1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/interrupt.h> 16 #include <linux/pci.h> 17 #include <linux/syscalls.h> 18 #include <asm/unaligned.h> 19 #include <asm/bitsperlong.h> 20 21 #include <scsi/scsi_cmnd.h> 22 #include <scsi/scsi_host.h> 23 #include <uapi/scsi/cxlflash_ioctl.h> 24 25 #include "sislite.h" 26 #include "common.h" 27 #include "vlun.h" 28 #include "superpipe.h" 29 30 /** 31 * marshal_virt_to_resize() - translate uvirtual to resize structure 32 * @virt: Source structure from which to translate/copy. 33 * @resize: Destination structure for the translate/copy. 34 */ 35 static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt, 36 struct dk_cxlflash_resize *resize) 37 { 38 resize->hdr = virt->hdr; 39 resize->context_id = virt->context_id; 40 resize->rsrc_handle = virt->rsrc_handle; 41 resize->req_size = virt->lun_size; 42 resize->last_lba = virt->last_lba; 43 } 44 45 /** 46 * marshal_clone_to_rele() - translate clone to release structure 47 * @clone: Source structure from which to translate/copy. 48 * @rele: Destination structure for the translate/copy. 49 */ 50 static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone, 51 struct dk_cxlflash_release *release) 52 { 53 release->hdr = clone->hdr; 54 release->context_id = clone->context_id_dst; 55 } 56 57 /** 58 * ba_init() - initializes a block allocator 59 * @ba_lun: Block allocator to initialize. 60 * 61 * Return: 0 on success, -errno on failure 62 */ 63 static int ba_init(struct ba_lun *ba_lun) 64 { 65 struct ba_lun_info *bali = NULL; 66 int lun_size_au = 0, i = 0; 67 int last_word_underflow = 0; 68 u64 *lam; 69 70 pr_debug("%s: Initializing LUN: lun_id=%016llx " 71 "ba_lun->lsize=%lx ba_lun->au_size=%lX\n", 72 __func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size); 73 74 /* Calculate bit map size */ 75 lun_size_au = ba_lun->lsize / ba_lun->au_size; 76 if (lun_size_au == 0) { 77 pr_debug("%s: Requested LUN size of 0!\n", __func__); 78 return -EINVAL; 79 } 80 81 /* Allocate lun information container */ 82 bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL); 83 if (unlikely(!bali)) { 84 pr_err("%s: Failed to allocate lun_info lun_id=%016llx\n", 85 __func__, ba_lun->lun_id); 86 return -ENOMEM; 87 } 88 89 bali->total_aus = lun_size_au; 90 bali->lun_bmap_size = lun_size_au / BITS_PER_LONG; 91 92 if (lun_size_au % BITS_PER_LONG) 93 bali->lun_bmap_size++; 94 95 /* Allocate bitmap space */ 96 bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)), 97 GFP_KERNEL); 98 if (unlikely(!bali->lun_alloc_map)) { 99 pr_err("%s: Failed to allocate lun allocation map: " 100 "lun_id=%016llx\n", __func__, ba_lun->lun_id); 101 kfree(bali); 102 return -ENOMEM; 103 } 104 105 /* Initialize the bit map size and set all bits to '1' */ 106 bali->free_aun_cnt = lun_size_au; 107 108 for (i = 0; i < bali->lun_bmap_size; i++) 109 bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL; 110 111 /* If the last word not fully utilized, mark extra bits as allocated */ 112 last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG); 113 last_word_underflow -= bali->free_aun_cnt; 114 if (last_word_underflow > 0) { 115 lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1]; 116 for (i = (HIBIT - last_word_underflow + 1); 117 i < BITS_PER_LONG; 118 i++) 119 clear_bit(i, (ulong *)lam); 120 } 121 122 /* Initialize high elevator index, low/curr already at 0 from kzalloc */ 123 bali->free_high_idx = bali->lun_bmap_size; 124 125 /* Allocate clone map */ 126 bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)), 127 GFP_KERNEL); 128 if (unlikely(!bali->aun_clone_map)) { 129 pr_err("%s: Failed to allocate clone map: lun_id=%016llx\n", 130 __func__, ba_lun->lun_id); 131 kfree(bali->lun_alloc_map); 132 kfree(bali); 133 return -ENOMEM; 134 } 135 136 /* Pass the allocated LUN info as a handle to the user */ 137 ba_lun->ba_lun_handle = bali; 138 139 pr_debug("%s: Successfully initialized the LUN: " 140 "lun_id=%016llx bitmap size=%x, free_aun_cnt=%llx\n", 141 __func__, ba_lun->lun_id, bali->lun_bmap_size, 142 bali->free_aun_cnt); 143 return 0; 144 } 145 146 /** 147 * find_free_range() - locates a free bit within the block allocator 148 * @low: First word in block allocator to start search. 149 * @high: Last word in block allocator to search. 150 * @bali: LUN information structure owning the block allocator to search. 151 * @bit_word: Passes back the word in the block allocator owning the free bit. 152 * 153 * Return: The bit position within the passed back word, -1 on failure 154 */ 155 static int find_free_range(u32 low, 156 u32 high, 157 struct ba_lun_info *bali, int *bit_word) 158 { 159 int i; 160 u64 bit_pos = -1; 161 ulong *lam, num_bits; 162 163 for (i = low; i < high; i++) 164 if (bali->lun_alloc_map[i] != 0) { 165 lam = (ulong *)&bali->lun_alloc_map[i]; 166 num_bits = (sizeof(*lam) * BITS_PER_BYTE); 167 bit_pos = find_first_bit(lam, num_bits); 168 169 pr_devel("%s: Found free bit %llu in LUN " 170 "map entry %016llx at bitmap index = %d\n", 171 __func__, bit_pos, bali->lun_alloc_map[i], i); 172 173 *bit_word = i; 174 bali->free_aun_cnt--; 175 clear_bit(bit_pos, lam); 176 break; 177 } 178 179 return bit_pos; 180 } 181 182 /** 183 * ba_alloc() - allocates a block from the block allocator 184 * @ba_lun: Block allocator from which to allocate a block. 185 * 186 * Return: The allocated block, -1 on failure 187 */ 188 static u64 ba_alloc(struct ba_lun *ba_lun) 189 { 190 u64 bit_pos = -1; 191 int bit_word = 0; 192 struct ba_lun_info *bali = NULL; 193 194 bali = ba_lun->ba_lun_handle; 195 196 pr_debug("%s: Received block allocation request: " 197 "lun_id=%016llx free_aun_cnt=%llx\n", 198 __func__, ba_lun->lun_id, bali->free_aun_cnt); 199 200 if (bali->free_aun_cnt == 0) { 201 pr_debug("%s: No space left on LUN: lun_id=%016llx\n", 202 __func__, ba_lun->lun_id); 203 return -1ULL; 204 } 205 206 /* Search to find a free entry, curr->high then low->curr */ 207 bit_pos = find_free_range(bali->free_curr_idx, 208 bali->free_high_idx, bali, &bit_word); 209 if (bit_pos == -1) { 210 bit_pos = find_free_range(bali->free_low_idx, 211 bali->free_curr_idx, 212 bali, &bit_word); 213 if (bit_pos == -1) { 214 pr_debug("%s: Could not find an allocation unit on LUN:" 215 " lun_id=%016llx\n", __func__, ba_lun->lun_id); 216 return -1ULL; 217 } 218 } 219 220 /* Update the free_curr_idx */ 221 if (bit_pos == HIBIT) 222 bali->free_curr_idx = bit_word + 1; 223 else 224 bali->free_curr_idx = bit_word; 225 226 pr_debug("%s: Allocating AU number=%llx lun_id=%016llx " 227 "free_aun_cnt=%llx\n", __func__, 228 ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id, 229 bali->free_aun_cnt); 230 231 return (u64) ((bit_word * BITS_PER_LONG) + bit_pos); 232 } 233 234 /** 235 * validate_alloc() - validates the specified block has been allocated 236 * @ba_lun_info: LUN info owning the block allocator. 237 * @aun: Block to validate. 238 * 239 * Return: 0 on success, -1 on failure 240 */ 241 static int validate_alloc(struct ba_lun_info *bali, u64 aun) 242 { 243 int idx = 0, bit_pos = 0; 244 245 idx = aun / BITS_PER_LONG; 246 bit_pos = aun % BITS_PER_LONG; 247 248 if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx])) 249 return -1; 250 251 return 0; 252 } 253 254 /** 255 * ba_free() - frees a block from the block allocator 256 * @ba_lun: Block allocator from which to allocate a block. 257 * @to_free: Block to free. 258 * 259 * Return: 0 on success, -1 on failure 260 */ 261 static int ba_free(struct ba_lun *ba_lun, u64 to_free) 262 { 263 int idx = 0, bit_pos = 0; 264 struct ba_lun_info *bali = NULL; 265 266 bali = ba_lun->ba_lun_handle; 267 268 if (validate_alloc(bali, to_free)) { 269 pr_debug("%s: AUN %llx is not allocated on lun_id=%016llx\n", 270 __func__, to_free, ba_lun->lun_id); 271 return -1; 272 } 273 274 pr_debug("%s: Received a request to free AU=%llx lun_id=%016llx " 275 "free_aun_cnt=%llx\n", __func__, to_free, ba_lun->lun_id, 276 bali->free_aun_cnt); 277 278 if (bali->aun_clone_map[to_free] > 0) { 279 pr_debug("%s: AUN %llx lun_id=%016llx cloned. Clone count=%x\n", 280 __func__, to_free, ba_lun->lun_id, 281 bali->aun_clone_map[to_free]); 282 bali->aun_clone_map[to_free]--; 283 return 0; 284 } 285 286 idx = to_free / BITS_PER_LONG; 287 bit_pos = to_free % BITS_PER_LONG; 288 289 set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]); 290 bali->free_aun_cnt++; 291 292 if (idx < bali->free_low_idx) 293 bali->free_low_idx = idx; 294 else if (idx > bali->free_high_idx) 295 bali->free_high_idx = idx; 296 297 pr_debug("%s: Successfully freed AU bit_pos=%x bit map index=%x " 298 "lun_id=%016llx free_aun_cnt=%llx\n", __func__, bit_pos, idx, 299 ba_lun->lun_id, bali->free_aun_cnt); 300 301 return 0; 302 } 303 304 /** 305 * ba_clone() - Clone a chunk of the block allocation table 306 * @ba_lun: Block allocator from which to allocate a block. 307 * @to_free: Block to free. 308 * 309 * Return: 0 on success, -1 on failure 310 */ 311 static int ba_clone(struct ba_lun *ba_lun, u64 to_clone) 312 { 313 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 314 315 if (validate_alloc(bali, to_clone)) { 316 pr_debug("%s: AUN=%llx not allocated on lun_id=%016llx\n", 317 __func__, to_clone, ba_lun->lun_id); 318 return -1; 319 } 320 321 pr_debug("%s: Received a request to clone AUN %llx on lun_id=%016llx\n", 322 __func__, to_clone, ba_lun->lun_id); 323 324 if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) { 325 pr_debug("%s: AUN %llx on lun_id=%016llx hit max clones already\n", 326 __func__, to_clone, ba_lun->lun_id); 327 return -1; 328 } 329 330 bali->aun_clone_map[to_clone]++; 331 332 return 0; 333 } 334 335 /** 336 * ba_space() - returns the amount of free space left in the block allocator 337 * @ba_lun: Block allocator. 338 * 339 * Return: Amount of free space in block allocator 340 */ 341 static u64 ba_space(struct ba_lun *ba_lun) 342 { 343 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 344 345 return bali->free_aun_cnt; 346 } 347 348 /** 349 * cxlflash_ba_terminate() - frees resources associated with the block allocator 350 * @ba_lun: Block allocator. 351 * 352 * Safe to call in a partially allocated state. 353 */ 354 void cxlflash_ba_terminate(struct ba_lun *ba_lun) 355 { 356 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 357 358 if (bali) { 359 kfree(bali->aun_clone_map); 360 kfree(bali->lun_alloc_map); 361 kfree(bali); 362 ba_lun->ba_lun_handle = NULL; 363 } 364 } 365 366 /** 367 * init_vlun() - initializes a LUN for virtual use 368 * @lun_info: LUN information structure that owns the block allocator. 369 * 370 * Return: 0 on success, -errno on failure 371 */ 372 static int init_vlun(struct llun_info *lli) 373 { 374 int rc = 0; 375 struct glun_info *gli = lli->parent; 376 struct blka *blka = &gli->blka; 377 378 memset(blka, 0, sizeof(*blka)); 379 mutex_init(&blka->mutex); 380 381 /* LUN IDs are unique per port, save the index instead */ 382 blka->ba_lun.lun_id = lli->lun_index; 383 blka->ba_lun.lsize = gli->max_lba + 1; 384 blka->ba_lun.lba_size = gli->blk_len; 385 386 blka->ba_lun.au_size = MC_CHUNK_SIZE; 387 blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE; 388 389 rc = ba_init(&blka->ba_lun); 390 if (unlikely(rc)) 391 pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc); 392 393 pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli); 394 return rc; 395 } 396 397 /** 398 * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN 399 * @sdev: SCSI device associated with LUN. 400 * @lba: Logical block address to start write same. 401 * @nblks: Number of logical blocks to write same. 402 * 403 * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur 404 * while in scsi_execute(), the EEH handler will attempt to recover. As part of 405 * the recovery, the handler drains all currently running ioctls, waiting until 406 * they have completed before proceeding with a reset. As this routine is used 407 * on the ioctl path, this can create a condition where the EEH handler becomes 408 * stuck, infinitely waiting for this ioctl thread. To avoid this behavior, 409 * temporarily unmark this thread as an ioctl thread by releasing the ioctl read 410 * semaphore. This will allow the EEH handler to proceed with a recovery while 411 * this thread is still running. Once the scsi_execute() returns, reacquire the 412 * ioctl read semaphore and check the adapter state in case it changed while 413 * inside of scsi_execute(). The state check will wait if the adapter is still 414 * being recovered or return a failure if the recovery failed. In the event that 415 * the adapter reset failed, simply return the failure as the ioctl would be 416 * unable to continue. 417 * 418 * Note that the above puts a requirement on this routine to only be called on 419 * an ioctl thread. 420 * 421 * Return: 0 on success, -errno on failure 422 */ 423 static int write_same16(struct scsi_device *sdev, 424 u64 lba, 425 u32 nblks) 426 { 427 u8 *cmd_buf = NULL; 428 u8 *scsi_cmd = NULL; 429 int rc = 0; 430 int result = 0; 431 u64 offset = lba; 432 int left = nblks; 433 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 434 struct device *dev = &cfg->dev->dev; 435 const u32 s = ilog2(sdev->sector_size) - 9; 436 const u32 to = sdev->request_queue->rq_timeout; 437 const u32 ws_limit = blk_queue_get_max_sectors(sdev->request_queue, 438 REQ_OP_WRITE_SAME) >> s; 439 440 cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL); 441 scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL); 442 if (unlikely(!cmd_buf || !scsi_cmd)) { 443 rc = -ENOMEM; 444 goto out; 445 } 446 447 while (left > 0) { 448 449 scsi_cmd[0] = WRITE_SAME_16; 450 scsi_cmd[1] = cfg->ws_unmap ? 0x8 : 0; 451 put_unaligned_be64(offset, &scsi_cmd[2]); 452 put_unaligned_be32(ws_limit < left ? ws_limit : left, 453 &scsi_cmd[10]); 454 455 /* Drop the ioctl read semahpore across lengthy call */ 456 up_read(&cfg->ioctl_rwsem); 457 result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf, 458 CMD_BUFSIZE, NULL, NULL, to, 459 CMD_RETRIES, 0, 0, NULL); 460 down_read(&cfg->ioctl_rwsem); 461 rc = check_state(cfg); 462 if (rc) { 463 dev_err(dev, "%s: Failed state result=%08x\n", 464 __func__, result); 465 rc = -ENODEV; 466 goto out; 467 } 468 469 if (result) { 470 dev_err_ratelimited(dev, "%s: command failed for " 471 "offset=%lld result=%08x\n", 472 __func__, offset, result); 473 rc = -EIO; 474 goto out; 475 } 476 left -= ws_limit; 477 offset += ws_limit; 478 } 479 480 out: 481 kfree(cmd_buf); 482 kfree(scsi_cmd); 483 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 484 return rc; 485 } 486 487 /** 488 * grow_lxt() - expands the translation table associated with the specified RHTE 489 * @afu: AFU associated with the host. 490 * @sdev: SCSI device associated with LUN. 491 * @ctxid: Context ID of context owning the RHTE. 492 * @rhndl: Resource handle associated with the RHTE. 493 * @rhte: Resource handle entry (RHTE). 494 * @new_size: Number of translation entries associated with RHTE. 495 * 496 * By design, this routine employs a 'best attempt' allocation and will 497 * truncate the requested size down if there is not sufficient space in 498 * the block allocator to satisfy the request but there does exist some 499 * amount of space. The user is made aware of this by returning the size 500 * allocated. 501 * 502 * Return: 0 on success, -errno on failure 503 */ 504 static int grow_lxt(struct afu *afu, 505 struct scsi_device *sdev, 506 ctx_hndl_t ctxid, 507 res_hndl_t rhndl, 508 struct sisl_rht_entry *rhte, 509 u64 *new_size) 510 { 511 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 512 struct device *dev = &cfg->dev->dev; 513 struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL; 514 struct llun_info *lli = sdev->hostdata; 515 struct glun_info *gli = lli->parent; 516 struct blka *blka = &gli->blka; 517 u32 av_size; 518 u32 ngrps, ngrps_old; 519 u64 aun; /* chunk# allocated by block allocator */ 520 u64 delta = *new_size - rhte->lxt_cnt; 521 u64 my_new_size; 522 int i, rc = 0; 523 524 /* 525 * Check what is available in the block allocator before re-allocating 526 * LXT array. This is done up front under the mutex which must not be 527 * released until after allocation is complete. 528 */ 529 mutex_lock(&blka->mutex); 530 av_size = ba_space(&blka->ba_lun); 531 if (unlikely(av_size <= 0)) { 532 dev_dbg(dev, "%s: ba_space error av_size=%d\n", 533 __func__, av_size); 534 mutex_unlock(&blka->mutex); 535 rc = -ENOSPC; 536 goto out; 537 } 538 539 if (av_size < delta) 540 delta = av_size; 541 542 lxt_old = rhte->lxt_start; 543 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 544 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta); 545 546 if (ngrps != ngrps_old) { 547 /* reallocate to fit new size */ 548 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 549 GFP_KERNEL); 550 if (unlikely(!lxt)) { 551 mutex_unlock(&blka->mutex); 552 rc = -ENOMEM; 553 goto out; 554 } 555 556 /* copy over all old entries */ 557 memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt)); 558 } else 559 lxt = lxt_old; 560 561 /* nothing can fail from now on */ 562 my_new_size = rhte->lxt_cnt + delta; 563 564 /* add new entries to the end */ 565 for (i = rhte->lxt_cnt; i < my_new_size; i++) { 566 /* 567 * Due to the earlier check of available space, ba_alloc 568 * cannot fail here. If it did due to internal error, 569 * leave a rlba_base of -1u which will likely be a 570 * invalid LUN (too large). 571 */ 572 aun = ba_alloc(&blka->ba_lun); 573 if ((aun == -1ULL) || (aun >= blka->nchunk)) 574 dev_dbg(dev, "%s: ba_alloc error allocated chunk=%llu " 575 "max=%llu\n", __func__, aun, blka->nchunk - 1); 576 577 /* select both ports, use r/w perms from RHT */ 578 lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) | 579 (lli->lun_index << LXT_LUNIDX_SHIFT) | 580 (RHT_PERM_RW << LXT_PERM_SHIFT | 581 lli->port_sel)); 582 } 583 584 mutex_unlock(&blka->mutex); 585 586 /* 587 * The following sequence is prescribed in the SISlite spec 588 * for syncing up with the AFU when adding LXT entries. 589 */ 590 dma_wmb(); /* Make LXT updates are visible */ 591 592 rhte->lxt_start = lxt; 593 dma_wmb(); /* Make RHT entry's LXT table update visible */ 594 595 rhte->lxt_cnt = my_new_size; 596 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 597 598 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 599 if (unlikely(rc)) 600 rc = -EAGAIN; 601 602 /* free old lxt if reallocated */ 603 if (lxt != lxt_old) 604 kfree(lxt_old); 605 *new_size = my_new_size; 606 out: 607 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 608 return rc; 609 } 610 611 /** 612 * shrink_lxt() - reduces translation table associated with the specified RHTE 613 * @afu: AFU associated with the host. 614 * @sdev: SCSI device associated with LUN. 615 * @rhndl: Resource handle associated with the RHTE. 616 * @rhte: Resource handle entry (RHTE). 617 * @ctxi: Context owning resources. 618 * @new_size: Number of translation entries associated with RHTE. 619 * 620 * Return: 0 on success, -errno on failure 621 */ 622 static int shrink_lxt(struct afu *afu, 623 struct scsi_device *sdev, 624 res_hndl_t rhndl, 625 struct sisl_rht_entry *rhte, 626 struct ctx_info *ctxi, 627 u64 *new_size) 628 { 629 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 630 struct device *dev = &cfg->dev->dev; 631 struct sisl_lxt_entry *lxt, *lxt_old; 632 struct llun_info *lli = sdev->hostdata; 633 struct glun_info *gli = lli->parent; 634 struct blka *blka = &gli->blka; 635 ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid); 636 bool needs_ws = ctxi->rht_needs_ws[rhndl]; 637 bool needs_sync = !ctxi->err_recovery_active; 638 u32 ngrps, ngrps_old; 639 u64 aun; /* chunk# allocated by block allocator */ 640 u64 delta = rhte->lxt_cnt - *new_size; 641 u64 my_new_size; 642 int i, rc = 0; 643 644 lxt_old = rhte->lxt_start; 645 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 646 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta); 647 648 if (ngrps != ngrps_old) { 649 /* Reallocate to fit new size unless new size is 0 */ 650 if (ngrps) { 651 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 652 GFP_KERNEL); 653 if (unlikely(!lxt)) { 654 rc = -ENOMEM; 655 goto out; 656 } 657 658 /* Copy over old entries that will remain */ 659 memcpy(lxt, lxt_old, 660 (sizeof(*lxt) * (rhte->lxt_cnt - delta))); 661 } else 662 lxt = NULL; 663 } else 664 lxt = lxt_old; 665 666 /* Nothing can fail from now on */ 667 my_new_size = rhte->lxt_cnt - delta; 668 669 /* 670 * The following sequence is prescribed in the SISlite spec 671 * for syncing up with the AFU when removing LXT entries. 672 */ 673 rhte->lxt_cnt = my_new_size; 674 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 675 676 rhte->lxt_start = lxt; 677 dma_wmb(); /* Make RHT entry's LXT table update visible */ 678 679 if (needs_sync) { 680 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 681 if (unlikely(rc)) 682 rc = -EAGAIN; 683 } 684 685 if (needs_ws) { 686 /* 687 * Mark the context as unavailable, so that we can release 688 * the mutex safely. 689 */ 690 ctxi->unavail = true; 691 mutex_unlock(&ctxi->mutex); 692 } 693 694 /* Free LBAs allocated to freed chunks */ 695 mutex_lock(&blka->mutex); 696 for (i = delta - 1; i >= 0; i--) { 697 aun = lxt_old[my_new_size + i].rlba_base >> MC_CHUNK_SHIFT; 698 if (needs_ws) 699 write_same16(sdev, aun, MC_CHUNK_SIZE); 700 ba_free(&blka->ba_lun, aun); 701 } 702 mutex_unlock(&blka->mutex); 703 704 if (needs_ws) { 705 /* Make the context visible again */ 706 mutex_lock(&ctxi->mutex); 707 ctxi->unavail = false; 708 } 709 710 /* Free old lxt if reallocated */ 711 if (lxt != lxt_old) 712 kfree(lxt_old); 713 *new_size = my_new_size; 714 out: 715 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 716 return rc; 717 } 718 719 /** 720 * _cxlflash_vlun_resize() - changes the size of a virtual LUN 721 * @sdev: SCSI device associated with LUN owning virtual LUN. 722 * @ctxi: Context owning resources. 723 * @resize: Resize ioctl data structure. 724 * 725 * On successful return, the user is informed of the new size (in blocks) 726 * of the virtual LUN in last LBA format. When the size of the virtual 727 * LUN is zero, the last LBA is reflected as -1. See comment in the 728 * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts 729 * on the error recovery list. 730 * 731 * Return: 0 on success, -errno on failure 732 */ 733 int _cxlflash_vlun_resize(struct scsi_device *sdev, 734 struct ctx_info *ctxi, 735 struct dk_cxlflash_resize *resize) 736 { 737 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 738 struct device *dev = &cfg->dev->dev; 739 struct llun_info *lli = sdev->hostdata; 740 struct glun_info *gli = lli->parent; 741 struct afu *afu = cfg->afu; 742 bool put_ctx = false; 743 744 res_hndl_t rhndl = resize->rsrc_handle; 745 u64 new_size; 746 u64 nsectors; 747 u64 ctxid = DECODE_CTXID(resize->context_id), 748 rctxid = resize->context_id; 749 750 struct sisl_rht_entry *rhte; 751 752 int rc = 0; 753 754 /* 755 * The requested size (req_size) is always assumed to be in 4k blocks, 756 * so we have to convert it here from 4k to chunk size. 757 */ 758 nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len; 759 new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE); 760 761 dev_dbg(dev, "%s: ctxid=%llu rhndl=%llu req_size=%llu new_size=%llu\n", 762 __func__, ctxid, resize->rsrc_handle, resize->req_size, 763 new_size); 764 765 if (unlikely(gli->mode != MODE_VIRTUAL)) { 766 dev_dbg(dev, "%s: LUN mode does not support resize mode=%d\n", 767 __func__, gli->mode); 768 rc = -EINVAL; 769 goto out; 770 771 } 772 773 if (!ctxi) { 774 ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK); 775 if (unlikely(!ctxi)) { 776 dev_dbg(dev, "%s: Bad context ctxid=%llu\n", 777 __func__, ctxid); 778 rc = -EINVAL; 779 goto out; 780 } 781 782 put_ctx = true; 783 } 784 785 rhte = get_rhte(ctxi, rhndl, lli); 786 if (unlikely(!rhte)) { 787 dev_dbg(dev, "%s: Bad resource handle rhndl=%u\n", 788 __func__, rhndl); 789 rc = -EINVAL; 790 goto out; 791 } 792 793 if (new_size > rhte->lxt_cnt) 794 rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size); 795 else if (new_size < rhte->lxt_cnt) 796 rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size); 797 else { 798 /* 799 * Rare case where there is already sufficient space, just 800 * need to perform a translation sync with the AFU. This 801 * scenario likely follows a previous sync failure during 802 * a resize operation. Accordingly, perform the heavyweight 803 * form of translation sync as it is unknown which type of 804 * resize failed previously. 805 */ 806 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 807 if (unlikely(rc)) { 808 rc = -EAGAIN; 809 goto out; 810 } 811 } 812 813 resize->hdr.return_flags = 0; 814 resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len); 815 resize->last_lba /= CXLFLASH_BLOCK_SIZE; 816 resize->last_lba--; 817 818 out: 819 if (put_ctx) 820 put_context(ctxi); 821 dev_dbg(dev, "%s: resized to %llu returning rc=%d\n", 822 __func__, resize->last_lba, rc); 823 return rc; 824 } 825 826 int cxlflash_vlun_resize(struct scsi_device *sdev, 827 struct dk_cxlflash_resize *resize) 828 { 829 return _cxlflash_vlun_resize(sdev, NULL, resize); 830 } 831 832 /** 833 * cxlflash_restore_luntable() - Restore LUN table to prior state 834 * @cfg: Internal structure associated with the host. 835 */ 836 void cxlflash_restore_luntable(struct cxlflash_cfg *cfg) 837 { 838 struct llun_info *lli, *temp; 839 u32 lind; 840 int k; 841 struct device *dev = &cfg->dev->dev; 842 __be64 __iomem *fc_port_luns; 843 844 mutex_lock(&global.mutex); 845 846 list_for_each_entry_safe(lli, temp, &cfg->lluns, list) { 847 if (!lli->in_table) 848 continue; 849 850 lind = lli->lun_index; 851 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 852 853 for (k = 0; k < cfg->num_fc_ports; k++) 854 if (lli->port_sel & (1 << k)) { 855 fc_port_luns = get_fc_port_luns(cfg, k); 856 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 857 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 858 } 859 } 860 861 mutex_unlock(&global.mutex); 862 } 863 864 /** 865 * get_num_ports() - compute number of ports from port selection mask 866 * @psm: Port selection mask. 867 * 868 * Return: Population count of port selection mask 869 */ 870 static inline u8 get_num_ports(u32 psm) 871 { 872 static const u8 bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 873 1, 2, 2, 3, 2, 3, 3, 4 }; 874 875 return bits[psm & 0xf]; 876 } 877 878 /** 879 * init_luntable() - write an entry in the LUN table 880 * @cfg: Internal structure associated with the host. 881 * @lli: Per adapter LUN information structure. 882 * 883 * On successful return, a LUN table entry is created: 884 * - at the top for LUNs visible on multiple ports. 885 * - at the bottom for LUNs visible only on one port. 886 * 887 * Return: 0 on success, -errno on failure 888 */ 889 static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli) 890 { 891 u32 chan; 892 u32 lind; 893 u32 nports; 894 int rc = 0; 895 int k; 896 struct device *dev = &cfg->dev->dev; 897 __be64 __iomem *fc_port_luns; 898 899 mutex_lock(&global.mutex); 900 901 if (lli->in_table) 902 goto out; 903 904 nports = get_num_ports(lli->port_sel); 905 if (nports == 0 || nports > cfg->num_fc_ports) { 906 WARN(1, "Unsupported port configuration nports=%u", nports); 907 rc = -EIO; 908 goto out; 909 } 910 911 if (nports > 1) { 912 /* 913 * When LUN is visible from multiple ports, we will put 914 * it in the top half of the LUN table. 915 */ 916 for (k = 0; k < cfg->num_fc_ports; k++) { 917 if (!(lli->port_sel & (1 << k))) 918 continue; 919 920 if (cfg->promote_lun_index == cfg->last_lun_index[k]) { 921 rc = -ENOSPC; 922 goto out; 923 } 924 } 925 926 lind = lli->lun_index = cfg->promote_lun_index; 927 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 928 929 for (k = 0; k < cfg->num_fc_ports; k++) { 930 if (!(lli->port_sel & (1 << k))) 931 continue; 932 933 fc_port_luns = get_fc_port_luns(cfg, k); 934 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 935 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 936 } 937 938 cfg->promote_lun_index++; 939 } else { 940 /* 941 * When LUN is visible only from one port, we will put 942 * it in the bottom half of the LUN table. 943 */ 944 chan = PORTMASK2CHAN(lli->port_sel); 945 if (cfg->promote_lun_index == cfg->last_lun_index[chan]) { 946 rc = -ENOSPC; 947 goto out; 948 } 949 950 lind = lli->lun_index = cfg->last_lun_index[chan]; 951 fc_port_luns = get_fc_port_luns(cfg, chan); 952 writeq_be(lli->lun_id[chan], &fc_port_luns[lind]); 953 cfg->last_lun_index[chan]--; 954 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n\t%d=%llx\n", 955 __func__, lind, chan, lli->lun_id[chan]); 956 } 957 958 lli->in_table = true; 959 out: 960 mutex_unlock(&global.mutex); 961 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 962 return rc; 963 } 964 965 /** 966 * cxlflash_disk_virtual_open() - open a virtual disk of specified size 967 * @sdev: SCSI device associated with LUN owning virtual LUN. 968 * @arg: UVirtual ioctl data structure. 969 * 970 * On successful return, the user is informed of the resource handle 971 * to be used to identify the virtual LUN and the size (in blocks) of 972 * the virtual LUN in last LBA format. When the size of the virtual LUN 973 * is zero, the last LBA is reflected as -1. 974 * 975 * Return: 0 on success, -errno on failure 976 */ 977 int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg) 978 { 979 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 980 struct device *dev = &cfg->dev->dev; 981 struct llun_info *lli = sdev->hostdata; 982 struct glun_info *gli = lli->parent; 983 984 struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg; 985 struct dk_cxlflash_resize resize; 986 987 u64 ctxid = DECODE_CTXID(virt->context_id), 988 rctxid = virt->context_id; 989 u64 lun_size = virt->lun_size; 990 u64 last_lba = 0; 991 u64 rsrc_handle = -1; 992 993 int rc = 0; 994 995 struct ctx_info *ctxi = NULL; 996 struct sisl_rht_entry *rhte = NULL; 997 998 dev_dbg(dev, "%s: ctxid=%llu ls=%llu\n", __func__, ctxid, lun_size); 999 1000 /* Setup the LUNs block allocator on first call */ 1001 mutex_lock(&gli->mutex); 1002 if (gli->mode == MODE_NONE) { 1003 rc = init_vlun(lli); 1004 if (rc) { 1005 dev_err(dev, "%s: init_vlun failed rc=%d\n", 1006 __func__, rc); 1007 rc = -ENOMEM; 1008 goto err0; 1009 } 1010 } 1011 1012 rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true); 1013 if (unlikely(rc)) { 1014 dev_err(dev, "%s: Failed attach to LUN (VIRTUAL)\n", __func__); 1015 goto err0; 1016 } 1017 mutex_unlock(&gli->mutex); 1018 1019 rc = init_luntable(cfg, lli); 1020 if (rc) { 1021 dev_err(dev, "%s: init_luntable failed rc=%d\n", __func__, rc); 1022 goto err1; 1023 } 1024 1025 ctxi = get_context(cfg, rctxid, lli, 0); 1026 if (unlikely(!ctxi)) { 1027 dev_err(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid); 1028 rc = -EINVAL; 1029 goto err1; 1030 } 1031 1032 rhte = rhte_checkout(ctxi, lli); 1033 if (unlikely(!rhte)) { 1034 dev_err(dev, "%s: too many opens ctxid=%llu\n", 1035 __func__, ctxid); 1036 rc = -EMFILE; /* too many opens */ 1037 goto err1; 1038 } 1039 1040 rsrc_handle = (rhte - ctxi->rht_start); 1041 1042 /* Populate RHT format 0 */ 1043 rhte->nmask = MC_RHT_NMASK; 1044 rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms); 1045 1046 /* Resize even if requested size is 0 */ 1047 marshal_virt_to_resize(virt, &resize); 1048 resize.rsrc_handle = rsrc_handle; 1049 rc = _cxlflash_vlun_resize(sdev, ctxi, &resize); 1050 if (rc) { 1051 dev_err(dev, "%s: resize failed rc=%d\n", __func__, rc); 1052 goto err2; 1053 } 1054 last_lba = resize.last_lba; 1055 1056 if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME) 1057 ctxi->rht_needs_ws[rsrc_handle] = true; 1058 1059 virt->hdr.return_flags = 0; 1060 virt->last_lba = last_lba; 1061 virt->rsrc_handle = rsrc_handle; 1062 1063 if (get_num_ports(lli->port_sel) > 1) 1064 virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE; 1065 out: 1066 if (likely(ctxi)) 1067 put_context(ctxi); 1068 dev_dbg(dev, "%s: returning handle=%llu rc=%d llba=%llu\n", 1069 __func__, rsrc_handle, rc, last_lba); 1070 return rc; 1071 1072 err2: 1073 rhte_checkin(ctxi, rhte); 1074 err1: 1075 cxlflash_lun_detach(gli); 1076 goto out; 1077 err0: 1078 /* Special common cleanup prior to successful LUN attach */ 1079 cxlflash_ba_terminate(&gli->blka.ba_lun); 1080 mutex_unlock(&gli->mutex); 1081 goto out; 1082 } 1083 1084 /** 1085 * clone_lxt() - copies translation tables from source to destination RHTE 1086 * @afu: AFU associated with the host. 1087 * @blka: Block allocator associated with LUN. 1088 * @ctxid: Context ID of context owning the RHTE. 1089 * @rhndl: Resource handle associated with the RHTE. 1090 * @rhte: Destination resource handle entry (RHTE). 1091 * @rhte_src: Source resource handle entry (RHTE). 1092 * 1093 * Return: 0 on success, -errno on failure 1094 */ 1095 static int clone_lxt(struct afu *afu, 1096 struct blka *blka, 1097 ctx_hndl_t ctxid, 1098 res_hndl_t rhndl, 1099 struct sisl_rht_entry *rhte, 1100 struct sisl_rht_entry *rhte_src) 1101 { 1102 struct cxlflash_cfg *cfg = afu->parent; 1103 struct device *dev = &cfg->dev->dev; 1104 struct sisl_lxt_entry *lxt = NULL; 1105 bool locked = false; 1106 u32 ngrps; 1107 u64 aun; /* chunk# allocated by block allocator */ 1108 int j; 1109 int i = 0; 1110 int rc = 0; 1111 1112 ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt); 1113 1114 if (ngrps) { 1115 /* allocate new LXTs for clone */ 1116 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 1117 GFP_KERNEL); 1118 if (unlikely(!lxt)) { 1119 rc = -ENOMEM; 1120 goto out; 1121 } 1122 1123 /* copy over */ 1124 memcpy(lxt, rhte_src->lxt_start, 1125 (sizeof(*lxt) * rhte_src->lxt_cnt)); 1126 1127 /* clone the LBAs in block allocator via ref_cnt, note that the 1128 * block allocator mutex must be held until it is established 1129 * that this routine will complete without the need for a 1130 * cleanup. 1131 */ 1132 mutex_lock(&blka->mutex); 1133 locked = true; 1134 for (i = 0; i < rhte_src->lxt_cnt; i++) { 1135 aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT); 1136 if (ba_clone(&blka->ba_lun, aun) == -1ULL) { 1137 rc = -EIO; 1138 goto err; 1139 } 1140 } 1141 } 1142 1143 /* 1144 * The following sequence is prescribed in the SISlite spec 1145 * for syncing up with the AFU when adding LXT entries. 1146 */ 1147 dma_wmb(); /* Make LXT updates are visible */ 1148 1149 rhte->lxt_start = lxt; 1150 dma_wmb(); /* Make RHT entry's LXT table update visible */ 1151 1152 rhte->lxt_cnt = rhte_src->lxt_cnt; 1153 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 1154 1155 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 1156 if (unlikely(rc)) { 1157 rc = -EAGAIN; 1158 goto err2; 1159 } 1160 1161 out: 1162 if (locked) 1163 mutex_unlock(&blka->mutex); 1164 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1165 return rc; 1166 err2: 1167 /* Reset the RHTE */ 1168 rhte->lxt_cnt = 0; 1169 dma_wmb(); 1170 rhte->lxt_start = NULL; 1171 dma_wmb(); 1172 err: 1173 /* free the clones already made */ 1174 for (j = 0; j < i; j++) { 1175 aun = (lxt[j].rlba_base >> MC_CHUNK_SHIFT); 1176 ba_free(&blka->ba_lun, aun); 1177 } 1178 kfree(lxt); 1179 goto out; 1180 } 1181 1182 /** 1183 * cxlflash_disk_clone() - clone a context by making snapshot of another 1184 * @sdev: SCSI device associated with LUN owning virtual LUN. 1185 * @clone: Clone ioctl data structure. 1186 * 1187 * This routine effectively performs cxlflash_disk_open operation for each 1188 * in-use virtual resource in the source context. Note that the destination 1189 * context must be in pristine state and cannot have any resource handles 1190 * open at the time of the clone. 1191 * 1192 * Return: 0 on success, -errno on failure 1193 */ 1194 int cxlflash_disk_clone(struct scsi_device *sdev, 1195 struct dk_cxlflash_clone *clone) 1196 { 1197 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 1198 struct device *dev = &cfg->dev->dev; 1199 struct llun_info *lli = sdev->hostdata; 1200 struct glun_info *gli = lli->parent; 1201 struct blka *blka = &gli->blka; 1202 struct afu *afu = cfg->afu; 1203 struct dk_cxlflash_release release = { { 0 }, 0 }; 1204 1205 struct ctx_info *ctxi_src = NULL, 1206 *ctxi_dst = NULL; 1207 struct lun_access *lun_access_src, *lun_access_dst; 1208 u32 perms; 1209 u64 ctxid_src = DECODE_CTXID(clone->context_id_src), 1210 ctxid_dst = DECODE_CTXID(clone->context_id_dst), 1211 rctxid_src = clone->context_id_src, 1212 rctxid_dst = clone->context_id_dst; 1213 int i, j; 1214 int rc = 0; 1215 bool found; 1216 LIST_HEAD(sidecar); 1217 1218 dev_dbg(dev, "%s: ctxid_src=%llu ctxid_dst=%llu\n", 1219 __func__, ctxid_src, ctxid_dst); 1220 1221 /* Do not clone yourself */ 1222 if (unlikely(rctxid_src == rctxid_dst)) { 1223 rc = -EINVAL; 1224 goto out; 1225 } 1226 1227 if (unlikely(gli->mode != MODE_VIRTUAL)) { 1228 rc = -EINVAL; 1229 dev_dbg(dev, "%s: Only supported on virtual LUNs mode=%u\n", 1230 __func__, gli->mode); 1231 goto out; 1232 } 1233 1234 ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE); 1235 ctxi_dst = get_context(cfg, rctxid_dst, lli, 0); 1236 if (unlikely(!ctxi_src || !ctxi_dst)) { 1237 dev_dbg(dev, "%s: Bad context ctxid_src=%llu ctxid_dst=%llu\n", 1238 __func__, ctxid_src, ctxid_dst); 1239 rc = -EINVAL; 1240 goto out; 1241 } 1242 1243 /* Verify there is no open resource handle in the destination context */ 1244 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) 1245 if (ctxi_dst->rht_start[i].nmask != 0) { 1246 rc = -EINVAL; 1247 goto out; 1248 } 1249 1250 /* Clone LUN access list */ 1251 list_for_each_entry(lun_access_src, &ctxi_src->luns, list) { 1252 found = false; 1253 list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list) 1254 if (lun_access_dst->sdev == lun_access_src->sdev) { 1255 found = true; 1256 break; 1257 } 1258 1259 if (!found) { 1260 lun_access_dst = kzalloc(sizeof(*lun_access_dst), 1261 GFP_KERNEL); 1262 if (unlikely(!lun_access_dst)) { 1263 dev_err(dev, "%s: lun_access allocation fail\n", 1264 __func__); 1265 rc = -ENOMEM; 1266 goto out; 1267 } 1268 1269 *lun_access_dst = *lun_access_src; 1270 list_add(&lun_access_dst->list, &sidecar); 1271 } 1272 } 1273 1274 if (unlikely(!ctxi_src->rht_out)) { 1275 dev_dbg(dev, "%s: Nothing to clone\n", __func__); 1276 goto out_success; 1277 } 1278 1279 /* User specified permission on attach */ 1280 perms = ctxi_dst->rht_perms; 1281 1282 /* 1283 * Copy over checked-out RHT (and their associated LXT) entries by 1284 * hand, stopping after we've copied all outstanding entries and 1285 * cleaning up if the clone fails. 1286 * 1287 * Note: This loop is equivalent to performing cxlflash_disk_open and 1288 * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into 1289 * account by attaching after each successful RHT entry clone. In the 1290 * event that a clone failure is experienced, the LUN detach is handled 1291 * via the cleanup performed by _cxlflash_disk_release. 1292 */ 1293 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) { 1294 if (ctxi_src->rht_out == ctxi_dst->rht_out) 1295 break; 1296 if (ctxi_src->rht_start[i].nmask == 0) 1297 continue; 1298 1299 /* Consume a destination RHT entry */ 1300 ctxi_dst->rht_out++; 1301 ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask; 1302 ctxi_dst->rht_start[i].fp = 1303 SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms); 1304 ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i]; 1305 1306 rc = clone_lxt(afu, blka, ctxid_dst, i, 1307 &ctxi_dst->rht_start[i], 1308 &ctxi_src->rht_start[i]); 1309 if (rc) { 1310 marshal_clone_to_rele(clone, &release); 1311 for (j = 0; j < i; j++) { 1312 release.rsrc_handle = j; 1313 _cxlflash_disk_release(sdev, ctxi_dst, 1314 &release); 1315 } 1316 1317 /* Put back the one we failed on */ 1318 rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]); 1319 goto err; 1320 } 1321 1322 cxlflash_lun_attach(gli, gli->mode, false); 1323 } 1324 1325 out_success: 1326 list_splice(&sidecar, &ctxi_dst->luns); 1327 1328 /* fall through */ 1329 out: 1330 if (ctxi_src) 1331 put_context(ctxi_src); 1332 if (ctxi_dst) 1333 put_context(ctxi_dst); 1334 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1335 return rc; 1336 1337 err: 1338 list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list) 1339 kfree(lun_access_src); 1340 goto out; 1341 } 1342