1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/delay.h> 16 #include <linux/list.h> 17 #include <linux/module.h> 18 #include <linux/pci.h> 19 20 #include <asm/unaligned.h> 21 22 #include <scsi/scsi_cmnd.h> 23 #include <scsi/scsi_host.h> 24 #include <uapi/scsi/cxlflash_ioctl.h> 25 26 #include "main.h" 27 #include "sislite.h" 28 #include "common.h" 29 30 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); 31 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); 32 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); 33 MODULE_LICENSE("GPL"); 34 35 static struct class *cxlflash_class; 36 static u32 cxlflash_major; 37 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 38 39 /** 40 * process_cmd_err() - command error handler 41 * @cmd: AFU command that experienced the error. 42 * @scp: SCSI command associated with the AFU command in error. 43 * 44 * Translates error bits from AFU command to SCSI command results. 45 */ 46 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) 47 { 48 struct afu *afu = cmd->parent; 49 struct cxlflash_cfg *cfg = afu->parent; 50 struct device *dev = &cfg->dev->dev; 51 struct sisl_ioarcb *ioarcb; 52 struct sisl_ioasa *ioasa; 53 u32 resid; 54 55 if (unlikely(!cmd)) 56 return; 57 58 ioarcb = &(cmd->rcb); 59 ioasa = &(cmd->sa); 60 61 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { 62 resid = ioasa->resid; 63 scsi_set_resid(scp, resid); 64 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n", 65 __func__, cmd, scp, resid); 66 } 67 68 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { 69 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n", 70 __func__, cmd, scp); 71 scp->result = (DID_ERROR << 16); 72 } 73 74 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x " 75 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__, 76 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, 77 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); 78 79 if (ioasa->rc.scsi_rc) { 80 /* We have a SCSI status */ 81 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { 82 memcpy(scp->sense_buffer, ioasa->sense_data, 83 SISL_SENSE_DATA_LEN); 84 scp->result = ioasa->rc.scsi_rc; 85 } else 86 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); 87 } 88 89 /* 90 * We encountered an error. Set scp->result based on nature 91 * of error. 92 */ 93 if (ioasa->rc.fc_rc) { 94 /* We have an FC status */ 95 switch (ioasa->rc.fc_rc) { 96 case SISL_FC_RC_LINKDOWN: 97 scp->result = (DID_REQUEUE << 16); 98 break; 99 case SISL_FC_RC_RESID: 100 /* This indicates an FCP resid underrun */ 101 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { 102 /* If the SISL_RC_FLAGS_OVERRUN flag was set, 103 * then we will handle this error else where. 104 * If not then we must handle it here. 105 * This is probably an AFU bug. 106 */ 107 scp->result = (DID_ERROR << 16); 108 } 109 break; 110 case SISL_FC_RC_RESIDERR: 111 /* Resid mismatch between adapter and device */ 112 case SISL_FC_RC_TGTABORT: 113 case SISL_FC_RC_ABORTOK: 114 case SISL_FC_RC_ABORTFAIL: 115 case SISL_FC_RC_NOLOGI: 116 case SISL_FC_RC_ABORTPEND: 117 case SISL_FC_RC_WRABORTPEND: 118 case SISL_FC_RC_NOEXP: 119 case SISL_FC_RC_INUSE: 120 scp->result = (DID_ERROR << 16); 121 break; 122 } 123 } 124 125 if (ioasa->rc.afu_rc) { 126 /* We have an AFU error */ 127 switch (ioasa->rc.afu_rc) { 128 case SISL_AFU_RC_NO_CHANNELS: 129 scp->result = (DID_NO_CONNECT << 16); 130 break; 131 case SISL_AFU_RC_DATA_DMA_ERR: 132 switch (ioasa->afu_extra) { 133 case SISL_AFU_DMA_ERR_PAGE_IN: 134 /* Retry */ 135 scp->result = (DID_IMM_RETRY << 16); 136 break; 137 case SISL_AFU_DMA_ERR_INVALID_EA: 138 default: 139 scp->result = (DID_ERROR << 16); 140 } 141 break; 142 case SISL_AFU_RC_OUT_OF_DATA_BUFS: 143 /* Retry */ 144 scp->result = (DID_ALLOC_FAILURE << 16); 145 break; 146 default: 147 scp->result = (DID_ERROR << 16); 148 } 149 } 150 } 151 152 /** 153 * cmd_complete() - command completion handler 154 * @cmd: AFU command that has completed. 155 * 156 * For SCSI commands this routine prepares and submits commands that have 157 * either completed or timed out to the SCSI stack. For internal commands 158 * (TMF or AFU), this routine simply notifies the originator that the 159 * command has completed. 160 */ 161 static void cmd_complete(struct afu_cmd *cmd) 162 { 163 struct scsi_cmnd *scp; 164 ulong lock_flags; 165 struct afu *afu = cmd->parent; 166 struct cxlflash_cfg *cfg = afu->parent; 167 struct device *dev = &cfg->dev->dev; 168 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 169 170 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 171 list_del(&cmd->list); 172 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 173 174 if (cmd->scp) { 175 scp = cmd->scp; 176 if (unlikely(cmd->sa.ioasc)) 177 process_cmd_err(cmd, scp); 178 else 179 scp->result = (DID_OK << 16); 180 181 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n", 182 __func__, scp, scp->result, cmd->sa.ioasc); 183 scp->scsi_done(scp); 184 } else if (cmd->cmd_tmf) { 185 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 186 cfg->tmf_active = false; 187 wake_up_all_locked(&cfg->tmf_waitq); 188 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 189 } else 190 complete(&cmd->cevent); 191 } 192 193 /** 194 * flush_pending_cmds() - flush all pending commands on this hardware queue 195 * @hwq: Hardware queue to flush. 196 * 197 * The hardware send queue lock associated with this hardware queue must be 198 * held when calling this routine. 199 */ 200 static void flush_pending_cmds(struct hwq *hwq) 201 { 202 struct cxlflash_cfg *cfg = hwq->afu->parent; 203 struct afu_cmd *cmd, *tmp; 204 struct scsi_cmnd *scp; 205 ulong lock_flags; 206 207 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) { 208 /* Bypass command when on a doneq, cmd_complete() will handle */ 209 if (!list_empty(&cmd->queue)) 210 continue; 211 212 list_del(&cmd->list); 213 214 if (cmd->scp) { 215 scp = cmd->scp; 216 scp->result = (DID_IMM_RETRY << 16); 217 scp->scsi_done(scp); 218 } else { 219 cmd->cmd_aborted = true; 220 221 if (cmd->cmd_tmf) { 222 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 223 cfg->tmf_active = false; 224 wake_up_all_locked(&cfg->tmf_waitq); 225 spin_unlock_irqrestore(&cfg->tmf_slock, 226 lock_flags); 227 } else 228 complete(&cmd->cevent); 229 } 230 } 231 } 232 233 /** 234 * context_reset() - reset context via specified register 235 * @hwq: Hardware queue owning the context to be reset. 236 * @reset_reg: MMIO register to perform reset. 237 * 238 * When the reset is successful, the SISLite specification guarantees that 239 * the AFU has aborted all currently pending I/O. Accordingly, these commands 240 * must be flushed. 241 * 242 * Return: 0 on success, -errno on failure 243 */ 244 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg) 245 { 246 struct cxlflash_cfg *cfg = hwq->afu->parent; 247 struct device *dev = &cfg->dev->dev; 248 int rc = -ETIMEDOUT; 249 int nretry = 0; 250 u64 val = 0x1; 251 ulong lock_flags; 252 253 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq); 254 255 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 256 257 writeq_be(val, reset_reg); 258 do { 259 val = readq_be(reset_reg); 260 if ((val & 0x1) == 0x0) { 261 rc = 0; 262 break; 263 } 264 265 /* Double delay each time */ 266 udelay(1 << nretry); 267 } while (nretry++ < MC_ROOM_RETRY_CNT); 268 269 if (!rc) 270 flush_pending_cmds(hwq); 271 272 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 273 274 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n", 275 __func__, rc, val, nretry); 276 return rc; 277 } 278 279 /** 280 * context_reset_ioarrin() - reset context via IOARRIN register 281 * @hwq: Hardware queue owning the context to be reset. 282 * 283 * Return: 0 on success, -errno on failure 284 */ 285 static int context_reset_ioarrin(struct hwq *hwq) 286 { 287 return context_reset(hwq, &hwq->host_map->ioarrin); 288 } 289 290 /** 291 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register 292 * @hwq: Hardware queue owning the context to be reset. 293 * 294 * Return: 0 on success, -errno on failure 295 */ 296 static int context_reset_sq(struct hwq *hwq) 297 { 298 return context_reset(hwq, &hwq->host_map->sq_ctx_reset); 299 } 300 301 /** 302 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register 303 * @afu: AFU associated with the host. 304 * @cmd: AFU command to send. 305 * 306 * Return: 307 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 308 */ 309 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd) 310 { 311 struct cxlflash_cfg *cfg = afu->parent; 312 struct device *dev = &cfg->dev->dev; 313 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 314 int rc = 0; 315 s64 room; 316 ulong lock_flags; 317 318 /* 319 * To avoid the performance penalty of MMIO, spread the update of 320 * 'room' over multiple commands. 321 */ 322 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 323 if (--hwq->room < 0) { 324 room = readq_be(&hwq->host_map->cmd_room); 325 if (room <= 0) { 326 dev_dbg_ratelimited(dev, "%s: no cmd_room to send " 327 "0x%02X, room=0x%016llX\n", 328 __func__, cmd->rcb.cdb[0], room); 329 hwq->room = 0; 330 rc = SCSI_MLQUEUE_HOST_BUSY; 331 goto out; 332 } 333 hwq->room = room - 1; 334 } 335 336 list_add(&cmd->list, &hwq->pending_cmds); 337 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin); 338 out: 339 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 340 dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", 341 __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc); 342 return rc; 343 } 344 345 /** 346 * send_cmd_sq() - sends an AFU command via SQ ring 347 * @afu: AFU associated with the host. 348 * @cmd: AFU command to send. 349 * 350 * Return: 351 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 352 */ 353 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd) 354 { 355 struct cxlflash_cfg *cfg = afu->parent; 356 struct device *dev = &cfg->dev->dev; 357 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 358 int rc = 0; 359 int newval; 360 ulong lock_flags; 361 362 newval = atomic_dec_if_positive(&hwq->hsq_credits); 363 if (newval <= 0) { 364 rc = SCSI_MLQUEUE_HOST_BUSY; 365 goto out; 366 } 367 368 cmd->rcb.ioasa = &cmd->sa; 369 370 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 371 372 *hwq->hsq_curr = cmd->rcb; 373 if (hwq->hsq_curr < hwq->hsq_end) 374 hwq->hsq_curr++; 375 else 376 hwq->hsq_curr = hwq->hsq_start; 377 378 list_add(&cmd->list, &hwq->pending_cmds); 379 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail); 380 381 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 382 out: 383 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p " 384 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len, 385 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr, 386 readq_be(&hwq->host_map->sq_head), 387 readq_be(&hwq->host_map->sq_tail)); 388 return rc; 389 } 390 391 /** 392 * wait_resp() - polls for a response or timeout to a sent AFU command 393 * @afu: AFU associated with the host. 394 * @cmd: AFU command that was sent. 395 * 396 * Return: 0 on success, -errno on failure 397 */ 398 static int wait_resp(struct afu *afu, struct afu_cmd *cmd) 399 { 400 struct cxlflash_cfg *cfg = afu->parent; 401 struct device *dev = &cfg->dev->dev; 402 int rc = 0; 403 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); 404 405 timeout = wait_for_completion_timeout(&cmd->cevent, timeout); 406 if (!timeout) 407 rc = -ETIMEDOUT; 408 409 if (cmd->cmd_aborted) 410 rc = -EAGAIN; 411 412 if (unlikely(cmd->sa.ioasc != 0)) { 413 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n", 414 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc); 415 rc = -EIO; 416 } 417 418 return rc; 419 } 420 421 /** 422 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command 423 * @host: SCSI host associated with device. 424 * @scp: SCSI command to send. 425 * @afu: SCSI command to send. 426 * 427 * Hashes a command based upon the hardware queue mode. 428 * 429 * Return: Trusted index of target hardware queue 430 */ 431 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp, 432 struct afu *afu) 433 { 434 u32 tag; 435 u32 hwq = 0; 436 437 if (afu->num_hwqs == 1) 438 return 0; 439 440 switch (afu->hwq_mode) { 441 case HWQ_MODE_RR: 442 hwq = afu->hwq_rr_count++ % afu->num_hwqs; 443 break; 444 case HWQ_MODE_TAG: 445 tag = blk_mq_unique_tag(scp->request); 446 hwq = blk_mq_unique_tag_to_hwq(tag); 447 break; 448 case HWQ_MODE_CPU: 449 hwq = smp_processor_id() % afu->num_hwqs; 450 break; 451 default: 452 WARN_ON_ONCE(1); 453 } 454 455 return hwq; 456 } 457 458 /** 459 * send_tmf() - sends a Task Management Function (TMF) 460 * @cfg: Internal structure associated with the host. 461 * @sdev: SCSI device destined for TMF. 462 * @tmfcmd: TMF command to send. 463 * 464 * Return: 465 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure 466 */ 467 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev, 468 u64 tmfcmd) 469 { 470 struct afu *afu = cfg->afu; 471 struct afu_cmd *cmd = NULL; 472 struct device *dev = &cfg->dev->dev; 473 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 474 bool needs_deletion = false; 475 char *buf = NULL; 476 ulong lock_flags; 477 int rc = 0; 478 ulong to; 479 480 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 481 if (unlikely(!buf)) { 482 dev_err(dev, "%s: no memory for command\n", __func__); 483 rc = -ENOMEM; 484 goto out; 485 } 486 487 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 488 INIT_LIST_HEAD(&cmd->queue); 489 490 /* When Task Management Function is active do not send another */ 491 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 492 if (cfg->tmf_active) 493 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 494 !cfg->tmf_active, 495 cfg->tmf_slock); 496 cfg->tmf_active = true; 497 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 498 499 cmd->parent = afu; 500 cmd->cmd_tmf = true; 501 cmd->hwq_index = hwq->index; 502 503 cmd->rcb.ctx_id = hwq->ctx_hndl; 504 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 505 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel); 506 cmd->rcb.lun_id = lun_to_lunid(sdev->lun); 507 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 508 SISL_REQ_FLAGS_SUP_UNDERRUN | 509 SISL_REQ_FLAGS_TMF_CMD); 510 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); 511 512 rc = afu->send_cmd(afu, cmd); 513 if (unlikely(rc)) { 514 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 515 cfg->tmf_active = false; 516 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 517 goto out; 518 } 519 520 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 521 to = msecs_to_jiffies(5000); 522 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, 523 !cfg->tmf_active, 524 cfg->tmf_slock, 525 to); 526 if (!to) { 527 dev_err(dev, "%s: TMF timed out\n", __func__); 528 rc = -ETIMEDOUT; 529 needs_deletion = true; 530 } else if (cmd->cmd_aborted) { 531 dev_err(dev, "%s: TMF aborted\n", __func__); 532 rc = -EAGAIN; 533 } else if (cmd->sa.ioasc) { 534 dev_err(dev, "%s: TMF failed ioasc=%08x\n", 535 __func__, cmd->sa.ioasc); 536 rc = -EIO; 537 } 538 cfg->tmf_active = false; 539 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 540 541 if (needs_deletion) { 542 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 543 list_del(&cmd->list); 544 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 545 } 546 out: 547 kfree(buf); 548 return rc; 549 } 550 551 /** 552 * cxlflash_driver_info() - information handler for this host driver 553 * @host: SCSI host associated with device. 554 * 555 * Return: A string describing the device. 556 */ 557 static const char *cxlflash_driver_info(struct Scsi_Host *host) 558 { 559 return CXLFLASH_ADAPTER_NAME; 560 } 561 562 /** 563 * cxlflash_queuecommand() - sends a mid-layer request 564 * @host: SCSI host associated with device. 565 * @scp: SCSI command to send. 566 * 567 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 568 */ 569 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) 570 { 571 struct cxlflash_cfg *cfg = shost_priv(host); 572 struct afu *afu = cfg->afu; 573 struct device *dev = &cfg->dev->dev; 574 struct afu_cmd *cmd = sc_to_afuci(scp); 575 struct scatterlist *sg = scsi_sglist(scp); 576 int hwq_index = cmd_to_target_hwq(host, scp, afu); 577 struct hwq *hwq = get_hwq(afu, hwq_index); 578 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN; 579 ulong lock_flags; 580 int rc = 0; 581 582 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " 583 "cdb=(%08x-%08x-%08x-%08x)\n", 584 __func__, scp, host->host_no, scp->device->channel, 585 scp->device->id, scp->device->lun, 586 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 587 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 588 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 589 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 590 591 /* 592 * If a Task Management Function is active, wait for it to complete 593 * before continuing with regular commands. 594 */ 595 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 596 if (cfg->tmf_active) { 597 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 598 rc = SCSI_MLQUEUE_HOST_BUSY; 599 goto out; 600 } 601 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 602 603 switch (cfg->state) { 604 case STATE_PROBING: 605 case STATE_PROBED: 606 case STATE_RESET: 607 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__); 608 rc = SCSI_MLQUEUE_HOST_BUSY; 609 goto out; 610 case STATE_FAILTERM: 611 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__); 612 scp->result = (DID_NO_CONNECT << 16); 613 scp->scsi_done(scp); 614 rc = 0; 615 goto out; 616 default: 617 atomic_inc(&afu->cmds_active); 618 break; 619 } 620 621 if (likely(sg)) { 622 cmd->rcb.data_len = sg->length; 623 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg); 624 } 625 626 cmd->scp = scp; 627 cmd->parent = afu; 628 cmd->hwq_index = hwq_index; 629 630 cmd->sa.ioasc = 0; 631 cmd->rcb.ctx_id = hwq->ctx_hndl; 632 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 633 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel); 634 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 635 636 if (scp->sc_data_direction == DMA_TO_DEVICE) 637 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 638 639 cmd->rcb.req_flags = req_flags; 640 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); 641 642 rc = afu->send_cmd(afu, cmd); 643 atomic_dec(&afu->cmds_active); 644 out: 645 return rc; 646 } 647 648 /** 649 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe 650 * @cfg: Internal structure associated with the host. 651 */ 652 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) 653 { 654 struct pci_dev *pdev = cfg->dev; 655 656 if (pci_channel_offline(pdev)) 657 wait_event_timeout(cfg->reset_waitq, 658 !pci_channel_offline(pdev), 659 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); 660 } 661 662 /** 663 * free_mem() - free memory associated with the AFU 664 * @cfg: Internal structure associated with the host. 665 */ 666 static void free_mem(struct cxlflash_cfg *cfg) 667 { 668 struct afu *afu = cfg->afu; 669 670 if (cfg->afu) { 671 free_pages((ulong)afu, get_order(sizeof(struct afu))); 672 cfg->afu = NULL; 673 } 674 } 675 676 /** 677 * cxlflash_reset_sync() - synchronizing point for asynchronous resets 678 * @cfg: Internal structure associated with the host. 679 */ 680 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg) 681 { 682 if (cfg->async_reset_cookie == 0) 683 return; 684 685 /* Wait until all async calls prior to this cookie have completed */ 686 async_synchronize_cookie(cfg->async_reset_cookie + 1); 687 cfg->async_reset_cookie = 0; 688 } 689 690 /** 691 * stop_afu() - stops the AFU command timers and unmaps the MMIO space 692 * @cfg: Internal structure associated with the host. 693 * 694 * Safe to call with AFU in a partially allocated/initialized state. 695 * 696 * Cancels scheduled worker threads, waits for any active internal AFU 697 * commands to timeout, disables IRQ polling and then unmaps the MMIO space. 698 */ 699 static void stop_afu(struct cxlflash_cfg *cfg) 700 { 701 struct afu *afu = cfg->afu; 702 struct hwq *hwq; 703 int i; 704 705 cancel_work_sync(&cfg->work_q); 706 if (!current_is_async()) 707 cxlflash_reset_sync(cfg); 708 709 if (likely(afu)) { 710 while (atomic_read(&afu->cmds_active)) 711 ssleep(1); 712 713 if (afu_is_irqpoll_enabled(afu)) { 714 for (i = 0; i < afu->num_hwqs; i++) { 715 hwq = get_hwq(afu, i); 716 717 irq_poll_disable(&hwq->irqpoll); 718 } 719 } 720 721 if (likely(afu->afu_map)) { 722 cfg->ops->psa_unmap(afu->afu_map); 723 afu->afu_map = NULL; 724 } 725 } 726 } 727 728 /** 729 * term_intr() - disables all AFU interrupts 730 * @cfg: Internal structure associated with the host. 731 * @level: Depth of allocation, where to begin waterfall tear down. 732 * @index: Index of the hardware queue. 733 * 734 * Safe to call with AFU/MC in partially allocated/initialized state. 735 */ 736 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level, 737 u32 index) 738 { 739 struct afu *afu = cfg->afu; 740 struct device *dev = &cfg->dev->dev; 741 struct hwq *hwq; 742 743 if (!afu) { 744 dev_err(dev, "%s: returning with NULL afu\n", __func__); 745 return; 746 } 747 748 hwq = get_hwq(afu, index); 749 750 if (!hwq->ctx_cookie) { 751 dev_err(dev, "%s: returning with NULL MC\n", __func__); 752 return; 753 } 754 755 switch (level) { 756 case UNMAP_THREE: 757 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 758 if (index == PRIMARY_HWQ) 759 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq); 760 case UNMAP_TWO: 761 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq); 762 case UNMAP_ONE: 763 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq); 764 case FREE_IRQ: 765 cfg->ops->free_afu_irqs(hwq->ctx_cookie); 766 /* fall through */ 767 case UNDO_NOOP: 768 /* No action required */ 769 break; 770 } 771 } 772 773 /** 774 * term_mc() - terminates the master context 775 * @cfg: Internal structure associated with the host. 776 * @index: Index of the hardware queue. 777 * 778 * Safe to call with AFU/MC in partially allocated/initialized state. 779 */ 780 static void term_mc(struct cxlflash_cfg *cfg, u32 index) 781 { 782 struct afu *afu = cfg->afu; 783 struct device *dev = &cfg->dev->dev; 784 struct hwq *hwq; 785 ulong lock_flags; 786 787 if (!afu) { 788 dev_err(dev, "%s: returning with NULL afu\n", __func__); 789 return; 790 } 791 792 hwq = get_hwq(afu, index); 793 794 if (!hwq->ctx_cookie) { 795 dev_err(dev, "%s: returning with NULL MC\n", __func__); 796 return; 797 } 798 799 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie)); 800 if (index != PRIMARY_HWQ) 801 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie)); 802 hwq->ctx_cookie = NULL; 803 804 spin_lock_irqsave(&hwq->hrrq_slock, lock_flags); 805 hwq->hrrq_online = false; 806 spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags); 807 808 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 809 flush_pending_cmds(hwq); 810 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 811 } 812 813 /** 814 * term_afu() - terminates the AFU 815 * @cfg: Internal structure associated with the host. 816 * 817 * Safe to call with AFU/MC in partially allocated/initialized state. 818 */ 819 static void term_afu(struct cxlflash_cfg *cfg) 820 { 821 struct device *dev = &cfg->dev->dev; 822 int k; 823 824 /* 825 * Tear down is carefully orchestrated to ensure 826 * no interrupts can come in when the problem state 827 * area is unmapped. 828 * 829 * 1) Disable all AFU interrupts for each master 830 * 2) Unmap the problem state area 831 * 3) Stop each master context 832 */ 833 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 834 term_intr(cfg, UNMAP_THREE, k); 835 836 stop_afu(cfg); 837 838 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 839 term_mc(cfg, k); 840 841 dev_dbg(dev, "%s: returning\n", __func__); 842 } 843 844 /** 845 * notify_shutdown() - notifies device of pending shutdown 846 * @cfg: Internal structure associated with the host. 847 * @wait: Whether to wait for shutdown processing to complete. 848 * 849 * This function will notify the AFU that the adapter is being shutdown 850 * and will wait for shutdown processing to complete if wait is true. 851 * This notification should flush pending I/Os to the device and halt 852 * further I/Os until the next AFU reset is issued and device restarted. 853 */ 854 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) 855 { 856 struct afu *afu = cfg->afu; 857 struct device *dev = &cfg->dev->dev; 858 struct dev_dependent_vals *ddv; 859 __be64 __iomem *fc_port_regs; 860 u64 reg, status; 861 int i, retry_cnt = 0; 862 863 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; 864 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) 865 return; 866 867 if (!afu || !afu->afu_map) { 868 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__); 869 return; 870 } 871 872 /* Notify AFU */ 873 for (i = 0; i < cfg->num_fc_ports; i++) { 874 fc_port_regs = get_fc_port_regs(cfg, i); 875 876 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 877 reg |= SISL_FC_SHUTDOWN_NORMAL; 878 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 879 } 880 881 if (!wait) 882 return; 883 884 /* Wait up to 1.5 seconds for shutdown processing to complete */ 885 for (i = 0; i < cfg->num_fc_ports; i++) { 886 fc_port_regs = get_fc_port_regs(cfg, i); 887 retry_cnt = 0; 888 889 while (true) { 890 status = readq_be(&fc_port_regs[FC_STATUS / 8]); 891 if (status & SISL_STATUS_SHUTDOWN_COMPLETE) 892 break; 893 if (++retry_cnt >= MC_RETRY_CNT) { 894 dev_dbg(dev, "%s: port %d shutdown processing " 895 "not yet completed\n", __func__, i); 896 break; 897 } 898 msleep(100 * retry_cnt); 899 } 900 } 901 } 902 903 /** 904 * cxlflash_get_minor() - gets the first available minor number 905 * 906 * Return: Unique minor number that can be used to create the character device. 907 */ 908 static int cxlflash_get_minor(void) 909 { 910 int minor; 911 long bit; 912 913 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 914 if (bit >= CXLFLASH_MAX_ADAPTERS) 915 return -1; 916 917 minor = bit & MINORMASK; 918 set_bit(minor, cxlflash_minor); 919 return minor; 920 } 921 922 /** 923 * cxlflash_put_minor() - releases the minor number 924 * @minor: Minor number that is no longer needed. 925 */ 926 static void cxlflash_put_minor(int minor) 927 { 928 clear_bit(minor, cxlflash_minor); 929 } 930 931 /** 932 * cxlflash_release_chrdev() - release the character device for the host 933 * @cfg: Internal structure associated with the host. 934 */ 935 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg) 936 { 937 device_unregister(cfg->chardev); 938 cfg->chardev = NULL; 939 cdev_del(&cfg->cdev); 940 cxlflash_put_minor(MINOR(cfg->cdev.dev)); 941 } 942 943 /** 944 * cxlflash_remove() - PCI entry point to tear down host 945 * @pdev: PCI device associated with the host. 946 * 947 * Safe to use as a cleanup in partially allocated/initialized state. Note that 948 * the reset_waitq is flushed as part of the stop/termination of user contexts. 949 */ 950 static void cxlflash_remove(struct pci_dev *pdev) 951 { 952 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 953 struct device *dev = &pdev->dev; 954 ulong lock_flags; 955 956 if (!pci_is_enabled(pdev)) { 957 dev_dbg(dev, "%s: Device is disabled\n", __func__); 958 return; 959 } 960 961 /* Yield to running recovery threads before continuing with remove */ 962 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 963 cfg->state != STATE_PROBING); 964 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 965 if (cfg->tmf_active) 966 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 967 !cfg->tmf_active, 968 cfg->tmf_slock); 969 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 970 971 /* Notify AFU and wait for shutdown processing to complete */ 972 notify_shutdown(cfg, true); 973 974 cfg->state = STATE_FAILTERM; 975 cxlflash_stop_term_user_contexts(cfg); 976 977 switch (cfg->init_state) { 978 case INIT_STATE_CDEV: 979 cxlflash_release_chrdev(cfg); 980 case INIT_STATE_SCSI: 981 cxlflash_term_local_luns(cfg); 982 scsi_remove_host(cfg->host); 983 case INIT_STATE_AFU: 984 term_afu(cfg); 985 case INIT_STATE_PCI: 986 cfg->ops->destroy_afu(cfg->afu_cookie); 987 pci_disable_device(pdev); 988 case INIT_STATE_NONE: 989 free_mem(cfg); 990 scsi_host_put(cfg->host); 991 break; 992 } 993 994 dev_dbg(dev, "%s: returning\n", __func__); 995 } 996 997 /** 998 * alloc_mem() - allocates the AFU and its command pool 999 * @cfg: Internal structure associated with the host. 1000 * 1001 * A partially allocated state remains on failure. 1002 * 1003 * Return: 1004 * 0 on success 1005 * -ENOMEM on failure to allocate memory 1006 */ 1007 static int alloc_mem(struct cxlflash_cfg *cfg) 1008 { 1009 int rc = 0; 1010 struct device *dev = &cfg->dev->dev; 1011 1012 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */ 1013 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1014 get_order(sizeof(struct afu))); 1015 if (unlikely(!cfg->afu)) { 1016 dev_err(dev, "%s: cannot get %d free pages\n", 1017 __func__, get_order(sizeof(struct afu))); 1018 rc = -ENOMEM; 1019 goto out; 1020 } 1021 cfg->afu->parent = cfg; 1022 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS; 1023 cfg->afu->afu_map = NULL; 1024 out: 1025 return rc; 1026 } 1027 1028 /** 1029 * init_pci() - initializes the host as a PCI device 1030 * @cfg: Internal structure associated with the host. 1031 * 1032 * Return: 0 on success, -errno on failure 1033 */ 1034 static int init_pci(struct cxlflash_cfg *cfg) 1035 { 1036 struct pci_dev *pdev = cfg->dev; 1037 struct device *dev = &cfg->dev->dev; 1038 int rc = 0; 1039 1040 rc = pci_enable_device(pdev); 1041 if (rc || pci_channel_offline(pdev)) { 1042 if (pci_channel_offline(pdev)) { 1043 cxlflash_wait_for_pci_err_recovery(cfg); 1044 rc = pci_enable_device(pdev); 1045 } 1046 1047 if (rc) { 1048 dev_err(dev, "%s: Cannot enable adapter\n", __func__); 1049 cxlflash_wait_for_pci_err_recovery(cfg); 1050 goto out; 1051 } 1052 } 1053 1054 out: 1055 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1056 return rc; 1057 } 1058 1059 /** 1060 * init_scsi() - adds the host to the SCSI stack and kicks off host scan 1061 * @cfg: Internal structure associated with the host. 1062 * 1063 * Return: 0 on success, -errno on failure 1064 */ 1065 static int init_scsi(struct cxlflash_cfg *cfg) 1066 { 1067 struct pci_dev *pdev = cfg->dev; 1068 struct device *dev = &cfg->dev->dev; 1069 int rc = 0; 1070 1071 rc = scsi_add_host(cfg->host, &pdev->dev); 1072 if (rc) { 1073 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc); 1074 goto out; 1075 } 1076 1077 scsi_scan_host(cfg->host); 1078 1079 out: 1080 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1081 return rc; 1082 } 1083 1084 /** 1085 * set_port_online() - transitions the specified host FC port to online state 1086 * @fc_regs: Top of MMIO region defined for specified port. 1087 * 1088 * The provided MMIO region must be mapped prior to call. Online state means 1089 * that the FC link layer has synced, completed the handshaking process, and 1090 * is ready for login to start. 1091 */ 1092 static void set_port_online(__be64 __iomem *fc_regs) 1093 { 1094 u64 cmdcfg; 1095 1096 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1097 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ 1098 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ 1099 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1100 } 1101 1102 /** 1103 * set_port_offline() - transitions the specified host FC port to offline state 1104 * @fc_regs: Top of MMIO region defined for specified port. 1105 * 1106 * The provided MMIO region must be mapped prior to call. 1107 */ 1108 static void set_port_offline(__be64 __iomem *fc_regs) 1109 { 1110 u64 cmdcfg; 1111 1112 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1113 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ 1114 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ 1115 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1116 } 1117 1118 /** 1119 * wait_port_online() - waits for the specified host FC port come online 1120 * @fc_regs: Top of MMIO region defined for specified port. 1121 * @delay_us: Number of microseconds to delay between reading port status. 1122 * @nretry: Number of cycles to retry reading port status. 1123 * 1124 * The provided MMIO region must be mapped prior to call. This will timeout 1125 * when the cable is not plugged in. 1126 * 1127 * Return: 1128 * TRUE (1) when the specified port is online 1129 * FALSE (0) when the specified port fails to come online after timeout 1130 */ 1131 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1132 { 1133 u64 status; 1134 1135 WARN_ON(delay_us < 1000); 1136 1137 do { 1138 msleep(delay_us / 1000); 1139 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1140 if (status == U64_MAX) 1141 nretry /= 2; 1142 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && 1143 nretry--); 1144 1145 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); 1146 } 1147 1148 /** 1149 * wait_port_offline() - waits for the specified host FC port go offline 1150 * @fc_regs: Top of MMIO region defined for specified port. 1151 * @delay_us: Number of microseconds to delay between reading port status. 1152 * @nretry: Number of cycles to retry reading port status. 1153 * 1154 * The provided MMIO region must be mapped prior to call. 1155 * 1156 * Return: 1157 * TRUE (1) when the specified port is offline 1158 * FALSE (0) when the specified port fails to go offline after timeout 1159 */ 1160 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1161 { 1162 u64 status; 1163 1164 WARN_ON(delay_us < 1000); 1165 1166 do { 1167 msleep(delay_us / 1000); 1168 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1169 if (status == U64_MAX) 1170 nretry /= 2; 1171 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && 1172 nretry--); 1173 1174 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); 1175 } 1176 1177 /** 1178 * afu_set_wwpn() - configures the WWPN for the specified host FC port 1179 * @afu: AFU associated with the host that owns the specified FC port. 1180 * @port: Port number being configured. 1181 * @fc_regs: Top of MMIO region defined for specified port. 1182 * @wwpn: The world-wide-port-number previously discovered for port. 1183 * 1184 * The provided MMIO region must be mapped prior to call. As part of the 1185 * sequence to configure the WWPN, the port is toggled offline and then back 1186 * online. This toggling action can cause this routine to delay up to a few 1187 * seconds. When configured to use the internal LUN feature of the AFU, a 1188 * failure to come online is overridden. 1189 */ 1190 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, 1191 u64 wwpn) 1192 { 1193 struct cxlflash_cfg *cfg = afu->parent; 1194 struct device *dev = &cfg->dev->dev; 1195 1196 set_port_offline(fc_regs); 1197 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1198 FC_PORT_STATUS_RETRY_CNT)) { 1199 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n", 1200 __func__, port); 1201 } 1202 1203 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); 1204 1205 set_port_online(fc_regs); 1206 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1207 FC_PORT_STATUS_RETRY_CNT)) { 1208 dev_dbg(dev, "%s: wait on port %d to go online timed out\n", 1209 __func__, port); 1210 } 1211 } 1212 1213 /** 1214 * afu_link_reset() - resets the specified host FC port 1215 * @afu: AFU associated with the host that owns the specified FC port. 1216 * @port: Port number being configured. 1217 * @fc_regs: Top of MMIO region defined for specified port. 1218 * 1219 * The provided MMIO region must be mapped prior to call. The sequence to 1220 * reset the port involves toggling it offline and then back online. This 1221 * action can cause this routine to delay up to a few seconds. An effort 1222 * is made to maintain link with the device by switching to host to use 1223 * the alternate port exclusively while the reset takes place. 1224 * failure to come online is overridden. 1225 */ 1226 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) 1227 { 1228 struct cxlflash_cfg *cfg = afu->parent; 1229 struct device *dev = &cfg->dev->dev; 1230 u64 port_sel; 1231 1232 /* first switch the AFU to the other links, if any */ 1233 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); 1234 port_sel &= ~(1ULL << port); 1235 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1236 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1237 1238 set_port_offline(fc_regs); 1239 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1240 FC_PORT_STATUS_RETRY_CNT)) 1241 dev_err(dev, "%s: wait on port %d to go offline timed out\n", 1242 __func__, port); 1243 1244 set_port_online(fc_regs); 1245 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1246 FC_PORT_STATUS_RETRY_CNT)) 1247 dev_err(dev, "%s: wait on port %d to go online timed out\n", 1248 __func__, port); 1249 1250 /* switch back to include this port */ 1251 port_sel |= (1ULL << port); 1252 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1253 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1254 1255 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel); 1256 } 1257 1258 /** 1259 * afu_err_intr_init() - clears and initializes the AFU for error interrupts 1260 * @afu: AFU associated with the host. 1261 */ 1262 static void afu_err_intr_init(struct afu *afu) 1263 { 1264 struct cxlflash_cfg *cfg = afu->parent; 1265 __be64 __iomem *fc_port_regs; 1266 int i; 1267 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 1268 u64 reg; 1269 1270 /* global async interrupts: AFU clears afu_ctrl on context exit 1271 * if async interrupts were sent to that context. This prevents 1272 * the AFU form sending further async interrupts when 1273 * there is 1274 * nobody to receive them. 1275 */ 1276 1277 /* mask all */ 1278 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); 1279 /* set LISN# to send and point to primary master context */ 1280 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); 1281 1282 if (afu->internal_lun) 1283 reg |= 1; /* Bit 63 indicates local lun */ 1284 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); 1285 /* clear all */ 1286 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1287 /* unmask bits that are of interest */ 1288 /* note: afu can send an interrupt after this step */ 1289 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); 1290 /* clear again in case a bit came on after previous clear but before */ 1291 /* unmask */ 1292 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1293 1294 /* Clear/Set internal lun bits */ 1295 fc_port_regs = get_fc_port_regs(cfg, 0); 1296 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 1297 reg &= SISL_FC_INTERNAL_MASK; 1298 if (afu->internal_lun) 1299 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); 1300 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 1301 1302 /* now clear FC errors */ 1303 for (i = 0; i < cfg->num_fc_ports; i++) { 1304 fc_port_regs = get_fc_port_regs(cfg, i); 1305 1306 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]); 1307 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1308 } 1309 1310 /* sync interrupts for master's IOARRIN write */ 1311 /* note that unlike asyncs, there can be no pending sync interrupts */ 1312 /* at this time (this is a fresh context and master has not written */ 1313 /* IOARRIN yet), so there is nothing to clear. */ 1314 1315 /* set LISN#, it is always sent to the context that wrote IOARRIN */ 1316 for (i = 0; i < afu->num_hwqs; i++) { 1317 hwq = get_hwq(afu, i); 1318 1319 reg = readq_be(&hwq->host_map->ctx_ctrl); 1320 WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0); 1321 reg |= SISL_MSI_SYNC_ERROR; 1322 writeq_be(reg, &hwq->host_map->ctx_ctrl); 1323 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask); 1324 } 1325 } 1326 1327 /** 1328 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors 1329 * @irq: Interrupt number. 1330 * @data: Private data provided at interrupt registration, the AFU. 1331 * 1332 * Return: Always return IRQ_HANDLED. 1333 */ 1334 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) 1335 { 1336 struct hwq *hwq = (struct hwq *)data; 1337 struct cxlflash_cfg *cfg = hwq->afu->parent; 1338 struct device *dev = &cfg->dev->dev; 1339 u64 reg; 1340 u64 reg_unmasked; 1341 1342 reg = readq_be(&hwq->host_map->intr_status); 1343 reg_unmasked = (reg & SISL_ISTATUS_UNMASK); 1344 1345 if (reg_unmasked == 0UL) { 1346 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n", 1347 __func__, reg); 1348 goto cxlflash_sync_err_irq_exit; 1349 } 1350 1351 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n", 1352 __func__, reg); 1353 1354 writeq_be(reg_unmasked, &hwq->host_map->intr_clear); 1355 1356 cxlflash_sync_err_irq_exit: 1357 return IRQ_HANDLED; 1358 } 1359 1360 /** 1361 * process_hrrq() - process the read-response queue 1362 * @afu: AFU associated with the host. 1363 * @doneq: Queue of commands harvested from the RRQ. 1364 * @budget: Threshold of RRQ entries to process. 1365 * 1366 * This routine must be called holding the disabled RRQ spin lock. 1367 * 1368 * Return: The number of entries processed. 1369 */ 1370 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget) 1371 { 1372 struct afu *afu = hwq->afu; 1373 struct afu_cmd *cmd; 1374 struct sisl_ioasa *ioasa; 1375 struct sisl_ioarcb *ioarcb; 1376 bool toggle = hwq->toggle; 1377 int num_hrrq = 0; 1378 u64 entry, 1379 *hrrq_start = hwq->hrrq_start, 1380 *hrrq_end = hwq->hrrq_end, 1381 *hrrq_curr = hwq->hrrq_curr; 1382 1383 /* Process ready RRQ entries up to the specified budget (if any) */ 1384 while (true) { 1385 entry = *hrrq_curr; 1386 1387 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) 1388 break; 1389 1390 entry &= ~SISL_RESP_HANDLE_T_BIT; 1391 1392 if (afu_is_sq_cmd_mode(afu)) { 1393 ioasa = (struct sisl_ioasa *)entry; 1394 cmd = container_of(ioasa, struct afu_cmd, sa); 1395 } else { 1396 ioarcb = (struct sisl_ioarcb *)entry; 1397 cmd = container_of(ioarcb, struct afu_cmd, rcb); 1398 } 1399 1400 list_add_tail(&cmd->queue, doneq); 1401 1402 /* Advance to next entry or wrap and flip the toggle bit */ 1403 if (hrrq_curr < hrrq_end) 1404 hrrq_curr++; 1405 else { 1406 hrrq_curr = hrrq_start; 1407 toggle ^= SISL_RESP_HANDLE_T_BIT; 1408 } 1409 1410 atomic_inc(&hwq->hsq_credits); 1411 num_hrrq++; 1412 1413 if (budget > 0 && num_hrrq >= budget) 1414 break; 1415 } 1416 1417 hwq->hrrq_curr = hrrq_curr; 1418 hwq->toggle = toggle; 1419 1420 return num_hrrq; 1421 } 1422 1423 /** 1424 * process_cmd_doneq() - process a queue of harvested RRQ commands 1425 * @doneq: Queue of completed commands. 1426 * 1427 * Note that upon return the queue can no longer be trusted. 1428 */ 1429 static void process_cmd_doneq(struct list_head *doneq) 1430 { 1431 struct afu_cmd *cmd, *tmp; 1432 1433 WARN_ON(list_empty(doneq)); 1434 1435 list_for_each_entry_safe(cmd, tmp, doneq, queue) 1436 cmd_complete(cmd); 1437 } 1438 1439 /** 1440 * cxlflash_irqpoll() - process a queue of harvested RRQ commands 1441 * @irqpoll: IRQ poll structure associated with queue to poll. 1442 * @budget: Threshold of RRQ entries to process per poll. 1443 * 1444 * Return: The number of entries processed. 1445 */ 1446 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget) 1447 { 1448 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll); 1449 unsigned long hrrq_flags; 1450 LIST_HEAD(doneq); 1451 int num_entries = 0; 1452 1453 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1454 1455 num_entries = process_hrrq(hwq, &doneq, budget); 1456 if (num_entries < budget) 1457 irq_poll_complete(irqpoll); 1458 1459 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1460 1461 process_cmd_doneq(&doneq); 1462 return num_entries; 1463 } 1464 1465 /** 1466 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) 1467 * @irq: Interrupt number. 1468 * @data: Private data provided at interrupt registration, the AFU. 1469 * 1470 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found. 1471 */ 1472 static irqreturn_t cxlflash_rrq_irq(int irq, void *data) 1473 { 1474 struct hwq *hwq = (struct hwq *)data; 1475 struct afu *afu = hwq->afu; 1476 unsigned long hrrq_flags; 1477 LIST_HEAD(doneq); 1478 int num_entries = 0; 1479 1480 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1481 1482 /* Silently drop spurious interrupts when queue is not online */ 1483 if (!hwq->hrrq_online) { 1484 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1485 return IRQ_HANDLED; 1486 } 1487 1488 if (afu_is_irqpoll_enabled(afu)) { 1489 irq_poll_sched(&hwq->irqpoll); 1490 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1491 return IRQ_HANDLED; 1492 } 1493 1494 num_entries = process_hrrq(hwq, &doneq, -1); 1495 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1496 1497 if (num_entries == 0) 1498 return IRQ_NONE; 1499 1500 process_cmd_doneq(&doneq); 1501 return IRQ_HANDLED; 1502 } 1503 1504 /* 1505 * Asynchronous interrupt information table 1506 * 1507 * NOTE: 1508 * - Order matters here as this array is indexed by bit position. 1509 * 1510 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro 1511 * as complex and complains due to a lack of parentheses/braces. 1512 */ 1513 #define ASTATUS_FC(_a, _b, _c, _d) \ 1514 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) } 1515 1516 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \ 1517 ASTATUS_FC(_a, LINK_UP, "link up", 0), \ 1518 ASTATUS_FC(_a, LINK_DN, "link down", 0), \ 1519 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \ 1520 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \ 1521 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \ 1522 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \ 1523 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \ 1524 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET) 1525 1526 static const struct asyc_intr_info ainfo[] = { 1527 BUILD_SISL_ASTATUS_FC_PORT(1), 1528 BUILD_SISL_ASTATUS_FC_PORT(0), 1529 BUILD_SISL_ASTATUS_FC_PORT(3), 1530 BUILD_SISL_ASTATUS_FC_PORT(2) 1531 }; 1532 1533 /** 1534 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors 1535 * @irq: Interrupt number. 1536 * @data: Private data provided at interrupt registration, the AFU. 1537 * 1538 * Return: Always return IRQ_HANDLED. 1539 */ 1540 static irqreturn_t cxlflash_async_err_irq(int irq, void *data) 1541 { 1542 struct hwq *hwq = (struct hwq *)data; 1543 struct afu *afu = hwq->afu; 1544 struct cxlflash_cfg *cfg = afu->parent; 1545 struct device *dev = &cfg->dev->dev; 1546 const struct asyc_intr_info *info; 1547 struct sisl_global_map __iomem *global = &afu->afu_map->global; 1548 __be64 __iomem *fc_port_regs; 1549 u64 reg_unmasked; 1550 u64 reg; 1551 u64 bit; 1552 u8 port; 1553 1554 reg = readq_be(&global->regs.aintr_status); 1555 reg_unmasked = (reg & SISL_ASTATUS_UNMASK); 1556 1557 if (unlikely(reg_unmasked == 0)) { 1558 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n", 1559 __func__, reg); 1560 goto out; 1561 } 1562 1563 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ 1564 writeq_be(reg_unmasked, &global->regs.aintr_clear); 1565 1566 /* Check each bit that is on */ 1567 for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) { 1568 if (unlikely(bit >= ARRAY_SIZE(ainfo))) { 1569 WARN_ON_ONCE(1); 1570 continue; 1571 } 1572 1573 info = &ainfo[bit]; 1574 if (unlikely(info->status != 1ULL << bit)) { 1575 WARN_ON_ONCE(1); 1576 continue; 1577 } 1578 1579 port = info->port; 1580 fc_port_regs = get_fc_port_regs(cfg, port); 1581 1582 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n", 1583 __func__, port, info->desc, 1584 readq_be(&fc_port_regs[FC_STATUS / 8])); 1585 1586 /* 1587 * Do link reset first, some OTHER errors will set FC_ERROR 1588 * again if cleared before or w/o a reset 1589 */ 1590 if (info->action & LINK_RESET) { 1591 dev_err(dev, "%s: FC Port %d: resetting link\n", 1592 __func__, port); 1593 cfg->lr_state = LINK_RESET_REQUIRED; 1594 cfg->lr_port = port; 1595 schedule_work(&cfg->work_q); 1596 } 1597 1598 if (info->action & CLR_FC_ERROR) { 1599 reg = readq_be(&fc_port_regs[FC_ERROR / 8]); 1600 1601 /* 1602 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP 1603 * should be the same and tracing one is sufficient. 1604 */ 1605 1606 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n", 1607 __func__, port, reg); 1608 1609 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]); 1610 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1611 } 1612 1613 if (info->action & SCAN_HOST) { 1614 atomic_inc(&cfg->scan_host_needed); 1615 schedule_work(&cfg->work_q); 1616 } 1617 } 1618 1619 out: 1620 return IRQ_HANDLED; 1621 } 1622 1623 /** 1624 * read_vpd() - obtains the WWPNs from VPD 1625 * @cfg: Internal structure associated with the host. 1626 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs 1627 * 1628 * Return: 0 on success, -errno on failure 1629 */ 1630 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) 1631 { 1632 struct device *dev = &cfg->dev->dev; 1633 struct pci_dev *pdev = cfg->dev; 1634 int rc = 0; 1635 int ro_start, ro_size, i, j, k; 1636 ssize_t vpd_size; 1637 char vpd_data[CXLFLASH_VPD_LEN]; 1638 char tmp_buf[WWPN_BUF_LEN] = { 0 }; 1639 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *) 1640 cfg->dev_id->driver_data; 1641 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED; 1642 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" }; 1643 1644 /* Get the VPD data from the device */ 1645 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data)); 1646 if (unlikely(vpd_size <= 0)) { 1647 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n", 1648 __func__, vpd_size); 1649 rc = -ENODEV; 1650 goto out; 1651 } 1652 1653 /* Get the read only section offset */ 1654 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, 1655 PCI_VPD_LRDT_RO_DATA); 1656 if (unlikely(ro_start < 0)) { 1657 dev_err(dev, "%s: VPD Read-only data not found\n", __func__); 1658 rc = -ENODEV; 1659 goto out; 1660 } 1661 1662 /* Get the read only section size, cap when extends beyond read VPD */ 1663 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 1664 j = ro_size; 1665 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1666 if (unlikely((i + j) > vpd_size)) { 1667 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n", 1668 __func__, (i + j), vpd_size); 1669 ro_size = vpd_size - i; 1670 } 1671 1672 /* 1673 * Find the offset of the WWPN tag within the read only 1674 * VPD data and validate the found field (partials are 1675 * no good to us). Convert the ASCII data to an integer 1676 * value. Note that we must copy to a temporary buffer 1677 * because the conversion service requires that the ASCII 1678 * string be terminated. 1679 * 1680 * Allow for WWPN not being found for all devices, setting 1681 * the returned WWPN to zero when not found. Notify with a 1682 * log error for cards that should have had WWPN keywords 1683 * in the VPD - cards requiring WWPN will not have their 1684 * ports programmed and operate in an undefined state. 1685 */ 1686 for (k = 0; k < cfg->num_fc_ports; k++) { 1687 j = ro_size; 1688 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1689 1690 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); 1691 if (i < 0) { 1692 if (wwpn_vpd_required) 1693 dev_err(dev, "%s: Port %d WWPN not found\n", 1694 __func__, k); 1695 wwpn[k] = 0ULL; 1696 continue; 1697 } 1698 1699 j = pci_vpd_info_field_size(&vpd_data[i]); 1700 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1701 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { 1702 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n", 1703 __func__, k); 1704 rc = -ENODEV; 1705 goto out; 1706 } 1707 1708 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); 1709 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); 1710 if (unlikely(rc)) { 1711 dev_err(dev, "%s: WWPN conversion failed for port %d\n", 1712 __func__, k); 1713 rc = -ENODEV; 1714 goto out; 1715 } 1716 1717 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]); 1718 } 1719 1720 out: 1721 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1722 return rc; 1723 } 1724 1725 /** 1726 * init_pcr() - initialize the provisioning and control registers 1727 * @cfg: Internal structure associated with the host. 1728 * 1729 * Also sets up fast access to the mapped registers and initializes AFU 1730 * command fields that never change. 1731 */ 1732 static void init_pcr(struct cxlflash_cfg *cfg) 1733 { 1734 struct afu *afu = cfg->afu; 1735 struct sisl_ctrl_map __iomem *ctrl_map; 1736 struct hwq *hwq; 1737 void *cookie; 1738 int i; 1739 1740 for (i = 0; i < MAX_CONTEXT; i++) { 1741 ctrl_map = &afu->afu_map->ctrls[i].ctrl; 1742 /* Disrupt any clients that could be running */ 1743 /* e.g. clients that survived a master restart */ 1744 writeq_be(0, &ctrl_map->rht_start); 1745 writeq_be(0, &ctrl_map->rht_cnt_id); 1746 writeq_be(0, &ctrl_map->ctx_cap); 1747 } 1748 1749 /* Copy frequently used fields into hwq */ 1750 for (i = 0; i < afu->num_hwqs; i++) { 1751 hwq = get_hwq(afu, i); 1752 cookie = hwq->ctx_cookie; 1753 1754 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie); 1755 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host; 1756 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl; 1757 1758 /* Program the Endian Control for the master context */ 1759 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl); 1760 } 1761 } 1762 1763 /** 1764 * init_global() - initialize AFU global registers 1765 * @cfg: Internal structure associated with the host. 1766 */ 1767 static int init_global(struct cxlflash_cfg *cfg) 1768 { 1769 struct afu *afu = cfg->afu; 1770 struct device *dev = &cfg->dev->dev; 1771 struct hwq *hwq; 1772 struct sisl_host_map __iomem *hmap; 1773 __be64 __iomem *fc_port_regs; 1774 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */ 1775 int i = 0, num_ports = 0; 1776 int rc = 0; 1777 int j; 1778 void *ctx; 1779 u64 reg; 1780 1781 rc = read_vpd(cfg, &wwpn[0]); 1782 if (rc) { 1783 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); 1784 goto out; 1785 } 1786 1787 /* Set up RRQ and SQ in HWQ for master issued cmds */ 1788 for (i = 0; i < afu->num_hwqs; i++) { 1789 hwq = get_hwq(afu, i); 1790 hmap = hwq->host_map; 1791 1792 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start); 1793 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end); 1794 hwq->hrrq_online = true; 1795 1796 if (afu_is_sq_cmd_mode(afu)) { 1797 writeq_be((u64)hwq->hsq_start, &hmap->sq_start); 1798 writeq_be((u64)hwq->hsq_end, &hmap->sq_end); 1799 } 1800 } 1801 1802 /* AFU configuration */ 1803 reg = readq_be(&afu->afu_map->global.regs.afu_config); 1804 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; 1805 /* enable all auto retry options and control endianness */ 1806 /* leave others at default: */ 1807 /* CTX_CAP write protected, mbox_r does not clear on read and */ 1808 /* checker on if dual afu */ 1809 writeq_be(reg, &afu->afu_map->global.regs.afu_config); 1810 1811 /* Global port select: select either port */ 1812 if (afu->internal_lun) { 1813 /* Only use port 0 */ 1814 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); 1815 num_ports = 0; 1816 } else { 1817 writeq_be(PORT_MASK(cfg->num_fc_ports), 1818 &afu->afu_map->global.regs.afu_port_sel); 1819 num_ports = cfg->num_fc_ports; 1820 } 1821 1822 for (i = 0; i < num_ports; i++) { 1823 fc_port_regs = get_fc_port_regs(cfg, i); 1824 1825 /* Unmask all errors (but they are still masked at AFU) */ 1826 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]); 1827 /* Clear CRC error cnt & set a threshold */ 1828 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]); 1829 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]); 1830 1831 /* Set WWPNs. If already programmed, wwpn[i] is 0 */ 1832 if (wwpn[i] != 0) 1833 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]); 1834 /* Programming WWPN back to back causes additional 1835 * offline/online transitions and a PLOGI 1836 */ 1837 msleep(100); 1838 } 1839 1840 if (afu_is_ocxl_lisn(afu)) { 1841 /* Set up the LISN effective address for each master */ 1842 for (i = 0; i < afu->num_hwqs; i++) { 1843 hwq = get_hwq(afu, i); 1844 ctx = hwq->ctx_cookie; 1845 1846 for (j = 0; j < hwq->num_irqs; j++) { 1847 reg = cfg->ops->get_irq_objhndl(ctx, j); 1848 writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]); 1849 } 1850 1851 reg = hwq->ctx_hndl; 1852 writeq_be(SISL_LISN_PASID(reg, reg), 1853 &hwq->ctrl_map->lisn_pasid[0]); 1854 writeq_be(SISL_LISN_PASID(0UL, reg), 1855 &hwq->ctrl_map->lisn_pasid[1]); 1856 } 1857 } 1858 1859 /* Set up master's own CTX_CAP to allow real mode, host translation */ 1860 /* tables, afu cmds and read/write GSCSI cmds. */ 1861 /* First, unlock ctx_cap write by reading mbox */ 1862 for (i = 0; i < afu->num_hwqs; i++) { 1863 hwq = get_hwq(afu, i); 1864 1865 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */ 1866 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | 1867 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | 1868 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), 1869 &hwq->ctrl_map->ctx_cap); 1870 } 1871 1872 /* 1873 * Determine write-same unmap support for host by evaluating the unmap 1874 * sector support bit of the context control register associated with 1875 * the primary hardware queue. Note that while this status is reflected 1876 * in a context register, the outcome can be assumed to be host-wide. 1877 */ 1878 hwq = get_hwq(afu, PRIMARY_HWQ); 1879 reg = readq_be(&hwq->host_map->ctx_ctrl); 1880 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR) 1881 cfg->ws_unmap = true; 1882 1883 /* Initialize heartbeat */ 1884 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); 1885 out: 1886 return rc; 1887 } 1888 1889 /** 1890 * start_afu() - initializes and starts the AFU 1891 * @cfg: Internal structure associated with the host. 1892 */ 1893 static int start_afu(struct cxlflash_cfg *cfg) 1894 { 1895 struct afu *afu = cfg->afu; 1896 struct device *dev = &cfg->dev->dev; 1897 struct hwq *hwq; 1898 int rc = 0; 1899 int i; 1900 1901 init_pcr(cfg); 1902 1903 /* Initialize each HWQ */ 1904 for (i = 0; i < afu->num_hwqs; i++) { 1905 hwq = get_hwq(afu, i); 1906 1907 /* After an AFU reset, RRQ entries are stale, clear them */ 1908 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry)); 1909 1910 /* Initialize RRQ pointers */ 1911 hwq->hrrq_start = &hwq->rrq_entry[0]; 1912 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1]; 1913 hwq->hrrq_curr = hwq->hrrq_start; 1914 hwq->toggle = 1; 1915 1916 /* Initialize spin locks */ 1917 spin_lock_init(&hwq->hrrq_slock); 1918 spin_lock_init(&hwq->hsq_slock); 1919 1920 /* Initialize SQ */ 1921 if (afu_is_sq_cmd_mode(afu)) { 1922 memset(&hwq->sq, 0, sizeof(hwq->sq)); 1923 hwq->hsq_start = &hwq->sq[0]; 1924 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1]; 1925 hwq->hsq_curr = hwq->hsq_start; 1926 1927 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1); 1928 } 1929 1930 /* Initialize IRQ poll */ 1931 if (afu_is_irqpoll_enabled(afu)) 1932 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight, 1933 cxlflash_irqpoll); 1934 1935 } 1936 1937 rc = init_global(cfg); 1938 1939 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1940 return rc; 1941 } 1942 1943 /** 1944 * init_intr() - setup interrupt handlers for the master context 1945 * @cfg: Internal structure associated with the host. 1946 * @hwq: Hardware queue to initialize. 1947 * 1948 * Return: 0 on success, -errno on failure 1949 */ 1950 static enum undo_level init_intr(struct cxlflash_cfg *cfg, 1951 struct hwq *hwq) 1952 { 1953 struct device *dev = &cfg->dev->dev; 1954 void *ctx = hwq->ctx_cookie; 1955 int rc = 0; 1956 enum undo_level level = UNDO_NOOP; 1957 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ); 1958 int num_irqs = hwq->num_irqs; 1959 1960 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs); 1961 if (unlikely(rc)) { 1962 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n", 1963 __func__, rc); 1964 level = UNDO_NOOP; 1965 goto out; 1966 } 1967 1968 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq, 1969 "SISL_MSI_SYNC_ERROR"); 1970 if (unlikely(rc <= 0)) { 1971 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__); 1972 level = FREE_IRQ; 1973 goto out; 1974 } 1975 1976 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq, 1977 "SISL_MSI_RRQ_UPDATED"); 1978 if (unlikely(rc <= 0)) { 1979 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__); 1980 level = UNMAP_ONE; 1981 goto out; 1982 } 1983 1984 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 1985 if (!is_primary_hwq) 1986 goto out; 1987 1988 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq, 1989 "SISL_MSI_ASYNC_ERROR"); 1990 if (unlikely(rc <= 0)) { 1991 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__); 1992 level = UNMAP_TWO; 1993 goto out; 1994 } 1995 out: 1996 return level; 1997 } 1998 1999 /** 2000 * init_mc() - create and register as the master context 2001 * @cfg: Internal structure associated with the host. 2002 * index: HWQ Index of the master context. 2003 * 2004 * Return: 0 on success, -errno on failure 2005 */ 2006 static int init_mc(struct cxlflash_cfg *cfg, u32 index) 2007 { 2008 void *ctx; 2009 struct device *dev = &cfg->dev->dev; 2010 struct hwq *hwq = get_hwq(cfg->afu, index); 2011 int rc = 0; 2012 int num_irqs; 2013 enum undo_level level; 2014 2015 hwq->afu = cfg->afu; 2016 hwq->index = index; 2017 INIT_LIST_HEAD(&hwq->pending_cmds); 2018 2019 if (index == PRIMARY_HWQ) { 2020 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie); 2021 num_irqs = 3; 2022 } else { 2023 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie); 2024 num_irqs = 2; 2025 } 2026 if (IS_ERR_OR_NULL(ctx)) { 2027 rc = -ENOMEM; 2028 goto err1; 2029 } 2030 2031 WARN_ON(hwq->ctx_cookie); 2032 hwq->ctx_cookie = ctx; 2033 hwq->num_irqs = num_irqs; 2034 2035 /* Set it up as a master with the CXL */ 2036 cfg->ops->set_master(ctx); 2037 2038 /* Reset AFU when initializing primary context */ 2039 if (index == PRIMARY_HWQ) { 2040 rc = cfg->ops->afu_reset(ctx); 2041 if (unlikely(rc)) { 2042 dev_err(dev, "%s: AFU reset failed rc=%d\n", 2043 __func__, rc); 2044 goto err1; 2045 } 2046 } 2047 2048 level = init_intr(cfg, hwq); 2049 if (unlikely(level)) { 2050 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc); 2051 goto err2; 2052 } 2053 2054 /* Finally, activate the context by starting it */ 2055 rc = cfg->ops->start_context(hwq->ctx_cookie); 2056 if (unlikely(rc)) { 2057 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); 2058 level = UNMAP_THREE; 2059 goto err2; 2060 } 2061 2062 out: 2063 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2064 return rc; 2065 err2: 2066 term_intr(cfg, level, index); 2067 if (index != PRIMARY_HWQ) 2068 cfg->ops->release_context(ctx); 2069 err1: 2070 hwq->ctx_cookie = NULL; 2071 goto out; 2072 } 2073 2074 /** 2075 * get_num_afu_ports() - determines and configures the number of AFU ports 2076 * @cfg: Internal structure associated with the host. 2077 * 2078 * This routine determines the number of AFU ports by converting the global 2079 * port selection mask. The converted value is only valid following an AFU 2080 * reset (explicit or power-on). This routine must be invoked shortly after 2081 * mapping as other routines are dependent on the number of ports during the 2082 * initialization sequence. 2083 * 2084 * To support legacy AFUs that might not have reflected an initial global 2085 * port mask (value read is 0), default to the number of ports originally 2086 * supported by the cxlflash driver (2) before hardware with other port 2087 * offerings was introduced. 2088 */ 2089 static void get_num_afu_ports(struct cxlflash_cfg *cfg) 2090 { 2091 struct afu *afu = cfg->afu; 2092 struct device *dev = &cfg->dev->dev; 2093 u64 port_mask; 2094 int num_fc_ports = LEGACY_FC_PORTS; 2095 2096 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel); 2097 if (port_mask != 0ULL) 2098 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS); 2099 2100 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n", 2101 __func__, port_mask, num_fc_ports); 2102 2103 cfg->num_fc_ports = num_fc_ports; 2104 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports); 2105 } 2106 2107 /** 2108 * init_afu() - setup as master context and start AFU 2109 * @cfg: Internal structure associated with the host. 2110 * 2111 * This routine is a higher level of control for configuring the 2112 * AFU on probe and reset paths. 2113 * 2114 * Return: 0 on success, -errno on failure 2115 */ 2116 static int init_afu(struct cxlflash_cfg *cfg) 2117 { 2118 u64 reg; 2119 int rc = 0; 2120 struct afu *afu = cfg->afu; 2121 struct device *dev = &cfg->dev->dev; 2122 struct hwq *hwq; 2123 int i; 2124 2125 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true); 2126 2127 mutex_init(&afu->sync_active); 2128 afu->num_hwqs = afu->desired_hwqs; 2129 for (i = 0; i < afu->num_hwqs; i++) { 2130 rc = init_mc(cfg, i); 2131 if (rc) { 2132 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n", 2133 __func__, rc, i); 2134 goto err1; 2135 } 2136 } 2137 2138 /* Map the entire MMIO space of the AFU using the first context */ 2139 hwq = get_hwq(afu, PRIMARY_HWQ); 2140 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie); 2141 if (!afu->afu_map) { 2142 dev_err(dev, "%s: psa_map failed\n", __func__); 2143 rc = -ENOMEM; 2144 goto err1; 2145 } 2146 2147 /* No byte reverse on reading afu_version or string will be backwards */ 2148 reg = readq(&afu->afu_map->global.regs.afu_version); 2149 memcpy(afu->version, ®, sizeof(reg)); 2150 afu->interface_version = 2151 readq_be(&afu->afu_map->global.regs.interface_version); 2152 if ((afu->interface_version + 1) == 0) { 2153 dev_err(dev, "Back level AFU, please upgrade. AFU version %s " 2154 "interface version %016llx\n", afu->version, 2155 afu->interface_version); 2156 rc = -EINVAL; 2157 goto err1; 2158 } 2159 2160 if (afu_is_sq_cmd_mode(afu)) { 2161 afu->send_cmd = send_cmd_sq; 2162 afu->context_reset = context_reset_sq; 2163 } else { 2164 afu->send_cmd = send_cmd_ioarrin; 2165 afu->context_reset = context_reset_ioarrin; 2166 } 2167 2168 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__, 2169 afu->version, afu->interface_version); 2170 2171 get_num_afu_ports(cfg); 2172 2173 rc = start_afu(cfg); 2174 if (rc) { 2175 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc); 2176 goto err1; 2177 } 2178 2179 afu_err_intr_init(cfg->afu); 2180 for (i = 0; i < afu->num_hwqs; i++) { 2181 hwq = get_hwq(afu, i); 2182 2183 hwq->room = readq_be(&hwq->host_map->cmd_room); 2184 } 2185 2186 /* Restore the LUN mappings */ 2187 cxlflash_restore_luntable(cfg); 2188 out: 2189 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2190 return rc; 2191 2192 err1: 2193 for (i = afu->num_hwqs - 1; i >= 0; i--) { 2194 term_intr(cfg, UNMAP_THREE, i); 2195 term_mc(cfg, i); 2196 } 2197 goto out; 2198 } 2199 2200 /** 2201 * afu_reset() - resets the AFU 2202 * @cfg: Internal structure associated with the host. 2203 * 2204 * Return: 0 on success, -errno on failure 2205 */ 2206 static int afu_reset(struct cxlflash_cfg *cfg) 2207 { 2208 struct device *dev = &cfg->dev->dev; 2209 int rc = 0; 2210 2211 /* Stop the context before the reset. Since the context is 2212 * no longer available restart it after the reset is complete 2213 */ 2214 term_afu(cfg); 2215 2216 rc = init_afu(cfg); 2217 2218 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2219 return rc; 2220 } 2221 2222 /** 2223 * drain_ioctls() - wait until all currently executing ioctls have completed 2224 * @cfg: Internal structure associated with the host. 2225 * 2226 * Obtain write access to read/write semaphore that wraps ioctl 2227 * handling to 'drain' ioctls currently executing. 2228 */ 2229 static void drain_ioctls(struct cxlflash_cfg *cfg) 2230 { 2231 down_write(&cfg->ioctl_rwsem); 2232 up_write(&cfg->ioctl_rwsem); 2233 } 2234 2235 /** 2236 * cxlflash_async_reset_host() - asynchronous host reset handler 2237 * @data: Private data provided while scheduling reset. 2238 * @cookie: Cookie that can be used for checkpointing. 2239 */ 2240 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie) 2241 { 2242 struct cxlflash_cfg *cfg = data; 2243 struct device *dev = &cfg->dev->dev; 2244 int rc = 0; 2245 2246 if (cfg->state != STATE_RESET) { 2247 dev_dbg(dev, "%s: Not performing a reset, state=%d\n", 2248 __func__, cfg->state); 2249 goto out; 2250 } 2251 2252 drain_ioctls(cfg); 2253 cxlflash_mark_contexts_error(cfg); 2254 rc = afu_reset(cfg); 2255 if (rc) 2256 cfg->state = STATE_FAILTERM; 2257 else 2258 cfg->state = STATE_NORMAL; 2259 wake_up_all(&cfg->reset_waitq); 2260 2261 out: 2262 scsi_unblock_requests(cfg->host); 2263 } 2264 2265 /** 2266 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset 2267 * @cfg: Internal structure associated with the host. 2268 */ 2269 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg) 2270 { 2271 struct device *dev = &cfg->dev->dev; 2272 2273 if (cfg->state != STATE_NORMAL) { 2274 dev_dbg(dev, "%s: Not performing reset state=%d\n", 2275 __func__, cfg->state); 2276 return; 2277 } 2278 2279 cfg->state = STATE_RESET; 2280 scsi_block_requests(cfg->host); 2281 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host, 2282 cfg); 2283 } 2284 2285 /** 2286 * send_afu_cmd() - builds and sends an internal AFU command 2287 * @afu: AFU associated with the host. 2288 * @rcb: Pre-populated IOARCB describing command to send. 2289 * 2290 * The AFU can only take one internal AFU command at a time. This limitation is 2291 * enforced by using a mutex to provide exclusive access to the AFU during the 2292 * operation. This design point requires calling threads to not be on interrupt 2293 * context due to the possibility of sleeping during concurrent AFU operations. 2294 * 2295 * The command status is optionally passed back to the caller when the caller 2296 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure. 2297 * 2298 * Return: 2299 * 0 on success, -errno on failure 2300 */ 2301 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb) 2302 { 2303 struct cxlflash_cfg *cfg = afu->parent; 2304 struct device *dev = &cfg->dev->dev; 2305 struct afu_cmd *cmd = NULL; 2306 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 2307 ulong lock_flags; 2308 char *buf = NULL; 2309 int rc = 0; 2310 int nretry = 0; 2311 2312 if (cfg->state != STATE_NORMAL) { 2313 dev_dbg(dev, "%s: Sync not required state=%u\n", 2314 __func__, cfg->state); 2315 return 0; 2316 } 2317 2318 mutex_lock(&afu->sync_active); 2319 atomic_inc(&afu->cmds_active); 2320 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 2321 if (unlikely(!buf)) { 2322 dev_err(dev, "%s: no memory for command\n", __func__); 2323 rc = -ENOMEM; 2324 goto out; 2325 } 2326 2327 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 2328 2329 retry: 2330 memset(cmd, 0, sizeof(*cmd)); 2331 memcpy(&cmd->rcb, rcb, sizeof(*rcb)); 2332 INIT_LIST_HEAD(&cmd->queue); 2333 init_completion(&cmd->cevent); 2334 cmd->parent = afu; 2335 cmd->hwq_index = hwq->index; 2336 cmd->rcb.ctx_id = hwq->ctx_hndl; 2337 2338 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n", 2339 __func__, afu, cmd, cmd->rcb.cdb[0], nretry); 2340 2341 rc = afu->send_cmd(afu, cmd); 2342 if (unlikely(rc)) { 2343 rc = -ENOBUFS; 2344 goto out; 2345 } 2346 2347 rc = wait_resp(afu, cmd); 2348 switch (rc) { 2349 case -ETIMEDOUT: 2350 rc = afu->context_reset(hwq); 2351 if (rc) { 2352 /* Delete the command from pending_cmds list */ 2353 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 2354 list_del(&cmd->list); 2355 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 2356 2357 cxlflash_schedule_async_reset(cfg); 2358 break; 2359 } 2360 /* fall through to retry */ 2361 case -EAGAIN: 2362 if (++nretry < 2) 2363 goto retry; 2364 /* fall through to exit */ 2365 default: 2366 break; 2367 } 2368 2369 if (rcb->ioasa) 2370 *rcb->ioasa = cmd->sa; 2371 out: 2372 atomic_dec(&afu->cmds_active); 2373 mutex_unlock(&afu->sync_active); 2374 kfree(buf); 2375 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2376 return rc; 2377 } 2378 2379 /** 2380 * cxlflash_afu_sync() - builds and sends an AFU sync command 2381 * @afu: AFU associated with the host. 2382 * @ctx: Identifies context requesting sync. 2383 * @res: Identifies resource requesting sync. 2384 * @mode: Type of sync to issue (lightweight, heavyweight, global). 2385 * 2386 * AFU sync operations are only necessary and allowed when the device is 2387 * operating normally. When not operating normally, sync requests can occur as 2388 * part of cleaning up resources associated with an adapter prior to removal. 2389 * In this scenario, these requests are simply ignored (safe due to the AFU 2390 * going away). 2391 * 2392 * Return: 2393 * 0 on success, -errno on failure 2394 */ 2395 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode) 2396 { 2397 struct cxlflash_cfg *cfg = afu->parent; 2398 struct device *dev = &cfg->dev->dev; 2399 struct sisl_ioarcb rcb = { 0 }; 2400 2401 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n", 2402 __func__, afu, ctx, res, mode); 2403 2404 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 2405 rcb.msi = SISL_MSI_RRQ_UPDATED; 2406 rcb.timeout = MC_AFU_SYNC_TIMEOUT; 2407 2408 rcb.cdb[0] = SISL_AFU_CMD_SYNC; 2409 rcb.cdb[1] = mode; 2410 put_unaligned_be16(ctx, &rcb.cdb[2]); 2411 put_unaligned_be32(res, &rcb.cdb[4]); 2412 2413 return send_afu_cmd(afu, &rcb); 2414 } 2415 2416 /** 2417 * cxlflash_eh_abort_handler() - abort a SCSI command 2418 * @scp: SCSI command to abort. 2419 * 2420 * CXL Flash devices do not support a single command abort. Reset the context 2421 * as per SISLite specification. Flush any pending commands in the hardware 2422 * queue before the reset. 2423 * 2424 * Return: SUCCESS/FAILED as defined in scsi/scsi.h 2425 */ 2426 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp) 2427 { 2428 int rc = FAILED; 2429 struct Scsi_Host *host = scp->device->host; 2430 struct cxlflash_cfg *cfg = shost_priv(host); 2431 struct afu_cmd *cmd = sc_to_afuc(scp); 2432 struct device *dev = &cfg->dev->dev; 2433 struct afu *afu = cfg->afu; 2434 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 2435 2436 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu " 2437 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, 2438 scp->device->channel, scp->device->id, scp->device->lun, 2439 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 2440 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 2441 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 2442 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 2443 2444 /* When the state is not normal, another reset/reload is in progress. 2445 * Return failed and the mid-layer will invoke host reset handler. 2446 */ 2447 if (cfg->state != STATE_NORMAL) { 2448 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n", 2449 __func__, cfg->state); 2450 goto out; 2451 } 2452 2453 rc = afu->context_reset(hwq); 2454 if (unlikely(rc)) 2455 goto out; 2456 2457 rc = SUCCESS; 2458 2459 out: 2460 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2461 return rc; 2462 } 2463 2464 /** 2465 * cxlflash_eh_device_reset_handler() - reset a single LUN 2466 * @scp: SCSI command to send. 2467 * 2468 * Return: 2469 * SUCCESS as defined in scsi/scsi.h 2470 * FAILED as defined in scsi/scsi.h 2471 */ 2472 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) 2473 { 2474 int rc = SUCCESS; 2475 struct scsi_device *sdev = scp->device; 2476 struct Scsi_Host *host = sdev->host; 2477 struct cxlflash_cfg *cfg = shost_priv(host); 2478 struct device *dev = &cfg->dev->dev; 2479 int rcr = 0; 2480 2481 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__, 2482 host->host_no, sdev->channel, sdev->id, sdev->lun); 2483 retry: 2484 switch (cfg->state) { 2485 case STATE_NORMAL: 2486 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET); 2487 if (unlikely(rcr)) 2488 rc = FAILED; 2489 break; 2490 case STATE_RESET: 2491 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2492 goto retry; 2493 default: 2494 rc = FAILED; 2495 break; 2496 } 2497 2498 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2499 return rc; 2500 } 2501 2502 /** 2503 * cxlflash_eh_host_reset_handler() - reset the host adapter 2504 * @scp: SCSI command from stack identifying host. 2505 * 2506 * Following a reset, the state is evaluated again in case an EEH occurred 2507 * during the reset. In such a scenario, the host reset will either yield 2508 * until the EEH recovery is complete or return success or failure based 2509 * upon the current device state. 2510 * 2511 * Return: 2512 * SUCCESS as defined in scsi/scsi.h 2513 * FAILED as defined in scsi/scsi.h 2514 */ 2515 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) 2516 { 2517 int rc = SUCCESS; 2518 int rcr = 0; 2519 struct Scsi_Host *host = scp->device->host; 2520 struct cxlflash_cfg *cfg = shost_priv(host); 2521 struct device *dev = &cfg->dev->dev; 2522 2523 dev_dbg(dev, "%s: %d\n", __func__, host->host_no); 2524 2525 switch (cfg->state) { 2526 case STATE_NORMAL: 2527 cfg->state = STATE_RESET; 2528 drain_ioctls(cfg); 2529 cxlflash_mark_contexts_error(cfg); 2530 rcr = afu_reset(cfg); 2531 if (rcr) { 2532 rc = FAILED; 2533 cfg->state = STATE_FAILTERM; 2534 } else 2535 cfg->state = STATE_NORMAL; 2536 wake_up_all(&cfg->reset_waitq); 2537 ssleep(1); 2538 /* fall through */ 2539 case STATE_RESET: 2540 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2541 if (cfg->state == STATE_NORMAL) 2542 break; 2543 /* fall through */ 2544 default: 2545 rc = FAILED; 2546 break; 2547 } 2548 2549 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2550 return rc; 2551 } 2552 2553 /** 2554 * cxlflash_change_queue_depth() - change the queue depth for the device 2555 * @sdev: SCSI device destined for queue depth change. 2556 * @qdepth: Requested queue depth value to set. 2557 * 2558 * The requested queue depth is capped to the maximum supported value. 2559 * 2560 * Return: The actual queue depth set. 2561 */ 2562 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) 2563 { 2564 2565 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) 2566 qdepth = CXLFLASH_MAX_CMDS_PER_LUN; 2567 2568 scsi_change_queue_depth(sdev, qdepth); 2569 return sdev->queue_depth; 2570 } 2571 2572 /** 2573 * cxlflash_show_port_status() - queries and presents the current port status 2574 * @port: Desired port for status reporting. 2575 * @cfg: Internal structure associated with the host. 2576 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2577 * 2578 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2579 */ 2580 static ssize_t cxlflash_show_port_status(u32 port, 2581 struct cxlflash_cfg *cfg, 2582 char *buf) 2583 { 2584 struct device *dev = &cfg->dev->dev; 2585 char *disp_status; 2586 u64 status; 2587 __be64 __iomem *fc_port_regs; 2588 2589 WARN_ON(port >= MAX_FC_PORTS); 2590 2591 if (port >= cfg->num_fc_ports) { 2592 dev_info(dev, "%s: Port %d not supported on this card.\n", 2593 __func__, port); 2594 return -EINVAL; 2595 } 2596 2597 fc_port_regs = get_fc_port_regs(cfg, port); 2598 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]); 2599 status &= FC_MTIP_STATUS_MASK; 2600 2601 if (status == FC_MTIP_STATUS_ONLINE) 2602 disp_status = "online"; 2603 else if (status == FC_MTIP_STATUS_OFFLINE) 2604 disp_status = "offline"; 2605 else 2606 disp_status = "unknown"; 2607 2608 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); 2609 } 2610 2611 /** 2612 * port0_show() - queries and presents the current status of port 0 2613 * @dev: Generic device associated with the host owning the port. 2614 * @attr: Device attribute representing the port. 2615 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2616 * 2617 * Return: The size of the ASCII string returned in @buf. 2618 */ 2619 static ssize_t port0_show(struct device *dev, 2620 struct device_attribute *attr, 2621 char *buf) 2622 { 2623 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2624 2625 return cxlflash_show_port_status(0, cfg, buf); 2626 } 2627 2628 /** 2629 * port1_show() - queries and presents the current status of port 1 2630 * @dev: Generic device associated with the host owning the port. 2631 * @attr: Device attribute representing the port. 2632 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2633 * 2634 * Return: The size of the ASCII string returned in @buf. 2635 */ 2636 static ssize_t port1_show(struct device *dev, 2637 struct device_attribute *attr, 2638 char *buf) 2639 { 2640 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2641 2642 return cxlflash_show_port_status(1, cfg, buf); 2643 } 2644 2645 /** 2646 * port2_show() - queries and presents the current status of port 2 2647 * @dev: Generic device associated with the host owning the port. 2648 * @attr: Device attribute representing the port. 2649 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2650 * 2651 * Return: The size of the ASCII string returned in @buf. 2652 */ 2653 static ssize_t port2_show(struct device *dev, 2654 struct device_attribute *attr, 2655 char *buf) 2656 { 2657 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2658 2659 return cxlflash_show_port_status(2, cfg, buf); 2660 } 2661 2662 /** 2663 * port3_show() - queries and presents the current status of port 3 2664 * @dev: Generic device associated with the host owning the port. 2665 * @attr: Device attribute representing the port. 2666 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2667 * 2668 * Return: The size of the ASCII string returned in @buf. 2669 */ 2670 static ssize_t port3_show(struct device *dev, 2671 struct device_attribute *attr, 2672 char *buf) 2673 { 2674 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2675 2676 return cxlflash_show_port_status(3, cfg, buf); 2677 } 2678 2679 /** 2680 * lun_mode_show() - presents the current LUN mode of the host 2681 * @dev: Generic device associated with the host. 2682 * @attr: Device attribute representing the LUN mode. 2683 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. 2684 * 2685 * Return: The size of the ASCII string returned in @buf. 2686 */ 2687 static ssize_t lun_mode_show(struct device *dev, 2688 struct device_attribute *attr, char *buf) 2689 { 2690 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2691 struct afu *afu = cfg->afu; 2692 2693 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); 2694 } 2695 2696 /** 2697 * lun_mode_store() - sets the LUN mode of the host 2698 * @dev: Generic device associated with the host. 2699 * @attr: Device attribute representing the LUN mode. 2700 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. 2701 * @count: Length of data resizing in @buf. 2702 * 2703 * The CXL Flash AFU supports a dummy LUN mode where the external 2704 * links and storage are not required. Space on the FPGA is used 2705 * to create 1 or 2 small LUNs which are presented to the system 2706 * as if they were a normal storage device. This feature is useful 2707 * during development and also provides manufacturing with a way 2708 * to test the AFU without an actual device. 2709 * 2710 * 0 = external LUN[s] (default) 2711 * 1 = internal LUN (1 x 64K, 512B blocks, id 0) 2712 * 2 = internal LUN (1 x 64K, 4K blocks, id 0) 2713 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) 2714 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) 2715 * 2716 * Return: The size of the ASCII string returned in @buf. 2717 */ 2718 static ssize_t lun_mode_store(struct device *dev, 2719 struct device_attribute *attr, 2720 const char *buf, size_t count) 2721 { 2722 struct Scsi_Host *shost = class_to_shost(dev); 2723 struct cxlflash_cfg *cfg = shost_priv(shost); 2724 struct afu *afu = cfg->afu; 2725 int rc; 2726 u32 lun_mode; 2727 2728 rc = kstrtouint(buf, 10, &lun_mode); 2729 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { 2730 afu->internal_lun = lun_mode; 2731 2732 /* 2733 * When configured for internal LUN, there is only one channel, 2734 * channel number 0, else there will be one less than the number 2735 * of fc ports for this card. 2736 */ 2737 if (afu->internal_lun) 2738 shost->max_channel = 0; 2739 else 2740 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports); 2741 2742 afu_reset(cfg); 2743 scsi_scan_host(cfg->host); 2744 } 2745 2746 return count; 2747 } 2748 2749 /** 2750 * ioctl_version_show() - presents the current ioctl version of the host 2751 * @dev: Generic device associated with the host. 2752 * @attr: Device attribute representing the ioctl version. 2753 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. 2754 * 2755 * Return: The size of the ASCII string returned in @buf. 2756 */ 2757 static ssize_t ioctl_version_show(struct device *dev, 2758 struct device_attribute *attr, char *buf) 2759 { 2760 ssize_t bytes = 0; 2761 2762 bytes = scnprintf(buf, PAGE_SIZE, 2763 "disk: %u\n", DK_CXLFLASH_VERSION_0); 2764 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2765 "host: %u\n", HT_CXLFLASH_VERSION_0); 2766 2767 return bytes; 2768 } 2769 2770 /** 2771 * cxlflash_show_port_lun_table() - queries and presents the port LUN table 2772 * @port: Desired port for status reporting. 2773 * @cfg: Internal structure associated with the host. 2774 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2775 * 2776 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2777 */ 2778 static ssize_t cxlflash_show_port_lun_table(u32 port, 2779 struct cxlflash_cfg *cfg, 2780 char *buf) 2781 { 2782 struct device *dev = &cfg->dev->dev; 2783 __be64 __iomem *fc_port_luns; 2784 int i; 2785 ssize_t bytes = 0; 2786 2787 WARN_ON(port >= MAX_FC_PORTS); 2788 2789 if (port >= cfg->num_fc_ports) { 2790 dev_info(dev, "%s: Port %d not supported on this card.\n", 2791 __func__, port); 2792 return -EINVAL; 2793 } 2794 2795 fc_port_luns = get_fc_port_luns(cfg, port); 2796 2797 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) 2798 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2799 "%03d: %016llx\n", 2800 i, readq_be(&fc_port_luns[i])); 2801 return bytes; 2802 } 2803 2804 /** 2805 * port0_lun_table_show() - presents the current LUN table of port 0 2806 * @dev: Generic device associated with the host owning the port. 2807 * @attr: Device attribute representing the port. 2808 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2809 * 2810 * Return: The size of the ASCII string returned in @buf. 2811 */ 2812 static ssize_t port0_lun_table_show(struct device *dev, 2813 struct device_attribute *attr, 2814 char *buf) 2815 { 2816 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2817 2818 return cxlflash_show_port_lun_table(0, cfg, buf); 2819 } 2820 2821 /** 2822 * port1_lun_table_show() - presents the current LUN table of port 1 2823 * @dev: Generic device associated with the host owning the port. 2824 * @attr: Device attribute representing the port. 2825 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2826 * 2827 * Return: The size of the ASCII string returned in @buf. 2828 */ 2829 static ssize_t port1_lun_table_show(struct device *dev, 2830 struct device_attribute *attr, 2831 char *buf) 2832 { 2833 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2834 2835 return cxlflash_show_port_lun_table(1, cfg, buf); 2836 } 2837 2838 /** 2839 * port2_lun_table_show() - presents the current LUN table of port 2 2840 * @dev: Generic device associated with the host owning the port. 2841 * @attr: Device attribute representing the port. 2842 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2843 * 2844 * Return: The size of the ASCII string returned in @buf. 2845 */ 2846 static ssize_t port2_lun_table_show(struct device *dev, 2847 struct device_attribute *attr, 2848 char *buf) 2849 { 2850 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2851 2852 return cxlflash_show_port_lun_table(2, cfg, buf); 2853 } 2854 2855 /** 2856 * port3_lun_table_show() - presents the current LUN table of port 3 2857 * @dev: Generic device associated with the host owning the port. 2858 * @attr: Device attribute representing the port. 2859 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2860 * 2861 * Return: The size of the ASCII string returned in @buf. 2862 */ 2863 static ssize_t port3_lun_table_show(struct device *dev, 2864 struct device_attribute *attr, 2865 char *buf) 2866 { 2867 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2868 2869 return cxlflash_show_port_lun_table(3, cfg, buf); 2870 } 2871 2872 /** 2873 * irqpoll_weight_show() - presents the current IRQ poll weight for the host 2874 * @dev: Generic device associated with the host. 2875 * @attr: Device attribute representing the IRQ poll weight. 2876 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll 2877 * weight in ASCII. 2878 * 2879 * An IRQ poll weight of 0 indicates polling is disabled. 2880 * 2881 * Return: The size of the ASCII string returned in @buf. 2882 */ 2883 static ssize_t irqpoll_weight_show(struct device *dev, 2884 struct device_attribute *attr, char *buf) 2885 { 2886 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2887 struct afu *afu = cfg->afu; 2888 2889 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight); 2890 } 2891 2892 /** 2893 * irqpoll_weight_store() - sets the current IRQ poll weight for the host 2894 * @dev: Generic device associated with the host. 2895 * @attr: Device attribute representing the IRQ poll weight. 2896 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll 2897 * weight in ASCII. 2898 * @count: Length of data resizing in @buf. 2899 * 2900 * An IRQ poll weight of 0 indicates polling is disabled. 2901 * 2902 * Return: The size of the ASCII string returned in @buf. 2903 */ 2904 static ssize_t irqpoll_weight_store(struct device *dev, 2905 struct device_attribute *attr, 2906 const char *buf, size_t count) 2907 { 2908 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2909 struct device *cfgdev = &cfg->dev->dev; 2910 struct afu *afu = cfg->afu; 2911 struct hwq *hwq; 2912 u32 weight; 2913 int rc, i; 2914 2915 rc = kstrtouint(buf, 10, &weight); 2916 if (rc) 2917 return -EINVAL; 2918 2919 if (weight > 256) { 2920 dev_info(cfgdev, 2921 "Invalid IRQ poll weight. It must be 256 or less.\n"); 2922 return -EINVAL; 2923 } 2924 2925 if (weight == afu->irqpoll_weight) { 2926 dev_info(cfgdev, 2927 "Current IRQ poll weight has the same weight.\n"); 2928 return -EINVAL; 2929 } 2930 2931 if (afu_is_irqpoll_enabled(afu)) { 2932 for (i = 0; i < afu->num_hwqs; i++) { 2933 hwq = get_hwq(afu, i); 2934 2935 irq_poll_disable(&hwq->irqpoll); 2936 } 2937 } 2938 2939 afu->irqpoll_weight = weight; 2940 2941 if (weight > 0) { 2942 for (i = 0; i < afu->num_hwqs; i++) { 2943 hwq = get_hwq(afu, i); 2944 2945 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll); 2946 } 2947 } 2948 2949 return count; 2950 } 2951 2952 /** 2953 * num_hwqs_show() - presents the number of hardware queues for the host 2954 * @dev: Generic device associated with the host. 2955 * @attr: Device attribute representing the number of hardware queues. 2956 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware 2957 * queues in ASCII. 2958 * 2959 * Return: The size of the ASCII string returned in @buf. 2960 */ 2961 static ssize_t num_hwqs_show(struct device *dev, 2962 struct device_attribute *attr, char *buf) 2963 { 2964 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2965 struct afu *afu = cfg->afu; 2966 2967 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs); 2968 } 2969 2970 /** 2971 * num_hwqs_store() - sets the number of hardware queues for the host 2972 * @dev: Generic device associated with the host. 2973 * @attr: Device attribute representing the number of hardware queues. 2974 * @buf: Buffer of length PAGE_SIZE containing the number of hardware 2975 * queues in ASCII. 2976 * @count: Length of data resizing in @buf. 2977 * 2978 * n > 0: num_hwqs = n 2979 * n = 0: num_hwqs = num_online_cpus() 2980 * n < 0: num_online_cpus() / abs(n) 2981 * 2982 * Return: The size of the ASCII string returned in @buf. 2983 */ 2984 static ssize_t num_hwqs_store(struct device *dev, 2985 struct device_attribute *attr, 2986 const char *buf, size_t count) 2987 { 2988 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2989 struct afu *afu = cfg->afu; 2990 int rc; 2991 int nhwqs, num_hwqs; 2992 2993 rc = kstrtoint(buf, 10, &nhwqs); 2994 if (rc) 2995 return -EINVAL; 2996 2997 if (nhwqs >= 1) 2998 num_hwqs = nhwqs; 2999 else if (nhwqs == 0) 3000 num_hwqs = num_online_cpus(); 3001 else 3002 num_hwqs = num_online_cpus() / abs(nhwqs); 3003 3004 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS); 3005 WARN_ON_ONCE(afu->desired_hwqs == 0); 3006 3007 retry: 3008 switch (cfg->state) { 3009 case STATE_NORMAL: 3010 cfg->state = STATE_RESET; 3011 drain_ioctls(cfg); 3012 cxlflash_mark_contexts_error(cfg); 3013 rc = afu_reset(cfg); 3014 if (rc) 3015 cfg->state = STATE_FAILTERM; 3016 else 3017 cfg->state = STATE_NORMAL; 3018 wake_up_all(&cfg->reset_waitq); 3019 break; 3020 case STATE_RESET: 3021 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 3022 if (cfg->state == STATE_NORMAL) 3023 goto retry; 3024 default: 3025 /* Ideally should not happen */ 3026 dev_err(dev, "%s: Device is not ready, state=%d\n", 3027 __func__, cfg->state); 3028 break; 3029 } 3030 3031 return count; 3032 } 3033 3034 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" }; 3035 3036 /** 3037 * hwq_mode_show() - presents the HWQ steering mode for the host 3038 * @dev: Generic device associated with the host. 3039 * @attr: Device attribute representing the HWQ steering mode. 3040 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode 3041 * as a character string. 3042 * 3043 * Return: The size of the ASCII string returned in @buf. 3044 */ 3045 static ssize_t hwq_mode_show(struct device *dev, 3046 struct device_attribute *attr, char *buf) 3047 { 3048 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 3049 struct afu *afu = cfg->afu; 3050 3051 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]); 3052 } 3053 3054 /** 3055 * hwq_mode_store() - sets the HWQ steering mode for the host 3056 * @dev: Generic device associated with the host. 3057 * @attr: Device attribute representing the HWQ steering mode. 3058 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode 3059 * as a character string. 3060 * @count: Length of data resizing in @buf. 3061 * 3062 * rr = Round-Robin 3063 * tag = Block MQ Tagging 3064 * cpu = CPU Affinity 3065 * 3066 * Return: The size of the ASCII string returned in @buf. 3067 */ 3068 static ssize_t hwq_mode_store(struct device *dev, 3069 struct device_attribute *attr, 3070 const char *buf, size_t count) 3071 { 3072 struct Scsi_Host *shost = class_to_shost(dev); 3073 struct cxlflash_cfg *cfg = shost_priv(shost); 3074 struct device *cfgdev = &cfg->dev->dev; 3075 struct afu *afu = cfg->afu; 3076 int i; 3077 u32 mode = MAX_HWQ_MODE; 3078 3079 for (i = 0; i < MAX_HWQ_MODE; i++) { 3080 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) { 3081 mode = i; 3082 break; 3083 } 3084 } 3085 3086 if (mode >= MAX_HWQ_MODE) { 3087 dev_info(cfgdev, "Invalid HWQ steering mode.\n"); 3088 return -EINVAL; 3089 } 3090 3091 afu->hwq_mode = mode; 3092 3093 return count; 3094 } 3095 3096 /** 3097 * mode_show() - presents the current mode of the device 3098 * @dev: Generic device associated with the device. 3099 * @attr: Device attribute representing the device mode. 3100 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. 3101 * 3102 * Return: The size of the ASCII string returned in @buf. 3103 */ 3104 static ssize_t mode_show(struct device *dev, 3105 struct device_attribute *attr, char *buf) 3106 { 3107 struct scsi_device *sdev = to_scsi_device(dev); 3108 3109 return scnprintf(buf, PAGE_SIZE, "%s\n", 3110 sdev->hostdata ? "superpipe" : "legacy"); 3111 } 3112 3113 /* 3114 * Host attributes 3115 */ 3116 static DEVICE_ATTR_RO(port0); 3117 static DEVICE_ATTR_RO(port1); 3118 static DEVICE_ATTR_RO(port2); 3119 static DEVICE_ATTR_RO(port3); 3120 static DEVICE_ATTR_RW(lun_mode); 3121 static DEVICE_ATTR_RO(ioctl_version); 3122 static DEVICE_ATTR_RO(port0_lun_table); 3123 static DEVICE_ATTR_RO(port1_lun_table); 3124 static DEVICE_ATTR_RO(port2_lun_table); 3125 static DEVICE_ATTR_RO(port3_lun_table); 3126 static DEVICE_ATTR_RW(irqpoll_weight); 3127 static DEVICE_ATTR_RW(num_hwqs); 3128 static DEVICE_ATTR_RW(hwq_mode); 3129 3130 static struct device_attribute *cxlflash_host_attrs[] = { 3131 &dev_attr_port0, 3132 &dev_attr_port1, 3133 &dev_attr_port2, 3134 &dev_attr_port3, 3135 &dev_attr_lun_mode, 3136 &dev_attr_ioctl_version, 3137 &dev_attr_port0_lun_table, 3138 &dev_attr_port1_lun_table, 3139 &dev_attr_port2_lun_table, 3140 &dev_attr_port3_lun_table, 3141 &dev_attr_irqpoll_weight, 3142 &dev_attr_num_hwqs, 3143 &dev_attr_hwq_mode, 3144 NULL 3145 }; 3146 3147 /* 3148 * Device attributes 3149 */ 3150 static DEVICE_ATTR_RO(mode); 3151 3152 static struct device_attribute *cxlflash_dev_attrs[] = { 3153 &dev_attr_mode, 3154 NULL 3155 }; 3156 3157 /* 3158 * Host template 3159 */ 3160 static struct scsi_host_template driver_template = { 3161 .module = THIS_MODULE, 3162 .name = CXLFLASH_ADAPTER_NAME, 3163 .info = cxlflash_driver_info, 3164 .ioctl = cxlflash_ioctl, 3165 .proc_name = CXLFLASH_NAME, 3166 .queuecommand = cxlflash_queuecommand, 3167 .eh_abort_handler = cxlflash_eh_abort_handler, 3168 .eh_device_reset_handler = cxlflash_eh_device_reset_handler, 3169 .eh_host_reset_handler = cxlflash_eh_host_reset_handler, 3170 .change_queue_depth = cxlflash_change_queue_depth, 3171 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, 3172 .can_queue = CXLFLASH_MAX_CMDS, 3173 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1, 3174 .this_id = -1, 3175 .sg_tablesize = 1, /* No scatter gather support */ 3176 .max_sectors = CXLFLASH_MAX_SECTORS, 3177 .shost_attrs = cxlflash_host_attrs, 3178 .sdev_attrs = cxlflash_dev_attrs, 3179 }; 3180 3181 /* 3182 * Device dependent values 3183 */ 3184 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, 3185 CXLFLASH_WWPN_VPD_REQUIRED }; 3186 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, 3187 CXLFLASH_NOTIFY_SHUTDOWN }; 3188 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS, 3189 (CXLFLASH_NOTIFY_SHUTDOWN | 3190 CXLFLASH_OCXL_DEV) }; 3191 3192 /* 3193 * PCI device binding table 3194 */ 3195 static struct pci_device_id cxlflash_pci_table[] = { 3196 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, 3197 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, 3198 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, 3199 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, 3200 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD, 3201 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals}, 3202 {} 3203 }; 3204 3205 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); 3206 3207 /** 3208 * cxlflash_worker_thread() - work thread handler for the AFU 3209 * @work: Work structure contained within cxlflash associated with host. 3210 * 3211 * Handles the following events: 3212 * - Link reset which cannot be performed on interrupt context due to 3213 * blocking up to a few seconds 3214 * - Rescan the host 3215 */ 3216 static void cxlflash_worker_thread(struct work_struct *work) 3217 { 3218 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, 3219 work_q); 3220 struct afu *afu = cfg->afu; 3221 struct device *dev = &cfg->dev->dev; 3222 __be64 __iomem *fc_port_regs; 3223 int port; 3224 ulong lock_flags; 3225 3226 /* Avoid MMIO if the device has failed */ 3227 3228 if (cfg->state != STATE_NORMAL) 3229 return; 3230 3231 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3232 3233 if (cfg->lr_state == LINK_RESET_REQUIRED) { 3234 port = cfg->lr_port; 3235 if (port < 0) 3236 dev_err(dev, "%s: invalid port index %d\n", 3237 __func__, port); 3238 else { 3239 spin_unlock_irqrestore(cfg->host->host_lock, 3240 lock_flags); 3241 3242 /* The reset can block... */ 3243 fc_port_regs = get_fc_port_regs(cfg, port); 3244 afu_link_reset(afu, port, fc_port_regs); 3245 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3246 } 3247 3248 cfg->lr_state = LINK_RESET_COMPLETE; 3249 } 3250 3251 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); 3252 3253 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) 3254 scsi_scan_host(cfg->host); 3255 } 3256 3257 /** 3258 * cxlflash_chr_open() - character device open handler 3259 * @inode: Device inode associated with this character device. 3260 * @file: File pointer for this device. 3261 * 3262 * Only users with admin privileges are allowed to open the character device. 3263 * 3264 * Return: 0 on success, -errno on failure 3265 */ 3266 static int cxlflash_chr_open(struct inode *inode, struct file *file) 3267 { 3268 struct cxlflash_cfg *cfg; 3269 3270 if (!capable(CAP_SYS_ADMIN)) 3271 return -EACCES; 3272 3273 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev); 3274 file->private_data = cfg; 3275 3276 return 0; 3277 } 3278 3279 /** 3280 * decode_hioctl() - translates encoded host ioctl to easily identifiable string 3281 * @cmd: The host ioctl command to decode. 3282 * 3283 * Return: A string identifying the decoded host ioctl. 3284 */ 3285 static char *decode_hioctl(unsigned int cmd) 3286 { 3287 switch (cmd) { 3288 case HT_CXLFLASH_LUN_PROVISION: 3289 return __stringify_1(HT_CXLFLASH_LUN_PROVISION); 3290 } 3291 3292 return "UNKNOWN"; 3293 } 3294 3295 /** 3296 * cxlflash_lun_provision() - host LUN provisioning handler 3297 * @cfg: Internal structure associated with the host. 3298 * @arg: Kernel copy of userspace ioctl data structure. 3299 * 3300 * Return: 0 on success, -errno on failure 3301 */ 3302 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg, 3303 struct ht_cxlflash_lun_provision *lunprov) 3304 { 3305 struct afu *afu = cfg->afu; 3306 struct device *dev = &cfg->dev->dev; 3307 struct sisl_ioarcb rcb; 3308 struct sisl_ioasa asa; 3309 __be64 __iomem *fc_port_regs; 3310 u16 port = lunprov->port; 3311 u16 scmd = lunprov->hdr.subcmd; 3312 u16 type; 3313 u64 reg; 3314 u64 size; 3315 u64 lun_id; 3316 int rc = 0; 3317 3318 if (!afu_is_lun_provision(afu)) { 3319 rc = -ENOTSUPP; 3320 goto out; 3321 } 3322 3323 if (port >= cfg->num_fc_ports) { 3324 rc = -EINVAL; 3325 goto out; 3326 } 3327 3328 switch (scmd) { 3329 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN: 3330 type = SISL_AFU_LUN_PROVISION_CREATE; 3331 size = lunprov->size; 3332 lun_id = 0; 3333 break; 3334 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN: 3335 type = SISL_AFU_LUN_PROVISION_DELETE; 3336 size = 0; 3337 lun_id = lunprov->lun_id; 3338 break; 3339 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT: 3340 fc_port_regs = get_fc_port_regs(cfg, port); 3341 3342 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]); 3343 lunprov->max_num_luns = reg; 3344 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]); 3345 lunprov->cur_num_luns = reg; 3346 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]); 3347 lunprov->max_cap_port = reg; 3348 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]); 3349 lunprov->cur_cap_port = reg; 3350 3351 goto out; 3352 default: 3353 rc = -EINVAL; 3354 goto out; 3355 } 3356 3357 memset(&rcb, 0, sizeof(rcb)); 3358 memset(&asa, 0, sizeof(asa)); 3359 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 3360 rcb.lun_id = lun_id; 3361 rcb.msi = SISL_MSI_RRQ_UPDATED; 3362 rcb.timeout = MC_LUN_PROV_TIMEOUT; 3363 rcb.ioasa = &asa; 3364 3365 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION; 3366 rcb.cdb[1] = type; 3367 rcb.cdb[2] = port; 3368 put_unaligned_be64(size, &rcb.cdb[8]); 3369 3370 rc = send_afu_cmd(afu, &rcb); 3371 if (rc) { 3372 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3373 __func__, rc, asa.ioasc, asa.afu_extra); 3374 goto out; 3375 } 3376 3377 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) { 3378 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo; 3379 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid)); 3380 } 3381 out: 3382 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3383 return rc; 3384 } 3385 3386 /** 3387 * cxlflash_afu_debug() - host AFU debug handler 3388 * @cfg: Internal structure associated with the host. 3389 * @arg: Kernel copy of userspace ioctl data structure. 3390 * 3391 * For debug requests requiring a data buffer, always provide an aligned 3392 * (cache line) buffer to the AFU to appease any alignment requirements. 3393 * 3394 * Return: 0 on success, -errno on failure 3395 */ 3396 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg, 3397 struct ht_cxlflash_afu_debug *afu_dbg) 3398 { 3399 struct afu *afu = cfg->afu; 3400 struct device *dev = &cfg->dev->dev; 3401 struct sisl_ioarcb rcb; 3402 struct sisl_ioasa asa; 3403 char *buf = NULL; 3404 char *kbuf = NULL; 3405 void __user *ubuf = (__force void __user *)afu_dbg->data_ea; 3406 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD; 3407 u32 ulen = afu_dbg->data_len; 3408 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE; 3409 int rc = 0; 3410 3411 if (!afu_is_afu_debug(afu)) { 3412 rc = -ENOTSUPP; 3413 goto out; 3414 } 3415 3416 if (ulen) { 3417 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN; 3418 3419 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) { 3420 rc = -EINVAL; 3421 goto out; 3422 } 3423 3424 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL); 3425 if (unlikely(!buf)) { 3426 rc = -ENOMEM; 3427 goto out; 3428 } 3429 3430 kbuf = PTR_ALIGN(buf, cache_line_size()); 3431 3432 if (is_write) { 3433 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 3434 3435 if (copy_from_user(kbuf, ubuf, ulen)) { 3436 rc = -EFAULT; 3437 goto out; 3438 } 3439 } 3440 } 3441 3442 memset(&rcb, 0, sizeof(rcb)); 3443 memset(&asa, 0, sizeof(asa)); 3444 3445 rcb.req_flags = req_flags; 3446 rcb.msi = SISL_MSI_RRQ_UPDATED; 3447 rcb.timeout = MC_AFU_DEBUG_TIMEOUT; 3448 rcb.ioasa = &asa; 3449 3450 if (ulen) { 3451 rcb.data_len = ulen; 3452 rcb.data_ea = (uintptr_t)kbuf; 3453 } 3454 3455 rcb.cdb[0] = SISL_AFU_CMD_DEBUG; 3456 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd, 3457 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN); 3458 3459 rc = send_afu_cmd(afu, &rcb); 3460 if (rc) { 3461 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3462 __func__, rc, asa.ioasc, asa.afu_extra); 3463 goto out; 3464 } 3465 3466 if (ulen && !is_write) { 3467 if (copy_to_user(ubuf, kbuf, ulen)) 3468 rc = -EFAULT; 3469 } 3470 out: 3471 kfree(buf); 3472 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3473 return rc; 3474 } 3475 3476 /** 3477 * cxlflash_chr_ioctl() - character device IOCTL handler 3478 * @file: File pointer for this device. 3479 * @cmd: IOCTL command. 3480 * @arg: Userspace ioctl data structure. 3481 * 3482 * A read/write semaphore is used to implement a 'drain' of currently 3483 * running ioctls. The read semaphore is taken at the beginning of each 3484 * ioctl thread and released upon concluding execution. Additionally the 3485 * semaphore should be released and then reacquired in any ioctl execution 3486 * path which will wait for an event to occur that is outside the scope of 3487 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running, 3488 * a thread simply needs to acquire the write semaphore. 3489 * 3490 * Return: 0 on success, -errno on failure 3491 */ 3492 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd, 3493 unsigned long arg) 3494 { 3495 typedef int (*hioctl) (struct cxlflash_cfg *, void *); 3496 3497 struct cxlflash_cfg *cfg = file->private_data; 3498 struct device *dev = &cfg->dev->dev; 3499 char buf[sizeof(union cxlflash_ht_ioctls)]; 3500 void __user *uarg = (void __user *)arg; 3501 struct ht_cxlflash_hdr *hdr; 3502 size_t size = 0; 3503 bool known_ioctl = false; 3504 int idx = 0; 3505 int rc = 0; 3506 hioctl do_ioctl = NULL; 3507 3508 static const struct { 3509 size_t size; 3510 hioctl ioctl; 3511 } ioctl_tbl[] = { /* NOTE: order matters here */ 3512 { sizeof(struct ht_cxlflash_lun_provision), 3513 (hioctl)cxlflash_lun_provision }, 3514 { sizeof(struct ht_cxlflash_afu_debug), 3515 (hioctl)cxlflash_afu_debug }, 3516 }; 3517 3518 /* Hold read semaphore so we can drain if needed */ 3519 down_read(&cfg->ioctl_rwsem); 3520 3521 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n", 3522 __func__, cmd, idx, sizeof(ioctl_tbl)); 3523 3524 switch (cmd) { 3525 case HT_CXLFLASH_LUN_PROVISION: 3526 case HT_CXLFLASH_AFU_DEBUG: 3527 known_ioctl = true; 3528 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd); 3529 size = ioctl_tbl[idx].size; 3530 do_ioctl = ioctl_tbl[idx].ioctl; 3531 3532 if (likely(do_ioctl)) 3533 break; 3534 3535 /* fall through */ 3536 default: 3537 rc = -EINVAL; 3538 goto out; 3539 } 3540 3541 if (unlikely(copy_from_user(&buf, uarg, size))) { 3542 dev_err(dev, "%s: copy_from_user() fail " 3543 "size=%lu cmd=%d (%s) uarg=%p\n", 3544 __func__, size, cmd, decode_hioctl(cmd), uarg); 3545 rc = -EFAULT; 3546 goto out; 3547 } 3548 3549 hdr = (struct ht_cxlflash_hdr *)&buf; 3550 if (hdr->version != HT_CXLFLASH_VERSION_0) { 3551 dev_dbg(dev, "%s: Version %u not supported for %s\n", 3552 __func__, hdr->version, decode_hioctl(cmd)); 3553 rc = -EINVAL; 3554 goto out; 3555 } 3556 3557 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) { 3558 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__); 3559 rc = -EINVAL; 3560 goto out; 3561 } 3562 3563 rc = do_ioctl(cfg, (void *)&buf); 3564 if (likely(!rc)) 3565 if (unlikely(copy_to_user(uarg, &buf, size))) { 3566 dev_err(dev, "%s: copy_to_user() fail " 3567 "size=%lu cmd=%d (%s) uarg=%p\n", 3568 __func__, size, cmd, decode_hioctl(cmd), uarg); 3569 rc = -EFAULT; 3570 } 3571 3572 /* fall through to exit */ 3573 3574 out: 3575 up_read(&cfg->ioctl_rwsem); 3576 if (unlikely(rc && known_ioctl)) 3577 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3578 __func__, decode_hioctl(cmd), cmd, rc); 3579 else 3580 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3581 __func__, decode_hioctl(cmd), cmd, rc); 3582 return rc; 3583 } 3584 3585 /* 3586 * Character device file operations 3587 */ 3588 static const struct file_operations cxlflash_chr_fops = { 3589 .owner = THIS_MODULE, 3590 .open = cxlflash_chr_open, 3591 .unlocked_ioctl = cxlflash_chr_ioctl, 3592 .compat_ioctl = cxlflash_chr_ioctl, 3593 }; 3594 3595 /** 3596 * init_chrdev() - initialize the character device for the host 3597 * @cfg: Internal structure associated with the host. 3598 * 3599 * Return: 0 on success, -errno on failure 3600 */ 3601 static int init_chrdev(struct cxlflash_cfg *cfg) 3602 { 3603 struct device *dev = &cfg->dev->dev; 3604 struct device *char_dev; 3605 dev_t devno; 3606 int minor; 3607 int rc = 0; 3608 3609 minor = cxlflash_get_minor(); 3610 if (unlikely(minor < 0)) { 3611 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__); 3612 rc = -ENOSPC; 3613 goto out; 3614 } 3615 3616 devno = MKDEV(cxlflash_major, minor); 3617 cdev_init(&cfg->cdev, &cxlflash_chr_fops); 3618 3619 rc = cdev_add(&cfg->cdev, devno, 1); 3620 if (rc) { 3621 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc); 3622 goto err1; 3623 } 3624 3625 char_dev = device_create(cxlflash_class, NULL, devno, 3626 NULL, "cxlflash%d", minor); 3627 if (IS_ERR(char_dev)) { 3628 rc = PTR_ERR(char_dev); 3629 dev_err(dev, "%s: device_create failed rc=%d\n", 3630 __func__, rc); 3631 goto err2; 3632 } 3633 3634 cfg->chardev = char_dev; 3635 out: 3636 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3637 return rc; 3638 err2: 3639 cdev_del(&cfg->cdev); 3640 err1: 3641 cxlflash_put_minor(minor); 3642 goto out; 3643 } 3644 3645 /** 3646 * cxlflash_probe() - PCI entry point to add host 3647 * @pdev: PCI device associated with the host. 3648 * @dev_id: PCI device id associated with device. 3649 * 3650 * The device will initially start out in a 'probing' state and 3651 * transition to the 'normal' state at the end of a successful 3652 * probe. Should an EEH event occur during probe, the notification 3653 * thread (error_detected()) will wait until the probe handler 3654 * is nearly complete. At that time, the device will be moved to 3655 * a 'probed' state and the EEH thread woken up to drive the slot 3656 * reset and recovery (device moves to 'normal' state). Meanwhile, 3657 * the probe will be allowed to exit successfully. 3658 * 3659 * Return: 0 on success, -errno on failure 3660 */ 3661 static int cxlflash_probe(struct pci_dev *pdev, 3662 const struct pci_device_id *dev_id) 3663 { 3664 struct Scsi_Host *host; 3665 struct cxlflash_cfg *cfg = NULL; 3666 struct device *dev = &pdev->dev; 3667 struct dev_dependent_vals *ddv; 3668 int rc = 0; 3669 int k; 3670 3671 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", 3672 __func__, pdev->irq); 3673 3674 ddv = (struct dev_dependent_vals *)dev_id->driver_data; 3675 driver_template.max_sectors = ddv->max_sectors; 3676 3677 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); 3678 if (!host) { 3679 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__); 3680 rc = -ENOMEM; 3681 goto out; 3682 } 3683 3684 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; 3685 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; 3686 host->unique_id = host->host_no; 3687 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; 3688 3689 cfg = shost_priv(host); 3690 cfg->state = STATE_PROBING; 3691 cfg->host = host; 3692 rc = alloc_mem(cfg); 3693 if (rc) { 3694 dev_err(dev, "%s: alloc_mem failed\n", __func__); 3695 rc = -ENOMEM; 3696 scsi_host_put(cfg->host); 3697 goto out; 3698 } 3699 3700 cfg->init_state = INIT_STATE_NONE; 3701 cfg->dev = pdev; 3702 cfg->cxl_fops = cxlflash_cxl_fops; 3703 cfg->ops = cxlflash_assign_ops(ddv); 3704 WARN_ON_ONCE(!cfg->ops); 3705 3706 /* 3707 * Promoted LUNs move to the top of the LUN table. The rest stay on 3708 * the bottom half. The bottom half grows from the end (index = 255), 3709 * whereas the top half grows from the beginning (index = 0). 3710 * 3711 * Initialize the last LUN index for all possible ports. 3712 */ 3713 cfg->promote_lun_index = 0; 3714 3715 for (k = 0; k < MAX_FC_PORTS; k++) 3716 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1; 3717 3718 cfg->dev_id = (struct pci_device_id *)dev_id; 3719 3720 init_waitqueue_head(&cfg->tmf_waitq); 3721 init_waitqueue_head(&cfg->reset_waitq); 3722 3723 INIT_WORK(&cfg->work_q, cxlflash_worker_thread); 3724 cfg->lr_state = LINK_RESET_INVALID; 3725 cfg->lr_port = -1; 3726 spin_lock_init(&cfg->tmf_slock); 3727 mutex_init(&cfg->ctx_tbl_list_mutex); 3728 mutex_init(&cfg->ctx_recovery_mutex); 3729 init_rwsem(&cfg->ioctl_rwsem); 3730 INIT_LIST_HEAD(&cfg->ctx_err_recovery); 3731 INIT_LIST_HEAD(&cfg->lluns); 3732 3733 pci_set_drvdata(pdev, cfg); 3734 3735 rc = init_pci(cfg); 3736 if (rc) { 3737 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc); 3738 goto out_remove; 3739 } 3740 cfg->init_state = INIT_STATE_PCI; 3741 3742 cfg->afu_cookie = cfg->ops->create_afu(pdev); 3743 if (unlikely(!cfg->afu_cookie)) { 3744 dev_err(dev, "%s: create_afu failed\n", __func__); 3745 goto out_remove; 3746 } 3747 3748 rc = init_afu(cfg); 3749 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) { 3750 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc); 3751 goto out_remove; 3752 } 3753 cfg->init_state = INIT_STATE_AFU; 3754 3755 rc = init_scsi(cfg); 3756 if (rc) { 3757 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc); 3758 goto out_remove; 3759 } 3760 cfg->init_state = INIT_STATE_SCSI; 3761 3762 rc = init_chrdev(cfg); 3763 if (rc) { 3764 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc); 3765 goto out_remove; 3766 } 3767 cfg->init_state = INIT_STATE_CDEV; 3768 3769 if (wq_has_sleeper(&cfg->reset_waitq)) { 3770 cfg->state = STATE_PROBED; 3771 wake_up_all(&cfg->reset_waitq); 3772 } else 3773 cfg->state = STATE_NORMAL; 3774 out: 3775 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3776 return rc; 3777 3778 out_remove: 3779 cfg->state = STATE_PROBED; 3780 cxlflash_remove(pdev); 3781 goto out; 3782 } 3783 3784 /** 3785 * cxlflash_pci_error_detected() - called when a PCI error is detected 3786 * @pdev: PCI device struct. 3787 * @state: PCI channel state. 3788 * 3789 * When an EEH occurs during an active reset, wait until the reset is 3790 * complete and then take action based upon the device state. 3791 * 3792 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT 3793 */ 3794 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, 3795 pci_channel_state_t state) 3796 { 3797 int rc = 0; 3798 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3799 struct device *dev = &cfg->dev->dev; 3800 3801 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); 3802 3803 switch (state) { 3804 case pci_channel_io_frozen: 3805 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 3806 cfg->state != STATE_PROBING); 3807 if (cfg->state == STATE_FAILTERM) 3808 return PCI_ERS_RESULT_DISCONNECT; 3809 3810 cfg->state = STATE_RESET; 3811 scsi_block_requests(cfg->host); 3812 drain_ioctls(cfg); 3813 rc = cxlflash_mark_contexts_error(cfg); 3814 if (unlikely(rc)) 3815 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n", 3816 __func__, rc); 3817 term_afu(cfg); 3818 return PCI_ERS_RESULT_NEED_RESET; 3819 case pci_channel_io_perm_failure: 3820 cfg->state = STATE_FAILTERM; 3821 wake_up_all(&cfg->reset_waitq); 3822 scsi_unblock_requests(cfg->host); 3823 return PCI_ERS_RESULT_DISCONNECT; 3824 default: 3825 break; 3826 } 3827 return PCI_ERS_RESULT_NEED_RESET; 3828 } 3829 3830 /** 3831 * cxlflash_pci_slot_reset() - called when PCI slot has been reset 3832 * @pdev: PCI device struct. 3833 * 3834 * This routine is called by the pci error recovery code after the PCI 3835 * slot has been reset, just before we should resume normal operations. 3836 * 3837 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT 3838 */ 3839 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) 3840 { 3841 int rc = 0; 3842 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3843 struct device *dev = &cfg->dev->dev; 3844 3845 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3846 3847 rc = init_afu(cfg); 3848 if (unlikely(rc)) { 3849 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc); 3850 return PCI_ERS_RESULT_DISCONNECT; 3851 } 3852 3853 return PCI_ERS_RESULT_RECOVERED; 3854 } 3855 3856 /** 3857 * cxlflash_pci_resume() - called when normal operation can resume 3858 * @pdev: PCI device struct 3859 */ 3860 static void cxlflash_pci_resume(struct pci_dev *pdev) 3861 { 3862 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3863 struct device *dev = &cfg->dev->dev; 3864 3865 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3866 3867 cfg->state = STATE_NORMAL; 3868 wake_up_all(&cfg->reset_waitq); 3869 scsi_unblock_requests(cfg->host); 3870 } 3871 3872 /** 3873 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class 3874 * @dev: Character device. 3875 * @mode: Mode that can be used to verify access. 3876 * 3877 * Return: Allocated string describing the devtmpfs structure. 3878 */ 3879 static char *cxlflash_devnode(struct device *dev, umode_t *mode) 3880 { 3881 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev)); 3882 } 3883 3884 /** 3885 * cxlflash_class_init() - create character device class 3886 * 3887 * Return: 0 on success, -errno on failure 3888 */ 3889 static int cxlflash_class_init(void) 3890 { 3891 dev_t devno; 3892 int rc = 0; 3893 3894 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash"); 3895 if (unlikely(rc)) { 3896 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc); 3897 goto out; 3898 } 3899 3900 cxlflash_major = MAJOR(devno); 3901 3902 cxlflash_class = class_create(THIS_MODULE, "cxlflash"); 3903 if (IS_ERR(cxlflash_class)) { 3904 rc = PTR_ERR(cxlflash_class); 3905 pr_err("%s: class_create failed rc=%d\n", __func__, rc); 3906 goto err; 3907 } 3908 3909 cxlflash_class->devnode = cxlflash_devnode; 3910 out: 3911 pr_debug("%s: returning rc=%d\n", __func__, rc); 3912 return rc; 3913 err: 3914 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3915 goto out; 3916 } 3917 3918 /** 3919 * cxlflash_class_exit() - destroy character device class 3920 */ 3921 static void cxlflash_class_exit(void) 3922 { 3923 dev_t devno = MKDEV(cxlflash_major, 0); 3924 3925 class_destroy(cxlflash_class); 3926 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3927 } 3928 3929 static const struct pci_error_handlers cxlflash_err_handler = { 3930 .error_detected = cxlflash_pci_error_detected, 3931 .slot_reset = cxlflash_pci_slot_reset, 3932 .resume = cxlflash_pci_resume, 3933 }; 3934 3935 /* 3936 * PCI device structure 3937 */ 3938 static struct pci_driver cxlflash_driver = { 3939 .name = CXLFLASH_NAME, 3940 .id_table = cxlflash_pci_table, 3941 .probe = cxlflash_probe, 3942 .remove = cxlflash_remove, 3943 .shutdown = cxlflash_remove, 3944 .err_handler = &cxlflash_err_handler, 3945 }; 3946 3947 /** 3948 * init_cxlflash() - module entry point 3949 * 3950 * Return: 0 on success, -errno on failure 3951 */ 3952 static int __init init_cxlflash(void) 3953 { 3954 int rc; 3955 3956 check_sizes(); 3957 cxlflash_list_init(); 3958 rc = cxlflash_class_init(); 3959 if (unlikely(rc)) 3960 goto out; 3961 3962 rc = pci_register_driver(&cxlflash_driver); 3963 if (unlikely(rc)) 3964 goto err; 3965 out: 3966 pr_debug("%s: returning rc=%d\n", __func__, rc); 3967 return rc; 3968 err: 3969 cxlflash_class_exit(); 3970 goto out; 3971 } 3972 3973 /** 3974 * exit_cxlflash() - module exit point 3975 */ 3976 static void __exit exit_cxlflash(void) 3977 { 3978 cxlflash_term_global_luns(); 3979 cxlflash_free_errpage(); 3980 3981 pci_unregister_driver(&cxlflash_driver); 3982 cxlflash_class_exit(); 3983 } 3984 3985 module_init(init_cxlflash); 3986 module_exit(exit_cxlflash); 3987