xref: /openbmc/linux/drivers/scsi/cxlflash/vlun.c (revision 151f4e2b)
1 /*
2  * CXL Flash Device Driver
3  *
4  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6  *
7  * Copyright (C) 2015 IBM Corporation
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <linux/interrupt.h>
16 #include <linux/pci.h>
17 #include <linux/syscalls.h>
18 #include <asm/unaligned.h>
19 #include <asm/bitsperlong.h>
20 
21 #include <scsi/scsi_cmnd.h>
22 #include <scsi/scsi_host.h>
23 #include <uapi/scsi/cxlflash_ioctl.h>
24 
25 #include "sislite.h"
26 #include "common.h"
27 #include "vlun.h"
28 #include "superpipe.h"
29 
30 /**
31  * marshal_virt_to_resize() - translate uvirtual to resize structure
32  * @virt:	Source structure from which to translate/copy.
33  * @resize:	Destination structure for the translate/copy.
34  */
35 static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt,
36 				   struct dk_cxlflash_resize *resize)
37 {
38 	resize->hdr = virt->hdr;
39 	resize->context_id = virt->context_id;
40 	resize->rsrc_handle = virt->rsrc_handle;
41 	resize->req_size = virt->lun_size;
42 	resize->last_lba = virt->last_lba;
43 }
44 
45 /**
46  * marshal_clone_to_rele() - translate clone to release structure
47  * @clone:	Source structure from which to translate/copy.
48  * @rele:	Destination structure for the translate/copy.
49  */
50 static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone,
51 				  struct dk_cxlflash_release *release)
52 {
53 	release->hdr = clone->hdr;
54 	release->context_id = clone->context_id_dst;
55 }
56 
57 /**
58  * ba_init() - initializes a block allocator
59  * @ba_lun:	Block allocator to initialize.
60  *
61  * Return: 0 on success, -errno on failure
62  */
63 static int ba_init(struct ba_lun *ba_lun)
64 {
65 	struct ba_lun_info *bali = NULL;
66 	int lun_size_au = 0, i = 0;
67 	int last_word_underflow = 0;
68 	u64 *lam;
69 
70 	pr_debug("%s: Initializing LUN: lun_id=%016llx "
71 		 "ba_lun->lsize=%lx ba_lun->au_size=%lX\n",
72 		__func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size);
73 
74 	/* Calculate bit map size */
75 	lun_size_au = ba_lun->lsize / ba_lun->au_size;
76 	if (lun_size_au == 0) {
77 		pr_debug("%s: Requested LUN size of 0!\n", __func__);
78 		return -EINVAL;
79 	}
80 
81 	/* Allocate lun information container */
82 	bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL);
83 	if (unlikely(!bali)) {
84 		pr_err("%s: Failed to allocate lun_info lun_id=%016llx\n",
85 		       __func__, ba_lun->lun_id);
86 		return -ENOMEM;
87 	}
88 
89 	bali->total_aus = lun_size_au;
90 	bali->lun_bmap_size = lun_size_au / BITS_PER_LONG;
91 
92 	if (lun_size_au % BITS_PER_LONG)
93 		bali->lun_bmap_size++;
94 
95 	/* Allocate bitmap space */
96 	bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)),
97 				      GFP_KERNEL);
98 	if (unlikely(!bali->lun_alloc_map)) {
99 		pr_err("%s: Failed to allocate lun allocation map: "
100 		       "lun_id=%016llx\n", __func__, ba_lun->lun_id);
101 		kfree(bali);
102 		return -ENOMEM;
103 	}
104 
105 	/* Initialize the bit map size and set all bits to '1' */
106 	bali->free_aun_cnt = lun_size_au;
107 
108 	for (i = 0; i < bali->lun_bmap_size; i++)
109 		bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL;
110 
111 	/* If the last word not fully utilized, mark extra bits as allocated */
112 	last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG);
113 	last_word_underflow -= bali->free_aun_cnt;
114 	if (last_word_underflow > 0) {
115 		lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1];
116 		for (i = (HIBIT - last_word_underflow + 1);
117 		     i < BITS_PER_LONG;
118 		     i++)
119 			clear_bit(i, (ulong *)lam);
120 	}
121 
122 	/* Initialize high elevator index, low/curr already at 0 from kzalloc */
123 	bali->free_high_idx = bali->lun_bmap_size;
124 
125 	/* Allocate clone map */
126 	bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)),
127 				      GFP_KERNEL);
128 	if (unlikely(!bali->aun_clone_map)) {
129 		pr_err("%s: Failed to allocate clone map: lun_id=%016llx\n",
130 		       __func__, ba_lun->lun_id);
131 		kfree(bali->lun_alloc_map);
132 		kfree(bali);
133 		return -ENOMEM;
134 	}
135 
136 	/* Pass the allocated LUN info as a handle to the user */
137 	ba_lun->ba_lun_handle = bali;
138 
139 	pr_debug("%s: Successfully initialized the LUN: "
140 		 "lun_id=%016llx bitmap size=%x, free_aun_cnt=%llx\n",
141 		__func__, ba_lun->lun_id, bali->lun_bmap_size,
142 		bali->free_aun_cnt);
143 	return 0;
144 }
145 
146 /**
147  * find_free_range() - locates a free bit within the block allocator
148  * @low:	First word in block allocator to start search.
149  * @high:	Last word in block allocator to search.
150  * @bali:	LUN information structure owning the block allocator to search.
151  * @bit_word:	Passes back the word in the block allocator owning the free bit.
152  *
153  * Return: The bit position within the passed back word, -1 on failure
154  */
155 static int find_free_range(u32 low,
156 			   u32 high,
157 			   struct ba_lun_info *bali, int *bit_word)
158 {
159 	int i;
160 	u64 bit_pos = -1;
161 	ulong *lam, num_bits;
162 
163 	for (i = low; i < high; i++)
164 		if (bali->lun_alloc_map[i] != 0) {
165 			lam = (ulong *)&bali->lun_alloc_map[i];
166 			num_bits = (sizeof(*lam) * BITS_PER_BYTE);
167 			bit_pos = find_first_bit(lam, num_bits);
168 
169 			pr_devel("%s: Found free bit %llu in LUN "
170 				 "map entry %016llx at bitmap index = %d\n",
171 				 __func__, bit_pos, bali->lun_alloc_map[i], i);
172 
173 			*bit_word = i;
174 			bali->free_aun_cnt--;
175 			clear_bit(bit_pos, lam);
176 			break;
177 		}
178 
179 	return bit_pos;
180 }
181 
182 /**
183  * ba_alloc() - allocates a block from the block allocator
184  * @ba_lun:	Block allocator from which to allocate a block.
185  *
186  * Return: The allocated block, -1 on failure
187  */
188 static u64 ba_alloc(struct ba_lun *ba_lun)
189 {
190 	u64 bit_pos = -1;
191 	int bit_word = 0;
192 	struct ba_lun_info *bali = NULL;
193 
194 	bali = ba_lun->ba_lun_handle;
195 
196 	pr_debug("%s: Received block allocation request: "
197 		 "lun_id=%016llx free_aun_cnt=%llx\n",
198 		 __func__, ba_lun->lun_id, bali->free_aun_cnt);
199 
200 	if (bali->free_aun_cnt == 0) {
201 		pr_debug("%s: No space left on LUN: lun_id=%016llx\n",
202 			 __func__, ba_lun->lun_id);
203 		return -1ULL;
204 	}
205 
206 	/* Search to find a free entry, curr->high then low->curr */
207 	bit_pos = find_free_range(bali->free_curr_idx,
208 				  bali->free_high_idx, bali, &bit_word);
209 	if (bit_pos == -1) {
210 		bit_pos = find_free_range(bali->free_low_idx,
211 					  bali->free_curr_idx,
212 					  bali, &bit_word);
213 		if (bit_pos == -1) {
214 			pr_debug("%s: Could not find an allocation unit on LUN:"
215 				 " lun_id=%016llx\n", __func__, ba_lun->lun_id);
216 			return -1ULL;
217 		}
218 	}
219 
220 	/* Update the free_curr_idx */
221 	if (bit_pos == HIBIT)
222 		bali->free_curr_idx = bit_word + 1;
223 	else
224 		bali->free_curr_idx = bit_word;
225 
226 	pr_debug("%s: Allocating AU number=%llx lun_id=%016llx "
227 		 "free_aun_cnt=%llx\n", __func__,
228 		 ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id,
229 		 bali->free_aun_cnt);
230 
231 	return (u64) ((bit_word * BITS_PER_LONG) + bit_pos);
232 }
233 
234 /**
235  * validate_alloc() - validates the specified block has been allocated
236  * @ba_lun_info:	LUN info owning the block allocator.
237  * @aun:		Block to validate.
238  *
239  * Return: 0 on success, -1 on failure
240  */
241 static int validate_alloc(struct ba_lun_info *bali, u64 aun)
242 {
243 	int idx = 0, bit_pos = 0;
244 
245 	idx = aun / BITS_PER_LONG;
246 	bit_pos = aun % BITS_PER_LONG;
247 
248 	if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]))
249 		return -1;
250 
251 	return 0;
252 }
253 
254 /**
255  * ba_free() - frees a block from the block allocator
256  * @ba_lun:	Block allocator from which to allocate a block.
257  * @to_free:	Block to free.
258  *
259  * Return: 0 on success, -1 on failure
260  */
261 static int ba_free(struct ba_lun *ba_lun, u64 to_free)
262 {
263 	int idx = 0, bit_pos = 0;
264 	struct ba_lun_info *bali = NULL;
265 
266 	bali = ba_lun->ba_lun_handle;
267 
268 	if (validate_alloc(bali, to_free)) {
269 		pr_debug("%s: AUN %llx is not allocated on lun_id=%016llx\n",
270 			 __func__, to_free, ba_lun->lun_id);
271 		return -1;
272 	}
273 
274 	pr_debug("%s: Received a request to free AU=%llx lun_id=%016llx "
275 		 "free_aun_cnt=%llx\n", __func__, to_free, ba_lun->lun_id,
276 		 bali->free_aun_cnt);
277 
278 	if (bali->aun_clone_map[to_free] > 0) {
279 		pr_debug("%s: AUN %llx lun_id=%016llx cloned. Clone count=%x\n",
280 			 __func__, to_free, ba_lun->lun_id,
281 			 bali->aun_clone_map[to_free]);
282 		bali->aun_clone_map[to_free]--;
283 		return 0;
284 	}
285 
286 	idx = to_free / BITS_PER_LONG;
287 	bit_pos = to_free % BITS_PER_LONG;
288 
289 	set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]);
290 	bali->free_aun_cnt++;
291 
292 	if (idx < bali->free_low_idx)
293 		bali->free_low_idx = idx;
294 	else if (idx > bali->free_high_idx)
295 		bali->free_high_idx = idx;
296 
297 	pr_debug("%s: Successfully freed AU bit_pos=%x bit map index=%x "
298 		 "lun_id=%016llx free_aun_cnt=%llx\n", __func__, bit_pos, idx,
299 		 ba_lun->lun_id, bali->free_aun_cnt);
300 
301 	return 0;
302 }
303 
304 /**
305  * ba_clone() - Clone a chunk of the block allocation table
306  * @ba_lun:	Block allocator from which to allocate a block.
307  * @to_free:	Block to free.
308  *
309  * Return: 0 on success, -1 on failure
310  */
311 static int ba_clone(struct ba_lun *ba_lun, u64 to_clone)
312 {
313 	struct ba_lun_info *bali = ba_lun->ba_lun_handle;
314 
315 	if (validate_alloc(bali, to_clone)) {
316 		pr_debug("%s: AUN=%llx not allocated on lun_id=%016llx\n",
317 			 __func__, to_clone, ba_lun->lun_id);
318 		return -1;
319 	}
320 
321 	pr_debug("%s: Received a request to clone AUN %llx on lun_id=%016llx\n",
322 		 __func__, to_clone, ba_lun->lun_id);
323 
324 	if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) {
325 		pr_debug("%s: AUN %llx on lun_id=%016llx hit max clones already\n",
326 			 __func__, to_clone, ba_lun->lun_id);
327 		return -1;
328 	}
329 
330 	bali->aun_clone_map[to_clone]++;
331 
332 	return 0;
333 }
334 
335 /**
336  * ba_space() - returns the amount of free space left in the block allocator
337  * @ba_lun:	Block allocator.
338  *
339  * Return: Amount of free space in block allocator
340  */
341 static u64 ba_space(struct ba_lun *ba_lun)
342 {
343 	struct ba_lun_info *bali = ba_lun->ba_lun_handle;
344 
345 	return bali->free_aun_cnt;
346 }
347 
348 /**
349  * cxlflash_ba_terminate() - frees resources associated with the block allocator
350  * @ba_lun:	Block allocator.
351  *
352  * Safe to call in a partially allocated state.
353  */
354 void cxlflash_ba_terminate(struct ba_lun *ba_lun)
355 {
356 	struct ba_lun_info *bali = ba_lun->ba_lun_handle;
357 
358 	if (bali) {
359 		kfree(bali->aun_clone_map);
360 		kfree(bali->lun_alloc_map);
361 		kfree(bali);
362 		ba_lun->ba_lun_handle = NULL;
363 	}
364 }
365 
366 /**
367  * init_vlun() - initializes a LUN for virtual use
368  * @lun_info:	LUN information structure that owns the block allocator.
369  *
370  * Return: 0 on success, -errno on failure
371  */
372 static int init_vlun(struct llun_info *lli)
373 {
374 	int rc = 0;
375 	struct glun_info *gli = lli->parent;
376 	struct blka *blka = &gli->blka;
377 
378 	memset(blka, 0, sizeof(*blka));
379 	mutex_init(&blka->mutex);
380 
381 	/* LUN IDs are unique per port, save the index instead */
382 	blka->ba_lun.lun_id = lli->lun_index;
383 	blka->ba_lun.lsize = gli->max_lba + 1;
384 	blka->ba_lun.lba_size = gli->blk_len;
385 
386 	blka->ba_lun.au_size = MC_CHUNK_SIZE;
387 	blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE;
388 
389 	rc = ba_init(&blka->ba_lun);
390 	if (unlikely(rc))
391 		pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc);
392 
393 	pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli);
394 	return rc;
395 }
396 
397 /**
398  * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN
399  * @sdev:	SCSI device associated with LUN.
400  * @lba:	Logical block address to start write same.
401  * @nblks:	Number of logical blocks to write same.
402  *
403  * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur
404  * while in scsi_execute(), the EEH handler will attempt to recover. As part of
405  * the recovery, the handler drains all currently running ioctls, waiting until
406  * they have completed before proceeding with a reset. As this routine is used
407  * on the ioctl path, this can create a condition where the EEH handler becomes
408  * stuck, infinitely waiting for this ioctl thread. To avoid this behavior,
409  * temporarily unmark this thread as an ioctl thread by releasing the ioctl read
410  * semaphore. This will allow the EEH handler to proceed with a recovery while
411  * this thread is still running. Once the scsi_execute() returns, reacquire the
412  * ioctl read semaphore and check the adapter state in case it changed while
413  * inside of scsi_execute(). The state check will wait if the adapter is still
414  * being recovered or return a failure if the recovery failed. In the event that
415  * the adapter reset failed, simply return the failure as the ioctl would be
416  * unable to continue.
417  *
418  * Note that the above puts a requirement on this routine to only be called on
419  * an ioctl thread.
420  *
421  * Return: 0 on success, -errno on failure
422  */
423 static int write_same16(struct scsi_device *sdev,
424 			u64 lba,
425 			u32 nblks)
426 {
427 	u8 *cmd_buf = NULL;
428 	u8 *scsi_cmd = NULL;
429 	int rc = 0;
430 	int result = 0;
431 	u64 offset = lba;
432 	int left = nblks;
433 	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
434 	struct device *dev = &cfg->dev->dev;
435 	const u32 s = ilog2(sdev->sector_size) - 9;
436 	const u32 to = sdev->request_queue->rq_timeout;
437 	const u32 ws_limit = blk_queue_get_max_sectors(sdev->request_queue,
438 						       REQ_OP_WRITE_SAME) >> s;
439 
440 	cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL);
441 	scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL);
442 	if (unlikely(!cmd_buf || !scsi_cmd)) {
443 		rc = -ENOMEM;
444 		goto out;
445 	}
446 
447 	while (left > 0) {
448 
449 		scsi_cmd[0] = WRITE_SAME_16;
450 		scsi_cmd[1] = cfg->ws_unmap ? 0x8 : 0;
451 		put_unaligned_be64(offset, &scsi_cmd[2]);
452 		put_unaligned_be32(ws_limit < left ? ws_limit : left,
453 				   &scsi_cmd[10]);
454 
455 		/* Drop the ioctl read semahpore across lengthy call */
456 		up_read(&cfg->ioctl_rwsem);
457 		result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf,
458 				      CMD_BUFSIZE, NULL, NULL, to,
459 				      CMD_RETRIES, 0, 0, NULL);
460 		down_read(&cfg->ioctl_rwsem);
461 		rc = check_state(cfg);
462 		if (rc) {
463 			dev_err(dev, "%s: Failed state result=%08x\n",
464 				__func__, result);
465 			rc = -ENODEV;
466 			goto out;
467 		}
468 
469 		if (result) {
470 			dev_err_ratelimited(dev, "%s: command failed for "
471 					    "offset=%lld result=%08x\n",
472 					    __func__, offset, result);
473 			rc = -EIO;
474 			goto out;
475 		}
476 		left -= ws_limit;
477 		offset += ws_limit;
478 	}
479 
480 out:
481 	kfree(cmd_buf);
482 	kfree(scsi_cmd);
483 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
484 	return rc;
485 }
486 
487 /**
488  * grow_lxt() - expands the translation table associated with the specified RHTE
489  * @afu:	AFU associated with the host.
490  * @sdev:	SCSI device associated with LUN.
491  * @ctxid:	Context ID of context owning the RHTE.
492  * @rhndl:	Resource handle associated with the RHTE.
493  * @rhte:	Resource handle entry (RHTE).
494  * @new_size:	Number of translation entries associated with RHTE.
495  *
496  * By design, this routine employs a 'best attempt' allocation and will
497  * truncate the requested size down if there is not sufficient space in
498  * the block allocator to satisfy the request but there does exist some
499  * amount of space. The user is made aware of this by returning the size
500  * allocated.
501  *
502  * Return: 0 on success, -errno on failure
503  */
504 static int grow_lxt(struct afu *afu,
505 		    struct scsi_device *sdev,
506 		    ctx_hndl_t ctxid,
507 		    res_hndl_t rhndl,
508 		    struct sisl_rht_entry *rhte,
509 		    u64 *new_size)
510 {
511 	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
512 	struct device *dev = &cfg->dev->dev;
513 	struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL;
514 	struct llun_info *lli = sdev->hostdata;
515 	struct glun_info *gli = lli->parent;
516 	struct blka *blka = &gli->blka;
517 	u32 av_size;
518 	u32 ngrps, ngrps_old;
519 	u64 aun;		/* chunk# allocated by block allocator */
520 	u64 delta = *new_size - rhte->lxt_cnt;
521 	u64 my_new_size;
522 	int i, rc = 0;
523 
524 	/*
525 	 * Check what is available in the block allocator before re-allocating
526 	 * LXT array. This is done up front under the mutex which must not be
527 	 * released until after allocation is complete.
528 	 */
529 	mutex_lock(&blka->mutex);
530 	av_size = ba_space(&blka->ba_lun);
531 	if (unlikely(av_size <= 0)) {
532 		dev_dbg(dev, "%s: ba_space error av_size=%d\n",
533 			__func__, av_size);
534 		mutex_unlock(&blka->mutex);
535 		rc = -ENOSPC;
536 		goto out;
537 	}
538 
539 	if (av_size < delta)
540 		delta = av_size;
541 
542 	lxt_old = rhte->lxt_start;
543 	ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt);
544 	ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta);
545 
546 	if (ngrps != ngrps_old) {
547 		/* reallocate to fit new size */
548 		lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps),
549 			      GFP_KERNEL);
550 		if (unlikely(!lxt)) {
551 			mutex_unlock(&blka->mutex);
552 			rc = -ENOMEM;
553 			goto out;
554 		}
555 
556 		/* copy over all old entries */
557 		memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt));
558 	} else
559 		lxt = lxt_old;
560 
561 	/* nothing can fail from now on */
562 	my_new_size = rhte->lxt_cnt + delta;
563 
564 	/* add new entries to the end */
565 	for (i = rhte->lxt_cnt; i < my_new_size; i++) {
566 		/*
567 		 * Due to the earlier check of available space, ba_alloc
568 		 * cannot fail here. If it did due to internal error,
569 		 * leave a rlba_base of -1u which will likely be a
570 		 * invalid LUN (too large).
571 		 */
572 		aun = ba_alloc(&blka->ba_lun);
573 		if ((aun == -1ULL) || (aun >= blka->nchunk))
574 			dev_dbg(dev, "%s: ba_alloc error allocated chunk=%llu "
575 				"max=%llu\n", __func__, aun, blka->nchunk - 1);
576 
577 		/* select both ports, use r/w perms from RHT */
578 		lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) |
579 				    (lli->lun_index << LXT_LUNIDX_SHIFT) |
580 				    (RHT_PERM_RW << LXT_PERM_SHIFT |
581 				     lli->port_sel));
582 	}
583 
584 	mutex_unlock(&blka->mutex);
585 
586 	/*
587 	 * The following sequence is prescribed in the SISlite spec
588 	 * for syncing up with the AFU when adding LXT entries.
589 	 */
590 	dma_wmb(); /* Make LXT updates are visible */
591 
592 	rhte->lxt_start = lxt;
593 	dma_wmb(); /* Make RHT entry's LXT table update visible */
594 
595 	rhte->lxt_cnt = my_new_size;
596 	dma_wmb(); /* Make RHT entry's LXT table size update visible */
597 
598 	rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC);
599 	if (unlikely(rc))
600 		rc = -EAGAIN;
601 
602 	/* free old lxt if reallocated */
603 	if (lxt != lxt_old)
604 		kfree(lxt_old);
605 	*new_size = my_new_size;
606 out:
607 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
608 	return rc;
609 }
610 
611 /**
612  * shrink_lxt() - reduces translation table associated with the specified RHTE
613  * @afu:	AFU associated with the host.
614  * @sdev:	SCSI device associated with LUN.
615  * @rhndl:	Resource handle associated with the RHTE.
616  * @rhte:	Resource handle entry (RHTE).
617  * @ctxi:	Context owning resources.
618  * @new_size:	Number of translation entries associated with RHTE.
619  *
620  * Return: 0 on success, -errno on failure
621  */
622 static int shrink_lxt(struct afu *afu,
623 		      struct scsi_device *sdev,
624 		      res_hndl_t rhndl,
625 		      struct sisl_rht_entry *rhte,
626 		      struct ctx_info *ctxi,
627 		      u64 *new_size)
628 {
629 	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
630 	struct device *dev = &cfg->dev->dev;
631 	struct sisl_lxt_entry *lxt, *lxt_old;
632 	struct llun_info *lli = sdev->hostdata;
633 	struct glun_info *gli = lli->parent;
634 	struct blka *blka = &gli->blka;
635 	ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid);
636 	bool needs_ws = ctxi->rht_needs_ws[rhndl];
637 	bool needs_sync = !ctxi->err_recovery_active;
638 	u32 ngrps, ngrps_old;
639 	u64 aun;		/* chunk# allocated by block allocator */
640 	u64 delta = rhte->lxt_cnt - *new_size;
641 	u64 my_new_size;
642 	int i, rc = 0;
643 
644 	lxt_old = rhte->lxt_start;
645 	ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt);
646 	ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta);
647 
648 	if (ngrps != ngrps_old) {
649 		/* Reallocate to fit new size unless new size is 0 */
650 		if (ngrps) {
651 			lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps),
652 				      GFP_KERNEL);
653 			if (unlikely(!lxt)) {
654 				rc = -ENOMEM;
655 				goto out;
656 			}
657 
658 			/* Copy over old entries that will remain */
659 			memcpy(lxt, lxt_old,
660 			       (sizeof(*lxt) * (rhte->lxt_cnt - delta)));
661 		} else
662 			lxt = NULL;
663 	} else
664 		lxt = lxt_old;
665 
666 	/* Nothing can fail from now on */
667 	my_new_size = rhte->lxt_cnt - delta;
668 
669 	/*
670 	 * The following sequence is prescribed in the SISlite spec
671 	 * for syncing up with the AFU when removing LXT entries.
672 	 */
673 	rhte->lxt_cnt = my_new_size;
674 	dma_wmb(); /* Make RHT entry's LXT table size update visible */
675 
676 	rhte->lxt_start = lxt;
677 	dma_wmb(); /* Make RHT entry's LXT table update visible */
678 
679 	if (needs_sync) {
680 		rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC);
681 		if (unlikely(rc))
682 			rc = -EAGAIN;
683 	}
684 
685 	if (needs_ws) {
686 		/*
687 		 * Mark the context as unavailable, so that we can release
688 		 * the mutex safely.
689 		 */
690 		ctxi->unavail = true;
691 		mutex_unlock(&ctxi->mutex);
692 	}
693 
694 	/* Free LBAs allocated to freed chunks */
695 	mutex_lock(&blka->mutex);
696 	for (i = delta - 1; i >= 0; i--) {
697 		aun = lxt_old[my_new_size + i].rlba_base >> MC_CHUNK_SHIFT;
698 		if (needs_ws)
699 			write_same16(sdev, aun, MC_CHUNK_SIZE);
700 		ba_free(&blka->ba_lun, aun);
701 	}
702 	mutex_unlock(&blka->mutex);
703 
704 	if (needs_ws) {
705 		/* Make the context visible again */
706 		mutex_lock(&ctxi->mutex);
707 		ctxi->unavail = false;
708 	}
709 
710 	/* Free old lxt if reallocated */
711 	if (lxt != lxt_old)
712 		kfree(lxt_old);
713 	*new_size = my_new_size;
714 out:
715 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
716 	return rc;
717 }
718 
719 /**
720  * _cxlflash_vlun_resize() - changes the size of a virtual LUN
721  * @sdev:	SCSI device associated with LUN owning virtual LUN.
722  * @ctxi:	Context owning resources.
723  * @resize:	Resize ioctl data structure.
724  *
725  * On successful return, the user is informed of the new size (in blocks)
726  * of the virtual LUN in last LBA format. When the size of the virtual
727  * LUN is zero, the last LBA is reflected as -1. See comment in the
728  * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts
729  * on the error recovery list.
730  *
731  * Return: 0 on success, -errno on failure
732  */
733 int _cxlflash_vlun_resize(struct scsi_device *sdev,
734 			  struct ctx_info *ctxi,
735 			  struct dk_cxlflash_resize *resize)
736 {
737 	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
738 	struct device *dev = &cfg->dev->dev;
739 	struct llun_info *lli = sdev->hostdata;
740 	struct glun_info *gli = lli->parent;
741 	struct afu *afu = cfg->afu;
742 	bool put_ctx = false;
743 
744 	res_hndl_t rhndl = resize->rsrc_handle;
745 	u64 new_size;
746 	u64 nsectors;
747 	u64 ctxid = DECODE_CTXID(resize->context_id),
748 	    rctxid = resize->context_id;
749 
750 	struct sisl_rht_entry *rhte;
751 
752 	int rc = 0;
753 
754 	/*
755 	 * The requested size (req_size) is always assumed to be in 4k blocks,
756 	 * so we have to convert it here from 4k to chunk size.
757 	 */
758 	nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len;
759 	new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE);
760 
761 	dev_dbg(dev, "%s: ctxid=%llu rhndl=%llu req_size=%llu new_size=%llu\n",
762 		__func__, ctxid, resize->rsrc_handle, resize->req_size,
763 		new_size);
764 
765 	if (unlikely(gli->mode != MODE_VIRTUAL)) {
766 		dev_dbg(dev, "%s: LUN mode does not support resize mode=%d\n",
767 			__func__, gli->mode);
768 		rc = -EINVAL;
769 		goto out;
770 
771 	}
772 
773 	if (!ctxi) {
774 		ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK);
775 		if (unlikely(!ctxi)) {
776 			dev_dbg(dev, "%s: Bad context ctxid=%llu\n",
777 				__func__, ctxid);
778 			rc = -EINVAL;
779 			goto out;
780 		}
781 
782 		put_ctx = true;
783 	}
784 
785 	rhte = get_rhte(ctxi, rhndl, lli);
786 	if (unlikely(!rhte)) {
787 		dev_dbg(dev, "%s: Bad resource handle rhndl=%u\n",
788 			__func__, rhndl);
789 		rc = -EINVAL;
790 		goto out;
791 	}
792 
793 	if (new_size > rhte->lxt_cnt)
794 		rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size);
795 	else if (new_size < rhte->lxt_cnt)
796 		rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size);
797 	else {
798 		/*
799 		 * Rare case where there is already sufficient space, just
800 		 * need to perform a translation sync with the AFU. This
801 		 * scenario likely follows a previous sync failure during
802 		 * a resize operation. Accordingly, perform the heavyweight
803 		 * form of translation sync as it is unknown which type of
804 		 * resize failed previously.
805 		 */
806 		rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC);
807 		if (unlikely(rc)) {
808 			rc = -EAGAIN;
809 			goto out;
810 		}
811 	}
812 
813 	resize->hdr.return_flags = 0;
814 	resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len);
815 	resize->last_lba /= CXLFLASH_BLOCK_SIZE;
816 	resize->last_lba--;
817 
818 out:
819 	if (put_ctx)
820 		put_context(ctxi);
821 	dev_dbg(dev, "%s: resized to %llu returning rc=%d\n",
822 		__func__, resize->last_lba, rc);
823 	return rc;
824 }
825 
826 int cxlflash_vlun_resize(struct scsi_device *sdev,
827 			 struct dk_cxlflash_resize *resize)
828 {
829 	return _cxlflash_vlun_resize(sdev, NULL, resize);
830 }
831 
832 /**
833  * cxlflash_restore_luntable() - Restore LUN table to prior state
834  * @cfg:	Internal structure associated with the host.
835  */
836 void cxlflash_restore_luntable(struct cxlflash_cfg *cfg)
837 {
838 	struct llun_info *lli, *temp;
839 	u32 lind;
840 	int k;
841 	struct device *dev = &cfg->dev->dev;
842 	__be64 __iomem *fc_port_luns;
843 
844 	mutex_lock(&global.mutex);
845 
846 	list_for_each_entry_safe(lli, temp, &cfg->lluns, list) {
847 		if (!lli->in_table)
848 			continue;
849 
850 		lind = lli->lun_index;
851 		dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind);
852 
853 		for (k = 0; k < cfg->num_fc_ports; k++)
854 			if (lli->port_sel & (1 << k)) {
855 				fc_port_luns = get_fc_port_luns(cfg, k);
856 				writeq_be(lli->lun_id[k], &fc_port_luns[lind]);
857 				dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]);
858 			}
859 	}
860 
861 	mutex_unlock(&global.mutex);
862 }
863 
864 /**
865  * get_num_ports() - compute number of ports from port selection mask
866  * @psm:	Port selection mask.
867  *
868  * Return: Population count of port selection mask
869  */
870 static inline u8 get_num_ports(u32 psm)
871 {
872 	static const u8 bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3,
873 				     1, 2, 2, 3, 2, 3, 3, 4 };
874 
875 	return bits[psm & 0xf];
876 }
877 
878 /**
879  * init_luntable() - write an entry in the LUN table
880  * @cfg:	Internal structure associated with the host.
881  * @lli:	Per adapter LUN information structure.
882  *
883  * On successful return, a LUN table entry is created:
884  *	- at the top for LUNs visible on multiple ports.
885  *	- at the bottom for LUNs visible only on one port.
886  *
887  * Return: 0 on success, -errno on failure
888  */
889 static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli)
890 {
891 	u32 chan;
892 	u32 lind;
893 	u32 nports;
894 	int rc = 0;
895 	int k;
896 	struct device *dev = &cfg->dev->dev;
897 	__be64 __iomem *fc_port_luns;
898 
899 	mutex_lock(&global.mutex);
900 
901 	if (lli->in_table)
902 		goto out;
903 
904 	nports = get_num_ports(lli->port_sel);
905 	if (nports == 0 || nports > cfg->num_fc_ports) {
906 		WARN(1, "Unsupported port configuration nports=%u", nports);
907 		rc = -EIO;
908 		goto out;
909 	}
910 
911 	if (nports > 1) {
912 		/*
913 		 * When LUN is visible from multiple ports, we will put
914 		 * it in the top half of the LUN table.
915 		 */
916 		for (k = 0; k < cfg->num_fc_ports; k++) {
917 			if (!(lli->port_sel & (1 << k)))
918 				continue;
919 
920 			if (cfg->promote_lun_index == cfg->last_lun_index[k]) {
921 				rc = -ENOSPC;
922 				goto out;
923 			}
924 		}
925 
926 		lind = lli->lun_index = cfg->promote_lun_index;
927 		dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind);
928 
929 		for (k = 0; k < cfg->num_fc_ports; k++) {
930 			if (!(lli->port_sel & (1 << k)))
931 				continue;
932 
933 			fc_port_luns = get_fc_port_luns(cfg, k);
934 			writeq_be(lli->lun_id[k], &fc_port_luns[lind]);
935 			dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]);
936 		}
937 
938 		cfg->promote_lun_index++;
939 	} else {
940 		/*
941 		 * When LUN is visible only from one port, we will put
942 		 * it in the bottom half of the LUN table.
943 		 */
944 		chan = PORTMASK2CHAN(lli->port_sel);
945 		if (cfg->promote_lun_index == cfg->last_lun_index[chan]) {
946 			rc = -ENOSPC;
947 			goto out;
948 		}
949 
950 		lind = lli->lun_index = cfg->last_lun_index[chan];
951 		fc_port_luns = get_fc_port_luns(cfg, chan);
952 		writeq_be(lli->lun_id[chan], &fc_port_luns[lind]);
953 		cfg->last_lun_index[chan]--;
954 		dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n\t%d=%llx\n",
955 			__func__, lind, chan, lli->lun_id[chan]);
956 	}
957 
958 	lli->in_table = true;
959 out:
960 	mutex_unlock(&global.mutex);
961 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
962 	return rc;
963 }
964 
965 /**
966  * cxlflash_disk_virtual_open() - open a virtual disk of specified size
967  * @sdev:	SCSI device associated with LUN owning virtual LUN.
968  * @arg:	UVirtual ioctl data structure.
969  *
970  * On successful return, the user is informed of the resource handle
971  * to be used to identify the virtual LUN and the size (in blocks) of
972  * the virtual LUN in last LBA format. When the size of the virtual LUN
973  * is zero, the last LBA is reflected as -1.
974  *
975  * Return: 0 on success, -errno on failure
976  */
977 int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg)
978 {
979 	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
980 	struct device *dev = &cfg->dev->dev;
981 	struct llun_info *lli = sdev->hostdata;
982 	struct glun_info *gli = lli->parent;
983 
984 	struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg;
985 	struct dk_cxlflash_resize resize;
986 
987 	u64 ctxid = DECODE_CTXID(virt->context_id),
988 	    rctxid = virt->context_id;
989 	u64 lun_size = virt->lun_size;
990 	u64 last_lba = 0;
991 	u64 rsrc_handle = -1;
992 
993 	int rc = 0;
994 
995 	struct ctx_info *ctxi = NULL;
996 	struct sisl_rht_entry *rhte = NULL;
997 
998 	dev_dbg(dev, "%s: ctxid=%llu ls=%llu\n", __func__, ctxid, lun_size);
999 
1000 	/* Setup the LUNs block allocator on first call */
1001 	mutex_lock(&gli->mutex);
1002 	if (gli->mode == MODE_NONE) {
1003 		rc = init_vlun(lli);
1004 		if (rc) {
1005 			dev_err(dev, "%s: init_vlun failed rc=%d\n",
1006 				__func__, rc);
1007 			rc = -ENOMEM;
1008 			goto err0;
1009 		}
1010 	}
1011 
1012 	rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true);
1013 	if (unlikely(rc)) {
1014 		dev_err(dev, "%s: Failed attach to LUN (VIRTUAL)\n", __func__);
1015 		goto err0;
1016 	}
1017 	mutex_unlock(&gli->mutex);
1018 
1019 	rc = init_luntable(cfg, lli);
1020 	if (rc) {
1021 		dev_err(dev, "%s: init_luntable failed rc=%d\n", __func__, rc);
1022 		goto err1;
1023 	}
1024 
1025 	ctxi = get_context(cfg, rctxid, lli, 0);
1026 	if (unlikely(!ctxi)) {
1027 		dev_err(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid);
1028 		rc = -EINVAL;
1029 		goto err1;
1030 	}
1031 
1032 	rhte = rhte_checkout(ctxi, lli);
1033 	if (unlikely(!rhte)) {
1034 		dev_err(dev, "%s: too many opens ctxid=%llu\n",
1035 			__func__, ctxid);
1036 		rc = -EMFILE;	/* too many opens  */
1037 		goto err1;
1038 	}
1039 
1040 	rsrc_handle = (rhte - ctxi->rht_start);
1041 
1042 	/* Populate RHT format 0 */
1043 	rhte->nmask = MC_RHT_NMASK;
1044 	rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms);
1045 
1046 	/* Resize even if requested size is 0 */
1047 	marshal_virt_to_resize(virt, &resize);
1048 	resize.rsrc_handle = rsrc_handle;
1049 	rc = _cxlflash_vlun_resize(sdev, ctxi, &resize);
1050 	if (rc) {
1051 		dev_err(dev, "%s: resize failed rc=%d\n", __func__, rc);
1052 		goto err2;
1053 	}
1054 	last_lba = resize.last_lba;
1055 
1056 	if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME)
1057 		ctxi->rht_needs_ws[rsrc_handle] = true;
1058 
1059 	virt->hdr.return_flags = 0;
1060 	virt->last_lba = last_lba;
1061 	virt->rsrc_handle = rsrc_handle;
1062 
1063 	if (get_num_ports(lli->port_sel) > 1)
1064 		virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE;
1065 out:
1066 	if (likely(ctxi))
1067 		put_context(ctxi);
1068 	dev_dbg(dev, "%s: returning handle=%llu rc=%d llba=%llu\n",
1069 		__func__, rsrc_handle, rc, last_lba);
1070 	return rc;
1071 
1072 err2:
1073 	rhte_checkin(ctxi, rhte);
1074 err1:
1075 	cxlflash_lun_detach(gli);
1076 	goto out;
1077 err0:
1078 	/* Special common cleanup prior to successful LUN attach */
1079 	cxlflash_ba_terminate(&gli->blka.ba_lun);
1080 	mutex_unlock(&gli->mutex);
1081 	goto out;
1082 }
1083 
1084 /**
1085  * clone_lxt() - copies translation tables from source to destination RHTE
1086  * @afu:	AFU associated with the host.
1087  * @blka:	Block allocator associated with LUN.
1088  * @ctxid:	Context ID of context owning the RHTE.
1089  * @rhndl:	Resource handle associated with the RHTE.
1090  * @rhte:	Destination resource handle entry (RHTE).
1091  * @rhte_src:	Source resource handle entry (RHTE).
1092  *
1093  * Return: 0 on success, -errno on failure
1094  */
1095 static int clone_lxt(struct afu *afu,
1096 		     struct blka *blka,
1097 		     ctx_hndl_t ctxid,
1098 		     res_hndl_t rhndl,
1099 		     struct sisl_rht_entry *rhte,
1100 		     struct sisl_rht_entry *rhte_src)
1101 {
1102 	struct cxlflash_cfg *cfg = afu->parent;
1103 	struct device *dev = &cfg->dev->dev;
1104 	struct sisl_lxt_entry *lxt = NULL;
1105 	bool locked = false;
1106 	u32 ngrps;
1107 	u64 aun;		/* chunk# allocated by block allocator */
1108 	int j;
1109 	int i = 0;
1110 	int rc = 0;
1111 
1112 	ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt);
1113 
1114 	if (ngrps) {
1115 		/* allocate new LXTs for clone */
1116 		lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps),
1117 				GFP_KERNEL);
1118 		if (unlikely(!lxt)) {
1119 			rc = -ENOMEM;
1120 			goto out;
1121 		}
1122 
1123 		/* copy over */
1124 		memcpy(lxt, rhte_src->lxt_start,
1125 		       (sizeof(*lxt) * rhte_src->lxt_cnt));
1126 
1127 		/* clone the LBAs in block allocator via ref_cnt, note that the
1128 		 * block allocator mutex must be held until it is established
1129 		 * that this routine will complete without the need for a
1130 		 * cleanup.
1131 		 */
1132 		mutex_lock(&blka->mutex);
1133 		locked = true;
1134 		for (i = 0; i < rhte_src->lxt_cnt; i++) {
1135 			aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT);
1136 			if (ba_clone(&blka->ba_lun, aun) == -1ULL) {
1137 				rc = -EIO;
1138 				goto err;
1139 			}
1140 		}
1141 	}
1142 
1143 	/*
1144 	 * The following sequence is prescribed in the SISlite spec
1145 	 * for syncing up with the AFU when adding LXT entries.
1146 	 */
1147 	dma_wmb(); /* Make LXT updates are visible */
1148 
1149 	rhte->lxt_start = lxt;
1150 	dma_wmb(); /* Make RHT entry's LXT table update visible */
1151 
1152 	rhte->lxt_cnt = rhte_src->lxt_cnt;
1153 	dma_wmb(); /* Make RHT entry's LXT table size update visible */
1154 
1155 	rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC);
1156 	if (unlikely(rc)) {
1157 		rc = -EAGAIN;
1158 		goto err2;
1159 	}
1160 
1161 out:
1162 	if (locked)
1163 		mutex_unlock(&blka->mutex);
1164 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1165 	return rc;
1166 err2:
1167 	/* Reset the RHTE */
1168 	rhte->lxt_cnt = 0;
1169 	dma_wmb();
1170 	rhte->lxt_start = NULL;
1171 	dma_wmb();
1172 err:
1173 	/* free the clones already made */
1174 	for (j = 0; j < i; j++) {
1175 		aun = (lxt[j].rlba_base >> MC_CHUNK_SHIFT);
1176 		ba_free(&blka->ba_lun, aun);
1177 	}
1178 	kfree(lxt);
1179 	goto out;
1180 }
1181 
1182 /**
1183  * cxlflash_disk_clone() - clone a context by making snapshot of another
1184  * @sdev:	SCSI device associated with LUN owning virtual LUN.
1185  * @clone:	Clone ioctl data structure.
1186  *
1187  * This routine effectively performs cxlflash_disk_open operation for each
1188  * in-use virtual resource in the source context. Note that the destination
1189  * context must be in pristine state and cannot have any resource handles
1190  * open at the time of the clone.
1191  *
1192  * Return: 0 on success, -errno on failure
1193  */
1194 int cxlflash_disk_clone(struct scsi_device *sdev,
1195 			struct dk_cxlflash_clone *clone)
1196 {
1197 	struct cxlflash_cfg *cfg = shost_priv(sdev->host);
1198 	struct device *dev = &cfg->dev->dev;
1199 	struct llun_info *lli = sdev->hostdata;
1200 	struct glun_info *gli = lli->parent;
1201 	struct blka *blka = &gli->blka;
1202 	struct afu *afu = cfg->afu;
1203 	struct dk_cxlflash_release release = { { 0 }, 0 };
1204 
1205 	struct ctx_info *ctxi_src = NULL,
1206 			*ctxi_dst = NULL;
1207 	struct lun_access *lun_access_src, *lun_access_dst;
1208 	u32 perms;
1209 	u64 ctxid_src = DECODE_CTXID(clone->context_id_src),
1210 	    ctxid_dst = DECODE_CTXID(clone->context_id_dst),
1211 	    rctxid_src = clone->context_id_src,
1212 	    rctxid_dst = clone->context_id_dst;
1213 	int i, j;
1214 	int rc = 0;
1215 	bool found;
1216 	LIST_HEAD(sidecar);
1217 
1218 	dev_dbg(dev, "%s: ctxid_src=%llu ctxid_dst=%llu\n",
1219 		__func__, ctxid_src, ctxid_dst);
1220 
1221 	/* Do not clone yourself */
1222 	if (unlikely(rctxid_src == rctxid_dst)) {
1223 		rc = -EINVAL;
1224 		goto out;
1225 	}
1226 
1227 	if (unlikely(gli->mode != MODE_VIRTUAL)) {
1228 		rc = -EINVAL;
1229 		dev_dbg(dev, "%s: Only supported on virtual LUNs mode=%u\n",
1230 			__func__, gli->mode);
1231 		goto out;
1232 	}
1233 
1234 	ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE);
1235 	ctxi_dst = get_context(cfg, rctxid_dst, lli, 0);
1236 	if (unlikely(!ctxi_src || !ctxi_dst)) {
1237 		dev_dbg(dev, "%s: Bad context ctxid_src=%llu ctxid_dst=%llu\n",
1238 			__func__, ctxid_src, ctxid_dst);
1239 		rc = -EINVAL;
1240 		goto out;
1241 	}
1242 
1243 	/* Verify there is no open resource handle in the destination context */
1244 	for (i = 0; i < MAX_RHT_PER_CONTEXT; i++)
1245 		if (ctxi_dst->rht_start[i].nmask != 0) {
1246 			rc = -EINVAL;
1247 			goto out;
1248 		}
1249 
1250 	/* Clone LUN access list */
1251 	list_for_each_entry(lun_access_src, &ctxi_src->luns, list) {
1252 		found = false;
1253 		list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list)
1254 			if (lun_access_dst->sdev == lun_access_src->sdev) {
1255 				found = true;
1256 				break;
1257 			}
1258 
1259 		if (!found) {
1260 			lun_access_dst = kzalloc(sizeof(*lun_access_dst),
1261 						 GFP_KERNEL);
1262 			if (unlikely(!lun_access_dst)) {
1263 				dev_err(dev, "%s: lun_access allocation fail\n",
1264 					__func__);
1265 				rc = -ENOMEM;
1266 				goto out;
1267 			}
1268 
1269 			*lun_access_dst = *lun_access_src;
1270 			list_add(&lun_access_dst->list, &sidecar);
1271 		}
1272 	}
1273 
1274 	if (unlikely(!ctxi_src->rht_out)) {
1275 		dev_dbg(dev, "%s: Nothing to clone\n", __func__);
1276 		goto out_success;
1277 	}
1278 
1279 	/* User specified permission on attach */
1280 	perms = ctxi_dst->rht_perms;
1281 
1282 	/*
1283 	 * Copy over checked-out RHT (and their associated LXT) entries by
1284 	 * hand, stopping after we've copied all outstanding entries and
1285 	 * cleaning up if the clone fails.
1286 	 *
1287 	 * Note: This loop is equivalent to performing cxlflash_disk_open and
1288 	 * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into
1289 	 * account by attaching after each successful RHT entry clone. In the
1290 	 * event that a clone failure is experienced, the LUN detach is handled
1291 	 * via the cleanup performed by _cxlflash_disk_release.
1292 	 */
1293 	for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) {
1294 		if (ctxi_src->rht_out == ctxi_dst->rht_out)
1295 			break;
1296 		if (ctxi_src->rht_start[i].nmask == 0)
1297 			continue;
1298 
1299 		/* Consume a destination RHT entry */
1300 		ctxi_dst->rht_out++;
1301 		ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask;
1302 		ctxi_dst->rht_start[i].fp =
1303 		    SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms);
1304 		ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i];
1305 
1306 		rc = clone_lxt(afu, blka, ctxid_dst, i,
1307 			       &ctxi_dst->rht_start[i],
1308 			       &ctxi_src->rht_start[i]);
1309 		if (rc) {
1310 			marshal_clone_to_rele(clone, &release);
1311 			for (j = 0; j < i; j++) {
1312 				release.rsrc_handle = j;
1313 				_cxlflash_disk_release(sdev, ctxi_dst,
1314 						       &release);
1315 			}
1316 
1317 			/* Put back the one we failed on */
1318 			rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]);
1319 			goto err;
1320 		}
1321 
1322 		cxlflash_lun_attach(gli, gli->mode, false);
1323 	}
1324 
1325 out_success:
1326 	list_splice(&sidecar, &ctxi_dst->luns);
1327 
1328 	/* fall through */
1329 out:
1330 	if (ctxi_src)
1331 		put_context(ctxi_src);
1332 	if (ctxi_dst)
1333 		put_context(ctxi_dst);
1334 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1335 	return rc;
1336 
1337 err:
1338 	list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list)
1339 		kfree(lun_access_src);
1340 	goto out;
1341 }
1342