xref: /openbmc/linux/drivers/scsi/esas2r/esas2r_io.c (revision e23feb16)
1 /*
2  *  linux/drivers/scsi/esas2r/esas2r_io.c
3  *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4  *
5  *  Copyright (c) 2001-2013 ATTO Technology, Inc.
6  *  (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * NO WARRANTY
19  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23  * solely responsible for determining the appropriateness of using and
24  * distributing the Program and assumes all risks associated with its
25  * exercise of rights under this Agreement, including but not limited to
26  * the risks and costs of program errors, damage to or loss of data,
27  * programs or equipment, and unavailability or interruption of operations.
28  *
29  * DISCLAIMER OF LIABILITY
30  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37  *
38  * You should have received a copy of the GNU General Public License
39  * along with this program; if not, write to the Free Software
40  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
41  * USA.
42  */
43 
44 #include "esas2r.h"
45 
46 void esas2r_start_request(struct esas2r_adapter *a, struct esas2r_request *rq)
47 {
48 	struct esas2r_target *t = NULL;
49 	struct esas2r_request *startrq = rq;
50 	unsigned long flags;
51 
52 	if (unlikely(a->flags & (AF_DEGRADED_MODE | AF_POWER_DOWN))) {
53 		if (rq->vrq->scsi.function == VDA_FUNC_SCSI)
54 			rq->req_stat = RS_SEL2;
55 		else
56 			rq->req_stat = RS_DEGRADED;
57 	} else if (likely(rq->vrq->scsi.function == VDA_FUNC_SCSI)) {
58 		t = a->targetdb + rq->target_id;
59 
60 		if (unlikely(t >= a->targetdb_end
61 			     || !(t->flags & TF_USED))) {
62 			rq->req_stat = RS_SEL;
63 		} else {
64 			/* copy in the target ID. */
65 			rq->vrq->scsi.target_id = cpu_to_le16(t->virt_targ_id);
66 
67 			/*
68 			 * Test if we want to report RS_SEL for missing target.
69 			 * Note that if AF_DISC_PENDING is set than this will
70 			 * go on the defer queue.
71 			 */
72 			if (unlikely(t->target_state != TS_PRESENT
73 				     && !(a->flags & AF_DISC_PENDING)))
74 				rq->req_stat = RS_SEL;
75 		}
76 	}
77 
78 	if (unlikely(rq->req_stat != RS_PENDING)) {
79 		esas2r_complete_request(a, rq);
80 		return;
81 	}
82 
83 	esas2r_trace("rq=%p", rq);
84 	esas2r_trace("rq->vrq->scsi.handle=%x", rq->vrq->scsi.handle);
85 
86 	if (rq->vrq->scsi.function == VDA_FUNC_SCSI) {
87 		esas2r_trace("rq->target_id=%d", rq->target_id);
88 		esas2r_trace("rq->vrq->scsi.flags=%x", rq->vrq->scsi.flags);
89 	}
90 
91 	spin_lock_irqsave(&a->queue_lock, flags);
92 
93 	if (likely(list_empty(&a->defer_list) &&
94 		   !(a->flags &
95 		     (AF_CHPRST_PENDING | AF_FLASHING | AF_DISC_PENDING))))
96 		esas2r_local_start_request(a, startrq);
97 	else
98 		list_add_tail(&startrq->req_list, &a->defer_list);
99 
100 	spin_unlock_irqrestore(&a->queue_lock, flags);
101 }
102 
103 /*
104  * Starts the specified request.  all requests have RS_PENDING set when this
105  * routine is called.  The caller is usually esas2r_start_request, but
106  * esas2r_do_deferred_processes will start request that are deferred.
107  *
108  * The caller must ensure that requests can be started.
109  *
110  * esas2r_start_request will defer a request if there are already requests
111  * waiting or there is a chip reset pending.  once the reset condition clears,
112  * esas2r_do_deferred_processes will call this function to start the request.
113  *
114  * When a request is started, it is placed on the active list and queued to
115  * the controller.
116  */
117 void esas2r_local_start_request(struct esas2r_adapter *a,
118 				struct esas2r_request *rq)
119 {
120 	esas2r_trace_enter();
121 	esas2r_trace("rq=%p", rq);
122 	esas2r_trace("rq->vrq:%p", rq->vrq);
123 	esas2r_trace("rq->vrq_md->phys_addr:%x", rq->vrq_md->phys_addr);
124 
125 	if (unlikely(rq->vrq->scsi.function == VDA_FUNC_FLASH
126 		     && rq->vrq->flash.sub_func == VDA_FLASH_COMMIT))
127 		esas2r_lock_set_flags(&a->flags, AF_FLASHING);
128 
129 	list_add_tail(&rq->req_list, &a->active_list);
130 	esas2r_start_vda_request(a, rq);
131 	esas2r_trace_exit();
132 	return;
133 }
134 
135 void esas2r_start_vda_request(struct esas2r_adapter *a,
136 			      struct esas2r_request *rq)
137 {
138 	struct esas2r_inbound_list_source_entry *element;
139 	u32 dw;
140 
141 	rq->req_stat = RS_STARTED;
142 	/*
143 	 * Calculate the inbound list entry location and the current state of
144 	 * toggle bit.
145 	 */
146 	a->last_write++;
147 	if (a->last_write >= a->list_size) {
148 		a->last_write = 0;
149 		/* update the toggle bit */
150 		if (a->flags & AF_COMM_LIST_TOGGLE)
151 			esas2r_lock_clear_flags(&a->flags,
152 						AF_COMM_LIST_TOGGLE);
153 		else
154 			esas2r_lock_set_flags(&a->flags, AF_COMM_LIST_TOGGLE);
155 	}
156 
157 	element =
158 		(struct esas2r_inbound_list_source_entry *)a->inbound_list_md.
159 		virt_addr
160 		+ a->last_write;
161 
162 	/* Set the VDA request size if it was never modified */
163 	if (rq->vda_req_sz == RQ_SIZE_DEFAULT)
164 		rq->vda_req_sz = (u16)(a->max_vdareq_size / sizeof(u32));
165 
166 	element->address = cpu_to_le64(rq->vrq_md->phys_addr);
167 	element->length = cpu_to_le32(rq->vda_req_sz);
168 
169 	/* Update the write pointer */
170 	dw = a->last_write;
171 
172 	if (a->flags & AF_COMM_LIST_TOGGLE)
173 		dw |= MU_ILW_TOGGLE;
174 
175 	esas2r_trace("rq->vrq->scsi.handle:%x", rq->vrq->scsi.handle);
176 	esas2r_trace("dw:%x", dw);
177 	esas2r_trace("rq->vda_req_sz:%x", rq->vda_req_sz);
178 	esas2r_write_register_dword(a, MU_IN_LIST_WRITE, dw);
179 }
180 
181 /*
182  * Build the scatter/gather list for an I/O request according to the
183  * specifications placed in the s/g context.  The caller must initialize
184  * context prior to the initial call by calling esas2r_sgc_init().
185  */
186 bool esas2r_build_sg_list_sge(struct esas2r_adapter *a,
187 			      struct esas2r_sg_context *sgc)
188 {
189 	struct esas2r_request *rq = sgc->first_req;
190 	union atto_vda_req *vrq = rq->vrq;
191 
192 	while (sgc->length) {
193 		u32 rem = 0;
194 		u64 addr;
195 		u32 len;
196 
197 		len = (*sgc->get_phys_addr)(sgc, &addr);
198 
199 		if (unlikely(len == 0))
200 			return false;
201 
202 		/* if current length is more than what's left, stop there */
203 		if (unlikely(len > sgc->length))
204 			len = sgc->length;
205 
206 another_entry:
207 		/* limit to a round number less than the maximum length */
208 		if (len > SGE_LEN_MAX) {
209 			/*
210 			 * Save the remainder of the split.  Whenever we limit
211 			 * an entry we come back around to build entries out
212 			 * of the leftover.  We do this to prevent multiple
213 			 * calls to the get_phys_addr() function for an SGE
214 			 * that is too large.
215 			 */
216 			rem = len - SGE_LEN_MAX;
217 			len = SGE_LEN_MAX;
218 		}
219 
220 		/* See if we need to allocate a new SGL */
221 		if (unlikely(sgc->sge.a64.curr > sgc->sge.a64.limit)) {
222 			u8 sgelen;
223 			struct esas2r_mem_desc *sgl;
224 
225 			/*
226 			 * If no SGls are available, return failure.  The
227 			 * caller can call us later with the current context
228 			 * to pick up here.
229 			 */
230 			sgl = esas2r_alloc_sgl(a);
231 
232 			if (unlikely(sgl == NULL))
233 				return false;
234 
235 			/* Calculate the length of the last SGE filled in */
236 			sgelen = (u8)((u8 *)sgc->sge.a64.curr
237 				      - (u8 *)sgc->sge.a64.last);
238 
239 			/*
240 			 * Copy the last SGE filled in to the first entry of
241 			 * the new SGL to make room for the chain entry.
242 			 */
243 			memcpy(sgl->virt_addr, sgc->sge.a64.last, sgelen);
244 
245 			/* Figure out the new curr pointer in the new segment */
246 			sgc->sge.a64.curr =
247 				(struct atto_vda_sge *)((u8 *)sgl->virt_addr +
248 							sgelen);
249 
250 			/* Set the limit pointer and build the chain entry */
251 			sgc->sge.a64.limit =
252 				(struct atto_vda_sge *)((u8 *)sgl->virt_addr
253 							+ sgl_page_size
254 							- sizeof(struct
255 								 atto_vda_sge));
256 			sgc->sge.a64.last->length = cpu_to_le32(
257 				SGE_CHAIN | SGE_ADDR_64);
258 			sgc->sge.a64.last->address =
259 				cpu_to_le64(sgl->phys_addr);
260 
261 			/*
262 			 * Now, if there was a previous chain entry, then
263 			 * update it to contain the length of this segment
264 			 * and size of this chain.  otherwise this is the
265 			 * first SGL, so set the chain_offset in the request.
266 			 */
267 			if (sgc->sge.a64.chain) {
268 				sgc->sge.a64.chain->length |=
269 					cpu_to_le32(
270 						((u8 *)(sgc->sge.a64.
271 							last + 1)
272 						 - (u8 *)rq->sg_table->
273 						 virt_addr)
274 						+ sizeof(struct atto_vda_sge) *
275 						LOBIT(SGE_CHAIN_SZ));
276 			} else {
277 				vrq->scsi.chain_offset = (u8)
278 							 ((u8 *)sgc->
279 							  sge.a64.last -
280 							  (u8 *)vrq);
281 
282 				/*
283 				 * This is the first SGL, so set the
284 				 * chain_offset and the VDA request size in
285 				 * the request.
286 				 */
287 				rq->vda_req_sz =
288 					(vrq->scsi.chain_offset +
289 					 sizeof(struct atto_vda_sge) +
290 					 3)
291 					/ sizeof(u32);
292 			}
293 
294 			/*
295 			 * Remember this so when we get a new SGL filled in we
296 			 * can update the length of this chain entry.
297 			 */
298 			sgc->sge.a64.chain = sgc->sge.a64.last;
299 
300 			/* Now link the new SGL onto the primary request. */
301 			list_add(&sgl->next_desc, &rq->sg_table_head);
302 		}
303 
304 		/* Update last one filled in */
305 		sgc->sge.a64.last = sgc->sge.a64.curr;
306 
307 		/* Build the new SGE and update the S/G context */
308 		sgc->sge.a64.curr->length = cpu_to_le32(SGE_ADDR_64 | len);
309 		sgc->sge.a64.curr->address = cpu_to_le32(addr);
310 		sgc->sge.a64.curr++;
311 		sgc->cur_offset += len;
312 		sgc->length -= len;
313 
314 		/*
315 		 * Check if we previously split an entry.  If so we have to
316 		 * pick up where we left off.
317 		 */
318 		if (rem) {
319 			addr += len;
320 			len = rem;
321 			rem = 0;
322 			goto another_entry;
323 		}
324 	}
325 
326 	/* Mark the end of the SGL */
327 	sgc->sge.a64.last->length |= cpu_to_le32(SGE_LAST);
328 
329 	/*
330 	 * If there was a previous chain entry, update the length to indicate
331 	 * the length of this last segment.
332 	 */
333 	if (sgc->sge.a64.chain) {
334 		sgc->sge.a64.chain->length |= cpu_to_le32(
335 			((u8 *)(sgc->sge.a64.curr) -
336 			 (u8 *)rq->sg_table->virt_addr));
337 	} else {
338 		u16 reqsize;
339 
340 		/*
341 		 * The entire VDA request was not used so lets
342 		 * set the size of the VDA request to be DMA'd
343 		 */
344 		reqsize =
345 			((u16)((u8 *)sgc->sge.a64.last - (u8 *)vrq)
346 			 + sizeof(struct atto_vda_sge) + 3) / sizeof(u32);
347 
348 		/*
349 		 * Only update the request size if it is bigger than what is
350 		 * already there.  We can come in here twice for some management
351 		 * commands.
352 		 */
353 		if (reqsize > rq->vda_req_sz)
354 			rq->vda_req_sz = reqsize;
355 	}
356 	return true;
357 }
358 
359 
360 /*
361  * Create PRD list for each I-block consumed by the command. This routine
362  * determines how much data is required from each I-block being consumed
363  * by the command. The first and last I-blocks can be partials and all of
364  * the I-blocks in between are for a full I-block of data.
365  *
366  * The interleave size is used to determine the number of bytes in the 1st
367  * I-block and the remaining I-blocks are what remeains.
368  */
369 static bool esas2r_build_prd_iblk(struct esas2r_adapter *a,
370 				  struct esas2r_sg_context *sgc)
371 {
372 	struct esas2r_request *rq = sgc->first_req;
373 	u64 addr;
374 	u32 len;
375 	struct esas2r_mem_desc *sgl;
376 	u32 numchain = 1;
377 	u32 rem = 0;
378 
379 	while (sgc->length) {
380 		/* Get the next address/length pair */
381 
382 		len = (*sgc->get_phys_addr)(sgc, &addr);
383 
384 		if (unlikely(len == 0))
385 			return false;
386 
387 		/* If current length is more than what's left, stop there */
388 
389 		if (unlikely(len > sgc->length))
390 			len = sgc->length;
391 
392 another_entry:
393 		/* Limit to a round number less than the maximum length */
394 
395 		if (len > PRD_LEN_MAX) {
396 			/*
397 			 * Save the remainder of the split.  whenever we limit
398 			 * an entry we come back around to build entries out
399 			 * of the leftover.  We do this to prevent multiple
400 			 * calls to the get_phys_addr() function for an SGE
401 			 * that is too large.
402 			 */
403 			rem = len - PRD_LEN_MAX;
404 			len = PRD_LEN_MAX;
405 		}
406 
407 		/* See if we need to allocate a new SGL */
408 		if (sgc->sge.prd.sge_cnt == 0) {
409 			if (len == sgc->length) {
410 				/*
411 				 * We only have 1 PRD entry left.
412 				 * It can be placed where the chain
413 				 * entry would have gone
414 				 */
415 
416 				/* Build the simple SGE */
417 				sgc->sge.prd.curr->ctl_len = cpu_to_le32(
418 					PRD_DATA | len);
419 				sgc->sge.prd.curr->address = cpu_to_le64(addr);
420 
421 				/* Adjust length related fields */
422 				sgc->cur_offset += len;
423 				sgc->length -= len;
424 
425 				/* We use the reserved chain entry for data */
426 				numchain = 0;
427 
428 				break;
429 			}
430 
431 			if (sgc->sge.prd.chain) {
432 				/*
433 				 * Fill # of entries of current SGL in previous
434 				 * chain the length of this current SGL may not
435 				 * full.
436 				 */
437 
438 				sgc->sge.prd.chain->ctl_len |= cpu_to_le32(
439 					sgc->sge.prd.sgl_max_cnt);
440 			}
441 
442 			/*
443 			 * If no SGls are available, return failure.  The
444 			 * caller can call us later with the current context
445 			 * to pick up here.
446 			 */
447 
448 			sgl = esas2r_alloc_sgl(a);
449 
450 			if (unlikely(sgl == NULL))
451 				return false;
452 
453 			/*
454 			 * Link the new SGL onto the chain
455 			 * They are in reverse order
456 			 */
457 			list_add(&sgl->next_desc, &rq->sg_table_head);
458 
459 			/*
460 			 * An SGL was just filled in and we are starting
461 			 * a new SGL. Prime the chain of the ending SGL with
462 			 * info that points to the new SGL. The length gets
463 			 * filled in when the new SGL is filled or ended
464 			 */
465 
466 			sgc->sge.prd.chain = sgc->sge.prd.curr;
467 
468 			sgc->sge.prd.chain->ctl_len = cpu_to_le32(PRD_CHAIN);
469 			sgc->sge.prd.chain->address =
470 				cpu_to_le64(sgl->phys_addr);
471 
472 			/*
473 			 * Start a new segment.
474 			 * Take one away and save for chain SGE
475 			 */
476 
477 			sgc->sge.prd.curr =
478 				(struct atto_physical_region_description *)sgl
479 				->
480 				virt_addr;
481 			sgc->sge.prd.sge_cnt = sgc->sge.prd.sgl_max_cnt - 1;
482 		}
483 
484 		sgc->sge.prd.sge_cnt--;
485 		/* Build the simple SGE */
486 		sgc->sge.prd.curr->ctl_len = cpu_to_le32(PRD_DATA | len);
487 		sgc->sge.prd.curr->address = cpu_to_le64(addr);
488 
489 		/* Used another element.  Point to the next one */
490 
491 		sgc->sge.prd.curr++;
492 
493 		/* Adjust length related fields */
494 
495 		sgc->cur_offset += len;
496 		sgc->length -= len;
497 
498 		/*
499 		 * Check if we previously split an entry.  If so we have to
500 		 * pick up where we left off.
501 		 */
502 
503 		if (rem) {
504 			addr += len;
505 			len = rem;
506 			rem = 0;
507 			goto another_entry;
508 		}
509 	}
510 
511 	if (!list_empty(&rq->sg_table_head)) {
512 		if (sgc->sge.prd.chain) {
513 			sgc->sge.prd.chain->ctl_len |=
514 				cpu_to_le32(sgc->sge.prd.sgl_max_cnt
515 					    - sgc->sge.prd.sge_cnt
516 					    - numchain);
517 		}
518 	}
519 
520 	return true;
521 }
522 
523 bool esas2r_build_sg_list_prd(struct esas2r_adapter *a,
524 			      struct esas2r_sg_context *sgc)
525 {
526 	struct esas2r_request *rq = sgc->first_req;
527 	u32 len = sgc->length;
528 	struct esas2r_target *t = a->targetdb + rq->target_id;
529 	u8 is_i_o = 0;
530 	u16 reqsize;
531 	struct atto_physical_region_description *curr_iblk_chn;
532 	u8 *cdb = (u8 *)&rq->vrq->scsi.cdb[0];
533 
534 	/*
535 	 * extract LBA from command so we can determine
536 	 * the I-Block boundary
537 	 */
538 
539 	if (rq->vrq->scsi.function == VDA_FUNC_SCSI
540 	    && t->target_state == TS_PRESENT
541 	    && !(t->flags & TF_PASS_THRU)) {
542 		u32 lbalo = 0;
543 
544 		switch (rq->vrq->scsi.cdb[0]) {
545 		case    READ_16:
546 		case    WRITE_16:
547 		{
548 			lbalo =
549 				MAKEDWORD(MAKEWORD(cdb[9],
550 						   cdb[8]),
551 					  MAKEWORD(cdb[7],
552 						   cdb[6]));
553 			is_i_o = 1;
554 			break;
555 		}
556 
557 		case    READ_12:
558 		case    WRITE_12:
559 		case    READ_10:
560 		case    WRITE_10:
561 		{
562 			lbalo =
563 				MAKEDWORD(MAKEWORD(cdb[5],
564 						   cdb[4]),
565 					  MAKEWORD(cdb[3],
566 						   cdb[2]));
567 			is_i_o = 1;
568 			break;
569 		}
570 
571 		case    READ_6:
572 		case    WRITE_6:
573 		{
574 			lbalo =
575 				MAKEDWORD(MAKEWORD(cdb[3],
576 						   cdb[2]),
577 					  MAKEWORD(cdb[1] & 0x1F,
578 						   0));
579 			is_i_o = 1;
580 			break;
581 		}
582 
583 		default:
584 			break;
585 		}
586 
587 		if (is_i_o) {
588 			u32 startlba;
589 
590 			rq->vrq->scsi.iblk_cnt_prd = 0;
591 
592 			/* Determine size of 1st I-block PRD list       */
593 			startlba = t->inter_block - (lbalo & (t->inter_block -
594 							      1));
595 			sgc->length = startlba * t->block_size;
596 
597 			/* Chk if the 1st iblk chain starts at base of Iblock */
598 			if ((lbalo & (t->inter_block - 1)) == 0)
599 				rq->flags |= RF_1ST_IBLK_BASE;
600 
601 			if (sgc->length > len)
602 				sgc->length = len;
603 		} else {
604 			sgc->length = len;
605 		}
606 	} else {
607 		sgc->length = len;
608 	}
609 
610 	/* get our starting chain address   */
611 
612 	curr_iblk_chn =
613 		(struct atto_physical_region_description *)sgc->sge.a64.curr;
614 
615 	sgc->sge.prd.sgl_max_cnt = sgl_page_size /
616 				   sizeof(struct
617 					  atto_physical_region_description);
618 
619 	/* create all of the I-block PRD lists          */
620 
621 	while (len) {
622 		sgc->sge.prd.sge_cnt = 0;
623 		sgc->sge.prd.chain = NULL;
624 		sgc->sge.prd.curr = curr_iblk_chn;
625 
626 		/* increment to next I-Block    */
627 
628 		len -= sgc->length;
629 
630 		/* go build the next I-Block PRD list   */
631 
632 		if (unlikely(!esas2r_build_prd_iblk(a, sgc)))
633 			return false;
634 
635 		curr_iblk_chn++;
636 
637 		if (is_i_o) {
638 			rq->vrq->scsi.iblk_cnt_prd++;
639 
640 			if (len > t->inter_byte)
641 				sgc->length = t->inter_byte;
642 			else
643 				sgc->length = len;
644 		}
645 	}
646 
647 	/* figure out the size used of the VDA request */
648 
649 	reqsize = ((u16)((u8 *)curr_iblk_chn - (u8 *)rq->vrq))
650 		  / sizeof(u32);
651 
652 	/*
653 	 * only update the request size if it is bigger than what is
654 	 * already there.  we can come in here twice for some management
655 	 * commands.
656 	 */
657 
658 	if (reqsize > rq->vda_req_sz)
659 		rq->vda_req_sz = reqsize;
660 
661 	return true;
662 }
663 
664 static void esas2r_handle_pending_reset(struct esas2r_adapter *a, u32 currtime)
665 {
666 	u32 delta = currtime - a->chip_init_time;
667 
668 	if (delta <= ESAS2R_CHPRST_WAIT_TIME) {
669 		/* Wait before accessing registers */
670 	} else if (delta >= ESAS2R_CHPRST_TIME) {
671 		/*
672 		 * The last reset failed so try again. Reset
673 		 * processing will give up after three tries.
674 		 */
675 		esas2r_local_reset_adapter(a);
676 	} else {
677 		/* We can now see if the firmware is ready */
678 		u32 doorbell;
679 
680 		doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT);
681 		if (doorbell == 0xFFFFFFFF || !(doorbell & DRBL_FORCE_INT)) {
682 			esas2r_force_interrupt(a);
683 		} else {
684 			u32 ver = (doorbell & DRBL_FW_VER_MSK);
685 
686 			/* Driver supports API version 0 and 1 */
687 			esas2r_write_register_dword(a, MU_DOORBELL_OUT,
688 						    doorbell);
689 			if (ver == DRBL_FW_VER_0) {
690 				esas2r_lock_set_flags(&a->flags,
691 						      AF_CHPRST_DETECTED);
692 				esas2r_lock_set_flags(&a->flags,
693 						      AF_LEGACY_SGE_MODE);
694 
695 				a->max_vdareq_size = 128;
696 				a->build_sgl = esas2r_build_sg_list_sge;
697 			} else if (ver == DRBL_FW_VER_1) {
698 				esas2r_lock_set_flags(&a->flags,
699 						      AF_CHPRST_DETECTED);
700 				esas2r_lock_clear_flags(&a->flags,
701 							AF_LEGACY_SGE_MODE);
702 
703 				a->max_vdareq_size = 1024;
704 				a->build_sgl = esas2r_build_sg_list_prd;
705 			} else {
706 				esas2r_local_reset_adapter(a);
707 			}
708 		}
709 	}
710 }
711 
712 
713 /* This function must be called once per timer tick */
714 void esas2r_timer_tick(struct esas2r_adapter *a)
715 {
716 	u32 currtime = jiffies_to_msecs(jiffies);
717 	u32 deltatime = currtime - a->last_tick_time;
718 
719 	a->last_tick_time = currtime;
720 
721 	/* count down the uptime */
722 	if (a->chip_uptime
723 	    && !(a->flags & (AF_CHPRST_PENDING | AF_DISC_PENDING))) {
724 		if (deltatime >= a->chip_uptime)
725 			a->chip_uptime = 0;
726 		else
727 			a->chip_uptime -= deltatime;
728 	}
729 
730 	if (a->flags & AF_CHPRST_PENDING) {
731 		if (!(a->flags & AF_CHPRST_NEEDED)
732 		    && !(a->flags & AF_CHPRST_DETECTED))
733 			esas2r_handle_pending_reset(a, currtime);
734 	} else {
735 		if (a->flags & AF_DISC_PENDING)
736 			esas2r_disc_check_complete(a);
737 
738 		if (a->flags & AF_HEARTBEAT_ENB) {
739 			if (a->flags & AF_HEARTBEAT) {
740 				if ((currtime - a->heartbeat_time) >=
741 				    ESAS2R_HEARTBEAT_TIME) {
742 					esas2r_lock_clear_flags(&a->flags,
743 								AF_HEARTBEAT);
744 					esas2r_hdebug("heartbeat failed");
745 					esas2r_log(ESAS2R_LOG_CRIT,
746 						   "heartbeat failed");
747 					esas2r_bugon();
748 					esas2r_local_reset_adapter(a);
749 				}
750 			} else {
751 				esas2r_lock_set_flags(&a->flags, AF_HEARTBEAT);
752 				a->heartbeat_time = currtime;
753 				esas2r_force_interrupt(a);
754 			}
755 		}
756 	}
757 
758 	if (atomic_read(&a->disable_cnt) == 0)
759 		esas2r_do_deferred_processes(a);
760 }
761 
762 /*
763  * Send the specified task management function to the target and LUN
764  * specified in rqaux.  in addition, immediately abort any commands that
765  * are queued but not sent to the device according to the rules specified
766  * by the task management function.
767  */
768 bool esas2r_send_task_mgmt(struct esas2r_adapter *a,
769 			   struct esas2r_request *rqaux, u8 task_mgt_func)
770 {
771 	u16 targetid = rqaux->target_id;
772 	u8 lun = (u8)le32_to_cpu(rqaux->vrq->scsi.flags);
773 	bool ret = false;
774 	struct esas2r_request *rq;
775 	struct list_head *next, *element;
776 	unsigned long flags;
777 
778 	LIST_HEAD(comp_list);
779 
780 	esas2r_trace_enter();
781 	esas2r_trace("rqaux:%p", rqaux);
782 	esas2r_trace("task_mgt_func:%x", task_mgt_func);
783 	spin_lock_irqsave(&a->queue_lock, flags);
784 
785 	/* search the defer queue looking for requests for the device */
786 	list_for_each_safe(element, next, &a->defer_list) {
787 		rq = list_entry(element, struct esas2r_request, req_list);
788 
789 		if (rq->vrq->scsi.function == VDA_FUNC_SCSI
790 		    && rq->target_id == targetid
791 		    && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun
792 			|| task_mgt_func == 0x20)) { /* target reset */
793 			/* Found a request affected by the task management */
794 			if (rq->req_stat == RS_PENDING) {
795 				/*
796 				 * The request is pending or waiting.  We can
797 				 * safelycomplete the request now.
798 				 */
799 				if (esas2r_ioreq_aborted(a, rq, RS_ABORTED))
800 					list_add_tail(&rq->comp_list,
801 						      &comp_list);
802 			}
803 		}
804 	}
805 
806 	/* Send the task management request to the firmware */
807 	rqaux->sense_len = 0;
808 	rqaux->vrq->scsi.length = 0;
809 	rqaux->target_id = targetid;
810 	rqaux->vrq->scsi.flags |= cpu_to_le32(lun);
811 	memset(rqaux->vrq->scsi.cdb, 0, sizeof(rqaux->vrq->scsi.cdb));
812 	rqaux->vrq->scsi.flags |=
813 		cpu_to_le16(task_mgt_func * LOBIT(FCP_CMND_TM_MASK));
814 
815 	if (a->flags & AF_FLASHING) {
816 		/* Assume success.  if there are active requests, return busy */
817 		rqaux->req_stat = RS_SUCCESS;
818 
819 		list_for_each_safe(element, next, &a->active_list) {
820 			rq = list_entry(element, struct esas2r_request,
821 					req_list);
822 			if (rq->vrq->scsi.function == VDA_FUNC_SCSI
823 			    && rq->target_id == targetid
824 			    && (((u8)le32_to_cpu(rq->vrq->scsi.flags)) == lun
825 				|| task_mgt_func == 0x20))  /* target reset */
826 				rqaux->req_stat = RS_BUSY;
827 		}
828 
829 		ret = true;
830 	}
831 
832 	spin_unlock_irqrestore(&a->queue_lock, flags);
833 
834 	if (!(a->flags & AF_FLASHING))
835 		esas2r_start_request(a, rqaux);
836 
837 	esas2r_comp_list_drain(a, &comp_list);
838 
839 	if (atomic_read(&a->disable_cnt) == 0)
840 		esas2r_do_deferred_processes(a);
841 
842 	esas2r_trace_exit();
843 
844 	return ret;
845 }
846 
847 void esas2r_reset_bus(struct esas2r_adapter *a)
848 {
849 	esas2r_log(ESAS2R_LOG_INFO, "performing a bus reset");
850 
851 	if (!(a->flags & AF_DEGRADED_MODE)
852 	    && !(a->flags & (AF_CHPRST_PENDING | AF_DISC_PENDING))) {
853 		esas2r_lock_set_flags(&a->flags, AF_BUSRST_NEEDED);
854 		esas2r_lock_set_flags(&a->flags, AF_BUSRST_PENDING);
855 		esas2r_lock_set_flags(&a->flags, AF_OS_RESET);
856 
857 		esas2r_schedule_tasklet(a);
858 	}
859 }
860 
861 bool esas2r_ioreq_aborted(struct esas2r_adapter *a, struct esas2r_request *rq,
862 			  u8 status)
863 {
864 	esas2r_trace_enter();
865 	esas2r_trace("rq:%p", rq);
866 	list_del_init(&rq->req_list);
867 	if (rq->timeout > RQ_MAX_TIMEOUT) {
868 		/*
869 		 * The request timed out, but we could not abort it because a
870 		 * chip reset occurred.  Return busy status.
871 		 */
872 		rq->req_stat = RS_BUSY;
873 		esas2r_trace_exit();
874 		return true;
875 	}
876 
877 	rq->req_stat = status;
878 	esas2r_trace_exit();
879 	return true;
880 }
881