1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/syscalls.h> 16 #include <misc/cxl.h> 17 #include <asm/unaligned.h> 18 #include <asm/bitsperlong.h> 19 20 #include <scsi/scsi_cmnd.h> 21 #include <scsi/scsi_host.h> 22 #include <uapi/scsi/cxlflash_ioctl.h> 23 24 #include "sislite.h" 25 #include "common.h" 26 #include "vlun.h" 27 #include "superpipe.h" 28 29 /** 30 * marshal_virt_to_resize() - translate uvirtual to resize structure 31 * @virt: Source structure from which to translate/copy. 32 * @resize: Destination structure for the translate/copy. 33 */ 34 static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt, 35 struct dk_cxlflash_resize *resize) 36 { 37 resize->hdr = virt->hdr; 38 resize->context_id = virt->context_id; 39 resize->rsrc_handle = virt->rsrc_handle; 40 resize->req_size = virt->lun_size; 41 resize->last_lba = virt->last_lba; 42 } 43 44 /** 45 * marshal_clone_to_rele() - translate clone to release structure 46 * @clone: Source structure from which to translate/copy. 47 * @rele: Destination structure for the translate/copy. 48 */ 49 static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone, 50 struct dk_cxlflash_release *release) 51 { 52 release->hdr = clone->hdr; 53 release->context_id = clone->context_id_dst; 54 } 55 56 /** 57 * ba_init() - initializes a block allocator 58 * @ba_lun: Block allocator to initialize. 59 * 60 * Return: 0 on success, -errno on failure 61 */ 62 static int ba_init(struct ba_lun *ba_lun) 63 { 64 struct ba_lun_info *bali = NULL; 65 int lun_size_au = 0, i = 0; 66 int last_word_underflow = 0; 67 u64 *lam; 68 69 pr_debug("%s: Initializing LUN: lun_id=%016llx " 70 "ba_lun->lsize=%lx ba_lun->au_size=%lX\n", 71 __func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size); 72 73 /* Calculate bit map size */ 74 lun_size_au = ba_lun->lsize / ba_lun->au_size; 75 if (lun_size_au == 0) { 76 pr_debug("%s: Requested LUN size of 0!\n", __func__); 77 return -EINVAL; 78 } 79 80 /* Allocate lun information container */ 81 bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL); 82 if (unlikely(!bali)) { 83 pr_err("%s: Failed to allocate lun_info lun_id=%016llx\n", 84 __func__, ba_lun->lun_id); 85 return -ENOMEM; 86 } 87 88 bali->total_aus = lun_size_au; 89 bali->lun_bmap_size = lun_size_au / BITS_PER_LONG; 90 91 if (lun_size_au % BITS_PER_LONG) 92 bali->lun_bmap_size++; 93 94 /* Allocate bitmap space */ 95 bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)), 96 GFP_KERNEL); 97 if (unlikely(!bali->lun_alloc_map)) { 98 pr_err("%s: Failed to allocate lun allocation map: " 99 "lun_id=%016llx\n", __func__, ba_lun->lun_id); 100 kfree(bali); 101 return -ENOMEM; 102 } 103 104 /* Initialize the bit map size and set all bits to '1' */ 105 bali->free_aun_cnt = lun_size_au; 106 107 for (i = 0; i < bali->lun_bmap_size; i++) 108 bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL; 109 110 /* If the last word not fully utilized, mark extra bits as allocated */ 111 last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG); 112 last_word_underflow -= bali->free_aun_cnt; 113 if (last_word_underflow > 0) { 114 lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1]; 115 for (i = (HIBIT - last_word_underflow + 1); 116 i < BITS_PER_LONG; 117 i++) 118 clear_bit(i, (ulong *)lam); 119 } 120 121 /* Initialize high elevator index, low/curr already at 0 from kzalloc */ 122 bali->free_high_idx = bali->lun_bmap_size; 123 124 /* Allocate clone map */ 125 bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)), 126 GFP_KERNEL); 127 if (unlikely(!bali->aun_clone_map)) { 128 pr_err("%s: Failed to allocate clone map: lun_id=%016llx\n", 129 __func__, ba_lun->lun_id); 130 kfree(bali->lun_alloc_map); 131 kfree(bali); 132 return -ENOMEM; 133 } 134 135 /* Pass the allocated LUN info as a handle to the user */ 136 ba_lun->ba_lun_handle = bali; 137 138 pr_debug("%s: Successfully initialized the LUN: " 139 "lun_id=%016llx bitmap size=%x, free_aun_cnt=%llx\n", 140 __func__, ba_lun->lun_id, bali->lun_bmap_size, 141 bali->free_aun_cnt); 142 return 0; 143 } 144 145 /** 146 * find_free_range() - locates a free bit within the block allocator 147 * @low: First word in block allocator to start search. 148 * @high: Last word in block allocator to search. 149 * @bali: LUN information structure owning the block allocator to search. 150 * @bit_word: Passes back the word in the block allocator owning the free bit. 151 * 152 * Return: The bit position within the passed back word, -1 on failure 153 */ 154 static int find_free_range(u32 low, 155 u32 high, 156 struct ba_lun_info *bali, int *bit_word) 157 { 158 int i; 159 u64 bit_pos = -1; 160 ulong *lam, num_bits; 161 162 for (i = low; i < high; i++) 163 if (bali->lun_alloc_map[i] != 0) { 164 lam = (ulong *)&bali->lun_alloc_map[i]; 165 num_bits = (sizeof(*lam) * BITS_PER_BYTE); 166 bit_pos = find_first_bit(lam, num_bits); 167 168 pr_devel("%s: Found free bit %llu in LUN " 169 "map entry %016llx at bitmap index = %d\n", 170 __func__, bit_pos, bali->lun_alloc_map[i], i); 171 172 *bit_word = i; 173 bali->free_aun_cnt--; 174 clear_bit(bit_pos, lam); 175 break; 176 } 177 178 return bit_pos; 179 } 180 181 /** 182 * ba_alloc() - allocates a block from the block allocator 183 * @ba_lun: Block allocator from which to allocate a block. 184 * 185 * Return: The allocated block, -1 on failure 186 */ 187 static u64 ba_alloc(struct ba_lun *ba_lun) 188 { 189 u64 bit_pos = -1; 190 int bit_word = 0; 191 struct ba_lun_info *bali = NULL; 192 193 bali = ba_lun->ba_lun_handle; 194 195 pr_debug("%s: Received block allocation request: " 196 "lun_id=%016llx free_aun_cnt=%llx\n", 197 __func__, ba_lun->lun_id, bali->free_aun_cnt); 198 199 if (bali->free_aun_cnt == 0) { 200 pr_debug("%s: No space left on LUN: lun_id=%016llx\n", 201 __func__, ba_lun->lun_id); 202 return -1ULL; 203 } 204 205 /* Search to find a free entry, curr->high then low->curr */ 206 bit_pos = find_free_range(bali->free_curr_idx, 207 bali->free_high_idx, bali, &bit_word); 208 if (bit_pos == -1) { 209 bit_pos = find_free_range(bali->free_low_idx, 210 bali->free_curr_idx, 211 bali, &bit_word); 212 if (bit_pos == -1) { 213 pr_debug("%s: Could not find an allocation unit on LUN:" 214 " lun_id=%016llx\n", __func__, ba_lun->lun_id); 215 return -1ULL; 216 } 217 } 218 219 /* Update the free_curr_idx */ 220 if (bit_pos == HIBIT) 221 bali->free_curr_idx = bit_word + 1; 222 else 223 bali->free_curr_idx = bit_word; 224 225 pr_debug("%s: Allocating AU number=%llx lun_id=%016llx " 226 "free_aun_cnt=%llx\n", __func__, 227 ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id, 228 bali->free_aun_cnt); 229 230 return (u64) ((bit_word * BITS_PER_LONG) + bit_pos); 231 } 232 233 /** 234 * validate_alloc() - validates the specified block has been allocated 235 * @ba_lun_info: LUN info owning the block allocator. 236 * @aun: Block to validate. 237 * 238 * Return: 0 on success, -1 on failure 239 */ 240 static int validate_alloc(struct ba_lun_info *bali, u64 aun) 241 { 242 int idx = 0, bit_pos = 0; 243 244 idx = aun / BITS_PER_LONG; 245 bit_pos = aun % BITS_PER_LONG; 246 247 if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx])) 248 return -1; 249 250 return 0; 251 } 252 253 /** 254 * ba_free() - frees a block from the block allocator 255 * @ba_lun: Block allocator from which to allocate a block. 256 * @to_free: Block to free. 257 * 258 * Return: 0 on success, -1 on failure 259 */ 260 static int ba_free(struct ba_lun *ba_lun, u64 to_free) 261 { 262 int idx = 0, bit_pos = 0; 263 struct ba_lun_info *bali = NULL; 264 265 bali = ba_lun->ba_lun_handle; 266 267 if (validate_alloc(bali, to_free)) { 268 pr_debug("%s: AUN %llx is not allocated on lun_id=%016llx\n", 269 __func__, to_free, ba_lun->lun_id); 270 return -1; 271 } 272 273 pr_debug("%s: Received a request to free AU=%llx lun_id=%016llx " 274 "free_aun_cnt=%llx\n", __func__, to_free, ba_lun->lun_id, 275 bali->free_aun_cnt); 276 277 if (bali->aun_clone_map[to_free] > 0) { 278 pr_debug("%s: AUN %llx lun_id=%016llx cloned. Clone count=%x\n", 279 __func__, to_free, ba_lun->lun_id, 280 bali->aun_clone_map[to_free]); 281 bali->aun_clone_map[to_free]--; 282 return 0; 283 } 284 285 idx = to_free / BITS_PER_LONG; 286 bit_pos = to_free % BITS_PER_LONG; 287 288 set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]); 289 bali->free_aun_cnt++; 290 291 if (idx < bali->free_low_idx) 292 bali->free_low_idx = idx; 293 else if (idx > bali->free_high_idx) 294 bali->free_high_idx = idx; 295 296 pr_debug("%s: Successfully freed AU bit_pos=%x bit map index=%x " 297 "lun_id=%016llx free_aun_cnt=%llx\n", __func__, bit_pos, idx, 298 ba_lun->lun_id, bali->free_aun_cnt); 299 300 return 0; 301 } 302 303 /** 304 * ba_clone() - Clone a chunk of the block allocation table 305 * @ba_lun: Block allocator from which to allocate a block. 306 * @to_free: Block to free. 307 * 308 * Return: 0 on success, -1 on failure 309 */ 310 static int ba_clone(struct ba_lun *ba_lun, u64 to_clone) 311 { 312 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 313 314 if (validate_alloc(bali, to_clone)) { 315 pr_debug("%s: AUN=%llx not allocated on lun_id=%016llx\n", 316 __func__, to_clone, ba_lun->lun_id); 317 return -1; 318 } 319 320 pr_debug("%s: Received a request to clone AUN %llx on lun_id=%016llx\n", 321 __func__, to_clone, ba_lun->lun_id); 322 323 if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) { 324 pr_debug("%s: AUN %llx on lun_id=%016llx hit max clones already\n", 325 __func__, to_clone, ba_lun->lun_id); 326 return -1; 327 } 328 329 bali->aun_clone_map[to_clone]++; 330 331 return 0; 332 } 333 334 /** 335 * ba_space() - returns the amount of free space left in the block allocator 336 * @ba_lun: Block allocator. 337 * 338 * Return: Amount of free space in block allocator 339 */ 340 static u64 ba_space(struct ba_lun *ba_lun) 341 { 342 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 343 344 return bali->free_aun_cnt; 345 } 346 347 /** 348 * cxlflash_ba_terminate() - frees resources associated with the block allocator 349 * @ba_lun: Block allocator. 350 * 351 * Safe to call in a partially allocated state. 352 */ 353 void cxlflash_ba_terminate(struct ba_lun *ba_lun) 354 { 355 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 356 357 if (bali) { 358 kfree(bali->aun_clone_map); 359 kfree(bali->lun_alloc_map); 360 kfree(bali); 361 ba_lun->ba_lun_handle = NULL; 362 } 363 } 364 365 /** 366 * init_vlun() - initializes a LUN for virtual use 367 * @lun_info: LUN information structure that owns the block allocator. 368 * 369 * Return: 0 on success, -errno on failure 370 */ 371 static int init_vlun(struct llun_info *lli) 372 { 373 int rc = 0; 374 struct glun_info *gli = lli->parent; 375 struct blka *blka = &gli->blka; 376 377 memset(blka, 0, sizeof(*blka)); 378 mutex_init(&blka->mutex); 379 380 /* LUN IDs are unique per port, save the index instead */ 381 blka->ba_lun.lun_id = lli->lun_index; 382 blka->ba_lun.lsize = gli->max_lba + 1; 383 blka->ba_lun.lba_size = gli->blk_len; 384 385 blka->ba_lun.au_size = MC_CHUNK_SIZE; 386 blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE; 387 388 rc = ba_init(&blka->ba_lun); 389 if (unlikely(rc)) 390 pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc); 391 392 pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli); 393 return rc; 394 } 395 396 /** 397 * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN 398 * @sdev: SCSI device associated with LUN. 399 * @lba: Logical block address to start write same. 400 * @nblks: Number of logical blocks to write same. 401 * 402 * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur 403 * while in scsi_execute(), the EEH handler will attempt to recover. As part of 404 * the recovery, the handler drains all currently running ioctls, waiting until 405 * they have completed before proceeding with a reset. As this routine is used 406 * on the ioctl path, this can create a condition where the EEH handler becomes 407 * stuck, infinitely waiting for this ioctl thread. To avoid this behavior, 408 * temporarily unmark this thread as an ioctl thread by releasing the ioctl read 409 * semaphore. This will allow the EEH handler to proceed with a recovery while 410 * this thread is still running. Once the scsi_execute() returns, reacquire the 411 * ioctl read semaphore and check the adapter state in case it changed while 412 * inside of scsi_execute(). The state check will wait if the adapter is still 413 * being recovered or return a failure if the recovery failed. In the event that 414 * the adapter reset failed, simply return the failure as the ioctl would be 415 * unable to continue. 416 * 417 * Note that the above puts a requirement on this routine to only be called on 418 * an ioctl thread. 419 * 420 * Return: 0 on success, -errno on failure 421 */ 422 static int write_same16(struct scsi_device *sdev, 423 u64 lba, 424 u32 nblks) 425 { 426 u8 *cmd_buf = NULL; 427 u8 *scsi_cmd = NULL; 428 u8 *sense_buf = NULL; 429 int rc = 0; 430 int result = 0; 431 u64 offset = lba; 432 int left = nblks; 433 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 434 struct device *dev = &cfg->dev->dev; 435 const u32 s = ilog2(sdev->sector_size) - 9; 436 const u32 to = sdev->request_queue->rq_timeout; 437 const u32 ws_limit = blk_queue_get_max_sectors(sdev->request_queue, 438 REQ_OP_WRITE_SAME) >> s; 439 440 cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL); 441 scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL); 442 sense_buf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 443 if (unlikely(!cmd_buf || !scsi_cmd || !sense_buf)) { 444 rc = -ENOMEM; 445 goto out; 446 } 447 448 while (left > 0) { 449 450 scsi_cmd[0] = WRITE_SAME_16; 451 scsi_cmd[1] = cfg->ws_unmap ? 0x8 : 0; 452 put_unaligned_be64(offset, &scsi_cmd[2]); 453 put_unaligned_be32(ws_limit < left ? ws_limit : left, 454 &scsi_cmd[10]); 455 456 /* Drop the ioctl read semahpore across lengthy call */ 457 up_read(&cfg->ioctl_rwsem); 458 result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf, 459 CMD_BUFSIZE, sense_buf, NULL, to, 460 CMD_RETRIES, 0, 0, NULL); 461 down_read(&cfg->ioctl_rwsem); 462 rc = check_state(cfg); 463 if (rc) { 464 dev_err(dev, "%s: Failed state result=%08x\n", 465 __func__, result); 466 rc = -ENODEV; 467 goto out; 468 } 469 470 if (result) { 471 dev_err_ratelimited(dev, "%s: command failed for " 472 "offset=%lld result=%08x\n", 473 __func__, offset, result); 474 rc = -EIO; 475 goto out; 476 } 477 left -= ws_limit; 478 offset += ws_limit; 479 } 480 481 out: 482 kfree(cmd_buf); 483 kfree(scsi_cmd); 484 kfree(sense_buf); 485 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 486 return rc; 487 } 488 489 /** 490 * grow_lxt() - expands the translation table associated with the specified RHTE 491 * @afu: AFU associated with the host. 492 * @sdev: SCSI device associated with LUN. 493 * @ctxid: Context ID of context owning the RHTE. 494 * @rhndl: Resource handle associated with the RHTE. 495 * @rhte: Resource handle entry (RHTE). 496 * @new_size: Number of translation entries associated with RHTE. 497 * 498 * By design, this routine employs a 'best attempt' allocation and will 499 * truncate the requested size down if there is not sufficient space in 500 * the block allocator to satisfy the request but there does exist some 501 * amount of space. The user is made aware of this by returning the size 502 * allocated. 503 * 504 * Return: 0 on success, -errno on failure 505 */ 506 static int grow_lxt(struct afu *afu, 507 struct scsi_device *sdev, 508 ctx_hndl_t ctxid, 509 res_hndl_t rhndl, 510 struct sisl_rht_entry *rhte, 511 u64 *new_size) 512 { 513 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 514 struct device *dev = &cfg->dev->dev; 515 struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL; 516 struct llun_info *lli = sdev->hostdata; 517 struct glun_info *gli = lli->parent; 518 struct blka *blka = &gli->blka; 519 u32 av_size; 520 u32 ngrps, ngrps_old; 521 u64 aun; /* chunk# allocated by block allocator */ 522 u64 delta = *new_size - rhte->lxt_cnt; 523 u64 my_new_size; 524 int i, rc = 0; 525 526 /* 527 * Check what is available in the block allocator before re-allocating 528 * LXT array. This is done up front under the mutex which must not be 529 * released until after allocation is complete. 530 */ 531 mutex_lock(&blka->mutex); 532 av_size = ba_space(&blka->ba_lun); 533 if (unlikely(av_size <= 0)) { 534 dev_dbg(dev, "%s: ba_space error av_size=%d\n", 535 __func__, av_size); 536 mutex_unlock(&blka->mutex); 537 rc = -ENOSPC; 538 goto out; 539 } 540 541 if (av_size < delta) 542 delta = av_size; 543 544 lxt_old = rhte->lxt_start; 545 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 546 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta); 547 548 if (ngrps != ngrps_old) { 549 /* reallocate to fit new size */ 550 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 551 GFP_KERNEL); 552 if (unlikely(!lxt)) { 553 mutex_unlock(&blka->mutex); 554 rc = -ENOMEM; 555 goto out; 556 } 557 558 /* copy over all old entries */ 559 memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt)); 560 } else 561 lxt = lxt_old; 562 563 /* nothing can fail from now on */ 564 my_new_size = rhte->lxt_cnt + delta; 565 566 /* add new entries to the end */ 567 for (i = rhte->lxt_cnt; i < my_new_size; i++) { 568 /* 569 * Due to the earlier check of available space, ba_alloc 570 * cannot fail here. If it did due to internal error, 571 * leave a rlba_base of -1u which will likely be a 572 * invalid LUN (too large). 573 */ 574 aun = ba_alloc(&blka->ba_lun); 575 if ((aun == -1ULL) || (aun >= blka->nchunk)) 576 dev_dbg(dev, "%s: ba_alloc error allocated chunk=%llu " 577 "max=%llu\n", __func__, aun, blka->nchunk - 1); 578 579 /* select both ports, use r/w perms from RHT */ 580 lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) | 581 (lli->lun_index << LXT_LUNIDX_SHIFT) | 582 (RHT_PERM_RW << LXT_PERM_SHIFT | 583 lli->port_sel)); 584 } 585 586 mutex_unlock(&blka->mutex); 587 588 /* 589 * The following sequence is prescribed in the SISlite spec 590 * for syncing up with the AFU when adding LXT entries. 591 */ 592 dma_wmb(); /* Make LXT updates are visible */ 593 594 rhte->lxt_start = lxt; 595 dma_wmb(); /* Make RHT entry's LXT table update visible */ 596 597 rhte->lxt_cnt = my_new_size; 598 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 599 600 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 601 if (unlikely(rc)) 602 rc = -EAGAIN; 603 604 /* free old lxt if reallocated */ 605 if (lxt != lxt_old) 606 kfree(lxt_old); 607 *new_size = my_new_size; 608 out: 609 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 610 return rc; 611 } 612 613 /** 614 * shrink_lxt() - reduces translation table associated with the specified RHTE 615 * @afu: AFU associated with the host. 616 * @sdev: SCSI device associated with LUN. 617 * @rhndl: Resource handle associated with the RHTE. 618 * @rhte: Resource handle entry (RHTE). 619 * @ctxi: Context owning resources. 620 * @new_size: Number of translation entries associated with RHTE. 621 * 622 * Return: 0 on success, -errno on failure 623 */ 624 static int shrink_lxt(struct afu *afu, 625 struct scsi_device *sdev, 626 res_hndl_t rhndl, 627 struct sisl_rht_entry *rhte, 628 struct ctx_info *ctxi, 629 u64 *new_size) 630 { 631 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 632 struct device *dev = &cfg->dev->dev; 633 struct sisl_lxt_entry *lxt, *lxt_old; 634 struct llun_info *lli = sdev->hostdata; 635 struct glun_info *gli = lli->parent; 636 struct blka *blka = &gli->blka; 637 ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid); 638 bool needs_ws = ctxi->rht_needs_ws[rhndl]; 639 bool needs_sync = !ctxi->err_recovery_active; 640 u32 ngrps, ngrps_old; 641 u64 aun; /* chunk# allocated by block allocator */ 642 u64 delta = rhte->lxt_cnt - *new_size; 643 u64 my_new_size; 644 int i, rc = 0; 645 646 lxt_old = rhte->lxt_start; 647 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 648 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta); 649 650 if (ngrps != ngrps_old) { 651 /* Reallocate to fit new size unless new size is 0 */ 652 if (ngrps) { 653 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 654 GFP_KERNEL); 655 if (unlikely(!lxt)) { 656 rc = -ENOMEM; 657 goto out; 658 } 659 660 /* Copy over old entries that will remain */ 661 memcpy(lxt, lxt_old, 662 (sizeof(*lxt) * (rhte->lxt_cnt - delta))); 663 } else 664 lxt = NULL; 665 } else 666 lxt = lxt_old; 667 668 /* Nothing can fail from now on */ 669 my_new_size = rhte->lxt_cnt - delta; 670 671 /* 672 * The following sequence is prescribed in the SISlite spec 673 * for syncing up with the AFU when removing LXT entries. 674 */ 675 rhte->lxt_cnt = my_new_size; 676 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 677 678 rhte->lxt_start = lxt; 679 dma_wmb(); /* Make RHT entry's LXT table update visible */ 680 681 if (needs_sync) { 682 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 683 if (unlikely(rc)) 684 rc = -EAGAIN; 685 } 686 687 if (needs_ws) { 688 /* 689 * Mark the context as unavailable, so that we can release 690 * the mutex safely. 691 */ 692 ctxi->unavail = true; 693 mutex_unlock(&ctxi->mutex); 694 } 695 696 /* Free LBAs allocated to freed chunks */ 697 mutex_lock(&blka->mutex); 698 for (i = delta - 1; i >= 0; i--) { 699 aun = lxt_old[my_new_size + i].rlba_base >> MC_CHUNK_SHIFT; 700 if (needs_ws) 701 write_same16(sdev, aun, MC_CHUNK_SIZE); 702 ba_free(&blka->ba_lun, aun); 703 } 704 mutex_unlock(&blka->mutex); 705 706 if (needs_ws) { 707 /* Make the context visible again */ 708 mutex_lock(&ctxi->mutex); 709 ctxi->unavail = false; 710 } 711 712 /* Free old lxt if reallocated */ 713 if (lxt != lxt_old) 714 kfree(lxt_old); 715 *new_size = my_new_size; 716 out: 717 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 718 return rc; 719 } 720 721 /** 722 * _cxlflash_vlun_resize() - changes the size of a virtual LUN 723 * @sdev: SCSI device associated with LUN owning virtual LUN. 724 * @ctxi: Context owning resources. 725 * @resize: Resize ioctl data structure. 726 * 727 * On successful return, the user is informed of the new size (in blocks) 728 * of the virtual LUN in last LBA format. When the size of the virtual 729 * LUN is zero, the last LBA is reflected as -1. See comment in the 730 * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts 731 * on the error recovery list. 732 * 733 * Return: 0 on success, -errno on failure 734 */ 735 int _cxlflash_vlun_resize(struct scsi_device *sdev, 736 struct ctx_info *ctxi, 737 struct dk_cxlflash_resize *resize) 738 { 739 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 740 struct device *dev = &cfg->dev->dev; 741 struct llun_info *lli = sdev->hostdata; 742 struct glun_info *gli = lli->parent; 743 struct afu *afu = cfg->afu; 744 bool put_ctx = false; 745 746 res_hndl_t rhndl = resize->rsrc_handle; 747 u64 new_size; 748 u64 nsectors; 749 u64 ctxid = DECODE_CTXID(resize->context_id), 750 rctxid = resize->context_id; 751 752 struct sisl_rht_entry *rhte; 753 754 int rc = 0; 755 756 /* 757 * The requested size (req_size) is always assumed to be in 4k blocks, 758 * so we have to convert it here from 4k to chunk size. 759 */ 760 nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len; 761 new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE); 762 763 dev_dbg(dev, "%s: ctxid=%llu rhndl=%llu req_size=%llu new_size=%llu\n", 764 __func__, ctxid, resize->rsrc_handle, resize->req_size, 765 new_size); 766 767 if (unlikely(gli->mode != MODE_VIRTUAL)) { 768 dev_dbg(dev, "%s: LUN mode does not support resize mode=%d\n", 769 __func__, gli->mode); 770 rc = -EINVAL; 771 goto out; 772 773 } 774 775 if (!ctxi) { 776 ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK); 777 if (unlikely(!ctxi)) { 778 dev_dbg(dev, "%s: Bad context ctxid=%llu\n", 779 __func__, ctxid); 780 rc = -EINVAL; 781 goto out; 782 } 783 784 put_ctx = true; 785 } 786 787 rhte = get_rhte(ctxi, rhndl, lli); 788 if (unlikely(!rhte)) { 789 dev_dbg(dev, "%s: Bad resource handle rhndl=%u\n", 790 __func__, rhndl); 791 rc = -EINVAL; 792 goto out; 793 } 794 795 if (new_size > rhte->lxt_cnt) 796 rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size); 797 else if (new_size < rhte->lxt_cnt) 798 rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size); 799 else { 800 /* 801 * Rare case where there is already sufficient space, just 802 * need to perform a translation sync with the AFU. This 803 * scenario likely follows a previous sync failure during 804 * a resize operation. Accordingly, perform the heavyweight 805 * form of translation sync as it is unknown which type of 806 * resize failed previously. 807 */ 808 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 809 if (unlikely(rc)) { 810 rc = -EAGAIN; 811 goto out; 812 } 813 } 814 815 resize->hdr.return_flags = 0; 816 resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len); 817 resize->last_lba /= CXLFLASH_BLOCK_SIZE; 818 resize->last_lba--; 819 820 out: 821 if (put_ctx) 822 put_context(ctxi); 823 dev_dbg(dev, "%s: resized to %llu returning rc=%d\n", 824 __func__, resize->last_lba, rc); 825 return rc; 826 } 827 828 int cxlflash_vlun_resize(struct scsi_device *sdev, 829 struct dk_cxlflash_resize *resize) 830 { 831 return _cxlflash_vlun_resize(sdev, NULL, resize); 832 } 833 834 /** 835 * cxlflash_restore_luntable() - Restore LUN table to prior state 836 * @cfg: Internal structure associated with the host. 837 */ 838 void cxlflash_restore_luntable(struct cxlflash_cfg *cfg) 839 { 840 struct llun_info *lli, *temp; 841 u32 lind; 842 int k; 843 struct device *dev = &cfg->dev->dev; 844 __be64 __iomem *fc_port_luns; 845 846 mutex_lock(&global.mutex); 847 848 list_for_each_entry_safe(lli, temp, &cfg->lluns, list) { 849 if (!lli->in_table) 850 continue; 851 852 lind = lli->lun_index; 853 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 854 855 for (k = 0; k < cfg->num_fc_ports; k++) 856 if (lli->port_sel & (1 << k)) { 857 fc_port_luns = get_fc_port_luns(cfg, k); 858 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 859 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 860 } 861 } 862 863 mutex_unlock(&global.mutex); 864 } 865 866 /** 867 * get_num_ports() - compute number of ports from port selection mask 868 * @psm: Port selection mask. 869 * 870 * Return: Population count of port selection mask 871 */ 872 static inline u8 get_num_ports(u32 psm) 873 { 874 static const u8 bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 875 1, 2, 2, 3, 2, 3, 3, 4 }; 876 877 return bits[psm & 0xf]; 878 } 879 880 /** 881 * init_luntable() - write an entry in the LUN table 882 * @cfg: Internal structure associated with the host. 883 * @lli: Per adapter LUN information structure. 884 * 885 * On successful return, a LUN table entry is created: 886 * - at the top for LUNs visible on multiple ports. 887 * - at the bottom for LUNs visible only on one port. 888 * 889 * Return: 0 on success, -errno on failure 890 */ 891 static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli) 892 { 893 u32 chan; 894 u32 lind; 895 u32 nports; 896 int rc = 0; 897 int k; 898 struct device *dev = &cfg->dev->dev; 899 __be64 __iomem *fc_port_luns; 900 901 mutex_lock(&global.mutex); 902 903 if (lli->in_table) 904 goto out; 905 906 nports = get_num_ports(lli->port_sel); 907 if (nports == 0 || nports > cfg->num_fc_ports) { 908 WARN(1, "Unsupported port configuration nports=%u", nports); 909 rc = -EIO; 910 goto out; 911 } 912 913 if (nports > 1) { 914 /* 915 * When LUN is visible from multiple ports, we will put 916 * it in the top half of the LUN table. 917 */ 918 for (k = 0; k < cfg->num_fc_ports; k++) { 919 if (!(lli->port_sel & (1 << k))) 920 continue; 921 922 if (cfg->promote_lun_index == cfg->last_lun_index[k]) { 923 rc = -ENOSPC; 924 goto out; 925 } 926 } 927 928 lind = lli->lun_index = cfg->promote_lun_index; 929 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 930 931 for (k = 0; k < cfg->num_fc_ports; k++) { 932 if (!(lli->port_sel & (1 << k))) 933 continue; 934 935 fc_port_luns = get_fc_port_luns(cfg, k); 936 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 937 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 938 } 939 940 cfg->promote_lun_index++; 941 } else { 942 /* 943 * When LUN is visible only from one port, we will put 944 * it in the bottom half of the LUN table. 945 */ 946 chan = PORTMASK2CHAN(lli->port_sel); 947 if (cfg->promote_lun_index == cfg->last_lun_index[chan]) { 948 rc = -ENOSPC; 949 goto out; 950 } 951 952 lind = lli->lun_index = cfg->last_lun_index[chan]; 953 fc_port_luns = get_fc_port_luns(cfg, chan); 954 writeq_be(lli->lun_id[chan], &fc_port_luns[lind]); 955 cfg->last_lun_index[chan]--; 956 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n\t%d=%llx\n", 957 __func__, lind, chan, lli->lun_id[chan]); 958 } 959 960 lli->in_table = true; 961 out: 962 mutex_unlock(&global.mutex); 963 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 964 return rc; 965 } 966 967 /** 968 * cxlflash_disk_virtual_open() - open a virtual disk of specified size 969 * @sdev: SCSI device associated with LUN owning virtual LUN. 970 * @arg: UVirtual ioctl data structure. 971 * 972 * On successful return, the user is informed of the resource handle 973 * to be used to identify the virtual LUN and the size (in blocks) of 974 * the virtual LUN in last LBA format. When the size of the virtual LUN 975 * is zero, the last LBA is reflected as -1. 976 * 977 * Return: 0 on success, -errno on failure 978 */ 979 int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg) 980 { 981 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 982 struct device *dev = &cfg->dev->dev; 983 struct llun_info *lli = sdev->hostdata; 984 struct glun_info *gli = lli->parent; 985 986 struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg; 987 struct dk_cxlflash_resize resize; 988 989 u64 ctxid = DECODE_CTXID(virt->context_id), 990 rctxid = virt->context_id; 991 u64 lun_size = virt->lun_size; 992 u64 last_lba = 0; 993 u64 rsrc_handle = -1; 994 995 int rc = 0; 996 997 struct ctx_info *ctxi = NULL; 998 struct sisl_rht_entry *rhte = NULL; 999 1000 dev_dbg(dev, "%s: ctxid=%llu ls=%llu\n", __func__, ctxid, lun_size); 1001 1002 /* Setup the LUNs block allocator on first call */ 1003 mutex_lock(&gli->mutex); 1004 if (gli->mode == MODE_NONE) { 1005 rc = init_vlun(lli); 1006 if (rc) { 1007 dev_err(dev, "%s: init_vlun failed rc=%d\n", 1008 __func__, rc); 1009 rc = -ENOMEM; 1010 goto err0; 1011 } 1012 } 1013 1014 rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true); 1015 if (unlikely(rc)) { 1016 dev_err(dev, "%s: Failed attach to LUN (VIRTUAL)\n", __func__); 1017 goto err0; 1018 } 1019 mutex_unlock(&gli->mutex); 1020 1021 rc = init_luntable(cfg, lli); 1022 if (rc) { 1023 dev_err(dev, "%s: init_luntable failed rc=%d\n", __func__, rc); 1024 goto err1; 1025 } 1026 1027 ctxi = get_context(cfg, rctxid, lli, 0); 1028 if (unlikely(!ctxi)) { 1029 dev_err(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid); 1030 rc = -EINVAL; 1031 goto err1; 1032 } 1033 1034 rhte = rhte_checkout(ctxi, lli); 1035 if (unlikely(!rhte)) { 1036 dev_err(dev, "%s: too many opens ctxid=%llu\n", 1037 __func__, ctxid); 1038 rc = -EMFILE; /* too many opens */ 1039 goto err1; 1040 } 1041 1042 rsrc_handle = (rhte - ctxi->rht_start); 1043 1044 /* Populate RHT format 0 */ 1045 rhte->nmask = MC_RHT_NMASK; 1046 rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms); 1047 1048 /* Resize even if requested size is 0 */ 1049 marshal_virt_to_resize(virt, &resize); 1050 resize.rsrc_handle = rsrc_handle; 1051 rc = _cxlflash_vlun_resize(sdev, ctxi, &resize); 1052 if (rc) { 1053 dev_err(dev, "%s: resize failed rc=%d\n", __func__, rc); 1054 goto err2; 1055 } 1056 last_lba = resize.last_lba; 1057 1058 if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME) 1059 ctxi->rht_needs_ws[rsrc_handle] = true; 1060 1061 virt->hdr.return_flags = 0; 1062 virt->last_lba = last_lba; 1063 virt->rsrc_handle = rsrc_handle; 1064 1065 if (get_num_ports(lli->port_sel) > 1) 1066 virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE; 1067 out: 1068 if (likely(ctxi)) 1069 put_context(ctxi); 1070 dev_dbg(dev, "%s: returning handle=%llu rc=%d llba=%llu\n", 1071 __func__, rsrc_handle, rc, last_lba); 1072 return rc; 1073 1074 err2: 1075 rhte_checkin(ctxi, rhte); 1076 err1: 1077 cxlflash_lun_detach(gli); 1078 goto out; 1079 err0: 1080 /* Special common cleanup prior to successful LUN attach */ 1081 cxlflash_ba_terminate(&gli->blka.ba_lun); 1082 mutex_unlock(&gli->mutex); 1083 goto out; 1084 } 1085 1086 /** 1087 * clone_lxt() - copies translation tables from source to destination RHTE 1088 * @afu: AFU associated with the host. 1089 * @blka: Block allocator associated with LUN. 1090 * @ctxid: Context ID of context owning the RHTE. 1091 * @rhndl: Resource handle associated with the RHTE. 1092 * @rhte: Destination resource handle entry (RHTE). 1093 * @rhte_src: Source resource handle entry (RHTE). 1094 * 1095 * Return: 0 on success, -errno on failure 1096 */ 1097 static int clone_lxt(struct afu *afu, 1098 struct blka *blka, 1099 ctx_hndl_t ctxid, 1100 res_hndl_t rhndl, 1101 struct sisl_rht_entry *rhte, 1102 struct sisl_rht_entry *rhte_src) 1103 { 1104 struct cxlflash_cfg *cfg = afu->parent; 1105 struct device *dev = &cfg->dev->dev; 1106 struct sisl_lxt_entry *lxt = NULL; 1107 bool locked = false; 1108 u32 ngrps; 1109 u64 aun; /* chunk# allocated by block allocator */ 1110 int j; 1111 int i = 0; 1112 int rc = 0; 1113 1114 ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt); 1115 1116 if (ngrps) { 1117 /* allocate new LXTs for clone */ 1118 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 1119 GFP_KERNEL); 1120 if (unlikely(!lxt)) { 1121 rc = -ENOMEM; 1122 goto out; 1123 } 1124 1125 /* copy over */ 1126 memcpy(lxt, rhte_src->lxt_start, 1127 (sizeof(*lxt) * rhte_src->lxt_cnt)); 1128 1129 /* clone the LBAs in block allocator via ref_cnt, note that the 1130 * block allocator mutex must be held until it is established 1131 * that this routine will complete without the need for a 1132 * cleanup. 1133 */ 1134 mutex_lock(&blka->mutex); 1135 locked = true; 1136 for (i = 0; i < rhte_src->lxt_cnt; i++) { 1137 aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT); 1138 if (ba_clone(&blka->ba_lun, aun) == -1ULL) { 1139 rc = -EIO; 1140 goto err; 1141 } 1142 } 1143 } 1144 1145 /* 1146 * The following sequence is prescribed in the SISlite spec 1147 * for syncing up with the AFU when adding LXT entries. 1148 */ 1149 dma_wmb(); /* Make LXT updates are visible */ 1150 1151 rhte->lxt_start = lxt; 1152 dma_wmb(); /* Make RHT entry's LXT table update visible */ 1153 1154 rhte->lxt_cnt = rhte_src->lxt_cnt; 1155 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 1156 1157 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 1158 if (unlikely(rc)) { 1159 rc = -EAGAIN; 1160 goto err2; 1161 } 1162 1163 out: 1164 if (locked) 1165 mutex_unlock(&blka->mutex); 1166 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1167 return rc; 1168 err2: 1169 /* Reset the RHTE */ 1170 rhte->lxt_cnt = 0; 1171 dma_wmb(); 1172 rhte->lxt_start = NULL; 1173 dma_wmb(); 1174 err: 1175 /* free the clones already made */ 1176 for (j = 0; j < i; j++) { 1177 aun = (lxt[j].rlba_base >> MC_CHUNK_SHIFT); 1178 ba_free(&blka->ba_lun, aun); 1179 } 1180 kfree(lxt); 1181 goto out; 1182 } 1183 1184 /** 1185 * cxlflash_disk_clone() - clone a context by making snapshot of another 1186 * @sdev: SCSI device associated with LUN owning virtual LUN. 1187 * @clone: Clone ioctl data structure. 1188 * 1189 * This routine effectively performs cxlflash_disk_open operation for each 1190 * in-use virtual resource in the source context. Note that the destination 1191 * context must be in pristine state and cannot have any resource handles 1192 * open at the time of the clone. 1193 * 1194 * Return: 0 on success, -errno on failure 1195 */ 1196 int cxlflash_disk_clone(struct scsi_device *sdev, 1197 struct dk_cxlflash_clone *clone) 1198 { 1199 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 1200 struct device *dev = &cfg->dev->dev; 1201 struct llun_info *lli = sdev->hostdata; 1202 struct glun_info *gli = lli->parent; 1203 struct blka *blka = &gli->blka; 1204 struct afu *afu = cfg->afu; 1205 struct dk_cxlflash_release release = { { 0 }, 0 }; 1206 1207 struct ctx_info *ctxi_src = NULL, 1208 *ctxi_dst = NULL; 1209 struct lun_access *lun_access_src, *lun_access_dst; 1210 u32 perms; 1211 u64 ctxid_src = DECODE_CTXID(clone->context_id_src), 1212 ctxid_dst = DECODE_CTXID(clone->context_id_dst), 1213 rctxid_src = clone->context_id_src, 1214 rctxid_dst = clone->context_id_dst; 1215 int i, j; 1216 int rc = 0; 1217 bool found; 1218 LIST_HEAD(sidecar); 1219 1220 dev_dbg(dev, "%s: ctxid_src=%llu ctxid_dst=%llu\n", 1221 __func__, ctxid_src, ctxid_dst); 1222 1223 /* Do not clone yourself */ 1224 if (unlikely(rctxid_src == rctxid_dst)) { 1225 rc = -EINVAL; 1226 goto out; 1227 } 1228 1229 if (unlikely(gli->mode != MODE_VIRTUAL)) { 1230 rc = -EINVAL; 1231 dev_dbg(dev, "%s: Only supported on virtual LUNs mode=%u\n", 1232 __func__, gli->mode); 1233 goto out; 1234 } 1235 1236 ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE); 1237 ctxi_dst = get_context(cfg, rctxid_dst, lli, 0); 1238 if (unlikely(!ctxi_src || !ctxi_dst)) { 1239 dev_dbg(dev, "%s: Bad context ctxid_src=%llu ctxid_dst=%llu\n", 1240 __func__, ctxid_src, ctxid_dst); 1241 rc = -EINVAL; 1242 goto out; 1243 } 1244 1245 /* Verify there is no open resource handle in the destination context */ 1246 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) 1247 if (ctxi_dst->rht_start[i].nmask != 0) { 1248 rc = -EINVAL; 1249 goto out; 1250 } 1251 1252 /* Clone LUN access list */ 1253 list_for_each_entry(lun_access_src, &ctxi_src->luns, list) { 1254 found = false; 1255 list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list) 1256 if (lun_access_dst->sdev == lun_access_src->sdev) { 1257 found = true; 1258 break; 1259 } 1260 1261 if (!found) { 1262 lun_access_dst = kzalloc(sizeof(*lun_access_dst), 1263 GFP_KERNEL); 1264 if (unlikely(!lun_access_dst)) { 1265 dev_err(dev, "%s: lun_access allocation fail\n", 1266 __func__); 1267 rc = -ENOMEM; 1268 goto out; 1269 } 1270 1271 *lun_access_dst = *lun_access_src; 1272 list_add(&lun_access_dst->list, &sidecar); 1273 } 1274 } 1275 1276 if (unlikely(!ctxi_src->rht_out)) { 1277 dev_dbg(dev, "%s: Nothing to clone\n", __func__); 1278 goto out_success; 1279 } 1280 1281 /* User specified permission on attach */ 1282 perms = ctxi_dst->rht_perms; 1283 1284 /* 1285 * Copy over checked-out RHT (and their associated LXT) entries by 1286 * hand, stopping after we've copied all outstanding entries and 1287 * cleaning up if the clone fails. 1288 * 1289 * Note: This loop is equivalent to performing cxlflash_disk_open and 1290 * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into 1291 * account by attaching after each successful RHT entry clone. In the 1292 * event that a clone failure is experienced, the LUN detach is handled 1293 * via the cleanup performed by _cxlflash_disk_release. 1294 */ 1295 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) { 1296 if (ctxi_src->rht_out == ctxi_dst->rht_out) 1297 break; 1298 if (ctxi_src->rht_start[i].nmask == 0) 1299 continue; 1300 1301 /* Consume a destination RHT entry */ 1302 ctxi_dst->rht_out++; 1303 ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask; 1304 ctxi_dst->rht_start[i].fp = 1305 SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms); 1306 ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i]; 1307 1308 rc = clone_lxt(afu, blka, ctxid_dst, i, 1309 &ctxi_dst->rht_start[i], 1310 &ctxi_src->rht_start[i]); 1311 if (rc) { 1312 marshal_clone_to_rele(clone, &release); 1313 for (j = 0; j < i; j++) { 1314 release.rsrc_handle = j; 1315 _cxlflash_disk_release(sdev, ctxi_dst, 1316 &release); 1317 } 1318 1319 /* Put back the one we failed on */ 1320 rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]); 1321 goto err; 1322 } 1323 1324 cxlflash_lun_attach(gli, gli->mode, false); 1325 } 1326 1327 out_success: 1328 list_splice(&sidecar, &ctxi_dst->luns); 1329 1330 /* fall through */ 1331 out: 1332 if (ctxi_src) 1333 put_context(ctxi_src); 1334 if (ctxi_dst) 1335 put_context(ctxi_dst); 1336 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1337 return rc; 1338 1339 err: 1340 list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list) 1341 kfree(lun_access_src); 1342 goto out; 1343 } 1344