1 /* 2 * linux/drivers/scsi/esas2r/esas2r_ioctl.c 3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers 4 * 5 * Copyright (c) 2001-2013 ATTO Technology, Inc. 6 * (mailto:linuxdrivers@attotech.com) 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * NO WARRANTY 19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR 20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT 21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, 22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is 23 * solely responsible for determining the appropriateness of using and 24 * distributing the Program and assumes all risks associated with its 25 * exercise of rights under this Agreement, including but not limited to 26 * the risks and costs of program errors, damage to or loss of data, 27 * programs or equipment, and unavailability or interruption of operations. 28 * 29 * DISCLAIMER OF LIABILITY 30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY 31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND 33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED 36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES 37 * 38 * You should have received a copy of the GNU General Public License 39 * along with this program; if not, write to the Free Software 40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 41 * USA. 42 */ 43 44 #include "esas2r.h" 45 46 /* 47 * Buffered ioctl handlers. A buffered ioctl is one which requires that we 48 * allocate a DMA-able memory area to communicate with the firmware. In 49 * order to prevent continually allocating and freeing consistent memory, 50 * we will allocate a global buffer the first time we need it and re-use 51 * it for subsequent ioctl calls that require it. 52 */ 53 54 u8 *esas2r_buffered_ioctl; 55 dma_addr_t esas2r_buffered_ioctl_addr; 56 u32 esas2r_buffered_ioctl_size; 57 struct pci_dev *esas2r_buffered_ioctl_pcid; 58 59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore); 60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *, 61 struct esas2r_request *, 62 struct esas2r_sg_context *, 63 void *); 64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *, 65 struct esas2r_request *, void *); 66 67 struct esas2r_buffered_ioctl { 68 struct esas2r_adapter *a; 69 void *ioctl; 70 u32 length; 71 u32 control_code; 72 u32 offset; 73 BUFFERED_IOCTL_CALLBACK 74 callback; 75 void *context; 76 BUFFERED_IOCTL_DONE_CALLBACK 77 done_callback; 78 void *done_context; 79 80 }; 81 82 static void complete_fm_api_req(struct esas2r_adapter *a, 83 struct esas2r_request *rq) 84 { 85 a->fm_api_command_done = 1; 86 wake_up_interruptible(&a->fm_api_waiter); 87 } 88 89 /* Callbacks for building scatter/gather lists for FM API requests */ 90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr) 91 { 92 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 93 int offset = sgc->cur_offset - a->save_offset; 94 95 (*addr) = a->firmware.phys + offset; 96 return a->firmware.orig_len - offset; 97 } 98 99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr) 100 { 101 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 102 int offset = sgc->cur_offset - a->save_offset; 103 104 (*addr) = a->firmware.header_buff_phys + offset; 105 return sizeof(struct esas2r_flash_img) - offset; 106 } 107 108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */ 109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi) 110 { 111 struct esas2r_request *rq; 112 113 if (down_interruptible(&a->fm_api_semaphore)) { 114 fi->status = FI_STAT_BUSY; 115 return; 116 } 117 118 rq = esas2r_alloc_request(a); 119 if (rq == NULL) { 120 up(&a->fm_api_semaphore); 121 fi->status = FI_STAT_BUSY; 122 return; 123 } 124 125 if (fi == &a->firmware.header) { 126 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev, 127 (size_t)sizeof( 128 struct 129 esas2r_flash_img), 130 (dma_addr_t *)&a-> 131 firmware. 132 header_buff_phys, 133 GFP_KERNEL); 134 135 if (a->firmware.header_buff == NULL) { 136 esas2r_debug("failed to allocate header buffer!"); 137 fi->status = FI_STAT_BUSY; 138 return; 139 } 140 141 memcpy(a->firmware.header_buff, fi, 142 sizeof(struct esas2r_flash_img)); 143 a->save_offset = a->firmware.header_buff; 144 a->fm_api_sgc.get_phys_addr = 145 (PGETPHYSADDR)get_physaddr_fm_api_header; 146 } else { 147 a->save_offset = (u8 *)fi; 148 a->fm_api_sgc.get_phys_addr = 149 (PGETPHYSADDR)get_physaddr_fm_api; 150 } 151 152 rq->comp_cb = complete_fm_api_req; 153 a->fm_api_command_done = 0; 154 a->fm_api_sgc.cur_offset = a->save_offset; 155 156 if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq, 157 &a->fm_api_sgc)) 158 goto all_done; 159 160 /* Now wait around for it to complete. */ 161 while (!a->fm_api_command_done) 162 wait_event_interruptible(a->fm_api_waiter, 163 a->fm_api_command_done); 164 all_done: 165 if (fi == &a->firmware.header) { 166 memcpy(fi, a->firmware.header_buff, 167 sizeof(struct esas2r_flash_img)); 168 169 dma_free_coherent(&a->pcid->dev, 170 (size_t)sizeof(struct esas2r_flash_img), 171 a->firmware.header_buff, 172 (dma_addr_t)a->firmware.header_buff_phys); 173 } 174 175 up(&a->fm_api_semaphore); 176 esas2r_free_request(a, (struct esas2r_request *)rq); 177 return; 178 179 } 180 181 static void complete_nvr_req(struct esas2r_adapter *a, 182 struct esas2r_request *rq) 183 { 184 a->nvram_command_done = 1; 185 wake_up_interruptible(&a->nvram_waiter); 186 } 187 188 /* Callback for building scatter/gather lists for buffered ioctls */ 189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc, 190 u64 *addr) 191 { 192 int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl; 193 194 (*addr) = esas2r_buffered_ioctl_addr + offset; 195 return esas2r_buffered_ioctl_size - offset; 196 } 197 198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a, 199 struct esas2r_request *rq) 200 { 201 a->buffered_ioctl_done = 1; 202 wake_up_interruptible(&a->buffered_ioctl_waiter); 203 } 204 205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi) 206 { 207 struct esas2r_adapter *a = bi->a; 208 struct esas2r_request *rq; 209 struct esas2r_sg_context sgc; 210 u8 result = IOCTL_SUCCESS; 211 212 if (down_interruptible(&buffered_ioctl_semaphore)) 213 return IOCTL_OUT_OF_RESOURCES; 214 215 /* allocate a buffer or use the existing buffer. */ 216 if (esas2r_buffered_ioctl) { 217 if (esas2r_buffered_ioctl_size < bi->length) { 218 /* free the too-small buffer and get a new one */ 219 dma_free_coherent(&a->pcid->dev, 220 (size_t)esas2r_buffered_ioctl_size, 221 esas2r_buffered_ioctl, 222 esas2r_buffered_ioctl_addr); 223 224 goto allocate_buffer; 225 } 226 } else { 227 allocate_buffer: 228 esas2r_buffered_ioctl_size = bi->length; 229 esas2r_buffered_ioctl_pcid = a->pcid; 230 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev, 231 (size_t) 232 esas2r_buffered_ioctl_size, 233 & 234 esas2r_buffered_ioctl_addr, 235 GFP_KERNEL); 236 } 237 238 if (!esas2r_buffered_ioctl) { 239 esas2r_log(ESAS2R_LOG_CRIT, 240 "could not allocate %d bytes of consistent memory " 241 "for a buffered ioctl!", 242 bi->length); 243 244 esas2r_debug("buffered ioctl alloc failure"); 245 result = IOCTL_OUT_OF_RESOURCES; 246 goto exit_cleanly; 247 } 248 249 memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length); 250 251 rq = esas2r_alloc_request(a); 252 if (rq == NULL) { 253 esas2r_log(ESAS2R_LOG_CRIT, 254 "could not allocate an internal request"); 255 256 result = IOCTL_OUT_OF_RESOURCES; 257 esas2r_debug("buffered ioctl - no requests"); 258 goto exit_cleanly; 259 } 260 261 a->buffered_ioctl_done = 0; 262 rq->comp_cb = complete_buffered_ioctl_req; 263 sgc.cur_offset = esas2r_buffered_ioctl + bi->offset; 264 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl; 265 sgc.length = esas2r_buffered_ioctl_size; 266 267 if (!(*bi->callback)(a, rq, &sgc, bi->context)) { 268 /* completed immediately, no need to wait */ 269 a->buffered_ioctl_done = 0; 270 goto free_andexit_cleanly; 271 } 272 273 /* now wait around for it to complete. */ 274 while (!a->buffered_ioctl_done) 275 wait_event_interruptible(a->buffered_ioctl_waiter, 276 a->buffered_ioctl_done); 277 278 free_andexit_cleanly: 279 if (result == IOCTL_SUCCESS && bi->done_callback) 280 (*bi->done_callback)(a, rq, bi->done_context); 281 282 esas2r_free_request(a, rq); 283 284 exit_cleanly: 285 if (result == IOCTL_SUCCESS) 286 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length); 287 288 up(&buffered_ioctl_semaphore); 289 return result; 290 } 291 292 /* SMP ioctl support */ 293 static int smp_ioctl_callback(struct esas2r_adapter *a, 294 struct esas2r_request *rq, 295 struct esas2r_sg_context *sgc, void *context) 296 { 297 struct atto_ioctl_smp *si = 298 (struct atto_ioctl_smp *)esas2r_buffered_ioctl; 299 300 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 301 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP); 302 303 if (!esas2r_build_sg_list(a, rq, sgc)) { 304 si->status = ATTO_STS_OUT_OF_RSRC; 305 return false; 306 } 307 308 esas2r_start_request(a, rq); 309 return true; 310 } 311 312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si) 313 { 314 struct esas2r_buffered_ioctl bi; 315 316 memset(&bi, 0, sizeof(bi)); 317 318 bi.a = a; 319 bi.ioctl = si; 320 bi.length = sizeof(struct atto_ioctl_smp) 321 + le32_to_cpu(si->req_length) 322 + le32_to_cpu(si->rsp_length); 323 bi.offset = 0; 324 bi.callback = smp_ioctl_callback; 325 return handle_buffered_ioctl(&bi); 326 } 327 328 329 /* CSMI ioctl support */ 330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a, 331 struct esas2r_request *rq) 332 { 333 rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id); 334 rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun); 335 336 /* Now call the original completion callback. */ 337 (*rq->aux_req_cb)(a, rq); 338 } 339 340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */ 341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a, 342 union atto_ioctl_csmi *ci, 343 struct esas2r_request *rq, 344 struct esas2r_sg_context *sgc, 345 u32 ctrl_code, 346 u16 target_id) 347 { 348 struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl; 349 350 if (a->flags & AF_DEGRADED_MODE) 351 return false; 352 353 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 354 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI); 355 ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code); 356 ioctl->csmi.target_id = cpu_to_le16(target_id); 357 ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags); 358 359 /* 360 * Always usurp the completion callback since the interrupt callback 361 * mechanism may be used. 362 */ 363 rq->aux_req_cx = ci; 364 rq->aux_req_cb = rq->comp_cb; 365 rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb; 366 367 if (!esas2r_build_sg_list(a, rq, sgc)) 368 return false; 369 370 esas2r_start_request(a, rq); 371 return true; 372 } 373 374 static bool check_lun(struct scsi_lun lun) 375 { 376 bool result; 377 378 result = ((lun.scsi_lun[7] == 0) && 379 (lun.scsi_lun[6] == 0) && 380 (lun.scsi_lun[5] == 0) && 381 (lun.scsi_lun[4] == 0) && 382 (lun.scsi_lun[3] == 0) && 383 (lun.scsi_lun[2] == 0) && 384 /* Byte 1 is intentionally skipped */ 385 (lun.scsi_lun[0] == 0)); 386 387 return result; 388 } 389 390 static int csmi_ioctl_callback(struct esas2r_adapter *a, 391 struct esas2r_request *rq, 392 struct esas2r_sg_context *sgc, void *context) 393 { 394 struct atto_csmi *ci = (struct atto_csmi *)context; 395 union atto_ioctl_csmi *ioctl_csmi = 396 (union atto_ioctl_csmi *)esas2r_buffered_ioctl; 397 u8 path = 0; 398 u8 tid = 0; 399 u8 lun = 0; 400 u32 sts = CSMI_STS_SUCCESS; 401 struct esas2r_target *t; 402 unsigned long flags; 403 404 if (ci->control_code == CSMI_CC_GET_DEV_ADDR) { 405 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr; 406 407 path = gda->path_id; 408 tid = gda->target_id; 409 lun = gda->lun; 410 } else if (ci->control_code == CSMI_CC_TASK_MGT) { 411 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt; 412 413 path = tm->path_id; 414 tid = tm->target_id; 415 lun = tm->lun; 416 } 417 418 if (path > 0 || tid > ESAS2R_MAX_ID) { 419 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32( 420 CSMI_STS_INV_PARAM); 421 return false; 422 } 423 424 rq->target_id = tid; 425 rq->vrq->scsi.flags |= cpu_to_le32(lun); 426 427 switch (ci->control_code) { 428 case CSMI_CC_GET_DRVR_INFO: 429 { 430 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info; 431 432 strcpy(gdi->description, esas2r_get_model_name(a)); 433 gdi->csmi_major_rev = CSMI_MAJOR_REV; 434 gdi->csmi_minor_rev = CSMI_MINOR_REV; 435 break; 436 } 437 438 case CSMI_CC_GET_CNTLR_CFG: 439 { 440 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg; 441 442 gcc->base_io_addr = 0; 443 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2, 444 &gcc->base_memaddr_lo); 445 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3, 446 &gcc->base_memaddr_hi); 447 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device, 448 a->pcid->subsystem_vendor); 449 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN; 450 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA; 451 gcc->io_bus_type = CSMI_BUS_TYPE_PCI; 452 gcc->pci_addr.bus_num = a->pcid->bus->number; 453 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn); 454 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn); 455 456 memset(gcc->serial_num, 0, sizeof(gcc->serial_num)); 457 458 gcc->major_rev = LOBYTE(LOWORD(a->fw_version)); 459 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version)); 460 gcc->build_rev = LOBYTE(HIWORD(a->fw_version)); 461 gcc->release_rev = HIBYTE(HIWORD(a->fw_version)); 462 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver)); 463 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver)); 464 gcc->bios_build_rev = LOWORD(a->flash_ver); 465 466 if (a->flags2 & AF2_THUNDERLINK) 467 gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA 468 | CSMI_CNTLRF_SATA_HBA; 469 else 470 gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID 471 | CSMI_CNTLRF_SATA_RAID; 472 473 gcc->rrom_major_rev = 0; 474 gcc->rrom_minor_rev = 0; 475 gcc->rrom_build_rev = 0; 476 gcc->rrom_release_rev = 0; 477 gcc->rrom_biosmajor_rev = 0; 478 gcc->rrom_biosminor_rev = 0; 479 gcc->rrom_biosbuild_rev = 0; 480 gcc->rrom_biosrelease_rev = 0; 481 break; 482 } 483 484 case CSMI_CC_GET_CNTLR_STS: 485 { 486 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts; 487 488 if (a->flags & AF_DEGRADED_MODE) 489 gcs->status = CSMI_CNTLR_STS_FAILED; 490 else 491 gcs->status = CSMI_CNTLR_STS_GOOD; 492 493 gcs->offline_reason = CSMI_OFFLINE_NO_REASON; 494 break; 495 } 496 497 case CSMI_CC_FW_DOWNLOAD: 498 case CSMI_CC_GET_RAID_INFO: 499 case CSMI_CC_GET_RAID_CFG: 500 501 sts = CSMI_STS_BAD_CTRL_CODE; 502 break; 503 504 case CSMI_CC_SMP_PASSTHRU: 505 case CSMI_CC_SSP_PASSTHRU: 506 case CSMI_CC_STP_PASSTHRU: 507 case CSMI_CC_GET_PHY_INFO: 508 case CSMI_CC_SET_PHY_INFO: 509 case CSMI_CC_GET_LINK_ERRORS: 510 case CSMI_CC_GET_SATA_SIG: 511 case CSMI_CC_GET_CONN_INFO: 512 case CSMI_CC_PHY_CTRL: 513 514 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, 515 ci->control_code, 516 ESAS2R_TARG_ID_INV)) { 517 sts = CSMI_STS_FAILED; 518 break; 519 } 520 521 return true; 522 523 case CSMI_CC_GET_SCSI_ADDR: 524 { 525 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; 526 527 struct scsi_lun lun; 528 529 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun)); 530 531 if (!check_lun(lun)) { 532 sts = CSMI_STS_NO_SCSI_ADDR; 533 break; 534 } 535 536 /* make sure the device is present */ 537 spin_lock_irqsave(&a->mem_lock, flags); 538 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr); 539 spin_unlock_irqrestore(&a->mem_lock, flags); 540 541 if (t == NULL) { 542 sts = CSMI_STS_NO_SCSI_ADDR; 543 break; 544 } 545 546 gsa->host_index = 0xFF; 547 gsa->lun = gsa->sas_lun[1]; 548 rq->target_id = esas2r_targ_get_id(t, a); 549 break; 550 } 551 552 case CSMI_CC_GET_DEV_ADDR: 553 { 554 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr; 555 556 /* make sure the target is present */ 557 t = a->targetdb + rq->target_id; 558 559 if (t >= a->targetdb_end 560 || t->target_state != TS_PRESENT 561 || t->sas_addr == 0) { 562 sts = CSMI_STS_NO_DEV_ADDR; 563 break; 564 } 565 566 /* fill in the result */ 567 *(u64 *)gda->sas_addr = t->sas_addr; 568 memset(gda->sas_lun, 0, sizeof(gda->sas_lun)); 569 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags); 570 break; 571 } 572 573 case CSMI_CC_TASK_MGT: 574 575 /* make sure the target is present */ 576 t = a->targetdb + rq->target_id; 577 578 if (t >= a->targetdb_end 579 || t->target_state != TS_PRESENT 580 || !(t->flags & TF_PASS_THRU)) { 581 sts = CSMI_STS_NO_DEV_ADDR; 582 break; 583 } 584 585 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc, 586 ci->control_code, 587 t->phys_targ_id)) { 588 sts = CSMI_STS_FAILED; 589 break; 590 } 591 592 return true; 593 594 default: 595 596 sts = CSMI_STS_BAD_CTRL_CODE; 597 break; 598 } 599 600 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts); 601 602 return false; 603 } 604 605 606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a, 607 struct esas2r_request *rq, void *context) 608 { 609 struct atto_csmi *ci = (struct atto_csmi *)context; 610 union atto_ioctl_csmi *ioctl_csmi = 611 (union atto_ioctl_csmi *)esas2r_buffered_ioctl; 612 613 switch (ci->control_code) { 614 case CSMI_CC_GET_DRVR_INFO: 615 { 616 struct atto_csmi_get_driver_info *gdi = 617 &ioctl_csmi->drvr_info; 618 619 strcpy(gdi->name, ESAS2R_VERSION_STR); 620 621 gdi->major_rev = ESAS2R_MAJOR_REV; 622 gdi->minor_rev = ESAS2R_MINOR_REV; 623 gdi->build_rev = 0; 624 gdi->release_rev = 0; 625 break; 626 } 627 628 case CSMI_CC_GET_SCSI_ADDR: 629 { 630 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr; 631 632 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) == 633 CSMI_STS_SUCCESS) { 634 gsa->target_id = rq->target_id; 635 gsa->path_id = 0; 636 } 637 638 break; 639 } 640 } 641 642 ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status); 643 } 644 645 646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci) 647 { 648 struct esas2r_buffered_ioctl bi; 649 650 memset(&bi, 0, sizeof(bi)); 651 652 bi.a = a; 653 bi.ioctl = &ci->data; 654 bi.length = sizeof(union atto_ioctl_csmi); 655 bi.offset = 0; 656 bi.callback = csmi_ioctl_callback; 657 bi.context = ci; 658 bi.done_callback = csmi_ioctl_done_callback; 659 bi.done_context = ci; 660 661 return handle_buffered_ioctl(&bi); 662 } 663 664 /* ATTO HBA ioctl support */ 665 666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */ 667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a, 668 struct atto_ioctl *hi, 669 struct esas2r_request *rq, 670 struct esas2r_sg_context *sgc) 671 { 672 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge); 673 674 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA); 675 676 if (!esas2r_build_sg_list(a, rq, sgc)) { 677 hi->status = ATTO_STS_OUT_OF_RSRC; 678 679 return false; 680 } 681 682 esas2r_start_request(a, rq); 683 684 return true; 685 } 686 687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a, 688 struct esas2r_request *rq) 689 { 690 struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx; 691 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; 692 u8 sts = ATTO_SPT_RS_FAILED; 693 694 spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat; 695 spt->sense_length = rq->sense_len; 696 spt->residual_length = 697 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length); 698 699 switch (rq->req_stat) { 700 case RS_SUCCESS: 701 case RS_SCSI_ERROR: 702 sts = ATTO_SPT_RS_SUCCESS; 703 break; 704 case RS_UNDERRUN: 705 sts = ATTO_SPT_RS_UNDERRUN; 706 break; 707 case RS_OVERRUN: 708 sts = ATTO_SPT_RS_OVERRUN; 709 break; 710 case RS_SEL: 711 case RS_SEL2: 712 sts = ATTO_SPT_RS_NO_DEVICE; 713 break; 714 case RS_NO_LUN: 715 sts = ATTO_SPT_RS_NO_LUN; 716 break; 717 case RS_TIMEOUT: 718 sts = ATTO_SPT_RS_TIMEOUT; 719 break; 720 case RS_DEGRADED: 721 sts = ATTO_SPT_RS_DEGRADED; 722 break; 723 case RS_BUSY: 724 sts = ATTO_SPT_RS_BUSY; 725 break; 726 case RS_ABORTED: 727 sts = ATTO_SPT_RS_ABORTED; 728 break; 729 case RS_RESET: 730 sts = ATTO_SPT_RS_BUS_RESET; 731 break; 732 } 733 734 spt->req_status = sts; 735 736 /* Update the target ID to the next one present. */ 737 spt->target_id = 738 esas2r_targ_db_find_next_present(a, (u16)spt->target_id); 739 740 /* Done, call the completion callback. */ 741 (*rq->aux_req_cb)(a, rq); 742 } 743 744 static int hba_ioctl_callback(struct esas2r_adapter *a, 745 struct esas2r_request *rq, 746 struct esas2r_sg_context *sgc, 747 void *context) 748 { 749 struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl; 750 751 hi->status = ATTO_STS_SUCCESS; 752 753 switch (hi->function) { 754 case ATTO_FUNC_GET_ADAP_INFO: 755 { 756 u8 *class_code = (u8 *)&a->pcid->class; 757 758 struct atto_hba_get_adapter_info *gai = 759 &hi->data.get_adap_info; 760 int pcie_cap_reg; 761 762 if (hi->flags & HBAF_TUNNEL) { 763 hi->status = ATTO_STS_UNSUPPORTED; 764 break; 765 } 766 767 if (hi->version > ATTO_VER_GET_ADAP_INFO0) { 768 hi->status = ATTO_STS_INV_VERSION; 769 hi->version = ATTO_VER_GET_ADAP_INFO0; 770 break; 771 } 772 773 memset(gai, 0, sizeof(*gai)); 774 775 gai->pci.vendor_id = a->pcid->vendor; 776 gai->pci.device_id = a->pcid->device; 777 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor; 778 gai->pci.ss_device_id = a->pcid->subsystem_device; 779 gai->pci.class_code[0] = class_code[0]; 780 gai->pci.class_code[1] = class_code[1]; 781 gai->pci.class_code[2] = class_code[2]; 782 gai->pci.rev_id = a->pcid->revision; 783 gai->pci.bus_num = a->pcid->bus->number; 784 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn); 785 gai->pci.func_num = PCI_FUNC(a->pcid->devfn); 786 787 pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP); 788 if (pcie_cap_reg) { 789 u16 stat; 790 u32 caps; 791 792 pci_read_config_word(a->pcid, 793 pcie_cap_reg + PCI_EXP_LNKSTA, 794 &stat); 795 pci_read_config_dword(a->pcid, 796 pcie_cap_reg + PCI_EXP_LNKCAP, 797 &caps); 798 799 gai->pci.link_speed_curr = 800 (u8)(stat & PCI_EXP_LNKSTA_CLS); 801 gai->pci.link_speed_max = 802 (u8)(caps & PCI_EXP_LNKCAP_SLS); 803 gai->pci.link_width_curr = 804 (u8)((stat & PCI_EXP_LNKSTA_NLW) 805 >> PCI_EXP_LNKSTA_NLW_SHIFT); 806 gai->pci.link_width_max = 807 (u8)((caps & PCI_EXP_LNKCAP_MLW) 808 >> 4); 809 } 810 811 gai->pci.msi_vector_cnt = 1; 812 813 if (a->pcid->msix_enabled) 814 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX; 815 else if (a->pcid->msi_enabled) 816 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI; 817 else 818 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY; 819 820 gai->adap_type = ATTO_GAI_AT_ESASRAID2; 821 822 if (a->flags2 & AF2_THUNDERLINK) 823 gai->adap_type = ATTO_GAI_AT_TLSASHBA; 824 825 if (a->flags & AF_DEGRADED_MODE) 826 gai->adap_flags |= ATTO_GAI_AF_DEGRADED; 827 828 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP | 829 ATTO_GAI_AF_DEVADDR_SUPP; 830 831 if (a->pcid->subsystem_device == ATTO_ESAS_R60F 832 || a->pcid->subsystem_device == ATTO_ESAS_R608 833 || a->pcid->subsystem_device == ATTO_ESAS_R644 834 || a->pcid->subsystem_device == ATTO_TSSC_3808E) 835 gai->adap_flags |= ATTO_GAI_AF_VIRT_SES; 836 837 gai->num_ports = ESAS2R_NUM_PHYS; 838 gai->num_phys = ESAS2R_NUM_PHYS; 839 840 strcpy(gai->firmware_rev, a->fw_rev); 841 strcpy(gai->flash_rev, a->flash_rev); 842 strcpy(gai->model_name_short, esas2r_get_model_name_short(a)); 843 strcpy(gai->model_name, esas2r_get_model_name(a)); 844 845 gai->num_targets = ESAS2R_MAX_TARGETS; 846 847 gai->num_busses = 1; 848 gai->num_targsper_bus = gai->num_targets; 849 gai->num_lunsper_targ = 256; 850 851 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0 852 || a->pcid->subsystem_device == ATTO_ESAS_R60F) 853 gai->num_connectors = 4; 854 else 855 gai->num_connectors = 2; 856 857 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP; 858 859 gai->num_targets_backend = a->num_targets_backend; 860 861 gai->tunnel_flags = a->ioctl_tunnel 862 & (ATTO_GAI_TF_MEM_RW 863 | ATTO_GAI_TF_TRACE 864 | ATTO_GAI_TF_SCSI_PASS_THRU 865 | ATTO_GAI_TF_GET_DEV_ADDR 866 | ATTO_GAI_TF_PHY_CTRL 867 | ATTO_GAI_TF_CONN_CTRL 868 | ATTO_GAI_TF_GET_DEV_INFO); 869 break; 870 } 871 872 case ATTO_FUNC_GET_ADAP_ADDR: 873 { 874 struct atto_hba_get_adapter_address *gaa = 875 &hi->data.get_adap_addr; 876 877 if (hi->flags & HBAF_TUNNEL) { 878 hi->status = ATTO_STS_UNSUPPORTED; 879 break; 880 } 881 882 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) { 883 hi->status = ATTO_STS_INV_VERSION; 884 hi->version = ATTO_VER_GET_ADAP_ADDR0; 885 } else if (gaa->addr_type == ATTO_GAA_AT_PORT 886 || gaa->addr_type == ATTO_GAA_AT_NODE) { 887 if (gaa->addr_type == ATTO_GAA_AT_PORT 888 && gaa->port_id >= ESAS2R_NUM_PHYS) { 889 hi->status = ATTO_STS_NOT_APPL; 890 } else { 891 memcpy((u64 *)gaa->address, 892 &a->nvram->sas_addr[0], sizeof(u64)); 893 gaa->addr_len = sizeof(u64); 894 } 895 } else { 896 hi->status = ATTO_STS_INV_PARAM; 897 } 898 899 break; 900 } 901 902 case ATTO_FUNC_MEM_RW: 903 { 904 if (hi->flags & HBAF_TUNNEL) { 905 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 906 return true; 907 908 break; 909 } 910 911 hi->status = ATTO_STS_UNSUPPORTED; 912 913 break; 914 } 915 916 case ATTO_FUNC_TRACE: 917 { 918 struct atto_hba_trace *trc = &hi->data.trace; 919 920 if (hi->flags & HBAF_TUNNEL) { 921 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 922 return true; 923 924 break; 925 } 926 927 if (hi->version > ATTO_VER_TRACE1) { 928 hi->status = ATTO_STS_INV_VERSION; 929 hi->version = ATTO_VER_TRACE1; 930 break; 931 } 932 933 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP 934 && hi->version >= ATTO_VER_TRACE1) { 935 if (trc->trace_func == ATTO_TRC_TF_UPLOAD) { 936 u32 len = hi->data_length; 937 u32 offset = trc->current_offset; 938 u32 total_len = ESAS2R_FWCOREDUMP_SZ; 939 940 /* Size is zero if a core dump isn't present */ 941 if (!(a->flags2 & AF2_COREDUMP_SAVED)) 942 total_len = 0; 943 944 if (len > total_len) 945 len = total_len; 946 947 if (offset >= total_len 948 || offset + len > total_len 949 || len == 0) { 950 hi->status = ATTO_STS_INV_PARAM; 951 break; 952 } 953 954 memcpy(trc + 1, 955 a->fw_coredump_buff + offset, 956 len); 957 958 hi->data_length = len; 959 } else if (trc->trace_func == ATTO_TRC_TF_RESET) { 960 memset(a->fw_coredump_buff, 0, 961 ESAS2R_FWCOREDUMP_SZ); 962 963 esas2r_lock_clear_flags(&a->flags2, 964 AF2_COREDUMP_SAVED); 965 } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) { 966 hi->status = ATTO_STS_UNSUPPORTED; 967 break; 968 } 969 970 /* Always return all the info we can. */ 971 trc->trace_mask = 0; 972 trc->current_offset = 0; 973 trc->total_length = ESAS2R_FWCOREDUMP_SZ; 974 975 /* Return zero length buffer if core dump not present */ 976 if (!(a->flags2 & AF2_COREDUMP_SAVED)) 977 trc->total_length = 0; 978 } else { 979 hi->status = ATTO_STS_UNSUPPORTED; 980 } 981 982 break; 983 } 984 985 case ATTO_FUNC_SCSI_PASS_THRU: 986 { 987 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru; 988 struct scsi_lun lun; 989 990 memcpy(&lun, spt->lun, sizeof(struct scsi_lun)); 991 992 if (hi->flags & HBAF_TUNNEL) { 993 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 994 return true; 995 996 break; 997 } 998 999 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) { 1000 hi->status = ATTO_STS_INV_VERSION; 1001 hi->version = ATTO_VER_SCSI_PASS_THRU0; 1002 break; 1003 } 1004 1005 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) { 1006 hi->status = ATTO_STS_INV_PARAM; 1007 break; 1008 } 1009 1010 esas2r_sgc_init(sgc, a, rq, NULL); 1011 1012 sgc->length = hi->data_length; 1013 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte) 1014 + sizeof(struct atto_hba_scsi_pass_thru); 1015 1016 /* Finish request initialization */ 1017 rq->target_id = (u16)spt->target_id; 1018 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]); 1019 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16); 1020 rq->vrq->scsi.length = cpu_to_le32(hi->data_length); 1021 rq->sense_len = spt->sense_length; 1022 rq->sense_buf = (u8 *)spt->sense_data; 1023 /* NOTE: we ignore spt->timeout */ 1024 1025 /* 1026 * always usurp the completion callback since the interrupt 1027 * callback mechanism may be used. 1028 */ 1029 1030 rq->aux_req_cx = hi; 1031 rq->aux_req_cb = rq->comp_cb; 1032 rq->comp_cb = scsi_passthru_comp_cb; 1033 1034 if (spt->flags & ATTO_SPTF_DATA_IN) { 1035 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD); 1036 } else if (spt->flags & ATTO_SPTF_DATA_OUT) { 1037 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD); 1038 } else { 1039 if (sgc->length) { 1040 hi->status = ATTO_STS_INV_PARAM; 1041 break; 1042 } 1043 } 1044 1045 if (spt->flags & ATTO_SPTF_ORDERED_Q) 1046 rq->vrq->scsi.flags |= 1047 cpu_to_le32(FCP_CMND_TA_ORDRD_Q); 1048 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q) 1049 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q); 1050 1051 if (!esas2r_build_sg_list(a, rq, sgc)) { 1052 hi->status = ATTO_STS_OUT_OF_RSRC; 1053 break; 1054 } 1055 1056 esas2r_start_request(a, rq); 1057 1058 return true; 1059 } 1060 1061 case ATTO_FUNC_GET_DEV_ADDR: 1062 { 1063 struct atto_hba_get_device_address *gda = 1064 &hi->data.get_dev_addr; 1065 struct esas2r_target *t; 1066 1067 if (hi->flags & HBAF_TUNNEL) { 1068 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1069 return true; 1070 1071 break; 1072 } 1073 1074 if (hi->version > ATTO_VER_GET_DEV_ADDR0) { 1075 hi->status = ATTO_STS_INV_VERSION; 1076 hi->version = ATTO_VER_GET_DEV_ADDR0; 1077 break; 1078 } 1079 1080 if (gda->target_id >= ESAS2R_MAX_TARGETS) { 1081 hi->status = ATTO_STS_INV_PARAM; 1082 break; 1083 } 1084 1085 t = a->targetdb + (u16)gda->target_id; 1086 1087 if (t->target_state != TS_PRESENT) { 1088 hi->status = ATTO_STS_FAILED; 1089 } else if (gda->addr_type == ATTO_GDA_AT_PORT) { 1090 if (t->sas_addr == 0) { 1091 hi->status = ATTO_STS_UNSUPPORTED; 1092 } else { 1093 *(u64 *)gda->address = t->sas_addr; 1094 1095 gda->addr_len = sizeof(u64); 1096 } 1097 } else if (gda->addr_type == ATTO_GDA_AT_NODE) { 1098 hi->status = ATTO_STS_NOT_APPL; 1099 } else { 1100 hi->status = ATTO_STS_INV_PARAM; 1101 } 1102 1103 /* update the target ID to the next one present. */ 1104 1105 gda->target_id = 1106 esas2r_targ_db_find_next_present(a, 1107 (u16)gda->target_id); 1108 break; 1109 } 1110 1111 case ATTO_FUNC_PHY_CTRL: 1112 case ATTO_FUNC_CONN_CTRL: 1113 { 1114 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1115 return true; 1116 1117 break; 1118 } 1119 1120 case ATTO_FUNC_ADAP_CTRL: 1121 { 1122 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl; 1123 1124 if (hi->flags & HBAF_TUNNEL) { 1125 hi->status = ATTO_STS_UNSUPPORTED; 1126 break; 1127 } 1128 1129 if (hi->version > ATTO_VER_ADAP_CTRL0) { 1130 hi->status = ATTO_STS_INV_VERSION; 1131 hi->version = ATTO_VER_ADAP_CTRL0; 1132 break; 1133 } 1134 1135 if (ac->adap_func == ATTO_AC_AF_HARD_RST) { 1136 esas2r_reset_adapter(a); 1137 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) { 1138 hi->status = ATTO_STS_UNSUPPORTED; 1139 break; 1140 } 1141 1142 if (a->flags & AF_CHPRST_NEEDED) 1143 ac->adap_state = ATTO_AC_AS_RST_SCHED; 1144 else if (a->flags & AF_CHPRST_PENDING) 1145 ac->adap_state = ATTO_AC_AS_RST_IN_PROG; 1146 else if (a->flags & AF_DISC_PENDING) 1147 ac->adap_state = ATTO_AC_AS_RST_DISC; 1148 else if (a->flags & AF_DISABLED) 1149 ac->adap_state = ATTO_AC_AS_DISABLED; 1150 else if (a->flags & AF_DEGRADED_MODE) 1151 ac->adap_state = ATTO_AC_AS_DEGRADED; 1152 else 1153 ac->adap_state = ATTO_AC_AS_OK; 1154 1155 break; 1156 } 1157 1158 case ATTO_FUNC_GET_DEV_INFO: 1159 { 1160 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info; 1161 struct esas2r_target *t; 1162 1163 if (hi->flags & HBAF_TUNNEL) { 1164 if (hba_ioctl_tunnel(a, hi, rq, sgc)) 1165 return true; 1166 1167 break; 1168 } 1169 1170 if (hi->version > ATTO_VER_GET_DEV_INFO0) { 1171 hi->status = ATTO_STS_INV_VERSION; 1172 hi->version = ATTO_VER_GET_DEV_INFO0; 1173 break; 1174 } 1175 1176 if (gdi->target_id >= ESAS2R_MAX_TARGETS) { 1177 hi->status = ATTO_STS_INV_PARAM; 1178 break; 1179 } 1180 1181 t = a->targetdb + (u16)gdi->target_id; 1182 1183 /* update the target ID to the next one present. */ 1184 1185 gdi->target_id = 1186 esas2r_targ_db_find_next_present(a, 1187 (u16)gdi->target_id); 1188 1189 if (t->target_state != TS_PRESENT) { 1190 hi->status = ATTO_STS_FAILED; 1191 break; 1192 } 1193 1194 hi->status = ATTO_STS_UNSUPPORTED; 1195 break; 1196 } 1197 1198 default: 1199 1200 hi->status = ATTO_STS_INV_FUNC; 1201 break; 1202 } 1203 1204 return false; 1205 } 1206 1207 static void hba_ioctl_done_callback(struct esas2r_adapter *a, 1208 struct esas2r_request *rq, void *context) 1209 { 1210 struct atto_ioctl *ioctl_hba = 1211 (struct atto_ioctl *)esas2r_buffered_ioctl; 1212 1213 esas2r_debug("hba_ioctl_done_callback %d", a->index); 1214 1215 if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) { 1216 struct atto_hba_get_adapter_info *gai = 1217 &ioctl_hba->data.get_adap_info; 1218 1219 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO"); 1220 1221 gai->drvr_rev_major = ESAS2R_MAJOR_REV; 1222 gai->drvr_rev_minor = ESAS2R_MINOR_REV; 1223 1224 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR); 1225 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME); 1226 1227 gai->num_busses = 1; 1228 gai->num_targsper_bus = ESAS2R_MAX_ID + 1; 1229 gai->num_lunsper_targ = 1; 1230 } 1231 } 1232 1233 u8 handle_hba_ioctl(struct esas2r_adapter *a, 1234 struct atto_ioctl *ioctl_hba) 1235 { 1236 struct esas2r_buffered_ioctl bi; 1237 1238 memset(&bi, 0, sizeof(bi)); 1239 1240 bi.a = a; 1241 bi.ioctl = ioctl_hba; 1242 bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length; 1243 bi.callback = hba_ioctl_callback; 1244 bi.context = NULL; 1245 bi.done_callback = hba_ioctl_done_callback; 1246 bi.done_context = NULL; 1247 bi.offset = 0; 1248 1249 return handle_buffered_ioctl(&bi); 1250 } 1251 1252 1253 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq, 1254 struct esas2r_sas_nvram *data) 1255 { 1256 int result = 0; 1257 1258 a->nvram_command_done = 0; 1259 rq->comp_cb = complete_nvr_req; 1260 1261 if (esas2r_nvram_write(a, rq, data)) { 1262 /* now wait around for it to complete. */ 1263 while (!a->nvram_command_done) 1264 wait_event_interruptible(a->nvram_waiter, 1265 a->nvram_command_done); 1266 ; 1267 1268 /* done, check the status. */ 1269 if (rq->req_stat == RS_SUCCESS) 1270 result = 1; 1271 } 1272 return result; 1273 } 1274 1275 1276 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */ 1277 int esas2r_ioctl_handler(void *hostdata, int cmd, void __user *arg) 1278 { 1279 struct atto_express_ioctl *ioctl = NULL; 1280 struct esas2r_adapter *a; 1281 struct esas2r_request *rq; 1282 u16 code; 1283 int err; 1284 1285 esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg); 1286 1287 if ((arg == NULL) 1288 || (cmd < EXPRESS_IOCTL_MIN) 1289 || (cmd > EXPRESS_IOCTL_MAX)) 1290 return -ENOTSUPP; 1291 1292 if (!access_ok(VERIFY_WRITE, arg, sizeof(struct atto_express_ioctl))) { 1293 esas2r_log(ESAS2R_LOG_WARN, 1294 "ioctl_handler access_ok failed for cmd %d, " 1295 "address %p", cmd, 1296 arg); 1297 return -EFAULT; 1298 } 1299 1300 /* allocate a kernel memory buffer for the IOCTL data */ 1301 ioctl = kzalloc(sizeof(struct atto_express_ioctl), GFP_KERNEL); 1302 if (ioctl == NULL) { 1303 esas2r_log(ESAS2R_LOG_WARN, 1304 "ioctl_handler kzalloc failed for %d bytes", 1305 sizeof(struct atto_express_ioctl)); 1306 return -ENOMEM; 1307 } 1308 1309 err = __copy_from_user(ioctl, arg, sizeof(struct atto_express_ioctl)); 1310 if (err != 0) { 1311 esas2r_log(ESAS2R_LOG_WARN, 1312 "copy_from_user didn't copy everything (err %d, cmd %d)", 1313 err, 1314 cmd); 1315 kfree(ioctl); 1316 1317 return -EFAULT; 1318 } 1319 1320 /* verify the signature */ 1321 1322 if (memcmp(ioctl->header.signature, 1323 EXPRESS_IOCTL_SIGNATURE, 1324 EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) { 1325 esas2r_log(ESAS2R_LOG_WARN, "invalid signature"); 1326 kfree(ioctl); 1327 1328 return -ENOTSUPP; 1329 } 1330 1331 /* assume success */ 1332 1333 ioctl->header.return_code = IOCTL_SUCCESS; 1334 err = 0; 1335 1336 /* 1337 * handle EXPRESS_IOCTL_GET_CHANNELS 1338 * without paying attention to channel 1339 */ 1340 1341 if (cmd == EXPRESS_IOCTL_GET_CHANNELS) { 1342 int i = 0, k = 0; 1343 1344 ioctl->data.chanlist.num_channels = 0; 1345 1346 while (i < MAX_ADAPTERS) { 1347 if (esas2r_adapters[i]) { 1348 ioctl->data.chanlist.num_channels++; 1349 ioctl->data.chanlist.channel[k] = i; 1350 k++; 1351 } 1352 i++; 1353 } 1354 1355 goto ioctl_done; 1356 } 1357 1358 /* get the channel */ 1359 1360 if (ioctl->header.channel == 0xFF) { 1361 a = (struct esas2r_adapter *)hostdata; 1362 } else { 1363 a = esas2r_adapters[ioctl->header.channel]; 1364 if (ioctl->header.channel >= MAX_ADAPTERS || (a == NULL)) { 1365 ioctl->header.return_code = IOCTL_BAD_CHANNEL; 1366 esas2r_log(ESAS2R_LOG_WARN, "bad channel value"); 1367 kfree(ioctl); 1368 1369 return -ENOTSUPP; 1370 } 1371 } 1372 1373 switch (cmd) { 1374 case EXPRESS_IOCTL_RW_FIRMWARE: 1375 1376 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) { 1377 err = esas2r_write_fw(a, 1378 (char *)ioctl->data.fwrw.image, 1379 0, 1380 sizeof(struct 1381 atto_express_ioctl)); 1382 1383 if (err >= 0) { 1384 err = esas2r_read_fw(a, 1385 (char *)ioctl->data.fwrw. 1386 image, 1387 0, 1388 sizeof(struct 1389 atto_express_ioctl)); 1390 } 1391 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) { 1392 err = esas2r_write_fs(a, 1393 (char *)ioctl->data.fwrw.image, 1394 0, 1395 sizeof(struct 1396 atto_express_ioctl)); 1397 1398 if (err >= 0) { 1399 err = esas2r_read_fs(a, 1400 (char *)ioctl->data.fwrw. 1401 image, 1402 0, 1403 sizeof(struct 1404 atto_express_ioctl)); 1405 } 1406 } else { 1407 ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE; 1408 } 1409 1410 break; 1411 1412 case EXPRESS_IOCTL_READ_PARAMS: 1413 1414 memcpy(ioctl->data.prw.data_buffer, a->nvram, 1415 sizeof(struct esas2r_sas_nvram)); 1416 ioctl->data.prw.code = 1; 1417 break; 1418 1419 case EXPRESS_IOCTL_WRITE_PARAMS: 1420 1421 rq = esas2r_alloc_request(a); 1422 if (rq == NULL) { 1423 up(&a->nvram_semaphore); 1424 ioctl->data.prw.code = 0; 1425 break; 1426 } 1427 1428 code = esas2r_write_params(a, rq, 1429 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); 1430 ioctl->data.prw.code = code; 1431 1432 esas2r_free_request(a, rq); 1433 1434 break; 1435 1436 case EXPRESS_IOCTL_DEFAULT_PARAMS: 1437 1438 esas2r_nvram_get_defaults(a, 1439 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer); 1440 ioctl->data.prw.code = 1; 1441 break; 1442 1443 case EXPRESS_IOCTL_CHAN_INFO: 1444 1445 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV; 1446 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV; 1447 ioctl->data.chaninfo.IRQ = a->pcid->irq; 1448 ioctl->data.chaninfo.device_id = a->pcid->device; 1449 ioctl->data.chaninfo.vendor_id = a->pcid->vendor; 1450 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device; 1451 ioctl->data.chaninfo.revision_id = a->pcid->revision; 1452 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number; 1453 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn; 1454 ioctl->data.chaninfo.core_rev = 0; 1455 ioctl->data.chaninfo.host_no = a->host->host_no; 1456 ioctl->data.chaninfo.hbaapi_rev = 0; 1457 break; 1458 1459 case EXPRESS_IOCTL_SMP: 1460 ioctl->header.return_code = handle_smp_ioctl(a, 1461 &ioctl->data. 1462 ioctl_smp); 1463 break; 1464 1465 case EXPRESS_CSMI: 1466 ioctl->header.return_code = 1467 handle_csmi_ioctl(a, &ioctl->data.csmi); 1468 break; 1469 1470 case EXPRESS_IOCTL_HBA: 1471 ioctl->header.return_code = handle_hba_ioctl(a, 1472 &ioctl->data. 1473 ioctl_hba); 1474 break; 1475 1476 case EXPRESS_IOCTL_VDA: 1477 err = esas2r_write_vda(a, 1478 (char *)&ioctl->data.ioctl_vda, 1479 0, 1480 sizeof(struct atto_ioctl_vda) + 1481 ioctl->data.ioctl_vda.data_length); 1482 1483 if (err >= 0) { 1484 err = esas2r_read_vda(a, 1485 (char *)&ioctl->data.ioctl_vda, 1486 0, 1487 sizeof(struct atto_ioctl_vda) + 1488 ioctl->data.ioctl_vda.data_length); 1489 } 1490 1491 1492 1493 1494 break; 1495 1496 case EXPRESS_IOCTL_GET_MOD_INFO: 1497 1498 ioctl->data.modinfo.adapter = a; 1499 ioctl->data.modinfo.pci_dev = a->pcid; 1500 ioctl->data.modinfo.scsi_host = a->host; 1501 ioctl->data.modinfo.host_no = a->host->host_no; 1502 1503 break; 1504 1505 default: 1506 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd); 1507 ioctl->header.return_code = IOCTL_ERR_INVCMD; 1508 } 1509 1510 ioctl_done: 1511 1512 if (err < 0) { 1513 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %d", err, 1514 cmd); 1515 1516 switch (err) { 1517 case -ENOMEM: 1518 case -EBUSY: 1519 ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES; 1520 break; 1521 1522 case -ENOSYS: 1523 case -EINVAL: 1524 ioctl->header.return_code = IOCTL_INVALID_PARAM; 1525 break; 1526 } 1527 1528 ioctl->header.return_code = IOCTL_GENERAL_ERROR; 1529 } 1530 1531 /* Always copy the buffer back, if only to pick up the status */ 1532 err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl)); 1533 if (err != 0) { 1534 esas2r_log(ESAS2R_LOG_WARN, 1535 "ioctl_handler copy_to_user didn't copy " 1536 "everything (err %d, cmd %d)", err, 1537 cmd); 1538 kfree(ioctl); 1539 1540 return -EFAULT; 1541 } 1542 1543 kfree(ioctl); 1544 1545 return 0; 1546 } 1547 1548 int esas2r_ioctl(struct scsi_device *sd, int cmd, void __user *arg) 1549 { 1550 return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg); 1551 } 1552 1553 static void free_fw_buffers(struct esas2r_adapter *a) 1554 { 1555 if (a->firmware.data) { 1556 dma_free_coherent(&a->pcid->dev, 1557 (size_t)a->firmware.orig_len, 1558 a->firmware.data, 1559 (dma_addr_t)a->firmware.phys); 1560 1561 a->firmware.data = NULL; 1562 } 1563 } 1564 1565 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length) 1566 { 1567 free_fw_buffers(a); 1568 1569 a->firmware.orig_len = length; 1570 1571 a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev, 1572 (size_t)length, 1573 (dma_addr_t *)&a->firmware. 1574 phys, 1575 GFP_KERNEL); 1576 1577 if (!a->firmware.data) { 1578 esas2r_debug("buffer alloc failed!"); 1579 return 0; 1580 } 1581 1582 return 1; 1583 } 1584 1585 /* Handle a call to read firmware. */ 1586 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count) 1587 { 1588 esas2r_trace_enter(); 1589 /* if the cached header is a status, simply copy it over and return. */ 1590 if (a->firmware.state == FW_STATUS_ST) { 1591 int size = min_t(int, count, sizeof(a->firmware.header)); 1592 esas2r_trace_exit(); 1593 memcpy(buf, &a->firmware.header, size); 1594 esas2r_debug("esas2r_read_fw: STATUS size %d", size); 1595 return size; 1596 } 1597 1598 /* 1599 * if the cached header is a command, do it if at 1600 * offset 0, otherwise copy the pieces. 1601 */ 1602 1603 if (a->firmware.state == FW_COMMAND_ST) { 1604 u32 length = a->firmware.header.length; 1605 esas2r_trace_exit(); 1606 1607 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d", 1608 length, 1609 off); 1610 1611 if (off == 0) { 1612 if (a->firmware.header.action == FI_ACT_UP) { 1613 if (!allocate_fw_buffers(a, length)) 1614 return -ENOMEM; 1615 1616 1617 /* copy header over */ 1618 1619 memcpy(a->firmware.data, 1620 &a->firmware.header, 1621 sizeof(a->firmware.header)); 1622 1623 do_fm_api(a, 1624 (struct esas2r_flash_img *)a->firmware.data); 1625 } else if (a->firmware.header.action == FI_ACT_UPSZ) { 1626 int size = 1627 min((int)count, 1628 (int)sizeof(a->firmware.header)); 1629 do_fm_api(a, &a->firmware.header); 1630 memcpy(buf, &a->firmware.header, size); 1631 esas2r_debug("FI_ACT_UPSZ size %d", size); 1632 return size; 1633 } else { 1634 esas2r_debug("invalid action %d", 1635 a->firmware.header.action); 1636 return -ENOSYS; 1637 } 1638 } 1639 1640 if (count + off > length) 1641 count = length - off; 1642 1643 if (count < 0) 1644 return 0; 1645 1646 if (!a->firmware.data) { 1647 esas2r_debug( 1648 "read: nonzero offset but no buffer available!"); 1649 return -ENOMEM; 1650 } 1651 1652 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off, 1653 count, 1654 length); 1655 1656 memcpy(buf, &a->firmware.data[off], count); 1657 1658 /* when done, release the buffer */ 1659 1660 if (length <= off + count) { 1661 esas2r_debug("esas2r_read_fw: freeing buffer!"); 1662 1663 free_fw_buffers(a); 1664 } 1665 1666 return count; 1667 } 1668 1669 esas2r_trace_exit(); 1670 esas2r_debug("esas2r_read_fw: invalid firmware state %d", 1671 a->firmware.state); 1672 1673 return -EINVAL; 1674 } 1675 1676 /* Handle a call to write firmware. */ 1677 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off, 1678 int count) 1679 { 1680 u32 length; 1681 1682 if (off == 0) { 1683 struct esas2r_flash_img *header = 1684 (struct esas2r_flash_img *)buf; 1685 1686 /* assume version 0 flash image */ 1687 1688 int min_size = sizeof(struct esas2r_flash_img_v0); 1689 1690 a->firmware.state = FW_INVALID_ST; 1691 1692 /* validate the version field first */ 1693 1694 if (count < 4 1695 || header->fi_version > FI_VERSION_1) { 1696 esas2r_debug( 1697 "esas2r_write_fw: short header or invalid version"); 1698 return -EINVAL; 1699 } 1700 1701 /* See if its a version 1 flash image */ 1702 1703 if (header->fi_version == FI_VERSION_1) 1704 min_size = sizeof(struct esas2r_flash_img); 1705 1706 /* If this is the start, the header must be full and valid. */ 1707 if (count < min_size) { 1708 esas2r_debug("esas2r_write_fw: short header, aborting"); 1709 return -EINVAL; 1710 } 1711 1712 /* Make sure the size is reasonable. */ 1713 length = header->length; 1714 1715 if (length > 1024 * 1024) { 1716 esas2r_debug( 1717 "esas2r_write_fw: hosed, length %d fi_version %d", 1718 length, header->fi_version); 1719 return -EINVAL; 1720 } 1721 1722 /* 1723 * If this is a write command, allocate memory because 1724 * we have to cache everything. otherwise, just cache 1725 * the header, because the read op will do the command. 1726 */ 1727 1728 if (header->action == FI_ACT_DOWN) { 1729 if (!allocate_fw_buffers(a, length)) 1730 return -ENOMEM; 1731 1732 /* 1733 * Store the command, so there is context on subsequent 1734 * calls. 1735 */ 1736 memcpy(&a->firmware.header, 1737 buf, 1738 sizeof(*header)); 1739 } else if (header->action == FI_ACT_UP 1740 || header->action == FI_ACT_UPSZ) { 1741 /* Save the command, result will be picked up on read */ 1742 memcpy(&a->firmware.header, 1743 buf, 1744 sizeof(*header)); 1745 1746 a->firmware.state = FW_COMMAND_ST; 1747 1748 esas2r_debug( 1749 "esas2r_write_fw: COMMAND, count %d, action %d ", 1750 count, header->action); 1751 1752 /* 1753 * Pretend we took the whole buffer, 1754 * so we don't get bothered again. 1755 */ 1756 1757 return count; 1758 } else { 1759 esas2r_debug("esas2r_write_fw: invalid action %d ", 1760 a->firmware.header.action); 1761 return -ENOSYS; 1762 } 1763 } else { 1764 length = a->firmware.header.length; 1765 } 1766 1767 /* 1768 * We only get here on a download command, regardless of offset. 1769 * the chunks written by the system need to be cached, and when 1770 * the final one arrives, issue the fmapi command. 1771 */ 1772 1773 if (off + count > length) 1774 count = length - off; 1775 1776 if (count > 0) { 1777 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off, 1778 count, 1779 length); 1780 1781 /* 1782 * On a full upload, the system tries sending the whole buffer. 1783 * there's nothing to do with it, so just drop it here, before 1784 * trying to copy over into unallocated memory! 1785 */ 1786 if (a->firmware.header.action == FI_ACT_UP) 1787 return count; 1788 1789 if (!a->firmware.data) { 1790 esas2r_debug( 1791 "write: nonzero offset but no buffer available!"); 1792 return -ENOMEM; 1793 } 1794 1795 memcpy(&a->firmware.data[off], buf, count); 1796 1797 if (length == off + count) { 1798 do_fm_api(a, 1799 (struct esas2r_flash_img *)a->firmware.data); 1800 1801 /* 1802 * Now copy the header result to be picked up by the 1803 * next read 1804 */ 1805 memcpy(&a->firmware.header, 1806 a->firmware.data, 1807 sizeof(a->firmware.header)); 1808 1809 a->firmware.state = FW_STATUS_ST; 1810 1811 esas2r_debug("write completed"); 1812 1813 /* 1814 * Since the system has the data buffered, the only way 1815 * this can leak is if a root user writes a program 1816 * that writes a shorter buffer than it claims, and the 1817 * copyin fails. 1818 */ 1819 free_fw_buffers(a); 1820 } 1821 } 1822 1823 return count; 1824 } 1825 1826 /* Callback for the completion of a VDA request. */ 1827 static void vda_complete_req(struct esas2r_adapter *a, 1828 struct esas2r_request *rq) 1829 { 1830 a->vda_command_done = 1; 1831 wake_up_interruptible(&a->vda_waiter); 1832 } 1833 1834 /* Scatter/gather callback for VDA requests */ 1835 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr) 1836 { 1837 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 1838 int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer; 1839 1840 (*addr) = a->ppvda_buffer + offset; 1841 return VDA_MAX_BUFFER_SIZE - offset; 1842 } 1843 1844 /* Handle a call to read a VDA command. */ 1845 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count) 1846 { 1847 if (!a->vda_buffer) 1848 return -ENOMEM; 1849 1850 if (off == 0) { 1851 struct esas2r_request *rq; 1852 struct atto_ioctl_vda *vi = 1853 (struct atto_ioctl_vda *)a->vda_buffer; 1854 struct esas2r_sg_context sgc; 1855 bool wait_for_completion; 1856 1857 /* 1858 * Presumeably, someone has already written to the vda_buffer, 1859 * and now they are reading the node the response, so now we 1860 * will actually issue the request to the chip and reply. 1861 */ 1862 1863 /* allocate a request */ 1864 rq = esas2r_alloc_request(a); 1865 if (rq == NULL) { 1866 esas2r_debug("esas2r_read_vda: out of requestss"); 1867 return -EBUSY; 1868 } 1869 1870 rq->comp_cb = vda_complete_req; 1871 1872 sgc.first_req = rq; 1873 sgc.adapter = a; 1874 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ; 1875 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda; 1876 1877 a->vda_command_done = 0; 1878 1879 wait_for_completion = 1880 esas2r_process_vda_ioctl(a, vi, rq, &sgc); 1881 1882 if (wait_for_completion) { 1883 /* now wait around for it to complete. */ 1884 1885 while (!a->vda_command_done) 1886 wait_event_interruptible(a->vda_waiter, 1887 a->vda_command_done); 1888 } 1889 1890 esas2r_free_request(a, (struct esas2r_request *)rq); 1891 } 1892 1893 if (off > VDA_MAX_BUFFER_SIZE) 1894 return 0; 1895 1896 if (count + off > VDA_MAX_BUFFER_SIZE) 1897 count = VDA_MAX_BUFFER_SIZE - off; 1898 1899 if (count < 0) 1900 return 0; 1901 1902 memcpy(buf, a->vda_buffer + off, count); 1903 1904 return count; 1905 } 1906 1907 /* Handle a call to write a VDA command. */ 1908 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off, 1909 int count) 1910 { 1911 /* 1912 * allocate memory for it, if not already done. once allocated, 1913 * we will keep it around until the driver is unloaded. 1914 */ 1915 1916 if (!a->vda_buffer) { 1917 dma_addr_t dma_addr; 1918 a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev, 1919 (size_t) 1920 VDA_MAX_BUFFER_SIZE, 1921 &dma_addr, 1922 GFP_KERNEL); 1923 1924 a->ppvda_buffer = dma_addr; 1925 } 1926 1927 if (!a->vda_buffer) 1928 return -ENOMEM; 1929 1930 if (off > VDA_MAX_BUFFER_SIZE) 1931 return 0; 1932 1933 if (count + off > VDA_MAX_BUFFER_SIZE) 1934 count = VDA_MAX_BUFFER_SIZE - off; 1935 1936 if (count < 1) 1937 return 0; 1938 1939 memcpy(a->vda_buffer + off, buf, count); 1940 1941 return count; 1942 } 1943 1944 /* Callback for the completion of an FS_API request.*/ 1945 static void fs_api_complete_req(struct esas2r_adapter *a, 1946 struct esas2r_request *rq) 1947 { 1948 a->fs_api_command_done = 1; 1949 1950 wake_up_interruptible(&a->fs_api_waiter); 1951 } 1952 1953 /* Scatter/gather callback for VDA requests */ 1954 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr) 1955 { 1956 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter; 1957 struct esas2r_ioctl_fs *fs = 1958 (struct esas2r_ioctl_fs *)a->fs_api_buffer; 1959 u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs; 1960 1961 (*addr) = a->ppfs_api_buffer + offset; 1962 1963 return a->fs_api_buffer_size - offset; 1964 } 1965 1966 /* Handle a call to read firmware via FS_API. */ 1967 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count) 1968 { 1969 if (!a->fs_api_buffer) 1970 return -ENOMEM; 1971 1972 if (off == 0) { 1973 struct esas2r_request *rq; 1974 struct esas2r_sg_context sgc; 1975 struct esas2r_ioctl_fs *fs = 1976 (struct esas2r_ioctl_fs *)a->fs_api_buffer; 1977 1978 /* If another flash request is already in progress, return. */ 1979 if (down_interruptible(&a->fs_api_semaphore)) { 1980 busy: 1981 fs->status = ATTO_STS_OUT_OF_RSRC; 1982 return -EBUSY; 1983 } 1984 1985 /* 1986 * Presumeably, someone has already written to the 1987 * fs_api_buffer, and now they are reading the node the 1988 * response, so now we will actually issue the request to the 1989 * chip and reply. Allocate a request 1990 */ 1991 1992 rq = esas2r_alloc_request(a); 1993 if (rq == NULL) { 1994 esas2r_debug("esas2r_read_fs: out of requests"); 1995 up(&a->fs_api_semaphore); 1996 goto busy; 1997 } 1998 1999 rq->comp_cb = fs_api_complete_req; 2000 2001 /* Set up the SGCONTEXT for to build the s/g table */ 2002 2003 sgc.cur_offset = fs->data; 2004 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api; 2005 2006 a->fs_api_command_done = 0; 2007 2008 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) { 2009 if (fs->status == ATTO_STS_OUT_OF_RSRC) 2010 count = -EBUSY; 2011 2012 goto dont_wait; 2013 } 2014 2015 /* Now wait around for it to complete. */ 2016 2017 while (!a->fs_api_command_done) 2018 wait_event_interruptible(a->fs_api_waiter, 2019 a->fs_api_command_done); 2020 ; 2021 dont_wait: 2022 /* Free the request and keep going */ 2023 up(&a->fs_api_semaphore); 2024 esas2r_free_request(a, (struct esas2r_request *)rq); 2025 2026 /* Pick up possible error code from above */ 2027 if (count < 0) 2028 return count; 2029 } 2030 2031 if (off > a->fs_api_buffer_size) 2032 return 0; 2033 2034 if (count + off > a->fs_api_buffer_size) 2035 count = a->fs_api_buffer_size - off; 2036 2037 if (count < 0) 2038 return 0; 2039 2040 memcpy(buf, a->fs_api_buffer + off, count); 2041 2042 return count; 2043 } 2044 2045 /* Handle a call to write firmware via FS_API. */ 2046 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off, 2047 int count) 2048 { 2049 if (off == 0) { 2050 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf; 2051 u32 length = fs->command.length + offsetof( 2052 struct esas2r_ioctl_fs, 2053 data); 2054 2055 /* 2056 * Special case, for BEGIN commands, the length field 2057 * is lying to us, so just get enough for the header. 2058 */ 2059 2060 if (fs->command.command == ESAS2R_FS_CMD_BEGINW) 2061 length = offsetof(struct esas2r_ioctl_fs, data); 2062 2063 /* 2064 * Beginning a command. We assume we'll get at least 2065 * enough in the first write so we can look at the 2066 * header and see how much we need to alloc. 2067 */ 2068 2069 if (count < offsetof(struct esas2r_ioctl_fs, data)) 2070 return -EINVAL; 2071 2072 /* Allocate a buffer or use the existing buffer. */ 2073 if (a->fs_api_buffer) { 2074 if (a->fs_api_buffer_size < length) { 2075 /* Free too-small buffer and get a new one */ 2076 dma_free_coherent(&a->pcid->dev, 2077 (size_t)a->fs_api_buffer_size, 2078 a->fs_api_buffer, 2079 (dma_addr_t)a->ppfs_api_buffer); 2080 2081 goto re_allocate_buffer; 2082 } 2083 } else { 2084 re_allocate_buffer: 2085 a->fs_api_buffer_size = length; 2086 2087 a->fs_api_buffer = (u8 *)dma_alloc_coherent( 2088 &a->pcid->dev, 2089 (size_t)a->fs_api_buffer_size, 2090 (dma_addr_t *)&a->ppfs_api_buffer, 2091 GFP_KERNEL); 2092 } 2093 } 2094 2095 if (!a->fs_api_buffer) 2096 return -ENOMEM; 2097 2098 if (off > a->fs_api_buffer_size) 2099 return 0; 2100 2101 if (count + off > a->fs_api_buffer_size) 2102 count = a->fs_api_buffer_size - off; 2103 2104 if (count < 1) 2105 return 0; 2106 2107 memcpy(a->fs_api_buffer + off, buf, count); 2108 2109 return count; 2110 } 2111