xref: /openbmc/linux/drivers/scsi/cxlflash/main.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * CXL Flash Device Driver
4  *
5  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
6  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
7  *
8  * Copyright (C) 2015 IBM Corporation
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 
16 #include <asm/unaligned.h>
17 
18 #include <scsi/scsi_cmnd.h>
19 #include <scsi/scsi_host.h>
20 #include <uapi/scsi/cxlflash_ioctl.h>
21 
22 #include "main.h"
23 #include "sislite.h"
24 #include "common.h"
25 
26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
29 MODULE_LICENSE("GPL");
30 
31 static struct class *cxlflash_class;
32 static u32 cxlflash_major;
33 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
34 
35 /**
36  * process_cmd_err() - command error handler
37  * @cmd:	AFU command that experienced the error.
38  * @scp:	SCSI command associated with the AFU command in error.
39  *
40  * Translates error bits from AFU command to SCSI command results.
41  */
42 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
43 {
44 	struct afu *afu = cmd->parent;
45 	struct cxlflash_cfg *cfg = afu->parent;
46 	struct device *dev = &cfg->dev->dev;
47 	struct sisl_ioasa *ioasa;
48 	u32 resid;
49 
50 	if (unlikely(!cmd))
51 		return;
52 
53 	ioasa = &(cmd->sa);
54 
55 	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
56 		resid = ioasa->resid;
57 		scsi_set_resid(scp, resid);
58 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
59 			__func__, cmd, scp, resid);
60 	}
61 
62 	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
63 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
64 			__func__, cmd, scp);
65 		scp->result = (DID_ERROR << 16);
66 	}
67 
68 	dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
69 		"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
70 		ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
71 		ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
72 
73 	if (ioasa->rc.scsi_rc) {
74 		/* We have a SCSI status */
75 		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
76 			memcpy(scp->sense_buffer, ioasa->sense_data,
77 			       SISL_SENSE_DATA_LEN);
78 			scp->result = ioasa->rc.scsi_rc;
79 		} else
80 			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
81 	}
82 
83 	/*
84 	 * We encountered an error. Set scp->result based on nature
85 	 * of error.
86 	 */
87 	if (ioasa->rc.fc_rc) {
88 		/* We have an FC status */
89 		switch (ioasa->rc.fc_rc) {
90 		case SISL_FC_RC_LINKDOWN:
91 			scp->result = (DID_REQUEUE << 16);
92 			break;
93 		case SISL_FC_RC_RESID:
94 			/* This indicates an FCP resid underrun */
95 			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
96 				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
97 				 * then we will handle this error else where.
98 				 * If not then we must handle it here.
99 				 * This is probably an AFU bug.
100 				 */
101 				scp->result = (DID_ERROR << 16);
102 			}
103 			break;
104 		case SISL_FC_RC_RESIDERR:
105 			/* Resid mismatch between adapter and device */
106 		case SISL_FC_RC_TGTABORT:
107 		case SISL_FC_RC_ABORTOK:
108 		case SISL_FC_RC_ABORTFAIL:
109 		case SISL_FC_RC_NOLOGI:
110 		case SISL_FC_RC_ABORTPEND:
111 		case SISL_FC_RC_WRABORTPEND:
112 		case SISL_FC_RC_NOEXP:
113 		case SISL_FC_RC_INUSE:
114 			scp->result = (DID_ERROR << 16);
115 			break;
116 		}
117 	}
118 
119 	if (ioasa->rc.afu_rc) {
120 		/* We have an AFU error */
121 		switch (ioasa->rc.afu_rc) {
122 		case SISL_AFU_RC_NO_CHANNELS:
123 			scp->result = (DID_NO_CONNECT << 16);
124 			break;
125 		case SISL_AFU_RC_DATA_DMA_ERR:
126 			switch (ioasa->afu_extra) {
127 			case SISL_AFU_DMA_ERR_PAGE_IN:
128 				/* Retry */
129 				scp->result = (DID_IMM_RETRY << 16);
130 				break;
131 			case SISL_AFU_DMA_ERR_INVALID_EA:
132 			default:
133 				scp->result = (DID_ERROR << 16);
134 			}
135 			break;
136 		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
137 			/* Retry */
138 			scp->result = (DID_ALLOC_FAILURE << 16);
139 			break;
140 		default:
141 			scp->result = (DID_ERROR << 16);
142 		}
143 	}
144 }
145 
146 /**
147  * cmd_complete() - command completion handler
148  * @cmd:	AFU command that has completed.
149  *
150  * For SCSI commands this routine prepares and submits commands that have
151  * either completed or timed out to the SCSI stack. For internal commands
152  * (TMF or AFU), this routine simply notifies the originator that the
153  * command has completed.
154  */
155 static void cmd_complete(struct afu_cmd *cmd)
156 {
157 	struct scsi_cmnd *scp;
158 	ulong lock_flags;
159 	struct afu *afu = cmd->parent;
160 	struct cxlflash_cfg *cfg = afu->parent;
161 	struct device *dev = &cfg->dev->dev;
162 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
163 
164 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
165 	list_del(&cmd->list);
166 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
167 
168 	if (cmd->scp) {
169 		scp = cmd->scp;
170 		if (unlikely(cmd->sa.ioasc))
171 			process_cmd_err(cmd, scp);
172 		else
173 			scp->result = (DID_OK << 16);
174 
175 		dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
176 				    __func__, scp, scp->result, cmd->sa.ioasc);
177 		scp->scsi_done(scp);
178 	} else if (cmd->cmd_tmf) {
179 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
180 		cfg->tmf_active = false;
181 		wake_up_all_locked(&cfg->tmf_waitq);
182 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
183 	} else
184 		complete(&cmd->cevent);
185 }
186 
187 /**
188  * flush_pending_cmds() - flush all pending commands on this hardware queue
189  * @hwq:	Hardware queue to flush.
190  *
191  * The hardware send queue lock associated with this hardware queue must be
192  * held when calling this routine.
193  */
194 static void flush_pending_cmds(struct hwq *hwq)
195 {
196 	struct cxlflash_cfg *cfg = hwq->afu->parent;
197 	struct afu_cmd *cmd, *tmp;
198 	struct scsi_cmnd *scp;
199 	ulong lock_flags;
200 
201 	list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
202 		/* Bypass command when on a doneq, cmd_complete() will handle */
203 		if (!list_empty(&cmd->queue))
204 			continue;
205 
206 		list_del(&cmd->list);
207 
208 		if (cmd->scp) {
209 			scp = cmd->scp;
210 			scp->result = (DID_IMM_RETRY << 16);
211 			scp->scsi_done(scp);
212 		} else {
213 			cmd->cmd_aborted = true;
214 
215 			if (cmd->cmd_tmf) {
216 				spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
217 				cfg->tmf_active = false;
218 				wake_up_all_locked(&cfg->tmf_waitq);
219 				spin_unlock_irqrestore(&cfg->tmf_slock,
220 						       lock_flags);
221 			} else
222 				complete(&cmd->cevent);
223 		}
224 	}
225 }
226 
227 /**
228  * context_reset() - reset context via specified register
229  * @hwq:	Hardware queue owning the context to be reset.
230  * @reset_reg:	MMIO register to perform reset.
231  *
232  * When the reset is successful, the SISLite specification guarantees that
233  * the AFU has aborted all currently pending I/O. Accordingly, these commands
234  * must be flushed.
235  *
236  * Return: 0 on success, -errno on failure
237  */
238 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
239 {
240 	struct cxlflash_cfg *cfg = hwq->afu->parent;
241 	struct device *dev = &cfg->dev->dev;
242 	int rc = -ETIMEDOUT;
243 	int nretry = 0;
244 	u64 val = 0x1;
245 	ulong lock_flags;
246 
247 	dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
248 
249 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
250 
251 	writeq_be(val, reset_reg);
252 	do {
253 		val = readq_be(reset_reg);
254 		if ((val & 0x1) == 0x0) {
255 			rc = 0;
256 			break;
257 		}
258 
259 		/* Double delay each time */
260 		udelay(1 << nretry);
261 	} while (nretry++ < MC_ROOM_RETRY_CNT);
262 
263 	if (!rc)
264 		flush_pending_cmds(hwq);
265 
266 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
267 
268 	dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
269 		__func__, rc, val, nretry);
270 	return rc;
271 }
272 
273 /**
274  * context_reset_ioarrin() - reset context via IOARRIN register
275  * @hwq:	Hardware queue owning the context to be reset.
276  *
277  * Return: 0 on success, -errno on failure
278  */
279 static int context_reset_ioarrin(struct hwq *hwq)
280 {
281 	return context_reset(hwq, &hwq->host_map->ioarrin);
282 }
283 
284 /**
285  * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
286  * @hwq:	Hardware queue owning the context to be reset.
287  *
288  * Return: 0 on success, -errno on failure
289  */
290 static int context_reset_sq(struct hwq *hwq)
291 {
292 	return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
293 }
294 
295 /**
296  * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
297  * @afu:	AFU associated with the host.
298  * @cmd:	AFU command to send.
299  *
300  * Return:
301  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
302  */
303 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
304 {
305 	struct cxlflash_cfg *cfg = afu->parent;
306 	struct device *dev = &cfg->dev->dev;
307 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
308 	int rc = 0;
309 	s64 room;
310 	ulong lock_flags;
311 
312 	/*
313 	 * To avoid the performance penalty of MMIO, spread the update of
314 	 * 'room' over multiple commands.
315 	 */
316 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
317 	if (--hwq->room < 0) {
318 		room = readq_be(&hwq->host_map->cmd_room);
319 		if (room <= 0) {
320 			dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
321 					    "0x%02X, room=0x%016llX\n",
322 					    __func__, cmd->rcb.cdb[0], room);
323 			hwq->room = 0;
324 			rc = SCSI_MLQUEUE_HOST_BUSY;
325 			goto out;
326 		}
327 		hwq->room = room - 1;
328 	}
329 
330 	list_add(&cmd->list, &hwq->pending_cmds);
331 	writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
332 out:
333 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
334 	dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
335 		__func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
336 	return rc;
337 }
338 
339 /**
340  * send_cmd_sq() - sends an AFU command via SQ ring
341  * @afu:	AFU associated with the host.
342  * @cmd:	AFU command to send.
343  *
344  * Return:
345  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
346  */
347 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
348 {
349 	struct cxlflash_cfg *cfg = afu->parent;
350 	struct device *dev = &cfg->dev->dev;
351 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
352 	int rc = 0;
353 	int newval;
354 	ulong lock_flags;
355 
356 	newval = atomic_dec_if_positive(&hwq->hsq_credits);
357 	if (newval <= 0) {
358 		rc = SCSI_MLQUEUE_HOST_BUSY;
359 		goto out;
360 	}
361 
362 	cmd->rcb.ioasa = &cmd->sa;
363 
364 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
365 
366 	*hwq->hsq_curr = cmd->rcb;
367 	if (hwq->hsq_curr < hwq->hsq_end)
368 		hwq->hsq_curr++;
369 	else
370 		hwq->hsq_curr = hwq->hsq_start;
371 
372 	list_add(&cmd->list, &hwq->pending_cmds);
373 	writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
374 
375 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
376 out:
377 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
378 	       "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
379 	       cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
380 	       readq_be(&hwq->host_map->sq_head),
381 	       readq_be(&hwq->host_map->sq_tail));
382 	return rc;
383 }
384 
385 /**
386  * wait_resp() - polls for a response or timeout to a sent AFU command
387  * @afu:	AFU associated with the host.
388  * @cmd:	AFU command that was sent.
389  *
390  * Return: 0 on success, -errno on failure
391  */
392 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
393 {
394 	struct cxlflash_cfg *cfg = afu->parent;
395 	struct device *dev = &cfg->dev->dev;
396 	int rc = 0;
397 	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
398 
399 	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
400 	if (!timeout)
401 		rc = -ETIMEDOUT;
402 
403 	if (cmd->cmd_aborted)
404 		rc = -EAGAIN;
405 
406 	if (unlikely(cmd->sa.ioasc != 0)) {
407 		dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
408 			__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
409 		rc = -EIO;
410 	}
411 
412 	return rc;
413 }
414 
415 /**
416  * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
417  * @host:	SCSI host associated with device.
418  * @scp:	SCSI command to send.
419  * @afu:	SCSI command to send.
420  *
421  * Hashes a command based upon the hardware queue mode.
422  *
423  * Return: Trusted index of target hardware queue
424  */
425 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
426 			     struct afu *afu)
427 {
428 	u32 tag;
429 	u32 hwq = 0;
430 
431 	if (afu->num_hwqs == 1)
432 		return 0;
433 
434 	switch (afu->hwq_mode) {
435 	case HWQ_MODE_RR:
436 		hwq = afu->hwq_rr_count++ % afu->num_hwqs;
437 		break;
438 	case HWQ_MODE_TAG:
439 		tag = blk_mq_unique_tag(scp->request);
440 		hwq = blk_mq_unique_tag_to_hwq(tag);
441 		break;
442 	case HWQ_MODE_CPU:
443 		hwq = smp_processor_id() % afu->num_hwqs;
444 		break;
445 	default:
446 		WARN_ON_ONCE(1);
447 	}
448 
449 	return hwq;
450 }
451 
452 /**
453  * send_tmf() - sends a Task Management Function (TMF)
454  * @cfg:	Internal structure associated with the host.
455  * @sdev:	SCSI device destined for TMF.
456  * @tmfcmd:	TMF command to send.
457  *
458  * Return:
459  *	0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
460  */
461 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
462 		    u64 tmfcmd)
463 {
464 	struct afu *afu = cfg->afu;
465 	struct afu_cmd *cmd = NULL;
466 	struct device *dev = &cfg->dev->dev;
467 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
468 	bool needs_deletion = false;
469 	char *buf = NULL;
470 	ulong lock_flags;
471 	int rc = 0;
472 	ulong to;
473 
474 	buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
475 	if (unlikely(!buf)) {
476 		dev_err(dev, "%s: no memory for command\n", __func__);
477 		rc = -ENOMEM;
478 		goto out;
479 	}
480 
481 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
482 	INIT_LIST_HEAD(&cmd->queue);
483 
484 	/* When Task Management Function is active do not send another */
485 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
486 	if (cfg->tmf_active)
487 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
488 						  !cfg->tmf_active,
489 						  cfg->tmf_slock);
490 	cfg->tmf_active = true;
491 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
492 
493 	cmd->parent = afu;
494 	cmd->cmd_tmf = true;
495 	cmd->hwq_index = hwq->index;
496 
497 	cmd->rcb.ctx_id = hwq->ctx_hndl;
498 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
499 	cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
500 	cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
501 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
502 			      SISL_REQ_FLAGS_SUP_UNDERRUN |
503 			      SISL_REQ_FLAGS_TMF_CMD);
504 	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
505 
506 	rc = afu->send_cmd(afu, cmd);
507 	if (unlikely(rc)) {
508 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
509 		cfg->tmf_active = false;
510 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
511 		goto out;
512 	}
513 
514 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
515 	to = msecs_to_jiffies(5000);
516 	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
517 						       !cfg->tmf_active,
518 						       cfg->tmf_slock,
519 						       to);
520 	if (!to) {
521 		dev_err(dev, "%s: TMF timed out\n", __func__);
522 		rc = -ETIMEDOUT;
523 		needs_deletion = true;
524 	} else if (cmd->cmd_aborted) {
525 		dev_err(dev, "%s: TMF aborted\n", __func__);
526 		rc = -EAGAIN;
527 	} else if (cmd->sa.ioasc) {
528 		dev_err(dev, "%s: TMF failed ioasc=%08x\n",
529 			__func__, cmd->sa.ioasc);
530 		rc = -EIO;
531 	}
532 	cfg->tmf_active = false;
533 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
534 
535 	if (needs_deletion) {
536 		spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
537 		list_del(&cmd->list);
538 		spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
539 	}
540 out:
541 	kfree(buf);
542 	return rc;
543 }
544 
545 /**
546  * cxlflash_driver_info() - information handler for this host driver
547  * @host:	SCSI host associated with device.
548  *
549  * Return: A string describing the device.
550  */
551 static const char *cxlflash_driver_info(struct Scsi_Host *host)
552 {
553 	return CXLFLASH_ADAPTER_NAME;
554 }
555 
556 /**
557  * cxlflash_queuecommand() - sends a mid-layer request
558  * @host:	SCSI host associated with device.
559  * @scp:	SCSI command to send.
560  *
561  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
562  */
563 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
564 {
565 	struct cxlflash_cfg *cfg = shost_priv(host);
566 	struct afu *afu = cfg->afu;
567 	struct device *dev = &cfg->dev->dev;
568 	struct afu_cmd *cmd = sc_to_afuci(scp);
569 	struct scatterlist *sg = scsi_sglist(scp);
570 	int hwq_index = cmd_to_target_hwq(host, scp, afu);
571 	struct hwq *hwq = get_hwq(afu, hwq_index);
572 	u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
573 	ulong lock_flags;
574 	int rc = 0;
575 
576 	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
577 			    "cdb=(%08x-%08x-%08x-%08x)\n",
578 			    __func__, scp, host->host_no, scp->device->channel,
579 			    scp->device->id, scp->device->lun,
580 			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
581 			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
582 			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
583 			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
584 
585 	/*
586 	 * If a Task Management Function is active, wait for it to complete
587 	 * before continuing with regular commands.
588 	 */
589 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
590 	if (cfg->tmf_active) {
591 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
592 		rc = SCSI_MLQUEUE_HOST_BUSY;
593 		goto out;
594 	}
595 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
596 
597 	switch (cfg->state) {
598 	case STATE_PROBING:
599 	case STATE_PROBED:
600 	case STATE_RESET:
601 		dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
602 		rc = SCSI_MLQUEUE_HOST_BUSY;
603 		goto out;
604 	case STATE_FAILTERM:
605 		dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
606 		scp->result = (DID_NO_CONNECT << 16);
607 		scp->scsi_done(scp);
608 		rc = 0;
609 		goto out;
610 	default:
611 		atomic_inc(&afu->cmds_active);
612 		break;
613 	}
614 
615 	if (likely(sg)) {
616 		cmd->rcb.data_len = sg->length;
617 		cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
618 	}
619 
620 	cmd->scp = scp;
621 	cmd->parent = afu;
622 	cmd->hwq_index = hwq_index;
623 
624 	cmd->sa.ioasc = 0;
625 	cmd->rcb.ctx_id = hwq->ctx_hndl;
626 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
627 	cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
628 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
629 
630 	if (scp->sc_data_direction == DMA_TO_DEVICE)
631 		req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
632 
633 	cmd->rcb.req_flags = req_flags;
634 	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
635 
636 	rc = afu->send_cmd(afu, cmd);
637 	atomic_dec(&afu->cmds_active);
638 out:
639 	return rc;
640 }
641 
642 /**
643  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
644  * @cfg:	Internal structure associated with the host.
645  */
646 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
647 {
648 	struct pci_dev *pdev = cfg->dev;
649 
650 	if (pci_channel_offline(pdev))
651 		wait_event_timeout(cfg->reset_waitq,
652 				   !pci_channel_offline(pdev),
653 				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
654 }
655 
656 /**
657  * free_mem() - free memory associated with the AFU
658  * @cfg:	Internal structure associated with the host.
659  */
660 static void free_mem(struct cxlflash_cfg *cfg)
661 {
662 	struct afu *afu = cfg->afu;
663 
664 	if (cfg->afu) {
665 		free_pages((ulong)afu, get_order(sizeof(struct afu)));
666 		cfg->afu = NULL;
667 	}
668 }
669 
670 /**
671  * cxlflash_reset_sync() - synchronizing point for asynchronous resets
672  * @cfg:	Internal structure associated with the host.
673  */
674 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
675 {
676 	if (cfg->async_reset_cookie == 0)
677 		return;
678 
679 	/* Wait until all async calls prior to this cookie have completed */
680 	async_synchronize_cookie(cfg->async_reset_cookie + 1);
681 	cfg->async_reset_cookie = 0;
682 }
683 
684 /**
685  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
686  * @cfg:	Internal structure associated with the host.
687  *
688  * Safe to call with AFU in a partially allocated/initialized state.
689  *
690  * Cancels scheduled worker threads, waits for any active internal AFU
691  * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
692  */
693 static void stop_afu(struct cxlflash_cfg *cfg)
694 {
695 	struct afu *afu = cfg->afu;
696 	struct hwq *hwq;
697 	int i;
698 
699 	cancel_work_sync(&cfg->work_q);
700 	if (!current_is_async())
701 		cxlflash_reset_sync(cfg);
702 
703 	if (likely(afu)) {
704 		while (atomic_read(&afu->cmds_active))
705 			ssleep(1);
706 
707 		if (afu_is_irqpoll_enabled(afu)) {
708 			for (i = 0; i < afu->num_hwqs; i++) {
709 				hwq = get_hwq(afu, i);
710 
711 				irq_poll_disable(&hwq->irqpoll);
712 			}
713 		}
714 
715 		if (likely(afu->afu_map)) {
716 			cfg->ops->psa_unmap(afu->afu_map);
717 			afu->afu_map = NULL;
718 		}
719 	}
720 }
721 
722 /**
723  * term_intr() - disables all AFU interrupts
724  * @cfg:	Internal structure associated with the host.
725  * @level:	Depth of allocation, where to begin waterfall tear down.
726  * @index:	Index of the hardware queue.
727  *
728  * Safe to call with AFU/MC in partially allocated/initialized state.
729  */
730 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
731 		      u32 index)
732 {
733 	struct afu *afu = cfg->afu;
734 	struct device *dev = &cfg->dev->dev;
735 	struct hwq *hwq;
736 
737 	if (!afu) {
738 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
739 		return;
740 	}
741 
742 	hwq = get_hwq(afu, index);
743 
744 	if (!hwq->ctx_cookie) {
745 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
746 		return;
747 	}
748 
749 	switch (level) {
750 	case UNMAP_THREE:
751 		/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
752 		if (index == PRIMARY_HWQ)
753 			cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
754 		/* fall through */
755 	case UNMAP_TWO:
756 		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
757 		/* fall through */
758 	case UNMAP_ONE:
759 		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
760 		/* fall through */
761 	case FREE_IRQ:
762 		cfg->ops->free_afu_irqs(hwq->ctx_cookie);
763 		/* fall through */
764 	case UNDO_NOOP:
765 		/* No action required */
766 		break;
767 	}
768 }
769 
770 /**
771  * term_mc() - terminates the master context
772  * @cfg:	Internal structure associated with the host.
773  * @index:	Index of the hardware queue.
774  *
775  * Safe to call with AFU/MC in partially allocated/initialized state.
776  */
777 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
778 {
779 	struct afu *afu = cfg->afu;
780 	struct device *dev = &cfg->dev->dev;
781 	struct hwq *hwq;
782 	ulong lock_flags;
783 
784 	if (!afu) {
785 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
786 		return;
787 	}
788 
789 	hwq = get_hwq(afu, index);
790 
791 	if (!hwq->ctx_cookie) {
792 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
793 		return;
794 	}
795 
796 	WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
797 	if (index != PRIMARY_HWQ)
798 		WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
799 	hwq->ctx_cookie = NULL;
800 
801 	spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
802 	hwq->hrrq_online = false;
803 	spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
804 
805 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
806 	flush_pending_cmds(hwq);
807 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
808 }
809 
810 /**
811  * term_afu() - terminates the AFU
812  * @cfg:	Internal structure associated with the host.
813  *
814  * Safe to call with AFU/MC in partially allocated/initialized state.
815  */
816 static void term_afu(struct cxlflash_cfg *cfg)
817 {
818 	struct device *dev = &cfg->dev->dev;
819 	int k;
820 
821 	/*
822 	 * Tear down is carefully orchestrated to ensure
823 	 * no interrupts can come in when the problem state
824 	 * area is unmapped.
825 	 *
826 	 * 1) Disable all AFU interrupts for each master
827 	 * 2) Unmap the problem state area
828 	 * 3) Stop each master context
829 	 */
830 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
831 		term_intr(cfg, UNMAP_THREE, k);
832 
833 	stop_afu(cfg);
834 
835 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
836 		term_mc(cfg, k);
837 
838 	dev_dbg(dev, "%s: returning\n", __func__);
839 }
840 
841 /**
842  * notify_shutdown() - notifies device of pending shutdown
843  * @cfg:	Internal structure associated with the host.
844  * @wait:	Whether to wait for shutdown processing to complete.
845  *
846  * This function will notify the AFU that the adapter is being shutdown
847  * and will wait for shutdown processing to complete if wait is true.
848  * This notification should flush pending I/Os to the device and halt
849  * further I/Os until the next AFU reset is issued and device restarted.
850  */
851 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
852 {
853 	struct afu *afu = cfg->afu;
854 	struct device *dev = &cfg->dev->dev;
855 	struct dev_dependent_vals *ddv;
856 	__be64 __iomem *fc_port_regs;
857 	u64 reg, status;
858 	int i, retry_cnt = 0;
859 
860 	ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
861 	if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
862 		return;
863 
864 	if (!afu || !afu->afu_map) {
865 		dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
866 		return;
867 	}
868 
869 	/* Notify AFU */
870 	for (i = 0; i < cfg->num_fc_ports; i++) {
871 		fc_port_regs = get_fc_port_regs(cfg, i);
872 
873 		reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
874 		reg |= SISL_FC_SHUTDOWN_NORMAL;
875 		writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
876 	}
877 
878 	if (!wait)
879 		return;
880 
881 	/* Wait up to 1.5 seconds for shutdown processing to complete */
882 	for (i = 0; i < cfg->num_fc_ports; i++) {
883 		fc_port_regs = get_fc_port_regs(cfg, i);
884 		retry_cnt = 0;
885 
886 		while (true) {
887 			status = readq_be(&fc_port_regs[FC_STATUS / 8]);
888 			if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
889 				break;
890 			if (++retry_cnt >= MC_RETRY_CNT) {
891 				dev_dbg(dev, "%s: port %d shutdown processing "
892 					"not yet completed\n", __func__, i);
893 				break;
894 			}
895 			msleep(100 * retry_cnt);
896 		}
897 	}
898 }
899 
900 /**
901  * cxlflash_get_minor() - gets the first available minor number
902  *
903  * Return: Unique minor number that can be used to create the character device.
904  */
905 static int cxlflash_get_minor(void)
906 {
907 	int minor;
908 	long bit;
909 
910 	bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
911 	if (bit >= CXLFLASH_MAX_ADAPTERS)
912 		return -1;
913 
914 	minor = bit & MINORMASK;
915 	set_bit(minor, cxlflash_minor);
916 	return minor;
917 }
918 
919 /**
920  * cxlflash_put_minor() - releases the minor number
921  * @minor:	Minor number that is no longer needed.
922  */
923 static void cxlflash_put_minor(int minor)
924 {
925 	clear_bit(minor, cxlflash_minor);
926 }
927 
928 /**
929  * cxlflash_release_chrdev() - release the character device for the host
930  * @cfg:	Internal structure associated with the host.
931  */
932 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
933 {
934 	device_unregister(cfg->chardev);
935 	cfg->chardev = NULL;
936 	cdev_del(&cfg->cdev);
937 	cxlflash_put_minor(MINOR(cfg->cdev.dev));
938 }
939 
940 /**
941  * cxlflash_remove() - PCI entry point to tear down host
942  * @pdev:	PCI device associated with the host.
943  *
944  * Safe to use as a cleanup in partially allocated/initialized state. Note that
945  * the reset_waitq is flushed as part of the stop/termination of user contexts.
946  */
947 static void cxlflash_remove(struct pci_dev *pdev)
948 {
949 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
950 	struct device *dev = &pdev->dev;
951 	ulong lock_flags;
952 
953 	if (!pci_is_enabled(pdev)) {
954 		dev_dbg(dev, "%s: Device is disabled\n", __func__);
955 		return;
956 	}
957 
958 	/* Yield to running recovery threads before continuing with remove */
959 	wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
960 				     cfg->state != STATE_PROBING);
961 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
962 	if (cfg->tmf_active)
963 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
964 						  !cfg->tmf_active,
965 						  cfg->tmf_slock);
966 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
967 
968 	/* Notify AFU and wait for shutdown processing to complete */
969 	notify_shutdown(cfg, true);
970 
971 	cfg->state = STATE_FAILTERM;
972 	cxlflash_stop_term_user_contexts(cfg);
973 
974 	switch (cfg->init_state) {
975 	case INIT_STATE_CDEV:
976 		cxlflash_release_chrdev(cfg);
977 		/* fall through */
978 	case INIT_STATE_SCSI:
979 		cxlflash_term_local_luns(cfg);
980 		scsi_remove_host(cfg->host);
981 		/* fall through */
982 	case INIT_STATE_AFU:
983 		term_afu(cfg);
984 		/* fall through */
985 	case INIT_STATE_PCI:
986 		cfg->ops->destroy_afu(cfg->afu_cookie);
987 		pci_disable_device(pdev);
988 		/* fall through */
989 	case INIT_STATE_NONE:
990 		free_mem(cfg);
991 		scsi_host_put(cfg->host);
992 		break;
993 	}
994 
995 	dev_dbg(dev, "%s: returning\n", __func__);
996 }
997 
998 /**
999  * alloc_mem() - allocates the AFU and its command pool
1000  * @cfg:	Internal structure associated with the host.
1001  *
1002  * A partially allocated state remains on failure.
1003  *
1004  * Return:
1005  *	0 on success
1006  *	-ENOMEM on failure to allocate memory
1007  */
1008 static int alloc_mem(struct cxlflash_cfg *cfg)
1009 {
1010 	int rc = 0;
1011 	struct device *dev = &cfg->dev->dev;
1012 
1013 	/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1014 	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1015 					    get_order(sizeof(struct afu)));
1016 	if (unlikely(!cfg->afu)) {
1017 		dev_err(dev, "%s: cannot get %d free pages\n",
1018 			__func__, get_order(sizeof(struct afu)));
1019 		rc = -ENOMEM;
1020 		goto out;
1021 	}
1022 	cfg->afu->parent = cfg;
1023 	cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1024 	cfg->afu->afu_map = NULL;
1025 out:
1026 	return rc;
1027 }
1028 
1029 /**
1030  * init_pci() - initializes the host as a PCI device
1031  * @cfg:	Internal structure associated with the host.
1032  *
1033  * Return: 0 on success, -errno on failure
1034  */
1035 static int init_pci(struct cxlflash_cfg *cfg)
1036 {
1037 	struct pci_dev *pdev = cfg->dev;
1038 	struct device *dev = &cfg->dev->dev;
1039 	int rc = 0;
1040 
1041 	rc = pci_enable_device(pdev);
1042 	if (rc || pci_channel_offline(pdev)) {
1043 		if (pci_channel_offline(pdev)) {
1044 			cxlflash_wait_for_pci_err_recovery(cfg);
1045 			rc = pci_enable_device(pdev);
1046 		}
1047 
1048 		if (rc) {
1049 			dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1050 			cxlflash_wait_for_pci_err_recovery(cfg);
1051 			goto out;
1052 		}
1053 	}
1054 
1055 out:
1056 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1057 	return rc;
1058 }
1059 
1060 /**
1061  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1062  * @cfg:	Internal structure associated with the host.
1063  *
1064  * Return: 0 on success, -errno on failure
1065  */
1066 static int init_scsi(struct cxlflash_cfg *cfg)
1067 {
1068 	struct pci_dev *pdev = cfg->dev;
1069 	struct device *dev = &cfg->dev->dev;
1070 	int rc = 0;
1071 
1072 	rc = scsi_add_host(cfg->host, &pdev->dev);
1073 	if (rc) {
1074 		dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1075 		goto out;
1076 	}
1077 
1078 	scsi_scan_host(cfg->host);
1079 
1080 out:
1081 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1082 	return rc;
1083 }
1084 
1085 /**
1086  * set_port_online() - transitions the specified host FC port to online state
1087  * @fc_regs:	Top of MMIO region defined for specified port.
1088  *
1089  * The provided MMIO region must be mapped prior to call. Online state means
1090  * that the FC link layer has synced, completed the handshaking process, and
1091  * is ready for login to start.
1092  */
1093 static void set_port_online(__be64 __iomem *fc_regs)
1094 {
1095 	u64 cmdcfg;
1096 
1097 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1098 	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
1099 	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
1100 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1101 }
1102 
1103 /**
1104  * set_port_offline() - transitions the specified host FC port to offline state
1105  * @fc_regs:	Top of MMIO region defined for specified port.
1106  *
1107  * The provided MMIO region must be mapped prior to call.
1108  */
1109 static void set_port_offline(__be64 __iomem *fc_regs)
1110 {
1111 	u64 cmdcfg;
1112 
1113 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1114 	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
1115 	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
1116 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1117 }
1118 
1119 /**
1120  * wait_port_online() - waits for the specified host FC port come online
1121  * @fc_regs:	Top of MMIO region defined for specified port.
1122  * @delay_us:	Number of microseconds to delay between reading port status.
1123  * @nretry:	Number of cycles to retry reading port status.
1124  *
1125  * The provided MMIO region must be mapped prior to call. This will timeout
1126  * when the cable is not plugged in.
1127  *
1128  * Return:
1129  *	TRUE (1) when the specified port is online
1130  *	FALSE (0) when the specified port fails to come online after timeout
1131  */
1132 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1133 {
1134 	u64 status;
1135 
1136 	WARN_ON(delay_us < 1000);
1137 
1138 	do {
1139 		msleep(delay_us / 1000);
1140 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1141 		if (status == U64_MAX)
1142 			nretry /= 2;
1143 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1144 		 nretry--);
1145 
1146 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1147 }
1148 
1149 /**
1150  * wait_port_offline() - waits for the specified host FC port go offline
1151  * @fc_regs:	Top of MMIO region defined for specified port.
1152  * @delay_us:	Number of microseconds to delay between reading port status.
1153  * @nretry:	Number of cycles to retry reading port status.
1154  *
1155  * The provided MMIO region must be mapped prior to call.
1156  *
1157  * Return:
1158  *	TRUE (1) when the specified port is offline
1159  *	FALSE (0) when the specified port fails to go offline after timeout
1160  */
1161 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1162 {
1163 	u64 status;
1164 
1165 	WARN_ON(delay_us < 1000);
1166 
1167 	do {
1168 		msleep(delay_us / 1000);
1169 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1170 		if (status == U64_MAX)
1171 			nretry /= 2;
1172 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1173 		 nretry--);
1174 
1175 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1176 }
1177 
1178 /**
1179  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1180  * @afu:	AFU associated with the host that owns the specified FC port.
1181  * @port:	Port number being configured.
1182  * @fc_regs:	Top of MMIO region defined for specified port.
1183  * @wwpn:	The world-wide-port-number previously discovered for port.
1184  *
1185  * The provided MMIO region must be mapped prior to call. As part of the
1186  * sequence to configure the WWPN, the port is toggled offline and then back
1187  * online. This toggling action can cause this routine to delay up to a few
1188  * seconds. When configured to use the internal LUN feature of the AFU, a
1189  * failure to come online is overridden.
1190  */
1191 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1192 			 u64 wwpn)
1193 {
1194 	struct cxlflash_cfg *cfg = afu->parent;
1195 	struct device *dev = &cfg->dev->dev;
1196 
1197 	set_port_offline(fc_regs);
1198 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1199 			       FC_PORT_STATUS_RETRY_CNT)) {
1200 		dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1201 			__func__, port);
1202 	}
1203 
1204 	writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1205 
1206 	set_port_online(fc_regs);
1207 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1208 			      FC_PORT_STATUS_RETRY_CNT)) {
1209 		dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1210 			__func__, port);
1211 	}
1212 }
1213 
1214 /**
1215  * afu_link_reset() - resets the specified host FC port
1216  * @afu:	AFU associated with the host that owns the specified FC port.
1217  * @port:	Port number being configured.
1218  * @fc_regs:	Top of MMIO region defined for specified port.
1219  *
1220  * The provided MMIO region must be mapped prior to call. The sequence to
1221  * reset the port involves toggling it offline and then back online. This
1222  * action can cause this routine to delay up to a few seconds. An effort
1223  * is made to maintain link with the device by switching to host to use
1224  * the alternate port exclusively while the reset takes place.
1225  * failure to come online is overridden.
1226  */
1227 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1228 {
1229 	struct cxlflash_cfg *cfg = afu->parent;
1230 	struct device *dev = &cfg->dev->dev;
1231 	u64 port_sel;
1232 
1233 	/* first switch the AFU to the other links, if any */
1234 	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1235 	port_sel &= ~(1ULL << port);
1236 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1237 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1238 
1239 	set_port_offline(fc_regs);
1240 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1241 			       FC_PORT_STATUS_RETRY_CNT))
1242 		dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1243 			__func__, port);
1244 
1245 	set_port_online(fc_regs);
1246 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1247 			      FC_PORT_STATUS_RETRY_CNT))
1248 		dev_err(dev, "%s: wait on port %d to go online timed out\n",
1249 			__func__, port);
1250 
1251 	/* switch back to include this port */
1252 	port_sel |= (1ULL << port);
1253 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1254 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1255 
1256 	dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1257 }
1258 
1259 /**
1260  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1261  * @afu:	AFU associated with the host.
1262  */
1263 static void afu_err_intr_init(struct afu *afu)
1264 {
1265 	struct cxlflash_cfg *cfg = afu->parent;
1266 	__be64 __iomem *fc_port_regs;
1267 	int i;
1268 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1269 	u64 reg;
1270 
1271 	/* global async interrupts: AFU clears afu_ctrl on context exit
1272 	 * if async interrupts were sent to that context. This prevents
1273 	 * the AFU form sending further async interrupts when
1274 	 * there is
1275 	 * nobody to receive them.
1276 	 */
1277 
1278 	/* mask all */
1279 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1280 	/* set LISN# to send and point to primary master context */
1281 	reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1282 
1283 	if (afu->internal_lun)
1284 		reg |= 1;	/* Bit 63 indicates local lun */
1285 	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1286 	/* clear all */
1287 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1288 	/* unmask bits that are of interest */
1289 	/* note: afu can send an interrupt after this step */
1290 	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1291 	/* clear again in case a bit came on after previous clear but before */
1292 	/* unmask */
1293 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1294 
1295 	/* Clear/Set internal lun bits */
1296 	fc_port_regs = get_fc_port_regs(cfg, 0);
1297 	reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1298 	reg &= SISL_FC_INTERNAL_MASK;
1299 	if (afu->internal_lun)
1300 		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1301 	writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1302 
1303 	/* now clear FC errors */
1304 	for (i = 0; i < cfg->num_fc_ports; i++) {
1305 		fc_port_regs = get_fc_port_regs(cfg, i);
1306 
1307 		writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1308 		writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1309 	}
1310 
1311 	/* sync interrupts for master's IOARRIN write */
1312 	/* note that unlike asyncs, there can be no pending sync interrupts */
1313 	/* at this time (this is a fresh context and master has not written */
1314 	/* IOARRIN yet), so there is nothing to clear. */
1315 
1316 	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1317 	for (i = 0; i < afu->num_hwqs; i++) {
1318 		hwq = get_hwq(afu, i);
1319 
1320 		reg = readq_be(&hwq->host_map->ctx_ctrl);
1321 		WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
1322 		reg |= SISL_MSI_SYNC_ERROR;
1323 		writeq_be(reg, &hwq->host_map->ctx_ctrl);
1324 		writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1325 	}
1326 }
1327 
1328 /**
1329  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1330  * @irq:	Interrupt number.
1331  * @data:	Private data provided at interrupt registration, the AFU.
1332  *
1333  * Return: Always return IRQ_HANDLED.
1334  */
1335 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1336 {
1337 	struct hwq *hwq = (struct hwq *)data;
1338 	struct cxlflash_cfg *cfg = hwq->afu->parent;
1339 	struct device *dev = &cfg->dev->dev;
1340 	u64 reg;
1341 	u64 reg_unmasked;
1342 
1343 	reg = readq_be(&hwq->host_map->intr_status);
1344 	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1345 
1346 	if (reg_unmasked == 0UL) {
1347 		dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1348 			__func__, reg);
1349 		goto cxlflash_sync_err_irq_exit;
1350 	}
1351 
1352 	dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1353 		__func__, reg);
1354 
1355 	writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1356 
1357 cxlflash_sync_err_irq_exit:
1358 	return IRQ_HANDLED;
1359 }
1360 
1361 /**
1362  * process_hrrq() - process the read-response queue
1363  * @afu:	AFU associated with the host.
1364  * @doneq:	Queue of commands harvested from the RRQ.
1365  * @budget:	Threshold of RRQ entries to process.
1366  *
1367  * This routine must be called holding the disabled RRQ spin lock.
1368  *
1369  * Return: The number of entries processed.
1370  */
1371 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1372 {
1373 	struct afu *afu = hwq->afu;
1374 	struct afu_cmd *cmd;
1375 	struct sisl_ioasa *ioasa;
1376 	struct sisl_ioarcb *ioarcb;
1377 	bool toggle = hwq->toggle;
1378 	int num_hrrq = 0;
1379 	u64 entry,
1380 	    *hrrq_start = hwq->hrrq_start,
1381 	    *hrrq_end = hwq->hrrq_end,
1382 	    *hrrq_curr = hwq->hrrq_curr;
1383 
1384 	/* Process ready RRQ entries up to the specified budget (if any) */
1385 	while (true) {
1386 		entry = *hrrq_curr;
1387 
1388 		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1389 			break;
1390 
1391 		entry &= ~SISL_RESP_HANDLE_T_BIT;
1392 
1393 		if (afu_is_sq_cmd_mode(afu)) {
1394 			ioasa = (struct sisl_ioasa *)entry;
1395 			cmd = container_of(ioasa, struct afu_cmd, sa);
1396 		} else {
1397 			ioarcb = (struct sisl_ioarcb *)entry;
1398 			cmd = container_of(ioarcb, struct afu_cmd, rcb);
1399 		}
1400 
1401 		list_add_tail(&cmd->queue, doneq);
1402 
1403 		/* Advance to next entry or wrap and flip the toggle bit */
1404 		if (hrrq_curr < hrrq_end)
1405 			hrrq_curr++;
1406 		else {
1407 			hrrq_curr = hrrq_start;
1408 			toggle ^= SISL_RESP_HANDLE_T_BIT;
1409 		}
1410 
1411 		atomic_inc(&hwq->hsq_credits);
1412 		num_hrrq++;
1413 
1414 		if (budget > 0 && num_hrrq >= budget)
1415 			break;
1416 	}
1417 
1418 	hwq->hrrq_curr = hrrq_curr;
1419 	hwq->toggle = toggle;
1420 
1421 	return num_hrrq;
1422 }
1423 
1424 /**
1425  * process_cmd_doneq() - process a queue of harvested RRQ commands
1426  * @doneq:	Queue of completed commands.
1427  *
1428  * Note that upon return the queue can no longer be trusted.
1429  */
1430 static void process_cmd_doneq(struct list_head *doneq)
1431 {
1432 	struct afu_cmd *cmd, *tmp;
1433 
1434 	WARN_ON(list_empty(doneq));
1435 
1436 	list_for_each_entry_safe(cmd, tmp, doneq, queue)
1437 		cmd_complete(cmd);
1438 }
1439 
1440 /**
1441  * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1442  * @irqpoll:	IRQ poll structure associated with queue to poll.
1443  * @budget:	Threshold of RRQ entries to process per poll.
1444  *
1445  * Return: The number of entries processed.
1446  */
1447 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1448 {
1449 	struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1450 	unsigned long hrrq_flags;
1451 	LIST_HEAD(doneq);
1452 	int num_entries = 0;
1453 
1454 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1455 
1456 	num_entries = process_hrrq(hwq, &doneq, budget);
1457 	if (num_entries < budget)
1458 		irq_poll_complete(irqpoll);
1459 
1460 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1461 
1462 	process_cmd_doneq(&doneq);
1463 	return num_entries;
1464 }
1465 
1466 /**
1467  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1468  * @irq:	Interrupt number.
1469  * @data:	Private data provided at interrupt registration, the AFU.
1470  *
1471  * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1472  */
1473 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1474 {
1475 	struct hwq *hwq = (struct hwq *)data;
1476 	struct afu *afu = hwq->afu;
1477 	unsigned long hrrq_flags;
1478 	LIST_HEAD(doneq);
1479 	int num_entries = 0;
1480 
1481 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1482 
1483 	/* Silently drop spurious interrupts when queue is not online */
1484 	if (!hwq->hrrq_online) {
1485 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1486 		return IRQ_HANDLED;
1487 	}
1488 
1489 	if (afu_is_irqpoll_enabled(afu)) {
1490 		irq_poll_sched(&hwq->irqpoll);
1491 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1492 		return IRQ_HANDLED;
1493 	}
1494 
1495 	num_entries = process_hrrq(hwq, &doneq, -1);
1496 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1497 
1498 	if (num_entries == 0)
1499 		return IRQ_NONE;
1500 
1501 	process_cmd_doneq(&doneq);
1502 	return IRQ_HANDLED;
1503 }
1504 
1505 /*
1506  * Asynchronous interrupt information table
1507  *
1508  * NOTE:
1509  *	- Order matters here as this array is indexed by bit position.
1510  *
1511  *	- The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1512  *	  as complex and complains due to a lack of parentheses/braces.
1513  */
1514 #define ASTATUS_FC(_a, _b, _c, _d)					 \
1515 	{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1516 
1517 #define BUILD_SISL_ASTATUS_FC_PORT(_a)					 \
1518 	ASTATUS_FC(_a, LINK_UP, "link up", 0),				 \
1519 	ASTATUS_FC(_a, LINK_DN, "link down", 0),			 \
1520 	ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),		 \
1521 	ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),		 \
1522 	ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1523 	ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),	 \
1524 	ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),		 \
1525 	ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1526 
1527 static const struct asyc_intr_info ainfo[] = {
1528 	BUILD_SISL_ASTATUS_FC_PORT(1),
1529 	BUILD_SISL_ASTATUS_FC_PORT(0),
1530 	BUILD_SISL_ASTATUS_FC_PORT(3),
1531 	BUILD_SISL_ASTATUS_FC_PORT(2)
1532 };
1533 
1534 /**
1535  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1536  * @irq:	Interrupt number.
1537  * @data:	Private data provided at interrupt registration, the AFU.
1538  *
1539  * Return: Always return IRQ_HANDLED.
1540  */
1541 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1542 {
1543 	struct hwq *hwq = (struct hwq *)data;
1544 	struct afu *afu = hwq->afu;
1545 	struct cxlflash_cfg *cfg = afu->parent;
1546 	struct device *dev = &cfg->dev->dev;
1547 	const struct asyc_intr_info *info;
1548 	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1549 	__be64 __iomem *fc_port_regs;
1550 	u64 reg_unmasked;
1551 	u64 reg;
1552 	u64 bit;
1553 	u8 port;
1554 
1555 	reg = readq_be(&global->regs.aintr_status);
1556 	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1557 
1558 	if (unlikely(reg_unmasked == 0)) {
1559 		dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1560 			__func__, reg);
1561 		goto out;
1562 	}
1563 
1564 	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1565 	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1566 
1567 	/* Check each bit that is on */
1568 	for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1569 		if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1570 			WARN_ON_ONCE(1);
1571 			continue;
1572 		}
1573 
1574 		info = &ainfo[bit];
1575 		if (unlikely(info->status != 1ULL << bit)) {
1576 			WARN_ON_ONCE(1);
1577 			continue;
1578 		}
1579 
1580 		port = info->port;
1581 		fc_port_regs = get_fc_port_regs(cfg, port);
1582 
1583 		dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1584 			__func__, port, info->desc,
1585 		       readq_be(&fc_port_regs[FC_STATUS / 8]));
1586 
1587 		/*
1588 		 * Do link reset first, some OTHER errors will set FC_ERROR
1589 		 * again if cleared before or w/o a reset
1590 		 */
1591 		if (info->action & LINK_RESET) {
1592 			dev_err(dev, "%s: FC Port %d: resetting link\n",
1593 				__func__, port);
1594 			cfg->lr_state = LINK_RESET_REQUIRED;
1595 			cfg->lr_port = port;
1596 			schedule_work(&cfg->work_q);
1597 		}
1598 
1599 		if (info->action & CLR_FC_ERROR) {
1600 			reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1601 
1602 			/*
1603 			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1604 			 * should be the same and tracing one is sufficient.
1605 			 */
1606 
1607 			dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1608 				__func__, port, reg);
1609 
1610 			writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1611 			writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1612 		}
1613 
1614 		if (info->action & SCAN_HOST) {
1615 			atomic_inc(&cfg->scan_host_needed);
1616 			schedule_work(&cfg->work_q);
1617 		}
1618 	}
1619 
1620 out:
1621 	return IRQ_HANDLED;
1622 }
1623 
1624 /**
1625  * read_vpd() - obtains the WWPNs from VPD
1626  * @cfg:	Internal structure associated with the host.
1627  * @wwpn:	Array of size MAX_FC_PORTS to pass back WWPNs
1628  *
1629  * Return: 0 on success, -errno on failure
1630  */
1631 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1632 {
1633 	struct device *dev = &cfg->dev->dev;
1634 	struct pci_dev *pdev = cfg->dev;
1635 	int rc = 0;
1636 	int ro_start, ro_size, i, j, k;
1637 	ssize_t vpd_size;
1638 	char vpd_data[CXLFLASH_VPD_LEN];
1639 	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1640 	const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1641 						cfg->dev_id->driver_data;
1642 	const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1643 	const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1644 
1645 	/* Get the VPD data from the device */
1646 	vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1647 	if (unlikely(vpd_size <= 0)) {
1648 		dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1649 			__func__, vpd_size);
1650 		rc = -ENODEV;
1651 		goto out;
1652 	}
1653 
1654 	/* Get the read only section offset */
1655 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1656 				    PCI_VPD_LRDT_RO_DATA);
1657 	if (unlikely(ro_start < 0)) {
1658 		dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1659 		rc = -ENODEV;
1660 		goto out;
1661 	}
1662 
1663 	/* Get the read only section size, cap when extends beyond read VPD */
1664 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1665 	j = ro_size;
1666 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1667 	if (unlikely((i + j) > vpd_size)) {
1668 		dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1669 			__func__, (i + j), vpd_size);
1670 		ro_size = vpd_size - i;
1671 	}
1672 
1673 	/*
1674 	 * Find the offset of the WWPN tag within the read only
1675 	 * VPD data and validate the found field (partials are
1676 	 * no good to us). Convert the ASCII data to an integer
1677 	 * value. Note that we must copy to a temporary buffer
1678 	 * because the conversion service requires that the ASCII
1679 	 * string be terminated.
1680 	 *
1681 	 * Allow for WWPN not being found for all devices, setting
1682 	 * the returned WWPN to zero when not found. Notify with a
1683 	 * log error for cards that should have had WWPN keywords
1684 	 * in the VPD - cards requiring WWPN will not have their
1685 	 * ports programmed and operate in an undefined state.
1686 	 */
1687 	for (k = 0; k < cfg->num_fc_ports; k++) {
1688 		j = ro_size;
1689 		i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1690 
1691 		i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1692 		if (i < 0) {
1693 			if (wwpn_vpd_required)
1694 				dev_err(dev, "%s: Port %d WWPN not found\n",
1695 					__func__, k);
1696 			wwpn[k] = 0ULL;
1697 			continue;
1698 		}
1699 
1700 		j = pci_vpd_info_field_size(&vpd_data[i]);
1701 		i += PCI_VPD_INFO_FLD_HDR_SIZE;
1702 		if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1703 			dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1704 				__func__, k);
1705 			rc = -ENODEV;
1706 			goto out;
1707 		}
1708 
1709 		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1710 		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1711 		if (unlikely(rc)) {
1712 			dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1713 				__func__, k);
1714 			rc = -ENODEV;
1715 			goto out;
1716 		}
1717 
1718 		dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1719 	}
1720 
1721 out:
1722 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1723 	return rc;
1724 }
1725 
1726 /**
1727  * init_pcr() - initialize the provisioning and control registers
1728  * @cfg:	Internal structure associated with the host.
1729  *
1730  * Also sets up fast access to the mapped registers and initializes AFU
1731  * command fields that never change.
1732  */
1733 static void init_pcr(struct cxlflash_cfg *cfg)
1734 {
1735 	struct afu *afu = cfg->afu;
1736 	struct sisl_ctrl_map __iomem *ctrl_map;
1737 	struct hwq *hwq;
1738 	void *cookie;
1739 	int i;
1740 
1741 	for (i = 0; i < MAX_CONTEXT; i++) {
1742 		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1743 		/* Disrupt any clients that could be running */
1744 		/* e.g. clients that survived a master restart */
1745 		writeq_be(0, &ctrl_map->rht_start);
1746 		writeq_be(0, &ctrl_map->rht_cnt_id);
1747 		writeq_be(0, &ctrl_map->ctx_cap);
1748 	}
1749 
1750 	/* Copy frequently used fields into hwq */
1751 	for (i = 0; i < afu->num_hwqs; i++) {
1752 		hwq = get_hwq(afu, i);
1753 		cookie = hwq->ctx_cookie;
1754 
1755 		hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1756 		hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1757 		hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1758 
1759 		/* Program the Endian Control for the master context */
1760 		writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1761 	}
1762 }
1763 
1764 /**
1765  * init_global() - initialize AFU global registers
1766  * @cfg:	Internal structure associated with the host.
1767  */
1768 static int init_global(struct cxlflash_cfg *cfg)
1769 {
1770 	struct afu *afu = cfg->afu;
1771 	struct device *dev = &cfg->dev->dev;
1772 	struct hwq *hwq;
1773 	struct sisl_host_map __iomem *hmap;
1774 	__be64 __iomem *fc_port_regs;
1775 	u64 wwpn[MAX_FC_PORTS];	/* wwpn of AFU ports */
1776 	int i = 0, num_ports = 0;
1777 	int rc = 0;
1778 	int j;
1779 	void *ctx;
1780 	u64 reg;
1781 
1782 	rc = read_vpd(cfg, &wwpn[0]);
1783 	if (rc) {
1784 		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1785 		goto out;
1786 	}
1787 
1788 	/* Set up RRQ and SQ in HWQ for master issued cmds */
1789 	for (i = 0; i < afu->num_hwqs; i++) {
1790 		hwq = get_hwq(afu, i);
1791 		hmap = hwq->host_map;
1792 
1793 		writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1794 		writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1795 		hwq->hrrq_online = true;
1796 
1797 		if (afu_is_sq_cmd_mode(afu)) {
1798 			writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1799 			writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1800 		}
1801 	}
1802 
1803 	/* AFU configuration */
1804 	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1805 	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1806 	/* enable all auto retry options and control endianness */
1807 	/* leave others at default: */
1808 	/* CTX_CAP write protected, mbox_r does not clear on read and */
1809 	/* checker on if dual afu */
1810 	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1811 
1812 	/* Global port select: select either port */
1813 	if (afu->internal_lun) {
1814 		/* Only use port 0 */
1815 		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1816 		num_ports = 0;
1817 	} else {
1818 		writeq_be(PORT_MASK(cfg->num_fc_ports),
1819 			  &afu->afu_map->global.regs.afu_port_sel);
1820 		num_ports = cfg->num_fc_ports;
1821 	}
1822 
1823 	for (i = 0; i < num_ports; i++) {
1824 		fc_port_regs = get_fc_port_regs(cfg, i);
1825 
1826 		/* Unmask all errors (but they are still masked at AFU) */
1827 		writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1828 		/* Clear CRC error cnt & set a threshold */
1829 		(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1830 		writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1831 
1832 		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1833 		if (wwpn[i] != 0)
1834 			afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1835 		/* Programming WWPN back to back causes additional
1836 		 * offline/online transitions and a PLOGI
1837 		 */
1838 		msleep(100);
1839 	}
1840 
1841 	if (afu_is_ocxl_lisn(afu)) {
1842 		/* Set up the LISN effective address for each master */
1843 		for (i = 0; i < afu->num_hwqs; i++) {
1844 			hwq = get_hwq(afu, i);
1845 			ctx = hwq->ctx_cookie;
1846 
1847 			for (j = 0; j < hwq->num_irqs; j++) {
1848 				reg = cfg->ops->get_irq_objhndl(ctx, j);
1849 				writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
1850 			}
1851 
1852 			reg = hwq->ctx_hndl;
1853 			writeq_be(SISL_LISN_PASID(reg, reg),
1854 				  &hwq->ctrl_map->lisn_pasid[0]);
1855 			writeq_be(SISL_LISN_PASID(0UL, reg),
1856 				  &hwq->ctrl_map->lisn_pasid[1]);
1857 		}
1858 	}
1859 
1860 	/* Set up master's own CTX_CAP to allow real mode, host translation */
1861 	/* tables, afu cmds and read/write GSCSI cmds. */
1862 	/* First, unlock ctx_cap write by reading mbox */
1863 	for (i = 0; i < afu->num_hwqs; i++) {
1864 		hwq = get_hwq(afu, i);
1865 
1866 		(void)readq_be(&hwq->ctrl_map->mbox_r);	/* unlock ctx_cap */
1867 		writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1868 			SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1869 			SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1870 			&hwq->ctrl_map->ctx_cap);
1871 	}
1872 
1873 	/*
1874 	 * Determine write-same unmap support for host by evaluating the unmap
1875 	 * sector support bit of the context control register associated with
1876 	 * the primary hardware queue. Note that while this status is reflected
1877 	 * in a context register, the outcome can be assumed to be host-wide.
1878 	 */
1879 	hwq = get_hwq(afu, PRIMARY_HWQ);
1880 	reg = readq_be(&hwq->host_map->ctx_ctrl);
1881 	if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1882 		cfg->ws_unmap = true;
1883 
1884 	/* Initialize heartbeat */
1885 	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1886 out:
1887 	return rc;
1888 }
1889 
1890 /**
1891  * start_afu() - initializes and starts the AFU
1892  * @cfg:	Internal structure associated with the host.
1893  */
1894 static int start_afu(struct cxlflash_cfg *cfg)
1895 {
1896 	struct afu *afu = cfg->afu;
1897 	struct device *dev = &cfg->dev->dev;
1898 	struct hwq *hwq;
1899 	int rc = 0;
1900 	int i;
1901 
1902 	init_pcr(cfg);
1903 
1904 	/* Initialize each HWQ */
1905 	for (i = 0; i < afu->num_hwqs; i++) {
1906 		hwq = get_hwq(afu, i);
1907 
1908 		/* After an AFU reset, RRQ entries are stale, clear them */
1909 		memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1910 
1911 		/* Initialize RRQ pointers */
1912 		hwq->hrrq_start = &hwq->rrq_entry[0];
1913 		hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1914 		hwq->hrrq_curr = hwq->hrrq_start;
1915 		hwq->toggle = 1;
1916 
1917 		/* Initialize spin locks */
1918 		spin_lock_init(&hwq->hrrq_slock);
1919 		spin_lock_init(&hwq->hsq_slock);
1920 
1921 		/* Initialize SQ */
1922 		if (afu_is_sq_cmd_mode(afu)) {
1923 			memset(&hwq->sq, 0, sizeof(hwq->sq));
1924 			hwq->hsq_start = &hwq->sq[0];
1925 			hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1926 			hwq->hsq_curr = hwq->hsq_start;
1927 
1928 			atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1929 		}
1930 
1931 		/* Initialize IRQ poll */
1932 		if (afu_is_irqpoll_enabled(afu))
1933 			irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1934 				      cxlflash_irqpoll);
1935 
1936 	}
1937 
1938 	rc = init_global(cfg);
1939 
1940 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1941 	return rc;
1942 }
1943 
1944 /**
1945  * init_intr() - setup interrupt handlers for the master context
1946  * @cfg:	Internal structure associated with the host.
1947  * @hwq:	Hardware queue to initialize.
1948  *
1949  * Return: 0 on success, -errno on failure
1950  */
1951 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1952 				 struct hwq *hwq)
1953 {
1954 	struct device *dev = &cfg->dev->dev;
1955 	void *ctx = hwq->ctx_cookie;
1956 	int rc = 0;
1957 	enum undo_level level = UNDO_NOOP;
1958 	bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1959 	int num_irqs = hwq->num_irqs;
1960 
1961 	rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1962 	if (unlikely(rc)) {
1963 		dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1964 			__func__, rc);
1965 		level = UNDO_NOOP;
1966 		goto out;
1967 	}
1968 
1969 	rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1970 				   "SISL_MSI_SYNC_ERROR");
1971 	if (unlikely(rc <= 0)) {
1972 		dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1973 		level = FREE_IRQ;
1974 		goto out;
1975 	}
1976 
1977 	rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1978 				   "SISL_MSI_RRQ_UPDATED");
1979 	if (unlikely(rc <= 0)) {
1980 		dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1981 		level = UNMAP_ONE;
1982 		goto out;
1983 	}
1984 
1985 	/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1986 	if (!is_primary_hwq)
1987 		goto out;
1988 
1989 	rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1990 				   "SISL_MSI_ASYNC_ERROR");
1991 	if (unlikely(rc <= 0)) {
1992 		dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1993 		level = UNMAP_TWO;
1994 		goto out;
1995 	}
1996 out:
1997 	return level;
1998 }
1999 
2000 /**
2001  * init_mc() - create and register as the master context
2002  * @cfg:	Internal structure associated with the host.
2003  * index:	HWQ Index of the master context.
2004  *
2005  * Return: 0 on success, -errno on failure
2006  */
2007 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
2008 {
2009 	void *ctx;
2010 	struct device *dev = &cfg->dev->dev;
2011 	struct hwq *hwq = get_hwq(cfg->afu, index);
2012 	int rc = 0;
2013 	int num_irqs;
2014 	enum undo_level level;
2015 
2016 	hwq->afu = cfg->afu;
2017 	hwq->index = index;
2018 	INIT_LIST_HEAD(&hwq->pending_cmds);
2019 
2020 	if (index == PRIMARY_HWQ) {
2021 		ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
2022 		num_irqs = 3;
2023 	} else {
2024 		ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
2025 		num_irqs = 2;
2026 	}
2027 	if (IS_ERR_OR_NULL(ctx)) {
2028 		rc = -ENOMEM;
2029 		goto err1;
2030 	}
2031 
2032 	WARN_ON(hwq->ctx_cookie);
2033 	hwq->ctx_cookie = ctx;
2034 	hwq->num_irqs = num_irqs;
2035 
2036 	/* Set it up as a master with the CXL */
2037 	cfg->ops->set_master(ctx);
2038 
2039 	/* Reset AFU when initializing primary context */
2040 	if (index == PRIMARY_HWQ) {
2041 		rc = cfg->ops->afu_reset(ctx);
2042 		if (unlikely(rc)) {
2043 			dev_err(dev, "%s: AFU reset failed rc=%d\n",
2044 				      __func__, rc);
2045 			goto err1;
2046 		}
2047 	}
2048 
2049 	level = init_intr(cfg, hwq);
2050 	if (unlikely(level)) {
2051 		dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2052 		goto err2;
2053 	}
2054 
2055 	/* Finally, activate the context by starting it */
2056 	rc = cfg->ops->start_context(hwq->ctx_cookie);
2057 	if (unlikely(rc)) {
2058 		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2059 		level = UNMAP_THREE;
2060 		goto err2;
2061 	}
2062 
2063 out:
2064 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2065 	return rc;
2066 err2:
2067 	term_intr(cfg, level, index);
2068 	if (index != PRIMARY_HWQ)
2069 		cfg->ops->release_context(ctx);
2070 err1:
2071 	hwq->ctx_cookie = NULL;
2072 	goto out;
2073 }
2074 
2075 /**
2076  * get_num_afu_ports() - determines and configures the number of AFU ports
2077  * @cfg:	Internal structure associated with the host.
2078  *
2079  * This routine determines the number of AFU ports by converting the global
2080  * port selection mask. The converted value is only valid following an AFU
2081  * reset (explicit or power-on). This routine must be invoked shortly after
2082  * mapping as other routines are dependent on the number of ports during the
2083  * initialization sequence.
2084  *
2085  * To support legacy AFUs that might not have reflected an initial global
2086  * port mask (value read is 0), default to the number of ports originally
2087  * supported by the cxlflash driver (2) before hardware with other port
2088  * offerings was introduced.
2089  */
2090 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2091 {
2092 	struct afu *afu = cfg->afu;
2093 	struct device *dev = &cfg->dev->dev;
2094 	u64 port_mask;
2095 	int num_fc_ports = LEGACY_FC_PORTS;
2096 
2097 	port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2098 	if (port_mask != 0ULL)
2099 		num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2100 
2101 	dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2102 		__func__, port_mask, num_fc_ports);
2103 
2104 	cfg->num_fc_ports = num_fc_ports;
2105 	cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2106 }
2107 
2108 /**
2109  * init_afu() - setup as master context and start AFU
2110  * @cfg:	Internal structure associated with the host.
2111  *
2112  * This routine is a higher level of control for configuring the
2113  * AFU on probe and reset paths.
2114  *
2115  * Return: 0 on success, -errno on failure
2116  */
2117 static int init_afu(struct cxlflash_cfg *cfg)
2118 {
2119 	u64 reg;
2120 	int rc = 0;
2121 	struct afu *afu = cfg->afu;
2122 	struct device *dev = &cfg->dev->dev;
2123 	struct hwq *hwq;
2124 	int i;
2125 
2126 	cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2127 
2128 	mutex_init(&afu->sync_active);
2129 	afu->num_hwqs = afu->desired_hwqs;
2130 	for (i = 0; i < afu->num_hwqs; i++) {
2131 		rc = init_mc(cfg, i);
2132 		if (rc) {
2133 			dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2134 				__func__, rc, i);
2135 			goto err1;
2136 		}
2137 	}
2138 
2139 	/* Map the entire MMIO space of the AFU using the first context */
2140 	hwq = get_hwq(afu, PRIMARY_HWQ);
2141 	afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2142 	if (!afu->afu_map) {
2143 		dev_err(dev, "%s: psa_map failed\n", __func__);
2144 		rc = -ENOMEM;
2145 		goto err1;
2146 	}
2147 
2148 	/* No byte reverse on reading afu_version or string will be backwards */
2149 	reg = readq(&afu->afu_map->global.regs.afu_version);
2150 	memcpy(afu->version, &reg, sizeof(reg));
2151 	afu->interface_version =
2152 	    readq_be(&afu->afu_map->global.regs.interface_version);
2153 	if ((afu->interface_version + 1) == 0) {
2154 		dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2155 			"interface version %016llx\n", afu->version,
2156 		       afu->interface_version);
2157 		rc = -EINVAL;
2158 		goto err1;
2159 	}
2160 
2161 	if (afu_is_sq_cmd_mode(afu)) {
2162 		afu->send_cmd = send_cmd_sq;
2163 		afu->context_reset = context_reset_sq;
2164 	} else {
2165 		afu->send_cmd = send_cmd_ioarrin;
2166 		afu->context_reset = context_reset_ioarrin;
2167 	}
2168 
2169 	dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2170 		afu->version, afu->interface_version);
2171 
2172 	get_num_afu_ports(cfg);
2173 
2174 	rc = start_afu(cfg);
2175 	if (rc) {
2176 		dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2177 		goto err1;
2178 	}
2179 
2180 	afu_err_intr_init(cfg->afu);
2181 	for (i = 0; i < afu->num_hwqs; i++) {
2182 		hwq = get_hwq(afu, i);
2183 
2184 		hwq->room = readq_be(&hwq->host_map->cmd_room);
2185 	}
2186 
2187 	/* Restore the LUN mappings */
2188 	cxlflash_restore_luntable(cfg);
2189 out:
2190 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2191 	return rc;
2192 
2193 err1:
2194 	for (i = afu->num_hwqs - 1; i >= 0; i--) {
2195 		term_intr(cfg, UNMAP_THREE, i);
2196 		term_mc(cfg, i);
2197 	}
2198 	goto out;
2199 }
2200 
2201 /**
2202  * afu_reset() - resets the AFU
2203  * @cfg:	Internal structure associated with the host.
2204  *
2205  * Return: 0 on success, -errno on failure
2206  */
2207 static int afu_reset(struct cxlflash_cfg *cfg)
2208 {
2209 	struct device *dev = &cfg->dev->dev;
2210 	int rc = 0;
2211 
2212 	/* Stop the context before the reset. Since the context is
2213 	 * no longer available restart it after the reset is complete
2214 	 */
2215 	term_afu(cfg);
2216 
2217 	rc = init_afu(cfg);
2218 
2219 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2220 	return rc;
2221 }
2222 
2223 /**
2224  * drain_ioctls() - wait until all currently executing ioctls have completed
2225  * @cfg:	Internal structure associated with the host.
2226  *
2227  * Obtain write access to read/write semaphore that wraps ioctl
2228  * handling to 'drain' ioctls currently executing.
2229  */
2230 static void drain_ioctls(struct cxlflash_cfg *cfg)
2231 {
2232 	down_write(&cfg->ioctl_rwsem);
2233 	up_write(&cfg->ioctl_rwsem);
2234 }
2235 
2236 /**
2237  * cxlflash_async_reset_host() - asynchronous host reset handler
2238  * @data:	Private data provided while scheduling reset.
2239  * @cookie:	Cookie that can be used for checkpointing.
2240  */
2241 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2242 {
2243 	struct cxlflash_cfg *cfg = data;
2244 	struct device *dev = &cfg->dev->dev;
2245 	int rc = 0;
2246 
2247 	if (cfg->state != STATE_RESET) {
2248 		dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2249 			__func__, cfg->state);
2250 		goto out;
2251 	}
2252 
2253 	drain_ioctls(cfg);
2254 	cxlflash_mark_contexts_error(cfg);
2255 	rc = afu_reset(cfg);
2256 	if (rc)
2257 		cfg->state = STATE_FAILTERM;
2258 	else
2259 		cfg->state = STATE_NORMAL;
2260 	wake_up_all(&cfg->reset_waitq);
2261 
2262 out:
2263 	scsi_unblock_requests(cfg->host);
2264 }
2265 
2266 /**
2267  * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2268  * @cfg:	Internal structure associated with the host.
2269  */
2270 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2271 {
2272 	struct device *dev = &cfg->dev->dev;
2273 
2274 	if (cfg->state != STATE_NORMAL) {
2275 		dev_dbg(dev, "%s: Not performing reset state=%d\n",
2276 			__func__, cfg->state);
2277 		return;
2278 	}
2279 
2280 	cfg->state = STATE_RESET;
2281 	scsi_block_requests(cfg->host);
2282 	cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2283 						 cfg);
2284 }
2285 
2286 /**
2287  * send_afu_cmd() - builds and sends an internal AFU command
2288  * @afu:	AFU associated with the host.
2289  * @rcb:	Pre-populated IOARCB describing command to send.
2290  *
2291  * The AFU can only take one internal AFU command at a time. This limitation is
2292  * enforced by using a mutex to provide exclusive access to the AFU during the
2293  * operation. This design point requires calling threads to not be on interrupt
2294  * context due to the possibility of sleeping during concurrent AFU operations.
2295  *
2296  * The command status is optionally passed back to the caller when the caller
2297  * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2298  *
2299  * Return:
2300  *	0 on success, -errno on failure
2301  */
2302 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2303 {
2304 	struct cxlflash_cfg *cfg = afu->parent;
2305 	struct device *dev = &cfg->dev->dev;
2306 	struct afu_cmd *cmd = NULL;
2307 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2308 	ulong lock_flags;
2309 	char *buf = NULL;
2310 	int rc = 0;
2311 	int nretry = 0;
2312 
2313 	if (cfg->state != STATE_NORMAL) {
2314 		dev_dbg(dev, "%s: Sync not required state=%u\n",
2315 			__func__, cfg->state);
2316 		return 0;
2317 	}
2318 
2319 	mutex_lock(&afu->sync_active);
2320 	atomic_inc(&afu->cmds_active);
2321 	buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2322 	if (unlikely(!buf)) {
2323 		dev_err(dev, "%s: no memory for command\n", __func__);
2324 		rc = -ENOMEM;
2325 		goto out;
2326 	}
2327 
2328 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2329 
2330 retry:
2331 	memset(cmd, 0, sizeof(*cmd));
2332 	memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2333 	INIT_LIST_HEAD(&cmd->queue);
2334 	init_completion(&cmd->cevent);
2335 	cmd->parent = afu;
2336 	cmd->hwq_index = hwq->index;
2337 	cmd->rcb.ctx_id = hwq->ctx_hndl;
2338 
2339 	dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2340 		__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2341 
2342 	rc = afu->send_cmd(afu, cmd);
2343 	if (unlikely(rc)) {
2344 		rc = -ENOBUFS;
2345 		goto out;
2346 	}
2347 
2348 	rc = wait_resp(afu, cmd);
2349 	switch (rc) {
2350 	case -ETIMEDOUT:
2351 		rc = afu->context_reset(hwq);
2352 		if (rc) {
2353 			/* Delete the command from pending_cmds list */
2354 			spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
2355 			list_del(&cmd->list);
2356 			spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
2357 
2358 			cxlflash_schedule_async_reset(cfg);
2359 			break;
2360 		}
2361 		/* fall through - to retry */
2362 	case -EAGAIN:
2363 		if (++nretry < 2)
2364 			goto retry;
2365 		/* fall through - to exit */
2366 	default:
2367 		break;
2368 	}
2369 
2370 	if (rcb->ioasa)
2371 		*rcb->ioasa = cmd->sa;
2372 out:
2373 	atomic_dec(&afu->cmds_active);
2374 	mutex_unlock(&afu->sync_active);
2375 	kfree(buf);
2376 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2377 	return rc;
2378 }
2379 
2380 /**
2381  * cxlflash_afu_sync() - builds and sends an AFU sync command
2382  * @afu:	AFU associated with the host.
2383  * @ctx:	Identifies context requesting sync.
2384  * @res:	Identifies resource requesting sync.
2385  * @mode:	Type of sync to issue (lightweight, heavyweight, global).
2386  *
2387  * AFU sync operations are only necessary and allowed when the device is
2388  * operating normally. When not operating normally, sync requests can occur as
2389  * part of cleaning up resources associated with an adapter prior to removal.
2390  * In this scenario, these requests are simply ignored (safe due to the AFU
2391  * going away).
2392  *
2393  * Return:
2394  *	0 on success, -errno on failure
2395  */
2396 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2397 {
2398 	struct cxlflash_cfg *cfg = afu->parent;
2399 	struct device *dev = &cfg->dev->dev;
2400 	struct sisl_ioarcb rcb = { 0 };
2401 
2402 	dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2403 		__func__, afu, ctx, res, mode);
2404 
2405 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2406 	rcb.msi = SISL_MSI_RRQ_UPDATED;
2407 	rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2408 
2409 	rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2410 	rcb.cdb[1] = mode;
2411 	put_unaligned_be16(ctx, &rcb.cdb[2]);
2412 	put_unaligned_be32(res, &rcb.cdb[4]);
2413 
2414 	return send_afu_cmd(afu, &rcb);
2415 }
2416 
2417 /**
2418  * cxlflash_eh_abort_handler() - abort a SCSI command
2419  * @scp:	SCSI command to abort.
2420  *
2421  * CXL Flash devices do not support a single command abort. Reset the context
2422  * as per SISLite specification. Flush any pending commands in the hardware
2423  * queue before the reset.
2424  *
2425  * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2426  */
2427 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2428 {
2429 	int rc = FAILED;
2430 	struct Scsi_Host *host = scp->device->host;
2431 	struct cxlflash_cfg *cfg = shost_priv(host);
2432 	struct afu_cmd *cmd = sc_to_afuc(scp);
2433 	struct device *dev = &cfg->dev->dev;
2434 	struct afu *afu = cfg->afu;
2435 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2436 
2437 	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2438 		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2439 		scp->device->channel, scp->device->id, scp->device->lun,
2440 		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2441 		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2442 		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2443 		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2444 
2445 	/* When the state is not normal, another reset/reload is in progress.
2446 	 * Return failed and the mid-layer will invoke host reset handler.
2447 	 */
2448 	if (cfg->state != STATE_NORMAL) {
2449 		dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2450 			__func__, cfg->state);
2451 		goto out;
2452 	}
2453 
2454 	rc = afu->context_reset(hwq);
2455 	if (unlikely(rc))
2456 		goto out;
2457 
2458 	rc = SUCCESS;
2459 
2460 out:
2461 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2462 	return rc;
2463 }
2464 
2465 /**
2466  * cxlflash_eh_device_reset_handler() - reset a single LUN
2467  * @scp:	SCSI command to send.
2468  *
2469  * Return:
2470  *	SUCCESS as defined in scsi/scsi.h
2471  *	FAILED as defined in scsi/scsi.h
2472  */
2473 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2474 {
2475 	int rc = SUCCESS;
2476 	struct scsi_device *sdev = scp->device;
2477 	struct Scsi_Host *host = sdev->host;
2478 	struct cxlflash_cfg *cfg = shost_priv(host);
2479 	struct device *dev = &cfg->dev->dev;
2480 	int rcr = 0;
2481 
2482 	dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2483 		host->host_no, sdev->channel, sdev->id, sdev->lun);
2484 retry:
2485 	switch (cfg->state) {
2486 	case STATE_NORMAL:
2487 		rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2488 		if (unlikely(rcr))
2489 			rc = FAILED;
2490 		break;
2491 	case STATE_RESET:
2492 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2493 		goto retry;
2494 	default:
2495 		rc = FAILED;
2496 		break;
2497 	}
2498 
2499 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2500 	return rc;
2501 }
2502 
2503 /**
2504  * cxlflash_eh_host_reset_handler() - reset the host adapter
2505  * @scp:	SCSI command from stack identifying host.
2506  *
2507  * Following a reset, the state is evaluated again in case an EEH occurred
2508  * during the reset. In such a scenario, the host reset will either yield
2509  * until the EEH recovery is complete or return success or failure based
2510  * upon the current device state.
2511  *
2512  * Return:
2513  *	SUCCESS as defined in scsi/scsi.h
2514  *	FAILED as defined in scsi/scsi.h
2515  */
2516 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2517 {
2518 	int rc = SUCCESS;
2519 	int rcr = 0;
2520 	struct Scsi_Host *host = scp->device->host;
2521 	struct cxlflash_cfg *cfg = shost_priv(host);
2522 	struct device *dev = &cfg->dev->dev;
2523 
2524 	dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2525 
2526 	switch (cfg->state) {
2527 	case STATE_NORMAL:
2528 		cfg->state = STATE_RESET;
2529 		drain_ioctls(cfg);
2530 		cxlflash_mark_contexts_error(cfg);
2531 		rcr = afu_reset(cfg);
2532 		if (rcr) {
2533 			rc = FAILED;
2534 			cfg->state = STATE_FAILTERM;
2535 		} else
2536 			cfg->state = STATE_NORMAL;
2537 		wake_up_all(&cfg->reset_waitq);
2538 		ssleep(1);
2539 		/* fall through */
2540 	case STATE_RESET:
2541 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2542 		if (cfg->state == STATE_NORMAL)
2543 			break;
2544 		/* fall through */
2545 	default:
2546 		rc = FAILED;
2547 		break;
2548 	}
2549 
2550 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2551 	return rc;
2552 }
2553 
2554 /**
2555  * cxlflash_change_queue_depth() - change the queue depth for the device
2556  * @sdev:	SCSI device destined for queue depth change.
2557  * @qdepth:	Requested queue depth value to set.
2558  *
2559  * The requested queue depth is capped to the maximum supported value.
2560  *
2561  * Return: The actual queue depth set.
2562  */
2563 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2564 {
2565 
2566 	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2567 		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2568 
2569 	scsi_change_queue_depth(sdev, qdepth);
2570 	return sdev->queue_depth;
2571 }
2572 
2573 /**
2574  * cxlflash_show_port_status() - queries and presents the current port status
2575  * @port:	Desired port for status reporting.
2576  * @cfg:	Internal structure associated with the host.
2577  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2578  *
2579  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2580  */
2581 static ssize_t cxlflash_show_port_status(u32 port,
2582 					 struct cxlflash_cfg *cfg,
2583 					 char *buf)
2584 {
2585 	struct device *dev = &cfg->dev->dev;
2586 	char *disp_status;
2587 	u64 status;
2588 	__be64 __iomem *fc_port_regs;
2589 
2590 	WARN_ON(port >= MAX_FC_PORTS);
2591 
2592 	if (port >= cfg->num_fc_ports) {
2593 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2594 			__func__, port);
2595 		return -EINVAL;
2596 	}
2597 
2598 	fc_port_regs = get_fc_port_regs(cfg, port);
2599 	status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2600 	status &= FC_MTIP_STATUS_MASK;
2601 
2602 	if (status == FC_MTIP_STATUS_ONLINE)
2603 		disp_status = "online";
2604 	else if (status == FC_MTIP_STATUS_OFFLINE)
2605 		disp_status = "offline";
2606 	else
2607 		disp_status = "unknown";
2608 
2609 	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2610 }
2611 
2612 /**
2613  * port0_show() - queries and presents the current status of port 0
2614  * @dev:	Generic device associated with the host owning the port.
2615  * @attr:	Device attribute representing the port.
2616  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2617  *
2618  * Return: The size of the ASCII string returned in @buf.
2619  */
2620 static ssize_t port0_show(struct device *dev,
2621 			  struct device_attribute *attr,
2622 			  char *buf)
2623 {
2624 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2625 
2626 	return cxlflash_show_port_status(0, cfg, buf);
2627 }
2628 
2629 /**
2630  * port1_show() - queries and presents the current status of port 1
2631  * @dev:	Generic device associated with the host owning the port.
2632  * @attr:	Device attribute representing the port.
2633  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2634  *
2635  * Return: The size of the ASCII string returned in @buf.
2636  */
2637 static ssize_t port1_show(struct device *dev,
2638 			  struct device_attribute *attr,
2639 			  char *buf)
2640 {
2641 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2642 
2643 	return cxlflash_show_port_status(1, cfg, buf);
2644 }
2645 
2646 /**
2647  * port2_show() - queries and presents the current status of port 2
2648  * @dev:	Generic device associated with the host owning the port.
2649  * @attr:	Device attribute representing the port.
2650  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2651  *
2652  * Return: The size of the ASCII string returned in @buf.
2653  */
2654 static ssize_t port2_show(struct device *dev,
2655 			  struct device_attribute *attr,
2656 			  char *buf)
2657 {
2658 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2659 
2660 	return cxlflash_show_port_status(2, cfg, buf);
2661 }
2662 
2663 /**
2664  * port3_show() - queries and presents the current status of port 3
2665  * @dev:	Generic device associated with the host owning the port.
2666  * @attr:	Device attribute representing the port.
2667  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2668  *
2669  * Return: The size of the ASCII string returned in @buf.
2670  */
2671 static ssize_t port3_show(struct device *dev,
2672 			  struct device_attribute *attr,
2673 			  char *buf)
2674 {
2675 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2676 
2677 	return cxlflash_show_port_status(3, cfg, buf);
2678 }
2679 
2680 /**
2681  * lun_mode_show() - presents the current LUN mode of the host
2682  * @dev:	Generic device associated with the host.
2683  * @attr:	Device attribute representing the LUN mode.
2684  * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2685  *
2686  * Return: The size of the ASCII string returned in @buf.
2687  */
2688 static ssize_t lun_mode_show(struct device *dev,
2689 			     struct device_attribute *attr, char *buf)
2690 {
2691 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2692 	struct afu *afu = cfg->afu;
2693 
2694 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2695 }
2696 
2697 /**
2698  * lun_mode_store() - sets the LUN mode of the host
2699  * @dev:	Generic device associated with the host.
2700  * @attr:	Device attribute representing the LUN mode.
2701  * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2702  * @count:	Length of data resizing in @buf.
2703  *
2704  * The CXL Flash AFU supports a dummy LUN mode where the external
2705  * links and storage are not required. Space on the FPGA is used
2706  * to create 1 or 2 small LUNs which are presented to the system
2707  * as if they were a normal storage device. This feature is useful
2708  * during development and also provides manufacturing with a way
2709  * to test the AFU without an actual device.
2710  *
2711  * 0 = external LUN[s] (default)
2712  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2713  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2714  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2715  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2716  *
2717  * Return: The size of the ASCII string returned in @buf.
2718  */
2719 static ssize_t lun_mode_store(struct device *dev,
2720 			      struct device_attribute *attr,
2721 			      const char *buf, size_t count)
2722 {
2723 	struct Scsi_Host *shost = class_to_shost(dev);
2724 	struct cxlflash_cfg *cfg = shost_priv(shost);
2725 	struct afu *afu = cfg->afu;
2726 	int rc;
2727 	u32 lun_mode;
2728 
2729 	rc = kstrtouint(buf, 10, &lun_mode);
2730 	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2731 		afu->internal_lun = lun_mode;
2732 
2733 		/*
2734 		 * When configured for internal LUN, there is only one channel,
2735 		 * channel number 0, else there will be one less than the number
2736 		 * of fc ports for this card.
2737 		 */
2738 		if (afu->internal_lun)
2739 			shost->max_channel = 0;
2740 		else
2741 			shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2742 
2743 		afu_reset(cfg);
2744 		scsi_scan_host(cfg->host);
2745 	}
2746 
2747 	return count;
2748 }
2749 
2750 /**
2751  * ioctl_version_show() - presents the current ioctl version of the host
2752  * @dev:	Generic device associated with the host.
2753  * @attr:	Device attribute representing the ioctl version.
2754  * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2755  *
2756  * Return: The size of the ASCII string returned in @buf.
2757  */
2758 static ssize_t ioctl_version_show(struct device *dev,
2759 				  struct device_attribute *attr, char *buf)
2760 {
2761 	ssize_t bytes = 0;
2762 
2763 	bytes = scnprintf(buf, PAGE_SIZE,
2764 			  "disk: %u\n", DK_CXLFLASH_VERSION_0);
2765 	bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2766 			   "host: %u\n", HT_CXLFLASH_VERSION_0);
2767 
2768 	return bytes;
2769 }
2770 
2771 /**
2772  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2773  * @port:	Desired port for status reporting.
2774  * @cfg:	Internal structure associated with the host.
2775  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2776  *
2777  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2778  */
2779 static ssize_t cxlflash_show_port_lun_table(u32 port,
2780 					    struct cxlflash_cfg *cfg,
2781 					    char *buf)
2782 {
2783 	struct device *dev = &cfg->dev->dev;
2784 	__be64 __iomem *fc_port_luns;
2785 	int i;
2786 	ssize_t bytes = 0;
2787 
2788 	WARN_ON(port >= MAX_FC_PORTS);
2789 
2790 	if (port >= cfg->num_fc_ports) {
2791 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2792 			__func__, port);
2793 		return -EINVAL;
2794 	}
2795 
2796 	fc_port_luns = get_fc_port_luns(cfg, port);
2797 
2798 	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2799 		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2800 				   "%03d: %016llx\n",
2801 				   i, readq_be(&fc_port_luns[i]));
2802 	return bytes;
2803 }
2804 
2805 /**
2806  * port0_lun_table_show() - presents the current LUN table of port 0
2807  * @dev:	Generic device associated with the host owning the port.
2808  * @attr:	Device attribute representing the port.
2809  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2810  *
2811  * Return: The size of the ASCII string returned in @buf.
2812  */
2813 static ssize_t port0_lun_table_show(struct device *dev,
2814 				    struct device_attribute *attr,
2815 				    char *buf)
2816 {
2817 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2818 
2819 	return cxlflash_show_port_lun_table(0, cfg, buf);
2820 }
2821 
2822 /**
2823  * port1_lun_table_show() - presents the current LUN table of port 1
2824  * @dev:	Generic device associated with the host owning the port.
2825  * @attr:	Device attribute representing the port.
2826  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2827  *
2828  * Return: The size of the ASCII string returned in @buf.
2829  */
2830 static ssize_t port1_lun_table_show(struct device *dev,
2831 				    struct device_attribute *attr,
2832 				    char *buf)
2833 {
2834 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2835 
2836 	return cxlflash_show_port_lun_table(1, cfg, buf);
2837 }
2838 
2839 /**
2840  * port2_lun_table_show() - presents the current LUN table of port 2
2841  * @dev:	Generic device associated with the host owning the port.
2842  * @attr:	Device attribute representing the port.
2843  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2844  *
2845  * Return: The size of the ASCII string returned in @buf.
2846  */
2847 static ssize_t port2_lun_table_show(struct device *dev,
2848 				    struct device_attribute *attr,
2849 				    char *buf)
2850 {
2851 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2852 
2853 	return cxlflash_show_port_lun_table(2, cfg, buf);
2854 }
2855 
2856 /**
2857  * port3_lun_table_show() - presents the current LUN table of port 3
2858  * @dev:	Generic device associated with the host owning the port.
2859  * @attr:	Device attribute representing the port.
2860  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2861  *
2862  * Return: The size of the ASCII string returned in @buf.
2863  */
2864 static ssize_t port3_lun_table_show(struct device *dev,
2865 				    struct device_attribute *attr,
2866 				    char *buf)
2867 {
2868 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2869 
2870 	return cxlflash_show_port_lun_table(3, cfg, buf);
2871 }
2872 
2873 /**
2874  * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2875  * @dev:	Generic device associated with the host.
2876  * @attr:	Device attribute representing the IRQ poll weight.
2877  * @buf:	Buffer of length PAGE_SIZE to report back the current IRQ poll
2878  *		weight in ASCII.
2879  *
2880  * An IRQ poll weight of 0 indicates polling is disabled.
2881  *
2882  * Return: The size of the ASCII string returned in @buf.
2883  */
2884 static ssize_t irqpoll_weight_show(struct device *dev,
2885 				   struct device_attribute *attr, char *buf)
2886 {
2887 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2888 	struct afu *afu = cfg->afu;
2889 
2890 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2891 }
2892 
2893 /**
2894  * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2895  * @dev:	Generic device associated with the host.
2896  * @attr:	Device attribute representing the IRQ poll weight.
2897  * @buf:	Buffer of length PAGE_SIZE containing the desired IRQ poll
2898  *		weight in ASCII.
2899  * @count:	Length of data resizing in @buf.
2900  *
2901  * An IRQ poll weight of 0 indicates polling is disabled.
2902  *
2903  * Return: The size of the ASCII string returned in @buf.
2904  */
2905 static ssize_t irqpoll_weight_store(struct device *dev,
2906 				    struct device_attribute *attr,
2907 				    const char *buf, size_t count)
2908 {
2909 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2910 	struct device *cfgdev = &cfg->dev->dev;
2911 	struct afu *afu = cfg->afu;
2912 	struct hwq *hwq;
2913 	u32 weight;
2914 	int rc, i;
2915 
2916 	rc = kstrtouint(buf, 10, &weight);
2917 	if (rc)
2918 		return -EINVAL;
2919 
2920 	if (weight > 256) {
2921 		dev_info(cfgdev,
2922 			 "Invalid IRQ poll weight. It must be 256 or less.\n");
2923 		return -EINVAL;
2924 	}
2925 
2926 	if (weight == afu->irqpoll_weight) {
2927 		dev_info(cfgdev,
2928 			 "Current IRQ poll weight has the same weight.\n");
2929 		return -EINVAL;
2930 	}
2931 
2932 	if (afu_is_irqpoll_enabled(afu)) {
2933 		for (i = 0; i < afu->num_hwqs; i++) {
2934 			hwq = get_hwq(afu, i);
2935 
2936 			irq_poll_disable(&hwq->irqpoll);
2937 		}
2938 	}
2939 
2940 	afu->irqpoll_weight = weight;
2941 
2942 	if (weight > 0) {
2943 		for (i = 0; i < afu->num_hwqs; i++) {
2944 			hwq = get_hwq(afu, i);
2945 
2946 			irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2947 		}
2948 	}
2949 
2950 	return count;
2951 }
2952 
2953 /**
2954  * num_hwqs_show() - presents the number of hardware queues for the host
2955  * @dev:	Generic device associated with the host.
2956  * @attr:	Device attribute representing the number of hardware queues.
2957  * @buf:	Buffer of length PAGE_SIZE to report back the number of hardware
2958  *		queues in ASCII.
2959  *
2960  * Return: The size of the ASCII string returned in @buf.
2961  */
2962 static ssize_t num_hwqs_show(struct device *dev,
2963 			     struct device_attribute *attr, char *buf)
2964 {
2965 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2966 	struct afu *afu = cfg->afu;
2967 
2968 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2969 }
2970 
2971 /**
2972  * num_hwqs_store() - sets the number of hardware queues for the host
2973  * @dev:	Generic device associated with the host.
2974  * @attr:	Device attribute representing the number of hardware queues.
2975  * @buf:	Buffer of length PAGE_SIZE containing the number of hardware
2976  *		queues in ASCII.
2977  * @count:	Length of data resizing in @buf.
2978  *
2979  * n > 0: num_hwqs = n
2980  * n = 0: num_hwqs = num_online_cpus()
2981  * n < 0: num_online_cpus() / abs(n)
2982  *
2983  * Return: The size of the ASCII string returned in @buf.
2984  */
2985 static ssize_t num_hwqs_store(struct device *dev,
2986 			      struct device_attribute *attr,
2987 			      const char *buf, size_t count)
2988 {
2989 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2990 	struct afu *afu = cfg->afu;
2991 	int rc;
2992 	int nhwqs, num_hwqs;
2993 
2994 	rc = kstrtoint(buf, 10, &nhwqs);
2995 	if (rc)
2996 		return -EINVAL;
2997 
2998 	if (nhwqs >= 1)
2999 		num_hwqs = nhwqs;
3000 	else if (nhwqs == 0)
3001 		num_hwqs = num_online_cpus();
3002 	else
3003 		num_hwqs = num_online_cpus() / abs(nhwqs);
3004 
3005 	afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
3006 	WARN_ON_ONCE(afu->desired_hwqs == 0);
3007 
3008 retry:
3009 	switch (cfg->state) {
3010 	case STATE_NORMAL:
3011 		cfg->state = STATE_RESET;
3012 		drain_ioctls(cfg);
3013 		cxlflash_mark_contexts_error(cfg);
3014 		rc = afu_reset(cfg);
3015 		if (rc)
3016 			cfg->state = STATE_FAILTERM;
3017 		else
3018 			cfg->state = STATE_NORMAL;
3019 		wake_up_all(&cfg->reset_waitq);
3020 		break;
3021 	case STATE_RESET:
3022 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
3023 		if (cfg->state == STATE_NORMAL)
3024 			goto retry;
3025 		/* else, fall through */
3026 	default:
3027 		/* Ideally should not happen */
3028 		dev_err(dev, "%s: Device is not ready, state=%d\n",
3029 			__func__, cfg->state);
3030 		break;
3031 	}
3032 
3033 	return count;
3034 }
3035 
3036 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3037 
3038 /**
3039  * hwq_mode_show() - presents the HWQ steering mode for the host
3040  * @dev:	Generic device associated with the host.
3041  * @attr:	Device attribute representing the HWQ steering mode.
3042  * @buf:	Buffer of length PAGE_SIZE to report back the HWQ steering mode
3043  *		as a character string.
3044  *
3045  * Return: The size of the ASCII string returned in @buf.
3046  */
3047 static ssize_t hwq_mode_show(struct device *dev,
3048 			     struct device_attribute *attr, char *buf)
3049 {
3050 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3051 	struct afu *afu = cfg->afu;
3052 
3053 	return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3054 }
3055 
3056 /**
3057  * hwq_mode_store() - sets the HWQ steering mode for the host
3058  * @dev:	Generic device associated with the host.
3059  * @attr:	Device attribute representing the HWQ steering mode.
3060  * @buf:	Buffer of length PAGE_SIZE containing the HWQ steering mode
3061  *		as a character string.
3062  * @count:	Length of data resizing in @buf.
3063  *
3064  * rr = Round-Robin
3065  * tag = Block MQ Tagging
3066  * cpu = CPU Affinity
3067  *
3068  * Return: The size of the ASCII string returned in @buf.
3069  */
3070 static ssize_t hwq_mode_store(struct device *dev,
3071 			      struct device_attribute *attr,
3072 			      const char *buf, size_t count)
3073 {
3074 	struct Scsi_Host *shost = class_to_shost(dev);
3075 	struct cxlflash_cfg *cfg = shost_priv(shost);
3076 	struct device *cfgdev = &cfg->dev->dev;
3077 	struct afu *afu = cfg->afu;
3078 	int i;
3079 	u32 mode = MAX_HWQ_MODE;
3080 
3081 	for (i = 0; i < MAX_HWQ_MODE; i++) {
3082 		if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3083 			mode = i;
3084 			break;
3085 		}
3086 	}
3087 
3088 	if (mode >= MAX_HWQ_MODE) {
3089 		dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3090 		return -EINVAL;
3091 	}
3092 
3093 	afu->hwq_mode = mode;
3094 
3095 	return count;
3096 }
3097 
3098 /**
3099  * mode_show() - presents the current mode of the device
3100  * @dev:	Generic device associated with the device.
3101  * @attr:	Device attribute representing the device mode.
3102  * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3103  *
3104  * Return: The size of the ASCII string returned in @buf.
3105  */
3106 static ssize_t mode_show(struct device *dev,
3107 			 struct device_attribute *attr, char *buf)
3108 {
3109 	struct scsi_device *sdev = to_scsi_device(dev);
3110 
3111 	return scnprintf(buf, PAGE_SIZE, "%s\n",
3112 			 sdev->hostdata ? "superpipe" : "legacy");
3113 }
3114 
3115 /*
3116  * Host attributes
3117  */
3118 static DEVICE_ATTR_RO(port0);
3119 static DEVICE_ATTR_RO(port1);
3120 static DEVICE_ATTR_RO(port2);
3121 static DEVICE_ATTR_RO(port3);
3122 static DEVICE_ATTR_RW(lun_mode);
3123 static DEVICE_ATTR_RO(ioctl_version);
3124 static DEVICE_ATTR_RO(port0_lun_table);
3125 static DEVICE_ATTR_RO(port1_lun_table);
3126 static DEVICE_ATTR_RO(port2_lun_table);
3127 static DEVICE_ATTR_RO(port3_lun_table);
3128 static DEVICE_ATTR_RW(irqpoll_weight);
3129 static DEVICE_ATTR_RW(num_hwqs);
3130 static DEVICE_ATTR_RW(hwq_mode);
3131 
3132 static struct device_attribute *cxlflash_host_attrs[] = {
3133 	&dev_attr_port0,
3134 	&dev_attr_port1,
3135 	&dev_attr_port2,
3136 	&dev_attr_port3,
3137 	&dev_attr_lun_mode,
3138 	&dev_attr_ioctl_version,
3139 	&dev_attr_port0_lun_table,
3140 	&dev_attr_port1_lun_table,
3141 	&dev_attr_port2_lun_table,
3142 	&dev_attr_port3_lun_table,
3143 	&dev_attr_irqpoll_weight,
3144 	&dev_attr_num_hwqs,
3145 	&dev_attr_hwq_mode,
3146 	NULL
3147 };
3148 
3149 /*
3150  * Device attributes
3151  */
3152 static DEVICE_ATTR_RO(mode);
3153 
3154 static struct device_attribute *cxlflash_dev_attrs[] = {
3155 	&dev_attr_mode,
3156 	NULL
3157 };
3158 
3159 /*
3160  * Host template
3161  */
3162 static struct scsi_host_template driver_template = {
3163 	.module = THIS_MODULE,
3164 	.name = CXLFLASH_ADAPTER_NAME,
3165 	.info = cxlflash_driver_info,
3166 	.ioctl = cxlflash_ioctl,
3167 	.proc_name = CXLFLASH_NAME,
3168 	.queuecommand = cxlflash_queuecommand,
3169 	.eh_abort_handler = cxlflash_eh_abort_handler,
3170 	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3171 	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3172 	.change_queue_depth = cxlflash_change_queue_depth,
3173 	.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3174 	.can_queue = CXLFLASH_MAX_CMDS,
3175 	.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3176 	.this_id = -1,
3177 	.sg_tablesize = 1,	/* No scatter gather support */
3178 	.max_sectors = CXLFLASH_MAX_SECTORS,
3179 	.shost_attrs = cxlflash_host_attrs,
3180 	.sdev_attrs = cxlflash_dev_attrs,
3181 };
3182 
3183 /*
3184  * Device dependent values
3185  */
3186 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3187 					CXLFLASH_WWPN_VPD_REQUIRED };
3188 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3189 					CXLFLASH_NOTIFY_SHUTDOWN };
3190 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3191 					(CXLFLASH_NOTIFY_SHUTDOWN |
3192 					CXLFLASH_OCXL_DEV) };
3193 
3194 /*
3195  * PCI device binding table
3196  */
3197 static struct pci_device_id cxlflash_pci_table[] = {
3198 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3199 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3200 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3201 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3202 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3203 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3204 	{}
3205 };
3206 
3207 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3208 
3209 /**
3210  * cxlflash_worker_thread() - work thread handler for the AFU
3211  * @work:	Work structure contained within cxlflash associated with host.
3212  *
3213  * Handles the following events:
3214  * - Link reset which cannot be performed on interrupt context due to
3215  * blocking up to a few seconds
3216  * - Rescan the host
3217  */
3218 static void cxlflash_worker_thread(struct work_struct *work)
3219 {
3220 	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3221 						work_q);
3222 	struct afu *afu = cfg->afu;
3223 	struct device *dev = &cfg->dev->dev;
3224 	__be64 __iomem *fc_port_regs;
3225 	int port;
3226 	ulong lock_flags;
3227 
3228 	/* Avoid MMIO if the device has failed */
3229 
3230 	if (cfg->state != STATE_NORMAL)
3231 		return;
3232 
3233 	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3234 
3235 	if (cfg->lr_state == LINK_RESET_REQUIRED) {
3236 		port = cfg->lr_port;
3237 		if (port < 0)
3238 			dev_err(dev, "%s: invalid port index %d\n",
3239 				__func__, port);
3240 		else {
3241 			spin_unlock_irqrestore(cfg->host->host_lock,
3242 					       lock_flags);
3243 
3244 			/* The reset can block... */
3245 			fc_port_regs = get_fc_port_regs(cfg, port);
3246 			afu_link_reset(afu, port, fc_port_regs);
3247 			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3248 		}
3249 
3250 		cfg->lr_state = LINK_RESET_COMPLETE;
3251 	}
3252 
3253 	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3254 
3255 	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3256 		scsi_scan_host(cfg->host);
3257 }
3258 
3259 /**
3260  * cxlflash_chr_open() - character device open handler
3261  * @inode:	Device inode associated with this character device.
3262  * @file:	File pointer for this device.
3263  *
3264  * Only users with admin privileges are allowed to open the character device.
3265  *
3266  * Return: 0 on success, -errno on failure
3267  */
3268 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3269 {
3270 	struct cxlflash_cfg *cfg;
3271 
3272 	if (!capable(CAP_SYS_ADMIN))
3273 		return -EACCES;
3274 
3275 	cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3276 	file->private_data = cfg;
3277 
3278 	return 0;
3279 }
3280 
3281 /**
3282  * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3283  * @cmd:        The host ioctl command to decode.
3284  *
3285  * Return: A string identifying the decoded host ioctl.
3286  */
3287 static char *decode_hioctl(unsigned int cmd)
3288 {
3289 	switch (cmd) {
3290 	case HT_CXLFLASH_LUN_PROVISION:
3291 		return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3292 	}
3293 
3294 	return "UNKNOWN";
3295 }
3296 
3297 /**
3298  * cxlflash_lun_provision() - host LUN provisioning handler
3299  * @cfg:	Internal structure associated with the host.
3300  * @arg:	Kernel copy of userspace ioctl data structure.
3301  *
3302  * Return: 0 on success, -errno on failure
3303  */
3304 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3305 				  struct ht_cxlflash_lun_provision *lunprov)
3306 {
3307 	struct afu *afu = cfg->afu;
3308 	struct device *dev = &cfg->dev->dev;
3309 	struct sisl_ioarcb rcb;
3310 	struct sisl_ioasa asa;
3311 	__be64 __iomem *fc_port_regs;
3312 	u16 port = lunprov->port;
3313 	u16 scmd = lunprov->hdr.subcmd;
3314 	u16 type;
3315 	u64 reg;
3316 	u64 size;
3317 	u64 lun_id;
3318 	int rc = 0;
3319 
3320 	if (!afu_is_lun_provision(afu)) {
3321 		rc = -ENOTSUPP;
3322 		goto out;
3323 	}
3324 
3325 	if (port >= cfg->num_fc_ports) {
3326 		rc = -EINVAL;
3327 		goto out;
3328 	}
3329 
3330 	switch (scmd) {
3331 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3332 		type = SISL_AFU_LUN_PROVISION_CREATE;
3333 		size = lunprov->size;
3334 		lun_id = 0;
3335 		break;
3336 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3337 		type = SISL_AFU_LUN_PROVISION_DELETE;
3338 		size = 0;
3339 		lun_id = lunprov->lun_id;
3340 		break;
3341 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3342 		fc_port_regs = get_fc_port_regs(cfg, port);
3343 
3344 		reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3345 		lunprov->max_num_luns = reg;
3346 		reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3347 		lunprov->cur_num_luns = reg;
3348 		reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3349 		lunprov->max_cap_port = reg;
3350 		reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3351 		lunprov->cur_cap_port = reg;
3352 
3353 		goto out;
3354 	default:
3355 		rc = -EINVAL;
3356 		goto out;
3357 	}
3358 
3359 	memset(&rcb, 0, sizeof(rcb));
3360 	memset(&asa, 0, sizeof(asa));
3361 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3362 	rcb.lun_id = lun_id;
3363 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3364 	rcb.timeout = MC_LUN_PROV_TIMEOUT;
3365 	rcb.ioasa = &asa;
3366 
3367 	rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3368 	rcb.cdb[1] = type;
3369 	rcb.cdb[2] = port;
3370 	put_unaligned_be64(size, &rcb.cdb[8]);
3371 
3372 	rc = send_afu_cmd(afu, &rcb);
3373 	if (rc) {
3374 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3375 			__func__, rc, asa.ioasc, asa.afu_extra);
3376 		goto out;
3377 	}
3378 
3379 	if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3380 		lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3381 		memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3382 	}
3383 out:
3384 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3385 	return rc;
3386 }
3387 
3388 /**
3389  * cxlflash_afu_debug() - host AFU debug handler
3390  * @cfg:	Internal structure associated with the host.
3391  * @arg:	Kernel copy of userspace ioctl data structure.
3392  *
3393  * For debug requests requiring a data buffer, always provide an aligned
3394  * (cache line) buffer to the AFU to appease any alignment requirements.
3395  *
3396  * Return: 0 on success, -errno on failure
3397  */
3398 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3399 			      struct ht_cxlflash_afu_debug *afu_dbg)
3400 {
3401 	struct afu *afu = cfg->afu;
3402 	struct device *dev = &cfg->dev->dev;
3403 	struct sisl_ioarcb rcb;
3404 	struct sisl_ioasa asa;
3405 	char *buf = NULL;
3406 	char *kbuf = NULL;
3407 	void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3408 	u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3409 	u32 ulen = afu_dbg->data_len;
3410 	bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3411 	int rc = 0;
3412 
3413 	if (!afu_is_afu_debug(afu)) {
3414 		rc = -ENOTSUPP;
3415 		goto out;
3416 	}
3417 
3418 	if (ulen) {
3419 		req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3420 
3421 		if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3422 			rc = -EINVAL;
3423 			goto out;
3424 		}
3425 
3426 		buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3427 		if (unlikely(!buf)) {
3428 			rc = -ENOMEM;
3429 			goto out;
3430 		}
3431 
3432 		kbuf = PTR_ALIGN(buf, cache_line_size());
3433 
3434 		if (is_write) {
3435 			req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3436 
3437 			if (copy_from_user(kbuf, ubuf, ulen)) {
3438 				rc = -EFAULT;
3439 				goto out;
3440 			}
3441 		}
3442 	}
3443 
3444 	memset(&rcb, 0, sizeof(rcb));
3445 	memset(&asa, 0, sizeof(asa));
3446 
3447 	rcb.req_flags = req_flags;
3448 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3449 	rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3450 	rcb.ioasa = &asa;
3451 
3452 	if (ulen) {
3453 		rcb.data_len = ulen;
3454 		rcb.data_ea = (uintptr_t)kbuf;
3455 	}
3456 
3457 	rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3458 	memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3459 	       HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3460 
3461 	rc = send_afu_cmd(afu, &rcb);
3462 	if (rc) {
3463 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3464 			__func__, rc, asa.ioasc, asa.afu_extra);
3465 		goto out;
3466 	}
3467 
3468 	if (ulen && !is_write) {
3469 		if (copy_to_user(ubuf, kbuf, ulen))
3470 			rc = -EFAULT;
3471 	}
3472 out:
3473 	kfree(buf);
3474 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3475 	return rc;
3476 }
3477 
3478 /**
3479  * cxlflash_chr_ioctl() - character device IOCTL handler
3480  * @file:	File pointer for this device.
3481  * @cmd:	IOCTL command.
3482  * @arg:	Userspace ioctl data structure.
3483  *
3484  * A read/write semaphore is used to implement a 'drain' of currently
3485  * running ioctls. The read semaphore is taken at the beginning of each
3486  * ioctl thread and released upon concluding execution. Additionally the
3487  * semaphore should be released and then reacquired in any ioctl execution
3488  * path which will wait for an event to occur that is outside the scope of
3489  * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3490  * a thread simply needs to acquire the write semaphore.
3491  *
3492  * Return: 0 on success, -errno on failure
3493  */
3494 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3495 			       unsigned long arg)
3496 {
3497 	typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3498 
3499 	struct cxlflash_cfg *cfg = file->private_data;
3500 	struct device *dev = &cfg->dev->dev;
3501 	char buf[sizeof(union cxlflash_ht_ioctls)];
3502 	void __user *uarg = (void __user *)arg;
3503 	struct ht_cxlflash_hdr *hdr;
3504 	size_t size = 0;
3505 	bool known_ioctl = false;
3506 	int idx = 0;
3507 	int rc = 0;
3508 	hioctl do_ioctl = NULL;
3509 
3510 	static const struct {
3511 		size_t size;
3512 		hioctl ioctl;
3513 	} ioctl_tbl[] = {	/* NOTE: order matters here */
3514 	{ sizeof(struct ht_cxlflash_lun_provision),
3515 		(hioctl)cxlflash_lun_provision },
3516 	{ sizeof(struct ht_cxlflash_afu_debug),
3517 		(hioctl)cxlflash_afu_debug },
3518 	};
3519 
3520 	/* Hold read semaphore so we can drain if needed */
3521 	down_read(&cfg->ioctl_rwsem);
3522 
3523 	dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3524 		__func__, cmd, idx, sizeof(ioctl_tbl));
3525 
3526 	switch (cmd) {
3527 	case HT_CXLFLASH_LUN_PROVISION:
3528 	case HT_CXLFLASH_AFU_DEBUG:
3529 		known_ioctl = true;
3530 		idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3531 		size = ioctl_tbl[idx].size;
3532 		do_ioctl = ioctl_tbl[idx].ioctl;
3533 
3534 		if (likely(do_ioctl))
3535 			break;
3536 
3537 		/* fall through */
3538 	default:
3539 		rc = -EINVAL;
3540 		goto out;
3541 	}
3542 
3543 	if (unlikely(copy_from_user(&buf, uarg, size))) {
3544 		dev_err(dev, "%s: copy_from_user() fail "
3545 			"size=%lu cmd=%d (%s) uarg=%p\n",
3546 			__func__, size, cmd, decode_hioctl(cmd), uarg);
3547 		rc = -EFAULT;
3548 		goto out;
3549 	}
3550 
3551 	hdr = (struct ht_cxlflash_hdr *)&buf;
3552 	if (hdr->version != HT_CXLFLASH_VERSION_0) {
3553 		dev_dbg(dev, "%s: Version %u not supported for %s\n",
3554 			__func__, hdr->version, decode_hioctl(cmd));
3555 		rc = -EINVAL;
3556 		goto out;
3557 	}
3558 
3559 	if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3560 		dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3561 		rc = -EINVAL;
3562 		goto out;
3563 	}
3564 
3565 	rc = do_ioctl(cfg, (void *)&buf);
3566 	if (likely(!rc))
3567 		if (unlikely(copy_to_user(uarg, &buf, size))) {
3568 			dev_err(dev, "%s: copy_to_user() fail "
3569 				"size=%lu cmd=%d (%s) uarg=%p\n",
3570 				__func__, size, cmd, decode_hioctl(cmd), uarg);
3571 			rc = -EFAULT;
3572 		}
3573 
3574 	/* fall through to exit */
3575 
3576 out:
3577 	up_read(&cfg->ioctl_rwsem);
3578 	if (unlikely(rc && known_ioctl))
3579 		dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3580 			__func__, decode_hioctl(cmd), cmd, rc);
3581 	else
3582 		dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3583 			__func__, decode_hioctl(cmd), cmd, rc);
3584 	return rc;
3585 }
3586 
3587 /*
3588  * Character device file operations
3589  */
3590 static const struct file_operations cxlflash_chr_fops = {
3591 	.owner          = THIS_MODULE,
3592 	.open           = cxlflash_chr_open,
3593 	.unlocked_ioctl	= cxlflash_chr_ioctl,
3594 	.compat_ioctl	= compat_ptr_ioctl,
3595 };
3596 
3597 /**
3598  * init_chrdev() - initialize the character device for the host
3599  * @cfg:	Internal structure associated with the host.
3600  *
3601  * Return: 0 on success, -errno on failure
3602  */
3603 static int init_chrdev(struct cxlflash_cfg *cfg)
3604 {
3605 	struct device *dev = &cfg->dev->dev;
3606 	struct device *char_dev;
3607 	dev_t devno;
3608 	int minor;
3609 	int rc = 0;
3610 
3611 	minor = cxlflash_get_minor();
3612 	if (unlikely(minor < 0)) {
3613 		dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3614 		rc = -ENOSPC;
3615 		goto out;
3616 	}
3617 
3618 	devno = MKDEV(cxlflash_major, minor);
3619 	cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3620 
3621 	rc = cdev_add(&cfg->cdev, devno, 1);
3622 	if (rc) {
3623 		dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3624 		goto err1;
3625 	}
3626 
3627 	char_dev = device_create(cxlflash_class, NULL, devno,
3628 				 NULL, "cxlflash%d", minor);
3629 	if (IS_ERR(char_dev)) {
3630 		rc = PTR_ERR(char_dev);
3631 		dev_err(dev, "%s: device_create failed rc=%d\n",
3632 			__func__, rc);
3633 		goto err2;
3634 	}
3635 
3636 	cfg->chardev = char_dev;
3637 out:
3638 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3639 	return rc;
3640 err2:
3641 	cdev_del(&cfg->cdev);
3642 err1:
3643 	cxlflash_put_minor(minor);
3644 	goto out;
3645 }
3646 
3647 /**
3648  * cxlflash_probe() - PCI entry point to add host
3649  * @pdev:	PCI device associated with the host.
3650  * @dev_id:	PCI device id associated with device.
3651  *
3652  * The device will initially start out in a 'probing' state and
3653  * transition to the 'normal' state at the end of a successful
3654  * probe. Should an EEH event occur during probe, the notification
3655  * thread (error_detected()) will wait until the probe handler
3656  * is nearly complete. At that time, the device will be moved to
3657  * a 'probed' state and the EEH thread woken up to drive the slot
3658  * reset and recovery (device moves to 'normal' state). Meanwhile,
3659  * the probe will be allowed to exit successfully.
3660  *
3661  * Return: 0 on success, -errno on failure
3662  */
3663 static int cxlflash_probe(struct pci_dev *pdev,
3664 			  const struct pci_device_id *dev_id)
3665 {
3666 	struct Scsi_Host *host;
3667 	struct cxlflash_cfg *cfg = NULL;
3668 	struct device *dev = &pdev->dev;
3669 	struct dev_dependent_vals *ddv;
3670 	int rc = 0;
3671 	int k;
3672 
3673 	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3674 		__func__, pdev->irq);
3675 
3676 	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3677 	driver_template.max_sectors = ddv->max_sectors;
3678 
3679 	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3680 	if (!host) {
3681 		dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3682 		rc = -ENOMEM;
3683 		goto out;
3684 	}
3685 
3686 	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3687 	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3688 	host->unique_id = host->host_no;
3689 	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3690 
3691 	cfg = shost_priv(host);
3692 	cfg->state = STATE_PROBING;
3693 	cfg->host = host;
3694 	rc = alloc_mem(cfg);
3695 	if (rc) {
3696 		dev_err(dev, "%s: alloc_mem failed\n", __func__);
3697 		rc = -ENOMEM;
3698 		scsi_host_put(cfg->host);
3699 		goto out;
3700 	}
3701 
3702 	cfg->init_state = INIT_STATE_NONE;
3703 	cfg->dev = pdev;
3704 	cfg->cxl_fops = cxlflash_cxl_fops;
3705 	cfg->ops = cxlflash_assign_ops(ddv);
3706 	WARN_ON_ONCE(!cfg->ops);
3707 
3708 	/*
3709 	 * Promoted LUNs move to the top of the LUN table. The rest stay on
3710 	 * the bottom half. The bottom half grows from the end (index = 255),
3711 	 * whereas the top half grows from the beginning (index = 0).
3712 	 *
3713 	 * Initialize the last LUN index for all possible ports.
3714 	 */
3715 	cfg->promote_lun_index = 0;
3716 
3717 	for (k = 0; k < MAX_FC_PORTS; k++)
3718 		cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3719 
3720 	cfg->dev_id = (struct pci_device_id *)dev_id;
3721 
3722 	init_waitqueue_head(&cfg->tmf_waitq);
3723 	init_waitqueue_head(&cfg->reset_waitq);
3724 
3725 	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3726 	cfg->lr_state = LINK_RESET_INVALID;
3727 	cfg->lr_port = -1;
3728 	spin_lock_init(&cfg->tmf_slock);
3729 	mutex_init(&cfg->ctx_tbl_list_mutex);
3730 	mutex_init(&cfg->ctx_recovery_mutex);
3731 	init_rwsem(&cfg->ioctl_rwsem);
3732 	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3733 	INIT_LIST_HEAD(&cfg->lluns);
3734 
3735 	pci_set_drvdata(pdev, cfg);
3736 
3737 	rc = init_pci(cfg);
3738 	if (rc) {
3739 		dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3740 		goto out_remove;
3741 	}
3742 	cfg->init_state = INIT_STATE_PCI;
3743 
3744 	cfg->afu_cookie = cfg->ops->create_afu(pdev);
3745 	if (unlikely(!cfg->afu_cookie)) {
3746 		dev_err(dev, "%s: create_afu failed\n", __func__);
3747 		goto out_remove;
3748 	}
3749 
3750 	rc = init_afu(cfg);
3751 	if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3752 		dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3753 		goto out_remove;
3754 	}
3755 	cfg->init_state = INIT_STATE_AFU;
3756 
3757 	rc = init_scsi(cfg);
3758 	if (rc) {
3759 		dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3760 		goto out_remove;
3761 	}
3762 	cfg->init_state = INIT_STATE_SCSI;
3763 
3764 	rc = init_chrdev(cfg);
3765 	if (rc) {
3766 		dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3767 		goto out_remove;
3768 	}
3769 	cfg->init_state = INIT_STATE_CDEV;
3770 
3771 	if (wq_has_sleeper(&cfg->reset_waitq)) {
3772 		cfg->state = STATE_PROBED;
3773 		wake_up_all(&cfg->reset_waitq);
3774 	} else
3775 		cfg->state = STATE_NORMAL;
3776 out:
3777 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3778 	return rc;
3779 
3780 out_remove:
3781 	cfg->state = STATE_PROBED;
3782 	cxlflash_remove(pdev);
3783 	goto out;
3784 }
3785 
3786 /**
3787  * cxlflash_pci_error_detected() - called when a PCI error is detected
3788  * @pdev:	PCI device struct.
3789  * @state:	PCI channel state.
3790  *
3791  * When an EEH occurs during an active reset, wait until the reset is
3792  * complete and then take action based upon the device state.
3793  *
3794  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3795  */
3796 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3797 						    pci_channel_state_t state)
3798 {
3799 	int rc = 0;
3800 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3801 	struct device *dev = &cfg->dev->dev;
3802 
3803 	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3804 
3805 	switch (state) {
3806 	case pci_channel_io_frozen:
3807 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3808 					     cfg->state != STATE_PROBING);
3809 		if (cfg->state == STATE_FAILTERM)
3810 			return PCI_ERS_RESULT_DISCONNECT;
3811 
3812 		cfg->state = STATE_RESET;
3813 		scsi_block_requests(cfg->host);
3814 		drain_ioctls(cfg);
3815 		rc = cxlflash_mark_contexts_error(cfg);
3816 		if (unlikely(rc))
3817 			dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3818 				__func__, rc);
3819 		term_afu(cfg);
3820 		return PCI_ERS_RESULT_NEED_RESET;
3821 	case pci_channel_io_perm_failure:
3822 		cfg->state = STATE_FAILTERM;
3823 		wake_up_all(&cfg->reset_waitq);
3824 		scsi_unblock_requests(cfg->host);
3825 		return PCI_ERS_RESULT_DISCONNECT;
3826 	default:
3827 		break;
3828 	}
3829 	return PCI_ERS_RESULT_NEED_RESET;
3830 }
3831 
3832 /**
3833  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3834  * @pdev:	PCI device struct.
3835  *
3836  * This routine is called by the pci error recovery code after the PCI
3837  * slot has been reset, just before we should resume normal operations.
3838  *
3839  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3840  */
3841 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3842 {
3843 	int rc = 0;
3844 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3845 	struct device *dev = &cfg->dev->dev;
3846 
3847 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3848 
3849 	rc = init_afu(cfg);
3850 	if (unlikely(rc)) {
3851 		dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3852 		return PCI_ERS_RESULT_DISCONNECT;
3853 	}
3854 
3855 	return PCI_ERS_RESULT_RECOVERED;
3856 }
3857 
3858 /**
3859  * cxlflash_pci_resume() - called when normal operation can resume
3860  * @pdev:	PCI device struct
3861  */
3862 static void cxlflash_pci_resume(struct pci_dev *pdev)
3863 {
3864 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3865 	struct device *dev = &cfg->dev->dev;
3866 
3867 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3868 
3869 	cfg->state = STATE_NORMAL;
3870 	wake_up_all(&cfg->reset_waitq);
3871 	scsi_unblock_requests(cfg->host);
3872 }
3873 
3874 /**
3875  * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3876  * @dev:	Character device.
3877  * @mode:	Mode that can be used to verify access.
3878  *
3879  * Return: Allocated string describing the devtmpfs structure.
3880  */
3881 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3882 {
3883 	return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3884 }
3885 
3886 /**
3887  * cxlflash_class_init() - create character device class
3888  *
3889  * Return: 0 on success, -errno on failure
3890  */
3891 static int cxlflash_class_init(void)
3892 {
3893 	dev_t devno;
3894 	int rc = 0;
3895 
3896 	rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3897 	if (unlikely(rc)) {
3898 		pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3899 		goto out;
3900 	}
3901 
3902 	cxlflash_major = MAJOR(devno);
3903 
3904 	cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3905 	if (IS_ERR(cxlflash_class)) {
3906 		rc = PTR_ERR(cxlflash_class);
3907 		pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3908 		goto err;
3909 	}
3910 
3911 	cxlflash_class->devnode = cxlflash_devnode;
3912 out:
3913 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3914 	return rc;
3915 err:
3916 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3917 	goto out;
3918 }
3919 
3920 /**
3921  * cxlflash_class_exit() - destroy character device class
3922  */
3923 static void cxlflash_class_exit(void)
3924 {
3925 	dev_t devno = MKDEV(cxlflash_major, 0);
3926 
3927 	class_destroy(cxlflash_class);
3928 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3929 }
3930 
3931 static const struct pci_error_handlers cxlflash_err_handler = {
3932 	.error_detected = cxlflash_pci_error_detected,
3933 	.slot_reset = cxlflash_pci_slot_reset,
3934 	.resume = cxlflash_pci_resume,
3935 };
3936 
3937 /*
3938  * PCI device structure
3939  */
3940 static struct pci_driver cxlflash_driver = {
3941 	.name = CXLFLASH_NAME,
3942 	.id_table = cxlflash_pci_table,
3943 	.probe = cxlflash_probe,
3944 	.remove = cxlflash_remove,
3945 	.shutdown = cxlflash_remove,
3946 	.err_handler = &cxlflash_err_handler,
3947 };
3948 
3949 /**
3950  * init_cxlflash() - module entry point
3951  *
3952  * Return: 0 on success, -errno on failure
3953  */
3954 static int __init init_cxlflash(void)
3955 {
3956 	int rc;
3957 
3958 	check_sizes();
3959 	cxlflash_list_init();
3960 	rc = cxlflash_class_init();
3961 	if (unlikely(rc))
3962 		goto out;
3963 
3964 	rc = pci_register_driver(&cxlflash_driver);
3965 	if (unlikely(rc))
3966 		goto err;
3967 out:
3968 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3969 	return rc;
3970 err:
3971 	cxlflash_class_exit();
3972 	goto out;
3973 }
3974 
3975 /**
3976  * exit_cxlflash() - module exit point
3977  */
3978 static void __exit exit_cxlflash(void)
3979 {
3980 	cxlflash_term_global_luns();
3981 	cxlflash_free_errpage();
3982 
3983 	pci_unregister_driver(&cxlflash_driver);
3984 	cxlflash_class_exit();
3985 }
3986 
3987 module_init(init_cxlflash);
3988 module_exit(exit_cxlflash);
3989