->status = FI_STAT_BUSY;
121 		goto free_sem;
122 	}
123 
124 	if (fi == &a->firmware.header) {
125 		a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
126 							     (size_t)sizeof(
127 								     struct
128 								     esas2r_flash_img),
129 							     (dma_addr_t *)&a->
130 							     firmware.
131 							     header_buff_phys,
132 							     GFP_KERNEL);
133 
134 		if (a->firmware.header_buff == NULL) {
135 			esas2r_debug("failed to allocate header buffer!");
136 			fi->status = FI_STAT_BUSY;
137 			goto free_req;
138 		}
139 
140 		memcpy(a->firmware.header_buff, fi,
141 		       sizeof(struct esas2r_flash_img));
142 		a->save_offset = a->firmware.header_buff;
143 		a->fm_api_sgc.get_phys_addr =
144 			(PGETPHYSADDR)get_physaddr_fm_api_header;
145 	} else {
146 		a->save_offset = (u8 *)fi;
147 		a->fm_api_sgc.get_phys_addr =
148 			(PGETPHYSADDR)get_physaddr_fm_api;
149 	}
150 
151 	rq->comp_cb = complete_fm_api_req;
152 	a->fm_api_command_done = 0;
153 	a->fm_api_sgc.cur_offset = a->save_offset;
154 
155 	if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
156 			   &a->fm_api_sgc))
157 		goto all_done;
158 
159 	/* Now wait around for it to complete. */
160 	while (!a->fm_api_command_done)
161 		wait_event_interruptible(a->fm_api_waiter,
162 					 a->fm_api_command_done);
163 all_done:
164 	if (fi == &a->firmware.header) {
165 		memcpy(fi, a->firmware.header_buff,
166 		       sizeof(struct esas2r_flash_img));
167 
168 		dma_free_coherent(&a->pcid->dev,
169 				  (size_t)sizeof(struct esas2r_flash_img),
170 				  a->firmware.header_buff,
171 				  (dma_addr_t)a->firmware.header_buff_phys);
172 	}
173 free_req:
174 	esas2r_free_request(a, (struct esas2r_request *)rq);
175 free_sem:
176 	mutex_unlock(&a->fm_api_mutex);
177 	return;
178 
179 }
180 
181 static void complete_nvr_req(struct esas2r_adapter *a,
182 			     struct esas2r_request *rq)
183 {
184 	a->nvram_command_done = 1;
185 	wake_up_interruptible(&a->nvram_waiter);
186 }
187 
188 /* Callback for building scatter/gather lists for buffered ioctls */
189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190 				       u64 *addr)
191 {
192 	int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
193 
194 	(*addr) = esas2r_buffered_ioctl_addr + offset;
195 	return esas2r_buffered_ioctl_size - offset;
196 }
197 
198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199 					struct esas2r_request *rq)
200 {
201 	a->buffered_ioctl_done = 1;
202 	wake_up_interruptible(&a->buffered_ioctl_waiter);
203 }
204 
205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
206 {
207 	struct esas2r_adapter *a = bi->a;
208 	struct esas2r_request *rq;
209 	struct esas2r_sg_context sgc;
210 	u8 result = IOCTL_SUCCESS;
211 
212 	if (down_interruptible(&buffered_ioctl_semaphore))
213 		return IOCTL_OUT_OF_RESOURCES;
214 
215 	/* allocate a buffer or use the existing buffer. */
216 	if (esas2r_buffered_ioctl) {
217 		if (esas2r_buffered_ioctl_size < bi->length) {
218 			/* free the too-small buffer and get a new one */
219 			dma_free_coherent(&a->pcid->dev,
220 					  (size_t)esas2r_buffered_ioctl_size,
221 					  esas2r_buffered_ioctl,
222 					  esas2r_buffered_ioctl_addr);
223 
224 			goto allocate_buffer;
225 		}
226 	} else {
227 allocate_buffer:
228 		esas2r_buffered_ioctl_size = bi->length;
229 		esas2r_buffered_ioctl_pcid = a->pcid;
230 		esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231 							   (size_t)
232 							   esas2r_buffered_ioctl_size,
233 							   &
234 							   esas2r_buffered_ioctl_addr,
235 							   GFP_KERNEL);
236 	}
237 
238 	if (!esas2r_buffered_ioctl) {
239 		esas2r_log(ESAS2R_LOG_CRIT,
240 			   "could not allocate %d bytes of consistent memory "
241 			   "for a buffered ioctl!",
242 			   bi->length);
243 
244 		esas2r_debug("buffered ioctl alloc failure");
245 		result = IOCTL_OUT_OF_RESOURCES;
246 		goto exit_cleanly;
247 	}
248 
249 	memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
250 
251 	rq = esas2r_alloc_request(a);
252 	if (rq == NULL) {
253 		esas2r_log(ESAS2R_LOG_CRIT,
254 			   "could not allocate an internal request");
255 
256 		result = IOCTL_OUT_OF_RESOURCES;
257 		esas2r_debug("buffered ioctl - no requests");
258 		goto exit_cleanly;
259 	}
260 
261 	a->buffered_ioctl_done = 0;
262 	rq->comp_cb = complete_buffered_ioctl_req;
263 	sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264 	sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265 	sgc.length = esas2r_buffered_ioctl_size;
266 
267 	if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268 		/* completed immediately, no need to wait */
269 		a->buffered_ioctl_done = 0;
270 		goto free_andexit_cleanly;
271 	}
272 
273 	/* now wait around for it to complete. */
274 	while (!a->buffered_ioctl_done)
275 		wait_event_interruptible(a->buffered_ioctl_waiter,
276 					 a->buffered_ioctl_done);
277 
278 free_andexit_cleanly:
279 	if (result == IOCTL_SUCCESS && bi->done_callback)
280 		(*bi->done_callback)(a, rq, bi->done_context);
281 
282 	esas2r_free_request(a, rq);
283 
284 exit_cleanly:
285 	if (result == IOCTL_SUCCESS)
286 		memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
287 
288 	up(&buffered_ioctl_semaphore);
289 	return result;
290 }
291 
292 /* SMP ioctl support */
293 static int smp_ioctl_callback(struct esas2r_adapter *a,
294 			      struct esas2r_request *rq,
295 			      struct esas2r_sg_context *sgc, void *context)
296 {
297 	struct atto_ioctl_smp *si =
298 		(struct atto_ioctl_smp *)esas2r_buffered_ioctl;
299 
300 	esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301 	esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
302 
303 	if (!esas2r_build_sg_list(a, rq, sgc)) {
304 		si->status = ATTO_STS_OUT_OF_RSRC;
305 		return false;
306 	}
307 
308 	esas2r_start_request(a, rq);
309 	return true;
310 }
311 
312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
313 {
314 	struct esas2r_buffered_ioctl bi;
315 
316 	memset(&bi, 0, sizeof(bi));
317 
318 	bi.a = a;
319 	bi.ioctl = si;
320 	bi.length = sizeof(struct atto_ioctl_smp)
321 		    + le32_to_cpu(si->req_length)
322 		    + le32_to_cpu(si->rsp_length);
323 	bi.offset = 0;
324 	bi.callback = smp_ioctl_callback;
325 	return handle_buffered_ioctl(&bi);
326 }
327 
328 
329 /* CSMI ioctl support */
330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331 					     struct esas2r_request *rq)
332 {
333 	rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334 	rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
335 
336 	/* Now call the original completion callback. */
337 	(*rq->aux_req_cb)(a, rq);
338 }
339 
340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342 			      union atto_ioctl_csmi *ci,
343 			      struct esas2r_request *rq,
344 			      struct esas2r_sg_context *sgc,
345 			      u32 ctrl_code,
346 			      u16 target_id)
347 {
348 	struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
349 
350 	if (test_bit(AF_DEGRADED_MODE, &a->flags))
351 		return false;
352 
353 	esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354 	esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355 	ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356 	ioctl->csmi.target_id = cpu_to_le16(target_id);
357 	ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
358 
359 	/*
360 	 * Always usurp the completion callback since the interrupt callback
361 	 * mechanism may be used.
362 	 */
363 	rq->aux_req_cx = ci;
364 	rq->aux_req_cb = rq->comp_cb;
365 	rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
366 
367 	if (!esas2r_build_sg_list(a, rq, sgc))
368 		return false;
369 
370 	esas2r_start_request(a, rq);
371 	return true;
372 }
373 
374 static bool check_lun(struct scsi_lun lun)
375 {
376 	bool result;
377 
378 	result = ((lun.scsi_lun[7] == 0) &&
379 		  (lun.scsi_lun[6] == 0) &&
380 		  (lun.scsi_lun[5] == 0) &&
381 		  (lun.scsi_lun[4] == 0) &&
382 		  (lun.scsi_lun[3] == 0) &&
383 		  (lun.scsi_lun[2] == 0) &&
384 /* Byte 1 is intentionally skipped */
385 		  (lun.scsi_lun[0] == 0));
386 
387 	return result;
388 }
389 
390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
391 			       struct esas2r_request *rq,
392 			       struct esas2r_sg_context *sgc, void *context)
393 {
394 	struct atto_csmi *ci = (struct atto_csmi *)context;
395 	union atto_ioctl_csmi *ioctl_csmi =
396 		(union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397 	u8 path = 0;
398 	u8 tid = 0;
399 	u8 lun = 0;
400 	u32 sts = CSMI_STS_SUCCESS;
401 	struct esas2r_target *t;
402 	unsigned long flags;
403 
404 	if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405 		struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
406 
407 		path = gda->path_id;
408 		tid = gda->target_id;
409 		lun = gda->lun;
410 	} else if (ci->control_code == CSMI_CC_TASK_MGT) {
411 		struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
412 
413 		path = tm->path_id;
414 		tid = tm->target_id;
415 		lun = tm->lun;
416 	}
417 
418 	if (path > 0) {
419 		rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420 			CSMI_STS_INV_PARAM);
421 		return false;
422 	}
423 
424 	rq->target_id = tid;
425 	rq->vrq->scsi.flags |= cpu_to_le32(lun);
426 
427 	switch (ci->control_code) {
428 	case CSMI_CC_GET_DRVR_INFO:
429 	{
430 		struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
431 
432 		strcpy(gdi->description, esas2r_get_model_name(a));
433 		gdi->csmi_major_rev = CSMI_MAJOR_REV;
434 		gdi->csmi_minor_rev = CSMI_MINOR_REV;
435 		break;
436 	}
437 
438 	case CSMI_CC_GET_CNTLR_CFG:
439 	{
440 		struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
441 
442 		gcc->base_io_addr = 0;
443 		pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444 				      &gcc->base_memaddr_lo);
445 		pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446 				      &gcc->base_memaddr_hi);
447 		gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448 					  a->pcid->subsystem_vendor);
449 		gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450 		gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451 		gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452 		gcc->pci_addr.bus_num = a->pcid->bus->number;
453 		gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454 		gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
455 
456 		memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
457 
458 		gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459 		gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460 		gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461 		gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462 		gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463 		gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464 		gcc->bios_build_rev = LOWORD(a->flash_ver);
465 
466 		if (test_bit(AF2_THUNDERLINK, &a->flags2))
467 			gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468 					   | CSMI_CNTLRF_SATA_HBA;
469 		else
470 			gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471 					   | CSMI_CNTLRF_SATA_RAID;
472 
473 		gcc->rrom_major_rev = 0;
474 		gcc->rrom_minor_rev = 0;
475 		gcc->rrom_build_rev = 0;
476 		gcc->rrom_release_rev = 0;
477 		gcc->rrom_biosmajor_rev = 0;
478 		gcc->rrom_biosminor_rev = 0;
479 		gcc->rrom_biosbuild_rev = 0;
480 		gcc->rrom_biosrelease_rev = 0;
481 		break;
482 	}
483 
484 	case CSMI_CC_GET_CNTLR_STS:
485 	{
486 		struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
487 
488 		if (test_bit(AF_DEGRADED_MODE, &a->flags))
489 			gcs->status = CSMI_CNTLR_STS_FAILED;
490 		else
491 			gcs->status = CSMI_CNTLR_STS_GOOD;
492 
493 		gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494 		break;
495 	}
496 
497 	case CSMI_CC_FW_DOWNLOAD:
498 	case CSMI_CC_GET_RAID_INFO:
499 	case CSMI_CC_GET_RAID_CFG:
500 
501 		sts = CSMI_STS_BAD_CTRL_CODE;
502 		break;
503 
504 	case CSMI_CC_SMP_PASSTHRU:
505 	case CSMI_CC_SSP_PASSTHRU:
506 	case CSMI_CC_STP_PASSTHRU:
507 	case CSMI_CC_GET_PHY_INFO:
508 	case CSMI_CC_SET_PHY_INFO:
509 	case CSMI_CC_GET_LINK_ERRORS:
510 	case CSMI_CC_GET_SATA_SIG:
511 	case CSMI_CC_GET_CONN_INFO:
512 	case CSMI_CC_PHY_CTRL:
513 
514 		if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515 				       ci->control_code,
516 				       ESAS2R_TARG_ID_INV)) {
517 			sts = CSMI_STS_FAILED;
518 			break;
519 		}
520 
521 		return true;
522 
523 	case CSMI_CC_GET_SCSI_ADDR:
524 	{
525 		struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
526 
527 		struct scsi_lun lun;
528 
529 		memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
530 
531 		if (!check_lun(lun)) {
532 			sts = CSMI_STS_NO_SCSI_ADDR;
533 			break;
534 		}
535 
536 		/* make sure the device is present */
537 		spin_lock_irqsave(&a->mem_lock, flags);
538 		t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539 		spin_unlock_irqrestore(&a->mem_lock, flags);
540 
541 		if (t == NULL) {
542 			sts = CSMI_STS_NO_SCSI_ADDR;
543 			break;
544 		}
545 
546 		gsa->host_index = 0xFF;
547 		gsa->lun = gsa->sas_lun[1];
548 		rq->target_id = esas2r_targ_get_id(t, a);
549 		break;
550 	}
551 
552 	case CSMI_CC_GET_DEV_ADDR:
553 	{
554 		struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
555 
556 		/* make sure the target is present */
557 		t = a->targetdb + rq->target_id;
558 
559 		if (t >= a->targetdb_end
560 		    || t->target_state != TS_PRESENT
561 		    || t->sas_addr == 0) {
562 			sts = CSMI_STS_NO_DEV_ADDR;
563 			break;
564 		}
565 
566 		/* fill in the result */
567 		*(u64 *)gda->sas_addr = t->sas_addr;
568 		memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569 		gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570 		break;
571 	}
572 
573 	case CSMI_CC_TASK_MGT:
574 
575 		/* make sure the target is present */
576 		t = a->targetdb + rq->target_id;
577 
578 		if (t >= a->targetdb_end
579 		    || t->target_state != TS_PRESENT
580 		    || !(t->flags & TF_PASS_THRU)) {
581 			sts = CSMI_STS_NO_DEV_ADDR;
582 			break;
583 		}
584 
585 		if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586 				       ci->control_code,
587 				       t->phys_targ_id)) {
588 			sts = CSMI_STS_FAILED;
589 			break;
590 		}
591 
592 		return true;
593 
594 	default:
595 
596 		sts = CSMI_STS_BAD_CTRL_CODE;
597 		break;
598 	}
599 
600 	rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
601 
602 	return false;
603 }
604 
605 
606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607 				     struct esas2r_request *rq, void *context)
608 {
609 	struct atto_csmi *ci = (struct atto_csmi *)context;
610 	union atto_ioctl_csmi *ioctl_csmi =
611 		(union atto_ioctl_csmi *)esas2r_buffered_ioctl;
612 
613 	switch (ci->control_code) {
614 	case CSMI_CC_GET_DRVR_INFO:
615 	{
616 		struct atto_csmi_get_driver_info *gdi =
617 			&ioctl_csmi->drvr_info;
618 
619 		strcpy(gdi->name, ESAS2R_VERSION_STR);
620 
621 		gdi->major_rev = ESAS2R_MAJOR_REV;
622 		gdi->minor_rev = ESAS2R_MINOR_REV;
623 		gdi->build_rev = 0;
624 		gdi->release_rev = 0;
625 		break;
626 	}
627 
628 	case CSMI_CC_GET_SCSI_ADDR:
629 	{
630 		struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
631 
632 		if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633 		    CSMI_STS_SUCCESS) {
634 			gsa->target_id = rq->target_id;
635 			gsa->path_id = 0;
636 		}
637 
638 		break;
639 	}
640 	}
641 
642 	ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
643 }
644 
645 
646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
647 {
648 	struct esas2r_buffered_ioctl bi;
649 
650 	memset(&bi, 0, sizeof(bi));
651 
652 	bi.a = a;
653 	bi.ioctl = &ci->data;
654 	bi.length = sizeof(union atto_ioctl_csmi);
655 	bi.offset = 0;
656 	bi.callback = csmi_ioctl_callback;
657 	bi.context = ci;
658 	bi.done_callback = csmi_ioctl_done_callback;
659 	bi.done_context = ci;
660 
661 	return handle_buffered_ioctl(&bi);
662 }
663 
664 /* ATTO HBA ioctl support */
665 
666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668 			     struct atto_ioctl *hi,
669 			     struct esas2r_request *rq,
670 			     struct esas2r_sg_context *sgc)
671 {
672 	esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
673 
674 	esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
675 
676 	if (!esas2r_build_sg_list(a, rq, sgc)) {
677 		hi->status = ATTO_STS_OUT_OF_RSRC;
678 
679 		return false;
680 	}
681 
682 	esas2r_start_request(a, rq);
683 
684 	return true;
685 }
686 
687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688 				  struct esas2r_request *rq)
689 {
690 	struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691 	struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692 	u8 sts = ATTO_SPT_RS_FAILED;
693 
694 	spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695 	spt->sense_length = rq->sense_len;
696 	spt->residual_length =
697 		le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
698 
699 	switch (rq->req_stat) {
700 	case RS_SUCCESS:
701 	case RS_SCSI_ERROR:
702 		sts = ATTO_SPT_RS_SUCCESS;
703 		break;
704 	case RS_UNDERRUN:
705 		sts = ATTO_SPT_RS_UNDERRUN;
706 		break;
707 	case RS_OVERRUN:
708 		sts = ATTO_SPT_RS_OVERRUN;
709 		break;
710 	case RS_SEL:
711 	case RS_SEL2:
712 		sts = ATTO_SPT_RS_NO_DEVICE;
713 		break;
714 	case RS_NO_LUN:
715 		sts = ATTO_SPT_RS_NO_LUN;
716 		break;
717 	case RS_TIMEOUT:
718 		sts = ATTO_SPT_RS_TIMEOUT;
719 		break;
720 	case RS_DEGRADED:
721 		sts = ATTO_SPT_RS_DEGRADED;
722 		break;
723 	case RS_BUSY:
724 		sts = ATTO_SPT_RS_BUSY;
725 		break;
726 	case RS_ABORTED:
727 		sts = ATTO_SPT_RS_ABORTED;
728 		break;
729 	case RS_RESET:
730 		sts = ATTO_SPT_RS_BUS_RESET;
731 		break;
732 	}
733 
734 	spt->req_status = sts;
735 
736 	/* Update the target ID to the next one present. */
737 	spt->target_id =
738 		esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
739 
740 	/* Done, call the completion callback. */
741 	(*rq->aux_req_cb)(a, rq);
742 }
743 
744 static int hba_ioctl_callback(struct esas2r_adapter *a,
745 			      struct esas2r_request *rq,
746 			      struct esas2r_sg_context *sgc,
747 			      void *context)
748 {
749 	struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
750 
751 	hi->status = ATTO_STS_SUCCESS;
752 
753 	switch (hi->function) {
754 	case ATTO_FUNC_GET_ADAP_INFO:
755 	{
756 		u8 *class_code = (u8 *)&a->pcid->class;
757 
758 		struct atto_hba_get_adapter_info *gai =
759 			&hi->data.get_adap_info;
760 		int pcie_cap_reg;
761 
762 		if (hi->flags & HBAF_TUNNEL) {
763 			hi->status = ATTO_STS_UNSUPPORTED;
764 			break;
765 		}
766 
767 		if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
768 			hi->status = ATTO_STS_INV_VERSION;
769 			hi->version = ATTO_VER_GET_ADAP_INFO0;
770 			break;
771 		}
772 
773 		memset(gai, 0, sizeof(*gai));
774 
775 		gai->pci.vendor_id = a->pcid->vendor;
776 		gai->pci.device_id = a->pcid->device;
777 		gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
778 		gai->pci.ss_device_id = a->pcid->subsystem_device;
779 		gai->pci.class_code[0] = class_code[0];
780 		gai->pci.class_code[1] = class_code[1];
781 		gai->pci.class_code[2] = class_code[2];
782 		gai->pci.rev_id = a->pcid->revision;
783 		gai->pci.bus_num = a->pcid->bus->number;
784 		gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
785 		gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
786 
787 		pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP);
788 		if (pcie_cap_reg) {
789 			u16 stat;
790 			u32 caps;
791 
792 			pci_read_config_word(a->pcid,
793 					     pcie_cap_reg + PCI_EXP_LNKSTA,
794 					     &stat);
795 			pci_read_config_dword(a->pcid,
796 					      pcie_cap_reg + PCI_EXP_LNKCAP,
797 					      &caps);
798 
799 			gai->pci.link_speed_curr =
800 				(u8)(stat & PCI_EXP_LNKSTA_CLS);
801 			gai->pci.link_speed_max =
802 				(u8)(caps & PCI_EXP_LNKCAP_SLS);
803 			gai->pci.link_width_curr =
804 				(u8)((stat & PCI_EXP_LNKSTA_NLW)
805 				     >> PCI_EXP_LNKSTA_NLW_SHIFT);
806 			gai->pci.link_width_max =
807 				(u8)((caps & PCI_EXP_LNKCAP_MLW)
808 				     >> 4);
809 		}
810 
811 		gai->pci.msi_vector_cnt = 1;
812 
813 		if (a->pcid->msix_enabled)
814 			gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
815 		else if (a->pcid->msi_enabled)
816 			gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
817 		else
818 			gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
819 
820 		gai->adap_type = ATTO_GAI_AT_ESASRAID2;
821 
822 		if (test_bit(AF2_THUNDERLINK, &a->flags2))
823 			gai->adap_type = ATTO_GAI_AT_TLSASHBA;
824 
825 		if (test_bit(AF_DEGRADED_MODE, &a->flags))
826 			gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
827 
828 		gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
829 				   ATTO_GAI_AF_DEVADDR_SUPP;
830 
831 		if (a->pcid->subsystem_device == ATTO_ESAS_R60F
832 		    || a->pcid->subsystem_device == ATTO_ESAS_R608
833 		    || a->pcid->subsystem_device == ATTO_ESAS_R644
834 		    || a->pcid->subsystem_device == ATTO_TSSC_3808E)
835 			gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
836 
837 		gai->num_ports = ESAS2R_NUM_PHYS;
838 		gai->num_phys = ESAS2R_NUM_PHYS;
839 
840 		strcpy(gai->firmware_rev, a->fw_rev);
841 		strcpy(gai->flash_rev, a->flash_rev);
842 		strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
843 		strcpy(gai->model_name, esas2r_get_model_name(a));
844 
845 		gai->num_targets = ESAS2R_MAX_TARGETS;
846 
847 		gai->num_busses = 1;
848 		gai->num_targsper_bus = gai->num_targets;
849 		gai->num_lunsper_targ = 256;
850 
851 		if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
852 		    || a->pcid->subsystem_device == ATTO_ESAS_R60F)
853 			gai->num_connectors = 4;
854 		else
855 			gai->num_connectors = 2;
856 
857 		gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
858 
859 		gai->num_targets_backend = a->num_targets_backend;
860 
861 		gai->tunnel_flags = a->ioctl_tunnel
862 				    & (ATTO_GAI_TF_MEM_RW
863 				       | ATTO_GAI_TF_TRACE
864 				       | ATTO_GAI_TF_SCSI_PASS_THRU
865 				       | ATTO_GAI_TF_GET_DEV_ADDR
866 				       | ATTO_GAI_TF_PHY_CTRL
867 				       | ATTO_GAI_TF_CONN_CTRL
868 				       | ATTO_GAI_TF_GET_DEV_INFO);
869 		break;
870 	}
871 
872 	case ATTO_FUNC_GET_ADAP_ADDR:
873 	{
874 		struct atto_hba_get_adapter_address *gaa =
875 			&hi->data.get_adap_addr;
876 
877 		if (hi->flags & HBAF_TUNNEL) {
878 			hi->status = ATTO_STS_UNSUPPORTED;
879 			break;
880 		}
881 
882 		if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
883 			hi->status = ATTO_STS_INV_VERSION;
884 			hi->version = ATTO_VER_GET_ADAP_ADDR0;
885 		} else if (gaa->addr_type == ATTO_GAA_AT_PORT
886 			   || gaa->addr_type == ATTO_GAA_AT_NODE) {
887 			if (gaa->addr_type == ATTO_GAA_AT_PORT
888 			    && gaa->port_id >= ESAS2R_NUM_PHYS) {
889 				hi->status = ATTO_STS_NOT_APPL;
890 			} else {
891 				memcpy((u64 *)gaa->address,
892 				       &a->nvram->sas_addr[0], sizeof(u64));
893 				gaa->addr_len = sizeof(u64);
894 			}
895 		} else {
896 			hi->status = ATTO_STS_INV_PARAM;
897 		}
898 
899 		break;
900 	}
901 
902 	case ATTO_FUNC_MEM_RW:
903 	{
904 		if (hi->flags & HBAF_TUNNEL) {
905 			if (hba_ioctl_tunnel(a, hi, rq, sgc))
906 				return true;
907 
908 			break;
909 		}
910 
911 		hi->status = ATTO_STS_UNSUPPORTED;
912 
913 		break;
914 	}
915 
916 	case ATTO_FUNC_TRACE:
917 	{
918 		struct atto_hba_trace *trc = &hi->data.trace;
919 
920 		if (hi->flags & HBAF_TUNNEL) {
921 			if (hba_ioctl_tunnel(a, hi, rq, sgc))
922 				return true;
923 
924 			break;
925 		}
926 
927 		if (hi->version > ATTO_VER_TRACE1) {
928 			hi->status = ATTO_STS_INV_VERSION;
929 			hi->version = ATTO_VER_TRACE1;
930 			break;
931 		}
932 
933 		if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
934 		    && hi->version >= ATTO_VER_TRACE1) {
935 			if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
936 				u32 len = hi->data_length;
937 				u32 offset = trc->current_offset;
938 				u32 total_len = ESAS2R_FWCOREDUMP_SZ;
939 
940 				/* Size is zero if a core dump isn't present */
941 				if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
942 					total_len = 0;
943 
944 				if (len > total_len)
945 					len = total_len;
946 
947 				if (offset >= total_len
948 				    || offset + len > total_len
949 				    || len == 0) {
950 					hi->status = ATTO_STS_INV_PARAM;
951 					break;
952 				}
953 
954 				memcpy(trc + 1,
955 				       a->fw_coredump_buff + offset,
956 				       len);
957 
958 				hi->data_length = len;
959 			} else if (trc->trace_func == ATTO_TRC_TF_RESET) {
960 				memset(a->fw_coredump_buff, 0,
961 				       ESAS2R_FWCOREDUMP_SZ);
962 
963 				clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
964 			} else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
965 				hi->status = ATTO_STS_UNSUPPORTED;
966 				break;
967 			}
968 
969 			/* Always return all the info we can. */
970 			trc->trace_mask = 0;
971 			trc->current_offset = 0;
972 			trc->total_length = ESAS2R_FWCOREDUMP_SZ;
973 
974 			/* Return zero length buffer if core dump not present */
975 			if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
976 				trc->total_length = 0;
977 		} else {
978 			hi->status = ATTO_STS_UNSUPPORTED;
979 		}
980 
981 		break;
982 	}
983 
984 	case ATTO_FUNC_SCSI_PASS_THRU:
985 	{
986 		struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
987 		struct scsi_lun lun;
988 
989 		memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
990 
991 		if (hi->flags & HBAF_TUNNEL) {
992 			if (hba_ioctl_tunnel(a, hi, rq, sgc))
993 				return true;
994 
995 			break;
996 		}
997 
998 		if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
999 			hi->status = ATTO_STS_INV_VERSION;
1000 			hi->version = ATTO_VER_SCSI_PASS_THRU0;
1001 			break;
1002 		}
1003 
1004 		if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1005 			hi->status = ATTO_STS_INV_PARAM;
1006 			break;
1007 		}
1008 
1009 		esas2r_sgc_init(sgc, a, rq, NULL);
1010 
1011 		sgc->length = hi->data_length;
1012 		sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1013 				   + sizeof(struct atto_hba_scsi_pass_thru);
1014 
1015 		/* Finish request initialization */
1016 		rq->target_id = (u16)spt->target_id;
1017 		rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1018 		memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1019 		rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1020 		rq->sense_len = spt->sense_length;
1021 		rq->sense_buf = (u8 *)spt->sense_data;
1022 		/* NOTE: we ignore spt->timeout */
1023 
1024 		/*
1025 		 * always usurp the completion callback since the interrupt
1026 		 * callback mechanism may be used.
1027 		 */
1028 
1029 		rq->aux_req_cx = hi;
1030 		rq->aux_req_cb = rq->comp_cb;
1031 		rq->comp_cb = scsi_passthru_comp_cb;
1032 
1033 		if (spt->flags & ATTO_SPTF_DATA_IN) {
1034 			rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1035 		} else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1036 			rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1037 		} else {
1038 			if (sgc->length) {
1039 				hi->status = ATTO_STS_INV_PARAM;
1040 				break;
1041 			}
1042 		}
1043 
1044 		if (spt->flags & ATTO_SPTF_ORDERED_Q)
1045 			rq->vrq->scsi.flags |=
1046 				cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1047 		else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1048 			rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1049 
1050 
1051 		if (!esas2r_build_sg_list(a, rq, sgc)) {
1052 			hi->status = ATTO_STS_OUT_OF_RSRC;
1053 			break;
1054 		}
1055 
1056 		esas2r_start_request(a, rq);
1057 
1058 		return true;
1059 	}
1060 
1061 	case ATTO_FUNC_GET_DEV_ADDR:
1062 	{
1063 		struct atto_hba_get_device_address *gda =
1064 			&hi->data.get_dev_addr;
1065 		struct esas2r_target *t;
1066 
1067 		if (hi->flags & HBAF_TUNNEL) {
1068 			if (hba_ioctl_tunnel(a, hi, rq, sgc))
1069 				return true;
1070 
1071 			break;
1072 		}
1073 
1074 		if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1075 			hi->status = ATTO_STS_INV_VERSION;
1076 			hi->version = ATTO_VER_GET_DEV_ADDR0;
1077 			break;
1078 		}
1079 
1080 		if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1081 			hi->status = ATTO_STS_INV_PARAM;
1082 			break;
1083 		}
1084 
1085 		t = a->targetdb + (u16)gda->target_id;
1086 
1087 		if (t->target_state != TS_PRESENT) {
1088 			hi->status = ATTO_STS_FAILED;
1089 		} else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1090 			if (t->sas_addr == 0) {
1091 				hi->status = ATTO_STS_UNSUPPORTED;
1092 			} else {
1093 				*(u64 *)gda->address = t->sas_addr;
1094 
1095 				gda->addr_len = sizeof(u64);
1096 			}
1097 		} else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1098 			hi->status = ATTO_STS_NOT_APPL;
1099 		} else {
1100 			hi->status = ATTO_STS_INV_PARAM;
1101 		}
1102 
1103 		/* update the target ID to the next one present. */
1104 
1105 		gda->target_id =
1106 			esas2r_targ_db_find_next_present(a,
1107 							 (u16)gda->target_id);
1108 		break;
1109 	}
1110 
1111 	case ATTO_FUNC_PHY_CTRL:
1112 	case ATTO_FUNC_CONN_CTRL:
1113 	{
1114 		if (hba_ioctl_tunnel(a, hi, rq, sgc))
1115 			return true;
1116 
1117 		break;
1118 	}
1119 
1120 	case ATTO_FUNC_ADAP_CTRL:
1121 	{
1122 		struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1123 
1124 		if (hi->flags & HBAF_TUNNEL) {
1125 			hi->status = ATTO_STS_UNSUPPORTED;
1126 			break;
1127 		}
1128 
1129 		if (hi->version > ATTO_VER_ADAP_CTRL0) {
1130 			hi->status = ATTO_STS_INV_VERSION;
1131 			hi->version = ATTO_VER_ADAP_CTRL0;
1132 			break;
1133 		}
1134 
1135 		if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1136 			esas2r_reset_adapter(a);
1137 		} else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1138 			hi->status = ATTO_STS_UNSUPPORTED;
1139 			break;
1140 		}
1141 
1142 		if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1143 			ac->adap_state = ATTO_AC_AS_RST_SCHED;
1144 		else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1145 			ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1146 		else if (test_bit(AF_DISC_PENDING, &a->flags))
1147 			ac->adap_state = ATTO_AC_AS_RST_DISC;
1148 		else if (test_bit(AF_DISABLED, &a->flags))
1149 			ac->adap_state = ATTO_AC_AS_DISABLED;
1150 		else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1151 			ac->adap_state = ATTO_AC_AS_DEGRADED;
1152 		else
1153 			ac->adap_state = ATTO_AC_AS_OK;
1154 
1155 		break;
1156 	}
1157 
1158 	case ATTO_FUNC_GET_DEV_INFO:
1159 	{
1160 		struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1161 		struct esas2r_target *t;
1162 
1163 		if (hi->flags & HBAF_TUNNEL) {
1164 			if (hba_ioctl_tunnel(a, hi, rq, sgc))
1165 				return true;
1166 
1167 			break;
1168 		}
1169 
1170 		if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1171 			hi->status = ATTO_STS_INV_VERSION;
1172 			hi->version = ATTO_VER_GET_DEV_INFO0;
1173 			break;
1174 		}
1175 
1176 		if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1177 			hi->status = ATTO_STS_INV_PARAM;
1178 			break;
1179 		}
1180 
1181 		t = a->targetdb + (u16)gdi->target_id;
1182 
1183 		/* update the target ID to the next one present. */
1184 
1185 		gdi->target_id =
1186 			esas2r_targ_db_find_next_present(a,
1187 							 (u16)gdi->target_id);
1188 
1189 		if (t->target_state != TS_PRESENT) {
1190 			hi->status = ATTO_STS_FAILED;
1191 			break;
1192 		}
1193 
1194 		hi->status = ATTO_STS_UNSUPPORTED;
1195 		break;
1196 	}
1197 
1198 	default:
1199 
1200 		hi->status = ATTO_STS_INV_FUNC;
1201 		break;
1202 	}
1203 
1204 	return false;
1205 }
1206 
1207 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1208 				    struct esas2r_request *rq, void *context)
1209 {
1210 	struct atto_ioctl *ioctl_hba =
1211 		(struct atto_ioctl *)esas2r_buffered_ioctl;
1212 
1213 	esas2r_debug("hba_ioctl_done_callback %d", a->index);
1214 
1215 	if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1216 		struct atto_hba_get_adapter_info *gai =
1217 			&ioctl_hba->data.get_adap_info;
1218 
1219 		esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1220 
1221 		gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1222 		gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1223 
1224 		strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1225 		strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1226 
1227 		gai->num_busses = 1;
1228 		gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1229 		gai->num_lunsper_targ = 1;
1230 	}
1231 }
1232 
1233 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1234 		    struct atto_ioctl *ioctl_hba)
1235 {
1236 	struct esas2r_buffered_ioctl bi;
1237 
1238 	memset(&bi, 0, sizeof(bi));
1239 
1240 	bi.a = a;
1241 	bi.ioctl = ioctl_hba;
1242 	bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1243 	bi.callback = hba_ioctl_callback;
1244 	bi.context = NULL;
1245 	bi.done_callback = hba_ioctl_done_callback;
1246 	bi.done_context = NULL;
1247 	bi.offset = 0;
1248 
1249 	return handle_buffered_ioctl(&bi);
1250 }
1251 
1252 
1253 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1254 			struct esas2r_sas_nvram *data)
1255 {
1256 	int result = 0;
1257 
1258 	a->nvram_command_done = 0;
1259 	rq->comp_cb = complete_nvr_req;
1260 
1261 	if (esas2r_nvram_write(a, rq, data)) {
1262 		/* now wait around for it to complete. */
1263 		while (!a->nvram_command_done)
1264 			wait_event_interruptible(a->nvram_waiter,
1265 						 a->nvram_command_done);
1266 		;
1267 
1268 		/* done, check the status. */
1269 		if (rq->req_stat == RS_SUCCESS)
1270 			result = 1;
1271 	}
1272 	return result;
1273 }
1274 
1275 
1276 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1277 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg)
1278 {
1279 	struct atto_express_ioctl *ioctl = NULL;
1280 	struct esas2r_adapter *a;
1281 	struct esas2r_request *rq;
1282 	u16 code;
1283 	int err;
1284 
1285 	esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1286 
1287 	if ((arg == NULL)
1288 	    || (cmd < EXPRESS_IOCTL_MIN)
1289 	    || (cmd > EXPRESS_IOCTL_MAX))
1290 		return -ENOTSUPP;
1291 
1292 	ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1293 	if (IS_ERR(ioctl)) {
1294 		esas2r_log(ESAS2R_LOG_WARN,
1295 			   "ioctl_handler access_ok failed for cmd %u, address %p",
1296 			   cmd, arg);
1297 		return PTR_ERR(ioctl);
1298 	}
1299 
1300 	/* verify the signature */
1301 
1302 	if (memcmp(ioctl->header.signature,
1303 		   EXPRESS_IOCTL_SIGNATURE,
1304 		   EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1305 		esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1306 		kfree(ioctl);
1307 
1308 		return -ENOTSUPP;
1309 	}
1310 
1311 	/* assume success */
1312 
1313 	ioctl->header.return_code = IOCTL_SUCCESS;
1314 	err = 0;
1315 
1316 	/*
1317 	 * handle EXPRESS_IOCTL_GET_CHANNELS
1318 	 * without paying attention to channel
1319 	 */
1320 
1321 	if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1322 		int i = 0, k = 0;
1323 
1324 		ioctl->data.chanlist.num_channels = 0;
1325 
1326 		while (i < MAX_ADAPTERS) {
1327 			if (esas2r_adapters[i]) {
1328 				ioctl->data.chanlist.num_channels++;
1329 				ioctl->data.chanlist.channel[k] = i;
1330 				k++;
1331 			}
1332 			i++;
1333 		}
1334 
1335 		goto ioctl_done;
1336 	}
1337 
1338 	/* get the channel */
1339 
1340 	if (ioctl->header.channel == 0xFF) {
1341 		a = (struct esas2r_adapter *)hostdata;
1342 	} else {
1343 		if (ioctl->header.channel >= MAX_ADAPTERS ||
1344 			esas2r_adapters[ioctl->header.channel] == NULL) {
1345 			ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1346 			esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1347 			kfree(ioctl);
1348 
1349 			return -ENOTSUPP;
1350 		}
1351 		a = esas2r_adapters[ioctl->header.channel];
1352 	}
1353 
1354 	switch (cmd) {
1355 	case EXPRESS_IOCTL_RW_FIRMWARE:
1356 
1357 		if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1358 			err = esas2r_write_fw(a,
1359 					      (char *)ioctl->data.fwrw.image,
1360 					      0,
1361 					      sizeof(struct
1362 						     atto_express_ioctl));
1363 
1364 			if (err >= 0) {
1365 				err = esas2r_read_fw(a,
1366 						     (char *)ioctl->data.fwrw.
1367 						     image,
1368 						     0,
1369 						     sizeof(struct
1370 							    atto_express_ioctl));
1371 			}
1372 		} else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1373 			err = esas2r_write_fs(a,
1374 					      (char *)ioctl->data.fwrw.image,
1375 					      0,
1376 					      sizeof(struct
1377 						     atto_express_ioctl));
1378 
1379 			if (err >= 0) {
1380 				err = esas2r_read_fs(a,
1381 						     (char *)ioctl->data.fwrw.
1382 						     image,
1383 						     0,
1384 						     sizeof(struct
1385 							    atto_express_ioctl));
1386 			}
1387 		} else {
1388 			ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1389 		}
1390 
1391 		break;
1392 
1393 	case EXPRESS_IOCTL_READ_PARAMS:
1394 
1395 		memcpy(ioctl->data.prw.data_buffer, a->nvram,
1396 		       sizeof(struct esas2r_sas_nvram));
1397 		ioctl->data.prw.code = 1;
1398 		break;
1399 
1400 	case EXPRESS_IOCTL_WRITE_PARAMS:
1401 
1402 		rq = esas2r_alloc_request(a);
1403 		if (rq == NULL) {
1404 			kfree(ioctl);
1405 			esas2r_log(ESAS2R_LOG_WARN,
1406 			   "could not allocate an internal request");
1407 			return -ENOMEM;
1408 		}
1409 
1410 		code = esas2r_write_params(a, rq,
1411 					   (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1412 		ioctl->data.prw.code = code;
1413 
1414 		esas2r_free_request(a, rq);
1415 
1416 		break;
1417 
1418 	case EXPRESS_IOCTL_DEFAULT_PARAMS:
1419 
1420 		esas2r_nvram_get_defaults(a,
1421 					  (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1422 		ioctl->data.prw.code = 1;
1423 		break;
1424 
1425 	case EXPRESS_IOCTL_CHAN_INFO:
1426 
1427 		ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1428 		ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1429 		ioctl->data.chaninfo.IRQ = a->pcid->irq;
1430 		ioctl->data.chaninfo.device_id = a->pcid->device;
1431 		ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1432 		ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1433 		ioctl->data.chaninfo.revision_id = a->pcid->revision;
1434 		ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1435 		ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1436 		ioctl->data.chaninfo.core_rev = 0;
1437 		ioctl->data.chaninfo.host_no = a->host->host_no;
1438 		ioctl->data.chaninfo.hbaapi_rev = 0;
1439 		break;
1440 
1441 	case EXPRESS_IOCTL_SMP:
1442 		ioctl->header.return_code = handle_smp_ioctl(a,
1443 							     &ioctl->data.
1444 							     ioctl_smp);
1445 		break;
1446 
1447 	case EXPRESS_CSMI:
1448 		ioctl->header.return_code =
1449 			handle_csmi_ioctl(a, &ioctl->data.csmi);
1450 		break;
1451 
1452 	case EXPRESS_IOCTL_HBA:
1453 		ioctl->header.return_code = handle_hba_ioctl(a,
1454 							     &ioctl->data.
1455 							     ioctl_hba);
1456 		break;
1457 
1458 	case EXPRESS_IOCTL_VDA:
1459 		err = esas2r_write_vda(a,
1460 				       (char *)&ioctl->data.ioctl_vda,
1461 				       0,
1462 				       sizeof(struct atto_ioctl_vda) +
1463 				       ioctl->data.ioctl_vda.data_length);
1464 
1465 		if (err >= 0) {
1466 			err = esas2r_read_vda(a,
1467 					      (char *)&ioctl->data.ioctl_vda,
1468 					      0,
1469 					      sizeof(struct atto_ioctl_vda) +
1470 					      ioctl->data.ioctl_vda.data_length);
1471 		}
1472 
1473 
1474 
1475 
1476 		break;
1477 
1478 	case EXPRESS_IOCTL_GET_MOD_INFO:
1479 
1480 		ioctl->data.modinfo.adapter = a;
1481 		ioctl->data.modinfo.pci_dev = a->pcid;
1482 		ioctl->data.modinfo.scsi_host = a->host;
1483 		ioctl->data.modinfo.host_no = a->host->host_no;
1484 
1485 		break;
1486 
1487 	default:
1488 		esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1489 		ioctl->header.return_code = IOCTL_ERR_INVCMD;
1490 	}
1491 
1492 ioctl_done:
1493 
1494 	if (err < 0) {
1495 		esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err,
1496 			   cmd);
1497 
1498 		switch (err) {
1499 		case -ENOMEM:
1500 		case -EBUSY:
1501 			ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1502 			break;
1503 
1504 		case -ENOSYS:
1505 		case -EINVAL:
1506 			ioctl->header.return_code = IOCTL_INVALID_PARAM;
1507 			break;
1508 
1509 		default:
1510 			ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1511 			break;
1512 		}
1513 
1514 	}
1515 
1516 	/* Always copy the buffer back, if only to pick up the status */
1517 	err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1518 	if (err != 0) {
1519 		esas2r_log(ESAS2R_LOG_WARN,
1520 			   "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)",
1521 			   err, cmd);
1522 		kfree(ioctl);
1523 
1524 		return -EFAULT;
1525 	}
1526 
1527 	kfree(ioctl);
1528 
1529 	return 0;
1530 }
1531 
1532 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg)
1533 {
1534 	return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1535 }
1536 
1537 static void free_fw_buffers(struct esas2r_adapter *a)
1538 {
1539 	if (a->firmware.data) {
1540 		dma_free_coherent(&a->pcid->dev,
1541 				  (size_t)a->firmware.orig_len,
1542 				  a->firmware.data,
1543 				  (dma_addr_t)a->firmware.phys);
1544 
1545 		a->firmware.data = NULL;
1546 	}
1547 }
1548 
1549 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1550 {
1551 	free_fw_buffers(a);
1552 
1553 	a->firmware.orig_len = length;
1554 
1555 	a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1556 						    (size_t)length,
1557 						    (dma_addr_t *)&a->firmware.
1558 						    phys,
1559 						    GFP_KERNEL);
1560 
1561 	if (!a->firmware.data) {
1562 		esas2r_debug("buffer alloc failed!");
1563 		return 0;
1564 	}
1565 
1566 	return 1;
1567 }
1568 
1569 /* Handle a call to read firmware. */
1570 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1571 {
1572 	esas2r_trace_enter();
1573 	/* if the cached header is a status, simply copy it over and return. */
1574 	if (a->firmware.state == FW_STATUS_ST) {
1575 		int size = min_t(int, count, sizeof(a->firmware.header));
1576 		esas2r_trace_exit();
1577 		memcpy(buf, &a->firmware.header, size);
1578 		esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1579 		return size;
1580 	}
1581 
1582 	/*
1583 	 * if the cached header is a command, do it if at
1584 	 * offset 0, otherwise copy the pieces.
1585 	 */
1586 
1587 	if (a->firmware.state == FW_COMMAND_ST) {
1588 		u32 length = a->firmware.header.length;
1589 		esas2r_trace_exit();
1590 
1591 		esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1592 			     length,
1593 			     off);
1594 
1595 		if (off == 0) {
1596 			if (a->firmware.header.action == FI_ACT_UP) {
1597 				if (!allocate_fw_buffers(a, length))
1598 					return -ENOMEM;
1599 
1600 
1601 				/* copy header over */
1602 
1603 				memcpy(a->firmware.data,
1604 				       &a->firmware.header,
1605 				       sizeof(a->firmware.header));
1606 
1607 				do_fm_api(a,
1608 					  (struct esas2r_flash_img *)a->firmware.data);
1609 			} else if (a->firmware.header.action == FI_ACT_UPSZ) {
1610 				int size =
1611 					min((int)count,
1612 					    (int)sizeof(a->firmware.header));
1613 				do_fm_api(a, &a->firmware.header);
1614 				memcpy(buf, &a->firmware.header, size);
1615 				esas2r_debug("FI_ACT_UPSZ size %d", size);
1616 				return size;
1617 			} else {
1618 				esas2r_debug("invalid action %d",
1619 					     a->firmware.header.action);
1620 				return -ENOSYS;
1621 			}
1622 		}
1623 
1624 		if (count + off > length)
1625 			count = length - off;
1626 
1627 		if (count < 0)
1628 			return 0;
1629 
1630 		if (!a->firmware.data) {
1631 			esas2r_debug(
1632 				"read: nonzero offset but no buffer available!");
1633 			return -ENOMEM;
1634 		}
1635 
1636 		esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1637 			     count,
1638 			     length);
1639 
1640 		memcpy(buf, &a->firmware.data[off], count);
1641 
1642 		/* when done, release the buffer */
1643 
1644 		if (length <= off + count) {
1645 			esas2r_debug("esas2r_read_fw: freeing buffer!");
1646 
1647 			free_fw_buffers(a);
1648 		}
1649 
1650 		return count;
1651 	}
1652 
1653 	esas2r_trace_exit();
1654 	esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1655 		     a->firmware.state);
1656 
1657 	return -EINVAL;
1658 }
1659 
1660 /* Handle a call to write firmware. */
1661 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1662 		    int count)
1663 {
1664 	u32 length;
1665 
1666 	if (off == 0) {
1667 		struct esas2r_flash_img *header =
1668 			(struct esas2r_flash_img *)buf;
1669 
1670 		/* assume version 0 flash image */
1671 
1672 		int min_size = sizeof(struct esas2r_flash_img_v0);
1673 
1674 		a->firmware.state = FW_INVALID_ST;
1675 
1676 		/* validate the version field first */
1677 
1678 		if (count < 4
1679 		    ||  header->fi_version > FI_VERSION_1) {
1680 			esas2r_debug(
1681 				"esas2r_write_fw: short header or invalid version");
1682 			return -EINVAL;
1683 		}
1684 
1685 		/* See if its a version 1 flash image */
1686 
1687 		if (header->fi_version == FI_VERSION_1)
1688 			min_size = sizeof(struct esas2r_flash_img);
1689 
1690 		/* If this is the start, the header must be full and valid. */
1691 		if (count < min_size) {
1692 			esas2r_debug("esas2r_write_fw: short header, aborting");
1693 			return -EINVAL;
1694 		}
1695 
1696 		/* Make sure the size is reasonable. */
1697 		length = header->length;
1698 
1699 		if (length > 1024 * 1024) {
1700 			esas2r_debug(
1701 				"esas2r_write_fw: hosed, length %d  fi_version %d",
1702 				length, header->fi_version);
1703 			return -EINVAL;
1704 		}
1705 
1706 		/*
1707 		 * If this is a write command, allocate memory because
1708 		 * we have to cache everything. otherwise, just cache
1709 		 * the header, because the read op will do the command.
1710 		 */
1711 
1712 		if (header->action == FI_ACT_DOWN) {
1713 			if (!allocate_fw_buffers(a, length))
1714 				return -ENOMEM;
1715 
1716 			/*
1717 			 * Store the command, so there is context on subsequent
1718 			 * calls.
1719 			 */
1720 			memcpy(&a->firmware.header,
1721 			       buf,
1722 			       sizeof(*header));
1723 		} else if (header->action == FI_ACT_UP
1724 			   ||  header->action == FI_ACT_UPSZ) {
1725 			/* Save the command, result will be picked up on read */
1726 			memcpy(&a->firmware.header,
1727 			       buf,
1728 			       sizeof(*header));
1729 
1730 			a->firmware.state = FW_COMMAND_ST;
1731 
1732 			esas2r_debug(
1733 				"esas2r_write_fw: COMMAND, count %d, action %d ",
1734 				count, header->action);
1735 
1736 			/*
1737 			 * Pretend we took the whole buffer,
1738 			 * so we don't get bothered again.
1739 			 */
1740 
1741 			return count;
1742 		} else {
1743 			esas2r_debug("esas2r_write_fw: invalid action %d ",
1744 				     a->firmware.header.action);
1745 			return -ENOSYS;
1746 		}
1747 	} else {
1748 		length = a->firmware.header.length;
1749 	}
1750 
1751 	/*
1752 	 * We only get here on a download command, regardless of offset.
1753 	 * the chunks written by the system need to be cached, and when
1754 	 * the final one arrives, issue the fmapi command.
1755 	 */
1756 
1757 	if (off + count > length)
1758 		count = length - off;
1759 
1760 	if (count > 0) {
1761 		esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1762 			     count,
1763 			     length);
1764 
1765 		/*
1766 		 * On a full upload, the system tries sending the whole buffer.
1767 		 * there's nothing to do with it, so just drop it here, before
1768 		 * trying to copy over into unallocated memory!
1769 		 */
1770 		if (a->firmware.header.action == FI_ACT_UP)
1771 			return count;
1772 
1773 		if (!a->firmware.data) {
1774 			esas2r_debug(
1775 				"write: nonzero offset but no buffer available!");
1776 			return -ENOMEM;
1777 		}
1778 
1779 		memcpy(&a->firmware.data[off], buf, count);
1780 
1781 		if (length == off + count) {
1782 			do_fm_api(a,
1783 				  (struct esas2r_flash_img *)a->firmware.data);
1784 
1785 			/*
1786 			 * Now copy the header result to be picked up by the
1787 			 * next read
1788 			 */
1789 			memcpy(&a->firmware.header,
1790 			       a->firmware.data,
1791 			       sizeof(a->firmware.header));
1792 
1793 			a->firmware.state = FW_STATUS_ST;
1794 
1795 			esas2r_debug("write completed");
1796 
1797 			/*
1798 			 * Since the system has the data buffered, the only way
1799 			 * this can leak is if a root user writes a program
1800 			 * that writes a shorter buffer than it claims, and the
1801 			 * copyin fails.
1802 			 */
1803 			free_fw_buffers(a);
1804 		}
1805 	}
1806 
1807 	return count;
1808 }
1809 
1810 /* Callback for the completion of a VDA request. */
1811 static void vda_complete_req(struct esas2r_adapter *a,
1812 			     struct esas2r_request *rq)
1813 {
1814 	a->vda_command_done = 1;
1815 	wake_up_interruptible(&a->vda_waiter);
1816 }
1817 
1818 /* Scatter/gather callback for VDA requests */
1819 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1820 {
1821 	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1822 	int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1823 
1824 	(*addr) = a->ppvda_buffer + offset;
1825 	return VDA_MAX_BUFFER_SIZE - offset;
1826 }
1827 
1828 /* Handle a call to read a VDA command. */
1829 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1830 {
1831 	if (!a->vda_buffer)
1832 		return -ENOMEM;
1833 
1834 	if (off == 0) {
1835 		struct esas2r_request *rq;
1836 		struct atto_ioctl_vda *vi =
1837 			(struct atto_ioctl_vda *)a->vda_buffer;
1838 		struct esas2r_sg_context sgc;
1839 		bool wait_for_completion;
1840 
1841 		/*
1842 		 * Presumeably, someone has already written to the vda_buffer,
1843 		 * and now they are reading the node the response, so now we
1844 		 * will actually issue the request to the chip and reply.
1845 		 */
1846 
1847 		/* allocate a request */
1848 		rq = esas2r_alloc_request(a);
1849 		if (rq == NULL) {
1850 			esas2r_debug("esas2r_read_vda: out of requests");
1851 			return -EBUSY;
1852 		}
1853 
1854 		rq->comp_cb = vda_complete_req;
1855 
1856 		sgc.first_req = rq;
1857 		sgc.adapter = a;
1858 		sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1859 		sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1860 
1861 		a->vda_command_done = 0;
1862 
1863 		wait_for_completion =
1864 			esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1865 
1866 		if (wait_for_completion) {
1867 			/* now wait around for it to complete. */
1868 
1869 			while (!a->vda_command_done)
1870 				wait_event_interruptible(a->vda_waiter,
1871 							 a->vda_command_done);
1872 		}
1873 
1874 		esas2r_free_request(a, (struct esas2r_request *)rq);
1875 	}
1876 
1877 	if (off > VDA_MAX_BUFFER_SIZE)
1878 		return 0;
1879 
1880 	if (count + off > VDA_MAX_BUFFER_SIZE)
1881 		count = VDA_MAX_BUFFER_SIZE - off;
1882 
1883 	if (count < 0)
1884 		return 0;
1885 
1886 	memcpy(buf, a->vda_buffer + off, count);
1887 
1888 	return count;
1889 }
1890 
1891 /* Handle a call to write a VDA command. */
1892 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1893 		     int count)
1894 {
1895 	/*
1896 	 * allocate memory for it, if not already done.  once allocated,
1897 	 * we will keep it around until the driver is unloaded.
1898 	 */
1899 
1900 	if (!a->vda_buffer) {
1901 		dma_addr_t dma_addr;
1902 		a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1903 							 (size_t)
1904 							 VDA_MAX_BUFFER_SIZE,
1905 							 &dma_addr,
1906 							 GFP_KERNEL);
1907 
1908 		a->ppvda_buffer = dma_addr;
1909 	}
1910 
1911 	if (!a->vda_buffer)
1912 		return -ENOMEM;
1913 
1914 	if (off > VDA_MAX_BUFFER_SIZE)
1915 		return 0;
1916 
1917 	if (count + off > VDA_MAX_BUFFER_SIZE)
1918 		count = VDA_MAX_BUFFER_SIZE - off;
1919 
1920 	if (count < 1)
1921 		return 0;
1922 
1923 	memcpy(a->vda_buffer + off, buf, count);
1924 
1925 	return count;
1926 }
1927 
1928 /* Callback for the completion of an FS_API request.*/
1929 static void fs_api_complete_req(struct esas2r_adapter *a,
1930 				struct esas2r_request *rq)
1931 {
1932 	a->fs_api_command_done = 1;
1933 
1934 	wake_up_interruptible(&a->fs_api_waiter);
1935 }
1936 
1937 /* Scatter/gather callback for VDA requests */
1938 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1939 {
1940 	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1941 	struct esas2r_ioctl_fs *fs =
1942 		(struct esas2r_ioctl_fs *)a->fs_api_buffer;
1943 	u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1944 
1945 	(*addr) = a->ppfs_api_buffer + offset;
1946 
1947 	return a->fs_api_buffer_size - offset;
1948 }
1949 
1950 /* Handle a call to read firmware via FS_API. */
1951 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1952 {
1953 	if (!a->fs_api_buffer)
1954 		return -ENOMEM;
1955 
1956 	if (off == 0) {
1957 		struct esas2r_request *rq;
1958 		struct esas2r_sg_context sgc;
1959 		struct esas2r_ioctl_fs *fs =
1960 			(struct esas2r_ioctl_fs *)a->fs_api_buffer;
1961 
1962 		/* If another flash request is already in progress, return. */
1963 		if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1964 busy:
1965 			fs->status = ATTO_STS_OUT_OF_RSRC;
1966 			return -EBUSY;
1967 		}
1968 
1969 		/*
1970 		 * Presumeably, someone has already written to the
1971 		 * fs_api_buffer, and now they are reading the node the
1972 		 * response, so now we will actually issue the request to the
1973 		 * chip and reply. Allocate a request
1974 		 */
1975 
1976 		rq = esas2r_alloc_request(a);
1977 		if (rq == NULL) {
1978 			esas2r_debug("esas2r_read_fs: out of requests");
1979 			mutex_unlock(&a->fs_api_mutex);
1980 			goto busy;
1981 		}
1982 
1983 		rq->comp_cb = fs_api_complete_req;
1984 
1985 		/* Set up the SGCONTEXT for to build the s/g table */
1986 
1987 		sgc.cur_offset = fs->data;
1988 		sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1989 
1990 		a->fs_api_command_done = 0;
1991 
1992 		if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1993 			if (fs->status == ATTO_STS_OUT_OF_RSRC)
1994 				count = -EBUSY;
1995 
1996 			goto dont_wait;
1997 		}
1998 
1999 		/* Now wait around for it to complete. */
2000 
2001 		while (!a->fs_api_command_done)
2002 			wait_event_interruptible(a->fs_api_waiter,
2003 						 a->fs_api_command_done);
2004 		;
2005 dont_wait:
2006 		/* Free the request and keep going */
2007 		mutex_unlock(&a->fs_api_mutex);
2008 		esas2r_free_request(a, (struct esas2r_request *)rq);
2009 
2010 		/* Pick up possible error code from above */
2011 		if (count < 0)
2012 			return count;
2013 	}
2014 
2015 	if (off > a->fs_api_buffer_size)
2016 		return 0;
2017 
2018 	if (count + off > a->fs_api_buffer_size)
2019 		count = a->fs_api_buffer_size - off;
2020 
2021 	if (count < 0)
2022 		return 0;
2023 
2024 	memcpy(buf, a->fs_api_buffer + off, count);
2025 
2026 	return count;
2027 }
2028 
2029 /* Handle a call to write firmware via FS_API. */
2030 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2031 		    int count)
2032 {
2033 	if (off == 0) {
2034 		struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2035 		u32 length = fs->command.length + offsetof(
2036 			struct esas2r_ioctl_fs,
2037 			data);
2038 
2039 		/*
2040 		 * Special case, for BEGIN commands, the length field
2041 		 * is lying to us, so just get enough for the header.
2042 		 */
2043 
2044 		if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2045 			length = offsetof(struct esas2r_ioctl_fs, data);
2046 
2047 		/*
2048 		 * Beginning a command.  We assume we'll get at least
2049 		 * enough in the first write so we can look at the
2050 		 * header and see how much we need to alloc.
2051 		 */
2052 
2053 		if (count < offsetof(struct esas2r_ioctl_fs, data))
2054 			return -EINVAL;
2055 
2056 		/* Allocate a buffer or use the existing buffer. */
2057 		if (a->fs_api_buffer) {
2058 			if (a->fs_api_buffer_size < length) {
2059 				/* Free too-small buffer and get a new one */
2060 				dma_free_coherent(&a->pcid->dev,
2061 						  (size_t)a->fs_api_buffer_size,
2062 						  a->fs_api_buffer,
2063 						  (dma_addr_t)a->ppfs_api_buffer);
2064 
2065 				goto re_allocate_buffer;
2066 			}
2067 		} else {
2068 re_allocate_buffer:
2069 			a->fs_api_buffer_size = length;
2070 
2071 			a->fs_api_buffer = (u8 *)dma_alloc_coherent(
2072 				&a->pcid->dev,
2073 				(size_t)a->fs_api_buffer_size,
2074 				(dma_addr_t *)&a->ppfs_api_buffer,
2075 				GFP_KERNEL);
2076 		}
2077 	}
2078 
2079 	if (!a->fs_api_buffer)
2080 		return -ENOMEM;
2081 
2082 	if (off > a->fs_api_buffer_size)
2083 		return 0;
2084 
2085 	if (count + off > a->fs_api_buffer_size)
2086 		count = a->fs_api_buffer_size - off;
2087 
2088 	if (count < 1)
2089 		return 0;
2090 
2091 	memcpy(a->fs_api_buffer + off, buf, count);
2092 
2093 	return count;
2094 }
2095