1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/delay.h> 16 #include <linux/list.h> 17 #include <linux/module.h> 18 #include <linux/pci.h> 19 20 #include <asm/unaligned.h> 21 22 #include <misc/cxl.h> 23 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_host.h> 26 #include <uapi/scsi/cxlflash_ioctl.h> 27 28 #include "main.h" 29 #include "sislite.h" 30 #include "common.h" 31 32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); 33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); 34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); 35 MODULE_LICENSE("GPL"); 36 37 /** 38 * cmd_checkout() - checks out an AFU command 39 * @afu: AFU to checkout from. 40 * 41 * Commands are checked out in a round-robin fashion. Note that since 42 * the command pool is larger than the hardware queue, the majority of 43 * times we will only loop once or twice before getting a command. The 44 * buffer and CDB within the command are initialized (zeroed) prior to 45 * returning. 46 * 47 * Return: The checked out command or NULL when command pool is empty. 48 */ 49 static struct afu_cmd *cmd_checkout(struct afu *afu) 50 { 51 int k, dec = CXLFLASH_NUM_CMDS; 52 struct afu_cmd *cmd; 53 54 while (dec--) { 55 k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1)); 56 57 cmd = &afu->cmd[k]; 58 59 if (!atomic_dec_if_positive(&cmd->free)) { 60 pr_devel("%s: returning found index=%d cmd=%p\n", 61 __func__, cmd->slot, cmd); 62 memset(cmd->buf, 0, CMD_BUFSIZE); 63 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb)); 64 return cmd; 65 } 66 } 67 68 return NULL; 69 } 70 71 /** 72 * cmd_checkin() - checks in an AFU command 73 * @cmd: AFU command to checkin. 74 * 75 * Safe to pass commands that have already been checked in. Several 76 * internal tracking fields are reset as part of the checkin. Note 77 * that these are intentionally reset prior to toggling the free bit 78 * to avoid clobbering values in the event that the command is checked 79 * out right away. 80 */ 81 static void cmd_checkin(struct afu_cmd *cmd) 82 { 83 cmd->rcb.scp = NULL; 84 cmd->rcb.timeout = 0; 85 cmd->sa.ioasc = 0; 86 cmd->cmd_tmf = false; 87 cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */ 88 89 if (unlikely(atomic_inc_return(&cmd->free) != 1)) { 90 pr_err("%s: Freeing cmd (%d) that is not in use!\n", 91 __func__, cmd->slot); 92 return; 93 } 94 95 pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot); 96 } 97 98 /** 99 * process_cmd_err() - command error handler 100 * @cmd: AFU command that experienced the error. 101 * @scp: SCSI command associated with the AFU command in error. 102 * 103 * Translates error bits from AFU command to SCSI command results. 104 */ 105 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) 106 { 107 struct sisl_ioarcb *ioarcb; 108 struct sisl_ioasa *ioasa; 109 u32 resid; 110 111 if (unlikely(!cmd)) 112 return; 113 114 ioarcb = &(cmd->rcb); 115 ioasa = &(cmd->sa); 116 117 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { 118 resid = ioasa->resid; 119 scsi_set_resid(scp, resid); 120 pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n", 121 __func__, cmd, scp, resid); 122 } 123 124 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { 125 pr_debug("%s: cmd underrun cmd = %p scp = %p\n", 126 __func__, cmd, scp); 127 scp->result = (DID_ERROR << 16); 128 } 129 130 pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d " 131 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n", 132 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc, 133 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra, 134 ioasa->fc_extra); 135 136 if (ioasa->rc.scsi_rc) { 137 /* We have a SCSI status */ 138 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { 139 memcpy(scp->sense_buffer, ioasa->sense_data, 140 SISL_SENSE_DATA_LEN); 141 scp->result = ioasa->rc.scsi_rc; 142 } else 143 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); 144 } 145 146 /* 147 * We encountered an error. Set scp->result based on nature 148 * of error. 149 */ 150 if (ioasa->rc.fc_rc) { 151 /* We have an FC status */ 152 switch (ioasa->rc.fc_rc) { 153 case SISL_FC_RC_LINKDOWN: 154 scp->result = (DID_REQUEUE << 16); 155 break; 156 case SISL_FC_RC_RESID: 157 /* This indicates an FCP resid underrun */ 158 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { 159 /* If the SISL_RC_FLAGS_OVERRUN flag was set, 160 * then we will handle this error else where. 161 * If not then we must handle it here. 162 * This is probably an AFU bug. 163 */ 164 scp->result = (DID_ERROR << 16); 165 } 166 break; 167 case SISL_FC_RC_RESIDERR: 168 /* Resid mismatch between adapter and device */ 169 case SISL_FC_RC_TGTABORT: 170 case SISL_FC_RC_ABORTOK: 171 case SISL_FC_RC_ABORTFAIL: 172 case SISL_FC_RC_NOLOGI: 173 case SISL_FC_RC_ABORTPEND: 174 case SISL_FC_RC_WRABORTPEND: 175 case SISL_FC_RC_NOEXP: 176 case SISL_FC_RC_INUSE: 177 scp->result = (DID_ERROR << 16); 178 break; 179 } 180 } 181 182 if (ioasa->rc.afu_rc) { 183 /* We have an AFU error */ 184 switch (ioasa->rc.afu_rc) { 185 case SISL_AFU_RC_NO_CHANNELS: 186 scp->result = (DID_NO_CONNECT << 16); 187 break; 188 case SISL_AFU_RC_DATA_DMA_ERR: 189 switch (ioasa->afu_extra) { 190 case SISL_AFU_DMA_ERR_PAGE_IN: 191 /* Retry */ 192 scp->result = (DID_IMM_RETRY << 16); 193 break; 194 case SISL_AFU_DMA_ERR_INVALID_EA: 195 default: 196 scp->result = (DID_ERROR << 16); 197 } 198 break; 199 case SISL_AFU_RC_OUT_OF_DATA_BUFS: 200 /* Retry */ 201 scp->result = (DID_ALLOC_FAILURE << 16); 202 break; 203 default: 204 scp->result = (DID_ERROR << 16); 205 } 206 } 207 } 208 209 /** 210 * cmd_complete() - command completion handler 211 * @cmd: AFU command that has completed. 212 * 213 * Prepares and submits command that has either completed or timed out to 214 * the SCSI stack. Checks AFU command back into command pool for non-internal 215 * (rcb.scp populated) commands. 216 */ 217 static void cmd_complete(struct afu_cmd *cmd) 218 { 219 struct scsi_cmnd *scp; 220 ulong lock_flags; 221 struct afu *afu = cmd->parent; 222 struct cxlflash_cfg *cfg = afu->parent; 223 bool cmd_is_tmf; 224 225 spin_lock_irqsave(&cmd->slock, lock_flags); 226 cmd->sa.host_use_b[0] |= B_DONE; 227 spin_unlock_irqrestore(&cmd->slock, lock_flags); 228 229 if (cmd->rcb.scp) { 230 scp = cmd->rcb.scp; 231 if (unlikely(cmd->sa.ioasc)) 232 process_cmd_err(cmd, scp); 233 else 234 scp->result = (DID_OK << 16); 235 236 cmd_is_tmf = cmd->cmd_tmf; 237 cmd_checkin(cmd); /* Don't use cmd after here */ 238 239 pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X " 240 "ioasc=%d\n", __func__, scp, scp->result, 241 cmd->sa.ioasc); 242 243 scsi_dma_unmap(scp); 244 scp->scsi_done(scp); 245 246 if (cmd_is_tmf) { 247 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 248 cfg->tmf_active = false; 249 wake_up_all_locked(&cfg->tmf_waitq); 250 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 251 } 252 } else 253 complete(&cmd->cevent); 254 } 255 256 /** 257 * context_reset() - timeout handler for AFU commands 258 * @cmd: AFU command that timed out. 259 * 260 * Sends a reset to the AFU. 261 */ 262 static void context_reset(struct afu_cmd *cmd) 263 { 264 int nretry = 0; 265 u64 rrin = 0x1; 266 u64 room = 0; 267 struct afu *afu = cmd->parent; 268 ulong lock_flags; 269 270 pr_debug("%s: cmd=%p\n", __func__, cmd); 271 272 spin_lock_irqsave(&cmd->slock, lock_flags); 273 274 /* Already completed? */ 275 if (cmd->sa.host_use_b[0] & B_DONE) { 276 spin_unlock_irqrestore(&cmd->slock, lock_flags); 277 return; 278 } 279 280 cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT); 281 spin_unlock_irqrestore(&cmd->slock, lock_flags); 282 283 /* 284 * We really want to send this reset at all costs, so spread 285 * out wait time on successive retries for available room. 286 */ 287 do { 288 room = readq_be(&afu->host_map->cmd_room); 289 atomic64_set(&afu->room, room); 290 if (room) 291 goto write_rrin; 292 udelay(1 << nretry); 293 } while (nretry++ < MC_ROOM_RETRY_CNT); 294 295 pr_err("%s: no cmd_room to send reset\n", __func__); 296 return; 297 298 write_rrin: 299 nretry = 0; 300 writeq_be(rrin, &afu->host_map->ioarrin); 301 do { 302 rrin = readq_be(&afu->host_map->ioarrin); 303 if (rrin != 0x1) 304 break; 305 /* Double delay each time */ 306 udelay(1 << nretry); 307 } while (nretry++ < MC_ROOM_RETRY_CNT); 308 } 309 310 /** 311 * send_cmd() - sends an AFU command 312 * @afu: AFU associated with the host. 313 * @cmd: AFU command to send. 314 * 315 * Return: 316 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 317 */ 318 static int send_cmd(struct afu *afu, struct afu_cmd *cmd) 319 { 320 struct cxlflash_cfg *cfg = afu->parent; 321 struct device *dev = &cfg->dev->dev; 322 int nretry = 0; 323 int rc = 0; 324 u64 room; 325 long newval; 326 327 /* 328 * This routine is used by critical users such an AFU sync and to 329 * send a task management function (TMF). Thus we want to retry a 330 * bit before returning an error. To avoid the performance penalty 331 * of MMIO, we spread the update of 'room' over multiple commands. 332 */ 333 retry: 334 newval = atomic64_dec_if_positive(&afu->room); 335 if (!newval) { 336 do { 337 room = readq_be(&afu->host_map->cmd_room); 338 atomic64_set(&afu->room, room); 339 if (room) 340 goto write_ioarrin; 341 udelay(1 << nretry); 342 } while (nretry++ < MC_ROOM_RETRY_CNT); 343 344 dev_err(dev, "%s: no cmd_room to send 0x%X\n", 345 __func__, cmd->rcb.cdb[0]); 346 347 goto no_room; 348 } else if (unlikely(newval < 0)) { 349 /* This should be rare. i.e. Only if two threads race and 350 * decrement before the MMIO read is done. In this case 351 * just benefit from the other thread having updated 352 * afu->room. 353 */ 354 if (nretry++ < MC_ROOM_RETRY_CNT) { 355 udelay(1 << nretry); 356 goto retry; 357 } 358 359 goto no_room; 360 } 361 362 write_ioarrin: 363 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin); 364 out: 365 pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd, 366 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc); 367 return rc; 368 369 no_room: 370 afu->read_room = true; 371 kref_get(&cfg->afu->mapcount); 372 schedule_work(&cfg->work_q); 373 rc = SCSI_MLQUEUE_HOST_BUSY; 374 goto out; 375 } 376 377 /** 378 * wait_resp() - polls for a response or timeout to a sent AFU command 379 * @afu: AFU associated with the host. 380 * @cmd: AFU command that was sent. 381 */ 382 static void wait_resp(struct afu *afu, struct afu_cmd *cmd) 383 { 384 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); 385 386 timeout = wait_for_completion_timeout(&cmd->cevent, timeout); 387 if (!timeout) 388 context_reset(cmd); 389 390 if (unlikely(cmd->sa.ioasc != 0)) 391 pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, " 392 "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0], 393 cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc, 394 cmd->sa.rc.fc_rc); 395 } 396 397 /** 398 * send_tmf() - sends a Task Management Function (TMF) 399 * @afu: AFU to checkout from. 400 * @scp: SCSI command from stack. 401 * @tmfcmd: TMF command to send. 402 * 403 * Return: 404 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 405 */ 406 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd) 407 { 408 struct afu_cmd *cmd; 409 410 u32 port_sel = scp->device->channel + 1; 411 short lflag = 0; 412 struct Scsi_Host *host = scp->device->host; 413 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; 414 struct device *dev = &cfg->dev->dev; 415 ulong lock_flags; 416 int rc = 0; 417 ulong to; 418 419 cmd = cmd_checkout(afu); 420 if (unlikely(!cmd)) { 421 dev_err(dev, "%s: could not get a free command\n", __func__); 422 rc = SCSI_MLQUEUE_HOST_BUSY; 423 goto out; 424 } 425 426 /* When Task Management Function is active do not send another */ 427 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 428 if (cfg->tmf_active) 429 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 430 !cfg->tmf_active, 431 cfg->tmf_slock); 432 cfg->tmf_active = true; 433 cmd->cmd_tmf = true; 434 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 435 436 cmd->rcb.ctx_id = afu->ctx_hndl; 437 cmd->rcb.port_sel = port_sel; 438 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 439 440 lflag = SISL_REQ_FLAGS_TMF_CMD; 441 442 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 443 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag); 444 445 /* Stash the scp in the reserved field, for reuse during interrupt */ 446 cmd->rcb.scp = scp; 447 448 /* Copy the CDB from the cmd passed in */ 449 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); 450 451 /* Send the command */ 452 rc = send_cmd(afu, cmd); 453 if (unlikely(rc)) { 454 cmd_checkin(cmd); 455 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 456 cfg->tmf_active = false; 457 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 458 goto out; 459 } 460 461 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 462 to = msecs_to_jiffies(5000); 463 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, 464 !cfg->tmf_active, 465 cfg->tmf_slock, 466 to); 467 if (!to) { 468 cfg->tmf_active = false; 469 dev_err(dev, "%s: TMF timed out!\n", __func__); 470 rc = -1; 471 } 472 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 473 out: 474 return rc; 475 } 476 477 static void afu_unmap(struct kref *ref) 478 { 479 struct afu *afu = container_of(ref, struct afu, mapcount); 480 481 if (likely(afu->afu_map)) { 482 cxl_psa_unmap((void __iomem *)afu->afu_map); 483 afu->afu_map = NULL; 484 } 485 } 486 487 /** 488 * cxlflash_driver_info() - information handler for this host driver 489 * @host: SCSI host associated with device. 490 * 491 * Return: A string describing the device. 492 */ 493 static const char *cxlflash_driver_info(struct Scsi_Host *host) 494 { 495 return CXLFLASH_ADAPTER_NAME; 496 } 497 498 /** 499 * cxlflash_queuecommand() - sends a mid-layer request 500 * @host: SCSI host associated with device. 501 * @scp: SCSI command to send. 502 * 503 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 504 */ 505 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) 506 { 507 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; 508 struct afu *afu = cfg->afu; 509 struct device *dev = &cfg->dev->dev; 510 struct afu_cmd *cmd; 511 u32 port_sel = scp->device->channel + 1; 512 int nseg, i, ncount; 513 struct scatterlist *sg; 514 ulong lock_flags; 515 short lflag = 0; 516 int rc = 0; 517 int kref_got = 0; 518 519 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " 520 "cdb=(%08X-%08X-%08X-%08X)\n", 521 __func__, scp, host->host_no, scp->device->channel, 522 scp->device->id, scp->device->lun, 523 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 524 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 525 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 526 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 527 528 /* 529 * If a Task Management Function is active, wait for it to complete 530 * before continuing with regular commands. 531 */ 532 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 533 if (cfg->tmf_active) { 534 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 535 rc = SCSI_MLQUEUE_HOST_BUSY; 536 goto out; 537 } 538 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 539 540 switch (cfg->state) { 541 case STATE_RESET: 542 dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__); 543 rc = SCSI_MLQUEUE_HOST_BUSY; 544 goto out; 545 case STATE_FAILTERM: 546 dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__); 547 scp->result = (DID_NO_CONNECT << 16); 548 scp->scsi_done(scp); 549 rc = 0; 550 goto out; 551 default: 552 break; 553 } 554 555 cmd = cmd_checkout(afu); 556 if (unlikely(!cmd)) { 557 dev_err(dev, "%s: could not get a free command\n", __func__); 558 rc = SCSI_MLQUEUE_HOST_BUSY; 559 goto out; 560 } 561 562 kref_get(&cfg->afu->mapcount); 563 kref_got = 1; 564 565 cmd->rcb.ctx_id = afu->ctx_hndl; 566 cmd->rcb.port_sel = port_sel; 567 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 568 569 if (scp->sc_data_direction == DMA_TO_DEVICE) 570 lflag = SISL_REQ_FLAGS_HOST_WRITE; 571 else 572 lflag = SISL_REQ_FLAGS_HOST_READ; 573 574 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 575 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag); 576 577 /* Stash the scp in the reserved field, for reuse during interrupt */ 578 cmd->rcb.scp = scp; 579 580 nseg = scsi_dma_map(scp); 581 if (unlikely(nseg < 0)) { 582 dev_err(dev, "%s: Fail DMA map! nseg=%d\n", 583 __func__, nseg); 584 rc = SCSI_MLQUEUE_HOST_BUSY; 585 goto out; 586 } 587 588 ncount = scsi_sg_count(scp); 589 scsi_for_each_sg(scp, sg, ncount, i) { 590 cmd->rcb.data_len = sg_dma_len(sg); 591 cmd->rcb.data_ea = sg_dma_address(sg); 592 } 593 594 /* Copy the CDB from the scsi_cmnd passed in */ 595 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); 596 597 /* Send the command */ 598 rc = send_cmd(afu, cmd); 599 if (unlikely(rc)) { 600 cmd_checkin(cmd); 601 scsi_dma_unmap(scp); 602 } 603 604 out: 605 if (kref_got) 606 kref_put(&afu->mapcount, afu_unmap); 607 pr_devel("%s: returning rc=%d\n", __func__, rc); 608 return rc; 609 } 610 611 /** 612 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe 613 * @cfg: Internal structure associated with the host. 614 */ 615 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) 616 { 617 struct pci_dev *pdev = cfg->dev; 618 619 if (pci_channel_offline(pdev)) 620 wait_event_timeout(cfg->reset_waitq, 621 !pci_channel_offline(pdev), 622 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); 623 } 624 625 /** 626 * free_mem() - free memory associated with the AFU 627 * @cfg: Internal structure associated with the host. 628 */ 629 static void free_mem(struct cxlflash_cfg *cfg) 630 { 631 int i; 632 char *buf = NULL; 633 struct afu *afu = cfg->afu; 634 635 if (cfg->afu) { 636 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { 637 buf = afu->cmd[i].buf; 638 if (!((u64)buf & (PAGE_SIZE - 1))) 639 free_page((ulong)buf); 640 } 641 642 free_pages((ulong)afu, get_order(sizeof(struct afu))); 643 cfg->afu = NULL; 644 } 645 } 646 647 /** 648 * stop_afu() - stops the AFU command timers and unmaps the MMIO space 649 * @cfg: Internal structure associated with the host. 650 * 651 * Safe to call with AFU in a partially allocated/initialized state. 652 * 653 * Cleans up all state associated with the command queue, and unmaps 654 * the MMIO space. 655 * 656 * - complete() will take care of commands we initiated (they'll be checked 657 * in as part of the cleanup that occurs after the completion) 658 * 659 * - cmd_checkin() will take care of entries that we did not initiate and that 660 * have not (and will not) complete because they are sitting on a [now stale] 661 * hardware queue 662 */ 663 static void stop_afu(struct cxlflash_cfg *cfg) 664 { 665 int i; 666 struct afu *afu = cfg->afu; 667 struct afu_cmd *cmd; 668 669 if (likely(afu)) { 670 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { 671 cmd = &afu->cmd[i]; 672 complete(&cmd->cevent); 673 if (!atomic_read(&cmd->free)) 674 cmd_checkin(cmd); 675 } 676 677 if (likely(afu->afu_map)) { 678 cxl_psa_unmap((void __iomem *)afu->afu_map); 679 afu->afu_map = NULL; 680 } 681 kref_put(&afu->mapcount, afu_unmap); 682 } 683 } 684 685 /** 686 * term_intr() - disables all AFU interrupts 687 * @cfg: Internal structure associated with the host. 688 * @level: Depth of allocation, where to begin waterfall tear down. 689 * 690 * Safe to call with AFU/MC in partially allocated/initialized state. 691 */ 692 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level) 693 { 694 struct afu *afu = cfg->afu; 695 struct device *dev = &cfg->dev->dev; 696 697 if (!afu || !cfg->mcctx) { 698 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__); 699 return; 700 } 701 702 switch (level) { 703 case UNMAP_THREE: 704 cxl_unmap_afu_irq(cfg->mcctx, 3, afu); 705 case UNMAP_TWO: 706 cxl_unmap_afu_irq(cfg->mcctx, 2, afu); 707 case UNMAP_ONE: 708 cxl_unmap_afu_irq(cfg->mcctx, 1, afu); 709 case FREE_IRQ: 710 cxl_free_afu_irqs(cfg->mcctx); 711 /* fall through */ 712 case UNDO_NOOP: 713 /* No action required */ 714 break; 715 } 716 } 717 718 /** 719 * term_mc() - terminates the master context 720 * @cfg: Internal structure associated with the host. 721 * @level: Depth of allocation, where to begin waterfall tear down. 722 * 723 * Safe to call with AFU/MC in partially allocated/initialized state. 724 */ 725 static void term_mc(struct cxlflash_cfg *cfg) 726 { 727 int rc = 0; 728 struct afu *afu = cfg->afu; 729 struct device *dev = &cfg->dev->dev; 730 731 if (!afu || !cfg->mcctx) { 732 dev_err(dev, "%s: returning with NULL afu or MC\n", __func__); 733 return; 734 } 735 736 rc = cxl_stop_context(cfg->mcctx); 737 WARN_ON(rc); 738 cfg->mcctx = NULL; 739 } 740 741 /** 742 * term_afu() - terminates the AFU 743 * @cfg: Internal structure associated with the host. 744 * 745 * Safe to call with AFU/MC in partially allocated/initialized state. 746 */ 747 static void term_afu(struct cxlflash_cfg *cfg) 748 { 749 /* 750 * Tear down is carefully orchestrated to ensure 751 * no interrupts can come in when the problem state 752 * area is unmapped. 753 * 754 * 1) Disable all AFU interrupts 755 * 2) Unmap the problem state area 756 * 3) Stop the master context 757 */ 758 term_intr(cfg, UNMAP_THREE); 759 if (cfg->afu) 760 stop_afu(cfg); 761 762 term_mc(cfg); 763 764 pr_debug("%s: returning\n", __func__); 765 } 766 767 /** 768 * notify_shutdown() - notifies device of pending shutdown 769 * @cfg: Internal structure associated with the host. 770 * @wait: Whether to wait for shutdown processing to complete. 771 * 772 * This function will notify the AFU that the adapter is being shutdown 773 * and will wait for shutdown processing to complete if wait is true. 774 * This notification should flush pending I/Os to the device and halt 775 * further I/Os until the next AFU reset is issued and device restarted. 776 */ 777 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) 778 { 779 struct afu *afu = cfg->afu; 780 struct device *dev = &cfg->dev->dev; 781 struct sisl_global_map __iomem *global; 782 struct dev_dependent_vals *ddv; 783 u64 reg, status; 784 int i, retry_cnt = 0; 785 786 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; 787 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) 788 return; 789 790 if (!afu || !afu->afu_map) { 791 dev_dbg(dev, "%s: The problem state area is not mapped\n", 792 __func__); 793 return; 794 } 795 796 global = &afu->afu_map->global; 797 798 /* Notify AFU */ 799 for (i = 0; i < NUM_FC_PORTS; i++) { 800 reg = readq_be(&global->fc_regs[i][FC_CONFIG2 / 8]); 801 reg |= SISL_FC_SHUTDOWN_NORMAL; 802 writeq_be(reg, &global->fc_regs[i][FC_CONFIG2 / 8]); 803 } 804 805 if (!wait) 806 return; 807 808 /* Wait up to 1.5 seconds for shutdown processing to complete */ 809 for (i = 0; i < NUM_FC_PORTS; i++) { 810 retry_cnt = 0; 811 while (true) { 812 status = readq_be(&global->fc_regs[i][FC_STATUS / 8]); 813 if (status & SISL_STATUS_SHUTDOWN_COMPLETE) 814 break; 815 if (++retry_cnt >= MC_RETRY_CNT) { 816 dev_dbg(dev, "%s: port %d shutdown processing " 817 "not yet completed\n", __func__, i); 818 break; 819 } 820 msleep(100 * retry_cnt); 821 } 822 } 823 } 824 825 /** 826 * cxlflash_remove() - PCI entry point to tear down host 827 * @pdev: PCI device associated with the host. 828 * 829 * Safe to use as a cleanup in partially allocated/initialized state. 830 */ 831 static void cxlflash_remove(struct pci_dev *pdev) 832 { 833 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 834 ulong lock_flags; 835 836 if (!pci_is_enabled(pdev)) { 837 pr_debug("%s: Device is disabled\n", __func__); 838 return; 839 } 840 841 /* If a Task Management Function is active, wait for it to complete 842 * before continuing with remove. 843 */ 844 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 845 if (cfg->tmf_active) 846 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 847 !cfg->tmf_active, 848 cfg->tmf_slock); 849 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 850 851 /* Notify AFU and wait for shutdown processing to complete */ 852 notify_shutdown(cfg, true); 853 854 cfg->state = STATE_FAILTERM; 855 cxlflash_stop_term_user_contexts(cfg); 856 857 switch (cfg->init_state) { 858 case INIT_STATE_SCSI: 859 cxlflash_term_local_luns(cfg); 860 scsi_remove_host(cfg->host); 861 /* fall through */ 862 case INIT_STATE_AFU: 863 cancel_work_sync(&cfg->work_q); 864 term_afu(cfg); 865 case INIT_STATE_PCI: 866 pci_disable_device(pdev); 867 case INIT_STATE_NONE: 868 free_mem(cfg); 869 scsi_host_put(cfg->host); 870 break; 871 } 872 873 pr_debug("%s: returning\n", __func__); 874 } 875 876 /** 877 * alloc_mem() - allocates the AFU and its command pool 878 * @cfg: Internal structure associated with the host. 879 * 880 * A partially allocated state remains on failure. 881 * 882 * Return: 883 * 0 on success 884 * -ENOMEM on failure to allocate memory 885 */ 886 static int alloc_mem(struct cxlflash_cfg *cfg) 887 { 888 int rc = 0; 889 int i; 890 char *buf = NULL; 891 struct device *dev = &cfg->dev->dev; 892 893 /* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */ 894 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 895 get_order(sizeof(struct afu))); 896 if (unlikely(!cfg->afu)) { 897 dev_err(dev, "%s: cannot get %d free pages\n", 898 __func__, get_order(sizeof(struct afu))); 899 rc = -ENOMEM; 900 goto out; 901 } 902 cfg->afu->parent = cfg; 903 cfg->afu->afu_map = NULL; 904 905 for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) { 906 if (!((u64)buf & (PAGE_SIZE - 1))) { 907 buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 908 if (unlikely(!buf)) { 909 dev_err(dev, 910 "%s: Allocate command buffers fail!\n", 911 __func__); 912 rc = -ENOMEM; 913 free_mem(cfg); 914 goto out; 915 } 916 } 917 918 cfg->afu->cmd[i].buf = buf; 919 atomic_set(&cfg->afu->cmd[i].free, 1); 920 cfg->afu->cmd[i].slot = i; 921 } 922 923 out: 924 return rc; 925 } 926 927 /** 928 * init_pci() - initializes the host as a PCI device 929 * @cfg: Internal structure associated with the host. 930 * 931 * Return: 0 on success, -errno on failure 932 */ 933 static int init_pci(struct cxlflash_cfg *cfg) 934 { 935 struct pci_dev *pdev = cfg->dev; 936 int rc = 0; 937 938 rc = pci_enable_device(pdev); 939 if (rc || pci_channel_offline(pdev)) { 940 if (pci_channel_offline(pdev)) { 941 cxlflash_wait_for_pci_err_recovery(cfg); 942 rc = pci_enable_device(pdev); 943 } 944 945 if (rc) { 946 dev_err(&pdev->dev, "%s: Cannot enable adapter\n", 947 __func__); 948 cxlflash_wait_for_pci_err_recovery(cfg); 949 goto out; 950 } 951 } 952 953 out: 954 pr_debug("%s: returning rc=%d\n", __func__, rc); 955 return rc; 956 } 957 958 /** 959 * init_scsi() - adds the host to the SCSI stack and kicks off host scan 960 * @cfg: Internal structure associated with the host. 961 * 962 * Return: 0 on success, -errno on failure 963 */ 964 static int init_scsi(struct cxlflash_cfg *cfg) 965 { 966 struct pci_dev *pdev = cfg->dev; 967 int rc = 0; 968 969 rc = scsi_add_host(cfg->host, &pdev->dev); 970 if (rc) { 971 dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n", 972 __func__, rc); 973 goto out; 974 } 975 976 scsi_scan_host(cfg->host); 977 978 out: 979 pr_debug("%s: returning rc=%d\n", __func__, rc); 980 return rc; 981 } 982 983 /** 984 * set_port_online() - transitions the specified host FC port to online state 985 * @fc_regs: Top of MMIO region defined for specified port. 986 * 987 * The provided MMIO region must be mapped prior to call. Online state means 988 * that the FC link layer has synced, completed the handshaking process, and 989 * is ready for login to start. 990 */ 991 static void set_port_online(__be64 __iomem *fc_regs) 992 { 993 u64 cmdcfg; 994 995 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 996 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ 997 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ 998 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 999 } 1000 1001 /** 1002 * set_port_offline() - transitions the specified host FC port to offline state 1003 * @fc_regs: Top of MMIO region defined for specified port. 1004 * 1005 * The provided MMIO region must be mapped prior to call. 1006 */ 1007 static void set_port_offline(__be64 __iomem *fc_regs) 1008 { 1009 u64 cmdcfg; 1010 1011 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1012 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ 1013 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ 1014 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1015 } 1016 1017 /** 1018 * wait_port_online() - waits for the specified host FC port come online 1019 * @fc_regs: Top of MMIO region defined for specified port. 1020 * @delay_us: Number of microseconds to delay between reading port status. 1021 * @nretry: Number of cycles to retry reading port status. 1022 * 1023 * The provided MMIO region must be mapped prior to call. This will timeout 1024 * when the cable is not plugged in. 1025 * 1026 * Return: 1027 * TRUE (1) when the specified port is online 1028 * FALSE (0) when the specified port fails to come online after timeout 1029 * -EINVAL when @delay_us is less than 1000 1030 */ 1031 static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1032 { 1033 u64 status; 1034 1035 if (delay_us < 1000) { 1036 pr_err("%s: invalid delay specified %d\n", __func__, delay_us); 1037 return -EINVAL; 1038 } 1039 1040 do { 1041 msleep(delay_us / 1000); 1042 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1043 if (status == U64_MAX) 1044 nretry /= 2; 1045 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && 1046 nretry--); 1047 1048 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); 1049 } 1050 1051 /** 1052 * wait_port_offline() - waits for the specified host FC port go offline 1053 * @fc_regs: Top of MMIO region defined for specified port. 1054 * @delay_us: Number of microseconds to delay between reading port status. 1055 * @nretry: Number of cycles to retry reading port status. 1056 * 1057 * The provided MMIO region must be mapped prior to call. 1058 * 1059 * Return: 1060 * TRUE (1) when the specified port is offline 1061 * FALSE (0) when the specified port fails to go offline after timeout 1062 * -EINVAL when @delay_us is less than 1000 1063 */ 1064 static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1065 { 1066 u64 status; 1067 1068 if (delay_us < 1000) { 1069 pr_err("%s: invalid delay specified %d\n", __func__, delay_us); 1070 return -EINVAL; 1071 } 1072 1073 do { 1074 msleep(delay_us / 1000); 1075 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1076 if (status == U64_MAX) 1077 nretry /= 2; 1078 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && 1079 nretry--); 1080 1081 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); 1082 } 1083 1084 /** 1085 * afu_set_wwpn() - configures the WWPN for the specified host FC port 1086 * @afu: AFU associated with the host that owns the specified FC port. 1087 * @port: Port number being configured. 1088 * @fc_regs: Top of MMIO region defined for specified port. 1089 * @wwpn: The world-wide-port-number previously discovered for port. 1090 * 1091 * The provided MMIO region must be mapped prior to call. As part of the 1092 * sequence to configure the WWPN, the port is toggled offline and then back 1093 * online. This toggling action can cause this routine to delay up to a few 1094 * seconds. When configured to use the internal LUN feature of the AFU, a 1095 * failure to come online is overridden. 1096 */ 1097 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, 1098 u64 wwpn) 1099 { 1100 set_port_offline(fc_regs); 1101 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1102 FC_PORT_STATUS_RETRY_CNT)) { 1103 pr_debug("%s: wait on port %d to go offline timed out\n", 1104 __func__, port); 1105 } 1106 1107 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); 1108 1109 set_port_online(fc_regs); 1110 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1111 FC_PORT_STATUS_RETRY_CNT)) { 1112 pr_debug("%s: wait on port %d to go online timed out\n", 1113 __func__, port); 1114 } 1115 } 1116 1117 /** 1118 * afu_link_reset() - resets the specified host FC port 1119 * @afu: AFU associated with the host that owns the specified FC port. 1120 * @port: Port number being configured. 1121 * @fc_regs: Top of MMIO region defined for specified port. 1122 * 1123 * The provided MMIO region must be mapped prior to call. The sequence to 1124 * reset the port involves toggling it offline and then back online. This 1125 * action can cause this routine to delay up to a few seconds. An effort 1126 * is made to maintain link with the device by switching to host to use 1127 * the alternate port exclusively while the reset takes place. 1128 * failure to come online is overridden. 1129 */ 1130 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) 1131 { 1132 u64 port_sel; 1133 1134 /* first switch the AFU to the other links, if any */ 1135 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); 1136 port_sel &= ~(1ULL << port); 1137 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1138 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1139 1140 set_port_offline(fc_regs); 1141 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1142 FC_PORT_STATUS_RETRY_CNT)) 1143 pr_err("%s: wait on port %d to go offline timed out\n", 1144 __func__, port); 1145 1146 set_port_online(fc_regs); 1147 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1148 FC_PORT_STATUS_RETRY_CNT)) 1149 pr_err("%s: wait on port %d to go online timed out\n", 1150 __func__, port); 1151 1152 /* switch back to include this port */ 1153 port_sel |= (1ULL << port); 1154 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1155 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1156 1157 pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel); 1158 } 1159 1160 /* 1161 * Asynchronous interrupt information table 1162 */ 1163 static const struct asyc_intr_info ainfo[] = { 1164 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET}, 1165 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0}, 1166 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET}, 1167 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET}, 1168 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR}, 1169 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST}, 1170 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0}, 1171 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, 0}, 1172 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET}, 1173 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0}, 1174 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET}, 1175 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET}, 1176 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR}, 1177 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST}, 1178 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0}, 1179 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, 0}, 1180 {0x0, "", 0, 0} /* terminator */ 1181 }; 1182 1183 /** 1184 * find_ainfo() - locates and returns asynchronous interrupt information 1185 * @status: Status code set by AFU on error. 1186 * 1187 * Return: The located information or NULL when the status code is invalid. 1188 */ 1189 static const struct asyc_intr_info *find_ainfo(u64 status) 1190 { 1191 const struct asyc_intr_info *info; 1192 1193 for (info = &ainfo[0]; info->status; info++) 1194 if (info->status == status) 1195 return info; 1196 1197 return NULL; 1198 } 1199 1200 /** 1201 * afu_err_intr_init() - clears and initializes the AFU for error interrupts 1202 * @afu: AFU associated with the host. 1203 */ 1204 static void afu_err_intr_init(struct afu *afu) 1205 { 1206 int i; 1207 u64 reg; 1208 1209 /* global async interrupts: AFU clears afu_ctrl on context exit 1210 * if async interrupts were sent to that context. This prevents 1211 * the AFU form sending further async interrupts when 1212 * there is 1213 * nobody to receive them. 1214 */ 1215 1216 /* mask all */ 1217 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); 1218 /* set LISN# to send and point to master context */ 1219 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); 1220 1221 if (afu->internal_lun) 1222 reg |= 1; /* Bit 63 indicates local lun */ 1223 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); 1224 /* clear all */ 1225 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1226 /* unmask bits that are of interest */ 1227 /* note: afu can send an interrupt after this step */ 1228 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); 1229 /* clear again in case a bit came on after previous clear but before */ 1230 /* unmask */ 1231 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1232 1233 /* Clear/Set internal lun bits */ 1234 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]); 1235 reg &= SISL_FC_INTERNAL_MASK; 1236 if (afu->internal_lun) 1237 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); 1238 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]); 1239 1240 /* now clear FC errors */ 1241 for (i = 0; i < NUM_FC_PORTS; i++) { 1242 writeq_be(0xFFFFFFFFU, 1243 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]); 1244 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]); 1245 } 1246 1247 /* sync interrupts for master's IOARRIN write */ 1248 /* note that unlike asyncs, there can be no pending sync interrupts */ 1249 /* at this time (this is a fresh context and master has not written */ 1250 /* IOARRIN yet), so there is nothing to clear. */ 1251 1252 /* set LISN#, it is always sent to the context that wrote IOARRIN */ 1253 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl); 1254 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask); 1255 } 1256 1257 /** 1258 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors 1259 * @irq: Interrupt number. 1260 * @data: Private data provided at interrupt registration, the AFU. 1261 * 1262 * Return: Always return IRQ_HANDLED. 1263 */ 1264 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) 1265 { 1266 struct afu *afu = (struct afu *)data; 1267 u64 reg; 1268 u64 reg_unmasked; 1269 1270 reg = readq_be(&afu->host_map->intr_status); 1271 reg_unmasked = (reg & SISL_ISTATUS_UNMASK); 1272 1273 if (reg_unmasked == 0UL) { 1274 pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n", 1275 __func__, (u64)afu, reg); 1276 goto cxlflash_sync_err_irq_exit; 1277 } 1278 1279 pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n", 1280 __func__, (u64)afu, reg); 1281 1282 writeq_be(reg_unmasked, &afu->host_map->intr_clear); 1283 1284 cxlflash_sync_err_irq_exit: 1285 pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED); 1286 return IRQ_HANDLED; 1287 } 1288 1289 /** 1290 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) 1291 * @irq: Interrupt number. 1292 * @data: Private data provided at interrupt registration, the AFU. 1293 * 1294 * Return: Always return IRQ_HANDLED. 1295 */ 1296 static irqreturn_t cxlflash_rrq_irq(int irq, void *data) 1297 { 1298 struct afu *afu = (struct afu *)data; 1299 struct afu_cmd *cmd; 1300 bool toggle = afu->toggle; 1301 u64 entry, 1302 *hrrq_start = afu->hrrq_start, 1303 *hrrq_end = afu->hrrq_end, 1304 *hrrq_curr = afu->hrrq_curr; 1305 1306 /* Process however many RRQ entries that are ready */ 1307 while (true) { 1308 entry = *hrrq_curr; 1309 1310 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) 1311 break; 1312 1313 cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT); 1314 cmd_complete(cmd); 1315 1316 /* Advance to next entry or wrap and flip the toggle bit */ 1317 if (hrrq_curr < hrrq_end) 1318 hrrq_curr++; 1319 else { 1320 hrrq_curr = hrrq_start; 1321 toggle ^= SISL_RESP_HANDLE_T_BIT; 1322 } 1323 } 1324 1325 afu->hrrq_curr = hrrq_curr; 1326 afu->toggle = toggle; 1327 1328 return IRQ_HANDLED; 1329 } 1330 1331 /** 1332 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors 1333 * @irq: Interrupt number. 1334 * @data: Private data provided at interrupt registration, the AFU. 1335 * 1336 * Return: Always return IRQ_HANDLED. 1337 */ 1338 static irqreturn_t cxlflash_async_err_irq(int irq, void *data) 1339 { 1340 struct afu *afu = (struct afu *)data; 1341 struct cxlflash_cfg *cfg = afu->parent; 1342 struct device *dev = &cfg->dev->dev; 1343 u64 reg_unmasked; 1344 const struct asyc_intr_info *info; 1345 struct sisl_global_map __iomem *global = &afu->afu_map->global; 1346 u64 reg; 1347 u8 port; 1348 int i; 1349 1350 reg = readq_be(&global->regs.aintr_status); 1351 reg_unmasked = (reg & SISL_ASTATUS_UNMASK); 1352 1353 if (reg_unmasked == 0) { 1354 dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n", 1355 __func__, reg); 1356 goto out; 1357 } 1358 1359 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ 1360 writeq_be(reg_unmasked, &global->regs.aintr_clear); 1361 1362 /* Check each bit that is on */ 1363 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) { 1364 info = find_ainfo(1ULL << i); 1365 if (((reg_unmasked & 0x1) == 0) || !info) 1366 continue; 1367 1368 port = info->port; 1369 1370 dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n", 1371 __func__, port, info->desc, 1372 readq_be(&global->fc_regs[port][FC_STATUS / 8])); 1373 1374 /* 1375 * Do link reset first, some OTHER errors will set FC_ERROR 1376 * again if cleared before or w/o a reset 1377 */ 1378 if (info->action & LINK_RESET) { 1379 dev_err(dev, "%s: FC Port %d: resetting link\n", 1380 __func__, port); 1381 cfg->lr_state = LINK_RESET_REQUIRED; 1382 cfg->lr_port = port; 1383 kref_get(&cfg->afu->mapcount); 1384 schedule_work(&cfg->work_q); 1385 } 1386 1387 if (info->action & CLR_FC_ERROR) { 1388 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]); 1389 1390 /* 1391 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP 1392 * should be the same and tracing one is sufficient. 1393 */ 1394 1395 dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n", 1396 __func__, port, reg); 1397 1398 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]); 1399 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]); 1400 } 1401 1402 if (info->action & SCAN_HOST) { 1403 atomic_inc(&cfg->scan_host_needed); 1404 kref_get(&cfg->afu->mapcount); 1405 schedule_work(&cfg->work_q); 1406 } 1407 } 1408 1409 out: 1410 dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu); 1411 return IRQ_HANDLED; 1412 } 1413 1414 /** 1415 * start_context() - starts the master context 1416 * @cfg: Internal structure associated with the host. 1417 * 1418 * Return: A success or failure value from CXL services. 1419 */ 1420 static int start_context(struct cxlflash_cfg *cfg) 1421 { 1422 int rc = 0; 1423 1424 rc = cxl_start_context(cfg->mcctx, 1425 cfg->afu->work.work_element_descriptor, 1426 NULL); 1427 1428 pr_debug("%s: returning rc=%d\n", __func__, rc); 1429 return rc; 1430 } 1431 1432 /** 1433 * read_vpd() - obtains the WWPNs from VPD 1434 * @cfg: Internal structure associated with the host. 1435 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs 1436 * 1437 * Return: 0 on success, -errno on failure 1438 */ 1439 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) 1440 { 1441 struct pci_dev *dev = cfg->dev; 1442 int rc = 0; 1443 int ro_start, ro_size, i, j, k; 1444 ssize_t vpd_size; 1445 char vpd_data[CXLFLASH_VPD_LEN]; 1446 char tmp_buf[WWPN_BUF_LEN] = { 0 }; 1447 char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" }; 1448 1449 /* Get the VPD data from the device */ 1450 vpd_size = cxl_read_adapter_vpd(dev, vpd_data, sizeof(vpd_data)); 1451 if (unlikely(vpd_size <= 0)) { 1452 dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n", 1453 __func__, vpd_size); 1454 rc = -ENODEV; 1455 goto out; 1456 } 1457 1458 /* Get the read only section offset */ 1459 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, 1460 PCI_VPD_LRDT_RO_DATA); 1461 if (unlikely(ro_start < 0)) { 1462 dev_err(&dev->dev, "%s: VPD Read-only data not found\n", 1463 __func__); 1464 rc = -ENODEV; 1465 goto out; 1466 } 1467 1468 /* Get the read only section size, cap when extends beyond read VPD */ 1469 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 1470 j = ro_size; 1471 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1472 if (unlikely((i + j) > vpd_size)) { 1473 pr_debug("%s: Might need to read more VPD (%d > %ld)\n", 1474 __func__, (i + j), vpd_size); 1475 ro_size = vpd_size - i; 1476 } 1477 1478 /* 1479 * Find the offset of the WWPN tag within the read only 1480 * VPD data and validate the found field (partials are 1481 * no good to us). Convert the ASCII data to an integer 1482 * value. Note that we must copy to a temporary buffer 1483 * because the conversion service requires that the ASCII 1484 * string be terminated. 1485 */ 1486 for (k = 0; k < NUM_FC_PORTS; k++) { 1487 j = ro_size; 1488 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1489 1490 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); 1491 if (unlikely(i < 0)) { 1492 dev_err(&dev->dev, "%s: Port %d WWPN not found " 1493 "in VPD\n", __func__, k); 1494 rc = -ENODEV; 1495 goto out; 1496 } 1497 1498 j = pci_vpd_info_field_size(&vpd_data[i]); 1499 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1500 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { 1501 dev_err(&dev->dev, "%s: Port %d WWPN incomplete or " 1502 "VPD corrupt\n", 1503 __func__, k); 1504 rc = -ENODEV; 1505 goto out; 1506 } 1507 1508 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); 1509 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); 1510 if (unlikely(rc)) { 1511 dev_err(&dev->dev, "%s: Fail to convert port %d WWPN " 1512 "to integer\n", __func__, k); 1513 rc = -ENODEV; 1514 goto out; 1515 } 1516 } 1517 1518 out: 1519 pr_debug("%s: returning rc=%d\n", __func__, rc); 1520 return rc; 1521 } 1522 1523 /** 1524 * init_pcr() - initialize the provisioning and control registers 1525 * @cfg: Internal structure associated with the host. 1526 * 1527 * Also sets up fast access to the mapped registers and initializes AFU 1528 * command fields that never change. 1529 */ 1530 static void init_pcr(struct cxlflash_cfg *cfg) 1531 { 1532 struct afu *afu = cfg->afu; 1533 struct sisl_ctrl_map __iomem *ctrl_map; 1534 int i; 1535 1536 for (i = 0; i < MAX_CONTEXT; i++) { 1537 ctrl_map = &afu->afu_map->ctrls[i].ctrl; 1538 /* Disrupt any clients that could be running */ 1539 /* e.g. clients that survived a master restart */ 1540 writeq_be(0, &ctrl_map->rht_start); 1541 writeq_be(0, &ctrl_map->rht_cnt_id); 1542 writeq_be(0, &ctrl_map->ctx_cap); 1543 } 1544 1545 /* Copy frequently used fields into afu */ 1546 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx); 1547 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host; 1548 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl; 1549 1550 /* Program the Endian Control for the master context */ 1551 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl); 1552 1553 /* Initialize cmd fields that never change */ 1554 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { 1555 afu->cmd[i].rcb.ctx_id = afu->ctx_hndl; 1556 afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED; 1557 afu->cmd[i].rcb.rrq = 0x0; 1558 } 1559 } 1560 1561 /** 1562 * init_global() - initialize AFU global registers 1563 * @cfg: Internal structure associated with the host. 1564 */ 1565 static int init_global(struct cxlflash_cfg *cfg) 1566 { 1567 struct afu *afu = cfg->afu; 1568 struct device *dev = &cfg->dev->dev; 1569 u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */ 1570 int i = 0, num_ports = 0; 1571 int rc = 0; 1572 u64 reg; 1573 1574 rc = read_vpd(cfg, &wwpn[0]); 1575 if (rc) { 1576 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); 1577 goto out; 1578 } 1579 1580 pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]); 1581 1582 /* Set up RRQ in AFU for master issued cmds */ 1583 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start); 1584 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end); 1585 1586 /* AFU configuration */ 1587 reg = readq_be(&afu->afu_map->global.regs.afu_config); 1588 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; 1589 /* enable all auto retry options and control endianness */ 1590 /* leave others at default: */ 1591 /* CTX_CAP write protected, mbox_r does not clear on read and */ 1592 /* checker on if dual afu */ 1593 writeq_be(reg, &afu->afu_map->global.regs.afu_config); 1594 1595 /* Global port select: select either port */ 1596 if (afu->internal_lun) { 1597 /* Only use port 0 */ 1598 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); 1599 num_ports = NUM_FC_PORTS - 1; 1600 } else { 1601 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel); 1602 num_ports = NUM_FC_PORTS; 1603 } 1604 1605 for (i = 0; i < num_ports; i++) { 1606 /* Unmask all errors (but they are still masked at AFU) */ 1607 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]); 1608 /* Clear CRC error cnt & set a threshold */ 1609 (void)readq_be(&afu->afu_map->global. 1610 fc_regs[i][FC_CNT_CRCERR / 8]); 1611 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i] 1612 [FC_CRC_THRESH / 8]); 1613 1614 /* Set WWPNs. If already programmed, wwpn[i] is 0 */ 1615 if (wwpn[i] != 0) 1616 afu_set_wwpn(afu, i, 1617 &afu->afu_map->global.fc_regs[i][0], 1618 wwpn[i]); 1619 /* Programming WWPN back to back causes additional 1620 * offline/online transitions and a PLOGI 1621 */ 1622 msleep(100); 1623 } 1624 1625 /* Set up master's own CTX_CAP to allow real mode, host translation */ 1626 /* tables, afu cmds and read/write GSCSI cmds. */ 1627 /* First, unlock ctx_cap write by reading mbox */ 1628 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */ 1629 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | 1630 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | 1631 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), 1632 &afu->ctrl_map->ctx_cap); 1633 /* Initialize heartbeat */ 1634 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); 1635 1636 out: 1637 return rc; 1638 } 1639 1640 /** 1641 * start_afu() - initializes and starts the AFU 1642 * @cfg: Internal structure associated with the host. 1643 */ 1644 static int start_afu(struct cxlflash_cfg *cfg) 1645 { 1646 struct afu *afu = cfg->afu; 1647 struct afu_cmd *cmd; 1648 1649 int i = 0; 1650 int rc = 0; 1651 1652 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { 1653 cmd = &afu->cmd[i]; 1654 1655 init_completion(&cmd->cevent); 1656 spin_lock_init(&cmd->slock); 1657 cmd->parent = afu; 1658 } 1659 1660 init_pcr(cfg); 1661 1662 /* After an AFU reset, RRQ entries are stale, clear them */ 1663 memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry)); 1664 1665 /* Initialize RRQ pointers */ 1666 afu->hrrq_start = &afu->rrq_entry[0]; 1667 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1]; 1668 afu->hrrq_curr = afu->hrrq_start; 1669 afu->toggle = 1; 1670 1671 rc = init_global(cfg); 1672 1673 pr_debug("%s: returning rc=%d\n", __func__, rc); 1674 return rc; 1675 } 1676 1677 /** 1678 * init_intr() - setup interrupt handlers for the master context 1679 * @cfg: Internal structure associated with the host. 1680 * 1681 * Return: 0 on success, -errno on failure 1682 */ 1683 static enum undo_level init_intr(struct cxlflash_cfg *cfg, 1684 struct cxl_context *ctx) 1685 { 1686 struct afu *afu = cfg->afu; 1687 struct device *dev = &cfg->dev->dev; 1688 int rc = 0; 1689 enum undo_level level = UNDO_NOOP; 1690 1691 rc = cxl_allocate_afu_irqs(ctx, 3); 1692 if (unlikely(rc)) { 1693 dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n", 1694 __func__, rc); 1695 level = UNDO_NOOP; 1696 goto out; 1697 } 1698 1699 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu, 1700 "SISL_MSI_SYNC_ERROR"); 1701 if (unlikely(rc <= 0)) { 1702 dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n", 1703 __func__); 1704 level = FREE_IRQ; 1705 goto out; 1706 } 1707 1708 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu, 1709 "SISL_MSI_RRQ_UPDATED"); 1710 if (unlikely(rc <= 0)) { 1711 dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n", 1712 __func__); 1713 level = UNMAP_ONE; 1714 goto out; 1715 } 1716 1717 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu, 1718 "SISL_MSI_ASYNC_ERROR"); 1719 if (unlikely(rc <= 0)) { 1720 dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n", 1721 __func__); 1722 level = UNMAP_TWO; 1723 goto out; 1724 } 1725 out: 1726 return level; 1727 } 1728 1729 /** 1730 * init_mc() - create and register as the master context 1731 * @cfg: Internal structure associated with the host. 1732 * 1733 * Return: 0 on success, -errno on failure 1734 */ 1735 static int init_mc(struct cxlflash_cfg *cfg) 1736 { 1737 struct cxl_context *ctx; 1738 struct device *dev = &cfg->dev->dev; 1739 int rc = 0; 1740 enum undo_level level; 1741 1742 ctx = cxl_get_context(cfg->dev); 1743 if (unlikely(!ctx)) { 1744 rc = -ENOMEM; 1745 goto ret; 1746 } 1747 cfg->mcctx = ctx; 1748 1749 /* Set it up as a master with the CXL */ 1750 cxl_set_master(ctx); 1751 1752 /* During initialization reset the AFU to start from a clean slate */ 1753 rc = cxl_afu_reset(cfg->mcctx); 1754 if (unlikely(rc)) { 1755 dev_err(dev, "%s: initial AFU reset failed rc=%d\n", 1756 __func__, rc); 1757 goto ret; 1758 } 1759 1760 level = init_intr(cfg, ctx); 1761 if (unlikely(level)) { 1762 dev_err(dev, "%s: setting up interrupts failed rc=%d\n", 1763 __func__, rc); 1764 goto out; 1765 } 1766 1767 /* This performs the equivalent of the CXL_IOCTL_START_WORK. 1768 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process 1769 * element (pe) that is embedded in the context (ctx) 1770 */ 1771 rc = start_context(cfg); 1772 if (unlikely(rc)) { 1773 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); 1774 level = UNMAP_THREE; 1775 goto out; 1776 } 1777 ret: 1778 pr_debug("%s: returning rc=%d\n", __func__, rc); 1779 return rc; 1780 out: 1781 term_intr(cfg, level); 1782 goto ret; 1783 } 1784 1785 /** 1786 * init_afu() - setup as master context and start AFU 1787 * @cfg: Internal structure associated with the host. 1788 * 1789 * This routine is a higher level of control for configuring the 1790 * AFU on probe and reset paths. 1791 * 1792 * Return: 0 on success, -errno on failure 1793 */ 1794 static int init_afu(struct cxlflash_cfg *cfg) 1795 { 1796 u64 reg; 1797 int rc = 0; 1798 struct afu *afu = cfg->afu; 1799 struct device *dev = &cfg->dev->dev; 1800 1801 cxl_perst_reloads_same_image(cfg->cxl_afu, true); 1802 1803 rc = init_mc(cfg); 1804 if (rc) { 1805 dev_err(dev, "%s: call to init_mc failed, rc=%d!\n", 1806 __func__, rc); 1807 goto out; 1808 } 1809 1810 /* Map the entire MMIO space of the AFU */ 1811 afu->afu_map = cxl_psa_map(cfg->mcctx); 1812 if (!afu->afu_map) { 1813 dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__); 1814 rc = -ENOMEM; 1815 goto err1; 1816 } 1817 kref_init(&afu->mapcount); 1818 1819 /* No byte reverse on reading afu_version or string will be backwards */ 1820 reg = readq(&afu->afu_map->global.regs.afu_version); 1821 memcpy(afu->version, ®, sizeof(reg)); 1822 afu->interface_version = 1823 readq_be(&afu->afu_map->global.regs.interface_version); 1824 if ((afu->interface_version + 1) == 0) { 1825 pr_err("Back level AFU, please upgrade. AFU version %s " 1826 "interface version 0x%llx\n", afu->version, 1827 afu->interface_version); 1828 rc = -EINVAL; 1829 goto err2; 1830 } 1831 1832 pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__, 1833 afu->version, afu->interface_version); 1834 1835 rc = start_afu(cfg); 1836 if (rc) { 1837 dev_err(dev, "%s: call to start_afu failed, rc=%d!\n", 1838 __func__, rc); 1839 goto err2; 1840 } 1841 1842 afu_err_intr_init(cfg->afu); 1843 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room)); 1844 1845 /* Restore the LUN mappings */ 1846 cxlflash_restore_luntable(cfg); 1847 out: 1848 pr_debug("%s: returning rc=%d\n", __func__, rc); 1849 return rc; 1850 1851 err2: 1852 kref_put(&afu->mapcount, afu_unmap); 1853 err1: 1854 term_intr(cfg, UNMAP_THREE); 1855 term_mc(cfg); 1856 goto out; 1857 } 1858 1859 /** 1860 * cxlflash_afu_sync() - builds and sends an AFU sync command 1861 * @afu: AFU associated with the host. 1862 * @ctx_hndl_u: Identifies context requesting sync. 1863 * @res_hndl_u: Identifies resource requesting sync. 1864 * @mode: Type of sync to issue (lightweight, heavyweight, global). 1865 * 1866 * The AFU can only take 1 sync command at a time. This routine enforces this 1867 * limitation by using a mutex to provide exclusive access to the AFU during 1868 * the sync. This design point requires calling threads to not be on interrupt 1869 * context due to the possibility of sleeping during concurrent sync operations. 1870 * 1871 * AFU sync operations are only necessary and allowed when the device is 1872 * operating normally. When not operating normally, sync requests can occur as 1873 * part of cleaning up resources associated with an adapter prior to removal. 1874 * In this scenario, these requests are simply ignored (safe due to the AFU 1875 * going away). 1876 * 1877 * Return: 1878 * 0 on success 1879 * -1 on failure 1880 */ 1881 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u, 1882 res_hndl_t res_hndl_u, u8 mode) 1883 { 1884 struct cxlflash_cfg *cfg = afu->parent; 1885 struct device *dev = &cfg->dev->dev; 1886 struct afu_cmd *cmd = NULL; 1887 int rc = 0; 1888 int retry_cnt = 0; 1889 static DEFINE_MUTEX(sync_active); 1890 1891 if (cfg->state != STATE_NORMAL) { 1892 pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state); 1893 return 0; 1894 } 1895 1896 mutex_lock(&sync_active); 1897 retry: 1898 cmd = cmd_checkout(afu); 1899 if (unlikely(!cmd)) { 1900 retry_cnt++; 1901 udelay(1000 * retry_cnt); 1902 if (retry_cnt < MC_RETRY_CNT) 1903 goto retry; 1904 dev_err(dev, "%s: could not get a free command\n", __func__); 1905 rc = -1; 1906 goto out; 1907 } 1908 1909 pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u); 1910 1911 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb)); 1912 1913 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 1914 cmd->rcb.port_sel = 0x0; /* NA */ 1915 cmd->rcb.lun_id = 0x0; /* NA */ 1916 cmd->rcb.data_len = 0x0; 1917 cmd->rcb.data_ea = 0x0; 1918 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT; 1919 1920 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */ 1921 cmd->rcb.cdb[1] = mode; 1922 1923 /* The cdb is aligned, no unaligned accessors required */ 1924 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u); 1925 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u); 1926 1927 rc = send_cmd(afu, cmd); 1928 if (unlikely(rc)) 1929 goto out; 1930 1931 wait_resp(afu, cmd); 1932 1933 /* Set on timeout */ 1934 if (unlikely((cmd->sa.ioasc != 0) || 1935 (cmd->sa.host_use_b[0] & B_ERROR))) 1936 rc = -1; 1937 out: 1938 mutex_unlock(&sync_active); 1939 if (cmd) 1940 cmd_checkin(cmd); 1941 pr_debug("%s: returning rc=%d\n", __func__, rc); 1942 return rc; 1943 } 1944 1945 /** 1946 * afu_reset() - resets the AFU 1947 * @cfg: Internal structure associated with the host. 1948 * 1949 * Return: 0 on success, -errno on failure 1950 */ 1951 static int afu_reset(struct cxlflash_cfg *cfg) 1952 { 1953 int rc = 0; 1954 /* Stop the context before the reset. Since the context is 1955 * no longer available restart it after the reset is complete 1956 */ 1957 1958 term_afu(cfg); 1959 1960 rc = init_afu(cfg); 1961 1962 pr_debug("%s: returning rc=%d\n", __func__, rc); 1963 return rc; 1964 } 1965 1966 /** 1967 * drain_ioctls() - wait until all currently executing ioctls have completed 1968 * @cfg: Internal structure associated with the host. 1969 * 1970 * Obtain write access to read/write semaphore that wraps ioctl 1971 * handling to 'drain' ioctls currently executing. 1972 */ 1973 static void drain_ioctls(struct cxlflash_cfg *cfg) 1974 { 1975 down_write(&cfg->ioctl_rwsem); 1976 up_write(&cfg->ioctl_rwsem); 1977 } 1978 1979 /** 1980 * cxlflash_eh_device_reset_handler() - reset a single LUN 1981 * @scp: SCSI command to send. 1982 * 1983 * Return: 1984 * SUCCESS as defined in scsi/scsi.h 1985 * FAILED as defined in scsi/scsi.h 1986 */ 1987 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) 1988 { 1989 int rc = SUCCESS; 1990 struct Scsi_Host *host = scp->device->host; 1991 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; 1992 struct afu *afu = cfg->afu; 1993 int rcr = 0; 1994 1995 pr_debug("%s: (scp=%p) %d/%d/%d/%llu " 1996 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp, 1997 host->host_no, scp->device->channel, 1998 scp->device->id, scp->device->lun, 1999 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 2000 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 2001 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 2002 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 2003 2004 retry: 2005 switch (cfg->state) { 2006 case STATE_NORMAL: 2007 rcr = send_tmf(afu, scp, TMF_LUN_RESET); 2008 if (unlikely(rcr)) 2009 rc = FAILED; 2010 break; 2011 case STATE_RESET: 2012 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2013 goto retry; 2014 default: 2015 rc = FAILED; 2016 break; 2017 } 2018 2019 pr_debug("%s: returning rc=%d\n", __func__, rc); 2020 return rc; 2021 } 2022 2023 /** 2024 * cxlflash_eh_host_reset_handler() - reset the host adapter 2025 * @scp: SCSI command from stack identifying host. 2026 * 2027 * Following a reset, the state is evaluated again in case an EEH occurred 2028 * during the reset. In such a scenario, the host reset will either yield 2029 * until the EEH recovery is complete or return success or failure based 2030 * upon the current device state. 2031 * 2032 * Return: 2033 * SUCCESS as defined in scsi/scsi.h 2034 * FAILED as defined in scsi/scsi.h 2035 */ 2036 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) 2037 { 2038 int rc = SUCCESS; 2039 int rcr = 0; 2040 struct Scsi_Host *host = scp->device->host; 2041 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; 2042 2043 pr_debug("%s: (scp=%p) %d/%d/%d/%llu " 2044 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp, 2045 host->host_no, scp->device->channel, 2046 scp->device->id, scp->device->lun, 2047 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 2048 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 2049 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 2050 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 2051 2052 switch (cfg->state) { 2053 case STATE_NORMAL: 2054 cfg->state = STATE_RESET; 2055 drain_ioctls(cfg); 2056 cxlflash_mark_contexts_error(cfg); 2057 rcr = afu_reset(cfg); 2058 if (rcr) { 2059 rc = FAILED; 2060 cfg->state = STATE_FAILTERM; 2061 } else 2062 cfg->state = STATE_NORMAL; 2063 wake_up_all(&cfg->reset_waitq); 2064 ssleep(1); 2065 /* fall through */ 2066 case STATE_RESET: 2067 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2068 if (cfg->state == STATE_NORMAL) 2069 break; 2070 /* fall through */ 2071 default: 2072 rc = FAILED; 2073 break; 2074 } 2075 2076 pr_debug("%s: returning rc=%d\n", __func__, rc); 2077 return rc; 2078 } 2079 2080 /** 2081 * cxlflash_change_queue_depth() - change the queue depth for the device 2082 * @sdev: SCSI device destined for queue depth change. 2083 * @qdepth: Requested queue depth value to set. 2084 * 2085 * The requested queue depth is capped to the maximum supported value. 2086 * 2087 * Return: The actual queue depth set. 2088 */ 2089 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) 2090 { 2091 2092 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) 2093 qdepth = CXLFLASH_MAX_CMDS_PER_LUN; 2094 2095 scsi_change_queue_depth(sdev, qdepth); 2096 return sdev->queue_depth; 2097 } 2098 2099 /** 2100 * cxlflash_show_port_status() - queries and presents the current port status 2101 * @port: Desired port for status reporting. 2102 * @afu: AFU owning the specified port. 2103 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2104 * 2105 * Return: The size of the ASCII string returned in @buf. 2106 */ 2107 static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf) 2108 { 2109 char *disp_status; 2110 u64 status; 2111 __be64 __iomem *fc_regs; 2112 2113 if (port >= NUM_FC_PORTS) 2114 return 0; 2115 2116 fc_regs = &afu->afu_map->global.fc_regs[port][0]; 2117 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 2118 status &= FC_MTIP_STATUS_MASK; 2119 2120 if (status == FC_MTIP_STATUS_ONLINE) 2121 disp_status = "online"; 2122 else if (status == FC_MTIP_STATUS_OFFLINE) 2123 disp_status = "offline"; 2124 else 2125 disp_status = "unknown"; 2126 2127 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); 2128 } 2129 2130 /** 2131 * port0_show() - queries and presents the current status of port 0 2132 * @dev: Generic device associated with the host owning the port. 2133 * @attr: Device attribute representing the port. 2134 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2135 * 2136 * Return: The size of the ASCII string returned in @buf. 2137 */ 2138 static ssize_t port0_show(struct device *dev, 2139 struct device_attribute *attr, 2140 char *buf) 2141 { 2142 struct Scsi_Host *shost = class_to_shost(dev); 2143 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2144 struct afu *afu = cfg->afu; 2145 2146 return cxlflash_show_port_status(0, afu, buf); 2147 } 2148 2149 /** 2150 * port1_show() - queries and presents the current status of port 1 2151 * @dev: Generic device associated with the host owning the port. 2152 * @attr: Device attribute representing the port. 2153 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2154 * 2155 * Return: The size of the ASCII string returned in @buf. 2156 */ 2157 static ssize_t port1_show(struct device *dev, 2158 struct device_attribute *attr, 2159 char *buf) 2160 { 2161 struct Scsi_Host *shost = class_to_shost(dev); 2162 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2163 struct afu *afu = cfg->afu; 2164 2165 return cxlflash_show_port_status(1, afu, buf); 2166 } 2167 2168 /** 2169 * lun_mode_show() - presents the current LUN mode of the host 2170 * @dev: Generic device associated with the host. 2171 * @attr: Device attribute representing the LUN mode. 2172 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. 2173 * 2174 * Return: The size of the ASCII string returned in @buf. 2175 */ 2176 static ssize_t lun_mode_show(struct device *dev, 2177 struct device_attribute *attr, char *buf) 2178 { 2179 struct Scsi_Host *shost = class_to_shost(dev); 2180 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2181 struct afu *afu = cfg->afu; 2182 2183 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); 2184 } 2185 2186 /** 2187 * lun_mode_store() - sets the LUN mode of the host 2188 * @dev: Generic device associated with the host. 2189 * @attr: Device attribute representing the LUN mode. 2190 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. 2191 * @count: Length of data resizing in @buf. 2192 * 2193 * The CXL Flash AFU supports a dummy LUN mode where the external 2194 * links and storage are not required. Space on the FPGA is used 2195 * to create 1 or 2 small LUNs which are presented to the system 2196 * as if they were a normal storage device. This feature is useful 2197 * during development and also provides manufacturing with a way 2198 * to test the AFU without an actual device. 2199 * 2200 * 0 = external LUN[s] (default) 2201 * 1 = internal LUN (1 x 64K, 512B blocks, id 0) 2202 * 2 = internal LUN (1 x 64K, 4K blocks, id 0) 2203 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) 2204 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) 2205 * 2206 * Return: The size of the ASCII string returned in @buf. 2207 */ 2208 static ssize_t lun_mode_store(struct device *dev, 2209 struct device_attribute *attr, 2210 const char *buf, size_t count) 2211 { 2212 struct Scsi_Host *shost = class_to_shost(dev); 2213 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2214 struct afu *afu = cfg->afu; 2215 int rc; 2216 u32 lun_mode; 2217 2218 rc = kstrtouint(buf, 10, &lun_mode); 2219 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { 2220 afu->internal_lun = lun_mode; 2221 2222 /* 2223 * When configured for internal LUN, there is only one channel, 2224 * channel number 0, else there will be 2 (default). 2225 */ 2226 if (afu->internal_lun) 2227 shost->max_channel = 0; 2228 else 2229 shost->max_channel = NUM_FC_PORTS - 1; 2230 2231 afu_reset(cfg); 2232 scsi_scan_host(cfg->host); 2233 } 2234 2235 return count; 2236 } 2237 2238 /** 2239 * ioctl_version_show() - presents the current ioctl version of the host 2240 * @dev: Generic device associated with the host. 2241 * @attr: Device attribute representing the ioctl version. 2242 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. 2243 * 2244 * Return: The size of the ASCII string returned in @buf. 2245 */ 2246 static ssize_t ioctl_version_show(struct device *dev, 2247 struct device_attribute *attr, char *buf) 2248 { 2249 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0); 2250 } 2251 2252 /** 2253 * cxlflash_show_port_lun_table() - queries and presents the port LUN table 2254 * @port: Desired port for status reporting. 2255 * @afu: AFU owning the specified port. 2256 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2257 * 2258 * Return: The size of the ASCII string returned in @buf. 2259 */ 2260 static ssize_t cxlflash_show_port_lun_table(u32 port, 2261 struct afu *afu, 2262 char *buf) 2263 { 2264 int i; 2265 ssize_t bytes = 0; 2266 __be64 __iomem *fc_port; 2267 2268 if (port >= NUM_FC_PORTS) 2269 return 0; 2270 2271 fc_port = &afu->afu_map->global.fc_port[port][0]; 2272 2273 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) 2274 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2275 "%03d: %016llX\n", i, readq_be(&fc_port[i])); 2276 return bytes; 2277 } 2278 2279 /** 2280 * port0_lun_table_show() - presents the current LUN table of port 0 2281 * @dev: Generic device associated with the host owning the port. 2282 * @attr: Device attribute representing the port. 2283 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2284 * 2285 * Return: The size of the ASCII string returned in @buf. 2286 */ 2287 static ssize_t port0_lun_table_show(struct device *dev, 2288 struct device_attribute *attr, 2289 char *buf) 2290 { 2291 struct Scsi_Host *shost = class_to_shost(dev); 2292 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2293 struct afu *afu = cfg->afu; 2294 2295 return cxlflash_show_port_lun_table(0, afu, buf); 2296 } 2297 2298 /** 2299 * port1_lun_table_show() - presents the current LUN table of port 1 2300 * @dev: Generic device associated with the host owning the port. 2301 * @attr: Device attribute representing the port. 2302 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2303 * 2304 * Return: The size of the ASCII string returned in @buf. 2305 */ 2306 static ssize_t port1_lun_table_show(struct device *dev, 2307 struct device_attribute *attr, 2308 char *buf) 2309 { 2310 struct Scsi_Host *shost = class_to_shost(dev); 2311 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2312 struct afu *afu = cfg->afu; 2313 2314 return cxlflash_show_port_lun_table(1, afu, buf); 2315 } 2316 2317 /** 2318 * mode_show() - presents the current mode of the device 2319 * @dev: Generic device associated with the device. 2320 * @attr: Device attribute representing the device mode. 2321 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. 2322 * 2323 * Return: The size of the ASCII string returned in @buf. 2324 */ 2325 static ssize_t mode_show(struct device *dev, 2326 struct device_attribute *attr, char *buf) 2327 { 2328 struct scsi_device *sdev = to_scsi_device(dev); 2329 2330 return scnprintf(buf, PAGE_SIZE, "%s\n", 2331 sdev->hostdata ? "superpipe" : "legacy"); 2332 } 2333 2334 /* 2335 * Host attributes 2336 */ 2337 static DEVICE_ATTR_RO(port0); 2338 static DEVICE_ATTR_RO(port1); 2339 static DEVICE_ATTR_RW(lun_mode); 2340 static DEVICE_ATTR_RO(ioctl_version); 2341 static DEVICE_ATTR_RO(port0_lun_table); 2342 static DEVICE_ATTR_RO(port1_lun_table); 2343 2344 static struct device_attribute *cxlflash_host_attrs[] = { 2345 &dev_attr_port0, 2346 &dev_attr_port1, 2347 &dev_attr_lun_mode, 2348 &dev_attr_ioctl_version, 2349 &dev_attr_port0_lun_table, 2350 &dev_attr_port1_lun_table, 2351 NULL 2352 }; 2353 2354 /* 2355 * Device attributes 2356 */ 2357 static DEVICE_ATTR_RO(mode); 2358 2359 static struct device_attribute *cxlflash_dev_attrs[] = { 2360 &dev_attr_mode, 2361 NULL 2362 }; 2363 2364 /* 2365 * Host template 2366 */ 2367 static struct scsi_host_template driver_template = { 2368 .module = THIS_MODULE, 2369 .name = CXLFLASH_ADAPTER_NAME, 2370 .info = cxlflash_driver_info, 2371 .ioctl = cxlflash_ioctl, 2372 .proc_name = CXLFLASH_NAME, 2373 .queuecommand = cxlflash_queuecommand, 2374 .eh_device_reset_handler = cxlflash_eh_device_reset_handler, 2375 .eh_host_reset_handler = cxlflash_eh_host_reset_handler, 2376 .change_queue_depth = cxlflash_change_queue_depth, 2377 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, 2378 .can_queue = CXLFLASH_MAX_CMDS, 2379 .this_id = -1, 2380 .sg_tablesize = SG_NONE, /* No scatter gather support */ 2381 .max_sectors = CXLFLASH_MAX_SECTORS, 2382 .use_clustering = ENABLE_CLUSTERING, 2383 .shost_attrs = cxlflash_host_attrs, 2384 .sdev_attrs = cxlflash_dev_attrs, 2385 }; 2386 2387 /* 2388 * Device dependent values 2389 */ 2390 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, 2391 0ULL }; 2392 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, 2393 CXLFLASH_NOTIFY_SHUTDOWN }; 2394 2395 /* 2396 * PCI device binding table 2397 */ 2398 static struct pci_device_id cxlflash_pci_table[] = { 2399 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, 2400 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, 2401 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, 2402 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, 2403 {} 2404 }; 2405 2406 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); 2407 2408 /** 2409 * cxlflash_worker_thread() - work thread handler for the AFU 2410 * @work: Work structure contained within cxlflash associated with host. 2411 * 2412 * Handles the following events: 2413 * - Link reset which cannot be performed on interrupt context due to 2414 * blocking up to a few seconds 2415 * - Read AFU command room 2416 * - Rescan the host 2417 */ 2418 static void cxlflash_worker_thread(struct work_struct *work) 2419 { 2420 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, 2421 work_q); 2422 struct afu *afu = cfg->afu; 2423 struct device *dev = &cfg->dev->dev; 2424 int port; 2425 ulong lock_flags; 2426 2427 /* Avoid MMIO if the device has failed */ 2428 2429 if (cfg->state != STATE_NORMAL) 2430 return; 2431 2432 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 2433 2434 if (cfg->lr_state == LINK_RESET_REQUIRED) { 2435 port = cfg->lr_port; 2436 if (port < 0) 2437 dev_err(dev, "%s: invalid port index %d\n", 2438 __func__, port); 2439 else { 2440 spin_unlock_irqrestore(cfg->host->host_lock, 2441 lock_flags); 2442 2443 /* The reset can block... */ 2444 afu_link_reset(afu, port, 2445 &afu->afu_map->global.fc_regs[port][0]); 2446 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 2447 } 2448 2449 cfg->lr_state = LINK_RESET_COMPLETE; 2450 } 2451 2452 if (afu->read_room) { 2453 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room)); 2454 afu->read_room = false; 2455 } 2456 2457 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); 2458 2459 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) 2460 scsi_scan_host(cfg->host); 2461 kref_put(&afu->mapcount, afu_unmap); 2462 } 2463 2464 /** 2465 * cxlflash_probe() - PCI entry point to add host 2466 * @pdev: PCI device associated with the host. 2467 * @dev_id: PCI device id associated with device. 2468 * 2469 * Return: 0 on success, -errno on failure 2470 */ 2471 static int cxlflash_probe(struct pci_dev *pdev, 2472 const struct pci_device_id *dev_id) 2473 { 2474 struct Scsi_Host *host; 2475 struct cxlflash_cfg *cfg = NULL; 2476 struct dev_dependent_vals *ddv; 2477 int rc = 0; 2478 2479 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", 2480 __func__, pdev->irq); 2481 2482 ddv = (struct dev_dependent_vals *)dev_id->driver_data; 2483 driver_template.max_sectors = ddv->max_sectors; 2484 2485 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); 2486 if (!host) { 2487 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n", 2488 __func__); 2489 rc = -ENOMEM; 2490 goto out; 2491 } 2492 2493 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; 2494 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; 2495 host->max_channel = NUM_FC_PORTS - 1; 2496 host->unique_id = host->host_no; 2497 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; 2498 2499 cfg = (struct cxlflash_cfg *)host->hostdata; 2500 cfg->host = host; 2501 rc = alloc_mem(cfg); 2502 if (rc) { 2503 dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n", 2504 __func__); 2505 rc = -ENOMEM; 2506 scsi_host_put(cfg->host); 2507 goto out; 2508 } 2509 2510 cfg->init_state = INIT_STATE_NONE; 2511 cfg->dev = pdev; 2512 cfg->cxl_fops = cxlflash_cxl_fops; 2513 2514 /* 2515 * The promoted LUNs move to the top of the LUN table. The rest stay 2516 * on the bottom half. The bottom half grows from the end 2517 * (index = 255), whereas the top half grows from the beginning 2518 * (index = 0). 2519 */ 2520 cfg->promote_lun_index = 0; 2521 cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1; 2522 cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1; 2523 2524 cfg->dev_id = (struct pci_device_id *)dev_id; 2525 2526 init_waitqueue_head(&cfg->tmf_waitq); 2527 init_waitqueue_head(&cfg->reset_waitq); 2528 2529 INIT_WORK(&cfg->work_q, cxlflash_worker_thread); 2530 cfg->lr_state = LINK_RESET_INVALID; 2531 cfg->lr_port = -1; 2532 spin_lock_init(&cfg->tmf_slock); 2533 mutex_init(&cfg->ctx_tbl_list_mutex); 2534 mutex_init(&cfg->ctx_recovery_mutex); 2535 init_rwsem(&cfg->ioctl_rwsem); 2536 INIT_LIST_HEAD(&cfg->ctx_err_recovery); 2537 INIT_LIST_HEAD(&cfg->lluns); 2538 2539 pci_set_drvdata(pdev, cfg); 2540 2541 cfg->cxl_afu = cxl_pci_to_afu(pdev); 2542 2543 rc = init_pci(cfg); 2544 if (rc) { 2545 dev_err(&pdev->dev, "%s: call to init_pci " 2546 "failed rc=%d!\n", __func__, rc); 2547 goto out_remove; 2548 } 2549 cfg->init_state = INIT_STATE_PCI; 2550 2551 rc = init_afu(cfg); 2552 if (rc) { 2553 dev_err(&pdev->dev, "%s: call to init_afu " 2554 "failed rc=%d!\n", __func__, rc); 2555 goto out_remove; 2556 } 2557 cfg->init_state = INIT_STATE_AFU; 2558 2559 rc = init_scsi(cfg); 2560 if (rc) { 2561 dev_err(&pdev->dev, "%s: call to init_scsi " 2562 "failed rc=%d!\n", __func__, rc); 2563 goto out_remove; 2564 } 2565 cfg->init_state = INIT_STATE_SCSI; 2566 2567 out: 2568 pr_debug("%s: returning rc=%d\n", __func__, rc); 2569 return rc; 2570 2571 out_remove: 2572 cxlflash_remove(pdev); 2573 goto out; 2574 } 2575 2576 /** 2577 * cxlflash_pci_error_detected() - called when a PCI error is detected 2578 * @pdev: PCI device struct. 2579 * @state: PCI channel state. 2580 * 2581 * When an EEH occurs during an active reset, wait until the reset is 2582 * complete and then take action based upon the device state. 2583 * 2584 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT 2585 */ 2586 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, 2587 pci_channel_state_t state) 2588 { 2589 int rc = 0; 2590 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 2591 struct device *dev = &cfg->dev->dev; 2592 2593 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); 2594 2595 switch (state) { 2596 case pci_channel_io_frozen: 2597 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2598 if (cfg->state == STATE_FAILTERM) 2599 return PCI_ERS_RESULT_DISCONNECT; 2600 2601 cfg->state = STATE_RESET; 2602 scsi_block_requests(cfg->host); 2603 drain_ioctls(cfg); 2604 rc = cxlflash_mark_contexts_error(cfg); 2605 if (unlikely(rc)) 2606 dev_err(dev, "%s: Failed to mark user contexts!(%d)\n", 2607 __func__, rc); 2608 term_afu(cfg); 2609 return PCI_ERS_RESULT_NEED_RESET; 2610 case pci_channel_io_perm_failure: 2611 cfg->state = STATE_FAILTERM; 2612 wake_up_all(&cfg->reset_waitq); 2613 scsi_unblock_requests(cfg->host); 2614 return PCI_ERS_RESULT_DISCONNECT; 2615 default: 2616 break; 2617 } 2618 return PCI_ERS_RESULT_NEED_RESET; 2619 } 2620 2621 /** 2622 * cxlflash_pci_slot_reset() - called when PCI slot has been reset 2623 * @pdev: PCI device struct. 2624 * 2625 * This routine is called by the pci error recovery code after the PCI 2626 * slot has been reset, just before we should resume normal operations. 2627 * 2628 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT 2629 */ 2630 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) 2631 { 2632 int rc = 0; 2633 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 2634 struct device *dev = &cfg->dev->dev; 2635 2636 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 2637 2638 rc = init_afu(cfg); 2639 if (unlikely(rc)) { 2640 dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc); 2641 return PCI_ERS_RESULT_DISCONNECT; 2642 } 2643 2644 return PCI_ERS_RESULT_RECOVERED; 2645 } 2646 2647 /** 2648 * cxlflash_pci_resume() - called when normal operation can resume 2649 * @pdev: PCI device struct 2650 */ 2651 static void cxlflash_pci_resume(struct pci_dev *pdev) 2652 { 2653 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 2654 struct device *dev = &cfg->dev->dev; 2655 2656 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 2657 2658 cfg->state = STATE_NORMAL; 2659 wake_up_all(&cfg->reset_waitq); 2660 scsi_unblock_requests(cfg->host); 2661 } 2662 2663 static const struct pci_error_handlers cxlflash_err_handler = { 2664 .error_detected = cxlflash_pci_error_detected, 2665 .slot_reset = cxlflash_pci_slot_reset, 2666 .resume = cxlflash_pci_resume, 2667 }; 2668 2669 /* 2670 * PCI device structure 2671 */ 2672 static struct pci_driver cxlflash_driver = { 2673 .name = CXLFLASH_NAME, 2674 .id_table = cxlflash_pci_table, 2675 .probe = cxlflash_probe, 2676 .remove = cxlflash_remove, 2677 .shutdown = cxlflash_remove, 2678 .err_handler = &cxlflash_err_handler, 2679 }; 2680 2681 /** 2682 * init_cxlflash() - module entry point 2683 * 2684 * Return: 0 on success, -errno on failure 2685 */ 2686 static int __init init_cxlflash(void) 2687 { 2688 pr_info("%s: %s\n", __func__, CXLFLASH_ADAPTER_NAME); 2689 2690 cxlflash_list_init(); 2691 2692 return pci_register_driver(&cxlflash_driver); 2693 } 2694 2695 /** 2696 * exit_cxlflash() - module exit point 2697 */ 2698 static void __exit exit_cxlflash(void) 2699 { 2700 cxlflash_term_global_luns(); 2701 cxlflash_free_errpage(); 2702 2703 pci_unregister_driver(&cxlflash_driver); 2704 } 2705 2706 module_init(init_cxlflash); 2707 module_exit(exit_cxlflash); 2708