1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/interrupt.h> 16 #include <linux/pci.h> 17 #include <linux/syscalls.h> 18 #include <asm/unaligned.h> 19 #include <asm/bitsperlong.h> 20 21 #include <scsi/scsi_cmnd.h> 22 #include <scsi/scsi_host.h> 23 #include <uapi/scsi/cxlflash_ioctl.h> 24 25 #include "sislite.h" 26 #include "common.h" 27 #include "vlun.h" 28 #include "superpipe.h" 29 30 /** 31 * marshal_virt_to_resize() - translate uvirtual to resize structure 32 * @virt: Source structure from which to translate/copy. 33 * @resize: Destination structure for the translate/copy. 34 */ 35 static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt, 36 struct dk_cxlflash_resize *resize) 37 { 38 resize->hdr = virt->hdr; 39 resize->context_id = virt->context_id; 40 resize->rsrc_handle = virt->rsrc_handle; 41 resize->req_size = virt->lun_size; 42 resize->last_lba = virt->last_lba; 43 } 44 45 /** 46 * marshal_clone_to_rele() - translate clone to release structure 47 * @clone: Source structure from which to translate/copy. 48 * @rele: Destination structure for the translate/copy. 49 */ 50 static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone, 51 struct dk_cxlflash_release *release) 52 { 53 release->hdr = clone->hdr; 54 release->context_id = clone->context_id_dst; 55 } 56 57 /** 58 * ba_init() - initializes a block allocator 59 * @ba_lun: Block allocator to initialize. 60 * 61 * Return: 0 on success, -errno on failure 62 */ 63 static int ba_init(struct ba_lun *ba_lun) 64 { 65 struct ba_lun_info *bali = NULL; 66 int lun_size_au = 0, i = 0; 67 int last_word_underflow = 0; 68 u64 *lam; 69 70 pr_debug("%s: Initializing LUN: lun_id=%016llx " 71 "ba_lun->lsize=%lx ba_lun->au_size=%lX\n", 72 __func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size); 73 74 /* Calculate bit map size */ 75 lun_size_au = ba_lun->lsize / ba_lun->au_size; 76 if (lun_size_au == 0) { 77 pr_debug("%s: Requested LUN size of 0!\n", __func__); 78 return -EINVAL; 79 } 80 81 /* Allocate lun information container */ 82 bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL); 83 if (unlikely(!bali)) { 84 pr_err("%s: Failed to allocate lun_info lun_id=%016llx\n", 85 __func__, ba_lun->lun_id); 86 return -ENOMEM; 87 } 88 89 bali->total_aus = lun_size_au; 90 bali->lun_bmap_size = lun_size_au / BITS_PER_LONG; 91 92 if (lun_size_au % BITS_PER_LONG) 93 bali->lun_bmap_size++; 94 95 /* Allocate bitmap space */ 96 bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)), 97 GFP_KERNEL); 98 if (unlikely(!bali->lun_alloc_map)) { 99 pr_err("%s: Failed to allocate lun allocation map: " 100 "lun_id=%016llx\n", __func__, ba_lun->lun_id); 101 kfree(bali); 102 return -ENOMEM; 103 } 104 105 /* Initialize the bit map size and set all bits to '1' */ 106 bali->free_aun_cnt = lun_size_au; 107 108 for (i = 0; i < bali->lun_bmap_size; i++) 109 bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL; 110 111 /* If the last word not fully utilized, mark extra bits as allocated */ 112 last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG); 113 last_word_underflow -= bali->free_aun_cnt; 114 if (last_word_underflow > 0) { 115 lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1]; 116 for (i = (HIBIT - last_word_underflow + 1); 117 i < BITS_PER_LONG; 118 i++) 119 clear_bit(i, (ulong *)lam); 120 } 121 122 /* Initialize high elevator index, low/curr already at 0 from kzalloc */ 123 bali->free_high_idx = bali->lun_bmap_size; 124 125 /* Allocate clone map */ 126 bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)), 127 GFP_KERNEL); 128 if (unlikely(!bali->aun_clone_map)) { 129 pr_err("%s: Failed to allocate clone map: lun_id=%016llx\n", 130 __func__, ba_lun->lun_id); 131 kfree(bali->lun_alloc_map); 132 kfree(bali); 133 return -ENOMEM; 134 } 135 136 /* Pass the allocated LUN info as a handle to the user */ 137 ba_lun->ba_lun_handle = bali; 138 139 pr_debug("%s: Successfully initialized the LUN: " 140 "lun_id=%016llx bitmap size=%x, free_aun_cnt=%llx\n", 141 __func__, ba_lun->lun_id, bali->lun_bmap_size, 142 bali->free_aun_cnt); 143 return 0; 144 } 145 146 /** 147 * find_free_range() - locates a free bit within the block allocator 148 * @low: First word in block allocator to start search. 149 * @high: Last word in block allocator to search. 150 * @bali: LUN information structure owning the block allocator to search. 151 * @bit_word: Passes back the word in the block allocator owning the free bit. 152 * 153 * Return: The bit position within the passed back word, -1 on failure 154 */ 155 static int find_free_range(u32 low, 156 u32 high, 157 struct ba_lun_info *bali, int *bit_word) 158 { 159 int i; 160 u64 bit_pos = -1; 161 ulong *lam, num_bits; 162 163 for (i = low; i < high; i++) 164 if (bali->lun_alloc_map[i] != 0) { 165 lam = (ulong *)&bali->lun_alloc_map[i]; 166 num_bits = (sizeof(*lam) * BITS_PER_BYTE); 167 bit_pos = find_first_bit(lam, num_bits); 168 169 pr_devel("%s: Found free bit %llu in LUN " 170 "map entry %016llx at bitmap index = %d\n", 171 __func__, bit_pos, bali->lun_alloc_map[i], i); 172 173 *bit_word = i; 174 bali->free_aun_cnt--; 175 clear_bit(bit_pos, lam); 176 break; 177 } 178 179 return bit_pos; 180 } 181 182 /** 183 * ba_alloc() - allocates a block from the block allocator 184 * @ba_lun: Block allocator from which to allocate a block. 185 * 186 * Return: The allocated block, -1 on failure 187 */ 188 static u64 ba_alloc(struct ba_lun *ba_lun) 189 { 190 u64 bit_pos = -1; 191 int bit_word = 0; 192 struct ba_lun_info *bali = NULL; 193 194 bali = ba_lun->ba_lun_handle; 195 196 pr_debug("%s: Received block allocation request: " 197 "lun_id=%016llx free_aun_cnt=%llx\n", 198 __func__, ba_lun->lun_id, bali->free_aun_cnt); 199 200 if (bali->free_aun_cnt == 0) { 201 pr_debug("%s: No space left on LUN: lun_id=%016llx\n", 202 __func__, ba_lun->lun_id); 203 return -1ULL; 204 } 205 206 /* Search to find a free entry, curr->high then low->curr */ 207 bit_pos = find_free_range(bali->free_curr_idx, 208 bali->free_high_idx, bali, &bit_word); 209 if (bit_pos == -1) { 210 bit_pos = find_free_range(bali->free_low_idx, 211 bali->free_curr_idx, 212 bali, &bit_word); 213 if (bit_pos == -1) { 214 pr_debug("%s: Could not find an allocation unit on LUN:" 215 " lun_id=%016llx\n", __func__, ba_lun->lun_id); 216 return -1ULL; 217 } 218 } 219 220 /* Update the free_curr_idx */ 221 if (bit_pos == HIBIT) 222 bali->free_curr_idx = bit_word + 1; 223 else 224 bali->free_curr_idx = bit_word; 225 226 pr_debug("%s: Allocating AU number=%llx lun_id=%016llx " 227 "free_aun_cnt=%llx\n", __func__, 228 ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id, 229 bali->free_aun_cnt); 230 231 return (u64) ((bit_word * BITS_PER_LONG) + bit_pos); 232 } 233 234 /** 235 * validate_alloc() - validates the specified block has been allocated 236 * @ba_lun_info: LUN info owning the block allocator. 237 * @aun: Block to validate. 238 * 239 * Return: 0 on success, -1 on failure 240 */ 241 static int validate_alloc(struct ba_lun_info *bali, u64 aun) 242 { 243 int idx = 0, bit_pos = 0; 244 245 idx = aun / BITS_PER_LONG; 246 bit_pos = aun % BITS_PER_LONG; 247 248 if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx])) 249 return -1; 250 251 return 0; 252 } 253 254 /** 255 * ba_free() - frees a block from the block allocator 256 * @ba_lun: Block allocator from which to allocate a block. 257 * @to_free: Block to free. 258 * 259 * Return: 0 on success, -1 on failure 260 */ 261 static int ba_free(struct ba_lun *ba_lun, u64 to_free) 262 { 263 int idx = 0, bit_pos = 0; 264 struct ba_lun_info *bali = NULL; 265 266 bali = ba_lun->ba_lun_handle; 267 268 if (validate_alloc(bali, to_free)) { 269 pr_debug("%s: AUN %llx is not allocated on lun_id=%016llx\n", 270 __func__, to_free, ba_lun->lun_id); 271 return -1; 272 } 273 274 pr_debug("%s: Received a request to free AU=%llx lun_id=%016llx " 275 "free_aun_cnt=%llx\n", __func__, to_free, ba_lun->lun_id, 276 bali->free_aun_cnt); 277 278 if (bali->aun_clone_map[to_free] > 0) { 279 pr_debug("%s: AUN %llx lun_id=%016llx cloned. Clone count=%x\n", 280 __func__, to_free, ba_lun->lun_id, 281 bali->aun_clone_map[to_free]); 282 bali->aun_clone_map[to_free]--; 283 return 0; 284 } 285 286 idx = to_free / BITS_PER_LONG; 287 bit_pos = to_free % BITS_PER_LONG; 288 289 set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]); 290 bali->free_aun_cnt++; 291 292 if (idx < bali->free_low_idx) 293 bali->free_low_idx = idx; 294 else if (idx > bali->free_high_idx) 295 bali->free_high_idx = idx; 296 297 pr_debug("%s: Successfully freed AU bit_pos=%x bit map index=%x " 298 "lun_id=%016llx free_aun_cnt=%llx\n", __func__, bit_pos, idx, 299 ba_lun->lun_id, bali->free_aun_cnt); 300 301 return 0; 302 } 303 304 /** 305 * ba_clone() - Clone a chunk of the block allocation table 306 * @ba_lun: Block allocator from which to allocate a block. 307 * @to_free: Block to free. 308 * 309 * Return: 0 on success, -1 on failure 310 */ 311 static int ba_clone(struct ba_lun *ba_lun, u64 to_clone) 312 { 313 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 314 315 if (validate_alloc(bali, to_clone)) { 316 pr_debug("%s: AUN=%llx not allocated on lun_id=%016llx\n", 317 __func__, to_clone, ba_lun->lun_id); 318 return -1; 319 } 320 321 pr_debug("%s: Received a request to clone AUN %llx on lun_id=%016llx\n", 322 __func__, to_clone, ba_lun->lun_id); 323 324 if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) { 325 pr_debug("%s: AUN %llx on lun_id=%016llx hit max clones already\n", 326 __func__, to_clone, ba_lun->lun_id); 327 return -1; 328 } 329 330 bali->aun_clone_map[to_clone]++; 331 332 return 0; 333 } 334 335 /** 336 * ba_space() - returns the amount of free space left in the block allocator 337 * @ba_lun: Block allocator. 338 * 339 * Return: Amount of free space in block allocator 340 */ 341 static u64 ba_space(struct ba_lun *ba_lun) 342 { 343 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 344 345 return bali->free_aun_cnt; 346 } 347 348 /** 349 * cxlflash_ba_terminate() - frees resources associated with the block allocator 350 * @ba_lun: Block allocator. 351 * 352 * Safe to call in a partially allocated state. 353 */ 354 void cxlflash_ba_terminate(struct ba_lun *ba_lun) 355 { 356 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 357 358 if (bali) { 359 kfree(bali->aun_clone_map); 360 kfree(bali->lun_alloc_map); 361 kfree(bali); 362 ba_lun->ba_lun_handle = NULL; 363 } 364 } 365 366 /** 367 * init_vlun() - initializes a LUN for virtual use 368 * @lun_info: LUN information structure that owns the block allocator. 369 * 370 * Return: 0 on success, -errno on failure 371 */ 372 static int init_vlun(struct llun_info *lli) 373 { 374 int rc = 0; 375 struct glun_info *gli = lli->parent; 376 struct blka *blka = &gli->blka; 377 378 memset(blka, 0, sizeof(*blka)); 379 mutex_init(&blka->mutex); 380 381 /* LUN IDs are unique per port, save the index instead */ 382 blka->ba_lun.lun_id = lli->lun_index; 383 blka->ba_lun.lsize = gli->max_lba + 1; 384 blka->ba_lun.lba_size = gli->blk_len; 385 386 blka->ba_lun.au_size = MC_CHUNK_SIZE; 387 blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE; 388 389 rc = ba_init(&blka->ba_lun); 390 if (unlikely(rc)) 391 pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc); 392 393 pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli); 394 return rc; 395 } 396 397 /** 398 * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN 399 * @sdev: SCSI device associated with LUN. 400 * @lba: Logical block address to start write same. 401 * @nblks: Number of logical blocks to write same. 402 * 403 * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur 404 * while in scsi_execute(), the EEH handler will attempt to recover. As part of 405 * the recovery, the handler drains all currently running ioctls, waiting until 406 * they have completed before proceeding with a reset. As this routine is used 407 * on the ioctl path, this can create a condition where the EEH handler becomes 408 * stuck, infinitely waiting for this ioctl thread. To avoid this behavior, 409 * temporarily unmark this thread as an ioctl thread by releasing the ioctl read 410 * semaphore. This will allow the EEH handler to proceed with a recovery while 411 * this thread is still running. Once the scsi_execute() returns, reacquire the 412 * ioctl read semaphore and check the adapter state in case it changed while 413 * inside of scsi_execute(). The state check will wait if the adapter is still 414 * being recovered or return a failure if the recovery failed. In the event that 415 * the adapter reset failed, simply return the failure as the ioctl would be 416 * unable to continue. 417 * 418 * Note that the above puts a requirement on this routine to only be called on 419 * an ioctl thread. 420 * 421 * Return: 0 on success, -errno on failure 422 */ 423 static int write_same16(struct scsi_device *sdev, 424 u64 lba, 425 u32 nblks) 426 { 427 u8 *cmd_buf = NULL; 428 u8 *scsi_cmd = NULL; 429 u8 *sense_buf = NULL; 430 int rc = 0; 431 int result = 0; 432 u64 offset = lba; 433 int left = nblks; 434 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 435 struct device *dev = &cfg->dev->dev; 436 const u32 s = ilog2(sdev->sector_size) - 9; 437 const u32 to = sdev->request_queue->rq_timeout; 438 const u32 ws_limit = blk_queue_get_max_sectors(sdev->request_queue, 439 REQ_OP_WRITE_SAME) >> s; 440 441 cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL); 442 scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL); 443 sense_buf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 444 if (unlikely(!cmd_buf || !scsi_cmd || !sense_buf)) { 445 rc = -ENOMEM; 446 goto out; 447 } 448 449 while (left > 0) { 450 451 scsi_cmd[0] = WRITE_SAME_16; 452 scsi_cmd[1] = cfg->ws_unmap ? 0x8 : 0; 453 put_unaligned_be64(offset, &scsi_cmd[2]); 454 put_unaligned_be32(ws_limit < left ? ws_limit : left, 455 &scsi_cmd[10]); 456 457 /* Drop the ioctl read semahpore across lengthy call */ 458 up_read(&cfg->ioctl_rwsem); 459 result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf, 460 CMD_BUFSIZE, sense_buf, NULL, to, 461 CMD_RETRIES, 0, 0, NULL); 462 down_read(&cfg->ioctl_rwsem); 463 rc = check_state(cfg); 464 if (rc) { 465 dev_err(dev, "%s: Failed state result=%08x\n", 466 __func__, result); 467 rc = -ENODEV; 468 goto out; 469 } 470 471 if (result) { 472 dev_err_ratelimited(dev, "%s: command failed for " 473 "offset=%lld result=%08x\n", 474 __func__, offset, result); 475 rc = -EIO; 476 goto out; 477 } 478 left -= ws_limit; 479 offset += ws_limit; 480 } 481 482 out: 483 kfree(cmd_buf); 484 kfree(scsi_cmd); 485 kfree(sense_buf); 486 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 487 return rc; 488 } 489 490 /** 491 * grow_lxt() - expands the translation table associated with the specified RHTE 492 * @afu: AFU associated with the host. 493 * @sdev: SCSI device associated with LUN. 494 * @ctxid: Context ID of context owning the RHTE. 495 * @rhndl: Resource handle associated with the RHTE. 496 * @rhte: Resource handle entry (RHTE). 497 * @new_size: Number of translation entries associated with RHTE. 498 * 499 * By design, this routine employs a 'best attempt' allocation and will 500 * truncate the requested size down if there is not sufficient space in 501 * the block allocator to satisfy the request but there does exist some 502 * amount of space. The user is made aware of this by returning the size 503 * allocated. 504 * 505 * Return: 0 on success, -errno on failure 506 */ 507 static int grow_lxt(struct afu *afu, 508 struct scsi_device *sdev, 509 ctx_hndl_t ctxid, 510 res_hndl_t rhndl, 511 struct sisl_rht_entry *rhte, 512 u64 *new_size) 513 { 514 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 515 struct device *dev = &cfg->dev->dev; 516 struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL; 517 struct llun_info *lli = sdev->hostdata; 518 struct glun_info *gli = lli->parent; 519 struct blka *blka = &gli->blka; 520 u32 av_size; 521 u32 ngrps, ngrps_old; 522 u64 aun; /* chunk# allocated by block allocator */ 523 u64 delta = *new_size - rhte->lxt_cnt; 524 u64 my_new_size; 525 int i, rc = 0; 526 527 /* 528 * Check what is available in the block allocator before re-allocating 529 * LXT array. This is done up front under the mutex which must not be 530 * released until after allocation is complete. 531 */ 532 mutex_lock(&blka->mutex); 533 av_size = ba_space(&blka->ba_lun); 534 if (unlikely(av_size <= 0)) { 535 dev_dbg(dev, "%s: ba_space error av_size=%d\n", 536 __func__, av_size); 537 mutex_unlock(&blka->mutex); 538 rc = -ENOSPC; 539 goto out; 540 } 541 542 if (av_size < delta) 543 delta = av_size; 544 545 lxt_old = rhte->lxt_start; 546 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 547 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta); 548 549 if (ngrps != ngrps_old) { 550 /* reallocate to fit new size */ 551 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 552 GFP_KERNEL); 553 if (unlikely(!lxt)) { 554 mutex_unlock(&blka->mutex); 555 rc = -ENOMEM; 556 goto out; 557 } 558 559 /* copy over all old entries */ 560 memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt)); 561 } else 562 lxt = lxt_old; 563 564 /* nothing can fail from now on */ 565 my_new_size = rhte->lxt_cnt + delta; 566 567 /* add new entries to the end */ 568 for (i = rhte->lxt_cnt; i < my_new_size; i++) { 569 /* 570 * Due to the earlier check of available space, ba_alloc 571 * cannot fail here. If it did due to internal error, 572 * leave a rlba_base of -1u which will likely be a 573 * invalid LUN (too large). 574 */ 575 aun = ba_alloc(&blka->ba_lun); 576 if ((aun == -1ULL) || (aun >= blka->nchunk)) 577 dev_dbg(dev, "%s: ba_alloc error allocated chunk=%llu " 578 "max=%llu\n", __func__, aun, blka->nchunk - 1); 579 580 /* select both ports, use r/w perms from RHT */ 581 lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) | 582 (lli->lun_index << LXT_LUNIDX_SHIFT) | 583 (RHT_PERM_RW << LXT_PERM_SHIFT | 584 lli->port_sel)); 585 } 586 587 mutex_unlock(&blka->mutex); 588 589 /* 590 * The following sequence is prescribed in the SISlite spec 591 * for syncing up with the AFU when adding LXT entries. 592 */ 593 dma_wmb(); /* Make LXT updates are visible */ 594 595 rhte->lxt_start = lxt; 596 dma_wmb(); /* Make RHT entry's LXT table update visible */ 597 598 rhte->lxt_cnt = my_new_size; 599 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 600 601 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 602 if (unlikely(rc)) 603 rc = -EAGAIN; 604 605 /* free old lxt if reallocated */ 606 if (lxt != lxt_old) 607 kfree(lxt_old); 608 *new_size = my_new_size; 609 out: 610 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 611 return rc; 612 } 613 614 /** 615 * shrink_lxt() - reduces translation table associated with the specified RHTE 616 * @afu: AFU associated with the host. 617 * @sdev: SCSI device associated with LUN. 618 * @rhndl: Resource handle associated with the RHTE. 619 * @rhte: Resource handle entry (RHTE). 620 * @ctxi: Context owning resources. 621 * @new_size: Number of translation entries associated with RHTE. 622 * 623 * Return: 0 on success, -errno on failure 624 */ 625 static int shrink_lxt(struct afu *afu, 626 struct scsi_device *sdev, 627 res_hndl_t rhndl, 628 struct sisl_rht_entry *rhte, 629 struct ctx_info *ctxi, 630 u64 *new_size) 631 { 632 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 633 struct device *dev = &cfg->dev->dev; 634 struct sisl_lxt_entry *lxt, *lxt_old; 635 struct llun_info *lli = sdev->hostdata; 636 struct glun_info *gli = lli->parent; 637 struct blka *blka = &gli->blka; 638 ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid); 639 bool needs_ws = ctxi->rht_needs_ws[rhndl]; 640 bool needs_sync = !ctxi->err_recovery_active; 641 u32 ngrps, ngrps_old; 642 u64 aun; /* chunk# allocated by block allocator */ 643 u64 delta = rhte->lxt_cnt - *new_size; 644 u64 my_new_size; 645 int i, rc = 0; 646 647 lxt_old = rhte->lxt_start; 648 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 649 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta); 650 651 if (ngrps != ngrps_old) { 652 /* Reallocate to fit new size unless new size is 0 */ 653 if (ngrps) { 654 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 655 GFP_KERNEL); 656 if (unlikely(!lxt)) { 657 rc = -ENOMEM; 658 goto out; 659 } 660 661 /* Copy over old entries that will remain */ 662 memcpy(lxt, lxt_old, 663 (sizeof(*lxt) * (rhte->lxt_cnt - delta))); 664 } else 665 lxt = NULL; 666 } else 667 lxt = lxt_old; 668 669 /* Nothing can fail from now on */ 670 my_new_size = rhte->lxt_cnt - delta; 671 672 /* 673 * The following sequence is prescribed in the SISlite spec 674 * for syncing up with the AFU when removing LXT entries. 675 */ 676 rhte->lxt_cnt = my_new_size; 677 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 678 679 rhte->lxt_start = lxt; 680 dma_wmb(); /* Make RHT entry's LXT table update visible */ 681 682 if (needs_sync) { 683 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 684 if (unlikely(rc)) 685 rc = -EAGAIN; 686 } 687 688 if (needs_ws) { 689 /* 690 * Mark the context as unavailable, so that we can release 691 * the mutex safely. 692 */ 693 ctxi->unavail = true; 694 mutex_unlock(&ctxi->mutex); 695 } 696 697 /* Free LBAs allocated to freed chunks */ 698 mutex_lock(&blka->mutex); 699 for (i = delta - 1; i >= 0; i--) { 700 aun = lxt_old[my_new_size + i].rlba_base >> MC_CHUNK_SHIFT; 701 if (needs_ws) 702 write_same16(sdev, aun, MC_CHUNK_SIZE); 703 ba_free(&blka->ba_lun, aun); 704 } 705 mutex_unlock(&blka->mutex); 706 707 if (needs_ws) { 708 /* Make the context visible again */ 709 mutex_lock(&ctxi->mutex); 710 ctxi->unavail = false; 711 } 712 713 /* Free old lxt if reallocated */ 714 if (lxt != lxt_old) 715 kfree(lxt_old); 716 *new_size = my_new_size; 717 out: 718 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 719 return rc; 720 } 721 722 /** 723 * _cxlflash_vlun_resize() - changes the size of a virtual LUN 724 * @sdev: SCSI device associated with LUN owning virtual LUN. 725 * @ctxi: Context owning resources. 726 * @resize: Resize ioctl data structure. 727 * 728 * On successful return, the user is informed of the new size (in blocks) 729 * of the virtual LUN in last LBA format. When the size of the virtual 730 * LUN is zero, the last LBA is reflected as -1. See comment in the 731 * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts 732 * on the error recovery list. 733 * 734 * Return: 0 on success, -errno on failure 735 */ 736 int _cxlflash_vlun_resize(struct scsi_device *sdev, 737 struct ctx_info *ctxi, 738 struct dk_cxlflash_resize *resize) 739 { 740 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 741 struct device *dev = &cfg->dev->dev; 742 struct llun_info *lli = sdev->hostdata; 743 struct glun_info *gli = lli->parent; 744 struct afu *afu = cfg->afu; 745 bool put_ctx = false; 746 747 res_hndl_t rhndl = resize->rsrc_handle; 748 u64 new_size; 749 u64 nsectors; 750 u64 ctxid = DECODE_CTXID(resize->context_id), 751 rctxid = resize->context_id; 752 753 struct sisl_rht_entry *rhte; 754 755 int rc = 0; 756 757 /* 758 * The requested size (req_size) is always assumed to be in 4k blocks, 759 * so we have to convert it here from 4k to chunk size. 760 */ 761 nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len; 762 new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE); 763 764 dev_dbg(dev, "%s: ctxid=%llu rhndl=%llu req_size=%llu new_size=%llu\n", 765 __func__, ctxid, resize->rsrc_handle, resize->req_size, 766 new_size); 767 768 if (unlikely(gli->mode != MODE_VIRTUAL)) { 769 dev_dbg(dev, "%s: LUN mode does not support resize mode=%d\n", 770 __func__, gli->mode); 771 rc = -EINVAL; 772 goto out; 773 774 } 775 776 if (!ctxi) { 777 ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK); 778 if (unlikely(!ctxi)) { 779 dev_dbg(dev, "%s: Bad context ctxid=%llu\n", 780 __func__, ctxid); 781 rc = -EINVAL; 782 goto out; 783 } 784 785 put_ctx = true; 786 } 787 788 rhte = get_rhte(ctxi, rhndl, lli); 789 if (unlikely(!rhte)) { 790 dev_dbg(dev, "%s: Bad resource handle rhndl=%u\n", 791 __func__, rhndl); 792 rc = -EINVAL; 793 goto out; 794 } 795 796 if (new_size > rhte->lxt_cnt) 797 rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size); 798 else if (new_size < rhte->lxt_cnt) 799 rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size); 800 else { 801 /* 802 * Rare case where there is already sufficient space, just 803 * need to perform a translation sync with the AFU. This 804 * scenario likely follows a previous sync failure during 805 * a resize operation. Accordingly, perform the heavyweight 806 * form of translation sync as it is unknown which type of 807 * resize failed previously. 808 */ 809 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 810 if (unlikely(rc)) { 811 rc = -EAGAIN; 812 goto out; 813 } 814 } 815 816 resize->hdr.return_flags = 0; 817 resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len); 818 resize->last_lba /= CXLFLASH_BLOCK_SIZE; 819 resize->last_lba--; 820 821 out: 822 if (put_ctx) 823 put_context(ctxi); 824 dev_dbg(dev, "%s: resized to %llu returning rc=%d\n", 825 __func__, resize->last_lba, rc); 826 return rc; 827 } 828 829 int cxlflash_vlun_resize(struct scsi_device *sdev, 830 struct dk_cxlflash_resize *resize) 831 { 832 return _cxlflash_vlun_resize(sdev, NULL, resize); 833 } 834 835 /** 836 * cxlflash_restore_luntable() - Restore LUN table to prior state 837 * @cfg: Internal structure associated with the host. 838 */ 839 void cxlflash_restore_luntable(struct cxlflash_cfg *cfg) 840 { 841 struct llun_info *lli, *temp; 842 u32 lind; 843 int k; 844 struct device *dev = &cfg->dev->dev; 845 __be64 __iomem *fc_port_luns; 846 847 mutex_lock(&global.mutex); 848 849 list_for_each_entry_safe(lli, temp, &cfg->lluns, list) { 850 if (!lli->in_table) 851 continue; 852 853 lind = lli->lun_index; 854 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 855 856 for (k = 0; k < cfg->num_fc_ports; k++) 857 if (lli->port_sel & (1 << k)) { 858 fc_port_luns = get_fc_port_luns(cfg, k); 859 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 860 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 861 } 862 } 863 864 mutex_unlock(&global.mutex); 865 } 866 867 /** 868 * get_num_ports() - compute number of ports from port selection mask 869 * @psm: Port selection mask. 870 * 871 * Return: Population count of port selection mask 872 */ 873 static inline u8 get_num_ports(u32 psm) 874 { 875 static const u8 bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 876 1, 2, 2, 3, 2, 3, 3, 4 }; 877 878 return bits[psm & 0xf]; 879 } 880 881 /** 882 * init_luntable() - write an entry in the LUN table 883 * @cfg: Internal structure associated with the host. 884 * @lli: Per adapter LUN information structure. 885 * 886 * On successful return, a LUN table entry is created: 887 * - at the top for LUNs visible on multiple ports. 888 * - at the bottom for LUNs visible only on one port. 889 * 890 * Return: 0 on success, -errno on failure 891 */ 892 static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli) 893 { 894 u32 chan; 895 u32 lind; 896 u32 nports; 897 int rc = 0; 898 int k; 899 struct device *dev = &cfg->dev->dev; 900 __be64 __iomem *fc_port_luns; 901 902 mutex_lock(&global.mutex); 903 904 if (lli->in_table) 905 goto out; 906 907 nports = get_num_ports(lli->port_sel); 908 if (nports == 0 || nports > cfg->num_fc_ports) { 909 WARN(1, "Unsupported port configuration nports=%u", nports); 910 rc = -EIO; 911 goto out; 912 } 913 914 if (nports > 1) { 915 /* 916 * When LUN is visible from multiple ports, we will put 917 * it in the top half of the LUN table. 918 */ 919 for (k = 0; k < cfg->num_fc_ports; k++) { 920 if (!(lli->port_sel & (1 << k))) 921 continue; 922 923 if (cfg->promote_lun_index == cfg->last_lun_index[k]) { 924 rc = -ENOSPC; 925 goto out; 926 } 927 } 928 929 lind = lli->lun_index = cfg->promote_lun_index; 930 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 931 932 for (k = 0; k < cfg->num_fc_ports; k++) { 933 if (!(lli->port_sel & (1 << k))) 934 continue; 935 936 fc_port_luns = get_fc_port_luns(cfg, k); 937 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 938 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 939 } 940 941 cfg->promote_lun_index++; 942 } else { 943 /* 944 * When LUN is visible only from one port, we will put 945 * it in the bottom half of the LUN table. 946 */ 947 chan = PORTMASK2CHAN(lli->port_sel); 948 if (cfg->promote_lun_index == cfg->last_lun_index[chan]) { 949 rc = -ENOSPC; 950 goto out; 951 } 952 953 lind = lli->lun_index = cfg->last_lun_index[chan]; 954 fc_port_luns = get_fc_port_luns(cfg, chan); 955 writeq_be(lli->lun_id[chan], &fc_port_luns[lind]); 956 cfg->last_lun_index[chan]--; 957 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n\t%d=%llx\n", 958 __func__, lind, chan, lli->lun_id[chan]); 959 } 960 961 lli->in_table = true; 962 out: 963 mutex_unlock(&global.mutex); 964 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 965 return rc; 966 } 967 968 /** 969 * cxlflash_disk_virtual_open() - open a virtual disk of specified size 970 * @sdev: SCSI device associated with LUN owning virtual LUN. 971 * @arg: UVirtual ioctl data structure. 972 * 973 * On successful return, the user is informed of the resource handle 974 * to be used to identify the virtual LUN and the size (in blocks) of 975 * the virtual LUN in last LBA format. When the size of the virtual LUN 976 * is zero, the last LBA is reflected as -1. 977 * 978 * Return: 0 on success, -errno on failure 979 */ 980 int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg) 981 { 982 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 983 struct device *dev = &cfg->dev->dev; 984 struct llun_info *lli = sdev->hostdata; 985 struct glun_info *gli = lli->parent; 986 987 struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg; 988 struct dk_cxlflash_resize resize; 989 990 u64 ctxid = DECODE_CTXID(virt->context_id), 991 rctxid = virt->context_id; 992 u64 lun_size = virt->lun_size; 993 u64 last_lba = 0; 994 u64 rsrc_handle = -1; 995 996 int rc = 0; 997 998 struct ctx_info *ctxi = NULL; 999 struct sisl_rht_entry *rhte = NULL; 1000 1001 dev_dbg(dev, "%s: ctxid=%llu ls=%llu\n", __func__, ctxid, lun_size); 1002 1003 /* Setup the LUNs block allocator on first call */ 1004 mutex_lock(&gli->mutex); 1005 if (gli->mode == MODE_NONE) { 1006 rc = init_vlun(lli); 1007 if (rc) { 1008 dev_err(dev, "%s: init_vlun failed rc=%d\n", 1009 __func__, rc); 1010 rc = -ENOMEM; 1011 goto err0; 1012 } 1013 } 1014 1015 rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true); 1016 if (unlikely(rc)) { 1017 dev_err(dev, "%s: Failed attach to LUN (VIRTUAL)\n", __func__); 1018 goto err0; 1019 } 1020 mutex_unlock(&gli->mutex); 1021 1022 rc = init_luntable(cfg, lli); 1023 if (rc) { 1024 dev_err(dev, "%s: init_luntable failed rc=%d\n", __func__, rc); 1025 goto err1; 1026 } 1027 1028 ctxi = get_context(cfg, rctxid, lli, 0); 1029 if (unlikely(!ctxi)) { 1030 dev_err(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid); 1031 rc = -EINVAL; 1032 goto err1; 1033 } 1034 1035 rhte = rhte_checkout(ctxi, lli); 1036 if (unlikely(!rhte)) { 1037 dev_err(dev, "%s: too many opens ctxid=%llu\n", 1038 __func__, ctxid); 1039 rc = -EMFILE; /* too many opens */ 1040 goto err1; 1041 } 1042 1043 rsrc_handle = (rhte - ctxi->rht_start); 1044 1045 /* Populate RHT format 0 */ 1046 rhte->nmask = MC_RHT_NMASK; 1047 rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms); 1048 1049 /* Resize even if requested size is 0 */ 1050 marshal_virt_to_resize(virt, &resize); 1051 resize.rsrc_handle = rsrc_handle; 1052 rc = _cxlflash_vlun_resize(sdev, ctxi, &resize); 1053 if (rc) { 1054 dev_err(dev, "%s: resize failed rc=%d\n", __func__, rc); 1055 goto err2; 1056 } 1057 last_lba = resize.last_lba; 1058 1059 if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME) 1060 ctxi->rht_needs_ws[rsrc_handle] = true; 1061 1062 virt->hdr.return_flags = 0; 1063 virt->last_lba = last_lba; 1064 virt->rsrc_handle = rsrc_handle; 1065 1066 if (get_num_ports(lli->port_sel) > 1) 1067 virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE; 1068 out: 1069 if (likely(ctxi)) 1070 put_context(ctxi); 1071 dev_dbg(dev, "%s: returning handle=%llu rc=%d llba=%llu\n", 1072 __func__, rsrc_handle, rc, last_lba); 1073 return rc; 1074 1075 err2: 1076 rhte_checkin(ctxi, rhte); 1077 err1: 1078 cxlflash_lun_detach(gli); 1079 goto out; 1080 err0: 1081 /* Special common cleanup prior to successful LUN attach */ 1082 cxlflash_ba_terminate(&gli->blka.ba_lun); 1083 mutex_unlock(&gli->mutex); 1084 goto out; 1085 } 1086 1087 /** 1088 * clone_lxt() - copies translation tables from source to destination RHTE 1089 * @afu: AFU associated with the host. 1090 * @blka: Block allocator associated with LUN. 1091 * @ctxid: Context ID of context owning the RHTE. 1092 * @rhndl: Resource handle associated with the RHTE. 1093 * @rhte: Destination resource handle entry (RHTE). 1094 * @rhte_src: Source resource handle entry (RHTE). 1095 * 1096 * Return: 0 on success, -errno on failure 1097 */ 1098 static int clone_lxt(struct afu *afu, 1099 struct blka *blka, 1100 ctx_hndl_t ctxid, 1101 res_hndl_t rhndl, 1102 struct sisl_rht_entry *rhte, 1103 struct sisl_rht_entry *rhte_src) 1104 { 1105 struct cxlflash_cfg *cfg = afu->parent; 1106 struct device *dev = &cfg->dev->dev; 1107 struct sisl_lxt_entry *lxt = NULL; 1108 bool locked = false; 1109 u32 ngrps; 1110 u64 aun; /* chunk# allocated by block allocator */ 1111 int j; 1112 int i = 0; 1113 int rc = 0; 1114 1115 ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt); 1116 1117 if (ngrps) { 1118 /* allocate new LXTs for clone */ 1119 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 1120 GFP_KERNEL); 1121 if (unlikely(!lxt)) { 1122 rc = -ENOMEM; 1123 goto out; 1124 } 1125 1126 /* copy over */ 1127 memcpy(lxt, rhte_src->lxt_start, 1128 (sizeof(*lxt) * rhte_src->lxt_cnt)); 1129 1130 /* clone the LBAs in block allocator via ref_cnt, note that the 1131 * block allocator mutex must be held until it is established 1132 * that this routine will complete without the need for a 1133 * cleanup. 1134 */ 1135 mutex_lock(&blka->mutex); 1136 locked = true; 1137 for (i = 0; i < rhte_src->lxt_cnt; i++) { 1138 aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT); 1139 if (ba_clone(&blka->ba_lun, aun) == -1ULL) { 1140 rc = -EIO; 1141 goto err; 1142 } 1143 } 1144 } 1145 1146 /* 1147 * The following sequence is prescribed in the SISlite spec 1148 * for syncing up with the AFU when adding LXT entries. 1149 */ 1150 dma_wmb(); /* Make LXT updates are visible */ 1151 1152 rhte->lxt_start = lxt; 1153 dma_wmb(); /* Make RHT entry's LXT table update visible */ 1154 1155 rhte->lxt_cnt = rhte_src->lxt_cnt; 1156 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 1157 1158 rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 1159 if (unlikely(rc)) { 1160 rc = -EAGAIN; 1161 goto err2; 1162 } 1163 1164 out: 1165 if (locked) 1166 mutex_unlock(&blka->mutex); 1167 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1168 return rc; 1169 err2: 1170 /* Reset the RHTE */ 1171 rhte->lxt_cnt = 0; 1172 dma_wmb(); 1173 rhte->lxt_start = NULL; 1174 dma_wmb(); 1175 err: 1176 /* free the clones already made */ 1177 for (j = 0; j < i; j++) { 1178 aun = (lxt[j].rlba_base >> MC_CHUNK_SHIFT); 1179 ba_free(&blka->ba_lun, aun); 1180 } 1181 kfree(lxt); 1182 goto out; 1183 } 1184 1185 /** 1186 * cxlflash_disk_clone() - clone a context by making snapshot of another 1187 * @sdev: SCSI device associated with LUN owning virtual LUN. 1188 * @clone: Clone ioctl data structure. 1189 * 1190 * This routine effectively performs cxlflash_disk_open operation for each 1191 * in-use virtual resource in the source context. Note that the destination 1192 * context must be in pristine state and cannot have any resource handles 1193 * open at the time of the clone. 1194 * 1195 * Return: 0 on success, -errno on failure 1196 */ 1197 int cxlflash_disk_clone(struct scsi_device *sdev, 1198 struct dk_cxlflash_clone *clone) 1199 { 1200 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 1201 struct device *dev = &cfg->dev->dev; 1202 struct llun_info *lli = sdev->hostdata; 1203 struct glun_info *gli = lli->parent; 1204 struct blka *blka = &gli->blka; 1205 struct afu *afu = cfg->afu; 1206 struct dk_cxlflash_release release = { { 0 }, 0 }; 1207 1208 struct ctx_info *ctxi_src = NULL, 1209 *ctxi_dst = NULL; 1210 struct lun_access *lun_access_src, *lun_access_dst; 1211 u32 perms; 1212 u64 ctxid_src = DECODE_CTXID(clone->context_id_src), 1213 ctxid_dst = DECODE_CTXID(clone->context_id_dst), 1214 rctxid_src = clone->context_id_src, 1215 rctxid_dst = clone->context_id_dst; 1216 int i, j; 1217 int rc = 0; 1218 bool found; 1219 LIST_HEAD(sidecar); 1220 1221 dev_dbg(dev, "%s: ctxid_src=%llu ctxid_dst=%llu\n", 1222 __func__, ctxid_src, ctxid_dst); 1223 1224 /* Do not clone yourself */ 1225 if (unlikely(rctxid_src == rctxid_dst)) { 1226 rc = -EINVAL; 1227 goto out; 1228 } 1229 1230 if (unlikely(gli->mode != MODE_VIRTUAL)) { 1231 rc = -EINVAL; 1232 dev_dbg(dev, "%s: Only supported on virtual LUNs mode=%u\n", 1233 __func__, gli->mode); 1234 goto out; 1235 } 1236 1237 ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE); 1238 ctxi_dst = get_context(cfg, rctxid_dst, lli, 0); 1239 if (unlikely(!ctxi_src || !ctxi_dst)) { 1240 dev_dbg(dev, "%s: Bad context ctxid_src=%llu ctxid_dst=%llu\n", 1241 __func__, ctxid_src, ctxid_dst); 1242 rc = -EINVAL; 1243 goto out; 1244 } 1245 1246 /* Verify there is no open resource handle in the destination context */ 1247 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) 1248 if (ctxi_dst->rht_start[i].nmask != 0) { 1249 rc = -EINVAL; 1250 goto out; 1251 } 1252 1253 /* Clone LUN access list */ 1254 list_for_each_entry(lun_access_src, &ctxi_src->luns, list) { 1255 found = false; 1256 list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list) 1257 if (lun_access_dst->sdev == lun_access_src->sdev) { 1258 found = true; 1259 break; 1260 } 1261 1262 if (!found) { 1263 lun_access_dst = kzalloc(sizeof(*lun_access_dst), 1264 GFP_KERNEL); 1265 if (unlikely(!lun_access_dst)) { 1266 dev_err(dev, "%s: lun_access allocation fail\n", 1267 __func__); 1268 rc = -ENOMEM; 1269 goto out; 1270 } 1271 1272 *lun_access_dst = *lun_access_src; 1273 list_add(&lun_access_dst->list, &sidecar); 1274 } 1275 } 1276 1277 if (unlikely(!ctxi_src->rht_out)) { 1278 dev_dbg(dev, "%s: Nothing to clone\n", __func__); 1279 goto out_success; 1280 } 1281 1282 /* User specified permission on attach */ 1283 perms = ctxi_dst->rht_perms; 1284 1285 /* 1286 * Copy over checked-out RHT (and their associated LXT) entries by 1287 * hand, stopping after we've copied all outstanding entries and 1288 * cleaning up if the clone fails. 1289 * 1290 * Note: This loop is equivalent to performing cxlflash_disk_open and 1291 * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into 1292 * account by attaching after each successful RHT entry clone. In the 1293 * event that a clone failure is experienced, the LUN detach is handled 1294 * via the cleanup performed by _cxlflash_disk_release. 1295 */ 1296 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) { 1297 if (ctxi_src->rht_out == ctxi_dst->rht_out) 1298 break; 1299 if (ctxi_src->rht_start[i].nmask == 0) 1300 continue; 1301 1302 /* Consume a destination RHT entry */ 1303 ctxi_dst->rht_out++; 1304 ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask; 1305 ctxi_dst->rht_start[i].fp = 1306 SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms); 1307 ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i]; 1308 1309 rc = clone_lxt(afu, blka, ctxid_dst, i, 1310 &ctxi_dst->rht_start[i], 1311 &ctxi_src->rht_start[i]); 1312 if (rc) { 1313 marshal_clone_to_rele(clone, &release); 1314 for (j = 0; j < i; j++) { 1315 release.rsrc_handle = j; 1316 _cxlflash_disk_release(sdev, ctxi_dst, 1317 &release); 1318 } 1319 1320 /* Put back the one we failed on */ 1321 rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]); 1322 goto err; 1323 } 1324 1325 cxlflash_lun_attach(gli, gli->mode, false); 1326 } 1327 1328 out_success: 1329 list_splice(&sidecar, &ctxi_dst->luns); 1330 1331 /* fall through */ 1332 out: 1333 if (ctxi_src) 1334 put_context(ctxi_src); 1335 if (ctxi_dst) 1336 put_context(ctxi_dst); 1337 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1338 return rc; 1339 1340 err: 1341 list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list) 1342 kfree(lun_access_src); 1343 goto out; 1344 } 1345