1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/syscalls.h> 16 #include <misc/cxl.h> 17 #include <asm/unaligned.h> 18 #include <asm/bitsperlong.h> 19 20 #include <scsi/scsi_cmnd.h> 21 #include <scsi/scsi_host.h> 22 #include <uapi/scsi/cxlflash_ioctl.h> 23 24 #include "sislite.h" 25 #include "common.h" 26 #include "vlun.h" 27 #include "superpipe.h" 28 29 /** 30 * marshal_virt_to_resize() - translate uvirtual to resize structure 31 * @virt: Source structure from which to translate/copy. 32 * @resize: Destination structure for the translate/copy. 33 */ 34 static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt, 35 struct dk_cxlflash_resize *resize) 36 { 37 resize->hdr = virt->hdr; 38 resize->context_id = virt->context_id; 39 resize->rsrc_handle = virt->rsrc_handle; 40 resize->req_size = virt->lun_size; 41 resize->last_lba = virt->last_lba; 42 } 43 44 /** 45 * marshal_clone_to_rele() - translate clone to release structure 46 * @clone: Source structure from which to translate/copy. 47 * @rele: Destination structure for the translate/copy. 48 */ 49 static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone, 50 struct dk_cxlflash_release *release) 51 { 52 release->hdr = clone->hdr; 53 release->context_id = clone->context_id_dst; 54 } 55 56 /** 57 * ba_init() - initializes a block allocator 58 * @ba_lun: Block allocator to initialize. 59 * 60 * Return: 0 on success, -errno on failure 61 */ 62 static int ba_init(struct ba_lun *ba_lun) 63 { 64 struct ba_lun_info *bali = NULL; 65 int lun_size_au = 0, i = 0; 66 int last_word_underflow = 0; 67 u64 *lam; 68 69 pr_debug("%s: Initializing LUN: lun_id=%016llx " 70 "ba_lun->lsize=%lx ba_lun->au_size=%lX\n", 71 __func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size); 72 73 /* Calculate bit map size */ 74 lun_size_au = ba_lun->lsize / ba_lun->au_size; 75 if (lun_size_au == 0) { 76 pr_debug("%s: Requested LUN size of 0!\n", __func__); 77 return -EINVAL; 78 } 79 80 /* Allocate lun information container */ 81 bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL); 82 if (unlikely(!bali)) { 83 pr_err("%s: Failed to allocate lun_info lun_id=%016llx\n", 84 __func__, ba_lun->lun_id); 85 return -ENOMEM; 86 } 87 88 bali->total_aus = lun_size_au; 89 bali->lun_bmap_size = lun_size_au / BITS_PER_LONG; 90 91 if (lun_size_au % BITS_PER_LONG) 92 bali->lun_bmap_size++; 93 94 /* Allocate bitmap space */ 95 bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)), 96 GFP_KERNEL); 97 if (unlikely(!bali->lun_alloc_map)) { 98 pr_err("%s: Failed to allocate lun allocation map: " 99 "lun_id=%016llx\n", __func__, ba_lun->lun_id); 100 kfree(bali); 101 return -ENOMEM; 102 } 103 104 /* Initialize the bit map size and set all bits to '1' */ 105 bali->free_aun_cnt = lun_size_au; 106 107 for (i = 0; i < bali->lun_bmap_size; i++) 108 bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL; 109 110 /* If the last word not fully utilized, mark extra bits as allocated */ 111 last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG); 112 last_word_underflow -= bali->free_aun_cnt; 113 if (last_word_underflow > 0) { 114 lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1]; 115 for (i = (HIBIT - last_word_underflow + 1); 116 i < BITS_PER_LONG; 117 i++) 118 clear_bit(i, (ulong *)lam); 119 } 120 121 /* Initialize high elevator index, low/curr already at 0 from kzalloc */ 122 bali->free_high_idx = bali->lun_bmap_size; 123 124 /* Allocate clone map */ 125 bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)), 126 GFP_KERNEL); 127 if (unlikely(!bali->aun_clone_map)) { 128 pr_err("%s: Failed to allocate clone map: lun_id=%016llx\n", 129 __func__, ba_lun->lun_id); 130 kfree(bali->lun_alloc_map); 131 kfree(bali); 132 return -ENOMEM; 133 } 134 135 /* Pass the allocated LUN info as a handle to the user */ 136 ba_lun->ba_lun_handle = bali; 137 138 pr_debug("%s: Successfully initialized the LUN: " 139 "lun_id=%016llx bitmap size=%x, free_aun_cnt=%llx\n", 140 __func__, ba_lun->lun_id, bali->lun_bmap_size, 141 bali->free_aun_cnt); 142 return 0; 143 } 144 145 /** 146 * find_free_range() - locates a free bit within the block allocator 147 * @low: First word in block allocator to start search. 148 * @high: Last word in block allocator to search. 149 * @bali: LUN information structure owning the block allocator to search. 150 * @bit_word: Passes back the word in the block allocator owning the free bit. 151 * 152 * Return: The bit position within the passed back word, -1 on failure 153 */ 154 static int find_free_range(u32 low, 155 u32 high, 156 struct ba_lun_info *bali, int *bit_word) 157 { 158 int i; 159 u64 bit_pos = -1; 160 ulong *lam, num_bits; 161 162 for (i = low; i < high; i++) 163 if (bali->lun_alloc_map[i] != 0) { 164 lam = (ulong *)&bali->lun_alloc_map[i]; 165 num_bits = (sizeof(*lam) * BITS_PER_BYTE); 166 bit_pos = find_first_bit(lam, num_bits); 167 168 pr_devel("%s: Found free bit %llu in LUN " 169 "map entry %016llx at bitmap index = %d\n", 170 __func__, bit_pos, bali->lun_alloc_map[i], i); 171 172 *bit_word = i; 173 bali->free_aun_cnt--; 174 clear_bit(bit_pos, lam); 175 break; 176 } 177 178 return bit_pos; 179 } 180 181 /** 182 * ba_alloc() - allocates a block from the block allocator 183 * @ba_lun: Block allocator from which to allocate a block. 184 * 185 * Return: The allocated block, -1 on failure 186 */ 187 static u64 ba_alloc(struct ba_lun *ba_lun) 188 { 189 u64 bit_pos = -1; 190 int bit_word = 0; 191 struct ba_lun_info *bali = NULL; 192 193 bali = ba_lun->ba_lun_handle; 194 195 pr_debug("%s: Received block allocation request: " 196 "lun_id=%016llx free_aun_cnt=%llx\n", 197 __func__, ba_lun->lun_id, bali->free_aun_cnt); 198 199 if (bali->free_aun_cnt == 0) { 200 pr_debug("%s: No space left on LUN: lun_id=%016llx\n", 201 __func__, ba_lun->lun_id); 202 return -1ULL; 203 } 204 205 /* Search to find a free entry, curr->high then low->curr */ 206 bit_pos = find_free_range(bali->free_curr_idx, 207 bali->free_high_idx, bali, &bit_word); 208 if (bit_pos == -1) { 209 bit_pos = find_free_range(bali->free_low_idx, 210 bali->free_curr_idx, 211 bali, &bit_word); 212 if (bit_pos == -1) { 213 pr_debug("%s: Could not find an allocation unit on LUN:" 214 " lun_id=%016llx\n", __func__, ba_lun->lun_id); 215 return -1ULL; 216 } 217 } 218 219 /* Update the free_curr_idx */ 220 if (bit_pos == HIBIT) 221 bali->free_curr_idx = bit_word + 1; 222 else 223 bali->free_curr_idx = bit_word; 224 225 pr_debug("%s: Allocating AU number=%llx lun_id=%016llx " 226 "free_aun_cnt=%llx\n", __func__, 227 ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id, 228 bali->free_aun_cnt); 229 230 return (u64) ((bit_word * BITS_PER_LONG) + bit_pos); 231 } 232 233 /** 234 * validate_alloc() - validates the specified block has been allocated 235 * @ba_lun_info: LUN info owning the block allocator. 236 * @aun: Block to validate. 237 * 238 * Return: 0 on success, -1 on failure 239 */ 240 static int validate_alloc(struct ba_lun_info *bali, u64 aun) 241 { 242 int idx = 0, bit_pos = 0; 243 244 idx = aun / BITS_PER_LONG; 245 bit_pos = aun % BITS_PER_LONG; 246 247 if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx])) 248 return -1; 249 250 return 0; 251 } 252 253 /** 254 * ba_free() - frees a block from the block allocator 255 * @ba_lun: Block allocator from which to allocate a block. 256 * @to_free: Block to free. 257 * 258 * Return: 0 on success, -1 on failure 259 */ 260 static int ba_free(struct ba_lun *ba_lun, u64 to_free) 261 { 262 int idx = 0, bit_pos = 0; 263 struct ba_lun_info *bali = NULL; 264 265 bali = ba_lun->ba_lun_handle; 266 267 if (validate_alloc(bali, to_free)) { 268 pr_debug("%s: AUN %llx is not allocated on lun_id=%016llx\n", 269 __func__, to_free, ba_lun->lun_id); 270 return -1; 271 } 272 273 pr_debug("%s: Received a request to free AU=%llx lun_id=%016llx " 274 "free_aun_cnt=%llx\n", __func__, to_free, ba_lun->lun_id, 275 bali->free_aun_cnt); 276 277 if (bali->aun_clone_map[to_free] > 0) { 278 pr_debug("%s: AUN %llx lun_id=%016llx cloned. Clone count=%x\n", 279 __func__, to_free, ba_lun->lun_id, 280 bali->aun_clone_map[to_free]); 281 bali->aun_clone_map[to_free]--; 282 return 0; 283 } 284 285 idx = to_free / BITS_PER_LONG; 286 bit_pos = to_free % BITS_PER_LONG; 287 288 set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]); 289 bali->free_aun_cnt++; 290 291 if (idx < bali->free_low_idx) 292 bali->free_low_idx = idx; 293 else if (idx > bali->free_high_idx) 294 bali->free_high_idx = idx; 295 296 pr_debug("%s: Successfully freed AU bit_pos=%x bit map index=%x " 297 "lun_id=%016llx free_aun_cnt=%llx\n", __func__, bit_pos, idx, 298 ba_lun->lun_id, bali->free_aun_cnt); 299 300 return 0; 301 } 302 303 /** 304 * ba_clone() - Clone a chunk of the block allocation table 305 * @ba_lun: Block allocator from which to allocate a block. 306 * @to_free: Block to free. 307 * 308 * Return: 0 on success, -1 on failure 309 */ 310 static int ba_clone(struct ba_lun *ba_lun, u64 to_clone) 311 { 312 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 313 314 if (validate_alloc(bali, to_clone)) { 315 pr_debug("%s: AUN=%llx not allocated on lun_id=%016llx\n", 316 __func__, to_clone, ba_lun->lun_id); 317 return -1; 318 } 319 320 pr_debug("%s: Received a request to clone AUN %llx on lun_id=%016llx\n", 321 __func__, to_clone, ba_lun->lun_id); 322 323 if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) { 324 pr_debug("%s: AUN %llx on lun_id=%016llx hit max clones already\n", 325 __func__, to_clone, ba_lun->lun_id); 326 return -1; 327 } 328 329 bali->aun_clone_map[to_clone]++; 330 331 return 0; 332 } 333 334 /** 335 * ba_space() - returns the amount of free space left in the block allocator 336 * @ba_lun: Block allocator. 337 * 338 * Return: Amount of free space in block allocator 339 */ 340 static u64 ba_space(struct ba_lun *ba_lun) 341 { 342 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 343 344 return bali->free_aun_cnt; 345 } 346 347 /** 348 * cxlflash_ba_terminate() - frees resources associated with the block allocator 349 * @ba_lun: Block allocator. 350 * 351 * Safe to call in a partially allocated state. 352 */ 353 void cxlflash_ba_terminate(struct ba_lun *ba_lun) 354 { 355 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 356 357 if (bali) { 358 kfree(bali->aun_clone_map); 359 kfree(bali->lun_alloc_map); 360 kfree(bali); 361 ba_lun->ba_lun_handle = NULL; 362 } 363 } 364 365 /** 366 * init_vlun() - initializes a LUN for virtual use 367 * @lun_info: LUN information structure that owns the block allocator. 368 * 369 * Return: 0 on success, -errno on failure 370 */ 371 static int init_vlun(struct llun_info *lli) 372 { 373 int rc = 0; 374 struct glun_info *gli = lli->parent; 375 struct blka *blka = &gli->blka; 376 377 memset(blka, 0, sizeof(*blka)); 378 mutex_init(&blka->mutex); 379 380 /* LUN IDs are unique per port, save the index instead */ 381 blka->ba_lun.lun_id = lli->lun_index; 382 blka->ba_lun.lsize = gli->max_lba + 1; 383 blka->ba_lun.lba_size = gli->blk_len; 384 385 blka->ba_lun.au_size = MC_CHUNK_SIZE; 386 blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE; 387 388 rc = ba_init(&blka->ba_lun); 389 if (unlikely(rc)) 390 pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc); 391 392 pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli); 393 return rc; 394 } 395 396 /** 397 * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN 398 * @sdev: SCSI device associated with LUN. 399 * @lba: Logical block address to start write same. 400 * @nblks: Number of logical blocks to write same. 401 * 402 * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur 403 * while in scsi_execute(), the EEH handler will attempt to recover. As part of 404 * the recovery, the handler drains all currently running ioctls, waiting until 405 * they have completed before proceeding with a reset. As this routine is used 406 * on the ioctl path, this can create a condition where the EEH handler becomes 407 * stuck, infinitely waiting for this ioctl thread. To avoid this behavior, 408 * temporarily unmark this thread as an ioctl thread by releasing the ioctl read 409 * semaphore. This will allow the EEH handler to proceed with a recovery while 410 * this thread is still running. Once the scsi_execute() returns, reacquire the 411 * ioctl read semaphore and check the adapter state in case it changed while 412 * inside of scsi_execute(). The state check will wait if the adapter is still 413 * being recovered or return a failure if the recovery failed. In the event that 414 * the adapter reset failed, simply return the failure as the ioctl would be 415 * unable to continue. 416 * 417 * Note that the above puts a requirement on this routine to only be called on 418 * an ioctl thread. 419 * 420 * Return: 0 on success, -errno on failure 421 */ 422 static int write_same16(struct scsi_device *sdev, 423 u64 lba, 424 u32 nblks) 425 { 426 u8 *cmd_buf = NULL; 427 u8 *scsi_cmd = NULL; 428 u8 *sense_buf = NULL; 429 int rc = 0; 430 int result = 0; 431 int ws_limit = SISLITE_MAX_WS_BLOCKS; 432 u64 offset = lba; 433 int left = nblks; 434 u32 to = sdev->request_queue->rq_timeout; 435 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 436 struct device *dev = &cfg->dev->dev; 437 438 cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL); 439 scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL); 440 sense_buf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 441 if (unlikely(!cmd_buf || !scsi_cmd || !sense_buf)) { 442 rc = -ENOMEM; 443 goto out; 444 } 445 446 while (left > 0) { 447 448 scsi_cmd[0] = WRITE_SAME_16; 449 scsi_cmd[1] = cfg->ws_unmap ? 0x8 : 0; 450 put_unaligned_be64(offset, &scsi_cmd[2]); 451 put_unaligned_be32(ws_limit < left ? ws_limit : left, 452 &scsi_cmd[10]); 453 454 /* Drop the ioctl read semahpore across lengthy call */ 455 up_read(&cfg->ioctl_rwsem); 456 result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf, 457 CMD_BUFSIZE, sense_buf, NULL, to, 458 CMD_RETRIES, 0, 0, NULL); 459 down_read(&cfg->ioctl_rwsem); 460 rc = check_state(cfg); 461 if (rc) { 462 dev_err(dev, "%s: Failed state result=%08x\n", 463 __func__, result); 464 rc = -ENODEV; 465 goto out; 466 } 467 468 if (result) { 469 dev_err_ratelimited(dev, "%s: command failed for " 470 "offset=%lld result=%08x\n", 471 __func__, offset, result); 472 rc = -EIO; 473 goto out; 474 } 475 left -= ws_limit; 476 offset += ws_limit; 477 } 478 479 out: 480 kfree(cmd_buf); 481 kfree(scsi_cmd); 482 kfree(sense_buf); 483 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 484 return rc; 485 } 486 487 /** 488 * grow_lxt() - expands the translation table associated with the specified RHTE 489 * @afu: AFU associated with the host. 490 * @sdev: SCSI device associated with LUN. 491 * @ctxid: Context ID of context owning the RHTE. 492 * @rhndl: Resource handle associated with the RHTE. 493 * @rhte: Resource handle entry (RHTE). 494 * @new_size: Number of translation entries associated with RHTE. 495 * 496 * By design, this routine employs a 'best attempt' allocation and will 497 * truncate the requested size down if there is not sufficient space in 498 * the block allocator to satisfy the request but there does exist some 499 * amount of space. The user is made aware of this by returning the size 500 * allocated. 501 * 502 * Return: 0 on success, -errno on failure 503 */ 504 static int grow_lxt(struct afu *afu, 505 struct scsi_device *sdev, 506 ctx_hndl_t ctxid, 507 res_hndl_t rhndl, 508 struct sisl_rht_entry *rhte, 509 u64 *new_size) 510 { 511 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 512 struct device *dev = &cfg->dev->dev; 513 struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL; 514 struct llun_info *lli = sdev->hostdata; 515 struct glun_info *gli = lli->parent; 516 struct blka *blka = &gli->blka; 517 u32 av_size; 518 u32 ngrps, ngrps_old; 519 u64 aun; /* chunk# allocated by block allocator */ 520 u64 delta = *new_size - rhte->lxt_cnt; 521 u64 my_new_size; 522 int i, rc = 0; 523 524 /* 525 * Check what is available in the block allocator before re-allocating 526 * LXT array. This is done up front under the mutex which must not be 527 * released until after allocation is complete. 528 */ 529 mutex_lock(&blka->mutex); 530 av_size = ba_space(&blka->ba_lun); 531 if (unlikely(av_size <= 0)) { 532 dev_dbg(dev, "%s: ba_space error av_size=%d\n", 533 __func__, av_size); 534 mutex_unlock(&blka->mutex); 535 rc = -ENOSPC; 536 goto out; 537 } 538 539 if (av_size < delta) 540 delta = av_size; 541 542 lxt_old = rhte->lxt_start; 543 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 544 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta); 545 546 if (ngrps != ngrps_old) { 547 /* reallocate to fit new size */ 548 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 549 GFP_KERNEL); 550 if (unlikely(!lxt)) { 551 mutex_unlock(&blka->mutex); 552 rc = -ENOMEM; 553 goto out; 554 } 555 556 /* copy over all old entries */ 557 memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt)); 558 } else 559 lxt = lxt_old; 560 561 /* nothing can fail from now on */ 562 my_new_size = rhte->lxt_cnt + delta; 563 564 /* add new entries to the end */ 565 for (i = rhte->lxt_cnt; i < my_new_size; i++) { 566 /* 567 * Due to the earlier check of available space, ba_alloc 568 * cannot fail here. If it did due to internal error, 569 * leave a rlba_base of -1u which will likely be a 570 * invalid LUN (too large). 571 */ 572 aun = ba_alloc(&blka->ba_lun); 573 if ((aun == -1ULL) || (aun >= blka->nchunk)) 574 dev_dbg(dev, "%s: ba_alloc error allocated chunk=%llu " 575 "max=%llu\n", __func__, aun, blka->nchunk - 1); 576 577 /* select both ports, use r/w perms from RHT */ 578 lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) | 579 (lli->lun_index << LXT_LUNIDX_SHIFT) | 580 (RHT_PERM_RW << LXT_PERM_SHIFT | 581 lli->port_sel)); 582 } 583 584 mutex_unlock(&blka->mutex); 585 586 /* 587 * The following sequence is prescribed in the SISlite spec 588 * for syncing up with the AFU when adding LXT entries. 589 */ 590 dma_wmb(); /* Make LXT updates are visible */ 591 592 rhte->lxt_start = lxt; 593 dma_wmb(); /* Make RHT entry's LXT table update visible */ 594 595 rhte->lxt_cnt = my_new_size; 596 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 597 598 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 599 if (unlikely(rc)) 600 rc = -EAGAIN; 601 602 /* free old lxt if reallocated */ 603 if (lxt != lxt_old) 604 kfree(lxt_old); 605 *new_size = my_new_size; 606 out: 607 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 608 return rc; 609 } 610 611 /** 612 * shrink_lxt() - reduces translation table associated with the specified RHTE 613 * @afu: AFU associated with the host. 614 * @sdev: SCSI device associated with LUN. 615 * @rhndl: Resource handle associated with the RHTE. 616 * @rhte: Resource handle entry (RHTE). 617 * @ctxi: Context owning resources. 618 * @new_size: Number of translation entries associated with RHTE. 619 * 620 * Return: 0 on success, -errno on failure 621 */ 622 static int shrink_lxt(struct afu *afu, 623 struct scsi_device *sdev, 624 res_hndl_t rhndl, 625 struct sisl_rht_entry *rhte, 626 struct ctx_info *ctxi, 627 u64 *new_size) 628 { 629 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 630 struct device *dev = &cfg->dev->dev; 631 struct sisl_lxt_entry *lxt, *lxt_old; 632 struct llun_info *lli = sdev->hostdata; 633 struct glun_info *gli = lli->parent; 634 struct blka *blka = &gli->blka; 635 ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid); 636 bool needs_ws = ctxi->rht_needs_ws[rhndl]; 637 bool needs_sync = !ctxi->err_recovery_active; 638 u32 ngrps, ngrps_old; 639 u64 aun; /* chunk# allocated by block allocator */ 640 u64 delta = rhte->lxt_cnt - *new_size; 641 u64 my_new_size; 642 int i, rc = 0; 643 644 lxt_old = rhte->lxt_start; 645 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 646 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta); 647 648 if (ngrps != ngrps_old) { 649 /* Reallocate to fit new size unless new size is 0 */ 650 if (ngrps) { 651 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 652 GFP_KERNEL); 653 if (unlikely(!lxt)) { 654 rc = -ENOMEM; 655 goto out; 656 } 657 658 /* Copy over old entries that will remain */ 659 memcpy(lxt, lxt_old, 660 (sizeof(*lxt) * (rhte->lxt_cnt - delta))); 661 } else 662 lxt = NULL; 663 } else 664 lxt = lxt_old; 665 666 /* Nothing can fail from now on */ 667 my_new_size = rhte->lxt_cnt - delta; 668 669 /* 670 * The following sequence is prescribed in the SISlite spec 671 * for syncing up with the AFU when removing LXT entries. 672 */ 673 rhte->lxt_cnt = my_new_size; 674 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 675 676 rhte->lxt_start = lxt; 677 dma_wmb(); /* Make RHT entry's LXT table update visible */ 678 679 if (needs_sync) { 680 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 681 if (unlikely(rc)) 682 rc = -EAGAIN; 683 } 684 685 if (needs_ws) { 686 /* 687 * Mark the context as unavailable, so that we can release 688 * the mutex safely. 689 */ 690 ctxi->unavail = true; 691 mutex_unlock(&ctxi->mutex); 692 } 693 694 /* Free LBAs allocated to freed chunks */ 695 mutex_lock(&blka->mutex); 696 for (i = delta - 1; i >= 0; i--) { 697 /* Mask the higher 48 bits before shifting, even though 698 * it is a noop 699 */ 700 aun = (lxt_old[my_new_size + i].rlba_base & SISL_ASTATUS_MASK); 701 aun = (aun >> MC_CHUNK_SHIFT); 702 if (needs_ws) 703 write_same16(sdev, aun, MC_CHUNK_SIZE); 704 ba_free(&blka->ba_lun, aun); 705 } 706 mutex_unlock(&blka->mutex); 707 708 if (needs_ws) { 709 /* Make the context visible again */ 710 mutex_lock(&ctxi->mutex); 711 ctxi->unavail = false; 712 } 713 714 /* Free old lxt if reallocated */ 715 if (lxt != lxt_old) 716 kfree(lxt_old); 717 *new_size = my_new_size; 718 out: 719 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 720 return rc; 721 } 722 723 /** 724 * _cxlflash_vlun_resize() - changes the size of a virtual LUN 725 * @sdev: SCSI device associated with LUN owning virtual LUN. 726 * @ctxi: Context owning resources. 727 * @resize: Resize ioctl data structure. 728 * 729 * On successful return, the user is informed of the new size (in blocks) 730 * of the virtual LUN in last LBA format. When the size of the virtual 731 * LUN is zero, the last LBA is reflected as -1. See comment in the 732 * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts 733 * on the error recovery list. 734 * 735 * Return: 0 on success, -errno on failure 736 */ 737 int _cxlflash_vlun_resize(struct scsi_device *sdev, 738 struct ctx_info *ctxi, 739 struct dk_cxlflash_resize *resize) 740 { 741 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 742 struct device *dev = &cfg->dev->dev; 743 struct llun_info *lli = sdev->hostdata; 744 struct glun_info *gli = lli->parent; 745 struct afu *afu = cfg->afu; 746 bool put_ctx = false; 747 748 res_hndl_t rhndl = resize->rsrc_handle; 749 u64 new_size; 750 u64 nsectors; 751 u64 ctxid = DECODE_CTXID(resize->context_id), 752 rctxid = resize->context_id; 753 754 struct sisl_rht_entry *rhte; 755 756 int rc = 0; 757 758 /* 759 * The requested size (req_size) is always assumed to be in 4k blocks, 760 * so we have to convert it here from 4k to chunk size. 761 */ 762 nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len; 763 new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE); 764 765 dev_dbg(dev, "%s: ctxid=%llu rhndl=%llu req_size=%llu new_size=%llu\n", 766 __func__, ctxid, resize->rsrc_handle, resize->req_size, 767 new_size); 768 769 if (unlikely(gli->mode != MODE_VIRTUAL)) { 770 dev_dbg(dev, "%s: LUN mode does not support resize mode=%d\n", 771 __func__, gli->mode); 772 rc = -EINVAL; 773 goto out; 774 775 } 776 777 if (!ctxi) { 778 ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK); 779 if (unlikely(!ctxi)) { 780 dev_dbg(dev, "%s: Bad context ctxid=%llu\n", 781 __func__, ctxid); 782 rc = -EINVAL; 783 goto out; 784 } 785 786 put_ctx = true; 787 } 788 789 rhte = get_rhte(ctxi, rhndl, lli); 790 if (unlikely(!rhte)) { 791 dev_dbg(dev, "%s: Bad resource handle rhndl=%u\n", 792 __func__, rhndl); 793 rc = -EINVAL; 794 goto out; 795 } 796 797 if (new_size > rhte->lxt_cnt) 798 rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size); 799 else if (new_size < rhte->lxt_cnt) 800 rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size); 801 else { 802 /* 803 * Rare case where there is already sufficient space, just 804 * need to perform a translation sync with the AFU. This 805 * scenario likely follows a previous sync failure during 806 * a resize operation. Accordingly, perform the heavyweight 807 * form of translation sync as it is unknown which type of 808 * resize failed previously. 809 */ 810 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 811 if (unlikely(rc)) { 812 rc = -EAGAIN; 813 goto out; 814 } 815 } 816 817 resize->hdr.return_flags = 0; 818 resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len); 819 resize->last_lba /= CXLFLASH_BLOCK_SIZE; 820 resize->last_lba--; 821 822 out: 823 if (put_ctx) 824 put_context(ctxi); 825 dev_dbg(dev, "%s: resized to %llu returning rc=%d\n", 826 __func__, resize->last_lba, rc); 827 return rc; 828 } 829 830 int cxlflash_vlun_resize(struct scsi_device *sdev, 831 struct dk_cxlflash_resize *resize) 832 { 833 return _cxlflash_vlun_resize(sdev, NULL, resize); 834 } 835 836 /** 837 * cxlflash_restore_luntable() - Restore LUN table to prior state 838 * @cfg: Internal structure associated with the host. 839 */ 840 void cxlflash_restore_luntable(struct cxlflash_cfg *cfg) 841 { 842 struct llun_info *lli, *temp; 843 u32 lind; 844 int k; 845 struct device *dev = &cfg->dev->dev; 846 __be64 __iomem *fc_port_luns; 847 848 mutex_lock(&global.mutex); 849 850 list_for_each_entry_safe(lli, temp, &cfg->lluns, list) { 851 if (!lli->in_table) 852 continue; 853 854 lind = lli->lun_index; 855 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 856 857 for (k = 0; k < cfg->num_fc_ports; k++) 858 if (lli->port_sel & (1 << k)) { 859 fc_port_luns = get_fc_port_luns(cfg, k); 860 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 861 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 862 } 863 } 864 865 mutex_unlock(&global.mutex); 866 } 867 868 /** 869 * get_num_ports() - compute number of ports from port selection mask 870 * @psm: Port selection mask. 871 * 872 * Return: Population count of port selection mask 873 */ 874 static inline u8 get_num_ports(u32 psm) 875 { 876 static const u8 bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 877 1, 2, 2, 3, 2, 3, 3, 4 }; 878 879 return bits[psm & 0xf]; 880 } 881 882 /** 883 * init_luntable() - write an entry in the LUN table 884 * @cfg: Internal structure associated with the host. 885 * @lli: Per adapter LUN information structure. 886 * 887 * On successful return, a LUN table entry is created: 888 * - at the top for LUNs visible on multiple ports. 889 * - at the bottom for LUNs visible only on one port. 890 * 891 * Return: 0 on success, -errno on failure 892 */ 893 static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli) 894 { 895 u32 chan; 896 u32 lind; 897 u32 nports; 898 int rc = 0; 899 int k; 900 struct device *dev = &cfg->dev->dev; 901 __be64 __iomem *fc_port_luns; 902 903 mutex_lock(&global.mutex); 904 905 if (lli->in_table) 906 goto out; 907 908 nports = get_num_ports(lli->port_sel); 909 if (nports == 0 || nports > cfg->num_fc_ports) { 910 WARN(1, "Unsupported port configuration nports=%u", nports); 911 rc = -EIO; 912 goto out; 913 } 914 915 if (nports > 1) { 916 /* 917 * When LUN is visible from multiple ports, we will put 918 * it in the top half of the LUN table. 919 */ 920 for (k = 0; k < cfg->num_fc_ports; k++) { 921 if (!(lli->port_sel & (1 << k))) 922 continue; 923 924 if (cfg->promote_lun_index == cfg->last_lun_index[k]) { 925 rc = -ENOSPC; 926 goto out; 927 } 928 } 929 930 lind = lli->lun_index = cfg->promote_lun_index; 931 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 932 933 for (k = 0; k < cfg->num_fc_ports; k++) { 934 if (!(lli->port_sel & (1 << k))) 935 continue; 936 937 fc_port_luns = get_fc_port_luns(cfg, k); 938 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 939 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 940 } 941 942 cfg->promote_lun_index++; 943 } else { 944 /* 945 * When LUN is visible only from one port, we will put 946 * it in the bottom half of the LUN table. 947 */ 948 chan = PORTMASK2CHAN(lli->port_sel); 949 if (cfg->promote_lun_index == cfg->last_lun_index[chan]) { 950 rc = -ENOSPC; 951 goto out; 952 } 953 954 lind = lli->lun_index = cfg->last_lun_index[chan]; 955 fc_port_luns = get_fc_port_luns(cfg, chan); 956 writeq_be(lli->lun_id[chan], &fc_port_luns[lind]); 957 cfg->last_lun_index[chan]--; 958 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n\t%d=%llx\n", 959 __func__, lind, chan, lli->lun_id[chan]); 960 } 961 962 lli->in_table = true; 963 out: 964 mutex_unlock(&global.mutex); 965 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 966 return rc; 967 } 968 969 /** 970 * cxlflash_disk_virtual_open() - open a virtual disk of specified size 971 * @sdev: SCSI device associated with LUN owning virtual LUN. 972 * @arg: UVirtual ioctl data structure. 973 * 974 * On successful return, the user is informed of the resource handle 975 * to be used to identify the virtual LUN and the size (in blocks) of 976 * the virtual LUN in last LBA format. When the size of the virtual LUN 977 * is zero, the last LBA is reflected as -1. 978 * 979 * Return: 0 on success, -errno on failure 980 */ 981 int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg) 982 { 983 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 984 struct device *dev = &cfg->dev->dev; 985 struct llun_info *lli = sdev->hostdata; 986 struct glun_info *gli = lli->parent; 987 988 struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg; 989 struct dk_cxlflash_resize resize; 990 991 u64 ctxid = DECODE_CTXID(virt->context_id), 992 rctxid = virt->context_id; 993 u64 lun_size = virt->lun_size; 994 u64 last_lba = 0; 995 u64 rsrc_handle = -1; 996 997 int rc = 0; 998 999 struct ctx_info *ctxi = NULL; 1000 struct sisl_rht_entry *rhte = NULL; 1001 1002 dev_dbg(dev, "%s: ctxid=%llu ls=%llu\n", __func__, ctxid, lun_size); 1003 1004 /* Setup the LUNs block allocator on first call */ 1005 mutex_lock(&gli->mutex); 1006 if (gli->mode == MODE_NONE) { 1007 rc = init_vlun(lli); 1008 if (rc) { 1009 dev_err(dev, "%s: init_vlun failed rc=%d\n", 1010 __func__, rc); 1011 rc = -ENOMEM; 1012 goto err0; 1013 } 1014 } 1015 1016 rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true); 1017 if (unlikely(rc)) { 1018 dev_err(dev, "%s: Failed attach to LUN (VIRTUAL)\n", __func__); 1019 goto err0; 1020 } 1021 mutex_unlock(&gli->mutex); 1022 1023 rc = init_luntable(cfg, lli); 1024 if (rc) { 1025 dev_err(dev, "%s: init_luntable failed rc=%d\n", __func__, rc); 1026 goto err1; 1027 } 1028 1029 ctxi = get_context(cfg, rctxid, lli, 0); 1030 if (unlikely(!ctxi)) { 1031 dev_err(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid); 1032 rc = -EINVAL; 1033 goto err1; 1034 } 1035 1036 rhte = rhte_checkout(ctxi, lli); 1037 if (unlikely(!rhte)) { 1038 dev_err(dev, "%s: too many opens ctxid=%llu\n", 1039 __func__, ctxid); 1040 rc = -EMFILE; /* too many opens */ 1041 goto err1; 1042 } 1043 1044 rsrc_handle = (rhte - ctxi->rht_start); 1045 1046 /* Populate RHT format 0 */ 1047 rhte->nmask = MC_RHT_NMASK; 1048 rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms); 1049 1050 /* Resize even if requested size is 0 */ 1051 marshal_virt_to_resize(virt, &resize); 1052 resize.rsrc_handle = rsrc_handle; 1053 rc = _cxlflash_vlun_resize(sdev, ctxi, &resize); 1054 if (rc) { 1055 dev_err(dev, "%s: resize failed rc=%d\n", __func__, rc); 1056 goto err2; 1057 } 1058 last_lba = resize.last_lba; 1059 1060 if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME) 1061 ctxi->rht_needs_ws[rsrc_handle] = true; 1062 1063 virt->hdr.return_flags = 0; 1064 virt->last_lba = last_lba; 1065 virt->rsrc_handle = rsrc_handle; 1066 1067 if (get_num_ports(lli->port_sel) > 1) 1068 virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE; 1069 out: 1070 if (likely(ctxi)) 1071 put_context(ctxi); 1072 dev_dbg(dev, "%s: returning handle=%llu rc=%d llba=%llu\n", 1073 __func__, rsrc_handle, rc, last_lba); 1074 return rc; 1075 1076 err2: 1077 rhte_checkin(ctxi, rhte); 1078 err1: 1079 cxlflash_lun_detach(gli); 1080 goto out; 1081 err0: 1082 /* Special common cleanup prior to successful LUN attach */ 1083 cxlflash_ba_terminate(&gli->blka.ba_lun); 1084 mutex_unlock(&gli->mutex); 1085 goto out; 1086 } 1087 1088 /** 1089 * clone_lxt() - copies translation tables from source to destination RHTE 1090 * @afu: AFU associated with the host. 1091 * @blka: Block allocator associated with LUN. 1092 * @ctxid: Context ID of context owning the RHTE. 1093 * @rhndl: Resource handle associated with the RHTE. 1094 * @rhte: Destination resource handle entry (RHTE). 1095 * @rhte_src: Source resource handle entry (RHTE). 1096 * 1097 * Return: 0 on success, -errno on failure 1098 */ 1099 static int clone_lxt(struct afu *afu, 1100 struct blka *blka, 1101 ctx_hndl_t ctxid, 1102 res_hndl_t rhndl, 1103 struct sisl_rht_entry *rhte, 1104 struct sisl_rht_entry *rhte_src) 1105 { 1106 struct cxlflash_cfg *cfg = afu->parent; 1107 struct device *dev = &cfg->dev->dev; 1108 struct sisl_lxt_entry *lxt = NULL; 1109 bool locked = false; 1110 u32 ngrps; 1111 u64 aun; /* chunk# allocated by block allocator */ 1112 int j; 1113 int i = 0; 1114 int rc = 0; 1115 1116 ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt); 1117 1118 if (ngrps) { 1119 /* allocate new LXTs for clone */ 1120 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 1121 GFP_KERNEL); 1122 if (unlikely(!lxt)) { 1123 rc = -ENOMEM; 1124 goto out; 1125 } 1126 1127 /* copy over */ 1128 memcpy(lxt, rhte_src->lxt_start, 1129 (sizeof(*lxt) * rhte_src->lxt_cnt)); 1130 1131 /* clone the LBAs in block allocator via ref_cnt, note that the 1132 * block allocator mutex must be held until it is established 1133 * that this routine will complete without the need for a 1134 * cleanup. 1135 */ 1136 mutex_lock(&blka->mutex); 1137 locked = true; 1138 for (i = 0; i < rhte_src->lxt_cnt; i++) { 1139 aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT); 1140 if (ba_clone(&blka->ba_lun, aun) == -1ULL) { 1141 rc = -EIO; 1142 goto err; 1143 } 1144 } 1145 } 1146 1147 /* 1148 * The following sequence is prescribed in the SISlite spec 1149 * for syncing up with the AFU when adding LXT entries. 1150 */ 1151 dma_wmb(); /* Make LXT updates are visible */ 1152 1153 rhte->lxt_start = lxt; 1154 dma_wmb(); /* Make RHT entry's LXT table update visible */ 1155 1156 rhte->lxt_cnt = rhte_src->lxt_cnt; 1157 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 1158 1159 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 1160 if (unlikely(rc)) { 1161 rc = -EAGAIN; 1162 goto err2; 1163 } 1164 1165 out: 1166 if (locked) 1167 mutex_unlock(&blka->mutex); 1168 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1169 return rc; 1170 err2: 1171 /* Reset the RHTE */ 1172 rhte->lxt_cnt = 0; 1173 dma_wmb(); 1174 rhte->lxt_start = NULL; 1175 dma_wmb(); 1176 err: 1177 /* free the clones already made */ 1178 for (j = 0; j < i; j++) { 1179 aun = (lxt[j].rlba_base >> MC_CHUNK_SHIFT); 1180 ba_free(&blka->ba_lun, aun); 1181 } 1182 kfree(lxt); 1183 goto out; 1184 } 1185 1186 /** 1187 * cxlflash_disk_clone() - clone a context by making snapshot of another 1188 * @sdev: SCSI device associated with LUN owning virtual LUN. 1189 * @clone: Clone ioctl data structure. 1190 * 1191 * This routine effectively performs cxlflash_disk_open operation for each 1192 * in-use virtual resource in the source context. Note that the destination 1193 * context must be in pristine state and cannot have any resource handles 1194 * open at the time of the clone. 1195 * 1196 * Return: 0 on success, -errno on failure 1197 */ 1198 int cxlflash_disk_clone(struct scsi_device *sdev, 1199 struct dk_cxlflash_clone *clone) 1200 { 1201 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 1202 struct device *dev = &cfg->dev->dev; 1203 struct llun_info *lli = sdev->hostdata; 1204 struct glun_info *gli = lli->parent; 1205 struct blka *blka = &gli->blka; 1206 struct afu *afu = cfg->afu; 1207 struct dk_cxlflash_release release = { { 0 }, 0 }; 1208 1209 struct ctx_info *ctxi_src = NULL, 1210 *ctxi_dst = NULL; 1211 struct lun_access *lun_access_src, *lun_access_dst; 1212 u32 perms; 1213 u64 ctxid_src = DECODE_CTXID(clone->context_id_src), 1214 ctxid_dst = DECODE_CTXID(clone->context_id_dst), 1215 rctxid_src = clone->context_id_src, 1216 rctxid_dst = clone->context_id_dst; 1217 int i, j; 1218 int rc = 0; 1219 bool found; 1220 LIST_HEAD(sidecar); 1221 1222 dev_dbg(dev, "%s: ctxid_src=%llu ctxid_dst=%llu\n", 1223 __func__, ctxid_src, ctxid_dst); 1224 1225 /* Do not clone yourself */ 1226 if (unlikely(rctxid_src == rctxid_dst)) { 1227 rc = -EINVAL; 1228 goto out; 1229 } 1230 1231 if (unlikely(gli->mode != MODE_VIRTUAL)) { 1232 rc = -EINVAL; 1233 dev_dbg(dev, "%s: Only supported on virtual LUNs mode=%u\n", 1234 __func__, gli->mode); 1235 goto out; 1236 } 1237 1238 ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE); 1239 ctxi_dst = get_context(cfg, rctxid_dst, lli, 0); 1240 if (unlikely(!ctxi_src || !ctxi_dst)) { 1241 dev_dbg(dev, "%s: Bad context ctxid_src=%llu ctxid_dst=%llu\n", 1242 __func__, ctxid_src, ctxid_dst); 1243 rc = -EINVAL; 1244 goto out; 1245 } 1246 1247 /* Verify there is no open resource handle in the destination context */ 1248 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) 1249 if (ctxi_dst->rht_start[i].nmask != 0) { 1250 rc = -EINVAL; 1251 goto out; 1252 } 1253 1254 /* Clone LUN access list */ 1255 list_for_each_entry(lun_access_src, &ctxi_src->luns, list) { 1256 found = false; 1257 list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list) 1258 if (lun_access_dst->sdev == lun_access_src->sdev) { 1259 found = true; 1260 break; 1261 } 1262 1263 if (!found) { 1264 lun_access_dst = kzalloc(sizeof(*lun_access_dst), 1265 GFP_KERNEL); 1266 if (unlikely(!lun_access_dst)) { 1267 dev_err(dev, "%s: lun_access allocation fail\n", 1268 __func__); 1269 rc = -ENOMEM; 1270 goto out; 1271 } 1272 1273 *lun_access_dst = *lun_access_src; 1274 list_add(&lun_access_dst->list, &sidecar); 1275 } 1276 } 1277 1278 if (unlikely(!ctxi_src->rht_out)) { 1279 dev_dbg(dev, "%s: Nothing to clone\n", __func__); 1280 goto out_success; 1281 } 1282 1283 /* User specified permission on attach */ 1284 perms = ctxi_dst->rht_perms; 1285 1286 /* 1287 * Copy over checked-out RHT (and their associated LXT) entries by 1288 * hand, stopping after we've copied all outstanding entries and 1289 * cleaning up if the clone fails. 1290 * 1291 * Note: This loop is equivalent to performing cxlflash_disk_open and 1292 * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into 1293 * account by attaching after each successful RHT entry clone. In the 1294 * event that a clone failure is experienced, the LUN detach is handled 1295 * via the cleanup performed by _cxlflash_disk_release. 1296 */ 1297 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) { 1298 if (ctxi_src->rht_out == ctxi_dst->rht_out) 1299 break; 1300 if (ctxi_src->rht_start[i].nmask == 0) 1301 continue; 1302 1303 /* Consume a destination RHT entry */ 1304 ctxi_dst->rht_out++; 1305 ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask; 1306 ctxi_dst->rht_start[i].fp = 1307 SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms); 1308 ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i]; 1309 1310 rc = clone_lxt(afu, blka, ctxid_dst, i, 1311 &ctxi_dst->rht_start[i], 1312 &ctxi_src->rht_start[i]); 1313 if (rc) { 1314 marshal_clone_to_rele(clone, &release); 1315 for (j = 0; j < i; j++) { 1316 release.rsrc_handle = j; 1317 _cxlflash_disk_release(sdev, ctxi_dst, 1318 &release); 1319 } 1320 1321 /* Put back the one we failed on */ 1322 rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]); 1323 goto err; 1324 } 1325 1326 cxlflash_lun_attach(gli, gli->mode, false); 1327 } 1328 1329 out_success: 1330 list_splice(&sidecar, &ctxi_dst->luns); 1331 1332 /* fall through */ 1333 out: 1334 if (ctxi_src) 1335 put_context(ctxi_src); 1336 if (ctxi_dst) 1337 put_context(ctxi_dst); 1338 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1339 return rc; 1340 1341 err: 1342 list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list) 1343 kfree(lun_access_src); 1344 goto out; 1345 } 1346