1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/syscalls.h> 16 #include <misc/cxl.h> 17 #include <asm/unaligned.h> 18 #include <asm/bitsperlong.h> 19 20 #include <scsi/scsi_cmnd.h> 21 #include <scsi/scsi_host.h> 22 #include <uapi/scsi/cxlflash_ioctl.h> 23 24 #include "sislite.h" 25 #include "common.h" 26 #include "vlun.h" 27 #include "superpipe.h" 28 29 /** 30 * marshal_virt_to_resize() - translate uvirtual to resize structure 31 * @virt: Source structure from which to translate/copy. 32 * @resize: Destination structure for the translate/copy. 33 */ 34 static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt, 35 struct dk_cxlflash_resize *resize) 36 { 37 resize->hdr = virt->hdr; 38 resize->context_id = virt->context_id; 39 resize->rsrc_handle = virt->rsrc_handle; 40 resize->req_size = virt->lun_size; 41 resize->last_lba = virt->last_lba; 42 } 43 44 /** 45 * marshal_clone_to_rele() - translate clone to release structure 46 * @clone: Source structure from which to translate/copy. 47 * @rele: Destination structure for the translate/copy. 48 */ 49 static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone, 50 struct dk_cxlflash_release *release) 51 { 52 release->hdr = clone->hdr; 53 release->context_id = clone->context_id_dst; 54 } 55 56 /** 57 * ba_init() - initializes a block allocator 58 * @ba_lun: Block allocator to initialize. 59 * 60 * Return: 0 on success, -errno on failure 61 */ 62 static int ba_init(struct ba_lun *ba_lun) 63 { 64 struct ba_lun_info *bali = NULL; 65 int lun_size_au = 0, i = 0; 66 int last_word_underflow = 0; 67 u64 *lam; 68 69 pr_debug("%s: Initializing LUN: lun_id=%016llx " 70 "ba_lun->lsize=%lx ba_lun->au_size=%lX\n", 71 __func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size); 72 73 /* Calculate bit map size */ 74 lun_size_au = ba_lun->lsize / ba_lun->au_size; 75 if (lun_size_au == 0) { 76 pr_debug("%s: Requested LUN size of 0!\n", __func__); 77 return -EINVAL; 78 } 79 80 /* Allocate lun information container */ 81 bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL); 82 if (unlikely(!bali)) { 83 pr_err("%s: Failed to allocate lun_info lun_id=%016llx\n", 84 __func__, ba_lun->lun_id); 85 return -ENOMEM; 86 } 87 88 bali->total_aus = lun_size_au; 89 bali->lun_bmap_size = lun_size_au / BITS_PER_LONG; 90 91 if (lun_size_au % BITS_PER_LONG) 92 bali->lun_bmap_size++; 93 94 /* Allocate bitmap space */ 95 bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)), 96 GFP_KERNEL); 97 if (unlikely(!bali->lun_alloc_map)) { 98 pr_err("%s: Failed to allocate lun allocation map: " 99 "lun_id=%016llx\n", __func__, ba_lun->lun_id); 100 kfree(bali); 101 return -ENOMEM; 102 } 103 104 /* Initialize the bit map size and set all bits to '1' */ 105 bali->free_aun_cnt = lun_size_au; 106 107 for (i = 0; i < bali->lun_bmap_size; i++) 108 bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL; 109 110 /* If the last word not fully utilized, mark extra bits as allocated */ 111 last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG); 112 last_word_underflow -= bali->free_aun_cnt; 113 if (last_word_underflow > 0) { 114 lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1]; 115 for (i = (HIBIT - last_word_underflow + 1); 116 i < BITS_PER_LONG; 117 i++) 118 clear_bit(i, (ulong *)lam); 119 } 120 121 /* Initialize high elevator index, low/curr already at 0 from kzalloc */ 122 bali->free_high_idx = bali->lun_bmap_size; 123 124 /* Allocate clone map */ 125 bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)), 126 GFP_KERNEL); 127 if (unlikely(!bali->aun_clone_map)) { 128 pr_err("%s: Failed to allocate clone map: lun_id=%016llx\n", 129 __func__, ba_lun->lun_id); 130 kfree(bali->lun_alloc_map); 131 kfree(bali); 132 return -ENOMEM; 133 } 134 135 /* Pass the allocated LUN info as a handle to the user */ 136 ba_lun->ba_lun_handle = bali; 137 138 pr_debug("%s: Successfully initialized the LUN: " 139 "lun_id=%016llx bitmap size=%x, free_aun_cnt=%llx\n", 140 __func__, ba_lun->lun_id, bali->lun_bmap_size, 141 bali->free_aun_cnt); 142 return 0; 143 } 144 145 /** 146 * find_free_range() - locates a free bit within the block allocator 147 * @low: First word in block allocator to start search. 148 * @high: Last word in block allocator to search. 149 * @bali: LUN information structure owning the block allocator to search. 150 * @bit_word: Passes back the word in the block allocator owning the free bit. 151 * 152 * Return: The bit position within the passed back word, -1 on failure 153 */ 154 static int find_free_range(u32 low, 155 u32 high, 156 struct ba_lun_info *bali, int *bit_word) 157 { 158 int i; 159 u64 bit_pos = -1; 160 ulong *lam, num_bits; 161 162 for (i = low; i < high; i++) 163 if (bali->lun_alloc_map[i] != 0) { 164 lam = (ulong *)&bali->lun_alloc_map[i]; 165 num_bits = (sizeof(*lam) * BITS_PER_BYTE); 166 bit_pos = find_first_bit(lam, num_bits); 167 168 pr_devel("%s: Found free bit %llu in LUN " 169 "map entry %016llx at bitmap index = %d\n", 170 __func__, bit_pos, bali->lun_alloc_map[i], i); 171 172 *bit_word = i; 173 bali->free_aun_cnt--; 174 clear_bit(bit_pos, lam); 175 break; 176 } 177 178 return bit_pos; 179 } 180 181 /** 182 * ba_alloc() - allocates a block from the block allocator 183 * @ba_lun: Block allocator from which to allocate a block. 184 * 185 * Return: The allocated block, -1 on failure 186 */ 187 static u64 ba_alloc(struct ba_lun *ba_lun) 188 { 189 u64 bit_pos = -1; 190 int bit_word = 0; 191 struct ba_lun_info *bali = NULL; 192 193 bali = ba_lun->ba_lun_handle; 194 195 pr_debug("%s: Received block allocation request: " 196 "lun_id=%016llx free_aun_cnt=%llx\n", 197 __func__, ba_lun->lun_id, bali->free_aun_cnt); 198 199 if (bali->free_aun_cnt == 0) { 200 pr_debug("%s: No space left on LUN: lun_id=%016llx\n", 201 __func__, ba_lun->lun_id); 202 return -1ULL; 203 } 204 205 /* Search to find a free entry, curr->high then low->curr */ 206 bit_pos = find_free_range(bali->free_curr_idx, 207 bali->free_high_idx, bali, &bit_word); 208 if (bit_pos == -1) { 209 bit_pos = find_free_range(bali->free_low_idx, 210 bali->free_curr_idx, 211 bali, &bit_word); 212 if (bit_pos == -1) { 213 pr_debug("%s: Could not find an allocation unit on LUN:" 214 " lun_id=%016llx\n", __func__, ba_lun->lun_id); 215 return -1ULL; 216 } 217 } 218 219 /* Update the free_curr_idx */ 220 if (bit_pos == HIBIT) 221 bali->free_curr_idx = bit_word + 1; 222 else 223 bali->free_curr_idx = bit_word; 224 225 pr_debug("%s: Allocating AU number=%llx lun_id=%016llx " 226 "free_aun_cnt=%llx\n", __func__, 227 ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id, 228 bali->free_aun_cnt); 229 230 return (u64) ((bit_word * BITS_PER_LONG) + bit_pos); 231 } 232 233 /** 234 * validate_alloc() - validates the specified block has been allocated 235 * @ba_lun_info: LUN info owning the block allocator. 236 * @aun: Block to validate. 237 * 238 * Return: 0 on success, -1 on failure 239 */ 240 static int validate_alloc(struct ba_lun_info *bali, u64 aun) 241 { 242 int idx = 0, bit_pos = 0; 243 244 idx = aun / BITS_PER_LONG; 245 bit_pos = aun % BITS_PER_LONG; 246 247 if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx])) 248 return -1; 249 250 return 0; 251 } 252 253 /** 254 * ba_free() - frees a block from the block allocator 255 * @ba_lun: Block allocator from which to allocate a block. 256 * @to_free: Block to free. 257 * 258 * Return: 0 on success, -1 on failure 259 */ 260 static int ba_free(struct ba_lun *ba_lun, u64 to_free) 261 { 262 int idx = 0, bit_pos = 0; 263 struct ba_lun_info *bali = NULL; 264 265 bali = ba_lun->ba_lun_handle; 266 267 if (validate_alloc(bali, to_free)) { 268 pr_debug("%s: AUN %llx is not allocated on lun_id=%016llx\n", 269 __func__, to_free, ba_lun->lun_id); 270 return -1; 271 } 272 273 pr_debug("%s: Received a request to free AU=%llx lun_id=%016llx " 274 "free_aun_cnt=%llx\n", __func__, to_free, ba_lun->lun_id, 275 bali->free_aun_cnt); 276 277 if (bali->aun_clone_map[to_free] > 0) { 278 pr_debug("%s: AUN %llx lun_id=%016llx cloned. Clone count=%x\n", 279 __func__, to_free, ba_lun->lun_id, 280 bali->aun_clone_map[to_free]); 281 bali->aun_clone_map[to_free]--; 282 return 0; 283 } 284 285 idx = to_free / BITS_PER_LONG; 286 bit_pos = to_free % BITS_PER_LONG; 287 288 set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]); 289 bali->free_aun_cnt++; 290 291 if (idx < bali->free_low_idx) 292 bali->free_low_idx = idx; 293 else if (idx > bali->free_high_idx) 294 bali->free_high_idx = idx; 295 296 pr_debug("%s: Successfully freed AU bit_pos=%x bit map index=%x " 297 "lun_id=%016llx free_aun_cnt=%llx\n", __func__, bit_pos, idx, 298 ba_lun->lun_id, bali->free_aun_cnt); 299 300 return 0; 301 } 302 303 /** 304 * ba_clone() - Clone a chunk of the block allocation table 305 * @ba_lun: Block allocator from which to allocate a block. 306 * @to_free: Block to free. 307 * 308 * Return: 0 on success, -1 on failure 309 */ 310 static int ba_clone(struct ba_lun *ba_lun, u64 to_clone) 311 { 312 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 313 314 if (validate_alloc(bali, to_clone)) { 315 pr_debug("%s: AUN=%llx not allocated on lun_id=%016llx\n", 316 __func__, to_clone, ba_lun->lun_id); 317 return -1; 318 } 319 320 pr_debug("%s: Received a request to clone AUN %llx on lun_id=%016llx\n", 321 __func__, to_clone, ba_lun->lun_id); 322 323 if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) { 324 pr_debug("%s: AUN %llx on lun_id=%016llx hit max clones already\n", 325 __func__, to_clone, ba_lun->lun_id); 326 return -1; 327 } 328 329 bali->aun_clone_map[to_clone]++; 330 331 return 0; 332 } 333 334 /** 335 * ba_space() - returns the amount of free space left in the block allocator 336 * @ba_lun: Block allocator. 337 * 338 * Return: Amount of free space in block allocator 339 */ 340 static u64 ba_space(struct ba_lun *ba_lun) 341 { 342 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 343 344 return bali->free_aun_cnt; 345 } 346 347 /** 348 * cxlflash_ba_terminate() - frees resources associated with the block allocator 349 * @ba_lun: Block allocator. 350 * 351 * Safe to call in a partially allocated state. 352 */ 353 void cxlflash_ba_terminate(struct ba_lun *ba_lun) 354 { 355 struct ba_lun_info *bali = ba_lun->ba_lun_handle; 356 357 if (bali) { 358 kfree(bali->aun_clone_map); 359 kfree(bali->lun_alloc_map); 360 kfree(bali); 361 ba_lun->ba_lun_handle = NULL; 362 } 363 } 364 365 /** 366 * init_vlun() - initializes a LUN for virtual use 367 * @lun_info: LUN information structure that owns the block allocator. 368 * 369 * Return: 0 on success, -errno on failure 370 */ 371 static int init_vlun(struct llun_info *lli) 372 { 373 int rc = 0; 374 struct glun_info *gli = lli->parent; 375 struct blka *blka = &gli->blka; 376 377 memset(blka, 0, sizeof(*blka)); 378 mutex_init(&blka->mutex); 379 380 /* LUN IDs are unique per port, save the index instead */ 381 blka->ba_lun.lun_id = lli->lun_index; 382 blka->ba_lun.lsize = gli->max_lba + 1; 383 blka->ba_lun.lba_size = gli->blk_len; 384 385 blka->ba_lun.au_size = MC_CHUNK_SIZE; 386 blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE; 387 388 rc = ba_init(&blka->ba_lun); 389 if (unlikely(rc)) 390 pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc); 391 392 pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli); 393 return rc; 394 } 395 396 /** 397 * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN 398 * @sdev: SCSI device associated with LUN. 399 * @lba: Logical block address to start write same. 400 * @nblks: Number of logical blocks to write same. 401 * 402 * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur 403 * while in scsi_execute(), the EEH handler will attempt to recover. As part of 404 * the recovery, the handler drains all currently running ioctls, waiting until 405 * they have completed before proceeding with a reset. As this routine is used 406 * on the ioctl path, this can create a condition where the EEH handler becomes 407 * stuck, infinitely waiting for this ioctl thread. To avoid this behavior, 408 * temporarily unmark this thread as an ioctl thread by releasing the ioctl read 409 * semaphore. This will allow the EEH handler to proceed with a recovery while 410 * this thread is still running. Once the scsi_execute() returns, reacquire the 411 * ioctl read semaphore and check the adapter state in case it changed while 412 * inside of scsi_execute(). The state check will wait if the adapter is still 413 * being recovered or return a failure if the recovery failed. In the event that 414 * the adapter reset failed, simply return the failure as the ioctl would be 415 * unable to continue. 416 * 417 * Note that the above puts a requirement on this routine to only be called on 418 * an ioctl thread. 419 * 420 * Return: 0 on success, -errno on failure 421 */ 422 static int write_same16(struct scsi_device *sdev, 423 u64 lba, 424 u32 nblks) 425 { 426 u8 *cmd_buf = NULL; 427 u8 *scsi_cmd = NULL; 428 u8 *sense_buf = NULL; 429 int rc = 0; 430 int result = 0; 431 int ws_limit = SISLITE_MAX_WS_BLOCKS; 432 u64 offset = lba; 433 int left = nblks; 434 u32 to = sdev->request_queue->rq_timeout; 435 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 436 struct device *dev = &cfg->dev->dev; 437 438 cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL); 439 scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL); 440 sense_buf = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); 441 if (unlikely(!cmd_buf || !scsi_cmd || !sense_buf)) { 442 rc = -ENOMEM; 443 goto out; 444 } 445 446 while (left > 0) { 447 448 scsi_cmd[0] = WRITE_SAME_16; 449 put_unaligned_be64(offset, &scsi_cmd[2]); 450 put_unaligned_be32(ws_limit < left ? ws_limit : left, 451 &scsi_cmd[10]); 452 453 /* Drop the ioctl read semahpore across lengthy call */ 454 up_read(&cfg->ioctl_rwsem); 455 result = scsi_execute(sdev, scsi_cmd, DMA_TO_DEVICE, cmd_buf, 456 CMD_BUFSIZE, sense_buf, NULL, to, 457 CMD_RETRIES, 0, 0, NULL); 458 down_read(&cfg->ioctl_rwsem); 459 rc = check_state(cfg); 460 if (rc) { 461 dev_err(dev, "%s: Failed state result=%08x\n", 462 __func__, result); 463 rc = -ENODEV; 464 goto out; 465 } 466 467 if (result) { 468 dev_err_ratelimited(dev, "%s: command failed for " 469 "offset=%lld result=%08x\n", 470 __func__, offset, result); 471 rc = -EIO; 472 goto out; 473 } 474 left -= ws_limit; 475 offset += ws_limit; 476 } 477 478 out: 479 kfree(cmd_buf); 480 kfree(scsi_cmd); 481 kfree(sense_buf); 482 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 483 return rc; 484 } 485 486 /** 487 * grow_lxt() - expands the translation table associated with the specified RHTE 488 * @afu: AFU associated with the host. 489 * @sdev: SCSI device associated with LUN. 490 * @ctxid: Context ID of context owning the RHTE. 491 * @rhndl: Resource handle associated with the RHTE. 492 * @rhte: Resource handle entry (RHTE). 493 * @new_size: Number of translation entries associated with RHTE. 494 * 495 * By design, this routine employs a 'best attempt' allocation and will 496 * truncate the requested size down if there is not sufficient space in 497 * the block allocator to satisfy the request but there does exist some 498 * amount of space. The user is made aware of this by returning the size 499 * allocated. 500 * 501 * Return: 0 on success, -errno on failure 502 */ 503 static int grow_lxt(struct afu *afu, 504 struct scsi_device *sdev, 505 ctx_hndl_t ctxid, 506 res_hndl_t rhndl, 507 struct sisl_rht_entry *rhte, 508 u64 *new_size) 509 { 510 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 511 struct device *dev = &cfg->dev->dev; 512 struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL; 513 struct llun_info *lli = sdev->hostdata; 514 struct glun_info *gli = lli->parent; 515 struct blka *blka = &gli->blka; 516 u32 av_size; 517 u32 ngrps, ngrps_old; 518 u64 aun; /* chunk# allocated by block allocator */ 519 u64 delta = *new_size - rhte->lxt_cnt; 520 u64 my_new_size; 521 int i, rc = 0; 522 523 /* 524 * Check what is available in the block allocator before re-allocating 525 * LXT array. This is done up front under the mutex which must not be 526 * released until after allocation is complete. 527 */ 528 mutex_lock(&blka->mutex); 529 av_size = ba_space(&blka->ba_lun); 530 if (unlikely(av_size <= 0)) { 531 dev_dbg(dev, "%s: ba_space error av_size=%d\n", 532 __func__, av_size); 533 mutex_unlock(&blka->mutex); 534 rc = -ENOSPC; 535 goto out; 536 } 537 538 if (av_size < delta) 539 delta = av_size; 540 541 lxt_old = rhte->lxt_start; 542 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 543 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta); 544 545 if (ngrps != ngrps_old) { 546 /* reallocate to fit new size */ 547 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 548 GFP_KERNEL); 549 if (unlikely(!lxt)) { 550 mutex_unlock(&blka->mutex); 551 rc = -ENOMEM; 552 goto out; 553 } 554 555 /* copy over all old entries */ 556 memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt)); 557 } else 558 lxt = lxt_old; 559 560 /* nothing can fail from now on */ 561 my_new_size = rhte->lxt_cnt + delta; 562 563 /* add new entries to the end */ 564 for (i = rhte->lxt_cnt; i < my_new_size; i++) { 565 /* 566 * Due to the earlier check of available space, ba_alloc 567 * cannot fail here. If it did due to internal error, 568 * leave a rlba_base of -1u which will likely be a 569 * invalid LUN (too large). 570 */ 571 aun = ba_alloc(&blka->ba_lun); 572 if ((aun == -1ULL) || (aun >= blka->nchunk)) 573 dev_dbg(dev, "%s: ba_alloc error allocated chunk=%llu " 574 "max=%llu\n", __func__, aun, blka->nchunk - 1); 575 576 /* select both ports, use r/w perms from RHT */ 577 lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) | 578 (lli->lun_index << LXT_LUNIDX_SHIFT) | 579 (RHT_PERM_RW << LXT_PERM_SHIFT | 580 lli->port_sel)); 581 } 582 583 mutex_unlock(&blka->mutex); 584 585 /* 586 * The following sequence is prescribed in the SISlite spec 587 * for syncing up with the AFU when adding LXT entries. 588 */ 589 dma_wmb(); /* Make LXT updates are visible */ 590 591 rhte->lxt_start = lxt; 592 dma_wmb(); /* Make RHT entry's LXT table update visible */ 593 594 rhte->lxt_cnt = my_new_size; 595 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 596 597 cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 598 599 /* free old lxt if reallocated */ 600 if (lxt != lxt_old) 601 kfree(lxt_old); 602 *new_size = my_new_size; 603 out: 604 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 605 return rc; 606 } 607 608 /** 609 * shrink_lxt() - reduces translation table associated with the specified RHTE 610 * @afu: AFU associated with the host. 611 * @sdev: SCSI device associated with LUN. 612 * @rhndl: Resource handle associated with the RHTE. 613 * @rhte: Resource handle entry (RHTE). 614 * @ctxi: Context owning resources. 615 * @new_size: Number of translation entries associated with RHTE. 616 * 617 * Return: 0 on success, -errno on failure 618 */ 619 static int shrink_lxt(struct afu *afu, 620 struct scsi_device *sdev, 621 res_hndl_t rhndl, 622 struct sisl_rht_entry *rhte, 623 struct ctx_info *ctxi, 624 u64 *new_size) 625 { 626 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 627 struct device *dev = &cfg->dev->dev; 628 struct sisl_lxt_entry *lxt, *lxt_old; 629 struct llun_info *lli = sdev->hostdata; 630 struct glun_info *gli = lli->parent; 631 struct blka *blka = &gli->blka; 632 ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid); 633 bool needs_ws = ctxi->rht_needs_ws[rhndl]; 634 bool needs_sync = !ctxi->err_recovery_active; 635 u32 ngrps, ngrps_old; 636 u64 aun; /* chunk# allocated by block allocator */ 637 u64 delta = rhte->lxt_cnt - *new_size; 638 u64 my_new_size; 639 int i, rc = 0; 640 641 lxt_old = rhte->lxt_start; 642 ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); 643 ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta); 644 645 if (ngrps != ngrps_old) { 646 /* Reallocate to fit new size unless new size is 0 */ 647 if (ngrps) { 648 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 649 GFP_KERNEL); 650 if (unlikely(!lxt)) { 651 rc = -ENOMEM; 652 goto out; 653 } 654 655 /* Copy over old entries that will remain */ 656 memcpy(lxt, lxt_old, 657 (sizeof(*lxt) * (rhte->lxt_cnt - delta))); 658 } else 659 lxt = NULL; 660 } else 661 lxt = lxt_old; 662 663 /* Nothing can fail from now on */ 664 my_new_size = rhte->lxt_cnt - delta; 665 666 /* 667 * The following sequence is prescribed in the SISlite spec 668 * for syncing up with the AFU when removing LXT entries. 669 */ 670 rhte->lxt_cnt = my_new_size; 671 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 672 673 rhte->lxt_start = lxt; 674 dma_wmb(); /* Make RHT entry's LXT table update visible */ 675 676 if (needs_sync) 677 cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); 678 679 if (needs_ws) { 680 /* 681 * Mark the context as unavailable, so that we can release 682 * the mutex safely. 683 */ 684 ctxi->unavail = true; 685 mutex_unlock(&ctxi->mutex); 686 } 687 688 /* Free LBAs allocated to freed chunks */ 689 mutex_lock(&blka->mutex); 690 for (i = delta - 1; i >= 0; i--) { 691 /* Mask the higher 48 bits before shifting, even though 692 * it is a noop 693 */ 694 aun = (lxt_old[my_new_size + i].rlba_base & SISL_ASTATUS_MASK); 695 aun = (aun >> MC_CHUNK_SHIFT); 696 if (needs_ws) 697 write_same16(sdev, aun, MC_CHUNK_SIZE); 698 ba_free(&blka->ba_lun, aun); 699 } 700 mutex_unlock(&blka->mutex); 701 702 if (needs_ws) { 703 /* Make the context visible again */ 704 mutex_lock(&ctxi->mutex); 705 ctxi->unavail = false; 706 } 707 708 /* Free old lxt if reallocated */ 709 if (lxt != lxt_old) 710 kfree(lxt_old); 711 *new_size = my_new_size; 712 out: 713 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 714 return rc; 715 } 716 717 /** 718 * _cxlflash_vlun_resize() - changes the size of a virtual LUN 719 * @sdev: SCSI device associated with LUN owning virtual LUN. 720 * @ctxi: Context owning resources. 721 * @resize: Resize ioctl data structure. 722 * 723 * On successful return, the user is informed of the new size (in blocks) 724 * of the virtual LUN in last LBA format. When the size of the virtual 725 * LUN is zero, the last LBA is reflected as -1. See comment in the 726 * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts 727 * on the error recovery list. 728 * 729 * Return: 0 on success, -errno on failure 730 */ 731 int _cxlflash_vlun_resize(struct scsi_device *sdev, 732 struct ctx_info *ctxi, 733 struct dk_cxlflash_resize *resize) 734 { 735 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 736 struct device *dev = &cfg->dev->dev; 737 struct llun_info *lli = sdev->hostdata; 738 struct glun_info *gli = lli->parent; 739 struct afu *afu = cfg->afu; 740 bool put_ctx = false; 741 742 res_hndl_t rhndl = resize->rsrc_handle; 743 u64 new_size; 744 u64 nsectors; 745 u64 ctxid = DECODE_CTXID(resize->context_id), 746 rctxid = resize->context_id; 747 748 struct sisl_rht_entry *rhte; 749 750 int rc = 0; 751 752 /* 753 * The requested size (req_size) is always assumed to be in 4k blocks, 754 * so we have to convert it here from 4k to chunk size. 755 */ 756 nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len; 757 new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE); 758 759 dev_dbg(dev, "%s: ctxid=%llu rhndl=%llu req_size=%llu new_size=%llu\n", 760 __func__, ctxid, resize->rsrc_handle, resize->req_size, 761 new_size); 762 763 if (unlikely(gli->mode != MODE_VIRTUAL)) { 764 dev_dbg(dev, "%s: LUN mode does not support resize mode=%d\n", 765 __func__, gli->mode); 766 rc = -EINVAL; 767 goto out; 768 769 } 770 771 if (!ctxi) { 772 ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK); 773 if (unlikely(!ctxi)) { 774 dev_dbg(dev, "%s: Bad context ctxid=%llu\n", 775 __func__, ctxid); 776 rc = -EINVAL; 777 goto out; 778 } 779 780 put_ctx = true; 781 } 782 783 rhte = get_rhte(ctxi, rhndl, lli); 784 if (unlikely(!rhte)) { 785 dev_dbg(dev, "%s: Bad resource handle rhndl=%u\n", 786 __func__, rhndl); 787 rc = -EINVAL; 788 goto out; 789 } 790 791 if (new_size > rhte->lxt_cnt) 792 rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size); 793 else if (new_size < rhte->lxt_cnt) 794 rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size); 795 796 resize->hdr.return_flags = 0; 797 resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len); 798 resize->last_lba /= CXLFLASH_BLOCK_SIZE; 799 resize->last_lba--; 800 801 out: 802 if (put_ctx) 803 put_context(ctxi); 804 dev_dbg(dev, "%s: resized to %llu returning rc=%d\n", 805 __func__, resize->last_lba, rc); 806 return rc; 807 } 808 809 int cxlflash_vlun_resize(struct scsi_device *sdev, 810 struct dk_cxlflash_resize *resize) 811 { 812 return _cxlflash_vlun_resize(sdev, NULL, resize); 813 } 814 815 /** 816 * cxlflash_restore_luntable() - Restore LUN table to prior state 817 * @cfg: Internal structure associated with the host. 818 */ 819 void cxlflash_restore_luntable(struct cxlflash_cfg *cfg) 820 { 821 struct llun_info *lli, *temp; 822 u32 lind; 823 int k; 824 struct device *dev = &cfg->dev->dev; 825 __be64 __iomem *fc_port_luns; 826 827 mutex_lock(&global.mutex); 828 829 list_for_each_entry_safe(lli, temp, &cfg->lluns, list) { 830 if (!lli->in_table) 831 continue; 832 833 lind = lli->lun_index; 834 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 835 836 for (k = 0; k < cfg->num_fc_ports; k++) 837 if (lli->port_sel & (1 << k)) { 838 fc_port_luns = get_fc_port_luns(cfg, k); 839 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 840 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 841 } 842 } 843 844 mutex_unlock(&global.mutex); 845 } 846 847 /** 848 * get_num_ports() - compute number of ports from port selection mask 849 * @psm: Port selection mask. 850 * 851 * Return: Population count of port selection mask 852 */ 853 static inline u8 get_num_ports(u32 psm) 854 { 855 static const u8 bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 856 1, 2, 2, 3, 2, 3, 3, 4 }; 857 858 return bits[psm & 0xf]; 859 } 860 861 /** 862 * init_luntable() - write an entry in the LUN table 863 * @cfg: Internal structure associated with the host. 864 * @lli: Per adapter LUN information structure. 865 * 866 * On successful return, a LUN table entry is created: 867 * - at the top for LUNs visible on multiple ports. 868 * - at the bottom for LUNs visible only on one port. 869 * 870 * Return: 0 on success, -errno on failure 871 */ 872 static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli) 873 { 874 u32 chan; 875 u32 lind; 876 u32 nports; 877 int rc = 0; 878 int k; 879 struct device *dev = &cfg->dev->dev; 880 __be64 __iomem *fc_port_luns; 881 882 mutex_lock(&global.mutex); 883 884 if (lli->in_table) 885 goto out; 886 887 nports = get_num_ports(lli->port_sel); 888 if (nports == 0 || nports > cfg->num_fc_ports) { 889 WARN(1, "Unsupported port configuration nports=%u", nports); 890 rc = -EIO; 891 goto out; 892 } 893 894 if (nports > 1) { 895 /* 896 * When LUN is visible from multiple ports, we will put 897 * it in the top half of the LUN table. 898 */ 899 for (k = 0; k < cfg->num_fc_ports; k++) { 900 if (!(lli->port_sel & (1 << k))) 901 continue; 902 903 if (cfg->promote_lun_index == cfg->last_lun_index[k]) { 904 rc = -ENOSPC; 905 goto out; 906 } 907 } 908 909 lind = lli->lun_index = cfg->promote_lun_index; 910 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); 911 912 for (k = 0; k < cfg->num_fc_ports; k++) { 913 if (!(lli->port_sel & (1 << k))) 914 continue; 915 916 fc_port_luns = get_fc_port_luns(cfg, k); 917 writeq_be(lli->lun_id[k], &fc_port_luns[lind]); 918 dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); 919 } 920 921 cfg->promote_lun_index++; 922 } else { 923 /* 924 * When LUN is visible only from one port, we will put 925 * it in the bottom half of the LUN table. 926 */ 927 chan = PORTMASK2CHAN(lli->port_sel); 928 if (cfg->promote_lun_index == cfg->last_lun_index[chan]) { 929 rc = -ENOSPC; 930 goto out; 931 } 932 933 lind = lli->lun_index = cfg->last_lun_index[chan]; 934 fc_port_luns = get_fc_port_luns(cfg, chan); 935 writeq_be(lli->lun_id[chan], &fc_port_luns[lind]); 936 cfg->last_lun_index[chan]--; 937 dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n\t%d=%llx\n", 938 __func__, lind, chan, lli->lun_id[chan]); 939 } 940 941 lli->in_table = true; 942 out: 943 mutex_unlock(&global.mutex); 944 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 945 return rc; 946 } 947 948 /** 949 * cxlflash_disk_virtual_open() - open a virtual disk of specified size 950 * @sdev: SCSI device associated with LUN owning virtual LUN. 951 * @arg: UVirtual ioctl data structure. 952 * 953 * On successful return, the user is informed of the resource handle 954 * to be used to identify the virtual LUN and the size (in blocks) of 955 * the virtual LUN in last LBA format. When the size of the virtual LUN 956 * is zero, the last LBA is reflected as -1. 957 * 958 * Return: 0 on success, -errno on failure 959 */ 960 int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg) 961 { 962 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 963 struct device *dev = &cfg->dev->dev; 964 struct llun_info *lli = sdev->hostdata; 965 struct glun_info *gli = lli->parent; 966 967 struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg; 968 struct dk_cxlflash_resize resize; 969 970 u64 ctxid = DECODE_CTXID(virt->context_id), 971 rctxid = virt->context_id; 972 u64 lun_size = virt->lun_size; 973 u64 last_lba = 0; 974 u64 rsrc_handle = -1; 975 976 int rc = 0; 977 978 struct ctx_info *ctxi = NULL; 979 struct sisl_rht_entry *rhte = NULL; 980 981 dev_dbg(dev, "%s: ctxid=%llu ls=%llu\n", __func__, ctxid, lun_size); 982 983 /* Setup the LUNs block allocator on first call */ 984 mutex_lock(&gli->mutex); 985 if (gli->mode == MODE_NONE) { 986 rc = init_vlun(lli); 987 if (rc) { 988 dev_err(dev, "%s: init_vlun failed rc=%d\n", 989 __func__, rc); 990 rc = -ENOMEM; 991 goto err0; 992 } 993 } 994 995 rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true); 996 if (unlikely(rc)) { 997 dev_err(dev, "%s: Failed attach to LUN (VIRTUAL)\n", __func__); 998 goto err0; 999 } 1000 mutex_unlock(&gli->mutex); 1001 1002 rc = init_luntable(cfg, lli); 1003 if (rc) { 1004 dev_err(dev, "%s: init_luntable failed rc=%d\n", __func__, rc); 1005 goto err1; 1006 } 1007 1008 ctxi = get_context(cfg, rctxid, lli, 0); 1009 if (unlikely(!ctxi)) { 1010 dev_err(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid); 1011 rc = -EINVAL; 1012 goto err1; 1013 } 1014 1015 rhte = rhte_checkout(ctxi, lli); 1016 if (unlikely(!rhte)) { 1017 dev_err(dev, "%s: too many opens ctxid=%llu\n", 1018 __func__, ctxid); 1019 rc = -EMFILE; /* too many opens */ 1020 goto err1; 1021 } 1022 1023 rsrc_handle = (rhte - ctxi->rht_start); 1024 1025 /* Populate RHT format 0 */ 1026 rhte->nmask = MC_RHT_NMASK; 1027 rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms); 1028 1029 /* Resize even if requested size is 0 */ 1030 marshal_virt_to_resize(virt, &resize); 1031 resize.rsrc_handle = rsrc_handle; 1032 rc = _cxlflash_vlun_resize(sdev, ctxi, &resize); 1033 if (rc) { 1034 dev_err(dev, "%s: resize failed rc=%d\n", __func__, rc); 1035 goto err2; 1036 } 1037 last_lba = resize.last_lba; 1038 1039 if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME) 1040 ctxi->rht_needs_ws[rsrc_handle] = true; 1041 1042 virt->hdr.return_flags = 0; 1043 virt->last_lba = last_lba; 1044 virt->rsrc_handle = rsrc_handle; 1045 1046 if (get_num_ports(lli->port_sel) > 1) 1047 virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE; 1048 out: 1049 if (likely(ctxi)) 1050 put_context(ctxi); 1051 dev_dbg(dev, "%s: returning handle=%llu rc=%d llba=%llu\n", 1052 __func__, rsrc_handle, rc, last_lba); 1053 return rc; 1054 1055 err2: 1056 rhte_checkin(ctxi, rhte); 1057 err1: 1058 cxlflash_lun_detach(gli); 1059 goto out; 1060 err0: 1061 /* Special common cleanup prior to successful LUN attach */ 1062 cxlflash_ba_terminate(&gli->blka.ba_lun); 1063 mutex_unlock(&gli->mutex); 1064 goto out; 1065 } 1066 1067 /** 1068 * clone_lxt() - copies translation tables from source to destination RHTE 1069 * @afu: AFU associated with the host. 1070 * @blka: Block allocator associated with LUN. 1071 * @ctxid: Context ID of context owning the RHTE. 1072 * @rhndl: Resource handle associated with the RHTE. 1073 * @rhte: Destination resource handle entry (RHTE). 1074 * @rhte_src: Source resource handle entry (RHTE). 1075 * 1076 * Return: 0 on success, -errno on failure 1077 */ 1078 static int clone_lxt(struct afu *afu, 1079 struct blka *blka, 1080 ctx_hndl_t ctxid, 1081 res_hndl_t rhndl, 1082 struct sisl_rht_entry *rhte, 1083 struct sisl_rht_entry *rhte_src) 1084 { 1085 struct cxlflash_cfg *cfg = afu->parent; 1086 struct device *dev = &cfg->dev->dev; 1087 struct sisl_lxt_entry *lxt; 1088 u32 ngrps; 1089 u64 aun; /* chunk# allocated by block allocator */ 1090 int i, j; 1091 1092 ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt); 1093 1094 if (ngrps) { 1095 /* allocate new LXTs for clone */ 1096 lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), 1097 GFP_KERNEL); 1098 if (unlikely(!lxt)) 1099 return -ENOMEM; 1100 1101 /* copy over */ 1102 memcpy(lxt, rhte_src->lxt_start, 1103 (sizeof(*lxt) * rhte_src->lxt_cnt)); 1104 1105 /* clone the LBAs in block allocator via ref_cnt */ 1106 mutex_lock(&blka->mutex); 1107 for (i = 0; i < rhte_src->lxt_cnt; i++) { 1108 aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT); 1109 if (ba_clone(&blka->ba_lun, aun) == -1ULL) { 1110 /* free the clones already made */ 1111 for (j = 0; j < i; j++) { 1112 aun = (lxt[j].rlba_base >> 1113 MC_CHUNK_SHIFT); 1114 ba_free(&blka->ba_lun, aun); 1115 } 1116 1117 mutex_unlock(&blka->mutex); 1118 kfree(lxt); 1119 return -EIO; 1120 } 1121 } 1122 mutex_unlock(&blka->mutex); 1123 } else { 1124 lxt = NULL; 1125 } 1126 1127 /* 1128 * The following sequence is prescribed in the SISlite spec 1129 * for syncing up with the AFU when adding LXT entries. 1130 */ 1131 dma_wmb(); /* Make LXT updates are visible */ 1132 1133 rhte->lxt_start = lxt; 1134 dma_wmb(); /* Make RHT entry's LXT table update visible */ 1135 1136 rhte->lxt_cnt = rhte_src->lxt_cnt; 1137 dma_wmb(); /* Make RHT entry's LXT table size update visible */ 1138 1139 cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); 1140 1141 dev_dbg(dev, "%s: returning\n", __func__); 1142 return 0; 1143 } 1144 1145 /** 1146 * cxlflash_disk_clone() - clone a context by making snapshot of another 1147 * @sdev: SCSI device associated with LUN owning virtual LUN. 1148 * @clone: Clone ioctl data structure. 1149 * 1150 * This routine effectively performs cxlflash_disk_open operation for each 1151 * in-use virtual resource in the source context. Note that the destination 1152 * context must be in pristine state and cannot have any resource handles 1153 * open at the time of the clone. 1154 * 1155 * Return: 0 on success, -errno on failure 1156 */ 1157 int cxlflash_disk_clone(struct scsi_device *sdev, 1158 struct dk_cxlflash_clone *clone) 1159 { 1160 struct cxlflash_cfg *cfg = shost_priv(sdev->host); 1161 struct device *dev = &cfg->dev->dev; 1162 struct llun_info *lli = sdev->hostdata; 1163 struct glun_info *gli = lli->parent; 1164 struct blka *blka = &gli->blka; 1165 struct afu *afu = cfg->afu; 1166 struct dk_cxlflash_release release = { { 0 }, 0 }; 1167 1168 struct ctx_info *ctxi_src = NULL, 1169 *ctxi_dst = NULL; 1170 struct lun_access *lun_access_src, *lun_access_dst; 1171 u32 perms; 1172 u64 ctxid_src = DECODE_CTXID(clone->context_id_src), 1173 ctxid_dst = DECODE_CTXID(clone->context_id_dst), 1174 rctxid_src = clone->context_id_src, 1175 rctxid_dst = clone->context_id_dst; 1176 int i, j; 1177 int rc = 0; 1178 bool found; 1179 LIST_HEAD(sidecar); 1180 1181 dev_dbg(dev, "%s: ctxid_src=%llu ctxid_dst=%llu\n", 1182 __func__, ctxid_src, ctxid_dst); 1183 1184 /* Do not clone yourself */ 1185 if (unlikely(rctxid_src == rctxid_dst)) { 1186 rc = -EINVAL; 1187 goto out; 1188 } 1189 1190 if (unlikely(gli->mode != MODE_VIRTUAL)) { 1191 rc = -EINVAL; 1192 dev_dbg(dev, "%s: Only supported on virtual LUNs mode=%u\n", 1193 __func__, gli->mode); 1194 goto out; 1195 } 1196 1197 ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE); 1198 ctxi_dst = get_context(cfg, rctxid_dst, lli, 0); 1199 if (unlikely(!ctxi_src || !ctxi_dst)) { 1200 dev_dbg(dev, "%s: Bad context ctxid_src=%llu ctxid_dst=%llu\n", 1201 __func__, ctxid_src, ctxid_dst); 1202 rc = -EINVAL; 1203 goto out; 1204 } 1205 1206 /* Verify there is no open resource handle in the destination context */ 1207 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) 1208 if (ctxi_dst->rht_start[i].nmask != 0) { 1209 rc = -EINVAL; 1210 goto out; 1211 } 1212 1213 /* Clone LUN access list */ 1214 list_for_each_entry(lun_access_src, &ctxi_src->luns, list) { 1215 found = false; 1216 list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list) 1217 if (lun_access_dst->sdev == lun_access_src->sdev) { 1218 found = true; 1219 break; 1220 } 1221 1222 if (!found) { 1223 lun_access_dst = kzalloc(sizeof(*lun_access_dst), 1224 GFP_KERNEL); 1225 if (unlikely(!lun_access_dst)) { 1226 dev_err(dev, "%s: lun_access allocation fail\n", 1227 __func__); 1228 rc = -ENOMEM; 1229 goto out; 1230 } 1231 1232 *lun_access_dst = *lun_access_src; 1233 list_add(&lun_access_dst->list, &sidecar); 1234 } 1235 } 1236 1237 if (unlikely(!ctxi_src->rht_out)) { 1238 dev_dbg(dev, "%s: Nothing to clone\n", __func__); 1239 goto out_success; 1240 } 1241 1242 /* User specified permission on attach */ 1243 perms = ctxi_dst->rht_perms; 1244 1245 /* 1246 * Copy over checked-out RHT (and their associated LXT) entries by 1247 * hand, stopping after we've copied all outstanding entries and 1248 * cleaning up if the clone fails. 1249 * 1250 * Note: This loop is equivalent to performing cxlflash_disk_open and 1251 * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into 1252 * account by attaching after each successful RHT entry clone. In the 1253 * event that a clone failure is experienced, the LUN detach is handled 1254 * via the cleanup performed by _cxlflash_disk_release. 1255 */ 1256 for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) { 1257 if (ctxi_src->rht_out == ctxi_dst->rht_out) 1258 break; 1259 if (ctxi_src->rht_start[i].nmask == 0) 1260 continue; 1261 1262 /* Consume a destination RHT entry */ 1263 ctxi_dst->rht_out++; 1264 ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask; 1265 ctxi_dst->rht_start[i].fp = 1266 SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms); 1267 ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i]; 1268 1269 rc = clone_lxt(afu, blka, ctxid_dst, i, 1270 &ctxi_dst->rht_start[i], 1271 &ctxi_src->rht_start[i]); 1272 if (rc) { 1273 marshal_clone_to_rele(clone, &release); 1274 for (j = 0; j < i; j++) { 1275 release.rsrc_handle = j; 1276 _cxlflash_disk_release(sdev, ctxi_dst, 1277 &release); 1278 } 1279 1280 /* Put back the one we failed on */ 1281 rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]); 1282 goto err; 1283 } 1284 1285 cxlflash_lun_attach(gli, gli->mode, false); 1286 } 1287 1288 out_success: 1289 list_splice(&sidecar, &ctxi_dst->luns); 1290 1291 /* fall through */ 1292 out: 1293 if (ctxi_src) 1294 put_context(ctxi_src); 1295 if (ctxi_dst) 1296 put_context(ctxi_dst); 1297 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1298 return rc; 1299 1300 err: 1301 list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list) 1302 kfree(lun_access_src); 1303 goto out; 1304 } 1305