1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CXL Flash Device Driver 4 * 5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 6 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 7 * 8 * Copyright (C) 2015 IBM Corporation 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/pci.h> 15 16 #include <asm/unaligned.h> 17 18 #include <scsi/scsi_cmnd.h> 19 #include <scsi/scsi_host.h> 20 #include <uapi/scsi/cxlflash_ioctl.h> 21 22 #include "main.h" 23 #include "sislite.h" 24 #include "common.h" 25 26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); 27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); 28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); 29 MODULE_LICENSE("GPL"); 30 31 static struct class *cxlflash_class; 32 static u32 cxlflash_major; 33 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 34 35 /** 36 * process_cmd_err() - command error handler 37 * @cmd: AFU command that experienced the error. 38 * @scp: SCSI command associated with the AFU command in error. 39 * 40 * Translates error bits from AFU command to SCSI command results. 41 */ 42 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) 43 { 44 struct afu *afu = cmd->parent; 45 struct cxlflash_cfg *cfg = afu->parent; 46 struct device *dev = &cfg->dev->dev; 47 struct sisl_ioasa *ioasa; 48 u32 resid; 49 50 ioasa = &(cmd->sa); 51 52 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { 53 resid = ioasa->resid; 54 scsi_set_resid(scp, resid); 55 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n", 56 __func__, cmd, scp, resid); 57 } 58 59 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { 60 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n", 61 __func__, cmd, scp); 62 scp->result = (DID_ERROR << 16); 63 } 64 65 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x " 66 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__, 67 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, 68 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); 69 70 if (ioasa->rc.scsi_rc) { 71 /* We have a SCSI status */ 72 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { 73 memcpy(scp->sense_buffer, ioasa->sense_data, 74 SISL_SENSE_DATA_LEN); 75 scp->result = ioasa->rc.scsi_rc; 76 } else 77 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); 78 } 79 80 /* 81 * We encountered an error. Set scp->result based on nature 82 * of error. 83 */ 84 if (ioasa->rc.fc_rc) { 85 /* We have an FC status */ 86 switch (ioasa->rc.fc_rc) { 87 case SISL_FC_RC_LINKDOWN: 88 scp->result = (DID_REQUEUE << 16); 89 break; 90 case SISL_FC_RC_RESID: 91 /* This indicates an FCP resid underrun */ 92 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { 93 /* If the SISL_RC_FLAGS_OVERRUN flag was set, 94 * then we will handle this error else where. 95 * If not then we must handle it here. 96 * This is probably an AFU bug. 97 */ 98 scp->result = (DID_ERROR << 16); 99 } 100 break; 101 case SISL_FC_RC_RESIDERR: 102 /* Resid mismatch between adapter and device */ 103 case SISL_FC_RC_TGTABORT: 104 case SISL_FC_RC_ABORTOK: 105 case SISL_FC_RC_ABORTFAIL: 106 case SISL_FC_RC_NOLOGI: 107 case SISL_FC_RC_ABORTPEND: 108 case SISL_FC_RC_WRABORTPEND: 109 case SISL_FC_RC_NOEXP: 110 case SISL_FC_RC_INUSE: 111 scp->result = (DID_ERROR << 16); 112 break; 113 } 114 } 115 116 if (ioasa->rc.afu_rc) { 117 /* We have an AFU error */ 118 switch (ioasa->rc.afu_rc) { 119 case SISL_AFU_RC_NO_CHANNELS: 120 scp->result = (DID_NO_CONNECT << 16); 121 break; 122 case SISL_AFU_RC_DATA_DMA_ERR: 123 switch (ioasa->afu_extra) { 124 case SISL_AFU_DMA_ERR_PAGE_IN: 125 /* Retry */ 126 scp->result = (DID_IMM_RETRY << 16); 127 break; 128 case SISL_AFU_DMA_ERR_INVALID_EA: 129 default: 130 scp->result = (DID_ERROR << 16); 131 } 132 break; 133 case SISL_AFU_RC_OUT_OF_DATA_BUFS: 134 /* Retry */ 135 scp->result = (DID_ALLOC_FAILURE << 16); 136 break; 137 default: 138 scp->result = (DID_ERROR << 16); 139 } 140 } 141 } 142 143 /** 144 * cmd_complete() - command completion handler 145 * @cmd: AFU command that has completed. 146 * 147 * For SCSI commands this routine prepares and submits commands that have 148 * either completed or timed out to the SCSI stack. For internal commands 149 * (TMF or AFU), this routine simply notifies the originator that the 150 * command has completed. 151 */ 152 static void cmd_complete(struct afu_cmd *cmd) 153 { 154 struct scsi_cmnd *scp; 155 ulong lock_flags; 156 struct afu *afu = cmd->parent; 157 struct cxlflash_cfg *cfg = afu->parent; 158 struct device *dev = &cfg->dev->dev; 159 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 160 161 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 162 list_del(&cmd->list); 163 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 164 165 if (cmd->scp) { 166 scp = cmd->scp; 167 if (unlikely(cmd->sa.ioasc)) 168 process_cmd_err(cmd, scp); 169 else 170 scp->result = (DID_OK << 16); 171 172 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n", 173 __func__, scp, scp->result, cmd->sa.ioasc); 174 scsi_done(scp); 175 } else if (cmd->cmd_tmf) { 176 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 177 cfg->tmf_active = false; 178 wake_up_all_locked(&cfg->tmf_waitq); 179 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 180 } else 181 complete(&cmd->cevent); 182 } 183 184 /** 185 * flush_pending_cmds() - flush all pending commands on this hardware queue 186 * @hwq: Hardware queue to flush. 187 * 188 * The hardware send queue lock associated with this hardware queue must be 189 * held when calling this routine. 190 */ 191 static void flush_pending_cmds(struct hwq *hwq) 192 { 193 struct cxlflash_cfg *cfg = hwq->afu->parent; 194 struct afu_cmd *cmd, *tmp; 195 struct scsi_cmnd *scp; 196 ulong lock_flags; 197 198 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) { 199 /* Bypass command when on a doneq, cmd_complete() will handle */ 200 if (!list_empty(&cmd->queue)) 201 continue; 202 203 list_del(&cmd->list); 204 205 if (cmd->scp) { 206 scp = cmd->scp; 207 scp->result = (DID_IMM_RETRY << 16); 208 scsi_done(scp); 209 } else { 210 cmd->cmd_aborted = true; 211 212 if (cmd->cmd_tmf) { 213 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 214 cfg->tmf_active = false; 215 wake_up_all_locked(&cfg->tmf_waitq); 216 spin_unlock_irqrestore(&cfg->tmf_slock, 217 lock_flags); 218 } else 219 complete(&cmd->cevent); 220 } 221 } 222 } 223 224 /** 225 * context_reset() - reset context via specified register 226 * @hwq: Hardware queue owning the context to be reset. 227 * @reset_reg: MMIO register to perform reset. 228 * 229 * When the reset is successful, the SISLite specification guarantees that 230 * the AFU has aborted all currently pending I/O. Accordingly, these commands 231 * must be flushed. 232 * 233 * Return: 0 on success, -errno on failure 234 */ 235 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg) 236 { 237 struct cxlflash_cfg *cfg = hwq->afu->parent; 238 struct device *dev = &cfg->dev->dev; 239 int rc = -ETIMEDOUT; 240 int nretry = 0; 241 u64 val = 0x1; 242 ulong lock_flags; 243 244 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq); 245 246 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 247 248 writeq_be(val, reset_reg); 249 do { 250 val = readq_be(reset_reg); 251 if ((val & 0x1) == 0x0) { 252 rc = 0; 253 break; 254 } 255 256 /* Double delay each time */ 257 udelay(1 << nretry); 258 } while (nretry++ < MC_ROOM_RETRY_CNT); 259 260 if (!rc) 261 flush_pending_cmds(hwq); 262 263 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 264 265 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n", 266 __func__, rc, val, nretry); 267 return rc; 268 } 269 270 /** 271 * context_reset_ioarrin() - reset context via IOARRIN register 272 * @hwq: Hardware queue owning the context to be reset. 273 * 274 * Return: 0 on success, -errno on failure 275 */ 276 static int context_reset_ioarrin(struct hwq *hwq) 277 { 278 return context_reset(hwq, &hwq->host_map->ioarrin); 279 } 280 281 /** 282 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register 283 * @hwq: Hardware queue owning the context to be reset. 284 * 285 * Return: 0 on success, -errno on failure 286 */ 287 static int context_reset_sq(struct hwq *hwq) 288 { 289 return context_reset(hwq, &hwq->host_map->sq_ctx_reset); 290 } 291 292 /** 293 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register 294 * @afu: AFU associated with the host. 295 * @cmd: AFU command to send. 296 * 297 * Return: 298 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 299 */ 300 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd) 301 { 302 struct cxlflash_cfg *cfg = afu->parent; 303 struct device *dev = &cfg->dev->dev; 304 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 305 int rc = 0; 306 s64 room; 307 ulong lock_flags; 308 309 /* 310 * To avoid the performance penalty of MMIO, spread the update of 311 * 'room' over multiple commands. 312 */ 313 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 314 if (--hwq->room < 0) { 315 room = readq_be(&hwq->host_map->cmd_room); 316 if (room <= 0) { 317 dev_dbg_ratelimited(dev, "%s: no cmd_room to send " 318 "0x%02X, room=0x%016llX\n", 319 __func__, cmd->rcb.cdb[0], room); 320 hwq->room = 0; 321 rc = SCSI_MLQUEUE_HOST_BUSY; 322 goto out; 323 } 324 hwq->room = room - 1; 325 } 326 327 list_add(&cmd->list, &hwq->pending_cmds); 328 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin); 329 out: 330 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 331 dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", 332 __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc); 333 return rc; 334 } 335 336 /** 337 * send_cmd_sq() - sends an AFU command via SQ ring 338 * @afu: AFU associated with the host. 339 * @cmd: AFU command to send. 340 * 341 * Return: 342 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 343 */ 344 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd) 345 { 346 struct cxlflash_cfg *cfg = afu->parent; 347 struct device *dev = &cfg->dev->dev; 348 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 349 int rc = 0; 350 int newval; 351 ulong lock_flags; 352 353 newval = atomic_dec_if_positive(&hwq->hsq_credits); 354 if (newval <= 0) { 355 rc = SCSI_MLQUEUE_HOST_BUSY; 356 goto out; 357 } 358 359 cmd->rcb.ioasa = &cmd->sa; 360 361 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 362 363 *hwq->hsq_curr = cmd->rcb; 364 if (hwq->hsq_curr < hwq->hsq_end) 365 hwq->hsq_curr++; 366 else 367 hwq->hsq_curr = hwq->hsq_start; 368 369 list_add(&cmd->list, &hwq->pending_cmds); 370 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail); 371 372 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 373 out: 374 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p " 375 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len, 376 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr, 377 readq_be(&hwq->host_map->sq_head), 378 readq_be(&hwq->host_map->sq_tail)); 379 return rc; 380 } 381 382 /** 383 * wait_resp() - polls for a response or timeout to a sent AFU command 384 * @afu: AFU associated with the host. 385 * @cmd: AFU command that was sent. 386 * 387 * Return: 0 on success, -errno on failure 388 */ 389 static int wait_resp(struct afu *afu, struct afu_cmd *cmd) 390 { 391 struct cxlflash_cfg *cfg = afu->parent; 392 struct device *dev = &cfg->dev->dev; 393 int rc = 0; 394 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); 395 396 timeout = wait_for_completion_timeout(&cmd->cevent, timeout); 397 if (!timeout) 398 rc = -ETIMEDOUT; 399 400 if (cmd->cmd_aborted) 401 rc = -EAGAIN; 402 403 if (unlikely(cmd->sa.ioasc != 0)) { 404 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n", 405 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc); 406 rc = -EIO; 407 } 408 409 return rc; 410 } 411 412 /** 413 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command 414 * @host: SCSI host associated with device. 415 * @scp: SCSI command to send. 416 * @afu: SCSI command to send. 417 * 418 * Hashes a command based upon the hardware queue mode. 419 * 420 * Return: Trusted index of target hardware queue 421 */ 422 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp, 423 struct afu *afu) 424 { 425 u32 tag; 426 u32 hwq = 0; 427 428 if (afu->num_hwqs == 1) 429 return 0; 430 431 switch (afu->hwq_mode) { 432 case HWQ_MODE_RR: 433 hwq = afu->hwq_rr_count++ % afu->num_hwqs; 434 break; 435 case HWQ_MODE_TAG: 436 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scp)); 437 hwq = blk_mq_unique_tag_to_hwq(tag); 438 break; 439 case HWQ_MODE_CPU: 440 hwq = smp_processor_id() % afu->num_hwqs; 441 break; 442 default: 443 WARN_ON_ONCE(1); 444 } 445 446 return hwq; 447 } 448 449 /** 450 * send_tmf() - sends a Task Management Function (TMF) 451 * @cfg: Internal structure associated with the host. 452 * @sdev: SCSI device destined for TMF. 453 * @tmfcmd: TMF command to send. 454 * 455 * Return: 456 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure 457 */ 458 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev, 459 u64 tmfcmd) 460 { 461 struct afu *afu = cfg->afu; 462 struct afu_cmd *cmd = NULL; 463 struct device *dev = &cfg->dev->dev; 464 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 465 bool needs_deletion = false; 466 char *buf = NULL; 467 ulong lock_flags; 468 int rc = 0; 469 ulong to; 470 471 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 472 if (unlikely(!buf)) { 473 dev_err(dev, "%s: no memory for command\n", __func__); 474 rc = -ENOMEM; 475 goto out; 476 } 477 478 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 479 INIT_LIST_HEAD(&cmd->queue); 480 481 /* When Task Management Function is active do not send another */ 482 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 483 if (cfg->tmf_active) 484 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 485 !cfg->tmf_active, 486 cfg->tmf_slock); 487 cfg->tmf_active = true; 488 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 489 490 cmd->parent = afu; 491 cmd->cmd_tmf = true; 492 cmd->hwq_index = hwq->index; 493 494 cmd->rcb.ctx_id = hwq->ctx_hndl; 495 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 496 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel); 497 cmd->rcb.lun_id = lun_to_lunid(sdev->lun); 498 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 499 SISL_REQ_FLAGS_SUP_UNDERRUN | 500 SISL_REQ_FLAGS_TMF_CMD); 501 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); 502 503 rc = afu->send_cmd(afu, cmd); 504 if (unlikely(rc)) { 505 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 506 cfg->tmf_active = false; 507 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 508 goto out; 509 } 510 511 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 512 to = msecs_to_jiffies(5000); 513 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, 514 !cfg->tmf_active, 515 cfg->tmf_slock, 516 to); 517 if (!to) { 518 dev_err(dev, "%s: TMF timed out\n", __func__); 519 rc = -ETIMEDOUT; 520 needs_deletion = true; 521 } else if (cmd->cmd_aborted) { 522 dev_err(dev, "%s: TMF aborted\n", __func__); 523 rc = -EAGAIN; 524 } else if (cmd->sa.ioasc) { 525 dev_err(dev, "%s: TMF failed ioasc=%08x\n", 526 __func__, cmd->sa.ioasc); 527 rc = -EIO; 528 } 529 cfg->tmf_active = false; 530 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 531 532 if (needs_deletion) { 533 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 534 list_del(&cmd->list); 535 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 536 } 537 out: 538 kfree(buf); 539 return rc; 540 } 541 542 /** 543 * cxlflash_driver_info() - information handler for this host driver 544 * @host: SCSI host associated with device. 545 * 546 * Return: A string describing the device. 547 */ 548 static const char *cxlflash_driver_info(struct Scsi_Host *host) 549 { 550 return CXLFLASH_ADAPTER_NAME; 551 } 552 553 /** 554 * cxlflash_queuecommand() - sends a mid-layer request 555 * @host: SCSI host associated with device. 556 * @scp: SCSI command to send. 557 * 558 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 559 */ 560 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) 561 { 562 struct cxlflash_cfg *cfg = shost_priv(host); 563 struct afu *afu = cfg->afu; 564 struct device *dev = &cfg->dev->dev; 565 struct afu_cmd *cmd = sc_to_afuci(scp); 566 struct scatterlist *sg = scsi_sglist(scp); 567 int hwq_index = cmd_to_target_hwq(host, scp, afu); 568 struct hwq *hwq = get_hwq(afu, hwq_index); 569 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN; 570 ulong lock_flags; 571 int rc = 0; 572 573 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " 574 "cdb=(%08x-%08x-%08x-%08x)\n", 575 __func__, scp, host->host_no, scp->device->channel, 576 scp->device->id, scp->device->lun, 577 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 578 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 579 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 580 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 581 582 /* 583 * If a Task Management Function is active, wait for it to complete 584 * before continuing with regular commands. 585 */ 586 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 587 if (cfg->tmf_active) { 588 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 589 rc = SCSI_MLQUEUE_HOST_BUSY; 590 goto out; 591 } 592 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 593 594 switch (cfg->state) { 595 case STATE_PROBING: 596 case STATE_PROBED: 597 case STATE_RESET: 598 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__); 599 rc = SCSI_MLQUEUE_HOST_BUSY; 600 goto out; 601 case STATE_FAILTERM: 602 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__); 603 scp->result = (DID_NO_CONNECT << 16); 604 scsi_done(scp); 605 rc = 0; 606 goto out; 607 default: 608 atomic_inc(&afu->cmds_active); 609 break; 610 } 611 612 if (likely(sg)) { 613 cmd->rcb.data_len = sg->length; 614 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg); 615 } 616 617 cmd->scp = scp; 618 cmd->parent = afu; 619 cmd->hwq_index = hwq_index; 620 621 cmd->sa.ioasc = 0; 622 cmd->rcb.ctx_id = hwq->ctx_hndl; 623 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 624 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel); 625 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 626 627 if (scp->sc_data_direction == DMA_TO_DEVICE) 628 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 629 630 cmd->rcb.req_flags = req_flags; 631 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); 632 633 rc = afu->send_cmd(afu, cmd); 634 atomic_dec(&afu->cmds_active); 635 out: 636 return rc; 637 } 638 639 /** 640 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe 641 * @cfg: Internal structure associated with the host. 642 */ 643 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) 644 { 645 struct pci_dev *pdev = cfg->dev; 646 647 if (pci_channel_offline(pdev)) 648 wait_event_timeout(cfg->reset_waitq, 649 !pci_channel_offline(pdev), 650 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); 651 } 652 653 /** 654 * free_mem() - free memory associated with the AFU 655 * @cfg: Internal structure associated with the host. 656 */ 657 static void free_mem(struct cxlflash_cfg *cfg) 658 { 659 struct afu *afu = cfg->afu; 660 661 if (cfg->afu) { 662 free_pages((ulong)afu, get_order(sizeof(struct afu))); 663 cfg->afu = NULL; 664 } 665 } 666 667 /** 668 * cxlflash_reset_sync() - synchronizing point for asynchronous resets 669 * @cfg: Internal structure associated with the host. 670 */ 671 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg) 672 { 673 if (cfg->async_reset_cookie == 0) 674 return; 675 676 /* Wait until all async calls prior to this cookie have completed */ 677 async_synchronize_cookie(cfg->async_reset_cookie + 1); 678 cfg->async_reset_cookie = 0; 679 } 680 681 /** 682 * stop_afu() - stops the AFU command timers and unmaps the MMIO space 683 * @cfg: Internal structure associated with the host. 684 * 685 * Safe to call with AFU in a partially allocated/initialized state. 686 * 687 * Cancels scheduled worker threads, waits for any active internal AFU 688 * commands to timeout, disables IRQ polling and then unmaps the MMIO space. 689 */ 690 static void stop_afu(struct cxlflash_cfg *cfg) 691 { 692 struct afu *afu = cfg->afu; 693 struct hwq *hwq; 694 int i; 695 696 cancel_work_sync(&cfg->work_q); 697 if (!current_is_async()) 698 cxlflash_reset_sync(cfg); 699 700 if (likely(afu)) { 701 while (atomic_read(&afu->cmds_active)) 702 ssleep(1); 703 704 if (afu_is_irqpoll_enabled(afu)) { 705 for (i = 0; i < afu->num_hwqs; i++) { 706 hwq = get_hwq(afu, i); 707 708 irq_poll_disable(&hwq->irqpoll); 709 } 710 } 711 712 if (likely(afu->afu_map)) { 713 cfg->ops->psa_unmap(afu->afu_map); 714 afu->afu_map = NULL; 715 } 716 } 717 } 718 719 /** 720 * term_intr() - disables all AFU interrupts 721 * @cfg: Internal structure associated with the host. 722 * @level: Depth of allocation, where to begin waterfall tear down. 723 * @index: Index of the hardware queue. 724 * 725 * Safe to call with AFU/MC in partially allocated/initialized state. 726 */ 727 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level, 728 u32 index) 729 { 730 struct afu *afu = cfg->afu; 731 struct device *dev = &cfg->dev->dev; 732 struct hwq *hwq; 733 734 if (!afu) { 735 dev_err(dev, "%s: returning with NULL afu\n", __func__); 736 return; 737 } 738 739 hwq = get_hwq(afu, index); 740 741 if (!hwq->ctx_cookie) { 742 dev_err(dev, "%s: returning with NULL MC\n", __func__); 743 return; 744 } 745 746 switch (level) { 747 case UNMAP_THREE: 748 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 749 if (index == PRIMARY_HWQ) 750 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq); 751 fallthrough; 752 case UNMAP_TWO: 753 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq); 754 fallthrough; 755 case UNMAP_ONE: 756 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq); 757 fallthrough; 758 case FREE_IRQ: 759 cfg->ops->free_afu_irqs(hwq->ctx_cookie); 760 fallthrough; 761 case UNDO_NOOP: 762 /* No action required */ 763 break; 764 } 765 } 766 767 /** 768 * term_mc() - terminates the master context 769 * @cfg: Internal structure associated with the host. 770 * @index: Index of the hardware queue. 771 * 772 * Safe to call with AFU/MC in partially allocated/initialized state. 773 */ 774 static void term_mc(struct cxlflash_cfg *cfg, u32 index) 775 { 776 struct afu *afu = cfg->afu; 777 struct device *dev = &cfg->dev->dev; 778 struct hwq *hwq; 779 ulong lock_flags; 780 781 if (!afu) { 782 dev_err(dev, "%s: returning with NULL afu\n", __func__); 783 return; 784 } 785 786 hwq = get_hwq(afu, index); 787 788 if (!hwq->ctx_cookie) { 789 dev_err(dev, "%s: returning with NULL MC\n", __func__); 790 return; 791 } 792 793 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie)); 794 if (index != PRIMARY_HWQ) 795 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie)); 796 hwq->ctx_cookie = NULL; 797 798 spin_lock_irqsave(&hwq->hrrq_slock, lock_flags); 799 hwq->hrrq_online = false; 800 spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags); 801 802 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 803 flush_pending_cmds(hwq); 804 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 805 } 806 807 /** 808 * term_afu() - terminates the AFU 809 * @cfg: Internal structure associated with the host. 810 * 811 * Safe to call with AFU/MC in partially allocated/initialized state. 812 */ 813 static void term_afu(struct cxlflash_cfg *cfg) 814 { 815 struct device *dev = &cfg->dev->dev; 816 int k; 817 818 /* 819 * Tear down is carefully orchestrated to ensure 820 * no interrupts can come in when the problem state 821 * area is unmapped. 822 * 823 * 1) Disable all AFU interrupts for each master 824 * 2) Unmap the problem state area 825 * 3) Stop each master context 826 */ 827 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 828 term_intr(cfg, UNMAP_THREE, k); 829 830 stop_afu(cfg); 831 832 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 833 term_mc(cfg, k); 834 835 dev_dbg(dev, "%s: returning\n", __func__); 836 } 837 838 /** 839 * notify_shutdown() - notifies device of pending shutdown 840 * @cfg: Internal structure associated with the host. 841 * @wait: Whether to wait for shutdown processing to complete. 842 * 843 * This function will notify the AFU that the adapter is being shutdown 844 * and will wait for shutdown processing to complete if wait is true. 845 * This notification should flush pending I/Os to the device and halt 846 * further I/Os until the next AFU reset is issued and device restarted. 847 */ 848 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) 849 { 850 struct afu *afu = cfg->afu; 851 struct device *dev = &cfg->dev->dev; 852 struct dev_dependent_vals *ddv; 853 __be64 __iomem *fc_port_regs; 854 u64 reg, status; 855 int i, retry_cnt = 0; 856 857 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; 858 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) 859 return; 860 861 if (!afu || !afu->afu_map) { 862 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__); 863 return; 864 } 865 866 /* Notify AFU */ 867 for (i = 0; i < cfg->num_fc_ports; i++) { 868 fc_port_regs = get_fc_port_regs(cfg, i); 869 870 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 871 reg |= SISL_FC_SHUTDOWN_NORMAL; 872 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 873 } 874 875 if (!wait) 876 return; 877 878 /* Wait up to 1.5 seconds for shutdown processing to complete */ 879 for (i = 0; i < cfg->num_fc_ports; i++) { 880 fc_port_regs = get_fc_port_regs(cfg, i); 881 retry_cnt = 0; 882 883 while (true) { 884 status = readq_be(&fc_port_regs[FC_STATUS / 8]); 885 if (status & SISL_STATUS_SHUTDOWN_COMPLETE) 886 break; 887 if (++retry_cnt >= MC_RETRY_CNT) { 888 dev_dbg(dev, "%s: port %d shutdown processing " 889 "not yet completed\n", __func__, i); 890 break; 891 } 892 msleep(100 * retry_cnt); 893 } 894 } 895 } 896 897 /** 898 * cxlflash_get_minor() - gets the first available minor number 899 * 900 * Return: Unique minor number that can be used to create the character device. 901 */ 902 static int cxlflash_get_minor(void) 903 { 904 int minor; 905 long bit; 906 907 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 908 if (bit >= CXLFLASH_MAX_ADAPTERS) 909 return -1; 910 911 minor = bit & MINORMASK; 912 set_bit(minor, cxlflash_minor); 913 return minor; 914 } 915 916 /** 917 * cxlflash_put_minor() - releases the minor number 918 * @minor: Minor number that is no longer needed. 919 */ 920 static void cxlflash_put_minor(int minor) 921 { 922 clear_bit(minor, cxlflash_minor); 923 } 924 925 /** 926 * cxlflash_release_chrdev() - release the character device for the host 927 * @cfg: Internal structure associated with the host. 928 */ 929 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg) 930 { 931 device_unregister(cfg->chardev); 932 cfg->chardev = NULL; 933 cdev_del(&cfg->cdev); 934 cxlflash_put_minor(MINOR(cfg->cdev.dev)); 935 } 936 937 /** 938 * cxlflash_remove() - PCI entry point to tear down host 939 * @pdev: PCI device associated with the host. 940 * 941 * Safe to use as a cleanup in partially allocated/initialized state. Note that 942 * the reset_waitq is flushed as part of the stop/termination of user contexts. 943 */ 944 static void cxlflash_remove(struct pci_dev *pdev) 945 { 946 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 947 struct device *dev = &pdev->dev; 948 ulong lock_flags; 949 950 if (!pci_is_enabled(pdev)) { 951 dev_dbg(dev, "%s: Device is disabled\n", __func__); 952 return; 953 } 954 955 /* Yield to running recovery threads before continuing with remove */ 956 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 957 cfg->state != STATE_PROBING); 958 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 959 if (cfg->tmf_active) 960 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 961 !cfg->tmf_active, 962 cfg->tmf_slock); 963 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 964 965 /* Notify AFU and wait for shutdown processing to complete */ 966 notify_shutdown(cfg, true); 967 968 cfg->state = STATE_FAILTERM; 969 cxlflash_stop_term_user_contexts(cfg); 970 971 switch (cfg->init_state) { 972 case INIT_STATE_CDEV: 973 cxlflash_release_chrdev(cfg); 974 fallthrough; 975 case INIT_STATE_SCSI: 976 cxlflash_term_local_luns(cfg); 977 scsi_remove_host(cfg->host); 978 fallthrough; 979 case INIT_STATE_AFU: 980 term_afu(cfg); 981 fallthrough; 982 case INIT_STATE_PCI: 983 cfg->ops->destroy_afu(cfg->afu_cookie); 984 pci_disable_device(pdev); 985 fallthrough; 986 case INIT_STATE_NONE: 987 free_mem(cfg); 988 scsi_host_put(cfg->host); 989 break; 990 } 991 992 dev_dbg(dev, "%s: returning\n", __func__); 993 } 994 995 /** 996 * alloc_mem() - allocates the AFU and its command pool 997 * @cfg: Internal structure associated with the host. 998 * 999 * A partially allocated state remains on failure. 1000 * 1001 * Return: 1002 * 0 on success 1003 * -ENOMEM on failure to allocate memory 1004 */ 1005 static int alloc_mem(struct cxlflash_cfg *cfg) 1006 { 1007 int rc = 0; 1008 struct device *dev = &cfg->dev->dev; 1009 1010 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */ 1011 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1012 get_order(sizeof(struct afu))); 1013 if (unlikely(!cfg->afu)) { 1014 dev_err(dev, "%s: cannot get %d free pages\n", 1015 __func__, get_order(sizeof(struct afu))); 1016 rc = -ENOMEM; 1017 goto out; 1018 } 1019 cfg->afu->parent = cfg; 1020 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS; 1021 cfg->afu->afu_map = NULL; 1022 out: 1023 return rc; 1024 } 1025 1026 /** 1027 * init_pci() - initializes the host as a PCI device 1028 * @cfg: Internal structure associated with the host. 1029 * 1030 * Return: 0 on success, -errno on failure 1031 */ 1032 static int init_pci(struct cxlflash_cfg *cfg) 1033 { 1034 struct pci_dev *pdev = cfg->dev; 1035 struct device *dev = &cfg->dev->dev; 1036 int rc = 0; 1037 1038 rc = pci_enable_device(pdev); 1039 if (rc || pci_channel_offline(pdev)) { 1040 if (pci_channel_offline(pdev)) { 1041 cxlflash_wait_for_pci_err_recovery(cfg); 1042 rc = pci_enable_device(pdev); 1043 } 1044 1045 if (rc) { 1046 dev_err(dev, "%s: Cannot enable adapter\n", __func__); 1047 cxlflash_wait_for_pci_err_recovery(cfg); 1048 goto out; 1049 } 1050 } 1051 1052 out: 1053 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1054 return rc; 1055 } 1056 1057 /** 1058 * init_scsi() - adds the host to the SCSI stack and kicks off host scan 1059 * @cfg: Internal structure associated with the host. 1060 * 1061 * Return: 0 on success, -errno on failure 1062 */ 1063 static int init_scsi(struct cxlflash_cfg *cfg) 1064 { 1065 struct pci_dev *pdev = cfg->dev; 1066 struct device *dev = &cfg->dev->dev; 1067 int rc = 0; 1068 1069 rc = scsi_add_host(cfg->host, &pdev->dev); 1070 if (rc) { 1071 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc); 1072 goto out; 1073 } 1074 1075 scsi_scan_host(cfg->host); 1076 1077 out: 1078 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1079 return rc; 1080 } 1081 1082 /** 1083 * set_port_online() - transitions the specified host FC port to online state 1084 * @fc_regs: Top of MMIO region defined for specified port. 1085 * 1086 * The provided MMIO region must be mapped prior to call. Online state means 1087 * that the FC link layer has synced, completed the handshaking process, and 1088 * is ready for login to start. 1089 */ 1090 static void set_port_online(__be64 __iomem *fc_regs) 1091 { 1092 u64 cmdcfg; 1093 1094 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1095 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ 1096 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ 1097 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1098 } 1099 1100 /** 1101 * set_port_offline() - transitions the specified host FC port to offline state 1102 * @fc_regs: Top of MMIO region defined for specified port. 1103 * 1104 * The provided MMIO region must be mapped prior to call. 1105 */ 1106 static void set_port_offline(__be64 __iomem *fc_regs) 1107 { 1108 u64 cmdcfg; 1109 1110 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1111 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ 1112 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ 1113 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1114 } 1115 1116 /** 1117 * wait_port_online() - waits for the specified host FC port come online 1118 * @fc_regs: Top of MMIO region defined for specified port. 1119 * @delay_us: Number of microseconds to delay between reading port status. 1120 * @nretry: Number of cycles to retry reading port status. 1121 * 1122 * The provided MMIO region must be mapped prior to call. This will timeout 1123 * when the cable is not plugged in. 1124 * 1125 * Return: 1126 * TRUE (1) when the specified port is online 1127 * FALSE (0) when the specified port fails to come online after timeout 1128 */ 1129 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1130 { 1131 u64 status; 1132 1133 WARN_ON(delay_us < 1000); 1134 1135 do { 1136 msleep(delay_us / 1000); 1137 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1138 if (status == U64_MAX) 1139 nretry /= 2; 1140 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && 1141 nretry--); 1142 1143 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); 1144 } 1145 1146 /** 1147 * wait_port_offline() - waits for the specified host FC port go offline 1148 * @fc_regs: Top of MMIO region defined for specified port. 1149 * @delay_us: Number of microseconds to delay between reading port status. 1150 * @nretry: Number of cycles to retry reading port status. 1151 * 1152 * The provided MMIO region must be mapped prior to call. 1153 * 1154 * Return: 1155 * TRUE (1) when the specified port is offline 1156 * FALSE (0) when the specified port fails to go offline after timeout 1157 */ 1158 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1159 { 1160 u64 status; 1161 1162 WARN_ON(delay_us < 1000); 1163 1164 do { 1165 msleep(delay_us / 1000); 1166 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1167 if (status == U64_MAX) 1168 nretry /= 2; 1169 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && 1170 nretry--); 1171 1172 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); 1173 } 1174 1175 /** 1176 * afu_set_wwpn() - configures the WWPN for the specified host FC port 1177 * @afu: AFU associated with the host that owns the specified FC port. 1178 * @port: Port number being configured. 1179 * @fc_regs: Top of MMIO region defined for specified port. 1180 * @wwpn: The world-wide-port-number previously discovered for port. 1181 * 1182 * The provided MMIO region must be mapped prior to call. As part of the 1183 * sequence to configure the WWPN, the port is toggled offline and then back 1184 * online. This toggling action can cause this routine to delay up to a few 1185 * seconds. When configured to use the internal LUN feature of the AFU, a 1186 * failure to come online is overridden. 1187 */ 1188 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, 1189 u64 wwpn) 1190 { 1191 struct cxlflash_cfg *cfg = afu->parent; 1192 struct device *dev = &cfg->dev->dev; 1193 1194 set_port_offline(fc_regs); 1195 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1196 FC_PORT_STATUS_RETRY_CNT)) { 1197 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n", 1198 __func__, port); 1199 } 1200 1201 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); 1202 1203 set_port_online(fc_regs); 1204 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1205 FC_PORT_STATUS_RETRY_CNT)) { 1206 dev_dbg(dev, "%s: wait on port %d to go online timed out\n", 1207 __func__, port); 1208 } 1209 } 1210 1211 /** 1212 * afu_link_reset() - resets the specified host FC port 1213 * @afu: AFU associated with the host that owns the specified FC port. 1214 * @port: Port number being configured. 1215 * @fc_regs: Top of MMIO region defined for specified port. 1216 * 1217 * The provided MMIO region must be mapped prior to call. The sequence to 1218 * reset the port involves toggling it offline and then back online. This 1219 * action can cause this routine to delay up to a few seconds. An effort 1220 * is made to maintain link with the device by switching to host to use 1221 * the alternate port exclusively while the reset takes place. 1222 * failure to come online is overridden. 1223 */ 1224 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) 1225 { 1226 struct cxlflash_cfg *cfg = afu->parent; 1227 struct device *dev = &cfg->dev->dev; 1228 u64 port_sel; 1229 1230 /* first switch the AFU to the other links, if any */ 1231 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); 1232 port_sel &= ~(1ULL << port); 1233 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1234 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1235 1236 set_port_offline(fc_regs); 1237 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1238 FC_PORT_STATUS_RETRY_CNT)) 1239 dev_err(dev, "%s: wait on port %d to go offline timed out\n", 1240 __func__, port); 1241 1242 set_port_online(fc_regs); 1243 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1244 FC_PORT_STATUS_RETRY_CNT)) 1245 dev_err(dev, "%s: wait on port %d to go online timed out\n", 1246 __func__, port); 1247 1248 /* switch back to include this port */ 1249 port_sel |= (1ULL << port); 1250 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1251 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1252 1253 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel); 1254 } 1255 1256 /** 1257 * afu_err_intr_init() - clears and initializes the AFU for error interrupts 1258 * @afu: AFU associated with the host. 1259 */ 1260 static void afu_err_intr_init(struct afu *afu) 1261 { 1262 struct cxlflash_cfg *cfg = afu->parent; 1263 __be64 __iomem *fc_port_regs; 1264 int i; 1265 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 1266 u64 reg; 1267 1268 /* global async interrupts: AFU clears afu_ctrl on context exit 1269 * if async interrupts were sent to that context. This prevents 1270 * the AFU form sending further async interrupts when 1271 * there is 1272 * nobody to receive them. 1273 */ 1274 1275 /* mask all */ 1276 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); 1277 /* set LISN# to send and point to primary master context */ 1278 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); 1279 1280 if (afu->internal_lun) 1281 reg |= 1; /* Bit 63 indicates local lun */ 1282 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); 1283 /* clear all */ 1284 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1285 /* unmask bits that are of interest */ 1286 /* note: afu can send an interrupt after this step */ 1287 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); 1288 /* clear again in case a bit came on after previous clear but before */ 1289 /* unmask */ 1290 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1291 1292 /* Clear/Set internal lun bits */ 1293 fc_port_regs = get_fc_port_regs(cfg, 0); 1294 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 1295 reg &= SISL_FC_INTERNAL_MASK; 1296 if (afu->internal_lun) 1297 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); 1298 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 1299 1300 /* now clear FC errors */ 1301 for (i = 0; i < cfg->num_fc_ports; i++) { 1302 fc_port_regs = get_fc_port_regs(cfg, i); 1303 1304 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]); 1305 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1306 } 1307 1308 /* sync interrupts for master's IOARRIN write */ 1309 /* note that unlike asyncs, there can be no pending sync interrupts */ 1310 /* at this time (this is a fresh context and master has not written */ 1311 /* IOARRIN yet), so there is nothing to clear. */ 1312 1313 /* set LISN#, it is always sent to the context that wrote IOARRIN */ 1314 for (i = 0; i < afu->num_hwqs; i++) { 1315 hwq = get_hwq(afu, i); 1316 1317 reg = readq_be(&hwq->host_map->ctx_ctrl); 1318 WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0); 1319 reg |= SISL_MSI_SYNC_ERROR; 1320 writeq_be(reg, &hwq->host_map->ctx_ctrl); 1321 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask); 1322 } 1323 } 1324 1325 /** 1326 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors 1327 * @irq: Interrupt number. 1328 * @data: Private data provided at interrupt registration, the AFU. 1329 * 1330 * Return: Always return IRQ_HANDLED. 1331 */ 1332 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) 1333 { 1334 struct hwq *hwq = (struct hwq *)data; 1335 struct cxlflash_cfg *cfg = hwq->afu->parent; 1336 struct device *dev = &cfg->dev->dev; 1337 u64 reg; 1338 u64 reg_unmasked; 1339 1340 reg = readq_be(&hwq->host_map->intr_status); 1341 reg_unmasked = (reg & SISL_ISTATUS_UNMASK); 1342 1343 if (reg_unmasked == 0UL) { 1344 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n", 1345 __func__, reg); 1346 goto cxlflash_sync_err_irq_exit; 1347 } 1348 1349 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n", 1350 __func__, reg); 1351 1352 writeq_be(reg_unmasked, &hwq->host_map->intr_clear); 1353 1354 cxlflash_sync_err_irq_exit: 1355 return IRQ_HANDLED; 1356 } 1357 1358 /** 1359 * process_hrrq() - process the read-response queue 1360 * @hwq: HWQ associated with the host. 1361 * @doneq: Queue of commands harvested from the RRQ. 1362 * @budget: Threshold of RRQ entries to process. 1363 * 1364 * This routine must be called holding the disabled RRQ spin lock. 1365 * 1366 * Return: The number of entries processed. 1367 */ 1368 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget) 1369 { 1370 struct afu *afu = hwq->afu; 1371 struct afu_cmd *cmd; 1372 struct sisl_ioasa *ioasa; 1373 struct sisl_ioarcb *ioarcb; 1374 bool toggle = hwq->toggle; 1375 int num_hrrq = 0; 1376 u64 entry, 1377 *hrrq_start = hwq->hrrq_start, 1378 *hrrq_end = hwq->hrrq_end, 1379 *hrrq_curr = hwq->hrrq_curr; 1380 1381 /* Process ready RRQ entries up to the specified budget (if any) */ 1382 while (true) { 1383 entry = *hrrq_curr; 1384 1385 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) 1386 break; 1387 1388 entry &= ~SISL_RESP_HANDLE_T_BIT; 1389 1390 if (afu_is_sq_cmd_mode(afu)) { 1391 ioasa = (struct sisl_ioasa *)entry; 1392 cmd = container_of(ioasa, struct afu_cmd, sa); 1393 } else { 1394 ioarcb = (struct sisl_ioarcb *)entry; 1395 cmd = container_of(ioarcb, struct afu_cmd, rcb); 1396 } 1397 1398 list_add_tail(&cmd->queue, doneq); 1399 1400 /* Advance to next entry or wrap and flip the toggle bit */ 1401 if (hrrq_curr < hrrq_end) 1402 hrrq_curr++; 1403 else { 1404 hrrq_curr = hrrq_start; 1405 toggle ^= SISL_RESP_HANDLE_T_BIT; 1406 } 1407 1408 atomic_inc(&hwq->hsq_credits); 1409 num_hrrq++; 1410 1411 if (budget > 0 && num_hrrq >= budget) 1412 break; 1413 } 1414 1415 hwq->hrrq_curr = hrrq_curr; 1416 hwq->toggle = toggle; 1417 1418 return num_hrrq; 1419 } 1420 1421 /** 1422 * process_cmd_doneq() - process a queue of harvested RRQ commands 1423 * @doneq: Queue of completed commands. 1424 * 1425 * Note that upon return the queue can no longer be trusted. 1426 */ 1427 static void process_cmd_doneq(struct list_head *doneq) 1428 { 1429 struct afu_cmd *cmd, *tmp; 1430 1431 WARN_ON(list_empty(doneq)); 1432 1433 list_for_each_entry_safe(cmd, tmp, doneq, queue) 1434 cmd_complete(cmd); 1435 } 1436 1437 /** 1438 * cxlflash_irqpoll() - process a queue of harvested RRQ commands 1439 * @irqpoll: IRQ poll structure associated with queue to poll. 1440 * @budget: Threshold of RRQ entries to process per poll. 1441 * 1442 * Return: The number of entries processed. 1443 */ 1444 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget) 1445 { 1446 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll); 1447 unsigned long hrrq_flags; 1448 LIST_HEAD(doneq); 1449 int num_entries = 0; 1450 1451 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1452 1453 num_entries = process_hrrq(hwq, &doneq, budget); 1454 if (num_entries < budget) 1455 irq_poll_complete(irqpoll); 1456 1457 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1458 1459 process_cmd_doneq(&doneq); 1460 return num_entries; 1461 } 1462 1463 /** 1464 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) 1465 * @irq: Interrupt number. 1466 * @data: Private data provided at interrupt registration, the AFU. 1467 * 1468 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found. 1469 */ 1470 static irqreturn_t cxlflash_rrq_irq(int irq, void *data) 1471 { 1472 struct hwq *hwq = (struct hwq *)data; 1473 struct afu *afu = hwq->afu; 1474 unsigned long hrrq_flags; 1475 LIST_HEAD(doneq); 1476 int num_entries = 0; 1477 1478 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1479 1480 /* Silently drop spurious interrupts when queue is not online */ 1481 if (!hwq->hrrq_online) { 1482 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1483 return IRQ_HANDLED; 1484 } 1485 1486 if (afu_is_irqpoll_enabled(afu)) { 1487 irq_poll_sched(&hwq->irqpoll); 1488 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1489 return IRQ_HANDLED; 1490 } 1491 1492 num_entries = process_hrrq(hwq, &doneq, -1); 1493 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1494 1495 if (num_entries == 0) 1496 return IRQ_NONE; 1497 1498 process_cmd_doneq(&doneq); 1499 return IRQ_HANDLED; 1500 } 1501 1502 /* 1503 * Asynchronous interrupt information table 1504 * 1505 * NOTE: 1506 * - Order matters here as this array is indexed by bit position. 1507 * 1508 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro 1509 * as complex and complains due to a lack of parentheses/braces. 1510 */ 1511 #define ASTATUS_FC(_a, _b, _c, _d) \ 1512 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) } 1513 1514 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \ 1515 ASTATUS_FC(_a, LINK_UP, "link up", 0), \ 1516 ASTATUS_FC(_a, LINK_DN, "link down", 0), \ 1517 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \ 1518 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \ 1519 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \ 1520 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \ 1521 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \ 1522 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET) 1523 1524 static const struct asyc_intr_info ainfo[] = { 1525 BUILD_SISL_ASTATUS_FC_PORT(1), 1526 BUILD_SISL_ASTATUS_FC_PORT(0), 1527 BUILD_SISL_ASTATUS_FC_PORT(3), 1528 BUILD_SISL_ASTATUS_FC_PORT(2) 1529 }; 1530 1531 /** 1532 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors 1533 * @irq: Interrupt number. 1534 * @data: Private data provided at interrupt registration, the AFU. 1535 * 1536 * Return: Always return IRQ_HANDLED. 1537 */ 1538 static irqreturn_t cxlflash_async_err_irq(int irq, void *data) 1539 { 1540 struct hwq *hwq = (struct hwq *)data; 1541 struct afu *afu = hwq->afu; 1542 struct cxlflash_cfg *cfg = afu->parent; 1543 struct device *dev = &cfg->dev->dev; 1544 const struct asyc_intr_info *info; 1545 struct sisl_global_map __iomem *global = &afu->afu_map->global; 1546 __be64 __iomem *fc_port_regs; 1547 u64 reg_unmasked; 1548 u64 reg; 1549 u64 bit; 1550 u8 port; 1551 1552 reg = readq_be(&global->regs.aintr_status); 1553 reg_unmasked = (reg & SISL_ASTATUS_UNMASK); 1554 1555 if (unlikely(reg_unmasked == 0)) { 1556 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n", 1557 __func__, reg); 1558 goto out; 1559 } 1560 1561 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ 1562 writeq_be(reg_unmasked, &global->regs.aintr_clear); 1563 1564 /* Check each bit that is on */ 1565 for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) { 1566 if (unlikely(bit >= ARRAY_SIZE(ainfo))) { 1567 WARN_ON_ONCE(1); 1568 continue; 1569 } 1570 1571 info = &ainfo[bit]; 1572 if (unlikely(info->status != 1ULL << bit)) { 1573 WARN_ON_ONCE(1); 1574 continue; 1575 } 1576 1577 port = info->port; 1578 fc_port_regs = get_fc_port_regs(cfg, port); 1579 1580 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n", 1581 __func__, port, info->desc, 1582 readq_be(&fc_port_regs[FC_STATUS / 8])); 1583 1584 /* 1585 * Do link reset first, some OTHER errors will set FC_ERROR 1586 * again if cleared before or w/o a reset 1587 */ 1588 if (info->action & LINK_RESET) { 1589 dev_err(dev, "%s: FC Port %d: resetting link\n", 1590 __func__, port); 1591 cfg->lr_state = LINK_RESET_REQUIRED; 1592 cfg->lr_port = port; 1593 schedule_work(&cfg->work_q); 1594 } 1595 1596 if (info->action & CLR_FC_ERROR) { 1597 reg = readq_be(&fc_port_regs[FC_ERROR / 8]); 1598 1599 /* 1600 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP 1601 * should be the same and tracing one is sufficient. 1602 */ 1603 1604 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n", 1605 __func__, port, reg); 1606 1607 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]); 1608 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1609 } 1610 1611 if (info->action & SCAN_HOST) { 1612 atomic_inc(&cfg->scan_host_needed); 1613 schedule_work(&cfg->work_q); 1614 } 1615 } 1616 1617 out: 1618 return IRQ_HANDLED; 1619 } 1620 1621 /** 1622 * read_vpd() - obtains the WWPNs from VPD 1623 * @cfg: Internal structure associated with the host. 1624 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs 1625 * 1626 * Return: 0 on success, -errno on failure 1627 */ 1628 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) 1629 { 1630 struct device *dev = &cfg->dev->dev; 1631 struct pci_dev *pdev = cfg->dev; 1632 int i, k, rc = 0; 1633 unsigned int kw_size; 1634 ssize_t vpd_size; 1635 char vpd_data[CXLFLASH_VPD_LEN]; 1636 char tmp_buf[WWPN_BUF_LEN] = { 0 }; 1637 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *) 1638 cfg->dev_id->driver_data; 1639 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED; 1640 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" }; 1641 1642 /* Get the VPD data from the device */ 1643 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data)); 1644 if (unlikely(vpd_size <= 0)) { 1645 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n", 1646 __func__, vpd_size); 1647 rc = -ENODEV; 1648 goto out; 1649 } 1650 1651 /* 1652 * Find the offset of the WWPN tag within the read only 1653 * VPD data and validate the found field (partials are 1654 * no good to us). Convert the ASCII data to an integer 1655 * value. Note that we must copy to a temporary buffer 1656 * because the conversion service requires that the ASCII 1657 * string be terminated. 1658 * 1659 * Allow for WWPN not being found for all devices, setting 1660 * the returned WWPN to zero when not found. Notify with a 1661 * log error for cards that should have had WWPN keywords 1662 * in the VPD - cards requiring WWPN will not have their 1663 * ports programmed and operate in an undefined state. 1664 */ 1665 for (k = 0; k < cfg->num_fc_ports; k++) { 1666 i = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 1667 wwpn_vpd_tags[k], &kw_size); 1668 if (i == -ENOENT) { 1669 if (wwpn_vpd_required) 1670 dev_err(dev, "%s: Port %d WWPN not found\n", 1671 __func__, k); 1672 wwpn[k] = 0ULL; 1673 continue; 1674 } 1675 1676 if (i < 0 || kw_size != WWPN_LEN) { 1677 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n", 1678 __func__, k); 1679 rc = -ENODEV; 1680 goto out; 1681 } 1682 1683 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); 1684 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); 1685 if (unlikely(rc)) { 1686 dev_err(dev, "%s: WWPN conversion failed for port %d\n", 1687 __func__, k); 1688 rc = -ENODEV; 1689 goto out; 1690 } 1691 1692 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]); 1693 } 1694 1695 out: 1696 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1697 return rc; 1698 } 1699 1700 /** 1701 * init_pcr() - initialize the provisioning and control registers 1702 * @cfg: Internal structure associated with the host. 1703 * 1704 * Also sets up fast access to the mapped registers and initializes AFU 1705 * command fields that never change. 1706 */ 1707 static void init_pcr(struct cxlflash_cfg *cfg) 1708 { 1709 struct afu *afu = cfg->afu; 1710 struct sisl_ctrl_map __iomem *ctrl_map; 1711 struct hwq *hwq; 1712 void *cookie; 1713 int i; 1714 1715 for (i = 0; i < MAX_CONTEXT; i++) { 1716 ctrl_map = &afu->afu_map->ctrls[i].ctrl; 1717 /* Disrupt any clients that could be running */ 1718 /* e.g. clients that survived a master restart */ 1719 writeq_be(0, &ctrl_map->rht_start); 1720 writeq_be(0, &ctrl_map->rht_cnt_id); 1721 writeq_be(0, &ctrl_map->ctx_cap); 1722 } 1723 1724 /* Copy frequently used fields into hwq */ 1725 for (i = 0; i < afu->num_hwqs; i++) { 1726 hwq = get_hwq(afu, i); 1727 cookie = hwq->ctx_cookie; 1728 1729 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie); 1730 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host; 1731 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl; 1732 1733 /* Program the Endian Control for the master context */ 1734 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl); 1735 } 1736 } 1737 1738 /** 1739 * init_global() - initialize AFU global registers 1740 * @cfg: Internal structure associated with the host. 1741 */ 1742 static int init_global(struct cxlflash_cfg *cfg) 1743 { 1744 struct afu *afu = cfg->afu; 1745 struct device *dev = &cfg->dev->dev; 1746 struct hwq *hwq; 1747 struct sisl_host_map __iomem *hmap; 1748 __be64 __iomem *fc_port_regs; 1749 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */ 1750 int i = 0, num_ports = 0; 1751 int rc = 0; 1752 int j; 1753 void *ctx; 1754 u64 reg; 1755 1756 rc = read_vpd(cfg, &wwpn[0]); 1757 if (rc) { 1758 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); 1759 goto out; 1760 } 1761 1762 /* Set up RRQ and SQ in HWQ for master issued cmds */ 1763 for (i = 0; i < afu->num_hwqs; i++) { 1764 hwq = get_hwq(afu, i); 1765 hmap = hwq->host_map; 1766 1767 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start); 1768 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end); 1769 hwq->hrrq_online = true; 1770 1771 if (afu_is_sq_cmd_mode(afu)) { 1772 writeq_be((u64)hwq->hsq_start, &hmap->sq_start); 1773 writeq_be((u64)hwq->hsq_end, &hmap->sq_end); 1774 } 1775 } 1776 1777 /* AFU configuration */ 1778 reg = readq_be(&afu->afu_map->global.regs.afu_config); 1779 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; 1780 /* enable all auto retry options and control endianness */ 1781 /* leave others at default: */ 1782 /* CTX_CAP write protected, mbox_r does not clear on read and */ 1783 /* checker on if dual afu */ 1784 writeq_be(reg, &afu->afu_map->global.regs.afu_config); 1785 1786 /* Global port select: select either port */ 1787 if (afu->internal_lun) { 1788 /* Only use port 0 */ 1789 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); 1790 num_ports = 0; 1791 } else { 1792 writeq_be(PORT_MASK(cfg->num_fc_ports), 1793 &afu->afu_map->global.regs.afu_port_sel); 1794 num_ports = cfg->num_fc_ports; 1795 } 1796 1797 for (i = 0; i < num_ports; i++) { 1798 fc_port_regs = get_fc_port_regs(cfg, i); 1799 1800 /* Unmask all errors (but they are still masked at AFU) */ 1801 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]); 1802 /* Clear CRC error cnt & set a threshold */ 1803 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]); 1804 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]); 1805 1806 /* Set WWPNs. If already programmed, wwpn[i] is 0 */ 1807 if (wwpn[i] != 0) 1808 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]); 1809 /* Programming WWPN back to back causes additional 1810 * offline/online transitions and a PLOGI 1811 */ 1812 msleep(100); 1813 } 1814 1815 if (afu_is_ocxl_lisn(afu)) { 1816 /* Set up the LISN effective address for each master */ 1817 for (i = 0; i < afu->num_hwqs; i++) { 1818 hwq = get_hwq(afu, i); 1819 ctx = hwq->ctx_cookie; 1820 1821 for (j = 0; j < hwq->num_irqs; j++) { 1822 reg = cfg->ops->get_irq_objhndl(ctx, j); 1823 writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]); 1824 } 1825 1826 reg = hwq->ctx_hndl; 1827 writeq_be(SISL_LISN_PASID(reg, reg), 1828 &hwq->ctrl_map->lisn_pasid[0]); 1829 writeq_be(SISL_LISN_PASID(0UL, reg), 1830 &hwq->ctrl_map->lisn_pasid[1]); 1831 } 1832 } 1833 1834 /* Set up master's own CTX_CAP to allow real mode, host translation */ 1835 /* tables, afu cmds and read/write GSCSI cmds. */ 1836 /* First, unlock ctx_cap write by reading mbox */ 1837 for (i = 0; i < afu->num_hwqs; i++) { 1838 hwq = get_hwq(afu, i); 1839 1840 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */ 1841 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | 1842 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | 1843 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), 1844 &hwq->ctrl_map->ctx_cap); 1845 } 1846 1847 /* 1848 * Determine write-same unmap support for host by evaluating the unmap 1849 * sector support bit of the context control register associated with 1850 * the primary hardware queue. Note that while this status is reflected 1851 * in a context register, the outcome can be assumed to be host-wide. 1852 */ 1853 hwq = get_hwq(afu, PRIMARY_HWQ); 1854 reg = readq_be(&hwq->host_map->ctx_ctrl); 1855 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR) 1856 cfg->ws_unmap = true; 1857 1858 /* Initialize heartbeat */ 1859 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); 1860 out: 1861 return rc; 1862 } 1863 1864 /** 1865 * start_afu() - initializes and starts the AFU 1866 * @cfg: Internal structure associated with the host. 1867 */ 1868 static int start_afu(struct cxlflash_cfg *cfg) 1869 { 1870 struct afu *afu = cfg->afu; 1871 struct device *dev = &cfg->dev->dev; 1872 struct hwq *hwq; 1873 int rc = 0; 1874 int i; 1875 1876 init_pcr(cfg); 1877 1878 /* Initialize each HWQ */ 1879 for (i = 0; i < afu->num_hwqs; i++) { 1880 hwq = get_hwq(afu, i); 1881 1882 /* After an AFU reset, RRQ entries are stale, clear them */ 1883 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry)); 1884 1885 /* Initialize RRQ pointers */ 1886 hwq->hrrq_start = &hwq->rrq_entry[0]; 1887 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1]; 1888 hwq->hrrq_curr = hwq->hrrq_start; 1889 hwq->toggle = 1; 1890 1891 /* Initialize spin locks */ 1892 spin_lock_init(&hwq->hrrq_slock); 1893 spin_lock_init(&hwq->hsq_slock); 1894 1895 /* Initialize SQ */ 1896 if (afu_is_sq_cmd_mode(afu)) { 1897 memset(&hwq->sq, 0, sizeof(hwq->sq)); 1898 hwq->hsq_start = &hwq->sq[0]; 1899 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1]; 1900 hwq->hsq_curr = hwq->hsq_start; 1901 1902 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1); 1903 } 1904 1905 /* Initialize IRQ poll */ 1906 if (afu_is_irqpoll_enabled(afu)) 1907 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight, 1908 cxlflash_irqpoll); 1909 1910 } 1911 1912 rc = init_global(cfg); 1913 1914 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1915 return rc; 1916 } 1917 1918 /** 1919 * init_intr() - setup interrupt handlers for the master context 1920 * @cfg: Internal structure associated with the host. 1921 * @hwq: Hardware queue to initialize. 1922 * 1923 * Return: 0 on success, -errno on failure 1924 */ 1925 static enum undo_level init_intr(struct cxlflash_cfg *cfg, 1926 struct hwq *hwq) 1927 { 1928 struct device *dev = &cfg->dev->dev; 1929 void *ctx = hwq->ctx_cookie; 1930 int rc = 0; 1931 enum undo_level level = UNDO_NOOP; 1932 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ); 1933 int num_irqs = hwq->num_irqs; 1934 1935 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs); 1936 if (unlikely(rc)) { 1937 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n", 1938 __func__, rc); 1939 level = UNDO_NOOP; 1940 goto out; 1941 } 1942 1943 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq, 1944 "SISL_MSI_SYNC_ERROR"); 1945 if (unlikely(rc <= 0)) { 1946 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__); 1947 level = FREE_IRQ; 1948 goto out; 1949 } 1950 1951 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq, 1952 "SISL_MSI_RRQ_UPDATED"); 1953 if (unlikely(rc <= 0)) { 1954 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__); 1955 level = UNMAP_ONE; 1956 goto out; 1957 } 1958 1959 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 1960 if (!is_primary_hwq) 1961 goto out; 1962 1963 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq, 1964 "SISL_MSI_ASYNC_ERROR"); 1965 if (unlikely(rc <= 0)) { 1966 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__); 1967 level = UNMAP_TWO; 1968 goto out; 1969 } 1970 out: 1971 return level; 1972 } 1973 1974 /** 1975 * init_mc() - create and register as the master context 1976 * @cfg: Internal structure associated with the host. 1977 * @index: HWQ Index of the master context. 1978 * 1979 * Return: 0 on success, -errno on failure 1980 */ 1981 static int init_mc(struct cxlflash_cfg *cfg, u32 index) 1982 { 1983 void *ctx; 1984 struct device *dev = &cfg->dev->dev; 1985 struct hwq *hwq = get_hwq(cfg->afu, index); 1986 int rc = 0; 1987 int num_irqs; 1988 enum undo_level level; 1989 1990 hwq->afu = cfg->afu; 1991 hwq->index = index; 1992 INIT_LIST_HEAD(&hwq->pending_cmds); 1993 1994 if (index == PRIMARY_HWQ) { 1995 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie); 1996 num_irqs = 3; 1997 } else { 1998 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie); 1999 num_irqs = 2; 2000 } 2001 if (IS_ERR_OR_NULL(ctx)) { 2002 rc = -ENOMEM; 2003 goto err1; 2004 } 2005 2006 WARN_ON(hwq->ctx_cookie); 2007 hwq->ctx_cookie = ctx; 2008 hwq->num_irqs = num_irqs; 2009 2010 /* Set it up as a master with the CXL */ 2011 cfg->ops->set_master(ctx); 2012 2013 /* Reset AFU when initializing primary context */ 2014 if (index == PRIMARY_HWQ) { 2015 rc = cfg->ops->afu_reset(ctx); 2016 if (unlikely(rc)) { 2017 dev_err(dev, "%s: AFU reset failed rc=%d\n", 2018 __func__, rc); 2019 goto err1; 2020 } 2021 } 2022 2023 level = init_intr(cfg, hwq); 2024 if (unlikely(level)) { 2025 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc); 2026 goto err2; 2027 } 2028 2029 /* Finally, activate the context by starting it */ 2030 rc = cfg->ops->start_context(hwq->ctx_cookie); 2031 if (unlikely(rc)) { 2032 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); 2033 level = UNMAP_THREE; 2034 goto err2; 2035 } 2036 2037 out: 2038 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2039 return rc; 2040 err2: 2041 term_intr(cfg, level, index); 2042 if (index != PRIMARY_HWQ) 2043 cfg->ops->release_context(ctx); 2044 err1: 2045 hwq->ctx_cookie = NULL; 2046 goto out; 2047 } 2048 2049 /** 2050 * get_num_afu_ports() - determines and configures the number of AFU ports 2051 * @cfg: Internal structure associated with the host. 2052 * 2053 * This routine determines the number of AFU ports by converting the global 2054 * port selection mask. The converted value is only valid following an AFU 2055 * reset (explicit or power-on). This routine must be invoked shortly after 2056 * mapping as other routines are dependent on the number of ports during the 2057 * initialization sequence. 2058 * 2059 * To support legacy AFUs that might not have reflected an initial global 2060 * port mask (value read is 0), default to the number of ports originally 2061 * supported by the cxlflash driver (2) before hardware with other port 2062 * offerings was introduced. 2063 */ 2064 static void get_num_afu_ports(struct cxlflash_cfg *cfg) 2065 { 2066 struct afu *afu = cfg->afu; 2067 struct device *dev = &cfg->dev->dev; 2068 u64 port_mask; 2069 int num_fc_ports = LEGACY_FC_PORTS; 2070 2071 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel); 2072 if (port_mask != 0ULL) 2073 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS); 2074 2075 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n", 2076 __func__, port_mask, num_fc_ports); 2077 2078 cfg->num_fc_ports = num_fc_ports; 2079 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports); 2080 } 2081 2082 /** 2083 * init_afu() - setup as master context and start AFU 2084 * @cfg: Internal structure associated with the host. 2085 * 2086 * This routine is a higher level of control for configuring the 2087 * AFU on probe and reset paths. 2088 * 2089 * Return: 0 on success, -errno on failure 2090 */ 2091 static int init_afu(struct cxlflash_cfg *cfg) 2092 { 2093 u64 reg; 2094 int rc = 0; 2095 struct afu *afu = cfg->afu; 2096 struct device *dev = &cfg->dev->dev; 2097 struct hwq *hwq; 2098 int i; 2099 2100 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true); 2101 2102 mutex_init(&afu->sync_active); 2103 afu->num_hwqs = afu->desired_hwqs; 2104 for (i = 0; i < afu->num_hwqs; i++) { 2105 rc = init_mc(cfg, i); 2106 if (rc) { 2107 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n", 2108 __func__, rc, i); 2109 goto err1; 2110 } 2111 } 2112 2113 /* Map the entire MMIO space of the AFU using the first context */ 2114 hwq = get_hwq(afu, PRIMARY_HWQ); 2115 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie); 2116 if (!afu->afu_map) { 2117 dev_err(dev, "%s: psa_map failed\n", __func__); 2118 rc = -ENOMEM; 2119 goto err1; 2120 } 2121 2122 /* No byte reverse on reading afu_version or string will be backwards */ 2123 reg = readq(&afu->afu_map->global.regs.afu_version); 2124 memcpy(afu->version, ®, sizeof(reg)); 2125 afu->interface_version = 2126 readq_be(&afu->afu_map->global.regs.interface_version); 2127 if ((afu->interface_version + 1) == 0) { 2128 dev_err(dev, "Back level AFU, please upgrade. AFU version %s " 2129 "interface version %016llx\n", afu->version, 2130 afu->interface_version); 2131 rc = -EINVAL; 2132 goto err1; 2133 } 2134 2135 if (afu_is_sq_cmd_mode(afu)) { 2136 afu->send_cmd = send_cmd_sq; 2137 afu->context_reset = context_reset_sq; 2138 } else { 2139 afu->send_cmd = send_cmd_ioarrin; 2140 afu->context_reset = context_reset_ioarrin; 2141 } 2142 2143 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__, 2144 afu->version, afu->interface_version); 2145 2146 get_num_afu_ports(cfg); 2147 2148 rc = start_afu(cfg); 2149 if (rc) { 2150 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc); 2151 goto err1; 2152 } 2153 2154 afu_err_intr_init(cfg->afu); 2155 for (i = 0; i < afu->num_hwqs; i++) { 2156 hwq = get_hwq(afu, i); 2157 2158 hwq->room = readq_be(&hwq->host_map->cmd_room); 2159 } 2160 2161 /* Restore the LUN mappings */ 2162 cxlflash_restore_luntable(cfg); 2163 out: 2164 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2165 return rc; 2166 2167 err1: 2168 for (i = afu->num_hwqs - 1; i >= 0; i--) { 2169 term_intr(cfg, UNMAP_THREE, i); 2170 term_mc(cfg, i); 2171 } 2172 goto out; 2173 } 2174 2175 /** 2176 * afu_reset() - resets the AFU 2177 * @cfg: Internal structure associated with the host. 2178 * 2179 * Return: 0 on success, -errno on failure 2180 */ 2181 static int afu_reset(struct cxlflash_cfg *cfg) 2182 { 2183 struct device *dev = &cfg->dev->dev; 2184 int rc = 0; 2185 2186 /* Stop the context before the reset. Since the context is 2187 * no longer available restart it after the reset is complete 2188 */ 2189 term_afu(cfg); 2190 2191 rc = init_afu(cfg); 2192 2193 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2194 return rc; 2195 } 2196 2197 /** 2198 * drain_ioctls() - wait until all currently executing ioctls have completed 2199 * @cfg: Internal structure associated with the host. 2200 * 2201 * Obtain write access to read/write semaphore that wraps ioctl 2202 * handling to 'drain' ioctls currently executing. 2203 */ 2204 static void drain_ioctls(struct cxlflash_cfg *cfg) 2205 { 2206 down_write(&cfg->ioctl_rwsem); 2207 up_write(&cfg->ioctl_rwsem); 2208 } 2209 2210 /** 2211 * cxlflash_async_reset_host() - asynchronous host reset handler 2212 * @data: Private data provided while scheduling reset. 2213 * @cookie: Cookie that can be used for checkpointing. 2214 */ 2215 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie) 2216 { 2217 struct cxlflash_cfg *cfg = data; 2218 struct device *dev = &cfg->dev->dev; 2219 int rc = 0; 2220 2221 if (cfg->state != STATE_RESET) { 2222 dev_dbg(dev, "%s: Not performing a reset, state=%d\n", 2223 __func__, cfg->state); 2224 goto out; 2225 } 2226 2227 drain_ioctls(cfg); 2228 cxlflash_mark_contexts_error(cfg); 2229 rc = afu_reset(cfg); 2230 if (rc) 2231 cfg->state = STATE_FAILTERM; 2232 else 2233 cfg->state = STATE_NORMAL; 2234 wake_up_all(&cfg->reset_waitq); 2235 2236 out: 2237 scsi_unblock_requests(cfg->host); 2238 } 2239 2240 /** 2241 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset 2242 * @cfg: Internal structure associated with the host. 2243 */ 2244 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg) 2245 { 2246 struct device *dev = &cfg->dev->dev; 2247 2248 if (cfg->state != STATE_NORMAL) { 2249 dev_dbg(dev, "%s: Not performing reset state=%d\n", 2250 __func__, cfg->state); 2251 return; 2252 } 2253 2254 cfg->state = STATE_RESET; 2255 scsi_block_requests(cfg->host); 2256 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host, 2257 cfg); 2258 } 2259 2260 /** 2261 * send_afu_cmd() - builds and sends an internal AFU command 2262 * @afu: AFU associated with the host. 2263 * @rcb: Pre-populated IOARCB describing command to send. 2264 * 2265 * The AFU can only take one internal AFU command at a time. This limitation is 2266 * enforced by using a mutex to provide exclusive access to the AFU during the 2267 * operation. This design point requires calling threads to not be on interrupt 2268 * context due to the possibility of sleeping during concurrent AFU operations. 2269 * 2270 * The command status is optionally passed back to the caller when the caller 2271 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure. 2272 * 2273 * Return: 2274 * 0 on success, -errno on failure 2275 */ 2276 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb) 2277 { 2278 struct cxlflash_cfg *cfg = afu->parent; 2279 struct device *dev = &cfg->dev->dev; 2280 struct afu_cmd *cmd = NULL; 2281 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 2282 ulong lock_flags; 2283 char *buf = NULL; 2284 int rc = 0; 2285 int nretry = 0; 2286 2287 if (cfg->state != STATE_NORMAL) { 2288 dev_dbg(dev, "%s: Sync not required state=%u\n", 2289 __func__, cfg->state); 2290 return 0; 2291 } 2292 2293 mutex_lock(&afu->sync_active); 2294 atomic_inc(&afu->cmds_active); 2295 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 2296 if (unlikely(!buf)) { 2297 dev_err(dev, "%s: no memory for command\n", __func__); 2298 rc = -ENOMEM; 2299 goto out; 2300 } 2301 2302 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 2303 2304 retry: 2305 memset(cmd, 0, sizeof(*cmd)); 2306 memcpy(&cmd->rcb, rcb, sizeof(*rcb)); 2307 INIT_LIST_HEAD(&cmd->queue); 2308 init_completion(&cmd->cevent); 2309 cmd->parent = afu; 2310 cmd->hwq_index = hwq->index; 2311 cmd->rcb.ctx_id = hwq->ctx_hndl; 2312 2313 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n", 2314 __func__, afu, cmd, cmd->rcb.cdb[0], nretry); 2315 2316 rc = afu->send_cmd(afu, cmd); 2317 if (unlikely(rc)) { 2318 rc = -ENOBUFS; 2319 goto out; 2320 } 2321 2322 rc = wait_resp(afu, cmd); 2323 switch (rc) { 2324 case -ETIMEDOUT: 2325 rc = afu->context_reset(hwq); 2326 if (rc) { 2327 /* Delete the command from pending_cmds list */ 2328 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 2329 list_del(&cmd->list); 2330 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 2331 2332 cxlflash_schedule_async_reset(cfg); 2333 break; 2334 } 2335 fallthrough; /* to retry */ 2336 case -EAGAIN: 2337 if (++nretry < 2) 2338 goto retry; 2339 fallthrough; /* to exit */ 2340 default: 2341 break; 2342 } 2343 2344 if (rcb->ioasa) 2345 *rcb->ioasa = cmd->sa; 2346 out: 2347 atomic_dec(&afu->cmds_active); 2348 mutex_unlock(&afu->sync_active); 2349 kfree(buf); 2350 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2351 return rc; 2352 } 2353 2354 /** 2355 * cxlflash_afu_sync() - builds and sends an AFU sync command 2356 * @afu: AFU associated with the host. 2357 * @ctx: Identifies context requesting sync. 2358 * @res: Identifies resource requesting sync. 2359 * @mode: Type of sync to issue (lightweight, heavyweight, global). 2360 * 2361 * AFU sync operations are only necessary and allowed when the device is 2362 * operating normally. When not operating normally, sync requests can occur as 2363 * part of cleaning up resources associated with an adapter prior to removal. 2364 * In this scenario, these requests are simply ignored (safe due to the AFU 2365 * going away). 2366 * 2367 * Return: 2368 * 0 on success, -errno on failure 2369 */ 2370 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode) 2371 { 2372 struct cxlflash_cfg *cfg = afu->parent; 2373 struct device *dev = &cfg->dev->dev; 2374 struct sisl_ioarcb rcb = { 0 }; 2375 2376 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n", 2377 __func__, afu, ctx, res, mode); 2378 2379 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 2380 rcb.msi = SISL_MSI_RRQ_UPDATED; 2381 rcb.timeout = MC_AFU_SYNC_TIMEOUT; 2382 2383 rcb.cdb[0] = SISL_AFU_CMD_SYNC; 2384 rcb.cdb[1] = mode; 2385 put_unaligned_be16(ctx, &rcb.cdb[2]); 2386 put_unaligned_be32(res, &rcb.cdb[4]); 2387 2388 return send_afu_cmd(afu, &rcb); 2389 } 2390 2391 /** 2392 * cxlflash_eh_abort_handler() - abort a SCSI command 2393 * @scp: SCSI command to abort. 2394 * 2395 * CXL Flash devices do not support a single command abort. Reset the context 2396 * as per SISLite specification. Flush any pending commands in the hardware 2397 * queue before the reset. 2398 * 2399 * Return: SUCCESS/FAILED as defined in scsi/scsi.h 2400 */ 2401 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp) 2402 { 2403 int rc = FAILED; 2404 struct Scsi_Host *host = scp->device->host; 2405 struct cxlflash_cfg *cfg = shost_priv(host); 2406 struct afu_cmd *cmd = sc_to_afuc(scp); 2407 struct device *dev = &cfg->dev->dev; 2408 struct afu *afu = cfg->afu; 2409 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 2410 2411 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu " 2412 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, 2413 scp->device->channel, scp->device->id, scp->device->lun, 2414 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 2415 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 2416 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 2417 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 2418 2419 /* When the state is not normal, another reset/reload is in progress. 2420 * Return failed and the mid-layer will invoke host reset handler. 2421 */ 2422 if (cfg->state != STATE_NORMAL) { 2423 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n", 2424 __func__, cfg->state); 2425 goto out; 2426 } 2427 2428 rc = afu->context_reset(hwq); 2429 if (unlikely(rc)) 2430 goto out; 2431 2432 rc = SUCCESS; 2433 2434 out: 2435 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2436 return rc; 2437 } 2438 2439 /** 2440 * cxlflash_eh_device_reset_handler() - reset a single LUN 2441 * @scp: SCSI command to send. 2442 * 2443 * Return: 2444 * SUCCESS as defined in scsi/scsi.h 2445 * FAILED as defined in scsi/scsi.h 2446 */ 2447 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) 2448 { 2449 int rc = SUCCESS; 2450 struct scsi_device *sdev = scp->device; 2451 struct Scsi_Host *host = sdev->host; 2452 struct cxlflash_cfg *cfg = shost_priv(host); 2453 struct device *dev = &cfg->dev->dev; 2454 int rcr = 0; 2455 2456 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__, 2457 host->host_no, sdev->channel, sdev->id, sdev->lun); 2458 retry: 2459 switch (cfg->state) { 2460 case STATE_NORMAL: 2461 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET); 2462 if (unlikely(rcr)) 2463 rc = FAILED; 2464 break; 2465 case STATE_RESET: 2466 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2467 goto retry; 2468 default: 2469 rc = FAILED; 2470 break; 2471 } 2472 2473 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2474 return rc; 2475 } 2476 2477 /** 2478 * cxlflash_eh_host_reset_handler() - reset the host adapter 2479 * @scp: SCSI command from stack identifying host. 2480 * 2481 * Following a reset, the state is evaluated again in case an EEH occurred 2482 * during the reset. In such a scenario, the host reset will either yield 2483 * until the EEH recovery is complete or return success or failure based 2484 * upon the current device state. 2485 * 2486 * Return: 2487 * SUCCESS as defined in scsi/scsi.h 2488 * FAILED as defined in scsi/scsi.h 2489 */ 2490 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) 2491 { 2492 int rc = SUCCESS; 2493 int rcr = 0; 2494 struct Scsi_Host *host = scp->device->host; 2495 struct cxlflash_cfg *cfg = shost_priv(host); 2496 struct device *dev = &cfg->dev->dev; 2497 2498 dev_dbg(dev, "%s: %d\n", __func__, host->host_no); 2499 2500 switch (cfg->state) { 2501 case STATE_NORMAL: 2502 cfg->state = STATE_RESET; 2503 drain_ioctls(cfg); 2504 cxlflash_mark_contexts_error(cfg); 2505 rcr = afu_reset(cfg); 2506 if (rcr) { 2507 rc = FAILED; 2508 cfg->state = STATE_FAILTERM; 2509 } else 2510 cfg->state = STATE_NORMAL; 2511 wake_up_all(&cfg->reset_waitq); 2512 ssleep(1); 2513 fallthrough; 2514 case STATE_RESET: 2515 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2516 if (cfg->state == STATE_NORMAL) 2517 break; 2518 fallthrough; 2519 default: 2520 rc = FAILED; 2521 break; 2522 } 2523 2524 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2525 return rc; 2526 } 2527 2528 /** 2529 * cxlflash_change_queue_depth() - change the queue depth for the device 2530 * @sdev: SCSI device destined for queue depth change. 2531 * @qdepth: Requested queue depth value to set. 2532 * 2533 * The requested queue depth is capped to the maximum supported value. 2534 * 2535 * Return: The actual queue depth set. 2536 */ 2537 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) 2538 { 2539 2540 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) 2541 qdepth = CXLFLASH_MAX_CMDS_PER_LUN; 2542 2543 scsi_change_queue_depth(sdev, qdepth); 2544 return sdev->queue_depth; 2545 } 2546 2547 /** 2548 * cxlflash_show_port_status() - queries and presents the current port status 2549 * @port: Desired port for status reporting. 2550 * @cfg: Internal structure associated with the host. 2551 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2552 * 2553 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2554 */ 2555 static ssize_t cxlflash_show_port_status(u32 port, 2556 struct cxlflash_cfg *cfg, 2557 char *buf) 2558 { 2559 struct device *dev = &cfg->dev->dev; 2560 char *disp_status; 2561 u64 status; 2562 __be64 __iomem *fc_port_regs; 2563 2564 WARN_ON(port >= MAX_FC_PORTS); 2565 2566 if (port >= cfg->num_fc_ports) { 2567 dev_info(dev, "%s: Port %d not supported on this card.\n", 2568 __func__, port); 2569 return -EINVAL; 2570 } 2571 2572 fc_port_regs = get_fc_port_regs(cfg, port); 2573 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]); 2574 status &= FC_MTIP_STATUS_MASK; 2575 2576 if (status == FC_MTIP_STATUS_ONLINE) 2577 disp_status = "online"; 2578 else if (status == FC_MTIP_STATUS_OFFLINE) 2579 disp_status = "offline"; 2580 else 2581 disp_status = "unknown"; 2582 2583 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); 2584 } 2585 2586 /** 2587 * port0_show() - queries and presents the current status of port 0 2588 * @dev: Generic device associated with the host owning the port. 2589 * @attr: Device attribute representing the port. 2590 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2591 * 2592 * Return: The size of the ASCII string returned in @buf. 2593 */ 2594 static ssize_t port0_show(struct device *dev, 2595 struct device_attribute *attr, 2596 char *buf) 2597 { 2598 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2599 2600 return cxlflash_show_port_status(0, cfg, buf); 2601 } 2602 2603 /** 2604 * port1_show() - queries and presents the current status of port 1 2605 * @dev: Generic device associated with the host owning the port. 2606 * @attr: Device attribute representing the port. 2607 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2608 * 2609 * Return: The size of the ASCII string returned in @buf. 2610 */ 2611 static ssize_t port1_show(struct device *dev, 2612 struct device_attribute *attr, 2613 char *buf) 2614 { 2615 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2616 2617 return cxlflash_show_port_status(1, cfg, buf); 2618 } 2619 2620 /** 2621 * port2_show() - queries and presents the current status of port 2 2622 * @dev: Generic device associated with the host owning the port. 2623 * @attr: Device attribute representing the port. 2624 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2625 * 2626 * Return: The size of the ASCII string returned in @buf. 2627 */ 2628 static ssize_t port2_show(struct device *dev, 2629 struct device_attribute *attr, 2630 char *buf) 2631 { 2632 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2633 2634 return cxlflash_show_port_status(2, cfg, buf); 2635 } 2636 2637 /** 2638 * port3_show() - queries and presents the current status of port 3 2639 * @dev: Generic device associated with the host owning the port. 2640 * @attr: Device attribute representing the port. 2641 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2642 * 2643 * Return: The size of the ASCII string returned in @buf. 2644 */ 2645 static ssize_t port3_show(struct device *dev, 2646 struct device_attribute *attr, 2647 char *buf) 2648 { 2649 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2650 2651 return cxlflash_show_port_status(3, cfg, buf); 2652 } 2653 2654 /** 2655 * lun_mode_show() - presents the current LUN mode of the host 2656 * @dev: Generic device associated with the host. 2657 * @attr: Device attribute representing the LUN mode. 2658 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. 2659 * 2660 * Return: The size of the ASCII string returned in @buf. 2661 */ 2662 static ssize_t lun_mode_show(struct device *dev, 2663 struct device_attribute *attr, char *buf) 2664 { 2665 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2666 struct afu *afu = cfg->afu; 2667 2668 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); 2669 } 2670 2671 /** 2672 * lun_mode_store() - sets the LUN mode of the host 2673 * @dev: Generic device associated with the host. 2674 * @attr: Device attribute representing the LUN mode. 2675 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. 2676 * @count: Length of data resizing in @buf. 2677 * 2678 * The CXL Flash AFU supports a dummy LUN mode where the external 2679 * links and storage are not required. Space on the FPGA is used 2680 * to create 1 or 2 small LUNs which are presented to the system 2681 * as if they were a normal storage device. This feature is useful 2682 * during development and also provides manufacturing with a way 2683 * to test the AFU without an actual device. 2684 * 2685 * 0 = external LUN[s] (default) 2686 * 1 = internal LUN (1 x 64K, 512B blocks, id 0) 2687 * 2 = internal LUN (1 x 64K, 4K blocks, id 0) 2688 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) 2689 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) 2690 * 2691 * Return: The size of the ASCII string returned in @buf. 2692 */ 2693 static ssize_t lun_mode_store(struct device *dev, 2694 struct device_attribute *attr, 2695 const char *buf, size_t count) 2696 { 2697 struct Scsi_Host *shost = class_to_shost(dev); 2698 struct cxlflash_cfg *cfg = shost_priv(shost); 2699 struct afu *afu = cfg->afu; 2700 int rc; 2701 u32 lun_mode; 2702 2703 rc = kstrtouint(buf, 10, &lun_mode); 2704 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { 2705 afu->internal_lun = lun_mode; 2706 2707 /* 2708 * When configured for internal LUN, there is only one channel, 2709 * channel number 0, else there will be one less than the number 2710 * of fc ports for this card. 2711 */ 2712 if (afu->internal_lun) 2713 shost->max_channel = 0; 2714 else 2715 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports); 2716 2717 afu_reset(cfg); 2718 scsi_scan_host(cfg->host); 2719 } 2720 2721 return count; 2722 } 2723 2724 /** 2725 * ioctl_version_show() - presents the current ioctl version of the host 2726 * @dev: Generic device associated with the host. 2727 * @attr: Device attribute representing the ioctl version. 2728 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. 2729 * 2730 * Return: The size of the ASCII string returned in @buf. 2731 */ 2732 static ssize_t ioctl_version_show(struct device *dev, 2733 struct device_attribute *attr, char *buf) 2734 { 2735 ssize_t bytes = 0; 2736 2737 bytes = scnprintf(buf, PAGE_SIZE, 2738 "disk: %u\n", DK_CXLFLASH_VERSION_0); 2739 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2740 "host: %u\n", HT_CXLFLASH_VERSION_0); 2741 2742 return bytes; 2743 } 2744 2745 /** 2746 * cxlflash_show_port_lun_table() - queries and presents the port LUN table 2747 * @port: Desired port for status reporting. 2748 * @cfg: Internal structure associated with the host. 2749 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2750 * 2751 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2752 */ 2753 static ssize_t cxlflash_show_port_lun_table(u32 port, 2754 struct cxlflash_cfg *cfg, 2755 char *buf) 2756 { 2757 struct device *dev = &cfg->dev->dev; 2758 __be64 __iomem *fc_port_luns; 2759 int i; 2760 ssize_t bytes = 0; 2761 2762 WARN_ON(port >= MAX_FC_PORTS); 2763 2764 if (port >= cfg->num_fc_ports) { 2765 dev_info(dev, "%s: Port %d not supported on this card.\n", 2766 __func__, port); 2767 return -EINVAL; 2768 } 2769 2770 fc_port_luns = get_fc_port_luns(cfg, port); 2771 2772 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) 2773 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2774 "%03d: %016llx\n", 2775 i, readq_be(&fc_port_luns[i])); 2776 return bytes; 2777 } 2778 2779 /** 2780 * port0_lun_table_show() - presents the current LUN table of port 0 2781 * @dev: Generic device associated with the host owning the port. 2782 * @attr: Device attribute representing the port. 2783 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2784 * 2785 * Return: The size of the ASCII string returned in @buf. 2786 */ 2787 static ssize_t port0_lun_table_show(struct device *dev, 2788 struct device_attribute *attr, 2789 char *buf) 2790 { 2791 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2792 2793 return cxlflash_show_port_lun_table(0, cfg, buf); 2794 } 2795 2796 /** 2797 * port1_lun_table_show() - presents the current LUN table of port 1 2798 * @dev: Generic device associated with the host owning the port. 2799 * @attr: Device attribute representing the port. 2800 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2801 * 2802 * Return: The size of the ASCII string returned in @buf. 2803 */ 2804 static ssize_t port1_lun_table_show(struct device *dev, 2805 struct device_attribute *attr, 2806 char *buf) 2807 { 2808 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2809 2810 return cxlflash_show_port_lun_table(1, cfg, buf); 2811 } 2812 2813 /** 2814 * port2_lun_table_show() - presents the current LUN table of port 2 2815 * @dev: Generic device associated with the host owning the port. 2816 * @attr: Device attribute representing the port. 2817 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2818 * 2819 * Return: The size of the ASCII string returned in @buf. 2820 */ 2821 static ssize_t port2_lun_table_show(struct device *dev, 2822 struct device_attribute *attr, 2823 char *buf) 2824 { 2825 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2826 2827 return cxlflash_show_port_lun_table(2, cfg, buf); 2828 } 2829 2830 /** 2831 * port3_lun_table_show() - presents the current LUN table of port 3 2832 * @dev: Generic device associated with the host owning the port. 2833 * @attr: Device attribute representing the port. 2834 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2835 * 2836 * Return: The size of the ASCII string returned in @buf. 2837 */ 2838 static ssize_t port3_lun_table_show(struct device *dev, 2839 struct device_attribute *attr, 2840 char *buf) 2841 { 2842 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2843 2844 return cxlflash_show_port_lun_table(3, cfg, buf); 2845 } 2846 2847 /** 2848 * irqpoll_weight_show() - presents the current IRQ poll weight for the host 2849 * @dev: Generic device associated with the host. 2850 * @attr: Device attribute representing the IRQ poll weight. 2851 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll 2852 * weight in ASCII. 2853 * 2854 * An IRQ poll weight of 0 indicates polling is disabled. 2855 * 2856 * Return: The size of the ASCII string returned in @buf. 2857 */ 2858 static ssize_t irqpoll_weight_show(struct device *dev, 2859 struct device_attribute *attr, char *buf) 2860 { 2861 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2862 struct afu *afu = cfg->afu; 2863 2864 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight); 2865 } 2866 2867 /** 2868 * irqpoll_weight_store() - sets the current IRQ poll weight for the host 2869 * @dev: Generic device associated with the host. 2870 * @attr: Device attribute representing the IRQ poll weight. 2871 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll 2872 * weight in ASCII. 2873 * @count: Length of data resizing in @buf. 2874 * 2875 * An IRQ poll weight of 0 indicates polling is disabled. 2876 * 2877 * Return: The size of the ASCII string returned in @buf. 2878 */ 2879 static ssize_t irqpoll_weight_store(struct device *dev, 2880 struct device_attribute *attr, 2881 const char *buf, size_t count) 2882 { 2883 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2884 struct device *cfgdev = &cfg->dev->dev; 2885 struct afu *afu = cfg->afu; 2886 struct hwq *hwq; 2887 u32 weight; 2888 int rc, i; 2889 2890 rc = kstrtouint(buf, 10, &weight); 2891 if (rc) 2892 return -EINVAL; 2893 2894 if (weight > 256) { 2895 dev_info(cfgdev, 2896 "Invalid IRQ poll weight. It must be 256 or less.\n"); 2897 return -EINVAL; 2898 } 2899 2900 if (weight == afu->irqpoll_weight) { 2901 dev_info(cfgdev, 2902 "Current IRQ poll weight has the same weight.\n"); 2903 return -EINVAL; 2904 } 2905 2906 if (afu_is_irqpoll_enabled(afu)) { 2907 for (i = 0; i < afu->num_hwqs; i++) { 2908 hwq = get_hwq(afu, i); 2909 2910 irq_poll_disable(&hwq->irqpoll); 2911 } 2912 } 2913 2914 afu->irqpoll_weight = weight; 2915 2916 if (weight > 0) { 2917 for (i = 0; i < afu->num_hwqs; i++) { 2918 hwq = get_hwq(afu, i); 2919 2920 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll); 2921 } 2922 } 2923 2924 return count; 2925 } 2926 2927 /** 2928 * num_hwqs_show() - presents the number of hardware queues for the host 2929 * @dev: Generic device associated with the host. 2930 * @attr: Device attribute representing the number of hardware queues. 2931 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware 2932 * queues in ASCII. 2933 * 2934 * Return: The size of the ASCII string returned in @buf. 2935 */ 2936 static ssize_t num_hwqs_show(struct device *dev, 2937 struct device_attribute *attr, char *buf) 2938 { 2939 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2940 struct afu *afu = cfg->afu; 2941 2942 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs); 2943 } 2944 2945 /** 2946 * num_hwqs_store() - sets the number of hardware queues for the host 2947 * @dev: Generic device associated with the host. 2948 * @attr: Device attribute representing the number of hardware queues. 2949 * @buf: Buffer of length PAGE_SIZE containing the number of hardware 2950 * queues in ASCII. 2951 * @count: Length of data resizing in @buf. 2952 * 2953 * n > 0: num_hwqs = n 2954 * n = 0: num_hwqs = num_online_cpus() 2955 * n < 0: num_online_cpus() / abs(n) 2956 * 2957 * Return: The size of the ASCII string returned in @buf. 2958 */ 2959 static ssize_t num_hwqs_store(struct device *dev, 2960 struct device_attribute *attr, 2961 const char *buf, size_t count) 2962 { 2963 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2964 struct afu *afu = cfg->afu; 2965 int rc; 2966 int nhwqs, num_hwqs; 2967 2968 rc = kstrtoint(buf, 10, &nhwqs); 2969 if (rc) 2970 return -EINVAL; 2971 2972 if (nhwqs >= 1) 2973 num_hwqs = nhwqs; 2974 else if (nhwqs == 0) 2975 num_hwqs = num_online_cpus(); 2976 else 2977 num_hwqs = num_online_cpus() / abs(nhwqs); 2978 2979 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS); 2980 WARN_ON_ONCE(afu->desired_hwqs == 0); 2981 2982 retry: 2983 switch (cfg->state) { 2984 case STATE_NORMAL: 2985 cfg->state = STATE_RESET; 2986 drain_ioctls(cfg); 2987 cxlflash_mark_contexts_error(cfg); 2988 rc = afu_reset(cfg); 2989 if (rc) 2990 cfg->state = STATE_FAILTERM; 2991 else 2992 cfg->state = STATE_NORMAL; 2993 wake_up_all(&cfg->reset_waitq); 2994 break; 2995 case STATE_RESET: 2996 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2997 if (cfg->state == STATE_NORMAL) 2998 goto retry; 2999 fallthrough; 3000 default: 3001 /* Ideally should not happen */ 3002 dev_err(dev, "%s: Device is not ready, state=%d\n", 3003 __func__, cfg->state); 3004 break; 3005 } 3006 3007 return count; 3008 } 3009 3010 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" }; 3011 3012 /** 3013 * hwq_mode_show() - presents the HWQ steering mode for the host 3014 * @dev: Generic device associated with the host. 3015 * @attr: Device attribute representing the HWQ steering mode. 3016 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode 3017 * as a character string. 3018 * 3019 * Return: The size of the ASCII string returned in @buf. 3020 */ 3021 static ssize_t hwq_mode_show(struct device *dev, 3022 struct device_attribute *attr, char *buf) 3023 { 3024 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 3025 struct afu *afu = cfg->afu; 3026 3027 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]); 3028 } 3029 3030 /** 3031 * hwq_mode_store() - sets the HWQ steering mode for the host 3032 * @dev: Generic device associated with the host. 3033 * @attr: Device attribute representing the HWQ steering mode. 3034 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode 3035 * as a character string. 3036 * @count: Length of data resizing in @buf. 3037 * 3038 * rr = Round-Robin 3039 * tag = Block MQ Tagging 3040 * cpu = CPU Affinity 3041 * 3042 * Return: The size of the ASCII string returned in @buf. 3043 */ 3044 static ssize_t hwq_mode_store(struct device *dev, 3045 struct device_attribute *attr, 3046 const char *buf, size_t count) 3047 { 3048 struct Scsi_Host *shost = class_to_shost(dev); 3049 struct cxlflash_cfg *cfg = shost_priv(shost); 3050 struct device *cfgdev = &cfg->dev->dev; 3051 struct afu *afu = cfg->afu; 3052 int i; 3053 u32 mode = MAX_HWQ_MODE; 3054 3055 for (i = 0; i < MAX_HWQ_MODE; i++) { 3056 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) { 3057 mode = i; 3058 break; 3059 } 3060 } 3061 3062 if (mode >= MAX_HWQ_MODE) { 3063 dev_info(cfgdev, "Invalid HWQ steering mode.\n"); 3064 return -EINVAL; 3065 } 3066 3067 afu->hwq_mode = mode; 3068 3069 return count; 3070 } 3071 3072 /** 3073 * mode_show() - presents the current mode of the device 3074 * @dev: Generic device associated with the device. 3075 * @attr: Device attribute representing the device mode. 3076 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. 3077 * 3078 * Return: The size of the ASCII string returned in @buf. 3079 */ 3080 static ssize_t mode_show(struct device *dev, 3081 struct device_attribute *attr, char *buf) 3082 { 3083 struct scsi_device *sdev = to_scsi_device(dev); 3084 3085 return scnprintf(buf, PAGE_SIZE, "%s\n", 3086 sdev->hostdata ? "superpipe" : "legacy"); 3087 } 3088 3089 /* 3090 * Host attributes 3091 */ 3092 static DEVICE_ATTR_RO(port0); 3093 static DEVICE_ATTR_RO(port1); 3094 static DEVICE_ATTR_RO(port2); 3095 static DEVICE_ATTR_RO(port3); 3096 static DEVICE_ATTR_RW(lun_mode); 3097 static DEVICE_ATTR_RO(ioctl_version); 3098 static DEVICE_ATTR_RO(port0_lun_table); 3099 static DEVICE_ATTR_RO(port1_lun_table); 3100 static DEVICE_ATTR_RO(port2_lun_table); 3101 static DEVICE_ATTR_RO(port3_lun_table); 3102 static DEVICE_ATTR_RW(irqpoll_weight); 3103 static DEVICE_ATTR_RW(num_hwqs); 3104 static DEVICE_ATTR_RW(hwq_mode); 3105 3106 static struct attribute *cxlflash_host_attrs[] = { 3107 &dev_attr_port0.attr, 3108 &dev_attr_port1.attr, 3109 &dev_attr_port2.attr, 3110 &dev_attr_port3.attr, 3111 &dev_attr_lun_mode.attr, 3112 &dev_attr_ioctl_version.attr, 3113 &dev_attr_port0_lun_table.attr, 3114 &dev_attr_port1_lun_table.attr, 3115 &dev_attr_port2_lun_table.attr, 3116 &dev_attr_port3_lun_table.attr, 3117 &dev_attr_irqpoll_weight.attr, 3118 &dev_attr_num_hwqs.attr, 3119 &dev_attr_hwq_mode.attr, 3120 NULL 3121 }; 3122 3123 ATTRIBUTE_GROUPS(cxlflash_host); 3124 3125 /* 3126 * Device attributes 3127 */ 3128 static DEVICE_ATTR_RO(mode); 3129 3130 static struct attribute *cxlflash_dev_attrs[] = { 3131 &dev_attr_mode.attr, 3132 NULL 3133 }; 3134 3135 ATTRIBUTE_GROUPS(cxlflash_dev); 3136 3137 /* 3138 * Host template 3139 */ 3140 static struct scsi_host_template driver_template = { 3141 .module = THIS_MODULE, 3142 .name = CXLFLASH_ADAPTER_NAME, 3143 .info = cxlflash_driver_info, 3144 .ioctl = cxlflash_ioctl, 3145 .proc_name = CXLFLASH_NAME, 3146 .queuecommand = cxlflash_queuecommand, 3147 .eh_abort_handler = cxlflash_eh_abort_handler, 3148 .eh_device_reset_handler = cxlflash_eh_device_reset_handler, 3149 .eh_host_reset_handler = cxlflash_eh_host_reset_handler, 3150 .change_queue_depth = cxlflash_change_queue_depth, 3151 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, 3152 .can_queue = CXLFLASH_MAX_CMDS, 3153 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1, 3154 .this_id = -1, 3155 .sg_tablesize = 1, /* No scatter gather support */ 3156 .max_sectors = CXLFLASH_MAX_SECTORS, 3157 .shost_groups = cxlflash_host_groups, 3158 .sdev_groups = cxlflash_dev_groups, 3159 }; 3160 3161 /* 3162 * Device dependent values 3163 */ 3164 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, 3165 CXLFLASH_WWPN_VPD_REQUIRED }; 3166 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, 3167 CXLFLASH_NOTIFY_SHUTDOWN }; 3168 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS, 3169 (CXLFLASH_NOTIFY_SHUTDOWN | 3170 CXLFLASH_OCXL_DEV) }; 3171 3172 /* 3173 * PCI device binding table 3174 */ 3175 static struct pci_device_id cxlflash_pci_table[] = { 3176 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, 3177 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, 3178 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, 3179 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, 3180 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD, 3181 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals}, 3182 {} 3183 }; 3184 3185 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); 3186 3187 /** 3188 * cxlflash_worker_thread() - work thread handler for the AFU 3189 * @work: Work structure contained within cxlflash associated with host. 3190 * 3191 * Handles the following events: 3192 * - Link reset which cannot be performed on interrupt context due to 3193 * blocking up to a few seconds 3194 * - Rescan the host 3195 */ 3196 static void cxlflash_worker_thread(struct work_struct *work) 3197 { 3198 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, 3199 work_q); 3200 struct afu *afu = cfg->afu; 3201 struct device *dev = &cfg->dev->dev; 3202 __be64 __iomem *fc_port_regs; 3203 int port; 3204 ulong lock_flags; 3205 3206 /* Avoid MMIO if the device has failed */ 3207 3208 if (cfg->state != STATE_NORMAL) 3209 return; 3210 3211 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3212 3213 if (cfg->lr_state == LINK_RESET_REQUIRED) { 3214 port = cfg->lr_port; 3215 if (port < 0) 3216 dev_err(dev, "%s: invalid port index %d\n", 3217 __func__, port); 3218 else { 3219 spin_unlock_irqrestore(cfg->host->host_lock, 3220 lock_flags); 3221 3222 /* The reset can block... */ 3223 fc_port_regs = get_fc_port_regs(cfg, port); 3224 afu_link_reset(afu, port, fc_port_regs); 3225 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3226 } 3227 3228 cfg->lr_state = LINK_RESET_COMPLETE; 3229 } 3230 3231 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); 3232 3233 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) 3234 scsi_scan_host(cfg->host); 3235 } 3236 3237 /** 3238 * cxlflash_chr_open() - character device open handler 3239 * @inode: Device inode associated with this character device. 3240 * @file: File pointer for this device. 3241 * 3242 * Only users with admin privileges are allowed to open the character device. 3243 * 3244 * Return: 0 on success, -errno on failure 3245 */ 3246 static int cxlflash_chr_open(struct inode *inode, struct file *file) 3247 { 3248 struct cxlflash_cfg *cfg; 3249 3250 if (!capable(CAP_SYS_ADMIN)) 3251 return -EACCES; 3252 3253 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev); 3254 file->private_data = cfg; 3255 3256 return 0; 3257 } 3258 3259 /** 3260 * decode_hioctl() - translates encoded host ioctl to easily identifiable string 3261 * @cmd: The host ioctl command to decode. 3262 * 3263 * Return: A string identifying the decoded host ioctl. 3264 */ 3265 static char *decode_hioctl(unsigned int cmd) 3266 { 3267 switch (cmd) { 3268 case HT_CXLFLASH_LUN_PROVISION: 3269 return __stringify_1(HT_CXLFLASH_LUN_PROVISION); 3270 } 3271 3272 return "UNKNOWN"; 3273 } 3274 3275 /** 3276 * cxlflash_lun_provision() - host LUN provisioning handler 3277 * @cfg: Internal structure associated with the host. 3278 * @lunprov: Kernel copy of userspace ioctl data structure. 3279 * 3280 * Return: 0 on success, -errno on failure 3281 */ 3282 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg, 3283 struct ht_cxlflash_lun_provision *lunprov) 3284 { 3285 struct afu *afu = cfg->afu; 3286 struct device *dev = &cfg->dev->dev; 3287 struct sisl_ioarcb rcb; 3288 struct sisl_ioasa asa; 3289 __be64 __iomem *fc_port_regs; 3290 u16 port = lunprov->port; 3291 u16 scmd = lunprov->hdr.subcmd; 3292 u16 type; 3293 u64 reg; 3294 u64 size; 3295 u64 lun_id; 3296 int rc = 0; 3297 3298 if (!afu_is_lun_provision(afu)) { 3299 rc = -ENOTSUPP; 3300 goto out; 3301 } 3302 3303 if (port >= cfg->num_fc_ports) { 3304 rc = -EINVAL; 3305 goto out; 3306 } 3307 3308 switch (scmd) { 3309 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN: 3310 type = SISL_AFU_LUN_PROVISION_CREATE; 3311 size = lunprov->size; 3312 lun_id = 0; 3313 break; 3314 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN: 3315 type = SISL_AFU_LUN_PROVISION_DELETE; 3316 size = 0; 3317 lun_id = lunprov->lun_id; 3318 break; 3319 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT: 3320 fc_port_regs = get_fc_port_regs(cfg, port); 3321 3322 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]); 3323 lunprov->max_num_luns = reg; 3324 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]); 3325 lunprov->cur_num_luns = reg; 3326 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]); 3327 lunprov->max_cap_port = reg; 3328 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]); 3329 lunprov->cur_cap_port = reg; 3330 3331 goto out; 3332 default: 3333 rc = -EINVAL; 3334 goto out; 3335 } 3336 3337 memset(&rcb, 0, sizeof(rcb)); 3338 memset(&asa, 0, sizeof(asa)); 3339 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 3340 rcb.lun_id = lun_id; 3341 rcb.msi = SISL_MSI_RRQ_UPDATED; 3342 rcb.timeout = MC_LUN_PROV_TIMEOUT; 3343 rcb.ioasa = &asa; 3344 3345 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION; 3346 rcb.cdb[1] = type; 3347 rcb.cdb[2] = port; 3348 put_unaligned_be64(size, &rcb.cdb[8]); 3349 3350 rc = send_afu_cmd(afu, &rcb); 3351 if (rc) { 3352 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3353 __func__, rc, asa.ioasc, asa.afu_extra); 3354 goto out; 3355 } 3356 3357 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) { 3358 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo; 3359 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid)); 3360 } 3361 out: 3362 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3363 return rc; 3364 } 3365 3366 /** 3367 * cxlflash_afu_debug() - host AFU debug handler 3368 * @cfg: Internal structure associated with the host. 3369 * @afu_dbg: Kernel copy of userspace ioctl data structure. 3370 * 3371 * For debug requests requiring a data buffer, always provide an aligned 3372 * (cache line) buffer to the AFU to appease any alignment requirements. 3373 * 3374 * Return: 0 on success, -errno on failure 3375 */ 3376 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg, 3377 struct ht_cxlflash_afu_debug *afu_dbg) 3378 { 3379 struct afu *afu = cfg->afu; 3380 struct device *dev = &cfg->dev->dev; 3381 struct sisl_ioarcb rcb; 3382 struct sisl_ioasa asa; 3383 char *buf = NULL; 3384 char *kbuf = NULL; 3385 void __user *ubuf = (__force void __user *)afu_dbg->data_ea; 3386 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD; 3387 u32 ulen = afu_dbg->data_len; 3388 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE; 3389 int rc = 0; 3390 3391 if (!afu_is_afu_debug(afu)) { 3392 rc = -ENOTSUPP; 3393 goto out; 3394 } 3395 3396 if (ulen) { 3397 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN; 3398 3399 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) { 3400 rc = -EINVAL; 3401 goto out; 3402 } 3403 3404 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL); 3405 if (unlikely(!buf)) { 3406 rc = -ENOMEM; 3407 goto out; 3408 } 3409 3410 kbuf = PTR_ALIGN(buf, cache_line_size()); 3411 3412 if (is_write) { 3413 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 3414 3415 if (copy_from_user(kbuf, ubuf, ulen)) { 3416 rc = -EFAULT; 3417 goto out; 3418 } 3419 } 3420 } 3421 3422 memset(&rcb, 0, sizeof(rcb)); 3423 memset(&asa, 0, sizeof(asa)); 3424 3425 rcb.req_flags = req_flags; 3426 rcb.msi = SISL_MSI_RRQ_UPDATED; 3427 rcb.timeout = MC_AFU_DEBUG_TIMEOUT; 3428 rcb.ioasa = &asa; 3429 3430 if (ulen) { 3431 rcb.data_len = ulen; 3432 rcb.data_ea = (uintptr_t)kbuf; 3433 } 3434 3435 rcb.cdb[0] = SISL_AFU_CMD_DEBUG; 3436 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd, 3437 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN); 3438 3439 rc = send_afu_cmd(afu, &rcb); 3440 if (rc) { 3441 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3442 __func__, rc, asa.ioasc, asa.afu_extra); 3443 goto out; 3444 } 3445 3446 if (ulen && !is_write) { 3447 if (copy_to_user(ubuf, kbuf, ulen)) 3448 rc = -EFAULT; 3449 } 3450 out: 3451 kfree(buf); 3452 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3453 return rc; 3454 } 3455 3456 /** 3457 * cxlflash_chr_ioctl() - character device IOCTL handler 3458 * @file: File pointer for this device. 3459 * @cmd: IOCTL command. 3460 * @arg: Userspace ioctl data structure. 3461 * 3462 * A read/write semaphore is used to implement a 'drain' of currently 3463 * running ioctls. The read semaphore is taken at the beginning of each 3464 * ioctl thread and released upon concluding execution. Additionally the 3465 * semaphore should be released and then reacquired in any ioctl execution 3466 * path which will wait for an event to occur that is outside the scope of 3467 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running, 3468 * a thread simply needs to acquire the write semaphore. 3469 * 3470 * Return: 0 on success, -errno on failure 3471 */ 3472 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd, 3473 unsigned long arg) 3474 { 3475 typedef int (*hioctl) (struct cxlflash_cfg *, void *); 3476 3477 struct cxlflash_cfg *cfg = file->private_data; 3478 struct device *dev = &cfg->dev->dev; 3479 char buf[sizeof(union cxlflash_ht_ioctls)]; 3480 void __user *uarg = (void __user *)arg; 3481 struct ht_cxlflash_hdr *hdr; 3482 size_t size = 0; 3483 bool known_ioctl = false; 3484 int idx = 0; 3485 int rc = 0; 3486 hioctl do_ioctl = NULL; 3487 3488 static const struct { 3489 size_t size; 3490 hioctl ioctl; 3491 } ioctl_tbl[] = { /* NOTE: order matters here */ 3492 { sizeof(struct ht_cxlflash_lun_provision), 3493 (hioctl)cxlflash_lun_provision }, 3494 { sizeof(struct ht_cxlflash_afu_debug), 3495 (hioctl)cxlflash_afu_debug }, 3496 }; 3497 3498 /* Hold read semaphore so we can drain if needed */ 3499 down_read(&cfg->ioctl_rwsem); 3500 3501 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n", 3502 __func__, cmd, idx, sizeof(ioctl_tbl)); 3503 3504 switch (cmd) { 3505 case HT_CXLFLASH_LUN_PROVISION: 3506 case HT_CXLFLASH_AFU_DEBUG: 3507 known_ioctl = true; 3508 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd); 3509 size = ioctl_tbl[idx].size; 3510 do_ioctl = ioctl_tbl[idx].ioctl; 3511 3512 if (likely(do_ioctl)) 3513 break; 3514 3515 fallthrough; 3516 default: 3517 rc = -EINVAL; 3518 goto out; 3519 } 3520 3521 if (unlikely(copy_from_user(&buf, uarg, size))) { 3522 dev_err(dev, "%s: copy_from_user() fail " 3523 "size=%lu cmd=%d (%s) uarg=%p\n", 3524 __func__, size, cmd, decode_hioctl(cmd), uarg); 3525 rc = -EFAULT; 3526 goto out; 3527 } 3528 3529 hdr = (struct ht_cxlflash_hdr *)&buf; 3530 if (hdr->version != HT_CXLFLASH_VERSION_0) { 3531 dev_dbg(dev, "%s: Version %u not supported for %s\n", 3532 __func__, hdr->version, decode_hioctl(cmd)); 3533 rc = -EINVAL; 3534 goto out; 3535 } 3536 3537 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) { 3538 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__); 3539 rc = -EINVAL; 3540 goto out; 3541 } 3542 3543 rc = do_ioctl(cfg, (void *)&buf); 3544 if (likely(!rc)) 3545 if (unlikely(copy_to_user(uarg, &buf, size))) { 3546 dev_err(dev, "%s: copy_to_user() fail " 3547 "size=%lu cmd=%d (%s) uarg=%p\n", 3548 __func__, size, cmd, decode_hioctl(cmd), uarg); 3549 rc = -EFAULT; 3550 } 3551 3552 /* fall through to exit */ 3553 3554 out: 3555 up_read(&cfg->ioctl_rwsem); 3556 if (unlikely(rc && known_ioctl)) 3557 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3558 __func__, decode_hioctl(cmd), cmd, rc); 3559 else 3560 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3561 __func__, decode_hioctl(cmd), cmd, rc); 3562 return rc; 3563 } 3564 3565 /* 3566 * Character device file operations 3567 */ 3568 static const struct file_operations cxlflash_chr_fops = { 3569 .owner = THIS_MODULE, 3570 .open = cxlflash_chr_open, 3571 .unlocked_ioctl = cxlflash_chr_ioctl, 3572 .compat_ioctl = compat_ptr_ioctl, 3573 }; 3574 3575 /** 3576 * init_chrdev() - initialize the character device for the host 3577 * @cfg: Internal structure associated with the host. 3578 * 3579 * Return: 0 on success, -errno on failure 3580 */ 3581 static int init_chrdev(struct cxlflash_cfg *cfg) 3582 { 3583 struct device *dev = &cfg->dev->dev; 3584 struct device *char_dev; 3585 dev_t devno; 3586 int minor; 3587 int rc = 0; 3588 3589 minor = cxlflash_get_minor(); 3590 if (unlikely(minor < 0)) { 3591 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__); 3592 rc = -ENOSPC; 3593 goto out; 3594 } 3595 3596 devno = MKDEV(cxlflash_major, minor); 3597 cdev_init(&cfg->cdev, &cxlflash_chr_fops); 3598 3599 rc = cdev_add(&cfg->cdev, devno, 1); 3600 if (rc) { 3601 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc); 3602 goto err1; 3603 } 3604 3605 char_dev = device_create(cxlflash_class, NULL, devno, 3606 NULL, "cxlflash%d", minor); 3607 if (IS_ERR(char_dev)) { 3608 rc = PTR_ERR(char_dev); 3609 dev_err(dev, "%s: device_create failed rc=%d\n", 3610 __func__, rc); 3611 goto err2; 3612 } 3613 3614 cfg->chardev = char_dev; 3615 out: 3616 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3617 return rc; 3618 err2: 3619 cdev_del(&cfg->cdev); 3620 err1: 3621 cxlflash_put_minor(minor); 3622 goto out; 3623 } 3624 3625 /** 3626 * cxlflash_probe() - PCI entry point to add host 3627 * @pdev: PCI device associated with the host. 3628 * @dev_id: PCI device id associated with device. 3629 * 3630 * The device will initially start out in a 'probing' state and 3631 * transition to the 'normal' state at the end of a successful 3632 * probe. Should an EEH event occur during probe, the notification 3633 * thread (error_detected()) will wait until the probe handler 3634 * is nearly complete. At that time, the device will be moved to 3635 * a 'probed' state and the EEH thread woken up to drive the slot 3636 * reset and recovery (device moves to 'normal' state). Meanwhile, 3637 * the probe will be allowed to exit successfully. 3638 * 3639 * Return: 0 on success, -errno on failure 3640 */ 3641 static int cxlflash_probe(struct pci_dev *pdev, 3642 const struct pci_device_id *dev_id) 3643 { 3644 struct Scsi_Host *host; 3645 struct cxlflash_cfg *cfg = NULL; 3646 struct device *dev = &pdev->dev; 3647 struct dev_dependent_vals *ddv; 3648 int rc = 0; 3649 int k; 3650 3651 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", 3652 __func__, pdev->irq); 3653 3654 ddv = (struct dev_dependent_vals *)dev_id->driver_data; 3655 driver_template.max_sectors = ddv->max_sectors; 3656 3657 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); 3658 if (!host) { 3659 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__); 3660 rc = -ENOMEM; 3661 goto out; 3662 } 3663 3664 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; 3665 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; 3666 host->unique_id = host->host_no; 3667 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; 3668 3669 cfg = shost_priv(host); 3670 cfg->state = STATE_PROBING; 3671 cfg->host = host; 3672 rc = alloc_mem(cfg); 3673 if (rc) { 3674 dev_err(dev, "%s: alloc_mem failed\n", __func__); 3675 rc = -ENOMEM; 3676 scsi_host_put(cfg->host); 3677 goto out; 3678 } 3679 3680 cfg->init_state = INIT_STATE_NONE; 3681 cfg->dev = pdev; 3682 cfg->cxl_fops = cxlflash_cxl_fops; 3683 cfg->ops = cxlflash_assign_ops(ddv); 3684 WARN_ON_ONCE(!cfg->ops); 3685 3686 /* 3687 * Promoted LUNs move to the top of the LUN table. The rest stay on 3688 * the bottom half. The bottom half grows from the end (index = 255), 3689 * whereas the top half grows from the beginning (index = 0). 3690 * 3691 * Initialize the last LUN index for all possible ports. 3692 */ 3693 cfg->promote_lun_index = 0; 3694 3695 for (k = 0; k < MAX_FC_PORTS; k++) 3696 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1; 3697 3698 cfg->dev_id = (struct pci_device_id *)dev_id; 3699 3700 init_waitqueue_head(&cfg->tmf_waitq); 3701 init_waitqueue_head(&cfg->reset_waitq); 3702 3703 INIT_WORK(&cfg->work_q, cxlflash_worker_thread); 3704 cfg->lr_state = LINK_RESET_INVALID; 3705 cfg->lr_port = -1; 3706 spin_lock_init(&cfg->tmf_slock); 3707 mutex_init(&cfg->ctx_tbl_list_mutex); 3708 mutex_init(&cfg->ctx_recovery_mutex); 3709 init_rwsem(&cfg->ioctl_rwsem); 3710 INIT_LIST_HEAD(&cfg->ctx_err_recovery); 3711 INIT_LIST_HEAD(&cfg->lluns); 3712 3713 pci_set_drvdata(pdev, cfg); 3714 3715 rc = init_pci(cfg); 3716 if (rc) { 3717 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc); 3718 goto out_remove; 3719 } 3720 cfg->init_state = INIT_STATE_PCI; 3721 3722 cfg->afu_cookie = cfg->ops->create_afu(pdev); 3723 if (unlikely(!cfg->afu_cookie)) { 3724 dev_err(dev, "%s: create_afu failed\n", __func__); 3725 rc = -ENOMEM; 3726 goto out_remove; 3727 } 3728 3729 rc = init_afu(cfg); 3730 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) { 3731 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc); 3732 goto out_remove; 3733 } 3734 cfg->init_state = INIT_STATE_AFU; 3735 3736 rc = init_scsi(cfg); 3737 if (rc) { 3738 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc); 3739 goto out_remove; 3740 } 3741 cfg->init_state = INIT_STATE_SCSI; 3742 3743 rc = init_chrdev(cfg); 3744 if (rc) { 3745 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc); 3746 goto out_remove; 3747 } 3748 cfg->init_state = INIT_STATE_CDEV; 3749 3750 if (wq_has_sleeper(&cfg->reset_waitq)) { 3751 cfg->state = STATE_PROBED; 3752 wake_up_all(&cfg->reset_waitq); 3753 } else 3754 cfg->state = STATE_NORMAL; 3755 out: 3756 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3757 return rc; 3758 3759 out_remove: 3760 cfg->state = STATE_PROBED; 3761 cxlflash_remove(pdev); 3762 goto out; 3763 } 3764 3765 /** 3766 * cxlflash_pci_error_detected() - called when a PCI error is detected 3767 * @pdev: PCI device struct. 3768 * @state: PCI channel state. 3769 * 3770 * When an EEH occurs during an active reset, wait until the reset is 3771 * complete and then take action based upon the device state. 3772 * 3773 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT 3774 */ 3775 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, 3776 pci_channel_state_t state) 3777 { 3778 int rc = 0; 3779 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3780 struct device *dev = &cfg->dev->dev; 3781 3782 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); 3783 3784 switch (state) { 3785 case pci_channel_io_frozen: 3786 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 3787 cfg->state != STATE_PROBING); 3788 if (cfg->state == STATE_FAILTERM) 3789 return PCI_ERS_RESULT_DISCONNECT; 3790 3791 cfg->state = STATE_RESET; 3792 scsi_block_requests(cfg->host); 3793 drain_ioctls(cfg); 3794 rc = cxlflash_mark_contexts_error(cfg); 3795 if (unlikely(rc)) 3796 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n", 3797 __func__, rc); 3798 term_afu(cfg); 3799 return PCI_ERS_RESULT_NEED_RESET; 3800 case pci_channel_io_perm_failure: 3801 cfg->state = STATE_FAILTERM; 3802 wake_up_all(&cfg->reset_waitq); 3803 scsi_unblock_requests(cfg->host); 3804 return PCI_ERS_RESULT_DISCONNECT; 3805 default: 3806 break; 3807 } 3808 return PCI_ERS_RESULT_NEED_RESET; 3809 } 3810 3811 /** 3812 * cxlflash_pci_slot_reset() - called when PCI slot has been reset 3813 * @pdev: PCI device struct. 3814 * 3815 * This routine is called by the pci error recovery code after the PCI 3816 * slot has been reset, just before we should resume normal operations. 3817 * 3818 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT 3819 */ 3820 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) 3821 { 3822 int rc = 0; 3823 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3824 struct device *dev = &cfg->dev->dev; 3825 3826 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3827 3828 rc = init_afu(cfg); 3829 if (unlikely(rc)) { 3830 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc); 3831 return PCI_ERS_RESULT_DISCONNECT; 3832 } 3833 3834 return PCI_ERS_RESULT_RECOVERED; 3835 } 3836 3837 /** 3838 * cxlflash_pci_resume() - called when normal operation can resume 3839 * @pdev: PCI device struct 3840 */ 3841 static void cxlflash_pci_resume(struct pci_dev *pdev) 3842 { 3843 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3844 struct device *dev = &cfg->dev->dev; 3845 3846 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3847 3848 cfg->state = STATE_NORMAL; 3849 wake_up_all(&cfg->reset_waitq); 3850 scsi_unblock_requests(cfg->host); 3851 } 3852 3853 /** 3854 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class 3855 * @dev: Character device. 3856 * @mode: Mode that can be used to verify access. 3857 * 3858 * Return: Allocated string describing the devtmpfs structure. 3859 */ 3860 static char *cxlflash_devnode(struct device *dev, umode_t *mode) 3861 { 3862 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev)); 3863 } 3864 3865 /** 3866 * cxlflash_class_init() - create character device class 3867 * 3868 * Return: 0 on success, -errno on failure 3869 */ 3870 static int cxlflash_class_init(void) 3871 { 3872 dev_t devno; 3873 int rc = 0; 3874 3875 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash"); 3876 if (unlikely(rc)) { 3877 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc); 3878 goto out; 3879 } 3880 3881 cxlflash_major = MAJOR(devno); 3882 3883 cxlflash_class = class_create(THIS_MODULE, "cxlflash"); 3884 if (IS_ERR(cxlflash_class)) { 3885 rc = PTR_ERR(cxlflash_class); 3886 pr_err("%s: class_create failed rc=%d\n", __func__, rc); 3887 goto err; 3888 } 3889 3890 cxlflash_class->devnode = cxlflash_devnode; 3891 out: 3892 pr_debug("%s: returning rc=%d\n", __func__, rc); 3893 return rc; 3894 err: 3895 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3896 goto out; 3897 } 3898 3899 /** 3900 * cxlflash_class_exit() - destroy character device class 3901 */ 3902 static void cxlflash_class_exit(void) 3903 { 3904 dev_t devno = MKDEV(cxlflash_major, 0); 3905 3906 class_destroy(cxlflash_class); 3907 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3908 } 3909 3910 static const struct pci_error_handlers cxlflash_err_handler = { 3911 .error_detected = cxlflash_pci_error_detected, 3912 .slot_reset = cxlflash_pci_slot_reset, 3913 .resume = cxlflash_pci_resume, 3914 }; 3915 3916 /* 3917 * PCI device structure 3918 */ 3919 static struct pci_driver cxlflash_driver = { 3920 .name = CXLFLASH_NAME, 3921 .id_table = cxlflash_pci_table, 3922 .probe = cxlflash_probe, 3923 .remove = cxlflash_remove, 3924 .shutdown = cxlflash_remove, 3925 .err_handler = &cxlflash_err_handler, 3926 }; 3927 3928 /** 3929 * init_cxlflash() - module entry point 3930 * 3931 * Return: 0 on success, -errno on failure 3932 */ 3933 static int __init init_cxlflash(void) 3934 { 3935 int rc; 3936 3937 check_sizes(); 3938 cxlflash_list_init(); 3939 rc = cxlflash_class_init(); 3940 if (unlikely(rc)) 3941 goto out; 3942 3943 rc = pci_register_driver(&cxlflash_driver); 3944 if (unlikely(rc)) 3945 goto err; 3946 out: 3947 pr_debug("%s: returning rc=%d\n", __func__, rc); 3948 return rc; 3949 err: 3950 cxlflash_class_exit(); 3951 goto out; 3952 } 3953 3954 /** 3955 * exit_cxlflash() - module exit point 3956 */ 3957 static void __exit exit_cxlflash(void) 3958 { 3959 cxlflash_term_global_luns(); 3960 cxlflash_free_errpage(); 3961 3962 pci_unregister_driver(&cxlflash_driver); 3963 cxlflash_class_exit(); 3964 } 3965 3966 module_init(init_cxlflash); 3967 module_exit(exit_cxlflash); 3968