1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/delay.h> 16 #include <linux/list.h> 17 #include <linux/module.h> 18 #include <linux/pci.h> 19 20 #include <asm/unaligned.h> 21 22 #include <misc/cxl.h> 23 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_host.h> 26 #include <uapi/scsi/cxlflash_ioctl.h> 27 28 #include "main.h" 29 #include "sislite.h" 30 #include "common.h" 31 32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); 33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); 34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); 35 MODULE_LICENSE("GPL"); 36 37 static struct class *cxlflash_class; 38 static u32 cxlflash_major; 39 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 40 41 /** 42 * process_cmd_err() - command error handler 43 * @cmd: AFU command that experienced the error. 44 * @scp: SCSI command associated with the AFU command in error. 45 * 46 * Translates error bits from AFU command to SCSI command results. 47 */ 48 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) 49 { 50 struct afu *afu = cmd->parent; 51 struct cxlflash_cfg *cfg = afu->parent; 52 struct device *dev = &cfg->dev->dev; 53 struct sisl_ioarcb *ioarcb; 54 struct sisl_ioasa *ioasa; 55 u32 resid; 56 57 if (unlikely(!cmd)) 58 return; 59 60 ioarcb = &(cmd->rcb); 61 ioasa = &(cmd->sa); 62 63 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { 64 resid = ioasa->resid; 65 scsi_set_resid(scp, resid); 66 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n", 67 __func__, cmd, scp, resid); 68 } 69 70 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { 71 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n", 72 __func__, cmd, scp); 73 scp->result = (DID_ERROR << 16); 74 } 75 76 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x " 77 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__, 78 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, 79 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); 80 81 if (ioasa->rc.scsi_rc) { 82 /* We have a SCSI status */ 83 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { 84 memcpy(scp->sense_buffer, ioasa->sense_data, 85 SISL_SENSE_DATA_LEN); 86 scp->result = ioasa->rc.scsi_rc; 87 } else 88 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); 89 } 90 91 /* 92 * We encountered an error. Set scp->result based on nature 93 * of error. 94 */ 95 if (ioasa->rc.fc_rc) { 96 /* We have an FC status */ 97 switch (ioasa->rc.fc_rc) { 98 case SISL_FC_RC_LINKDOWN: 99 scp->result = (DID_REQUEUE << 16); 100 break; 101 case SISL_FC_RC_RESID: 102 /* This indicates an FCP resid underrun */ 103 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { 104 /* If the SISL_RC_FLAGS_OVERRUN flag was set, 105 * then we will handle this error else where. 106 * If not then we must handle it here. 107 * This is probably an AFU bug. 108 */ 109 scp->result = (DID_ERROR << 16); 110 } 111 break; 112 case SISL_FC_RC_RESIDERR: 113 /* Resid mismatch between adapter and device */ 114 case SISL_FC_RC_TGTABORT: 115 case SISL_FC_RC_ABORTOK: 116 case SISL_FC_RC_ABORTFAIL: 117 case SISL_FC_RC_NOLOGI: 118 case SISL_FC_RC_ABORTPEND: 119 case SISL_FC_RC_WRABORTPEND: 120 case SISL_FC_RC_NOEXP: 121 case SISL_FC_RC_INUSE: 122 scp->result = (DID_ERROR << 16); 123 break; 124 } 125 } 126 127 if (ioasa->rc.afu_rc) { 128 /* We have an AFU error */ 129 switch (ioasa->rc.afu_rc) { 130 case SISL_AFU_RC_NO_CHANNELS: 131 scp->result = (DID_NO_CONNECT << 16); 132 break; 133 case SISL_AFU_RC_DATA_DMA_ERR: 134 switch (ioasa->afu_extra) { 135 case SISL_AFU_DMA_ERR_PAGE_IN: 136 /* Retry */ 137 scp->result = (DID_IMM_RETRY << 16); 138 break; 139 case SISL_AFU_DMA_ERR_INVALID_EA: 140 default: 141 scp->result = (DID_ERROR << 16); 142 } 143 break; 144 case SISL_AFU_RC_OUT_OF_DATA_BUFS: 145 /* Retry */ 146 scp->result = (DID_ALLOC_FAILURE << 16); 147 break; 148 default: 149 scp->result = (DID_ERROR << 16); 150 } 151 } 152 } 153 154 /** 155 * cmd_complete() - command completion handler 156 * @cmd: AFU command that has completed. 157 * 158 * For SCSI commands this routine prepares and submits commands that have 159 * either completed or timed out to the SCSI stack. For internal commands 160 * (TMF or AFU), this routine simply notifies the originator that the 161 * command has completed. 162 */ 163 static void cmd_complete(struct afu_cmd *cmd) 164 { 165 struct scsi_cmnd *scp; 166 ulong lock_flags; 167 struct afu *afu = cmd->parent; 168 struct cxlflash_cfg *cfg = afu->parent; 169 struct device *dev = &cfg->dev->dev; 170 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 171 172 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 173 list_del(&cmd->list); 174 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 175 176 if (cmd->scp) { 177 scp = cmd->scp; 178 if (unlikely(cmd->sa.ioasc)) 179 process_cmd_err(cmd, scp); 180 else 181 scp->result = (DID_OK << 16); 182 183 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n", 184 __func__, scp, scp->result, cmd->sa.ioasc); 185 scp->scsi_done(scp); 186 } else if (cmd->cmd_tmf) { 187 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 188 cfg->tmf_active = false; 189 wake_up_all_locked(&cfg->tmf_waitq); 190 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 191 } else 192 complete(&cmd->cevent); 193 } 194 195 /** 196 * flush_pending_cmds() - flush all pending commands on this hardware queue 197 * @hwq: Hardware queue to flush. 198 * 199 * The hardware send queue lock associated with this hardware queue must be 200 * held when calling this routine. 201 */ 202 static void flush_pending_cmds(struct hwq *hwq) 203 { 204 struct cxlflash_cfg *cfg = hwq->afu->parent; 205 struct afu_cmd *cmd, *tmp; 206 struct scsi_cmnd *scp; 207 ulong lock_flags; 208 209 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) { 210 /* Bypass command when on a doneq, cmd_complete() will handle */ 211 if (!list_empty(&cmd->queue)) 212 continue; 213 214 list_del(&cmd->list); 215 216 if (cmd->scp) { 217 scp = cmd->scp; 218 scp->result = (DID_IMM_RETRY << 16); 219 scp->scsi_done(scp); 220 } else { 221 cmd->cmd_aborted = true; 222 223 if (cmd->cmd_tmf) { 224 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 225 cfg->tmf_active = false; 226 wake_up_all_locked(&cfg->tmf_waitq); 227 spin_unlock_irqrestore(&cfg->tmf_slock, 228 lock_flags); 229 } else 230 complete(&cmd->cevent); 231 } 232 } 233 } 234 235 /** 236 * context_reset() - reset context via specified register 237 * @hwq: Hardware queue owning the context to be reset. 238 * @reset_reg: MMIO register to perform reset. 239 * 240 * When the reset is successful, the SISLite specification guarantees that 241 * the AFU has aborted all currently pending I/O. Accordingly, these commands 242 * must be flushed. 243 * 244 * Return: 0 on success, -errno on failure 245 */ 246 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg) 247 { 248 struct cxlflash_cfg *cfg = hwq->afu->parent; 249 struct device *dev = &cfg->dev->dev; 250 int rc = -ETIMEDOUT; 251 int nretry = 0; 252 u64 val = 0x1; 253 ulong lock_flags; 254 255 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq); 256 257 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 258 259 writeq_be(val, reset_reg); 260 do { 261 val = readq_be(reset_reg); 262 if ((val & 0x1) == 0x0) { 263 rc = 0; 264 break; 265 } 266 267 /* Double delay each time */ 268 udelay(1 << nretry); 269 } while (nretry++ < MC_ROOM_RETRY_CNT); 270 271 if (!rc) 272 flush_pending_cmds(hwq); 273 274 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 275 276 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n", 277 __func__, rc, val, nretry); 278 return rc; 279 } 280 281 /** 282 * context_reset_ioarrin() - reset context via IOARRIN register 283 * @hwq: Hardware queue owning the context to be reset. 284 * 285 * Return: 0 on success, -errno on failure 286 */ 287 static int context_reset_ioarrin(struct hwq *hwq) 288 { 289 return context_reset(hwq, &hwq->host_map->ioarrin); 290 } 291 292 /** 293 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register 294 * @hwq: Hardware queue owning the context to be reset. 295 * 296 * Return: 0 on success, -errno on failure 297 */ 298 static int context_reset_sq(struct hwq *hwq) 299 { 300 return context_reset(hwq, &hwq->host_map->sq_ctx_reset); 301 } 302 303 /** 304 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register 305 * @afu: AFU associated with the host. 306 * @cmd: AFU command to send. 307 * 308 * Return: 309 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 310 */ 311 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd) 312 { 313 struct cxlflash_cfg *cfg = afu->parent; 314 struct device *dev = &cfg->dev->dev; 315 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 316 int rc = 0; 317 s64 room; 318 ulong lock_flags; 319 320 /* 321 * To avoid the performance penalty of MMIO, spread the update of 322 * 'room' over multiple commands. 323 */ 324 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 325 if (--hwq->room < 0) { 326 room = readq_be(&hwq->host_map->cmd_room); 327 if (room <= 0) { 328 dev_dbg_ratelimited(dev, "%s: no cmd_room to send " 329 "0x%02X, room=0x%016llX\n", 330 __func__, cmd->rcb.cdb[0], room); 331 hwq->room = 0; 332 rc = SCSI_MLQUEUE_HOST_BUSY; 333 goto out; 334 } 335 hwq->room = room - 1; 336 } 337 338 list_add(&cmd->list, &hwq->pending_cmds); 339 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin); 340 out: 341 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 342 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__, 343 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc); 344 return rc; 345 } 346 347 /** 348 * send_cmd_sq() - sends an AFU command via SQ ring 349 * @afu: AFU associated with the host. 350 * @cmd: AFU command to send. 351 * 352 * Return: 353 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 354 */ 355 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd) 356 { 357 struct cxlflash_cfg *cfg = afu->parent; 358 struct device *dev = &cfg->dev->dev; 359 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 360 int rc = 0; 361 int newval; 362 ulong lock_flags; 363 364 newval = atomic_dec_if_positive(&hwq->hsq_credits); 365 if (newval <= 0) { 366 rc = SCSI_MLQUEUE_HOST_BUSY; 367 goto out; 368 } 369 370 cmd->rcb.ioasa = &cmd->sa; 371 372 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 373 374 *hwq->hsq_curr = cmd->rcb; 375 if (hwq->hsq_curr < hwq->hsq_end) 376 hwq->hsq_curr++; 377 else 378 hwq->hsq_curr = hwq->hsq_start; 379 380 list_add(&cmd->list, &hwq->pending_cmds); 381 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail); 382 383 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 384 out: 385 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p " 386 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len, 387 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr, 388 readq_be(&hwq->host_map->sq_head), 389 readq_be(&hwq->host_map->sq_tail)); 390 return rc; 391 } 392 393 /** 394 * wait_resp() - polls for a response or timeout to a sent AFU command 395 * @afu: AFU associated with the host. 396 * @cmd: AFU command that was sent. 397 * 398 * Return: 0 on success, -errno on failure 399 */ 400 static int wait_resp(struct afu *afu, struct afu_cmd *cmd) 401 { 402 struct cxlflash_cfg *cfg = afu->parent; 403 struct device *dev = &cfg->dev->dev; 404 int rc = 0; 405 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); 406 407 timeout = wait_for_completion_timeout(&cmd->cevent, timeout); 408 if (!timeout) 409 rc = -ETIMEDOUT; 410 411 if (cmd->cmd_aborted) 412 rc = -EAGAIN; 413 414 if (unlikely(cmd->sa.ioasc != 0)) { 415 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n", 416 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc); 417 rc = -EIO; 418 } 419 420 return rc; 421 } 422 423 /** 424 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command 425 * @host: SCSI host associated with device. 426 * @scp: SCSI command to send. 427 * @afu: SCSI command to send. 428 * 429 * Hashes a command based upon the hardware queue mode. 430 * 431 * Return: Trusted index of target hardware queue 432 */ 433 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp, 434 struct afu *afu) 435 { 436 u32 tag; 437 u32 hwq = 0; 438 439 if (afu->num_hwqs == 1) 440 return 0; 441 442 switch (afu->hwq_mode) { 443 case HWQ_MODE_RR: 444 hwq = afu->hwq_rr_count++ % afu->num_hwqs; 445 break; 446 case HWQ_MODE_TAG: 447 tag = blk_mq_unique_tag(scp->request); 448 hwq = blk_mq_unique_tag_to_hwq(tag); 449 break; 450 case HWQ_MODE_CPU: 451 hwq = smp_processor_id() % afu->num_hwqs; 452 break; 453 default: 454 WARN_ON_ONCE(1); 455 } 456 457 return hwq; 458 } 459 460 /** 461 * send_tmf() - sends a Task Management Function (TMF) 462 * @cfg: Internal structure associated with the host. 463 * @sdev: SCSI device destined for TMF. 464 * @tmfcmd: TMF command to send. 465 * 466 * Return: 467 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure 468 */ 469 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev, 470 u64 tmfcmd) 471 { 472 struct afu *afu = cfg->afu; 473 struct afu_cmd *cmd = NULL; 474 struct device *dev = &cfg->dev->dev; 475 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 476 char *buf = NULL; 477 ulong lock_flags; 478 int rc = 0; 479 ulong to; 480 481 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 482 if (unlikely(!buf)) { 483 dev_err(dev, "%s: no memory for command\n", __func__); 484 rc = -ENOMEM; 485 goto out; 486 } 487 488 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 489 INIT_LIST_HEAD(&cmd->queue); 490 491 /* When Task Management Function is active do not send another */ 492 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 493 if (cfg->tmf_active) 494 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 495 !cfg->tmf_active, 496 cfg->tmf_slock); 497 cfg->tmf_active = true; 498 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 499 500 cmd->parent = afu; 501 cmd->cmd_tmf = true; 502 cmd->hwq_index = hwq->index; 503 504 cmd->rcb.ctx_id = hwq->ctx_hndl; 505 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 506 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel); 507 cmd->rcb.lun_id = lun_to_lunid(sdev->lun); 508 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 509 SISL_REQ_FLAGS_SUP_UNDERRUN | 510 SISL_REQ_FLAGS_TMF_CMD); 511 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); 512 513 rc = afu->send_cmd(afu, cmd); 514 if (unlikely(rc)) { 515 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 516 cfg->tmf_active = false; 517 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 518 goto out; 519 } 520 521 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 522 to = msecs_to_jiffies(5000); 523 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, 524 !cfg->tmf_active, 525 cfg->tmf_slock, 526 to); 527 if (!to) { 528 dev_err(dev, "%s: TMF timed out\n", __func__); 529 rc = -ETIMEDOUT; 530 } else if (cmd->cmd_aborted) { 531 dev_err(dev, "%s: TMF aborted\n", __func__); 532 rc = -EAGAIN; 533 } else if (cmd->sa.ioasc) { 534 dev_err(dev, "%s: TMF failed ioasc=%08x\n", 535 __func__, cmd->sa.ioasc); 536 rc = -EIO; 537 } 538 cfg->tmf_active = false; 539 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 540 out: 541 kfree(buf); 542 return rc; 543 } 544 545 /** 546 * cxlflash_driver_info() - information handler for this host driver 547 * @host: SCSI host associated with device. 548 * 549 * Return: A string describing the device. 550 */ 551 static const char *cxlflash_driver_info(struct Scsi_Host *host) 552 { 553 return CXLFLASH_ADAPTER_NAME; 554 } 555 556 /** 557 * cxlflash_queuecommand() - sends a mid-layer request 558 * @host: SCSI host associated with device. 559 * @scp: SCSI command to send. 560 * 561 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 562 */ 563 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) 564 { 565 struct cxlflash_cfg *cfg = shost_priv(host); 566 struct afu *afu = cfg->afu; 567 struct device *dev = &cfg->dev->dev; 568 struct afu_cmd *cmd = sc_to_afuci(scp); 569 struct scatterlist *sg = scsi_sglist(scp); 570 int hwq_index = cmd_to_target_hwq(host, scp, afu); 571 struct hwq *hwq = get_hwq(afu, hwq_index); 572 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN; 573 ulong lock_flags; 574 int rc = 0; 575 576 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " 577 "cdb=(%08x-%08x-%08x-%08x)\n", 578 __func__, scp, host->host_no, scp->device->channel, 579 scp->device->id, scp->device->lun, 580 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 581 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 582 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 583 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 584 585 /* 586 * If a Task Management Function is active, wait for it to complete 587 * before continuing with regular commands. 588 */ 589 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 590 if (cfg->tmf_active) { 591 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 592 rc = SCSI_MLQUEUE_HOST_BUSY; 593 goto out; 594 } 595 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 596 597 switch (cfg->state) { 598 case STATE_PROBING: 599 case STATE_PROBED: 600 case STATE_RESET: 601 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__); 602 rc = SCSI_MLQUEUE_HOST_BUSY; 603 goto out; 604 case STATE_FAILTERM: 605 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__); 606 scp->result = (DID_NO_CONNECT << 16); 607 scp->scsi_done(scp); 608 rc = 0; 609 goto out; 610 default: 611 break; 612 } 613 614 if (likely(sg)) { 615 cmd->rcb.data_len = sg->length; 616 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg); 617 } 618 619 cmd->scp = scp; 620 cmd->parent = afu; 621 cmd->hwq_index = hwq_index; 622 623 cmd->sa.ioasc = 0; 624 cmd->rcb.ctx_id = hwq->ctx_hndl; 625 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 626 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel); 627 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 628 629 if (scp->sc_data_direction == DMA_TO_DEVICE) 630 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 631 632 cmd->rcb.req_flags = req_flags; 633 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); 634 635 rc = afu->send_cmd(afu, cmd); 636 out: 637 return rc; 638 } 639 640 /** 641 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe 642 * @cfg: Internal structure associated with the host. 643 */ 644 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) 645 { 646 struct pci_dev *pdev = cfg->dev; 647 648 if (pci_channel_offline(pdev)) 649 wait_event_timeout(cfg->reset_waitq, 650 !pci_channel_offline(pdev), 651 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); 652 } 653 654 /** 655 * free_mem() - free memory associated with the AFU 656 * @cfg: Internal structure associated with the host. 657 */ 658 static void free_mem(struct cxlflash_cfg *cfg) 659 { 660 struct afu *afu = cfg->afu; 661 662 if (cfg->afu) { 663 free_pages((ulong)afu, get_order(sizeof(struct afu))); 664 cfg->afu = NULL; 665 } 666 } 667 668 /** 669 * cxlflash_reset_sync() - synchronizing point for asynchronous resets 670 * @cfg: Internal structure associated with the host. 671 */ 672 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg) 673 { 674 if (cfg->async_reset_cookie == 0) 675 return; 676 677 /* Wait until all async calls prior to this cookie have completed */ 678 async_synchronize_cookie(cfg->async_reset_cookie + 1); 679 cfg->async_reset_cookie = 0; 680 } 681 682 /** 683 * stop_afu() - stops the AFU command timers and unmaps the MMIO space 684 * @cfg: Internal structure associated with the host. 685 * 686 * Safe to call with AFU in a partially allocated/initialized state. 687 * 688 * Cancels scheduled worker threads, waits for any active internal AFU 689 * commands to timeout, disables IRQ polling and then unmaps the MMIO space. 690 */ 691 static void stop_afu(struct cxlflash_cfg *cfg) 692 { 693 struct afu *afu = cfg->afu; 694 struct hwq *hwq; 695 int i; 696 697 cancel_work_sync(&cfg->work_q); 698 if (!current_is_async()) 699 cxlflash_reset_sync(cfg); 700 701 if (likely(afu)) { 702 while (atomic_read(&afu->cmds_active)) 703 ssleep(1); 704 705 if (afu_is_irqpoll_enabled(afu)) { 706 for (i = 0; i < afu->num_hwqs; i++) { 707 hwq = get_hwq(afu, i); 708 709 irq_poll_disable(&hwq->irqpoll); 710 } 711 } 712 713 if (likely(afu->afu_map)) { 714 cfg->ops->psa_unmap(afu->afu_map); 715 afu->afu_map = NULL; 716 } 717 } 718 } 719 720 /** 721 * term_intr() - disables all AFU interrupts 722 * @cfg: Internal structure associated with the host. 723 * @level: Depth of allocation, where to begin waterfall tear down. 724 * @index: Index of the hardware queue. 725 * 726 * Safe to call with AFU/MC in partially allocated/initialized state. 727 */ 728 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level, 729 u32 index) 730 { 731 struct afu *afu = cfg->afu; 732 struct device *dev = &cfg->dev->dev; 733 struct hwq *hwq; 734 735 if (!afu) { 736 dev_err(dev, "%s: returning with NULL afu\n", __func__); 737 return; 738 } 739 740 hwq = get_hwq(afu, index); 741 742 if (!hwq->ctx_cookie) { 743 dev_err(dev, "%s: returning with NULL MC\n", __func__); 744 return; 745 } 746 747 switch (level) { 748 case UNMAP_THREE: 749 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 750 if (index == PRIMARY_HWQ) 751 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq); 752 case UNMAP_TWO: 753 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq); 754 case UNMAP_ONE: 755 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq); 756 case FREE_IRQ: 757 cfg->ops->free_afu_irqs(hwq->ctx_cookie); 758 /* fall through */ 759 case UNDO_NOOP: 760 /* No action required */ 761 break; 762 } 763 } 764 765 /** 766 * term_mc() - terminates the master context 767 * @cfg: Internal structure associated with the host. 768 * @index: Index of the hardware queue. 769 * 770 * Safe to call with AFU/MC in partially allocated/initialized state. 771 */ 772 static void term_mc(struct cxlflash_cfg *cfg, u32 index) 773 { 774 struct afu *afu = cfg->afu; 775 struct device *dev = &cfg->dev->dev; 776 struct hwq *hwq; 777 ulong lock_flags; 778 779 if (!afu) { 780 dev_err(dev, "%s: returning with NULL afu\n", __func__); 781 return; 782 } 783 784 hwq = get_hwq(afu, index); 785 786 if (!hwq->ctx_cookie) { 787 dev_err(dev, "%s: returning with NULL MC\n", __func__); 788 return; 789 } 790 791 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie)); 792 if (index != PRIMARY_HWQ) 793 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie)); 794 hwq->ctx_cookie = NULL; 795 796 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 797 flush_pending_cmds(hwq); 798 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 799 } 800 801 /** 802 * term_afu() - terminates the AFU 803 * @cfg: Internal structure associated with the host. 804 * 805 * Safe to call with AFU/MC in partially allocated/initialized state. 806 */ 807 static void term_afu(struct cxlflash_cfg *cfg) 808 { 809 struct device *dev = &cfg->dev->dev; 810 int k; 811 812 /* 813 * Tear down is carefully orchestrated to ensure 814 * no interrupts can come in when the problem state 815 * area is unmapped. 816 * 817 * 1) Disable all AFU interrupts for each master 818 * 2) Unmap the problem state area 819 * 3) Stop each master context 820 */ 821 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 822 term_intr(cfg, UNMAP_THREE, k); 823 824 stop_afu(cfg); 825 826 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 827 term_mc(cfg, k); 828 829 dev_dbg(dev, "%s: returning\n", __func__); 830 } 831 832 /** 833 * notify_shutdown() - notifies device of pending shutdown 834 * @cfg: Internal structure associated with the host. 835 * @wait: Whether to wait for shutdown processing to complete. 836 * 837 * This function will notify the AFU that the adapter is being shutdown 838 * and will wait for shutdown processing to complete if wait is true. 839 * This notification should flush pending I/Os to the device and halt 840 * further I/Os until the next AFU reset is issued and device restarted. 841 */ 842 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) 843 { 844 struct afu *afu = cfg->afu; 845 struct device *dev = &cfg->dev->dev; 846 struct dev_dependent_vals *ddv; 847 __be64 __iomem *fc_port_regs; 848 u64 reg, status; 849 int i, retry_cnt = 0; 850 851 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; 852 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) 853 return; 854 855 if (!afu || !afu->afu_map) { 856 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__); 857 return; 858 } 859 860 /* Notify AFU */ 861 for (i = 0; i < cfg->num_fc_ports; i++) { 862 fc_port_regs = get_fc_port_regs(cfg, i); 863 864 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 865 reg |= SISL_FC_SHUTDOWN_NORMAL; 866 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 867 } 868 869 if (!wait) 870 return; 871 872 /* Wait up to 1.5 seconds for shutdown processing to complete */ 873 for (i = 0; i < cfg->num_fc_ports; i++) { 874 fc_port_regs = get_fc_port_regs(cfg, i); 875 retry_cnt = 0; 876 877 while (true) { 878 status = readq_be(&fc_port_regs[FC_STATUS / 8]); 879 if (status & SISL_STATUS_SHUTDOWN_COMPLETE) 880 break; 881 if (++retry_cnt >= MC_RETRY_CNT) { 882 dev_dbg(dev, "%s: port %d shutdown processing " 883 "not yet completed\n", __func__, i); 884 break; 885 } 886 msleep(100 * retry_cnt); 887 } 888 } 889 } 890 891 /** 892 * cxlflash_get_minor() - gets the first available minor number 893 * 894 * Return: Unique minor number that can be used to create the character device. 895 */ 896 static int cxlflash_get_minor(void) 897 { 898 int minor; 899 long bit; 900 901 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 902 if (bit >= CXLFLASH_MAX_ADAPTERS) 903 return -1; 904 905 minor = bit & MINORMASK; 906 set_bit(minor, cxlflash_minor); 907 return minor; 908 } 909 910 /** 911 * cxlflash_put_minor() - releases the minor number 912 * @minor: Minor number that is no longer needed. 913 */ 914 static void cxlflash_put_minor(int minor) 915 { 916 clear_bit(minor, cxlflash_minor); 917 } 918 919 /** 920 * cxlflash_release_chrdev() - release the character device for the host 921 * @cfg: Internal structure associated with the host. 922 */ 923 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg) 924 { 925 device_unregister(cfg->chardev); 926 cfg->chardev = NULL; 927 cdev_del(&cfg->cdev); 928 cxlflash_put_minor(MINOR(cfg->cdev.dev)); 929 } 930 931 /** 932 * cxlflash_remove() - PCI entry point to tear down host 933 * @pdev: PCI device associated with the host. 934 * 935 * Safe to use as a cleanup in partially allocated/initialized state. Note that 936 * the reset_waitq is flushed as part of the stop/termination of user contexts. 937 */ 938 static void cxlflash_remove(struct pci_dev *pdev) 939 { 940 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 941 struct device *dev = &pdev->dev; 942 ulong lock_flags; 943 944 if (!pci_is_enabled(pdev)) { 945 dev_dbg(dev, "%s: Device is disabled\n", __func__); 946 return; 947 } 948 949 /* If a Task Management Function is active, wait for it to complete 950 * before continuing with remove. 951 */ 952 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 953 if (cfg->tmf_active) 954 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 955 !cfg->tmf_active, 956 cfg->tmf_slock); 957 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 958 959 /* Notify AFU and wait for shutdown processing to complete */ 960 notify_shutdown(cfg, true); 961 962 cfg->state = STATE_FAILTERM; 963 cxlflash_stop_term_user_contexts(cfg); 964 965 switch (cfg->init_state) { 966 case INIT_STATE_CDEV: 967 cxlflash_release_chrdev(cfg); 968 case INIT_STATE_SCSI: 969 cxlflash_term_local_luns(cfg); 970 scsi_remove_host(cfg->host); 971 case INIT_STATE_AFU: 972 term_afu(cfg); 973 case INIT_STATE_PCI: 974 pci_disable_device(pdev); 975 case INIT_STATE_NONE: 976 free_mem(cfg); 977 scsi_host_put(cfg->host); 978 break; 979 } 980 981 dev_dbg(dev, "%s: returning\n", __func__); 982 } 983 984 /** 985 * alloc_mem() - allocates the AFU and its command pool 986 * @cfg: Internal structure associated with the host. 987 * 988 * A partially allocated state remains on failure. 989 * 990 * Return: 991 * 0 on success 992 * -ENOMEM on failure to allocate memory 993 */ 994 static int alloc_mem(struct cxlflash_cfg *cfg) 995 { 996 int rc = 0; 997 struct device *dev = &cfg->dev->dev; 998 999 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */ 1000 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1001 get_order(sizeof(struct afu))); 1002 if (unlikely(!cfg->afu)) { 1003 dev_err(dev, "%s: cannot get %d free pages\n", 1004 __func__, get_order(sizeof(struct afu))); 1005 rc = -ENOMEM; 1006 goto out; 1007 } 1008 cfg->afu->parent = cfg; 1009 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS; 1010 cfg->afu->afu_map = NULL; 1011 out: 1012 return rc; 1013 } 1014 1015 /** 1016 * init_pci() - initializes the host as a PCI device 1017 * @cfg: Internal structure associated with the host. 1018 * 1019 * Return: 0 on success, -errno on failure 1020 */ 1021 static int init_pci(struct cxlflash_cfg *cfg) 1022 { 1023 struct pci_dev *pdev = cfg->dev; 1024 struct device *dev = &cfg->dev->dev; 1025 int rc = 0; 1026 1027 rc = pci_enable_device(pdev); 1028 if (rc || pci_channel_offline(pdev)) { 1029 if (pci_channel_offline(pdev)) { 1030 cxlflash_wait_for_pci_err_recovery(cfg); 1031 rc = pci_enable_device(pdev); 1032 } 1033 1034 if (rc) { 1035 dev_err(dev, "%s: Cannot enable adapter\n", __func__); 1036 cxlflash_wait_for_pci_err_recovery(cfg); 1037 goto out; 1038 } 1039 } 1040 1041 out: 1042 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1043 return rc; 1044 } 1045 1046 /** 1047 * init_scsi() - adds the host to the SCSI stack and kicks off host scan 1048 * @cfg: Internal structure associated with the host. 1049 * 1050 * Return: 0 on success, -errno on failure 1051 */ 1052 static int init_scsi(struct cxlflash_cfg *cfg) 1053 { 1054 struct pci_dev *pdev = cfg->dev; 1055 struct device *dev = &cfg->dev->dev; 1056 int rc = 0; 1057 1058 rc = scsi_add_host(cfg->host, &pdev->dev); 1059 if (rc) { 1060 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc); 1061 goto out; 1062 } 1063 1064 scsi_scan_host(cfg->host); 1065 1066 out: 1067 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1068 return rc; 1069 } 1070 1071 /** 1072 * set_port_online() - transitions the specified host FC port to online state 1073 * @fc_regs: Top of MMIO region defined for specified port. 1074 * 1075 * The provided MMIO region must be mapped prior to call. Online state means 1076 * that the FC link layer has synced, completed the handshaking process, and 1077 * is ready for login to start. 1078 */ 1079 static void set_port_online(__be64 __iomem *fc_regs) 1080 { 1081 u64 cmdcfg; 1082 1083 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1084 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ 1085 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ 1086 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1087 } 1088 1089 /** 1090 * set_port_offline() - transitions the specified host FC port to offline state 1091 * @fc_regs: Top of MMIO region defined for specified port. 1092 * 1093 * The provided MMIO region must be mapped prior to call. 1094 */ 1095 static void set_port_offline(__be64 __iomem *fc_regs) 1096 { 1097 u64 cmdcfg; 1098 1099 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1100 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ 1101 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ 1102 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1103 } 1104 1105 /** 1106 * wait_port_online() - waits for the specified host FC port come online 1107 * @fc_regs: Top of MMIO region defined for specified port. 1108 * @delay_us: Number of microseconds to delay between reading port status. 1109 * @nretry: Number of cycles to retry reading port status. 1110 * 1111 * The provided MMIO region must be mapped prior to call. This will timeout 1112 * when the cable is not plugged in. 1113 * 1114 * Return: 1115 * TRUE (1) when the specified port is online 1116 * FALSE (0) when the specified port fails to come online after timeout 1117 */ 1118 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1119 { 1120 u64 status; 1121 1122 WARN_ON(delay_us < 1000); 1123 1124 do { 1125 msleep(delay_us / 1000); 1126 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1127 if (status == U64_MAX) 1128 nretry /= 2; 1129 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && 1130 nretry--); 1131 1132 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); 1133 } 1134 1135 /** 1136 * wait_port_offline() - waits for the specified host FC port go offline 1137 * @fc_regs: Top of MMIO region defined for specified port. 1138 * @delay_us: Number of microseconds to delay between reading port status. 1139 * @nretry: Number of cycles to retry reading port status. 1140 * 1141 * The provided MMIO region must be mapped prior to call. 1142 * 1143 * Return: 1144 * TRUE (1) when the specified port is offline 1145 * FALSE (0) when the specified port fails to go offline after timeout 1146 */ 1147 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1148 { 1149 u64 status; 1150 1151 WARN_ON(delay_us < 1000); 1152 1153 do { 1154 msleep(delay_us / 1000); 1155 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1156 if (status == U64_MAX) 1157 nretry /= 2; 1158 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && 1159 nretry--); 1160 1161 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); 1162 } 1163 1164 /** 1165 * afu_set_wwpn() - configures the WWPN for the specified host FC port 1166 * @afu: AFU associated with the host that owns the specified FC port. 1167 * @port: Port number being configured. 1168 * @fc_regs: Top of MMIO region defined for specified port. 1169 * @wwpn: The world-wide-port-number previously discovered for port. 1170 * 1171 * The provided MMIO region must be mapped prior to call. As part of the 1172 * sequence to configure the WWPN, the port is toggled offline and then back 1173 * online. This toggling action can cause this routine to delay up to a few 1174 * seconds. When configured to use the internal LUN feature of the AFU, a 1175 * failure to come online is overridden. 1176 */ 1177 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, 1178 u64 wwpn) 1179 { 1180 struct cxlflash_cfg *cfg = afu->parent; 1181 struct device *dev = &cfg->dev->dev; 1182 1183 set_port_offline(fc_regs); 1184 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1185 FC_PORT_STATUS_RETRY_CNT)) { 1186 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n", 1187 __func__, port); 1188 } 1189 1190 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); 1191 1192 set_port_online(fc_regs); 1193 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1194 FC_PORT_STATUS_RETRY_CNT)) { 1195 dev_dbg(dev, "%s: wait on port %d to go online timed out\n", 1196 __func__, port); 1197 } 1198 } 1199 1200 /** 1201 * afu_link_reset() - resets the specified host FC port 1202 * @afu: AFU associated with the host that owns the specified FC port. 1203 * @port: Port number being configured. 1204 * @fc_regs: Top of MMIO region defined for specified port. 1205 * 1206 * The provided MMIO region must be mapped prior to call. The sequence to 1207 * reset the port involves toggling it offline and then back online. This 1208 * action can cause this routine to delay up to a few seconds. An effort 1209 * is made to maintain link with the device by switching to host to use 1210 * the alternate port exclusively while the reset takes place. 1211 * failure to come online is overridden. 1212 */ 1213 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) 1214 { 1215 struct cxlflash_cfg *cfg = afu->parent; 1216 struct device *dev = &cfg->dev->dev; 1217 u64 port_sel; 1218 1219 /* first switch the AFU to the other links, if any */ 1220 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); 1221 port_sel &= ~(1ULL << port); 1222 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1223 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1224 1225 set_port_offline(fc_regs); 1226 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1227 FC_PORT_STATUS_RETRY_CNT)) 1228 dev_err(dev, "%s: wait on port %d to go offline timed out\n", 1229 __func__, port); 1230 1231 set_port_online(fc_regs); 1232 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1233 FC_PORT_STATUS_RETRY_CNT)) 1234 dev_err(dev, "%s: wait on port %d to go online timed out\n", 1235 __func__, port); 1236 1237 /* switch back to include this port */ 1238 port_sel |= (1ULL << port); 1239 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1240 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1241 1242 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel); 1243 } 1244 1245 /** 1246 * afu_err_intr_init() - clears and initializes the AFU for error interrupts 1247 * @afu: AFU associated with the host. 1248 */ 1249 static void afu_err_intr_init(struct afu *afu) 1250 { 1251 struct cxlflash_cfg *cfg = afu->parent; 1252 __be64 __iomem *fc_port_regs; 1253 int i; 1254 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 1255 u64 reg; 1256 1257 /* global async interrupts: AFU clears afu_ctrl on context exit 1258 * if async interrupts were sent to that context. This prevents 1259 * the AFU form sending further async interrupts when 1260 * there is 1261 * nobody to receive them. 1262 */ 1263 1264 /* mask all */ 1265 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); 1266 /* set LISN# to send and point to primary master context */ 1267 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); 1268 1269 if (afu->internal_lun) 1270 reg |= 1; /* Bit 63 indicates local lun */ 1271 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); 1272 /* clear all */ 1273 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1274 /* unmask bits that are of interest */ 1275 /* note: afu can send an interrupt after this step */ 1276 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); 1277 /* clear again in case a bit came on after previous clear but before */ 1278 /* unmask */ 1279 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1280 1281 /* Clear/Set internal lun bits */ 1282 fc_port_regs = get_fc_port_regs(cfg, 0); 1283 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 1284 reg &= SISL_FC_INTERNAL_MASK; 1285 if (afu->internal_lun) 1286 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); 1287 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 1288 1289 /* now clear FC errors */ 1290 for (i = 0; i < cfg->num_fc_ports; i++) { 1291 fc_port_regs = get_fc_port_regs(cfg, i); 1292 1293 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]); 1294 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1295 } 1296 1297 /* sync interrupts for master's IOARRIN write */ 1298 /* note that unlike asyncs, there can be no pending sync interrupts */ 1299 /* at this time (this is a fresh context and master has not written */ 1300 /* IOARRIN yet), so there is nothing to clear. */ 1301 1302 /* set LISN#, it is always sent to the context that wrote IOARRIN */ 1303 for (i = 0; i < afu->num_hwqs; i++) { 1304 hwq = get_hwq(afu, i); 1305 1306 writeq_be(SISL_MSI_SYNC_ERROR, &hwq->host_map->ctx_ctrl); 1307 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask); 1308 } 1309 } 1310 1311 /** 1312 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors 1313 * @irq: Interrupt number. 1314 * @data: Private data provided at interrupt registration, the AFU. 1315 * 1316 * Return: Always return IRQ_HANDLED. 1317 */ 1318 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) 1319 { 1320 struct hwq *hwq = (struct hwq *)data; 1321 struct cxlflash_cfg *cfg = hwq->afu->parent; 1322 struct device *dev = &cfg->dev->dev; 1323 u64 reg; 1324 u64 reg_unmasked; 1325 1326 reg = readq_be(&hwq->host_map->intr_status); 1327 reg_unmasked = (reg & SISL_ISTATUS_UNMASK); 1328 1329 if (reg_unmasked == 0UL) { 1330 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n", 1331 __func__, reg); 1332 goto cxlflash_sync_err_irq_exit; 1333 } 1334 1335 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n", 1336 __func__, reg); 1337 1338 writeq_be(reg_unmasked, &hwq->host_map->intr_clear); 1339 1340 cxlflash_sync_err_irq_exit: 1341 return IRQ_HANDLED; 1342 } 1343 1344 /** 1345 * process_hrrq() - process the read-response queue 1346 * @afu: AFU associated with the host. 1347 * @doneq: Queue of commands harvested from the RRQ. 1348 * @budget: Threshold of RRQ entries to process. 1349 * 1350 * This routine must be called holding the disabled RRQ spin lock. 1351 * 1352 * Return: The number of entries processed. 1353 */ 1354 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget) 1355 { 1356 struct afu *afu = hwq->afu; 1357 struct afu_cmd *cmd; 1358 struct sisl_ioasa *ioasa; 1359 struct sisl_ioarcb *ioarcb; 1360 bool toggle = hwq->toggle; 1361 int num_hrrq = 0; 1362 u64 entry, 1363 *hrrq_start = hwq->hrrq_start, 1364 *hrrq_end = hwq->hrrq_end, 1365 *hrrq_curr = hwq->hrrq_curr; 1366 1367 /* Process ready RRQ entries up to the specified budget (if any) */ 1368 while (true) { 1369 entry = *hrrq_curr; 1370 1371 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) 1372 break; 1373 1374 entry &= ~SISL_RESP_HANDLE_T_BIT; 1375 1376 if (afu_is_sq_cmd_mode(afu)) { 1377 ioasa = (struct sisl_ioasa *)entry; 1378 cmd = container_of(ioasa, struct afu_cmd, sa); 1379 } else { 1380 ioarcb = (struct sisl_ioarcb *)entry; 1381 cmd = container_of(ioarcb, struct afu_cmd, rcb); 1382 } 1383 1384 list_add_tail(&cmd->queue, doneq); 1385 1386 /* Advance to next entry or wrap and flip the toggle bit */ 1387 if (hrrq_curr < hrrq_end) 1388 hrrq_curr++; 1389 else { 1390 hrrq_curr = hrrq_start; 1391 toggle ^= SISL_RESP_HANDLE_T_BIT; 1392 } 1393 1394 atomic_inc(&hwq->hsq_credits); 1395 num_hrrq++; 1396 1397 if (budget > 0 && num_hrrq >= budget) 1398 break; 1399 } 1400 1401 hwq->hrrq_curr = hrrq_curr; 1402 hwq->toggle = toggle; 1403 1404 return num_hrrq; 1405 } 1406 1407 /** 1408 * process_cmd_doneq() - process a queue of harvested RRQ commands 1409 * @doneq: Queue of completed commands. 1410 * 1411 * Note that upon return the queue can no longer be trusted. 1412 */ 1413 static void process_cmd_doneq(struct list_head *doneq) 1414 { 1415 struct afu_cmd *cmd, *tmp; 1416 1417 WARN_ON(list_empty(doneq)); 1418 1419 list_for_each_entry_safe(cmd, tmp, doneq, queue) 1420 cmd_complete(cmd); 1421 } 1422 1423 /** 1424 * cxlflash_irqpoll() - process a queue of harvested RRQ commands 1425 * @irqpoll: IRQ poll structure associated with queue to poll. 1426 * @budget: Threshold of RRQ entries to process per poll. 1427 * 1428 * Return: The number of entries processed. 1429 */ 1430 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget) 1431 { 1432 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll); 1433 unsigned long hrrq_flags; 1434 LIST_HEAD(doneq); 1435 int num_entries = 0; 1436 1437 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1438 1439 num_entries = process_hrrq(hwq, &doneq, budget); 1440 if (num_entries < budget) 1441 irq_poll_complete(irqpoll); 1442 1443 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1444 1445 process_cmd_doneq(&doneq); 1446 return num_entries; 1447 } 1448 1449 /** 1450 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) 1451 * @irq: Interrupt number. 1452 * @data: Private data provided at interrupt registration, the AFU. 1453 * 1454 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found. 1455 */ 1456 static irqreturn_t cxlflash_rrq_irq(int irq, void *data) 1457 { 1458 struct hwq *hwq = (struct hwq *)data; 1459 struct afu *afu = hwq->afu; 1460 unsigned long hrrq_flags; 1461 LIST_HEAD(doneq); 1462 int num_entries = 0; 1463 1464 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1465 1466 if (afu_is_irqpoll_enabled(afu)) { 1467 irq_poll_sched(&hwq->irqpoll); 1468 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1469 return IRQ_HANDLED; 1470 } 1471 1472 num_entries = process_hrrq(hwq, &doneq, -1); 1473 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1474 1475 if (num_entries == 0) 1476 return IRQ_NONE; 1477 1478 process_cmd_doneq(&doneq); 1479 return IRQ_HANDLED; 1480 } 1481 1482 /* 1483 * Asynchronous interrupt information table 1484 * 1485 * NOTE: 1486 * - Order matters here as this array is indexed by bit position. 1487 * 1488 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro 1489 * as complex and complains due to a lack of parentheses/braces. 1490 */ 1491 #define ASTATUS_FC(_a, _b, _c, _d) \ 1492 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) } 1493 1494 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \ 1495 ASTATUS_FC(_a, LINK_UP, "link up", 0), \ 1496 ASTATUS_FC(_a, LINK_DN, "link down", 0), \ 1497 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \ 1498 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \ 1499 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \ 1500 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \ 1501 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \ 1502 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET) 1503 1504 static const struct asyc_intr_info ainfo[] = { 1505 BUILD_SISL_ASTATUS_FC_PORT(1), 1506 BUILD_SISL_ASTATUS_FC_PORT(0), 1507 BUILD_SISL_ASTATUS_FC_PORT(3), 1508 BUILD_SISL_ASTATUS_FC_PORT(2) 1509 }; 1510 1511 /** 1512 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors 1513 * @irq: Interrupt number. 1514 * @data: Private data provided at interrupt registration, the AFU. 1515 * 1516 * Return: Always return IRQ_HANDLED. 1517 */ 1518 static irqreturn_t cxlflash_async_err_irq(int irq, void *data) 1519 { 1520 struct hwq *hwq = (struct hwq *)data; 1521 struct afu *afu = hwq->afu; 1522 struct cxlflash_cfg *cfg = afu->parent; 1523 struct device *dev = &cfg->dev->dev; 1524 const struct asyc_intr_info *info; 1525 struct sisl_global_map __iomem *global = &afu->afu_map->global; 1526 __be64 __iomem *fc_port_regs; 1527 u64 reg_unmasked; 1528 u64 reg; 1529 u64 bit; 1530 u8 port; 1531 1532 reg = readq_be(&global->regs.aintr_status); 1533 reg_unmasked = (reg & SISL_ASTATUS_UNMASK); 1534 1535 if (unlikely(reg_unmasked == 0)) { 1536 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n", 1537 __func__, reg); 1538 goto out; 1539 } 1540 1541 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ 1542 writeq_be(reg_unmasked, &global->regs.aintr_clear); 1543 1544 /* Check each bit that is on */ 1545 for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) { 1546 if (unlikely(bit >= ARRAY_SIZE(ainfo))) { 1547 WARN_ON_ONCE(1); 1548 continue; 1549 } 1550 1551 info = &ainfo[bit]; 1552 if (unlikely(info->status != 1ULL << bit)) { 1553 WARN_ON_ONCE(1); 1554 continue; 1555 } 1556 1557 port = info->port; 1558 fc_port_regs = get_fc_port_regs(cfg, port); 1559 1560 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n", 1561 __func__, port, info->desc, 1562 readq_be(&fc_port_regs[FC_STATUS / 8])); 1563 1564 /* 1565 * Do link reset first, some OTHER errors will set FC_ERROR 1566 * again if cleared before or w/o a reset 1567 */ 1568 if (info->action & LINK_RESET) { 1569 dev_err(dev, "%s: FC Port %d: resetting link\n", 1570 __func__, port); 1571 cfg->lr_state = LINK_RESET_REQUIRED; 1572 cfg->lr_port = port; 1573 schedule_work(&cfg->work_q); 1574 } 1575 1576 if (info->action & CLR_FC_ERROR) { 1577 reg = readq_be(&fc_port_regs[FC_ERROR / 8]); 1578 1579 /* 1580 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP 1581 * should be the same and tracing one is sufficient. 1582 */ 1583 1584 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n", 1585 __func__, port, reg); 1586 1587 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]); 1588 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1589 } 1590 1591 if (info->action & SCAN_HOST) { 1592 atomic_inc(&cfg->scan_host_needed); 1593 schedule_work(&cfg->work_q); 1594 } 1595 } 1596 1597 out: 1598 return IRQ_HANDLED; 1599 } 1600 1601 /** 1602 * read_vpd() - obtains the WWPNs from VPD 1603 * @cfg: Internal structure associated with the host. 1604 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs 1605 * 1606 * Return: 0 on success, -errno on failure 1607 */ 1608 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) 1609 { 1610 struct device *dev = &cfg->dev->dev; 1611 struct pci_dev *pdev = cfg->dev; 1612 int rc = 0; 1613 int ro_start, ro_size, i, j, k; 1614 ssize_t vpd_size; 1615 char vpd_data[CXLFLASH_VPD_LEN]; 1616 char tmp_buf[WWPN_BUF_LEN] = { 0 }; 1617 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *) 1618 cfg->dev_id->driver_data; 1619 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED; 1620 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" }; 1621 1622 /* Get the VPD data from the device */ 1623 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data)); 1624 if (unlikely(vpd_size <= 0)) { 1625 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n", 1626 __func__, vpd_size); 1627 rc = -ENODEV; 1628 goto out; 1629 } 1630 1631 /* Get the read only section offset */ 1632 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, 1633 PCI_VPD_LRDT_RO_DATA); 1634 if (unlikely(ro_start < 0)) { 1635 dev_err(dev, "%s: VPD Read-only data not found\n", __func__); 1636 rc = -ENODEV; 1637 goto out; 1638 } 1639 1640 /* Get the read only section size, cap when extends beyond read VPD */ 1641 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 1642 j = ro_size; 1643 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1644 if (unlikely((i + j) > vpd_size)) { 1645 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n", 1646 __func__, (i + j), vpd_size); 1647 ro_size = vpd_size - i; 1648 } 1649 1650 /* 1651 * Find the offset of the WWPN tag within the read only 1652 * VPD data and validate the found field (partials are 1653 * no good to us). Convert the ASCII data to an integer 1654 * value. Note that we must copy to a temporary buffer 1655 * because the conversion service requires that the ASCII 1656 * string be terminated. 1657 * 1658 * Allow for WWPN not being found for all devices, setting 1659 * the returned WWPN to zero when not found. Notify with a 1660 * log error for cards that should have had WWPN keywords 1661 * in the VPD - cards requiring WWPN will not have their 1662 * ports programmed and operate in an undefined state. 1663 */ 1664 for (k = 0; k < cfg->num_fc_ports; k++) { 1665 j = ro_size; 1666 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1667 1668 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); 1669 if (i < 0) { 1670 if (wwpn_vpd_required) 1671 dev_err(dev, "%s: Port %d WWPN not found\n", 1672 __func__, k); 1673 wwpn[k] = 0ULL; 1674 continue; 1675 } 1676 1677 j = pci_vpd_info_field_size(&vpd_data[i]); 1678 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1679 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { 1680 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n", 1681 __func__, k); 1682 rc = -ENODEV; 1683 goto out; 1684 } 1685 1686 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); 1687 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); 1688 if (unlikely(rc)) { 1689 dev_err(dev, "%s: WWPN conversion failed for port %d\n", 1690 __func__, k); 1691 rc = -ENODEV; 1692 goto out; 1693 } 1694 1695 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]); 1696 } 1697 1698 out: 1699 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1700 return rc; 1701 } 1702 1703 /** 1704 * init_pcr() - initialize the provisioning and control registers 1705 * @cfg: Internal structure associated with the host. 1706 * 1707 * Also sets up fast access to the mapped registers and initializes AFU 1708 * command fields that never change. 1709 */ 1710 static void init_pcr(struct cxlflash_cfg *cfg) 1711 { 1712 struct afu *afu = cfg->afu; 1713 struct sisl_ctrl_map __iomem *ctrl_map; 1714 struct hwq *hwq; 1715 void *cookie; 1716 int i; 1717 1718 for (i = 0; i < MAX_CONTEXT; i++) { 1719 ctrl_map = &afu->afu_map->ctrls[i].ctrl; 1720 /* Disrupt any clients that could be running */ 1721 /* e.g. clients that survived a master restart */ 1722 writeq_be(0, &ctrl_map->rht_start); 1723 writeq_be(0, &ctrl_map->rht_cnt_id); 1724 writeq_be(0, &ctrl_map->ctx_cap); 1725 } 1726 1727 /* Copy frequently used fields into hwq */ 1728 for (i = 0; i < afu->num_hwqs; i++) { 1729 hwq = get_hwq(afu, i); 1730 cookie = hwq->ctx_cookie; 1731 1732 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie); 1733 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host; 1734 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl; 1735 1736 /* Program the Endian Control for the master context */ 1737 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl); 1738 } 1739 } 1740 1741 /** 1742 * init_global() - initialize AFU global registers 1743 * @cfg: Internal structure associated with the host. 1744 */ 1745 static int init_global(struct cxlflash_cfg *cfg) 1746 { 1747 struct afu *afu = cfg->afu; 1748 struct device *dev = &cfg->dev->dev; 1749 struct hwq *hwq; 1750 struct sisl_host_map __iomem *hmap; 1751 __be64 __iomem *fc_port_regs; 1752 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */ 1753 int i = 0, num_ports = 0; 1754 int rc = 0; 1755 u64 reg; 1756 1757 rc = read_vpd(cfg, &wwpn[0]); 1758 if (rc) { 1759 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); 1760 goto out; 1761 } 1762 1763 /* Set up RRQ and SQ in HWQ for master issued cmds */ 1764 for (i = 0; i < afu->num_hwqs; i++) { 1765 hwq = get_hwq(afu, i); 1766 hmap = hwq->host_map; 1767 1768 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start); 1769 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end); 1770 1771 if (afu_is_sq_cmd_mode(afu)) { 1772 writeq_be((u64)hwq->hsq_start, &hmap->sq_start); 1773 writeq_be((u64)hwq->hsq_end, &hmap->sq_end); 1774 } 1775 } 1776 1777 /* AFU configuration */ 1778 reg = readq_be(&afu->afu_map->global.regs.afu_config); 1779 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; 1780 /* enable all auto retry options and control endianness */ 1781 /* leave others at default: */ 1782 /* CTX_CAP write protected, mbox_r does not clear on read and */ 1783 /* checker on if dual afu */ 1784 writeq_be(reg, &afu->afu_map->global.regs.afu_config); 1785 1786 /* Global port select: select either port */ 1787 if (afu->internal_lun) { 1788 /* Only use port 0 */ 1789 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); 1790 num_ports = 0; 1791 } else { 1792 writeq_be(PORT_MASK(cfg->num_fc_ports), 1793 &afu->afu_map->global.regs.afu_port_sel); 1794 num_ports = cfg->num_fc_ports; 1795 } 1796 1797 for (i = 0; i < num_ports; i++) { 1798 fc_port_regs = get_fc_port_regs(cfg, i); 1799 1800 /* Unmask all errors (but they are still masked at AFU) */ 1801 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]); 1802 /* Clear CRC error cnt & set a threshold */ 1803 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]); 1804 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]); 1805 1806 /* Set WWPNs. If already programmed, wwpn[i] is 0 */ 1807 if (wwpn[i] != 0) 1808 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]); 1809 /* Programming WWPN back to back causes additional 1810 * offline/online transitions and a PLOGI 1811 */ 1812 msleep(100); 1813 } 1814 1815 /* Set up master's own CTX_CAP to allow real mode, host translation */ 1816 /* tables, afu cmds and read/write GSCSI cmds. */ 1817 /* First, unlock ctx_cap write by reading mbox */ 1818 for (i = 0; i < afu->num_hwqs; i++) { 1819 hwq = get_hwq(afu, i); 1820 1821 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */ 1822 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | 1823 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | 1824 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), 1825 &hwq->ctrl_map->ctx_cap); 1826 } 1827 1828 /* 1829 * Determine write-same unmap support for host by evaluating the unmap 1830 * sector support bit of the context control register associated with 1831 * the primary hardware queue. Note that while this status is reflected 1832 * in a context register, the outcome can be assumed to be host-wide. 1833 */ 1834 hwq = get_hwq(afu, PRIMARY_HWQ); 1835 reg = readq_be(&hwq->host_map->ctx_ctrl); 1836 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR) 1837 cfg->ws_unmap = true; 1838 1839 /* Initialize heartbeat */ 1840 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); 1841 out: 1842 return rc; 1843 } 1844 1845 /** 1846 * start_afu() - initializes and starts the AFU 1847 * @cfg: Internal structure associated with the host. 1848 */ 1849 static int start_afu(struct cxlflash_cfg *cfg) 1850 { 1851 struct afu *afu = cfg->afu; 1852 struct device *dev = &cfg->dev->dev; 1853 struct hwq *hwq; 1854 int rc = 0; 1855 int i; 1856 1857 init_pcr(cfg); 1858 1859 /* Initialize each HWQ */ 1860 for (i = 0; i < afu->num_hwqs; i++) { 1861 hwq = get_hwq(afu, i); 1862 1863 /* After an AFU reset, RRQ entries are stale, clear them */ 1864 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry)); 1865 1866 /* Initialize RRQ pointers */ 1867 hwq->hrrq_start = &hwq->rrq_entry[0]; 1868 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1]; 1869 hwq->hrrq_curr = hwq->hrrq_start; 1870 hwq->toggle = 1; 1871 1872 /* Initialize spin locks */ 1873 spin_lock_init(&hwq->hrrq_slock); 1874 spin_lock_init(&hwq->hsq_slock); 1875 1876 /* Initialize SQ */ 1877 if (afu_is_sq_cmd_mode(afu)) { 1878 memset(&hwq->sq, 0, sizeof(hwq->sq)); 1879 hwq->hsq_start = &hwq->sq[0]; 1880 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1]; 1881 hwq->hsq_curr = hwq->hsq_start; 1882 1883 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1); 1884 } 1885 1886 /* Initialize IRQ poll */ 1887 if (afu_is_irqpoll_enabled(afu)) 1888 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight, 1889 cxlflash_irqpoll); 1890 1891 } 1892 1893 rc = init_global(cfg); 1894 1895 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1896 return rc; 1897 } 1898 1899 /** 1900 * init_intr() - setup interrupt handlers for the master context 1901 * @cfg: Internal structure associated with the host. 1902 * @hwq: Hardware queue to initialize. 1903 * 1904 * Return: 0 on success, -errno on failure 1905 */ 1906 static enum undo_level init_intr(struct cxlflash_cfg *cfg, 1907 struct hwq *hwq) 1908 { 1909 struct device *dev = &cfg->dev->dev; 1910 void *ctx = hwq->ctx_cookie; 1911 int rc = 0; 1912 enum undo_level level = UNDO_NOOP; 1913 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ); 1914 int num_irqs = is_primary_hwq ? 3 : 2; 1915 1916 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs); 1917 if (unlikely(rc)) { 1918 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n", 1919 __func__, rc); 1920 level = UNDO_NOOP; 1921 goto out; 1922 } 1923 1924 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq, 1925 "SISL_MSI_SYNC_ERROR"); 1926 if (unlikely(rc <= 0)) { 1927 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__); 1928 level = FREE_IRQ; 1929 goto out; 1930 } 1931 1932 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq, 1933 "SISL_MSI_RRQ_UPDATED"); 1934 if (unlikely(rc <= 0)) { 1935 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__); 1936 level = UNMAP_ONE; 1937 goto out; 1938 } 1939 1940 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 1941 if (!is_primary_hwq) 1942 goto out; 1943 1944 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq, 1945 "SISL_MSI_ASYNC_ERROR"); 1946 if (unlikely(rc <= 0)) { 1947 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__); 1948 level = UNMAP_TWO; 1949 goto out; 1950 } 1951 out: 1952 return level; 1953 } 1954 1955 /** 1956 * init_mc() - create and register as the master context 1957 * @cfg: Internal structure associated with the host. 1958 * index: HWQ Index of the master context. 1959 * 1960 * Return: 0 on success, -errno on failure 1961 */ 1962 static int init_mc(struct cxlflash_cfg *cfg, u32 index) 1963 { 1964 void *ctx; 1965 struct device *dev = &cfg->dev->dev; 1966 struct hwq *hwq = get_hwq(cfg->afu, index); 1967 int rc = 0; 1968 enum undo_level level; 1969 1970 hwq->afu = cfg->afu; 1971 hwq->index = index; 1972 INIT_LIST_HEAD(&hwq->pending_cmds); 1973 1974 if (index == PRIMARY_HWQ) 1975 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie); 1976 else 1977 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie); 1978 if (IS_ERR_OR_NULL(ctx)) { 1979 rc = -ENOMEM; 1980 goto err1; 1981 } 1982 1983 WARN_ON(hwq->ctx_cookie); 1984 hwq->ctx_cookie = ctx; 1985 1986 /* Set it up as a master with the CXL */ 1987 cfg->ops->set_master(ctx); 1988 1989 /* Reset AFU when initializing primary context */ 1990 if (index == PRIMARY_HWQ) { 1991 rc = cfg->ops->afu_reset(ctx); 1992 if (unlikely(rc)) { 1993 dev_err(dev, "%s: AFU reset failed rc=%d\n", 1994 __func__, rc); 1995 goto err1; 1996 } 1997 } 1998 1999 level = init_intr(cfg, hwq); 2000 if (unlikely(level)) { 2001 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc); 2002 goto err2; 2003 } 2004 2005 /* Finally, activate the context by starting it */ 2006 rc = cfg->ops->start_context(hwq->ctx_cookie); 2007 if (unlikely(rc)) { 2008 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); 2009 level = UNMAP_THREE; 2010 goto err2; 2011 } 2012 2013 out: 2014 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2015 return rc; 2016 err2: 2017 term_intr(cfg, level, index); 2018 if (index != PRIMARY_HWQ) 2019 cfg->ops->release_context(ctx); 2020 err1: 2021 hwq->ctx_cookie = NULL; 2022 goto out; 2023 } 2024 2025 /** 2026 * get_num_afu_ports() - determines and configures the number of AFU ports 2027 * @cfg: Internal structure associated with the host. 2028 * 2029 * This routine determines the number of AFU ports by converting the global 2030 * port selection mask. The converted value is only valid following an AFU 2031 * reset (explicit or power-on). This routine must be invoked shortly after 2032 * mapping as other routines are dependent on the number of ports during the 2033 * initialization sequence. 2034 * 2035 * To support legacy AFUs that might not have reflected an initial global 2036 * port mask (value read is 0), default to the number of ports originally 2037 * supported by the cxlflash driver (2) before hardware with other port 2038 * offerings was introduced. 2039 */ 2040 static void get_num_afu_ports(struct cxlflash_cfg *cfg) 2041 { 2042 struct afu *afu = cfg->afu; 2043 struct device *dev = &cfg->dev->dev; 2044 u64 port_mask; 2045 int num_fc_ports = LEGACY_FC_PORTS; 2046 2047 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel); 2048 if (port_mask != 0ULL) 2049 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS); 2050 2051 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n", 2052 __func__, port_mask, num_fc_ports); 2053 2054 cfg->num_fc_ports = num_fc_ports; 2055 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports); 2056 } 2057 2058 /** 2059 * init_afu() - setup as master context and start AFU 2060 * @cfg: Internal structure associated with the host. 2061 * 2062 * This routine is a higher level of control for configuring the 2063 * AFU on probe and reset paths. 2064 * 2065 * Return: 0 on success, -errno on failure 2066 */ 2067 static int init_afu(struct cxlflash_cfg *cfg) 2068 { 2069 u64 reg; 2070 int rc = 0; 2071 struct afu *afu = cfg->afu; 2072 struct device *dev = &cfg->dev->dev; 2073 struct hwq *hwq; 2074 int i; 2075 2076 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true); 2077 2078 afu->num_hwqs = afu->desired_hwqs; 2079 for (i = 0; i < afu->num_hwqs; i++) { 2080 rc = init_mc(cfg, i); 2081 if (rc) { 2082 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n", 2083 __func__, rc, i); 2084 goto err1; 2085 } 2086 } 2087 2088 /* Map the entire MMIO space of the AFU using the first context */ 2089 hwq = get_hwq(afu, PRIMARY_HWQ); 2090 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie); 2091 if (!afu->afu_map) { 2092 dev_err(dev, "%s: psa_map failed\n", __func__); 2093 rc = -ENOMEM; 2094 goto err1; 2095 } 2096 2097 /* No byte reverse on reading afu_version or string will be backwards */ 2098 reg = readq(&afu->afu_map->global.regs.afu_version); 2099 memcpy(afu->version, ®, sizeof(reg)); 2100 afu->interface_version = 2101 readq_be(&afu->afu_map->global.regs.interface_version); 2102 if ((afu->interface_version + 1) == 0) { 2103 dev_err(dev, "Back level AFU, please upgrade. AFU version %s " 2104 "interface version %016llx\n", afu->version, 2105 afu->interface_version); 2106 rc = -EINVAL; 2107 goto err1; 2108 } 2109 2110 if (afu_is_sq_cmd_mode(afu)) { 2111 afu->send_cmd = send_cmd_sq; 2112 afu->context_reset = context_reset_sq; 2113 } else { 2114 afu->send_cmd = send_cmd_ioarrin; 2115 afu->context_reset = context_reset_ioarrin; 2116 } 2117 2118 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__, 2119 afu->version, afu->interface_version); 2120 2121 get_num_afu_ports(cfg); 2122 2123 rc = start_afu(cfg); 2124 if (rc) { 2125 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc); 2126 goto err1; 2127 } 2128 2129 afu_err_intr_init(cfg->afu); 2130 for (i = 0; i < afu->num_hwqs; i++) { 2131 hwq = get_hwq(afu, i); 2132 2133 hwq->room = readq_be(&hwq->host_map->cmd_room); 2134 } 2135 2136 /* Restore the LUN mappings */ 2137 cxlflash_restore_luntable(cfg); 2138 out: 2139 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2140 return rc; 2141 2142 err1: 2143 for (i = afu->num_hwqs - 1; i >= 0; i--) { 2144 term_intr(cfg, UNMAP_THREE, i); 2145 term_mc(cfg, i); 2146 } 2147 goto out; 2148 } 2149 2150 /** 2151 * afu_reset() - resets the AFU 2152 * @cfg: Internal structure associated with the host. 2153 * 2154 * Return: 0 on success, -errno on failure 2155 */ 2156 static int afu_reset(struct cxlflash_cfg *cfg) 2157 { 2158 struct device *dev = &cfg->dev->dev; 2159 int rc = 0; 2160 2161 /* Stop the context before the reset. Since the context is 2162 * no longer available restart it after the reset is complete 2163 */ 2164 term_afu(cfg); 2165 2166 rc = init_afu(cfg); 2167 2168 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2169 return rc; 2170 } 2171 2172 /** 2173 * drain_ioctls() - wait until all currently executing ioctls have completed 2174 * @cfg: Internal structure associated with the host. 2175 * 2176 * Obtain write access to read/write semaphore that wraps ioctl 2177 * handling to 'drain' ioctls currently executing. 2178 */ 2179 static void drain_ioctls(struct cxlflash_cfg *cfg) 2180 { 2181 down_write(&cfg->ioctl_rwsem); 2182 up_write(&cfg->ioctl_rwsem); 2183 } 2184 2185 /** 2186 * cxlflash_async_reset_host() - asynchronous host reset handler 2187 * @data: Private data provided while scheduling reset. 2188 * @cookie: Cookie that can be used for checkpointing. 2189 */ 2190 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie) 2191 { 2192 struct cxlflash_cfg *cfg = data; 2193 struct device *dev = &cfg->dev->dev; 2194 int rc = 0; 2195 2196 if (cfg->state != STATE_RESET) { 2197 dev_dbg(dev, "%s: Not performing a reset, state=%d\n", 2198 __func__, cfg->state); 2199 goto out; 2200 } 2201 2202 drain_ioctls(cfg); 2203 cxlflash_mark_contexts_error(cfg); 2204 rc = afu_reset(cfg); 2205 if (rc) 2206 cfg->state = STATE_FAILTERM; 2207 else 2208 cfg->state = STATE_NORMAL; 2209 wake_up_all(&cfg->reset_waitq); 2210 2211 out: 2212 scsi_unblock_requests(cfg->host); 2213 } 2214 2215 /** 2216 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset 2217 * @cfg: Internal structure associated with the host. 2218 */ 2219 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg) 2220 { 2221 struct device *dev = &cfg->dev->dev; 2222 2223 if (cfg->state != STATE_NORMAL) { 2224 dev_dbg(dev, "%s: Not performing reset state=%d\n", 2225 __func__, cfg->state); 2226 return; 2227 } 2228 2229 cfg->state = STATE_RESET; 2230 scsi_block_requests(cfg->host); 2231 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host, 2232 cfg); 2233 } 2234 2235 /** 2236 * send_afu_cmd() - builds and sends an internal AFU command 2237 * @afu: AFU associated with the host. 2238 * @rcb: Pre-populated IOARCB describing command to send. 2239 * 2240 * The AFU can only take one internal AFU command at a time. This limitation is 2241 * enforced by using a mutex to provide exclusive access to the AFU during the 2242 * operation. This design point requires calling threads to not be on interrupt 2243 * context due to the possibility of sleeping during concurrent AFU operations. 2244 * 2245 * The command status is optionally passed back to the caller when the caller 2246 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure. 2247 * 2248 * Return: 2249 * 0 on success, -errno on failure 2250 */ 2251 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb) 2252 { 2253 struct cxlflash_cfg *cfg = afu->parent; 2254 struct device *dev = &cfg->dev->dev; 2255 struct afu_cmd *cmd = NULL; 2256 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 2257 char *buf = NULL; 2258 int rc = 0; 2259 int nretry = 0; 2260 static DEFINE_MUTEX(sync_active); 2261 2262 if (cfg->state != STATE_NORMAL) { 2263 dev_dbg(dev, "%s: Sync not required state=%u\n", 2264 __func__, cfg->state); 2265 return 0; 2266 } 2267 2268 mutex_lock(&sync_active); 2269 atomic_inc(&afu->cmds_active); 2270 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 2271 if (unlikely(!buf)) { 2272 dev_err(dev, "%s: no memory for command\n", __func__); 2273 rc = -ENOMEM; 2274 goto out; 2275 } 2276 2277 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 2278 2279 retry: 2280 memset(cmd, 0, sizeof(*cmd)); 2281 memcpy(&cmd->rcb, rcb, sizeof(*rcb)); 2282 INIT_LIST_HEAD(&cmd->queue); 2283 init_completion(&cmd->cevent); 2284 cmd->parent = afu; 2285 cmd->hwq_index = hwq->index; 2286 cmd->rcb.ctx_id = hwq->ctx_hndl; 2287 2288 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n", 2289 __func__, afu, cmd, cmd->rcb.cdb[0], nretry); 2290 2291 rc = afu->send_cmd(afu, cmd); 2292 if (unlikely(rc)) { 2293 rc = -ENOBUFS; 2294 goto out; 2295 } 2296 2297 rc = wait_resp(afu, cmd); 2298 switch (rc) { 2299 case -ETIMEDOUT: 2300 rc = afu->context_reset(hwq); 2301 if (rc) { 2302 cxlflash_schedule_async_reset(cfg); 2303 break; 2304 } 2305 /* fall through to retry */ 2306 case -EAGAIN: 2307 if (++nretry < 2) 2308 goto retry; 2309 /* fall through to exit */ 2310 default: 2311 break; 2312 } 2313 2314 if (rcb->ioasa) 2315 *rcb->ioasa = cmd->sa; 2316 out: 2317 atomic_dec(&afu->cmds_active); 2318 mutex_unlock(&sync_active); 2319 kfree(buf); 2320 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2321 return rc; 2322 } 2323 2324 /** 2325 * cxlflash_afu_sync() - builds and sends an AFU sync command 2326 * @afu: AFU associated with the host. 2327 * @ctx: Identifies context requesting sync. 2328 * @res: Identifies resource requesting sync. 2329 * @mode: Type of sync to issue (lightweight, heavyweight, global). 2330 * 2331 * AFU sync operations are only necessary and allowed when the device is 2332 * operating normally. When not operating normally, sync requests can occur as 2333 * part of cleaning up resources associated with an adapter prior to removal. 2334 * In this scenario, these requests are simply ignored (safe due to the AFU 2335 * going away). 2336 * 2337 * Return: 2338 * 0 on success, -errno on failure 2339 */ 2340 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode) 2341 { 2342 struct cxlflash_cfg *cfg = afu->parent; 2343 struct device *dev = &cfg->dev->dev; 2344 struct sisl_ioarcb rcb = { 0 }; 2345 2346 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n", 2347 __func__, afu, ctx, res, mode); 2348 2349 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 2350 rcb.msi = SISL_MSI_RRQ_UPDATED; 2351 rcb.timeout = MC_AFU_SYNC_TIMEOUT; 2352 2353 rcb.cdb[0] = SISL_AFU_CMD_SYNC; 2354 rcb.cdb[1] = mode; 2355 put_unaligned_be16(ctx, &rcb.cdb[2]); 2356 put_unaligned_be32(res, &rcb.cdb[4]); 2357 2358 return send_afu_cmd(afu, &rcb); 2359 } 2360 2361 /** 2362 * cxlflash_eh_abort_handler() - abort a SCSI command 2363 * @scp: SCSI command to abort. 2364 * 2365 * CXL Flash devices do not support a single command abort. Reset the context 2366 * as per SISLite specification. Flush any pending commands in the hardware 2367 * queue before the reset. 2368 * 2369 * Return: SUCCESS/FAILED as defined in scsi/scsi.h 2370 */ 2371 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp) 2372 { 2373 int rc = FAILED; 2374 struct Scsi_Host *host = scp->device->host; 2375 struct cxlflash_cfg *cfg = shost_priv(host); 2376 struct afu_cmd *cmd = sc_to_afuc(scp); 2377 struct device *dev = &cfg->dev->dev; 2378 struct afu *afu = cfg->afu; 2379 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 2380 2381 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu " 2382 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, 2383 scp->device->channel, scp->device->id, scp->device->lun, 2384 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 2385 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 2386 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 2387 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 2388 2389 /* When the state is not normal, another reset/reload is in progress. 2390 * Return failed and the mid-layer will invoke host reset handler. 2391 */ 2392 if (cfg->state != STATE_NORMAL) { 2393 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n", 2394 __func__, cfg->state); 2395 goto out; 2396 } 2397 2398 rc = afu->context_reset(hwq); 2399 if (unlikely(rc)) 2400 goto out; 2401 2402 rc = SUCCESS; 2403 2404 out: 2405 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2406 return rc; 2407 } 2408 2409 /** 2410 * cxlflash_eh_device_reset_handler() - reset a single LUN 2411 * @scp: SCSI command to send. 2412 * 2413 * Return: 2414 * SUCCESS as defined in scsi/scsi.h 2415 * FAILED as defined in scsi/scsi.h 2416 */ 2417 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) 2418 { 2419 int rc = SUCCESS; 2420 struct scsi_device *sdev = scp->device; 2421 struct Scsi_Host *host = sdev->host; 2422 struct cxlflash_cfg *cfg = shost_priv(host); 2423 struct device *dev = &cfg->dev->dev; 2424 int rcr = 0; 2425 2426 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__, 2427 host->host_no, sdev->channel, sdev->id, sdev->lun); 2428 retry: 2429 switch (cfg->state) { 2430 case STATE_NORMAL: 2431 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET); 2432 if (unlikely(rcr)) 2433 rc = FAILED; 2434 break; 2435 case STATE_RESET: 2436 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2437 goto retry; 2438 default: 2439 rc = FAILED; 2440 break; 2441 } 2442 2443 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2444 return rc; 2445 } 2446 2447 /** 2448 * cxlflash_eh_host_reset_handler() - reset the host adapter 2449 * @scp: SCSI command from stack identifying host. 2450 * 2451 * Following a reset, the state is evaluated again in case an EEH occurred 2452 * during the reset. In such a scenario, the host reset will either yield 2453 * until the EEH recovery is complete or return success or failure based 2454 * upon the current device state. 2455 * 2456 * Return: 2457 * SUCCESS as defined in scsi/scsi.h 2458 * FAILED as defined in scsi/scsi.h 2459 */ 2460 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) 2461 { 2462 int rc = SUCCESS; 2463 int rcr = 0; 2464 struct Scsi_Host *host = scp->device->host; 2465 struct cxlflash_cfg *cfg = shost_priv(host); 2466 struct device *dev = &cfg->dev->dev; 2467 2468 dev_dbg(dev, "%s: %d\n", __func__, host->host_no); 2469 2470 switch (cfg->state) { 2471 case STATE_NORMAL: 2472 cfg->state = STATE_RESET; 2473 drain_ioctls(cfg); 2474 cxlflash_mark_contexts_error(cfg); 2475 rcr = afu_reset(cfg); 2476 if (rcr) { 2477 rc = FAILED; 2478 cfg->state = STATE_FAILTERM; 2479 } else 2480 cfg->state = STATE_NORMAL; 2481 wake_up_all(&cfg->reset_waitq); 2482 ssleep(1); 2483 /* fall through */ 2484 case STATE_RESET: 2485 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2486 if (cfg->state == STATE_NORMAL) 2487 break; 2488 /* fall through */ 2489 default: 2490 rc = FAILED; 2491 break; 2492 } 2493 2494 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2495 return rc; 2496 } 2497 2498 /** 2499 * cxlflash_change_queue_depth() - change the queue depth for the device 2500 * @sdev: SCSI device destined for queue depth change. 2501 * @qdepth: Requested queue depth value to set. 2502 * 2503 * The requested queue depth is capped to the maximum supported value. 2504 * 2505 * Return: The actual queue depth set. 2506 */ 2507 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) 2508 { 2509 2510 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) 2511 qdepth = CXLFLASH_MAX_CMDS_PER_LUN; 2512 2513 scsi_change_queue_depth(sdev, qdepth); 2514 return sdev->queue_depth; 2515 } 2516 2517 /** 2518 * cxlflash_show_port_status() - queries and presents the current port status 2519 * @port: Desired port for status reporting. 2520 * @cfg: Internal structure associated with the host. 2521 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2522 * 2523 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2524 */ 2525 static ssize_t cxlflash_show_port_status(u32 port, 2526 struct cxlflash_cfg *cfg, 2527 char *buf) 2528 { 2529 struct device *dev = &cfg->dev->dev; 2530 char *disp_status; 2531 u64 status; 2532 __be64 __iomem *fc_port_regs; 2533 2534 WARN_ON(port >= MAX_FC_PORTS); 2535 2536 if (port >= cfg->num_fc_ports) { 2537 dev_info(dev, "%s: Port %d not supported on this card.\n", 2538 __func__, port); 2539 return -EINVAL; 2540 } 2541 2542 fc_port_regs = get_fc_port_regs(cfg, port); 2543 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]); 2544 status &= FC_MTIP_STATUS_MASK; 2545 2546 if (status == FC_MTIP_STATUS_ONLINE) 2547 disp_status = "online"; 2548 else if (status == FC_MTIP_STATUS_OFFLINE) 2549 disp_status = "offline"; 2550 else 2551 disp_status = "unknown"; 2552 2553 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); 2554 } 2555 2556 /** 2557 * port0_show() - queries and presents the current status of port 0 2558 * @dev: Generic device associated with the host owning the port. 2559 * @attr: Device attribute representing the port. 2560 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2561 * 2562 * Return: The size of the ASCII string returned in @buf. 2563 */ 2564 static ssize_t port0_show(struct device *dev, 2565 struct device_attribute *attr, 2566 char *buf) 2567 { 2568 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2569 2570 return cxlflash_show_port_status(0, cfg, buf); 2571 } 2572 2573 /** 2574 * port1_show() - queries and presents the current status of port 1 2575 * @dev: Generic device associated with the host owning the port. 2576 * @attr: Device attribute representing the port. 2577 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2578 * 2579 * Return: The size of the ASCII string returned in @buf. 2580 */ 2581 static ssize_t port1_show(struct device *dev, 2582 struct device_attribute *attr, 2583 char *buf) 2584 { 2585 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2586 2587 return cxlflash_show_port_status(1, cfg, buf); 2588 } 2589 2590 /** 2591 * port2_show() - queries and presents the current status of port 2 2592 * @dev: Generic device associated with the host owning the port. 2593 * @attr: Device attribute representing the port. 2594 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2595 * 2596 * Return: The size of the ASCII string returned in @buf. 2597 */ 2598 static ssize_t port2_show(struct device *dev, 2599 struct device_attribute *attr, 2600 char *buf) 2601 { 2602 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2603 2604 return cxlflash_show_port_status(2, cfg, buf); 2605 } 2606 2607 /** 2608 * port3_show() - queries and presents the current status of port 3 2609 * @dev: Generic device associated with the host owning the port. 2610 * @attr: Device attribute representing the port. 2611 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2612 * 2613 * Return: The size of the ASCII string returned in @buf. 2614 */ 2615 static ssize_t port3_show(struct device *dev, 2616 struct device_attribute *attr, 2617 char *buf) 2618 { 2619 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2620 2621 return cxlflash_show_port_status(3, cfg, buf); 2622 } 2623 2624 /** 2625 * lun_mode_show() - presents the current LUN mode of the host 2626 * @dev: Generic device associated with the host. 2627 * @attr: Device attribute representing the LUN mode. 2628 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. 2629 * 2630 * Return: The size of the ASCII string returned in @buf. 2631 */ 2632 static ssize_t lun_mode_show(struct device *dev, 2633 struct device_attribute *attr, char *buf) 2634 { 2635 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2636 struct afu *afu = cfg->afu; 2637 2638 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); 2639 } 2640 2641 /** 2642 * lun_mode_store() - sets the LUN mode of the host 2643 * @dev: Generic device associated with the host. 2644 * @attr: Device attribute representing the LUN mode. 2645 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. 2646 * @count: Length of data resizing in @buf. 2647 * 2648 * The CXL Flash AFU supports a dummy LUN mode where the external 2649 * links and storage are not required. Space on the FPGA is used 2650 * to create 1 or 2 small LUNs which are presented to the system 2651 * as if they were a normal storage device. This feature is useful 2652 * during development and also provides manufacturing with a way 2653 * to test the AFU without an actual device. 2654 * 2655 * 0 = external LUN[s] (default) 2656 * 1 = internal LUN (1 x 64K, 512B blocks, id 0) 2657 * 2 = internal LUN (1 x 64K, 4K blocks, id 0) 2658 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) 2659 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) 2660 * 2661 * Return: The size of the ASCII string returned in @buf. 2662 */ 2663 static ssize_t lun_mode_store(struct device *dev, 2664 struct device_attribute *attr, 2665 const char *buf, size_t count) 2666 { 2667 struct Scsi_Host *shost = class_to_shost(dev); 2668 struct cxlflash_cfg *cfg = shost_priv(shost); 2669 struct afu *afu = cfg->afu; 2670 int rc; 2671 u32 lun_mode; 2672 2673 rc = kstrtouint(buf, 10, &lun_mode); 2674 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { 2675 afu->internal_lun = lun_mode; 2676 2677 /* 2678 * When configured for internal LUN, there is only one channel, 2679 * channel number 0, else there will be one less than the number 2680 * of fc ports for this card. 2681 */ 2682 if (afu->internal_lun) 2683 shost->max_channel = 0; 2684 else 2685 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports); 2686 2687 afu_reset(cfg); 2688 scsi_scan_host(cfg->host); 2689 } 2690 2691 return count; 2692 } 2693 2694 /** 2695 * ioctl_version_show() - presents the current ioctl version of the host 2696 * @dev: Generic device associated with the host. 2697 * @attr: Device attribute representing the ioctl version. 2698 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. 2699 * 2700 * Return: The size of the ASCII string returned in @buf. 2701 */ 2702 static ssize_t ioctl_version_show(struct device *dev, 2703 struct device_attribute *attr, char *buf) 2704 { 2705 ssize_t bytes = 0; 2706 2707 bytes = scnprintf(buf, PAGE_SIZE, 2708 "disk: %u\n", DK_CXLFLASH_VERSION_0); 2709 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2710 "host: %u\n", HT_CXLFLASH_VERSION_0); 2711 2712 return bytes; 2713 } 2714 2715 /** 2716 * cxlflash_show_port_lun_table() - queries and presents the port LUN table 2717 * @port: Desired port for status reporting. 2718 * @cfg: Internal structure associated with the host. 2719 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2720 * 2721 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2722 */ 2723 static ssize_t cxlflash_show_port_lun_table(u32 port, 2724 struct cxlflash_cfg *cfg, 2725 char *buf) 2726 { 2727 struct device *dev = &cfg->dev->dev; 2728 __be64 __iomem *fc_port_luns; 2729 int i; 2730 ssize_t bytes = 0; 2731 2732 WARN_ON(port >= MAX_FC_PORTS); 2733 2734 if (port >= cfg->num_fc_ports) { 2735 dev_info(dev, "%s: Port %d not supported on this card.\n", 2736 __func__, port); 2737 return -EINVAL; 2738 } 2739 2740 fc_port_luns = get_fc_port_luns(cfg, port); 2741 2742 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) 2743 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2744 "%03d: %016llx\n", 2745 i, readq_be(&fc_port_luns[i])); 2746 return bytes; 2747 } 2748 2749 /** 2750 * port0_lun_table_show() - presents the current LUN table of port 0 2751 * @dev: Generic device associated with the host owning the port. 2752 * @attr: Device attribute representing the port. 2753 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2754 * 2755 * Return: The size of the ASCII string returned in @buf. 2756 */ 2757 static ssize_t port0_lun_table_show(struct device *dev, 2758 struct device_attribute *attr, 2759 char *buf) 2760 { 2761 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2762 2763 return cxlflash_show_port_lun_table(0, cfg, buf); 2764 } 2765 2766 /** 2767 * port1_lun_table_show() - presents the current LUN table of port 1 2768 * @dev: Generic device associated with the host owning the port. 2769 * @attr: Device attribute representing the port. 2770 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2771 * 2772 * Return: The size of the ASCII string returned in @buf. 2773 */ 2774 static ssize_t port1_lun_table_show(struct device *dev, 2775 struct device_attribute *attr, 2776 char *buf) 2777 { 2778 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2779 2780 return cxlflash_show_port_lun_table(1, cfg, buf); 2781 } 2782 2783 /** 2784 * port2_lun_table_show() - presents the current LUN table of port 2 2785 * @dev: Generic device associated with the host owning the port. 2786 * @attr: Device attribute representing the port. 2787 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2788 * 2789 * Return: The size of the ASCII string returned in @buf. 2790 */ 2791 static ssize_t port2_lun_table_show(struct device *dev, 2792 struct device_attribute *attr, 2793 char *buf) 2794 { 2795 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2796 2797 return cxlflash_show_port_lun_table(2, cfg, buf); 2798 } 2799 2800 /** 2801 * port3_lun_table_show() - presents the current LUN table of port 3 2802 * @dev: Generic device associated with the host owning the port. 2803 * @attr: Device attribute representing the port. 2804 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2805 * 2806 * Return: The size of the ASCII string returned in @buf. 2807 */ 2808 static ssize_t port3_lun_table_show(struct device *dev, 2809 struct device_attribute *attr, 2810 char *buf) 2811 { 2812 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2813 2814 return cxlflash_show_port_lun_table(3, cfg, buf); 2815 } 2816 2817 /** 2818 * irqpoll_weight_show() - presents the current IRQ poll weight for the host 2819 * @dev: Generic device associated with the host. 2820 * @attr: Device attribute representing the IRQ poll weight. 2821 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll 2822 * weight in ASCII. 2823 * 2824 * An IRQ poll weight of 0 indicates polling is disabled. 2825 * 2826 * Return: The size of the ASCII string returned in @buf. 2827 */ 2828 static ssize_t irqpoll_weight_show(struct device *dev, 2829 struct device_attribute *attr, char *buf) 2830 { 2831 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2832 struct afu *afu = cfg->afu; 2833 2834 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight); 2835 } 2836 2837 /** 2838 * irqpoll_weight_store() - sets the current IRQ poll weight for the host 2839 * @dev: Generic device associated with the host. 2840 * @attr: Device attribute representing the IRQ poll weight. 2841 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll 2842 * weight in ASCII. 2843 * @count: Length of data resizing in @buf. 2844 * 2845 * An IRQ poll weight of 0 indicates polling is disabled. 2846 * 2847 * Return: The size of the ASCII string returned in @buf. 2848 */ 2849 static ssize_t irqpoll_weight_store(struct device *dev, 2850 struct device_attribute *attr, 2851 const char *buf, size_t count) 2852 { 2853 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2854 struct device *cfgdev = &cfg->dev->dev; 2855 struct afu *afu = cfg->afu; 2856 struct hwq *hwq; 2857 u32 weight; 2858 int rc, i; 2859 2860 rc = kstrtouint(buf, 10, &weight); 2861 if (rc) 2862 return -EINVAL; 2863 2864 if (weight > 256) { 2865 dev_info(cfgdev, 2866 "Invalid IRQ poll weight. It must be 256 or less.\n"); 2867 return -EINVAL; 2868 } 2869 2870 if (weight == afu->irqpoll_weight) { 2871 dev_info(cfgdev, 2872 "Current IRQ poll weight has the same weight.\n"); 2873 return -EINVAL; 2874 } 2875 2876 if (afu_is_irqpoll_enabled(afu)) { 2877 for (i = 0; i < afu->num_hwqs; i++) { 2878 hwq = get_hwq(afu, i); 2879 2880 irq_poll_disable(&hwq->irqpoll); 2881 } 2882 } 2883 2884 afu->irqpoll_weight = weight; 2885 2886 if (weight > 0) { 2887 for (i = 0; i < afu->num_hwqs; i++) { 2888 hwq = get_hwq(afu, i); 2889 2890 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll); 2891 } 2892 } 2893 2894 return count; 2895 } 2896 2897 /** 2898 * num_hwqs_show() - presents the number of hardware queues for the host 2899 * @dev: Generic device associated with the host. 2900 * @attr: Device attribute representing the number of hardware queues. 2901 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware 2902 * queues in ASCII. 2903 * 2904 * Return: The size of the ASCII string returned in @buf. 2905 */ 2906 static ssize_t num_hwqs_show(struct device *dev, 2907 struct device_attribute *attr, char *buf) 2908 { 2909 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2910 struct afu *afu = cfg->afu; 2911 2912 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs); 2913 } 2914 2915 /** 2916 * num_hwqs_store() - sets the number of hardware queues for the host 2917 * @dev: Generic device associated with the host. 2918 * @attr: Device attribute representing the number of hardware queues. 2919 * @buf: Buffer of length PAGE_SIZE containing the number of hardware 2920 * queues in ASCII. 2921 * @count: Length of data resizing in @buf. 2922 * 2923 * n > 0: num_hwqs = n 2924 * n = 0: num_hwqs = num_online_cpus() 2925 * n < 0: num_online_cpus() / abs(n) 2926 * 2927 * Return: The size of the ASCII string returned in @buf. 2928 */ 2929 static ssize_t num_hwqs_store(struct device *dev, 2930 struct device_attribute *attr, 2931 const char *buf, size_t count) 2932 { 2933 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2934 struct afu *afu = cfg->afu; 2935 int rc; 2936 int nhwqs, num_hwqs; 2937 2938 rc = kstrtoint(buf, 10, &nhwqs); 2939 if (rc) 2940 return -EINVAL; 2941 2942 if (nhwqs >= 1) 2943 num_hwqs = nhwqs; 2944 else if (nhwqs == 0) 2945 num_hwqs = num_online_cpus(); 2946 else 2947 num_hwqs = num_online_cpus() / abs(nhwqs); 2948 2949 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS); 2950 WARN_ON_ONCE(afu->desired_hwqs == 0); 2951 2952 retry: 2953 switch (cfg->state) { 2954 case STATE_NORMAL: 2955 cfg->state = STATE_RESET; 2956 drain_ioctls(cfg); 2957 cxlflash_mark_contexts_error(cfg); 2958 rc = afu_reset(cfg); 2959 if (rc) 2960 cfg->state = STATE_FAILTERM; 2961 else 2962 cfg->state = STATE_NORMAL; 2963 wake_up_all(&cfg->reset_waitq); 2964 break; 2965 case STATE_RESET: 2966 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2967 if (cfg->state == STATE_NORMAL) 2968 goto retry; 2969 default: 2970 /* Ideally should not happen */ 2971 dev_err(dev, "%s: Device is not ready, state=%d\n", 2972 __func__, cfg->state); 2973 break; 2974 } 2975 2976 return count; 2977 } 2978 2979 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" }; 2980 2981 /** 2982 * hwq_mode_show() - presents the HWQ steering mode for the host 2983 * @dev: Generic device associated with the host. 2984 * @attr: Device attribute representing the HWQ steering mode. 2985 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode 2986 * as a character string. 2987 * 2988 * Return: The size of the ASCII string returned in @buf. 2989 */ 2990 static ssize_t hwq_mode_show(struct device *dev, 2991 struct device_attribute *attr, char *buf) 2992 { 2993 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2994 struct afu *afu = cfg->afu; 2995 2996 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]); 2997 } 2998 2999 /** 3000 * hwq_mode_store() - sets the HWQ steering mode for the host 3001 * @dev: Generic device associated with the host. 3002 * @attr: Device attribute representing the HWQ steering mode. 3003 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode 3004 * as a character string. 3005 * @count: Length of data resizing in @buf. 3006 * 3007 * rr = Round-Robin 3008 * tag = Block MQ Tagging 3009 * cpu = CPU Affinity 3010 * 3011 * Return: The size of the ASCII string returned in @buf. 3012 */ 3013 static ssize_t hwq_mode_store(struct device *dev, 3014 struct device_attribute *attr, 3015 const char *buf, size_t count) 3016 { 3017 struct Scsi_Host *shost = class_to_shost(dev); 3018 struct cxlflash_cfg *cfg = shost_priv(shost); 3019 struct device *cfgdev = &cfg->dev->dev; 3020 struct afu *afu = cfg->afu; 3021 int i; 3022 u32 mode = MAX_HWQ_MODE; 3023 3024 for (i = 0; i < MAX_HWQ_MODE; i++) { 3025 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) { 3026 mode = i; 3027 break; 3028 } 3029 } 3030 3031 if (mode >= MAX_HWQ_MODE) { 3032 dev_info(cfgdev, "Invalid HWQ steering mode.\n"); 3033 return -EINVAL; 3034 } 3035 3036 if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) { 3037 dev_info(cfgdev, "SCSI-MQ is not enabled, use a different " 3038 "HWQ steering mode.\n"); 3039 return -EINVAL; 3040 } 3041 3042 afu->hwq_mode = mode; 3043 3044 return count; 3045 } 3046 3047 /** 3048 * mode_show() - presents the current mode of the device 3049 * @dev: Generic device associated with the device. 3050 * @attr: Device attribute representing the device mode. 3051 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. 3052 * 3053 * Return: The size of the ASCII string returned in @buf. 3054 */ 3055 static ssize_t mode_show(struct device *dev, 3056 struct device_attribute *attr, char *buf) 3057 { 3058 struct scsi_device *sdev = to_scsi_device(dev); 3059 3060 return scnprintf(buf, PAGE_SIZE, "%s\n", 3061 sdev->hostdata ? "superpipe" : "legacy"); 3062 } 3063 3064 /* 3065 * Host attributes 3066 */ 3067 static DEVICE_ATTR_RO(port0); 3068 static DEVICE_ATTR_RO(port1); 3069 static DEVICE_ATTR_RO(port2); 3070 static DEVICE_ATTR_RO(port3); 3071 static DEVICE_ATTR_RW(lun_mode); 3072 static DEVICE_ATTR_RO(ioctl_version); 3073 static DEVICE_ATTR_RO(port0_lun_table); 3074 static DEVICE_ATTR_RO(port1_lun_table); 3075 static DEVICE_ATTR_RO(port2_lun_table); 3076 static DEVICE_ATTR_RO(port3_lun_table); 3077 static DEVICE_ATTR_RW(irqpoll_weight); 3078 static DEVICE_ATTR_RW(num_hwqs); 3079 static DEVICE_ATTR_RW(hwq_mode); 3080 3081 static struct device_attribute *cxlflash_host_attrs[] = { 3082 &dev_attr_port0, 3083 &dev_attr_port1, 3084 &dev_attr_port2, 3085 &dev_attr_port3, 3086 &dev_attr_lun_mode, 3087 &dev_attr_ioctl_version, 3088 &dev_attr_port0_lun_table, 3089 &dev_attr_port1_lun_table, 3090 &dev_attr_port2_lun_table, 3091 &dev_attr_port3_lun_table, 3092 &dev_attr_irqpoll_weight, 3093 &dev_attr_num_hwqs, 3094 &dev_attr_hwq_mode, 3095 NULL 3096 }; 3097 3098 /* 3099 * Device attributes 3100 */ 3101 static DEVICE_ATTR_RO(mode); 3102 3103 static struct device_attribute *cxlflash_dev_attrs[] = { 3104 &dev_attr_mode, 3105 NULL 3106 }; 3107 3108 /* 3109 * Host template 3110 */ 3111 static struct scsi_host_template driver_template = { 3112 .module = THIS_MODULE, 3113 .name = CXLFLASH_ADAPTER_NAME, 3114 .info = cxlflash_driver_info, 3115 .ioctl = cxlflash_ioctl, 3116 .proc_name = CXLFLASH_NAME, 3117 .queuecommand = cxlflash_queuecommand, 3118 .eh_abort_handler = cxlflash_eh_abort_handler, 3119 .eh_device_reset_handler = cxlflash_eh_device_reset_handler, 3120 .eh_host_reset_handler = cxlflash_eh_host_reset_handler, 3121 .change_queue_depth = cxlflash_change_queue_depth, 3122 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, 3123 .can_queue = CXLFLASH_MAX_CMDS, 3124 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1, 3125 .this_id = -1, 3126 .sg_tablesize = 1, /* No scatter gather support */ 3127 .max_sectors = CXLFLASH_MAX_SECTORS, 3128 .use_clustering = ENABLE_CLUSTERING, 3129 .shost_attrs = cxlflash_host_attrs, 3130 .sdev_attrs = cxlflash_dev_attrs, 3131 }; 3132 3133 /* 3134 * Device dependent values 3135 */ 3136 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, 3137 CXLFLASH_WWPN_VPD_REQUIRED }; 3138 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, 3139 CXLFLASH_NOTIFY_SHUTDOWN }; 3140 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS, 3141 CXLFLASH_NOTIFY_SHUTDOWN }; 3142 3143 /* 3144 * PCI device binding table 3145 */ 3146 static struct pci_device_id cxlflash_pci_table[] = { 3147 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, 3148 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, 3149 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, 3150 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, 3151 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD, 3152 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals}, 3153 {} 3154 }; 3155 3156 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); 3157 3158 /** 3159 * cxlflash_worker_thread() - work thread handler for the AFU 3160 * @work: Work structure contained within cxlflash associated with host. 3161 * 3162 * Handles the following events: 3163 * - Link reset which cannot be performed on interrupt context due to 3164 * blocking up to a few seconds 3165 * - Rescan the host 3166 */ 3167 static void cxlflash_worker_thread(struct work_struct *work) 3168 { 3169 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, 3170 work_q); 3171 struct afu *afu = cfg->afu; 3172 struct device *dev = &cfg->dev->dev; 3173 __be64 __iomem *fc_port_regs; 3174 int port; 3175 ulong lock_flags; 3176 3177 /* Avoid MMIO if the device has failed */ 3178 3179 if (cfg->state != STATE_NORMAL) 3180 return; 3181 3182 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3183 3184 if (cfg->lr_state == LINK_RESET_REQUIRED) { 3185 port = cfg->lr_port; 3186 if (port < 0) 3187 dev_err(dev, "%s: invalid port index %d\n", 3188 __func__, port); 3189 else { 3190 spin_unlock_irqrestore(cfg->host->host_lock, 3191 lock_flags); 3192 3193 /* The reset can block... */ 3194 fc_port_regs = get_fc_port_regs(cfg, port); 3195 afu_link_reset(afu, port, fc_port_regs); 3196 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3197 } 3198 3199 cfg->lr_state = LINK_RESET_COMPLETE; 3200 } 3201 3202 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); 3203 3204 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) 3205 scsi_scan_host(cfg->host); 3206 } 3207 3208 /** 3209 * cxlflash_chr_open() - character device open handler 3210 * @inode: Device inode associated with this character device. 3211 * @file: File pointer for this device. 3212 * 3213 * Only users with admin privileges are allowed to open the character device. 3214 * 3215 * Return: 0 on success, -errno on failure 3216 */ 3217 static int cxlflash_chr_open(struct inode *inode, struct file *file) 3218 { 3219 struct cxlflash_cfg *cfg; 3220 3221 if (!capable(CAP_SYS_ADMIN)) 3222 return -EACCES; 3223 3224 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev); 3225 file->private_data = cfg; 3226 3227 return 0; 3228 } 3229 3230 /** 3231 * decode_hioctl() - translates encoded host ioctl to easily identifiable string 3232 * @cmd: The host ioctl command to decode. 3233 * 3234 * Return: A string identifying the decoded host ioctl. 3235 */ 3236 static char *decode_hioctl(int cmd) 3237 { 3238 switch (cmd) { 3239 case HT_CXLFLASH_LUN_PROVISION: 3240 return __stringify_1(HT_CXLFLASH_LUN_PROVISION); 3241 } 3242 3243 return "UNKNOWN"; 3244 } 3245 3246 /** 3247 * cxlflash_lun_provision() - host LUN provisioning handler 3248 * @cfg: Internal structure associated with the host. 3249 * @arg: Kernel copy of userspace ioctl data structure. 3250 * 3251 * Return: 0 on success, -errno on failure 3252 */ 3253 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg, 3254 struct ht_cxlflash_lun_provision *lunprov) 3255 { 3256 struct afu *afu = cfg->afu; 3257 struct device *dev = &cfg->dev->dev; 3258 struct sisl_ioarcb rcb; 3259 struct sisl_ioasa asa; 3260 __be64 __iomem *fc_port_regs; 3261 u16 port = lunprov->port; 3262 u16 scmd = lunprov->hdr.subcmd; 3263 u16 type; 3264 u64 reg; 3265 u64 size; 3266 u64 lun_id; 3267 int rc = 0; 3268 3269 if (!afu_is_lun_provision(afu)) { 3270 rc = -ENOTSUPP; 3271 goto out; 3272 } 3273 3274 if (port >= cfg->num_fc_ports) { 3275 rc = -EINVAL; 3276 goto out; 3277 } 3278 3279 switch (scmd) { 3280 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN: 3281 type = SISL_AFU_LUN_PROVISION_CREATE; 3282 size = lunprov->size; 3283 lun_id = 0; 3284 break; 3285 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN: 3286 type = SISL_AFU_LUN_PROVISION_DELETE; 3287 size = 0; 3288 lun_id = lunprov->lun_id; 3289 break; 3290 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT: 3291 fc_port_regs = get_fc_port_regs(cfg, port); 3292 3293 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]); 3294 lunprov->max_num_luns = reg; 3295 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]); 3296 lunprov->cur_num_luns = reg; 3297 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]); 3298 lunprov->max_cap_port = reg; 3299 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]); 3300 lunprov->cur_cap_port = reg; 3301 3302 goto out; 3303 default: 3304 rc = -EINVAL; 3305 goto out; 3306 } 3307 3308 memset(&rcb, 0, sizeof(rcb)); 3309 memset(&asa, 0, sizeof(asa)); 3310 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 3311 rcb.lun_id = lun_id; 3312 rcb.msi = SISL_MSI_RRQ_UPDATED; 3313 rcb.timeout = MC_LUN_PROV_TIMEOUT; 3314 rcb.ioasa = &asa; 3315 3316 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION; 3317 rcb.cdb[1] = type; 3318 rcb.cdb[2] = port; 3319 put_unaligned_be64(size, &rcb.cdb[8]); 3320 3321 rc = send_afu_cmd(afu, &rcb); 3322 if (rc) { 3323 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3324 __func__, rc, asa.ioasc, asa.afu_extra); 3325 goto out; 3326 } 3327 3328 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) { 3329 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo; 3330 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid)); 3331 } 3332 out: 3333 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3334 return rc; 3335 } 3336 3337 /** 3338 * cxlflash_afu_debug() - host AFU debug handler 3339 * @cfg: Internal structure associated with the host. 3340 * @arg: Kernel copy of userspace ioctl data structure. 3341 * 3342 * For debug requests requiring a data buffer, always provide an aligned 3343 * (cache line) buffer to the AFU to appease any alignment requirements. 3344 * 3345 * Return: 0 on success, -errno on failure 3346 */ 3347 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg, 3348 struct ht_cxlflash_afu_debug *afu_dbg) 3349 { 3350 struct afu *afu = cfg->afu; 3351 struct device *dev = &cfg->dev->dev; 3352 struct sisl_ioarcb rcb; 3353 struct sisl_ioasa asa; 3354 char *buf = NULL; 3355 char *kbuf = NULL; 3356 void __user *ubuf = (__force void __user *)afu_dbg->data_ea; 3357 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD; 3358 u32 ulen = afu_dbg->data_len; 3359 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE; 3360 int rc = 0; 3361 3362 if (!afu_is_afu_debug(afu)) { 3363 rc = -ENOTSUPP; 3364 goto out; 3365 } 3366 3367 if (ulen) { 3368 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN; 3369 3370 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) { 3371 rc = -EINVAL; 3372 goto out; 3373 } 3374 3375 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL); 3376 if (unlikely(!buf)) { 3377 rc = -ENOMEM; 3378 goto out; 3379 } 3380 3381 kbuf = PTR_ALIGN(buf, cache_line_size()); 3382 3383 if (is_write) { 3384 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 3385 3386 if (copy_from_user(kbuf, ubuf, ulen)) { 3387 rc = -EFAULT; 3388 goto out; 3389 } 3390 } 3391 } 3392 3393 memset(&rcb, 0, sizeof(rcb)); 3394 memset(&asa, 0, sizeof(asa)); 3395 3396 rcb.req_flags = req_flags; 3397 rcb.msi = SISL_MSI_RRQ_UPDATED; 3398 rcb.timeout = MC_AFU_DEBUG_TIMEOUT; 3399 rcb.ioasa = &asa; 3400 3401 if (ulen) { 3402 rcb.data_len = ulen; 3403 rcb.data_ea = (uintptr_t)kbuf; 3404 } 3405 3406 rcb.cdb[0] = SISL_AFU_CMD_DEBUG; 3407 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd, 3408 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN); 3409 3410 rc = send_afu_cmd(afu, &rcb); 3411 if (rc) { 3412 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3413 __func__, rc, asa.ioasc, asa.afu_extra); 3414 goto out; 3415 } 3416 3417 if (ulen && !is_write) { 3418 if (copy_to_user(ubuf, kbuf, ulen)) 3419 rc = -EFAULT; 3420 } 3421 out: 3422 kfree(buf); 3423 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3424 return rc; 3425 } 3426 3427 /** 3428 * cxlflash_chr_ioctl() - character device IOCTL handler 3429 * @file: File pointer for this device. 3430 * @cmd: IOCTL command. 3431 * @arg: Userspace ioctl data structure. 3432 * 3433 * A read/write semaphore is used to implement a 'drain' of currently 3434 * running ioctls. The read semaphore is taken at the beginning of each 3435 * ioctl thread and released upon concluding execution. Additionally the 3436 * semaphore should be released and then reacquired in any ioctl execution 3437 * path which will wait for an event to occur that is outside the scope of 3438 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running, 3439 * a thread simply needs to acquire the write semaphore. 3440 * 3441 * Return: 0 on success, -errno on failure 3442 */ 3443 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd, 3444 unsigned long arg) 3445 { 3446 typedef int (*hioctl) (struct cxlflash_cfg *, void *); 3447 3448 struct cxlflash_cfg *cfg = file->private_data; 3449 struct device *dev = &cfg->dev->dev; 3450 char buf[sizeof(union cxlflash_ht_ioctls)]; 3451 void __user *uarg = (void __user *)arg; 3452 struct ht_cxlflash_hdr *hdr; 3453 size_t size = 0; 3454 bool known_ioctl = false; 3455 int idx = 0; 3456 int rc = 0; 3457 hioctl do_ioctl = NULL; 3458 3459 static const struct { 3460 size_t size; 3461 hioctl ioctl; 3462 } ioctl_tbl[] = { /* NOTE: order matters here */ 3463 { sizeof(struct ht_cxlflash_lun_provision), 3464 (hioctl)cxlflash_lun_provision }, 3465 { sizeof(struct ht_cxlflash_afu_debug), 3466 (hioctl)cxlflash_afu_debug }, 3467 }; 3468 3469 /* Hold read semaphore so we can drain if needed */ 3470 down_read(&cfg->ioctl_rwsem); 3471 3472 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n", 3473 __func__, cmd, idx, sizeof(ioctl_tbl)); 3474 3475 switch (cmd) { 3476 case HT_CXLFLASH_LUN_PROVISION: 3477 case HT_CXLFLASH_AFU_DEBUG: 3478 known_ioctl = true; 3479 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd); 3480 size = ioctl_tbl[idx].size; 3481 do_ioctl = ioctl_tbl[idx].ioctl; 3482 3483 if (likely(do_ioctl)) 3484 break; 3485 3486 /* fall through */ 3487 default: 3488 rc = -EINVAL; 3489 goto out; 3490 } 3491 3492 if (unlikely(copy_from_user(&buf, uarg, size))) { 3493 dev_err(dev, "%s: copy_from_user() fail " 3494 "size=%lu cmd=%d (%s) uarg=%p\n", 3495 __func__, size, cmd, decode_hioctl(cmd), uarg); 3496 rc = -EFAULT; 3497 goto out; 3498 } 3499 3500 hdr = (struct ht_cxlflash_hdr *)&buf; 3501 if (hdr->version != HT_CXLFLASH_VERSION_0) { 3502 dev_dbg(dev, "%s: Version %u not supported for %s\n", 3503 __func__, hdr->version, decode_hioctl(cmd)); 3504 rc = -EINVAL; 3505 goto out; 3506 } 3507 3508 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) { 3509 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__); 3510 rc = -EINVAL; 3511 goto out; 3512 } 3513 3514 rc = do_ioctl(cfg, (void *)&buf); 3515 if (likely(!rc)) 3516 if (unlikely(copy_to_user(uarg, &buf, size))) { 3517 dev_err(dev, "%s: copy_to_user() fail " 3518 "size=%lu cmd=%d (%s) uarg=%p\n", 3519 __func__, size, cmd, decode_hioctl(cmd), uarg); 3520 rc = -EFAULT; 3521 } 3522 3523 /* fall through to exit */ 3524 3525 out: 3526 up_read(&cfg->ioctl_rwsem); 3527 if (unlikely(rc && known_ioctl)) 3528 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3529 __func__, decode_hioctl(cmd), cmd, rc); 3530 else 3531 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3532 __func__, decode_hioctl(cmd), cmd, rc); 3533 return rc; 3534 } 3535 3536 /* 3537 * Character device file operations 3538 */ 3539 static const struct file_operations cxlflash_chr_fops = { 3540 .owner = THIS_MODULE, 3541 .open = cxlflash_chr_open, 3542 .unlocked_ioctl = cxlflash_chr_ioctl, 3543 .compat_ioctl = cxlflash_chr_ioctl, 3544 }; 3545 3546 /** 3547 * init_chrdev() - initialize the character device for the host 3548 * @cfg: Internal structure associated with the host. 3549 * 3550 * Return: 0 on success, -errno on failure 3551 */ 3552 static int init_chrdev(struct cxlflash_cfg *cfg) 3553 { 3554 struct device *dev = &cfg->dev->dev; 3555 struct device *char_dev; 3556 dev_t devno; 3557 int minor; 3558 int rc = 0; 3559 3560 minor = cxlflash_get_minor(); 3561 if (unlikely(minor < 0)) { 3562 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__); 3563 rc = -ENOSPC; 3564 goto out; 3565 } 3566 3567 devno = MKDEV(cxlflash_major, minor); 3568 cdev_init(&cfg->cdev, &cxlflash_chr_fops); 3569 3570 rc = cdev_add(&cfg->cdev, devno, 1); 3571 if (rc) { 3572 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc); 3573 goto err1; 3574 } 3575 3576 char_dev = device_create(cxlflash_class, NULL, devno, 3577 NULL, "cxlflash%d", minor); 3578 if (IS_ERR(char_dev)) { 3579 rc = PTR_ERR(char_dev); 3580 dev_err(dev, "%s: device_create failed rc=%d\n", 3581 __func__, rc); 3582 goto err2; 3583 } 3584 3585 cfg->chardev = char_dev; 3586 out: 3587 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3588 return rc; 3589 err2: 3590 cdev_del(&cfg->cdev); 3591 err1: 3592 cxlflash_put_minor(minor); 3593 goto out; 3594 } 3595 3596 /** 3597 * cxlflash_probe() - PCI entry point to add host 3598 * @pdev: PCI device associated with the host. 3599 * @dev_id: PCI device id associated with device. 3600 * 3601 * The device will initially start out in a 'probing' state and 3602 * transition to the 'normal' state at the end of a successful 3603 * probe. Should an EEH event occur during probe, the notification 3604 * thread (error_detected()) will wait until the probe handler 3605 * is nearly complete. At that time, the device will be moved to 3606 * a 'probed' state and the EEH thread woken up to drive the slot 3607 * reset and recovery (device moves to 'normal' state). Meanwhile, 3608 * the probe will be allowed to exit successfully. 3609 * 3610 * Return: 0 on success, -errno on failure 3611 */ 3612 static int cxlflash_probe(struct pci_dev *pdev, 3613 const struct pci_device_id *dev_id) 3614 { 3615 struct Scsi_Host *host; 3616 struct cxlflash_cfg *cfg = NULL; 3617 struct device *dev = &pdev->dev; 3618 struct dev_dependent_vals *ddv; 3619 int rc = 0; 3620 int k; 3621 3622 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", 3623 __func__, pdev->irq); 3624 3625 ddv = (struct dev_dependent_vals *)dev_id->driver_data; 3626 driver_template.max_sectors = ddv->max_sectors; 3627 3628 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); 3629 if (!host) { 3630 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__); 3631 rc = -ENOMEM; 3632 goto out; 3633 } 3634 3635 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; 3636 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; 3637 host->unique_id = host->host_no; 3638 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; 3639 3640 cfg = shost_priv(host); 3641 cfg->host = host; 3642 rc = alloc_mem(cfg); 3643 if (rc) { 3644 dev_err(dev, "%s: alloc_mem failed\n", __func__); 3645 rc = -ENOMEM; 3646 scsi_host_put(cfg->host); 3647 goto out; 3648 } 3649 3650 cfg->init_state = INIT_STATE_NONE; 3651 cfg->dev = pdev; 3652 cfg->ops = &cxlflash_cxl_ops; 3653 cfg->cxl_fops = cxlflash_cxl_fops; 3654 3655 /* 3656 * Promoted LUNs move to the top of the LUN table. The rest stay on 3657 * the bottom half. The bottom half grows from the end (index = 255), 3658 * whereas the top half grows from the beginning (index = 0). 3659 * 3660 * Initialize the last LUN index for all possible ports. 3661 */ 3662 cfg->promote_lun_index = 0; 3663 3664 for (k = 0; k < MAX_FC_PORTS; k++) 3665 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1; 3666 3667 cfg->dev_id = (struct pci_device_id *)dev_id; 3668 3669 init_waitqueue_head(&cfg->tmf_waitq); 3670 init_waitqueue_head(&cfg->reset_waitq); 3671 3672 INIT_WORK(&cfg->work_q, cxlflash_worker_thread); 3673 cfg->lr_state = LINK_RESET_INVALID; 3674 cfg->lr_port = -1; 3675 spin_lock_init(&cfg->tmf_slock); 3676 mutex_init(&cfg->ctx_tbl_list_mutex); 3677 mutex_init(&cfg->ctx_recovery_mutex); 3678 init_rwsem(&cfg->ioctl_rwsem); 3679 INIT_LIST_HEAD(&cfg->ctx_err_recovery); 3680 INIT_LIST_HEAD(&cfg->lluns); 3681 3682 pci_set_drvdata(pdev, cfg); 3683 3684 cfg->afu_cookie = cfg->ops->create_afu(pdev); 3685 3686 rc = init_pci(cfg); 3687 if (rc) { 3688 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc); 3689 goto out_remove; 3690 } 3691 cfg->init_state = INIT_STATE_PCI; 3692 3693 rc = init_afu(cfg); 3694 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) { 3695 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc); 3696 goto out_remove; 3697 } 3698 cfg->init_state = INIT_STATE_AFU; 3699 3700 rc = init_scsi(cfg); 3701 if (rc) { 3702 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc); 3703 goto out_remove; 3704 } 3705 cfg->init_state = INIT_STATE_SCSI; 3706 3707 rc = init_chrdev(cfg); 3708 if (rc) { 3709 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc); 3710 goto out_remove; 3711 } 3712 cfg->init_state = INIT_STATE_CDEV; 3713 3714 if (wq_has_sleeper(&cfg->reset_waitq)) { 3715 cfg->state = STATE_PROBED; 3716 wake_up_all(&cfg->reset_waitq); 3717 } else 3718 cfg->state = STATE_NORMAL; 3719 out: 3720 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3721 return rc; 3722 3723 out_remove: 3724 cxlflash_remove(pdev); 3725 goto out; 3726 } 3727 3728 /** 3729 * cxlflash_pci_error_detected() - called when a PCI error is detected 3730 * @pdev: PCI device struct. 3731 * @state: PCI channel state. 3732 * 3733 * When an EEH occurs during an active reset, wait until the reset is 3734 * complete and then take action based upon the device state. 3735 * 3736 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT 3737 */ 3738 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, 3739 pci_channel_state_t state) 3740 { 3741 int rc = 0; 3742 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3743 struct device *dev = &cfg->dev->dev; 3744 3745 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); 3746 3747 switch (state) { 3748 case pci_channel_io_frozen: 3749 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 3750 cfg->state != STATE_PROBING); 3751 if (cfg->state == STATE_FAILTERM) 3752 return PCI_ERS_RESULT_DISCONNECT; 3753 3754 cfg->state = STATE_RESET; 3755 scsi_block_requests(cfg->host); 3756 drain_ioctls(cfg); 3757 rc = cxlflash_mark_contexts_error(cfg); 3758 if (unlikely(rc)) 3759 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n", 3760 __func__, rc); 3761 term_afu(cfg); 3762 return PCI_ERS_RESULT_NEED_RESET; 3763 case pci_channel_io_perm_failure: 3764 cfg->state = STATE_FAILTERM; 3765 wake_up_all(&cfg->reset_waitq); 3766 scsi_unblock_requests(cfg->host); 3767 return PCI_ERS_RESULT_DISCONNECT; 3768 default: 3769 break; 3770 } 3771 return PCI_ERS_RESULT_NEED_RESET; 3772 } 3773 3774 /** 3775 * cxlflash_pci_slot_reset() - called when PCI slot has been reset 3776 * @pdev: PCI device struct. 3777 * 3778 * This routine is called by the pci error recovery code after the PCI 3779 * slot has been reset, just before we should resume normal operations. 3780 * 3781 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT 3782 */ 3783 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) 3784 { 3785 int rc = 0; 3786 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3787 struct device *dev = &cfg->dev->dev; 3788 3789 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3790 3791 rc = init_afu(cfg); 3792 if (unlikely(rc)) { 3793 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc); 3794 return PCI_ERS_RESULT_DISCONNECT; 3795 } 3796 3797 return PCI_ERS_RESULT_RECOVERED; 3798 } 3799 3800 /** 3801 * cxlflash_pci_resume() - called when normal operation can resume 3802 * @pdev: PCI device struct 3803 */ 3804 static void cxlflash_pci_resume(struct pci_dev *pdev) 3805 { 3806 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3807 struct device *dev = &cfg->dev->dev; 3808 3809 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3810 3811 cfg->state = STATE_NORMAL; 3812 wake_up_all(&cfg->reset_waitq); 3813 scsi_unblock_requests(cfg->host); 3814 } 3815 3816 /** 3817 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class 3818 * @dev: Character device. 3819 * @mode: Mode that can be used to verify access. 3820 * 3821 * Return: Allocated string describing the devtmpfs structure. 3822 */ 3823 static char *cxlflash_devnode(struct device *dev, umode_t *mode) 3824 { 3825 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev)); 3826 } 3827 3828 /** 3829 * cxlflash_class_init() - create character device class 3830 * 3831 * Return: 0 on success, -errno on failure 3832 */ 3833 static int cxlflash_class_init(void) 3834 { 3835 dev_t devno; 3836 int rc = 0; 3837 3838 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash"); 3839 if (unlikely(rc)) { 3840 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc); 3841 goto out; 3842 } 3843 3844 cxlflash_major = MAJOR(devno); 3845 3846 cxlflash_class = class_create(THIS_MODULE, "cxlflash"); 3847 if (IS_ERR(cxlflash_class)) { 3848 rc = PTR_ERR(cxlflash_class); 3849 pr_err("%s: class_create failed rc=%d\n", __func__, rc); 3850 goto err; 3851 } 3852 3853 cxlflash_class->devnode = cxlflash_devnode; 3854 out: 3855 pr_debug("%s: returning rc=%d\n", __func__, rc); 3856 return rc; 3857 err: 3858 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3859 goto out; 3860 } 3861 3862 /** 3863 * cxlflash_class_exit() - destroy character device class 3864 */ 3865 static void cxlflash_class_exit(void) 3866 { 3867 dev_t devno = MKDEV(cxlflash_major, 0); 3868 3869 class_destroy(cxlflash_class); 3870 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3871 } 3872 3873 static const struct pci_error_handlers cxlflash_err_handler = { 3874 .error_detected = cxlflash_pci_error_detected, 3875 .slot_reset = cxlflash_pci_slot_reset, 3876 .resume = cxlflash_pci_resume, 3877 }; 3878 3879 /* 3880 * PCI device structure 3881 */ 3882 static struct pci_driver cxlflash_driver = { 3883 .name = CXLFLASH_NAME, 3884 .id_table = cxlflash_pci_table, 3885 .probe = cxlflash_probe, 3886 .remove = cxlflash_remove, 3887 .shutdown = cxlflash_remove, 3888 .err_handler = &cxlflash_err_handler, 3889 }; 3890 3891 /** 3892 * init_cxlflash() - module entry point 3893 * 3894 * Return: 0 on success, -errno on failure 3895 */ 3896 static int __init init_cxlflash(void) 3897 { 3898 int rc; 3899 3900 check_sizes(); 3901 cxlflash_list_init(); 3902 rc = cxlflash_class_init(); 3903 if (unlikely(rc)) 3904 goto out; 3905 3906 rc = pci_register_driver(&cxlflash_driver); 3907 if (unlikely(rc)) 3908 goto err; 3909 out: 3910 pr_debug("%s: returning rc=%d\n", __func__, rc); 3911 return rc; 3912 err: 3913 cxlflash_class_exit(); 3914 goto out; 3915 } 3916 3917 /** 3918 * exit_cxlflash() - module exit point 3919 */ 3920 static void __exit exit_cxlflash(void) 3921 { 3922 cxlflash_term_global_luns(); 3923 cxlflash_free_errpage(); 3924 3925 pci_unregister_driver(&cxlflash_driver); 3926 cxlflash_class_exit(); 3927 } 3928 3929 module_init(init_cxlflash); 3930 module_exit(exit_cxlflash); 3931