1 /* 2 * linux/drivers/scsi/esas2r/esas2r_ioctl.c 3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers 4 * 5 * Copyright (c) 2001-2013 ATTO Technology, Inc. 6 * (mailto:linuxdrivers@attotech.com) 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * NO WARRANTY 19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 23 * solely responsible for determining the appropriateness of using and 24 * distributing the Program and assumes all risks associated with its 25 * exercise of rights under this Agreement, including but not limited to 26 * the risks and costs of program errors, damage to or loss of data, 27 * programs or equipment, and unavailability or interruption of operations. 28 * 29 * DISCLAIMER OF LIABILITY 30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 37 * 38 * You should have received a copy of the GNU General Public License 39 * along with this program; if not, write to the Free Software 40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 41 * USA. 42 */ 43 44 #include "esas2r.h" 45 46 /* 47 * Buffered ioctl handlers. A buffered ioctl is one which requires that we 48 * allocate a DMA-able memory area to communicate with the firmware. In 49 * order to prevent continually allocating and freeing consistent memory, 50 * we will allocate a global buffer the first time we need it and re-use 51 * it for subsequent ioctl calls that require it. 52 */ 53 54 u8 *esas2r_buffered_ioctl; 55 dma_addr_t esas2r_buffered_ioctl_addr; 56 u32 esas2r_buffered_ioctl_size; 57 struct pci_dev *esas2r_buffered_ioctl_pcid; 58 59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore); 60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *, 61 struct esas2r_request *, 62 struct esas2r_sg_context *, 63 void *); 64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *, 65 struct esas2r_request *, void *); 66 67 struct esas2r_buffered_ioctl { 68 struct esas2r_adapter *a; 69 void *ioctl; 70 u32 length; 71 u32 control_code; 72 u32 offset; 73 BUFFERED_IOCTL_CALLBACK 74 callback; 75 void *context; 76 BUFFERED_IOCTL_DONE_CALLBACK 77 done_callback; 78 void *done_context; 79 80 }; 81 82 static void complete_fm_api_req(struct esas2r_adapter *a, 83 struct esas2r_request *rq) 84 { 85 a->fm_api_command_done = 1; 86 wake_up_interruptible(&a->fm_api_waiter); 87 } 88 89 /* Callbacks for building scatter/gather lists for FM API requests */ 90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr) 91 { 92 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 93 int offset = sgc->cur_offset - a->save_offset; 94 95 (*addr) = a->firmware.phys + offset; 96 return a->firmware.orig_len - offset; 97 } 98 99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr) 100 { 101 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 102 int offset = sgc->cur_offset - a->save_offset; 103 104 (*addr) = a->firmware.header_buff_phys + offset; 105 return sizeof(struct esas2r_flash_img) - offset; 106 } 107 108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */ 109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi) 110 { 111 struct esas2r_request *rq; 112 113 if (mutex_lock_interruptible(&a->fm_api_mutex)) { 114 fi->status = FI_STAT_BUSY; 115 return; 116 } 117 118 rq = esas2r_alloc_request(a); 119 if (rq == NULL) { 120 fi->status = FI_STAT_BUSY; 121 goto free_sem; 122 } 123 124 if (fi == &a->firmware.header) { 125 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev, 126 (size_t)sizeof( 127 struct 128 esas2r_flash_img), 129 (dma_addr_t *)&a-> 130 firmware. 131 header_buff_phys, 132 GFP_KERNEL); 133 134 if (a->firmware.header_buff == NULL) { 135 esas2r_debug("failed to allocate header buffer!"); 136 fi->status = FI_STAT_BUSY; 137 goto free_req; 138 } 139 140 memcpy(a->firmware.header_buff, fi, 141 sizeof(struct esas2r_flash_img)); 142 a->save_offset = a->firmware.header_buff; 143 a->fm_api_sgc.get_phys_addr = 144 (PGETPHYSADDR)get_physaddr_fm_api_header; 145 } else { 146 a->save_offset = (u8 *)fi; 147 a->fm_api_sgc.get_phys_addr = 148 (PGETPHYSADDR)get_physaddr_fm_api; 149 } 150 151 rq->comp_cb = complete_fm_api_req; 152 a->fm_api_command_done = 0; 153 a->fm_api_sgc.cur_offset = a->save_offset; 154 155 if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq, 156 &a->fm_api_sgc)) 157 goto all_done; 158 159 /* Now wait around for it to complete. */ 160 while (!a->fm_api_command_done) 161 wait_event_interruptible(a->fm_api_waiter, 162 a->fm_api_command_done); 163 all_done: 164 if (fi == &a->firmware.header) { 165 memcpy(fi, a->firmware.header_buff, 166 sizeof(struct esas2r_flash_img)); 167 168 dma_free_coherent(&a->pcid->dev, 169 (size_t)sizeof(struct esas2r_flash_img), 170 a->firmware.header_buff, 171 (dma_addr_t)a->firmware.header_buff_phys); 172 } 173 free_req: 174 esas2r_free_request(a, (struct esas2r_request *)rq); 175 free_sem: 176 mutex_unlock(&a->fm_api_mutex); 177 return; 178 179 } 180 181 static void complete_nvr_req(struct esas2r_adapter *a, 182 struct esas2r_request *rq) 183 { 184 a->nvram_command_done = 1; 185 wake_up_interruptible(&a->nvram_waiter); 186 } 187 188 /* Callback for building scatter/gather lists for buffered ioctls */ 189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc, 190 u64 *addr) 191 { 192 int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl; 193 194 (*addr) = esas2r_buffered_ioctl_addr + offset; 195 return esas2r_buffered_ioctl_size - offset; 196 } 197 198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a, 199 struct esas2r_request *rq) 200 { 201 a->buffered_ioctl_done = 1; 202 wake_up_interruptible(&a->buffered_ioctl_waiter); 203 } 204 205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi) 206 { 207 struct esas2r_adapter *a = bi->a; 208 struct esas2r_request *rq; 209 struct esas2r_sg_context sgc; 210 u8 result = IOCTL_SUCCESS; 211 212 if (down_interruptible(&buffered_ioctl_semaphore)) 213 return IOCTL_OUT_OF_RESOURCES; 214 215 /* allocate a buffer or use the existing buffer. */ 216 if (esas2r_buffered_ioctl) { 217 if (esas2r_buffered_ioctl_size < bi->length) { 218 /* free the too-small buffer and get a new one */ 219 dma_free_coherent(&a->pcid->dev, 220 (size_t)esas2r_buffered_ioctl_size, 221 esas2r_buffered_ioctl, 222 esas2r_buffered_ioctl_addr); 223 224 goto allocate_buffer; 225 } 226 } else { 227 allocate_buffer: 228 esas2r_buffered_ioctl_size = bi->length; 229 esas2r_buffered_ioctl_pcid = a->pcid; 230 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev, 231 (size_t) 232 esas2r_buffered_ioctl_size, 233 & 234 esas2r_buffered_ioctl_addr, 235 GFP_KERNEL); 236 } 237 238 if (!esas2r_buffered_ioctl) { 239 esas2r_log(ESAS2R_LOG_CRIT, 240 "could not allocate %d bytes of consistent memory " 241 "for a buffered ioctl!", 242 bi->length); 243 244 esas2r_debug("buffered ioctl alloc failure"); 245 result = IOCTL_OUT_OF_RESOURCES; 246 goto exit_cleanly; 247 } 248 249 memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length); 250 251 rq = esas2r_alloc_request(a); 252 if (rq == NULL) { 253 esas2r_log(ESAS2R_LOG_CRIT, 254 "could not allocate an internal request"); 255 256 result = IOCTL_OUT_OF_RESOURCES; 257 esas2r_debug("buffered ioctl - no requests"); 258 goto exit_cleanly; 259 } 260 261 a->buffered_ioctl_done = 0; 262 rq->comp_cb = complete_buffered_ioctl_req; 263 sgc.cur_offset = esas2r_buffered_ioctl + bi->offset; 264 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl; 265 sgc.length = esas2r_buffered_ioctl_size; 266 267 if (!(*bi->callback)(a, rq, &sgc, bi->context)) { 268 /* completed immediately, no need to wait */ 269 a->buffered_ioctl_done = 0; 270 goto free_andexit_cleanly; 271 } 272 273 /* now wait around for it to complete. */ 274 while (!a->buffered_ioctl_done) 275 wait_event_interruptible(a->buffered_ioctl_waiter, 276 a->buffered_ioctl_done); 277 278 free_andexit_cleanly: 279 if (result == IOCTL_SUCCESS && bi->done_callback) 280 (*bi->done_callback)(a, rq, bi->done_context); 281 282 esas2r_free_request(a, rq); 283 284 exit_cleanly: 285 if (result == IOCTL_SUCCESS) 286 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length); 287 288 up(&buffered_ioctl_semaphore); 289 return result; 290 } 291 292 /* SMP ioctl support */ 293 static int smp_ioctl_callback(struct esas2r_adapter *a, 294 struct esas2r_request *rq, 295 struct esas2r_sg_context *sgc, void *context) 296 { 297 struct atto_ioctl_smp *si = 298 (struct atto_ioctl_smp *)esas2r_buffered_ioctl; 299 300 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 301 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP); 302 303 if (!esas2r_build_sg_list(a, rq, sgc)) { 304 si->status = ATTO_STS_OUT_OF_RSRC; 305 return false; 306 } 307 308 esas2r_start_request(a, rq); 309 return true; 310 } 311 312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si) 313 { 314 struct esas2r_buffered_ioctl bi; 315 316 memset(&bi, 0, sizeof(bi)); 317 318 bi.a = a; 319 bi.ioctl = si; 320 bi.length = sizeof(struct atto_ioctl_smp) 321 + le32_to_cpu(si->req_length) 322 + le32_to_cpu(si->rsp_length); 323 bi.offset = 0; 324 bi.callback = smp_ioctl_callback; 325 return handle_buffered_ioctl(&bi); 326 } 327 328 329 /* CSMI ioctl support */ 330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a, 331 struct esas2r_request *rq) 332 { 333 rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id); 334 rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun); 335 336 /* Now call the original completion callback. */ 337 (*rq->aux_req_cb)(a, rq); 338 } 339 340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */ 341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a, 342 union atto_ioctl_csmi *ci, 343 struct esas2r_request *rq, 344 struct esas2r_sg_context *sgc, 345 u32 ctrl_code, 346 u16 target_id) 347 { 348 struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl; 349 350 if (test_bit(AF_DEGRADED_MODE, &a->flags)) 351 return false; 352 353 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 354 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI); 355 ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code); 356 ioctl->csmi.target_id = cpu_to_le16(target_id); 357 ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags); 358 359 /* 360 * Always usurp the completion callback since the interrupt callback 361 * mechanism may be used. 362 */ 363 rq->aux_req_cx = ci; 364 rq->aux_req_cb = rq->comp_cb; 365 rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb; 366 367 if (!esas2r_build_sg_list(a, rq, sgc)) 368 return false; 369 370 esas2r_start_request(a, rq); 371 return true; 372 } 373 374 static bool check_lun(struct scsi_lun lun) 375 { 376 bool result; 377 378 result = ((lun.scsi_lun[7] == 0) && 379 (lun.scsi_lun[6] == 0) && 380 (lun.scsi_lun[5] == 0) && 381 (lun.scsi_lun[4] == 0) && 382 (lun.scsi_lun[3] == 0) && 383 (lun.scsi_lun[2] == 0) && 384 /* Byte 1 is intentionally skipped */ 385 (lun.scsi_lun[0] == 0)); 386 387 return result; 388 } 389 390 static int csmi_ioctl_callback(struct esas2r_adapter *a, 391 struct esas2r_request *rq, 392 struct esas2r_sg_context *sgc, void *context) 393 { 394 struct atto_csmi *ci = (struct atto_csmi *)context; 395 union atto_ioctl_csmi *ioctl_csmi = 396 (union atto_ioctl_csmi *)esas2r_buffered_ioctl; 397 u8 path = 0; 398 u8 tid = 0; 399 u8 lun = 0; 400 u32 sts = CSMI_STS_SUCCESS; 401 struct esas2r_target *t; 402 unsigned long flags; 403 404 if (ci->control_code == CSMI_CC_GET_DEV_ADDR) { 405 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr; 406 407 path = gda->path_id; 408 tid = gda->target_id; 409 lun = gda->lun; 410 } else if (ci->control_code == CSMI_CC_TASK_MGT) { 411 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt; 412 413 path = tm->path_id; 414 tid = tm->target_id; 415 lun = tm->lun; 416 } 417 418 if (path > 0) { 419 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32( 420 CSMI_STS_INV_PARAM); 421 return false; 422 } 423 424 rq->target_id = tid; 425 rq->vrq->scsi.flags |= cpu_to_le32(lun); 426 427 switch (ci->control_code) { 428 case CSMI_CC_GET_DRVR_INFO: 429 { 430 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info; 431 432 strcpy(gdi->description, esas2r_get_model_name(a)); 433 gdi->csmi_major_rev = CSMI_MAJOR_REV; 434 gdi->csmi_minor_rev = CSMI_MINOR_REV; 435 break; 436 } 437 438 case CSMI_CC_GET_CNTLR_CFG: 439 { 440 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg; 441 442 gcc->base_io_addr = 0; 443 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2, 444 &gcc->base_memaddr_lo); 445 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3, 446 &gcc->base_memaddr_hi); 447 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device, 448 a->pcid->subsystem_vendor); 449 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN; 450 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA; 451 gcc->io_bus_type = CSMI_BUS_TYPE_PCI; 452 gcc->pci_addr.bus_num = a->pcid->bus->number; 453 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn); 454 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn); 455 456 memset(gcc->serial_num, 0, sizeof(gcc->serial_num)); 457 458 gcc->major_rev = LOBYTE(LOWORD(a->fw_version)); 459 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version)); 460 gcc->build_rev = LOBYTE(HIWORD(a->fw_version)); 461 gcc->release_rev = HIBYTE(HIWORD(a->fw_version)); 462 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver)); 463 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver)); 464 gcc->bios_build_rev = LOWORD(a->flash_ver); 465 466 if (test_bit(AF2_THUNDERLINK, &a->flags2)) 467 gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA 468 | CSMI_CNTLRF_SATA_HBA; 469 else 470 gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID 471 | CSMI_CNTLRF_SATA_RAID; 472 473 gcc->rrom_major_rev = 0; 474 gcc->rrom_minor_rev = 0; 475 gcc->rrom_build_rev = 0; 476 gcc->rrom_release_rev = 0; 477 gcc->rrom_biosmajor_rev = 0; 478 gcc->rrom_biosminor_rev = 0; 479 gcc->rrom_biosbuild_rev = 0; 480 gcc->rrom_biosrelease_rev = 0; 481 break; 482 } 483 484 case CSMI_CC_GET_CNTLR_STS: 485 { 486 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts; 487 488 if (test_bit(AF_DEGRADED_MODE, &a->flags)) 489 gcs->status = CSMI_CNTLR_STS_FAILED; 490 else 491 gcs->status = CSMI_CNTLR_STS_GOOD; 492 493 gcs->offline_reason = CSMI_OFFLINE_NO_REASON; 494 break; 495 } 496 497 case CSMI_CC_FW_DOWNLOAD: 498 case CSMI_CC_GET_RAID_INFO: 499 case CSMI_CC_GET_RAID_CFG: 500 501 sts = CSMI_STS_BAD_CTRL_CODE; 502 break; 503 504 case CSMI_CC_SMP_PASSTHRU: 505 case CSMI_CC_SSP_PASSTHRU: 506 case CSMI_CC_STP_PASSTHRU: 507 case CSMI_CC_GET_PHY_INFO: 508 case CSMI_CC_SET_PHY_INFO: 509 case CSMI_CC_GET_LINK_ERRORS: 510 case CSMI_CC_GET_SATA_SIG: 511 case CSMI_CC_GET_CONN_INFO: 512 case CSMI_CC_PHY_CTRL: 513 514 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, 515 ci->control_code, 516 ESAS2R_TARG_ID_INV)) { 517 sts = CSMI_STS_FAILED; 518 break; 519 } 520 521 return true; 522 523 case CSMI_CC_GET_SCSI_ADDR: 524 { 525 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; 526 527 struct scsi_lun lun; 528 529 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun)); 530 531 if (!check_lun(lun)) { 532 sts = CSMI_STS_NO_SCSI_ADDR; 533 break; 534 } 535 536 /* make sure the device is present */ 537 spin_lock_irqsave(&a->mem_lock, flags); 538 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr); 539 spin_unlock_irqrestore(&a->mem_lock, flags); 540 541 if (t == NULL) { 542 sts = CSMI_STS_NO_SCSI_ADDR; 543 break; 544 } 545 546 gsa->host_index = 0xFF; 547 gsa->lun = gsa->sas_lun[1]; 548 rq->target_id = esas2r_targ_get_id(t, a); 549 break; 550 } 551 552 case CSMI_CC_GET_DEV_ADDR: 553 { 554 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr; 555 556 /* make sure the target is present */ 557 t = a->targetdb + rq->target_id; 558 559 if (t >= a->targetdb_end 560 || t->target_state != TS_PRESENT 561 || t->sas_addr == 0) { 562 sts = CSMI_STS_NO_DEV_ADDR; 563 break; 564 } 565 566 /* fill in the result */ 567 *(u64 *)gda->sas_addr = t->sas_addr; 568 memset(gda->sas_lun, 0, sizeof(gda->sas_lun)); 569 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags); 570 break; 571 } 572 573 case CSMI_CC_TASK_MGT: 574 575 /* make sure the target is present */ 576 t = a->targetdb + rq->target_id; 577 578 if (t >= a->targetdb_end 579 || t->target_state != TS_PRESENT 580 || !(t->flags & TF_PASS_THRU)) { 581 sts = CSMI_STS_NO_DEV_ADDR; 582 break; 583 } 584 585 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, 586 ci->control_code, 587 t->phys_targ_id)) { 588 sts = CSMI_STS_FAILED; 589 break; 590 } 591 592 return true; 593 594 default: 595 596 sts = CSMI_STS_BAD_CTRL_CODE; 597 break; 598 } 599 600 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts); 601 602 return false; 603 } 604 605 606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a, 607 struct esas2r_request *rq, void *context) 608 { 609 struct atto_csmi *ci = (struct atto_csmi *)context; 610 union atto_ioctl_csmi *ioctl_csmi = 611 (union atto_ioctl_csmi *)esas2r_buffered_ioctl; 612 613 switch (ci->control_code) { 614 case CSMI_CC_GET_DRVR_INFO: 615 { 616 struct atto_csmi_get_driver_info *gdi = 617 &ioctl_csmi->drvr_info; 618 619 strcpy(gdi->name, ESAS2R_VERSION_STR); 620 621 gdi->major_rev = ESAS2R_MAJOR_REV; 622 gdi->minor_rev = ESAS2R_MINOR_REV; 623 gdi->build_rev = 0; 624 gdi->release_rev = 0; 625 break; 626 } 627 628 case CSMI_CC_GET_SCSI_ADDR: 629 { 630 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; 631 632 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) == 633 CSMI_STS_SUCCESS) { 634 gsa->target_id = rq->target_id; 635 gsa->path_id = 0; 636 } 637 638 break; 639 } 640 } 641 642 ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status); 643 } 644 645 646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci) 647 { 648 struct esas2r_buffered_ioctl bi; 649 650 memset(&bi, 0, sizeof(bi)); 651 652 bi.a = a; 653 bi.ioctl = &ci->data; 654 bi.length = sizeof(union atto_ioctl_csmi); 655 bi.offset = 0; 656 bi.callback = csmi_ioctl_callback; 657 bi.context = ci; 658 bi.done_callback = csmi_ioctl_done_callback; 659 bi.done_context = ci; 660 661 return handle_buffered_ioctl(&bi); 662 } 663 664 /* ATTO HBA ioctl support */ 665 666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */ 667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a, 668 struct atto_ioctl *hi, 669 struct esas2r_request *rq, 670 struct esas2r_sg_context *sgc) 671 { 672 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 673 674 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA); 675 676 if (!esas2r_build_sg_list(a, rq, sgc)) { 677 hi->status = ATTO_STS_OUT_OF_RSRC; 678 679 return false; 680 } 681 682 esas2r_start_request(a, rq); 683 684 return true; 685 } 686 687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a, 688 struct esas2r_request *rq) 689 { 690 struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx; 691 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; 692 u8 sts = ATTO_SPT_RS_FAILED; 693 694 spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat; 695 spt->sense_length = rq->sense_len; 696 spt->residual_length = 697 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length); 698 699 switch (rq->req_stat) { 700 case RS_SUCCESS: 701 case RS_SCSI_ERROR: 702 sts = ATTO_SPT_RS_SUCCESS; 703 break; 704 case RS_UNDERRUN: 705 sts = ATTO_SPT_RS_UNDERRUN; 706 break; 707 case RS_OVERRUN: 708 sts = ATTO_SPT_RS_OVERRUN; 709 break; 710 case RS_SEL: 711 case RS_SEL2: 712 sts = ATTO_SPT_RS_NO_DEVICE; 713 break; 714 case RS_NO_LUN: 715 sts = ATTO_SPT_RS_NO_LUN; 716 break; 717 case RS_TIMEOUT: 718 sts = ATTO_SPT_RS_TIMEOUT; 719 break; 720 case RS_DEGRADED: 721 sts = ATTO_SPT_RS_DEGRADED; 722 break; 723 case RS_BUSY: 724 sts = ATTO_SPT_RS_BUSY; 725 break; 726 case RS_ABORTED: 727 sts = ATTO_SPT_RS_ABORTED; 728 break; 729 case RS_RESET: 730 sts = ATTO_SPT_RS_BUS_RESET; 731 break; 732 } 733 734 spt->req_status = sts; 735 736 /* Update the target ID to the next one present. */ 737 spt->target_id = 738 esas2r_targ_db_find_next_present(a, (u16)spt->target_id); 739 740 /* Done, call the completion callback. */ 741 (*rq->aux_req_cb)(a, rq); 742 } 743 744 static int hba_ioctl_callback(struct esas2r_adapter *a, 745 struct esas2r_request *rq, 746 struct esas2r_sg_context *sgc, 747 void *context) 748 { 749 struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl; 750 751 hi->status = ATTO_STS_SUCCESS; 752 753 switch (hi->function) { 754 case ATTO_FUNC_GET_ADAP_INFO: 755 { 756 u8 *class_code = (u8 *)&a->pcid->class; 757 758 struct atto_hba_get_adapter_info *gai = 759 &hi->data.get_adap_info; 760 761 if (hi->flags & HBAF_TUNNEL) { 762 hi->status = ATTO_STS_UNSUPPORTED; 763 break; 764 } 765 766 if (hi->version > ATTO_VER_GET_ADAP_INFO0) { 767 hi->status = ATTO_STS_INV_VERSION; 768 hi->version = ATTO_VER_GET_ADAP_INFO0; 769 break; 770 } 771 772 memset(gai, 0, sizeof(*gai)); 773 774 gai->pci.vendor_id = a->pcid->vendor; 775 gai->pci.device_id = a->pcid->device; 776 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor; 777 gai->pci.ss_device_id = a->pcid->subsystem_device; 778 gai->pci.class_code[0] = class_code[0]; 779 gai->pci.class_code[1] = class_code[1]; 780 gai->pci.class_code[2] = class_code[2]; 781 gai->pci.rev_id = a->pcid->revision; 782 gai->pci.bus_num = a->pcid->bus->number; 783 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn); 784 gai->pci.func_num = PCI_FUNC(a->pcid->devfn); 785 786 if (pci_is_pcie(a->pcid)) { 787 u16 stat; 788 u32 caps; 789 790 pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA, 791 &stat); 792 pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP, 793 &caps); 794 795 gai->pci.link_speed_curr = 796 (u8)(stat & PCI_EXP_LNKSTA_CLS); 797 gai->pci.link_speed_max = 798 (u8)(caps & PCI_EXP_LNKCAP_SLS); 799 gai->pci.link_width_curr = 800 (u8)((stat & PCI_EXP_LNKSTA_NLW) 801 >> PCI_EXP_LNKSTA_NLW_SHIFT); 802 gai->pci.link_width_max = 803 (u8)((caps & PCI_EXP_LNKCAP_MLW) 804 >> 4); 805 } 806 807 gai->pci.msi_vector_cnt = 1; 808 809 if (a->pcid->msix_enabled) 810 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX; 811 else if (a->pcid->msi_enabled) 812 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI; 813 else 814 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY; 815 816 gai->adap_type = ATTO_GAI_AT_ESASRAID2; 817 818 if (test_bit(AF2_THUNDERLINK, &a->flags2)) 819 gai->adap_type = ATTO_GAI_AT_TLSASHBA; 820 821 if (test_bit(AF_DEGRADED_MODE, &a->flags)) 822 gai->adap_flags |= ATTO_GAI_AF_DEGRADED; 823 824 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP | 825 ATTO_GAI_AF_DEVADDR_SUPP; 826 827 if (a->pcid->subsystem_device == ATTO_ESAS_R60F 828 || a->pcid->subsystem_device == ATTO_ESAS_R608 829 || a->pcid->subsystem_device == ATTO_ESAS_R644 830 || a->pcid->subsystem_device == ATTO_TSSC_3808E) 831 gai->adap_flags |= ATTO_GAI_AF_VIRT_SES; 832 833 gai->num_ports = ESAS2R_NUM_PHYS; 834 gai->num_phys = ESAS2R_NUM_PHYS; 835 836 strcpy(gai->firmware_rev, a->fw_rev); 837 strcpy(gai->flash_rev, a->flash_rev); 838 strcpy(gai->model_name_short, esas2r_get_model_name_short(a)); 839 strcpy(gai->model_name, esas2r_get_model_name(a)); 840 841 gai->num_targets = ESAS2R_MAX_TARGETS; 842 843 gai->num_busses = 1; 844 gai->num_targsper_bus = gai->num_targets; 845 gai->num_lunsper_targ = 256; 846 847 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0 848 || a->pcid->subsystem_device == ATTO_ESAS_R60F) 849 gai->num_connectors = 4; 850 else 851 gai->num_connectors = 2; 852 853 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP; 854 855 gai->num_targets_backend = a->num_targets_backend; 856 857 gai->tunnel_flags = a->ioctl_tunnel 858 & (ATTO_GAI_TF_MEM_RW 859 | ATTO_GAI_TF_TRACE 860 | ATTO_GAI_TF_SCSI_PASS_THRU 861 | ATTO_GAI_TF_GET_DEV_ADDR 862 | ATTO_GAI_TF_PHY_CTRL 863 | ATTO_GAI_TF_CONN_CTRL 864 | ATTO_GAI_TF_GET_DEV_INFO); 865 break; 866 } 867 868 case ATTO_FUNC_GET_ADAP_ADDR: 869 { 870 struct atto_hba_get_adapter_address *gaa = 871 &hi->data.get_adap_addr; 872 873 if (hi->flags & HBAF_TUNNEL) { 874 hi->status = ATTO_STS_UNSUPPORTED; 875 break; 876 } 877 878 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) { 879 hi->status = ATTO_STS_INV_VERSION; 880 hi->version = ATTO_VER_GET_ADAP_ADDR0; 881 } else if (gaa->addr_type == ATTO_GAA_AT_PORT 882 || gaa->addr_type == ATTO_GAA_AT_NODE) { 883 if (gaa->addr_type == ATTO_GAA_AT_PORT 884 && gaa->port_id >= ESAS2R_NUM_PHYS) { 885 hi->status = ATTO_STS_NOT_APPL; 886 } else { 887 memcpy((u64 *)gaa->address, 888 &a->nvram->sas_addr[0], sizeof(u64)); 889 gaa->addr_len = sizeof(u64); 890 } 891 } else { 892 hi->status = ATTO_STS_INV_PARAM; 893 } 894 895 break; 896 } 897 898 case ATTO_FUNC_MEM_RW: 899 { 900 if (hi->flags & HBAF_TUNNEL) { 901 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 902 return true; 903 904 break; 905 } 906 907 hi->status = ATTO_STS_UNSUPPORTED; 908 909 break; 910 } 911 912 case ATTO_FUNC_TRACE: 913 { 914 struct atto_hba_trace *trc = &hi->data.trace; 915 916 if (hi->flags & HBAF_TUNNEL) { 917 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 918 return true; 919 920 break; 921 } 922 923 if (hi->version > ATTO_VER_TRACE1) { 924 hi->status = ATTO_STS_INV_VERSION; 925 hi->version = ATTO_VER_TRACE1; 926 break; 927 } 928 929 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP 930 && hi->version >= ATTO_VER_TRACE1) { 931 if (trc->trace_func == ATTO_TRC_TF_UPLOAD) { 932 u32 len = hi->data_length; 933 u32 offset = trc->current_offset; 934 u32 total_len = ESAS2R_FWCOREDUMP_SZ; 935 936 /* Size is zero if a core dump isn't present */ 937 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2)) 938 total_len = 0; 939 940 if (len > total_len) 941 len = total_len; 942 943 if (offset >= total_len 944 || offset + len > total_len 945 || len == 0) { 946 hi->status = ATTO_STS_INV_PARAM; 947 break; 948 } 949 950 memcpy(trc->contents, 951 a->fw_coredump_buff + offset, 952 len); 953 hi->data_length = len; 954 } else if (trc->trace_func == ATTO_TRC_TF_RESET) { 955 memset(a->fw_coredump_buff, 0, 956 ESAS2R_FWCOREDUMP_SZ); 957 958 clear_bit(AF2_COREDUMP_SAVED, &a->flags2); 959 } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) { 960 hi->status = ATTO_STS_UNSUPPORTED; 961 break; 962 } 963 964 /* Always return all the info we can. */ 965 trc->trace_mask = 0; 966 trc->current_offset = 0; 967 trc->total_length = ESAS2R_FWCOREDUMP_SZ; 968 969 /* Return zero length buffer if core dump not present */ 970 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2)) 971 trc->total_length = 0; 972 } else { 973 hi->status = ATTO_STS_UNSUPPORTED; 974 } 975 976 break; 977 } 978 979 case ATTO_FUNC_SCSI_PASS_THRU: 980 { 981 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; 982 struct scsi_lun lun; 983 984 memcpy(&lun, spt->lun, sizeof(struct scsi_lun)); 985 986 if (hi->flags & HBAF_TUNNEL) { 987 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 988 return true; 989 990 break; 991 } 992 993 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) { 994 hi->status = ATTO_STS_INV_VERSION; 995 hi->version = ATTO_VER_SCSI_PASS_THRU0; 996 break; 997 } 998 999 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) { 1000 hi->status = ATTO_STS_INV_PARAM; 1001 break; 1002 } 1003 1004 esas2r_sgc_init(sgc, a, rq, NULL); 1005 1006 sgc->length = hi->data_length; 1007 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte) 1008 + sizeof(struct atto_hba_scsi_pass_thru); 1009 1010 /* Finish request initialization */ 1011 rq->target_id = (u16)spt->target_id; 1012 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]); 1013 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16); 1014 rq->vrq->scsi.length = cpu_to_le32(hi->data_length); 1015 rq->sense_len = spt->sense_length; 1016 rq->sense_buf = (u8 *)spt->sense_data; 1017 /* NOTE: we ignore spt->timeout */ 1018 1019 /* 1020 * always usurp the completion callback since the interrupt 1021 * callback mechanism may be used. 1022 */ 1023 1024 rq->aux_req_cx = hi; 1025 rq->aux_req_cb = rq->comp_cb; 1026 rq->comp_cb = scsi_passthru_comp_cb; 1027 1028 if (spt->flags & ATTO_SPTF_DATA_IN) { 1029 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD); 1030 } else if (spt->flags & ATTO_SPTF_DATA_OUT) { 1031 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD); 1032 } else { 1033 if (sgc->length) { 1034 hi->status = ATTO_STS_INV_PARAM; 1035 break; 1036 } 1037 } 1038 1039 if (spt->flags & ATTO_SPTF_ORDERED_Q) 1040 rq->vrq->scsi.flags |= 1041 cpu_to_le32(FCP_CMND_TA_ORDRD_Q); 1042 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q) 1043 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q); 1044 1045 1046 if (!esas2r_build_sg_list(a, rq, sgc)) { 1047 hi->status = ATTO_STS_OUT_OF_RSRC; 1048 break; 1049 } 1050 1051 esas2r_start_request(a, rq); 1052 1053 return true; 1054 } 1055 1056 case ATTO_FUNC_GET_DEV_ADDR: 1057 { 1058 struct atto_hba_get_device_address *gda = 1059 &hi->data.get_dev_addr; 1060 struct esas2r_target *t; 1061 1062 if (hi->flags & HBAF_TUNNEL) { 1063 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1064 return true; 1065 1066 break; 1067 } 1068 1069 if (hi->version > ATTO_VER_GET_DEV_ADDR0) { 1070 hi->status = ATTO_STS_INV_VERSION; 1071 hi->version = ATTO_VER_GET_DEV_ADDR0; 1072 break; 1073 } 1074 1075 if (gda->target_id >= ESAS2R_MAX_TARGETS) { 1076 hi->status = ATTO_STS_INV_PARAM; 1077 break; 1078 } 1079 1080 t = a->targetdb + (u16)gda->target_id; 1081 1082 if (t->target_state != TS_PRESENT) { 1083 hi->status = ATTO_STS_FAILED; 1084 } else if (gda->addr_type == ATTO_GDA_AT_PORT) { 1085 if (t->sas_addr == 0) { 1086 hi->status = ATTO_STS_UNSUPPORTED; 1087 } else { 1088 *(u64 *)gda->address = t->sas_addr; 1089 1090 gda->addr_len = sizeof(u64); 1091 } 1092 } else if (gda->addr_type == ATTO_GDA_AT_NODE) { 1093 hi->status = ATTO_STS_NOT_APPL; 1094 } else { 1095 hi->status = ATTO_STS_INV_PARAM; 1096 } 1097 1098 /* update the target ID to the next one present. */ 1099 1100 gda->target_id = 1101 esas2r_targ_db_find_next_present(a, 1102 (u16)gda->target_id); 1103 break; 1104 } 1105 1106 case ATTO_FUNC_PHY_CTRL: 1107 case ATTO_FUNC_CONN_CTRL: 1108 { 1109 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1110 return true; 1111 1112 break; 1113 } 1114 1115 case ATTO_FUNC_ADAP_CTRL: 1116 { 1117 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl; 1118 1119 if (hi->flags & HBAF_TUNNEL) { 1120 hi->status = ATTO_STS_UNSUPPORTED; 1121 break; 1122 } 1123 1124 if (hi->version > ATTO_VER_ADAP_CTRL0) { 1125 hi->status = ATTO_STS_INV_VERSION; 1126 hi->version = ATTO_VER_ADAP_CTRL0; 1127 break; 1128 } 1129 1130 if (ac->adap_func == ATTO_AC_AF_HARD_RST) { 1131 esas2r_reset_adapter(a); 1132 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) { 1133 hi->status = ATTO_STS_UNSUPPORTED; 1134 break; 1135 } 1136 1137 if (test_bit(AF_CHPRST_NEEDED, &a->flags)) 1138 ac->adap_state = ATTO_AC_AS_RST_SCHED; 1139 else if (test_bit(AF_CHPRST_PENDING, &a->flags)) 1140 ac->adap_state = ATTO_AC_AS_RST_IN_PROG; 1141 else if (test_bit(AF_DISC_PENDING, &a->flags)) 1142 ac->adap_state = ATTO_AC_AS_RST_DISC; 1143 else if (test_bit(AF_DISABLED, &a->flags)) 1144 ac->adap_state = ATTO_AC_AS_DISABLED; 1145 else if (test_bit(AF_DEGRADED_MODE, &a->flags)) 1146 ac->adap_state = ATTO_AC_AS_DEGRADED; 1147 else 1148 ac->adap_state = ATTO_AC_AS_OK; 1149 1150 break; 1151 } 1152 1153 case ATTO_FUNC_GET_DEV_INFO: 1154 { 1155 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info; 1156 struct esas2r_target *t; 1157 1158 if (hi->flags & HBAF_TUNNEL) { 1159 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1160 return true; 1161 1162 break; 1163 } 1164 1165 if (hi->version > ATTO_VER_GET_DEV_INFO0) { 1166 hi->status = ATTO_STS_INV_VERSION; 1167 hi->version = ATTO_VER_GET_DEV_INFO0; 1168 break; 1169 } 1170 1171 if (gdi->target_id >= ESAS2R_MAX_TARGETS) { 1172 hi->status = ATTO_STS_INV_PARAM; 1173 break; 1174 } 1175 1176 t = a->targetdb + (u16)gdi->target_id; 1177 1178 /* update the target ID to the next one present. */ 1179 1180 gdi->target_id = 1181 esas2r_targ_db_find_next_present(a, 1182 (u16)gdi->target_id); 1183 1184 if (t->target_state != TS_PRESENT) { 1185 hi->status = ATTO_STS_FAILED; 1186 break; 1187 } 1188 1189 hi->status = ATTO_STS_UNSUPPORTED; 1190 break; 1191 } 1192 1193 default: 1194 1195 hi->status = ATTO_STS_INV_FUNC; 1196 break; 1197 } 1198 1199 return false; 1200 } 1201 1202 static void hba_ioctl_done_callback(struct esas2r_adapter *a, 1203 struct esas2r_request *rq, void *context) 1204 { 1205 struct atto_ioctl *ioctl_hba = 1206 (struct atto_ioctl *)esas2r_buffered_ioctl; 1207 1208 esas2r_debug("hba_ioctl_done_callback %d", a->index); 1209 1210 if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) { 1211 struct atto_hba_get_adapter_info *gai = 1212 &ioctl_hba->data.get_adap_info; 1213 1214 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO"); 1215 1216 gai->drvr_rev_major = ESAS2R_MAJOR_REV; 1217 gai->drvr_rev_minor = ESAS2R_MINOR_REV; 1218 1219 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR); 1220 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME); 1221 1222 gai->num_busses = 1; 1223 gai->num_targsper_bus = ESAS2R_MAX_ID + 1; 1224 gai->num_lunsper_targ = 1; 1225 } 1226 } 1227 1228 u8 handle_hba_ioctl(struct esas2r_adapter *a, 1229 struct atto_ioctl *ioctl_hba) 1230 { 1231 struct esas2r_buffered_ioctl bi; 1232 1233 memset(&bi, 0, sizeof(bi)); 1234 1235 bi.a = a; 1236 bi.ioctl = ioctl_hba; 1237 bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length; 1238 bi.callback = hba_ioctl_callback; 1239 bi.context = NULL; 1240 bi.done_callback = hba_ioctl_done_callback; 1241 bi.done_context = NULL; 1242 bi.offset = 0; 1243 1244 return handle_buffered_ioctl(&bi); 1245 } 1246 1247 1248 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq, 1249 struct esas2r_sas_nvram *data) 1250 { 1251 int result = 0; 1252 1253 a->nvram_command_done = 0; 1254 rq->comp_cb = complete_nvr_req; 1255 1256 if (esas2r_nvram_write(a, rq, data)) { 1257 /* now wait around for it to complete. */ 1258 while (!a->nvram_command_done) 1259 wait_event_interruptible(a->nvram_waiter, 1260 a->nvram_command_done); 1261 ; 1262 1263 /* done, check the status. */ 1264 if (rq->req_stat == RS_SUCCESS) 1265 result = 1; 1266 } 1267 return result; 1268 } 1269 1270 1271 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */ 1272 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg) 1273 { 1274 struct atto_express_ioctl *ioctl = NULL; 1275 struct esas2r_adapter *a; 1276 struct esas2r_request *rq; 1277 u16 code; 1278 int err; 1279 1280 esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg); 1281 1282 if ((arg == NULL) 1283 || (cmd < EXPRESS_IOCTL_MIN) 1284 || (cmd > EXPRESS_IOCTL_MAX)) 1285 return -ENOTSUPP; 1286 1287 ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl)); 1288 if (IS_ERR(ioctl)) { 1289 esas2r_log(ESAS2R_LOG_WARN, 1290 "ioctl_handler access_ok failed for cmd %u, address %p", 1291 cmd, arg); 1292 return PTR_ERR(ioctl); 1293 } 1294 1295 /* verify the signature */ 1296 1297 if (memcmp(ioctl->header.signature, 1298 EXPRESS_IOCTL_SIGNATURE, 1299 EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) { 1300 esas2r_log(ESAS2R_LOG_WARN, "invalid signature"); 1301 kfree(ioctl); 1302 1303 return -ENOTSUPP; 1304 } 1305 1306 /* assume success */ 1307 1308 ioctl->header.return_code = IOCTL_SUCCESS; 1309 err = 0; 1310 1311 /* 1312 * handle EXPRESS_IOCTL_GET_CHANNELS 1313 * without paying attention to channel 1314 */ 1315 1316 if (cmd == EXPRESS_IOCTL_GET_CHANNELS) { 1317 int i = 0, k = 0; 1318 1319 ioctl->data.chanlist.num_channels = 0; 1320 1321 while (i < MAX_ADAPTERS) { 1322 if (esas2r_adapters[i]) { 1323 ioctl->data.chanlist.num_channels++; 1324 ioctl->data.chanlist.channel[k] = i; 1325 k++; 1326 } 1327 i++; 1328 } 1329 1330 goto ioctl_done; 1331 } 1332 1333 /* get the channel */ 1334 1335 if (ioctl->header.channel == 0xFF) { 1336 a = (struct esas2r_adapter *)hostdata; 1337 } else { 1338 if (ioctl->header.channel >= MAX_ADAPTERS || 1339 esas2r_adapters[ioctl->header.channel] == NULL) { 1340 ioctl->header.return_code = IOCTL_BAD_CHANNEL; 1341 esas2r_log(ESAS2R_LOG_WARN, "bad channel value"); 1342 kfree(ioctl); 1343 1344 return -ENOTSUPP; 1345 } 1346 a = esas2r_adapters[ioctl->header.channel]; 1347 } 1348 1349 switch (cmd) { 1350 case EXPRESS_IOCTL_RW_FIRMWARE: 1351 1352 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) { 1353 err = esas2r_write_fw(a, 1354 (char *)ioctl->data.fwrw.image, 1355 0, 1356 sizeof(struct 1357 atto_express_ioctl)); 1358 1359 if (err >= 0) { 1360 err = esas2r_read_fw(a, 1361 (char *)ioctl->data.fwrw. 1362 image, 1363 0, 1364 sizeof(struct 1365 atto_express_ioctl)); 1366 } 1367 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) { 1368 err = esas2r_write_fs(a, 1369 (char *)ioctl->data.fwrw.image, 1370 0, 1371 sizeof(struct 1372 atto_express_ioctl)); 1373 1374 if (err >= 0) { 1375 err = esas2r_read_fs(a, 1376 (char *)ioctl->data.fwrw. 1377 image, 1378 0, 1379 sizeof(struct 1380 atto_express_ioctl)); 1381 } 1382 } else { 1383 ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE; 1384 } 1385 1386 break; 1387 1388 case EXPRESS_IOCTL_READ_PARAMS: 1389 1390 memcpy(ioctl->data.prw.data_buffer, a->nvram, 1391 sizeof(struct esas2r_sas_nvram)); 1392 ioctl->data.prw.code = 1; 1393 break; 1394 1395 case EXPRESS_IOCTL_WRITE_PARAMS: 1396 1397 rq = esas2r_alloc_request(a); 1398 if (rq == NULL) { 1399 kfree(ioctl); 1400 esas2r_log(ESAS2R_LOG_WARN, 1401 "could not allocate an internal request"); 1402 return -ENOMEM; 1403 } 1404 1405 code = esas2r_write_params(a, rq, 1406 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); 1407 ioctl->data.prw.code = code; 1408 1409 esas2r_free_request(a, rq); 1410 1411 break; 1412 1413 case EXPRESS_IOCTL_DEFAULT_PARAMS: 1414 1415 esas2r_nvram_get_defaults(a, 1416 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); 1417 ioctl->data.prw.code = 1; 1418 break; 1419 1420 case EXPRESS_IOCTL_CHAN_INFO: 1421 1422 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV; 1423 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV; 1424 ioctl->data.chaninfo.IRQ = a->pcid->irq; 1425 ioctl->data.chaninfo.device_id = a->pcid->device; 1426 ioctl->data.chaninfo.vendor_id = a->pcid->vendor; 1427 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device; 1428 ioctl->data.chaninfo.revision_id = a->pcid->revision; 1429 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number; 1430 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn; 1431 ioctl->data.chaninfo.core_rev = 0; 1432 ioctl->data.chaninfo.host_no = a->host->host_no; 1433 ioctl->data.chaninfo.hbaapi_rev = 0; 1434 break; 1435 1436 case EXPRESS_IOCTL_SMP: 1437 ioctl->header.return_code = handle_smp_ioctl(a, 1438 &ioctl->data. 1439 ioctl_smp); 1440 break; 1441 1442 case EXPRESS_CSMI: 1443 ioctl->header.return_code = 1444 handle_csmi_ioctl(a, &ioctl->data.csmi); 1445 break; 1446 1447 case EXPRESS_IOCTL_HBA: 1448 ioctl->header.return_code = handle_hba_ioctl(a, 1449 &ioctl->data. 1450 ioctl_hba); 1451 break; 1452 1453 case EXPRESS_IOCTL_VDA: 1454 err = esas2r_write_vda(a, 1455 (char *)&ioctl->data.ioctl_vda, 1456 0, 1457 sizeof(struct atto_ioctl_vda) + 1458 ioctl->data.ioctl_vda.data_length); 1459 1460 if (err >= 0) { 1461 err = esas2r_read_vda(a, 1462 (char *)&ioctl->data.ioctl_vda, 1463 0, 1464 sizeof(struct atto_ioctl_vda) + 1465 ioctl->data.ioctl_vda.data_length); 1466 } 1467 1468 1469 1470 1471 break; 1472 1473 case EXPRESS_IOCTL_GET_MOD_INFO: 1474 1475 ioctl->data.modinfo.adapter = a; 1476 ioctl->data.modinfo.pci_dev = a->pcid; 1477 ioctl->data.modinfo.scsi_host = a->host; 1478 ioctl->data.modinfo.host_no = a->host->host_no; 1479 1480 break; 1481 1482 default: 1483 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd); 1484 ioctl->header.return_code = IOCTL_ERR_INVCMD; 1485 } 1486 1487 ioctl_done: 1488 1489 if (err < 0) { 1490 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err, 1491 cmd); 1492 1493 switch (err) { 1494 case -ENOMEM: 1495 case -EBUSY: 1496 ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES; 1497 break; 1498 1499 case -ENOSYS: 1500 case -EINVAL: 1501 ioctl->header.return_code = IOCTL_INVALID_PARAM; 1502 break; 1503 1504 default: 1505 ioctl->header.return_code = IOCTL_GENERAL_ERROR; 1506 break; 1507 } 1508 1509 } 1510 1511 /* Always copy the buffer back, if only to pick up the status */ 1512 err = copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl)); 1513 if (err != 0) { 1514 esas2r_log(ESAS2R_LOG_WARN, 1515 "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)", 1516 err, cmd); 1517 kfree(ioctl); 1518 1519 return -EFAULT; 1520 } 1521 1522 kfree(ioctl); 1523 1524 return 0; 1525 } 1526 1527 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg) 1528 { 1529 return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg); 1530 } 1531 1532 static void free_fw_buffers(struct esas2r_adapter *a) 1533 { 1534 if (a->firmware.data) { 1535 dma_free_coherent(&a->pcid->dev, 1536 (size_t)a->firmware.orig_len, 1537 a->firmware.data, 1538 (dma_addr_t)a->firmware.phys); 1539 1540 a->firmware.data = NULL; 1541 } 1542 } 1543 1544 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length) 1545 { 1546 free_fw_buffers(a); 1547 1548 a->firmware.orig_len = length; 1549 1550 a->firmware.data = dma_alloc_coherent(&a->pcid->dev, 1551 (size_t)length, 1552 (dma_addr_t *)&a->firmware.phys, 1553 GFP_KERNEL); 1554 1555 if (!a->firmware.data) { 1556 esas2r_debug("buffer alloc failed!"); 1557 return 0; 1558 } 1559 1560 return 1; 1561 } 1562 1563 /* Handle a call to read firmware. */ 1564 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count) 1565 { 1566 esas2r_trace_enter(); 1567 /* if the cached header is a status, simply copy it over and return. */ 1568 if (a->firmware.state == FW_STATUS_ST) { 1569 int size = min_t(int, count, sizeof(a->firmware.header)); 1570 esas2r_trace_exit(); 1571 memcpy(buf, &a->firmware.header, size); 1572 esas2r_debug("esas2r_read_fw: STATUS size %d", size); 1573 return size; 1574 } 1575 1576 /* 1577 * if the cached header is a command, do it if at 1578 * offset 0, otherwise copy the pieces. 1579 */ 1580 1581 if (a->firmware.state == FW_COMMAND_ST) { 1582 u32 length = a->firmware.header.length; 1583 esas2r_trace_exit(); 1584 1585 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d", 1586 length, 1587 off); 1588 1589 if (off == 0) { 1590 if (a->firmware.header.action == FI_ACT_UP) { 1591 if (!allocate_fw_buffers(a, length)) 1592 return -ENOMEM; 1593 1594 1595 /* copy header over */ 1596 1597 memcpy(a->firmware.data, 1598 &a->firmware.header, 1599 sizeof(a->firmware.header)); 1600 1601 do_fm_api(a, 1602 (struct esas2r_flash_img *)a->firmware.data); 1603 } else if (a->firmware.header.action == FI_ACT_UPSZ) { 1604 int size = 1605 min((int)count, 1606 (int)sizeof(a->firmware.header)); 1607 do_fm_api(a, &a->firmware.header); 1608 memcpy(buf, &a->firmware.header, size); 1609 esas2r_debug("FI_ACT_UPSZ size %d", size); 1610 return size; 1611 } else { 1612 esas2r_debug("invalid action %d", 1613 a->firmware.header.action); 1614 return -ENOSYS; 1615 } 1616 } 1617 1618 if (count + off > length) 1619 count = length - off; 1620 1621 if (count < 0) 1622 return 0; 1623 1624 if (!a->firmware.data) { 1625 esas2r_debug( 1626 "read: nonzero offset but no buffer available!"); 1627 return -ENOMEM; 1628 } 1629 1630 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off, 1631 count, 1632 length); 1633 1634 memcpy(buf, &a->firmware.data[off], count); 1635 1636 /* when done, release the buffer */ 1637 1638 if (length <= off + count) { 1639 esas2r_debug("esas2r_read_fw: freeing buffer!"); 1640 1641 free_fw_buffers(a); 1642 } 1643 1644 return count; 1645 } 1646 1647 esas2r_trace_exit(); 1648 esas2r_debug("esas2r_read_fw: invalid firmware state %d", 1649 a->firmware.state); 1650 1651 return -EINVAL; 1652 } 1653 1654 /* Handle a call to write firmware. */ 1655 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off, 1656 int count) 1657 { 1658 u32 length; 1659 1660 if (off == 0) { 1661 struct esas2r_flash_img *header = 1662 (struct esas2r_flash_img *)buf; 1663 1664 /* assume version 0 flash image */ 1665 1666 int min_size = sizeof(struct esas2r_flash_img_v0); 1667 1668 a->firmware.state = FW_INVALID_ST; 1669 1670 /* validate the version field first */ 1671 1672 if (count < 4 1673 || header->fi_version > FI_VERSION_1) { 1674 esas2r_debug( 1675 "esas2r_write_fw: short header or invalid version"); 1676 return -EINVAL; 1677 } 1678 1679 /* See if its a version 1 flash image */ 1680 1681 if (header->fi_version == FI_VERSION_1) 1682 min_size = sizeof(struct esas2r_flash_img); 1683 1684 /* If this is the start, the header must be full and valid. */ 1685 if (count < min_size) { 1686 esas2r_debug("esas2r_write_fw: short header, aborting"); 1687 return -EINVAL; 1688 } 1689 1690 /* Make sure the size is reasonable. */ 1691 length = header->length; 1692 1693 if (length > 1024 * 1024) { 1694 esas2r_debug( 1695 "esas2r_write_fw: hosed, length %d fi_version %d", 1696 length, header->fi_version); 1697 return -EINVAL; 1698 } 1699 1700 /* 1701 * If this is a write command, allocate memory because 1702 * we have to cache everything. otherwise, just cache 1703 * the header, because the read op will do the command. 1704 */ 1705 1706 if (header->action == FI_ACT_DOWN) { 1707 if (!allocate_fw_buffers(a, length)) 1708 return -ENOMEM; 1709 1710 /* 1711 * Store the command, so there is context on subsequent 1712 * calls. 1713 */ 1714 memcpy(&a->firmware.header, 1715 buf, 1716 sizeof(*header)); 1717 } else if (header->action == FI_ACT_UP 1718 || header->action == FI_ACT_UPSZ) { 1719 /* Save the command, result will be picked up on read */ 1720 memcpy(&a->firmware.header, 1721 buf, 1722 sizeof(*header)); 1723 1724 a->firmware.state = FW_COMMAND_ST; 1725 1726 esas2r_debug( 1727 "esas2r_write_fw: COMMAND, count %d, action %d ", 1728 count, header->action); 1729 1730 /* 1731 * Pretend we took the whole buffer, 1732 * so we don't get bothered again. 1733 */ 1734 1735 return count; 1736 } else { 1737 esas2r_debug("esas2r_write_fw: invalid action %d ", 1738 a->firmware.header.action); 1739 return -ENOSYS; 1740 } 1741 } else { 1742 length = a->firmware.header.length; 1743 } 1744 1745 /* 1746 * We only get here on a download command, regardless of offset. 1747 * the chunks written by the system need to be cached, and when 1748 * the final one arrives, issue the fmapi command. 1749 */ 1750 1751 if (off + count > length) 1752 count = length - off; 1753 1754 if (count > 0) { 1755 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off, 1756 count, 1757 length); 1758 1759 /* 1760 * On a full upload, the system tries sending the whole buffer. 1761 * there's nothing to do with it, so just drop it here, before 1762 * trying to copy over into unallocated memory! 1763 */ 1764 if (a->firmware.header.action == FI_ACT_UP) 1765 return count; 1766 1767 if (!a->firmware.data) { 1768 esas2r_debug( 1769 "write: nonzero offset but no buffer available!"); 1770 return -ENOMEM; 1771 } 1772 1773 memcpy(&a->firmware.data[off], buf, count); 1774 1775 if (length == off + count) { 1776 do_fm_api(a, 1777 (struct esas2r_flash_img *)a->firmware.data); 1778 1779 /* 1780 * Now copy the header result to be picked up by the 1781 * next read 1782 */ 1783 memcpy(&a->firmware.header, 1784 a->firmware.data, 1785 sizeof(a->firmware.header)); 1786 1787 a->firmware.state = FW_STATUS_ST; 1788 1789 esas2r_debug("write completed"); 1790 1791 /* 1792 * Since the system has the data buffered, the only way 1793 * this can leak is if a root user writes a program 1794 * that writes a shorter buffer than it claims, and the 1795 * copyin fails. 1796 */ 1797 free_fw_buffers(a); 1798 } 1799 } 1800 1801 return count; 1802 } 1803 1804 /* Callback for the completion of a VDA request. */ 1805 static void vda_complete_req(struct esas2r_adapter *a, 1806 struct esas2r_request *rq) 1807 { 1808 a->vda_command_done = 1; 1809 wake_up_interruptible(&a->vda_waiter); 1810 } 1811 1812 /* Scatter/gather callback for VDA requests */ 1813 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr) 1814 { 1815 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 1816 int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer; 1817 1818 (*addr) = a->ppvda_buffer + offset; 1819 return VDA_MAX_BUFFER_SIZE - offset; 1820 } 1821 1822 /* Handle a call to read a VDA command. */ 1823 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count) 1824 { 1825 if (!a->vda_buffer) 1826 return -ENOMEM; 1827 1828 if (off == 0) { 1829 struct esas2r_request *rq; 1830 struct atto_ioctl_vda *vi = 1831 (struct atto_ioctl_vda *)a->vda_buffer; 1832 struct esas2r_sg_context sgc; 1833 bool wait_for_completion; 1834 1835 /* 1836 * Presumeably, someone has already written to the vda_buffer, 1837 * and now they are reading the node the response, so now we 1838 * will actually issue the request to the chip and reply. 1839 */ 1840 1841 /* allocate a request */ 1842 rq = esas2r_alloc_request(a); 1843 if (rq == NULL) { 1844 esas2r_debug("esas2r_read_vda: out of requests"); 1845 return -EBUSY; 1846 } 1847 1848 rq->comp_cb = vda_complete_req; 1849 1850 sgc.first_req = rq; 1851 sgc.adapter = a; 1852 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ; 1853 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda; 1854 1855 a->vda_command_done = 0; 1856 1857 wait_for_completion = 1858 esas2r_process_vda_ioctl(a, vi, rq, &sgc); 1859 1860 if (wait_for_completion) { 1861 /* now wait around for it to complete. */ 1862 1863 while (!a->vda_command_done) 1864 wait_event_interruptible(a->vda_waiter, 1865 a->vda_command_done); 1866 } 1867 1868 esas2r_free_request(a, (struct esas2r_request *)rq); 1869 } 1870 1871 if (off > VDA_MAX_BUFFER_SIZE) 1872 return 0; 1873 1874 if (count + off > VDA_MAX_BUFFER_SIZE) 1875 count = VDA_MAX_BUFFER_SIZE - off; 1876 1877 if (count < 0) 1878 return 0; 1879 1880 memcpy(buf, a->vda_buffer + off, count); 1881 1882 return count; 1883 } 1884 1885 /* Handle a call to write a VDA command. */ 1886 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off, 1887 int count) 1888 { 1889 /* 1890 * allocate memory for it, if not already done. once allocated, 1891 * we will keep it around until the driver is unloaded. 1892 */ 1893 1894 if (!a->vda_buffer) { 1895 dma_addr_t dma_addr; 1896 a->vda_buffer = dma_alloc_coherent(&a->pcid->dev, 1897 (size_t) 1898 VDA_MAX_BUFFER_SIZE, 1899 &dma_addr, 1900 GFP_KERNEL); 1901 1902 a->ppvda_buffer = dma_addr; 1903 } 1904 1905 if (!a->vda_buffer) 1906 return -ENOMEM; 1907 1908 if (off > VDA_MAX_BUFFER_SIZE) 1909 return 0; 1910 1911 if (count + off > VDA_MAX_BUFFER_SIZE) 1912 count = VDA_MAX_BUFFER_SIZE - off; 1913 1914 if (count < 1) 1915 return 0; 1916 1917 memcpy(a->vda_buffer + off, buf, count); 1918 1919 return count; 1920 } 1921 1922 /* Callback for the completion of an FS_API request.*/ 1923 static void fs_api_complete_req(struct esas2r_adapter *a, 1924 struct esas2r_request *rq) 1925 { 1926 a->fs_api_command_done = 1; 1927 1928 wake_up_interruptible(&a->fs_api_waiter); 1929 } 1930 1931 /* Scatter/gather callback for VDA requests */ 1932 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr) 1933 { 1934 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 1935 struct esas2r_ioctl_fs *fs = 1936 (struct esas2r_ioctl_fs *)a->fs_api_buffer; 1937 u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs; 1938 1939 (*addr) = a->ppfs_api_buffer + offset; 1940 1941 return a->fs_api_buffer_size - offset; 1942 } 1943 1944 /* Handle a call to read firmware via FS_API. */ 1945 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count) 1946 { 1947 if (!a->fs_api_buffer) 1948 return -ENOMEM; 1949 1950 if (off == 0) { 1951 struct esas2r_request *rq; 1952 struct esas2r_sg_context sgc; 1953 struct esas2r_ioctl_fs *fs = 1954 (struct esas2r_ioctl_fs *)a->fs_api_buffer; 1955 1956 /* If another flash request is already in progress, return. */ 1957 if (mutex_lock_interruptible(&a->fs_api_mutex)) { 1958 busy: 1959 fs->status = ATTO_STS_OUT_OF_RSRC; 1960 return -EBUSY; 1961 } 1962 1963 /* 1964 * Presumeably, someone has already written to the 1965 * fs_api_buffer, and now they are reading the node the 1966 * response, so now we will actually issue the request to the 1967 * chip and reply. Allocate a request 1968 */ 1969 1970 rq = esas2r_alloc_request(a); 1971 if (rq == NULL) { 1972 esas2r_debug("esas2r_read_fs: out of requests"); 1973 mutex_unlock(&a->fs_api_mutex); 1974 goto busy; 1975 } 1976 1977 rq->comp_cb = fs_api_complete_req; 1978 1979 /* Set up the SGCONTEXT for to build the s/g table */ 1980 1981 sgc.cur_offset = fs->data; 1982 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api; 1983 1984 a->fs_api_command_done = 0; 1985 1986 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) { 1987 if (fs->status == ATTO_STS_OUT_OF_RSRC) 1988 count = -EBUSY; 1989 1990 goto dont_wait; 1991 } 1992 1993 /* Now wait around for it to complete. */ 1994 1995 while (!a->fs_api_command_done) 1996 wait_event_interruptible(a->fs_api_waiter, 1997 a->fs_api_command_done); 1998 ; 1999 dont_wait: 2000 /* Free the request and keep going */ 2001 mutex_unlock(&a->fs_api_mutex); 2002 esas2r_free_request(a, (struct esas2r_request *)rq); 2003 2004 /* Pick up possible error code from above */ 2005 if (count < 0) 2006 return count; 2007 } 2008 2009 if (off > a->fs_api_buffer_size) 2010 return 0; 2011 2012 if (count + off > a->fs_api_buffer_size) 2013 count = a->fs_api_buffer_size - off; 2014 2015 if (count < 0) 2016 return 0; 2017 2018 memcpy(buf, a->fs_api_buffer + off, count); 2019 2020 return count; 2021 } 2022 2023 /* Handle a call to write firmware via FS_API. */ 2024 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off, 2025 int count) 2026 { 2027 if (off == 0) { 2028 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf; 2029 u32 length = fs->command.length + offsetof( 2030 struct esas2r_ioctl_fs, 2031 data); 2032 2033 /* 2034 * Special case, for BEGIN commands, the length field 2035 * is lying to us, so just get enough for the header. 2036 */ 2037 2038 if (fs->command.command == ESAS2R_FS_CMD_BEGINW) 2039 length = offsetof(struct esas2r_ioctl_fs, data); 2040 2041 /* 2042 * Beginning a command. We assume we'll get at least 2043 * enough in the first write so we can look at the 2044 * header and see how much we need to alloc. 2045 */ 2046 2047 if (count < offsetof(struct esas2r_ioctl_fs, data)) 2048 return -EINVAL; 2049 2050 /* Allocate a buffer or use the existing buffer. */ 2051 if (a->fs_api_buffer) { 2052 if (a->fs_api_buffer_size < length) { 2053 /* Free too-small buffer and get a new one */ 2054 dma_free_coherent(&a->pcid->dev, 2055 (size_t)a->fs_api_buffer_size, 2056 a->fs_api_buffer, 2057 (dma_addr_t)a->ppfs_api_buffer); 2058 2059 goto re_allocate_buffer; 2060 } 2061 } else { 2062 re_allocate_buffer: 2063 a->fs_api_buffer_size = length; 2064 2065 a->fs_api_buffer = dma_alloc_coherent(&a->pcid->dev, 2066 (size_t)a->fs_api_buffer_size, 2067 (dma_addr_t *)&a->ppfs_api_buffer, 2068 GFP_KERNEL); 2069 } 2070 } 2071 2072 if (!a->fs_api_buffer) 2073 return -ENOMEM; 2074 2075 if (off > a->fs_api_buffer_size) 2076 return 0; 2077 2078 if (count + off > a->fs_api_buffer_size) 2079 count = a->fs_api_buffer_size - off; 2080 2081 if (count < 1) 2082 return 0; 2083 2084 memcpy(a->fs_api_buffer + off, buf, count); 2085 2086 return count; 2087 } 2088