xref: /openbmc/linux/drivers/scsi/cxlflash/main.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * CXL Flash Device Driver
3  *
4  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6  *
7  * Copyright (C) 2015 IBM Corporation
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 
20 #include <asm/unaligned.h>
21 
22 #include <misc/cxl.h>
23 
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27 
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31 
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36 
37 /**
38  * cmd_checkout() - checks out an AFU command
39  * @afu:	AFU to checkout from.
40  *
41  * Commands are checked out in a round-robin fashion. Note that since
42  * the command pool is larger than the hardware queue, the majority of
43  * times we will only loop once or twice before getting a command. The
44  * buffer and CDB within the command are initialized (zeroed) prior to
45  * returning.
46  *
47  * Return: The checked out command or NULL when command pool is empty.
48  */
49 static struct afu_cmd *cmd_checkout(struct afu *afu)
50 {
51 	int k, dec = CXLFLASH_NUM_CMDS;
52 	struct afu_cmd *cmd;
53 
54 	while (dec--) {
55 		k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1));
56 
57 		cmd = &afu->cmd[k];
58 
59 		if (!atomic_dec_if_positive(&cmd->free)) {
60 			pr_devel("%s: returning found index=%d cmd=%p\n",
61 				 __func__, cmd->slot, cmd);
62 			memset(cmd->buf, 0, CMD_BUFSIZE);
63 			memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
64 			return cmd;
65 		}
66 	}
67 
68 	return NULL;
69 }
70 
71 /**
72  * cmd_checkin() - checks in an AFU command
73  * @cmd:	AFU command to checkin.
74  *
75  * Safe to pass commands that have already been checked in. Several
76  * internal tracking fields are reset as part of the checkin. Note
77  * that these are intentionally reset prior to toggling the free bit
78  * to avoid clobbering values in the event that the command is checked
79  * out right away.
80  */
81 static void cmd_checkin(struct afu_cmd *cmd)
82 {
83 	cmd->rcb.scp = NULL;
84 	cmd->rcb.timeout = 0;
85 	cmd->sa.ioasc = 0;
86 	cmd->cmd_tmf = false;
87 	cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */
88 
89 	if (unlikely(atomic_inc_return(&cmd->free) != 1)) {
90 		pr_err("%s: Freeing cmd (%d) that is not in use!\n",
91 		       __func__, cmd->slot);
92 		return;
93 	}
94 
95 	pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot);
96 }
97 
98 /**
99  * process_cmd_err() - command error handler
100  * @cmd:	AFU command that experienced the error.
101  * @scp:	SCSI command associated with the AFU command in error.
102  *
103  * Translates error bits from AFU command to SCSI command results.
104  */
105 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
106 {
107 	struct sisl_ioarcb *ioarcb;
108 	struct sisl_ioasa *ioasa;
109 	u32 resid;
110 
111 	if (unlikely(!cmd))
112 		return;
113 
114 	ioarcb = &(cmd->rcb);
115 	ioasa = &(cmd->sa);
116 
117 	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
118 		resid = ioasa->resid;
119 		scsi_set_resid(scp, resid);
120 		pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
121 			 __func__, cmd, scp, resid);
122 	}
123 
124 	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
125 		pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
126 			 __func__, cmd, scp);
127 		scp->result = (DID_ERROR << 16);
128 	}
129 
130 	pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
131 		 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
132 		 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc,
133 		 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra,
134 		 ioasa->fc_extra);
135 
136 	if (ioasa->rc.scsi_rc) {
137 		/* We have a SCSI status */
138 		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
139 			memcpy(scp->sense_buffer, ioasa->sense_data,
140 			       SISL_SENSE_DATA_LEN);
141 			scp->result = ioasa->rc.scsi_rc;
142 		} else
143 			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
144 	}
145 
146 	/*
147 	 * We encountered an error. Set scp->result based on nature
148 	 * of error.
149 	 */
150 	if (ioasa->rc.fc_rc) {
151 		/* We have an FC status */
152 		switch (ioasa->rc.fc_rc) {
153 		case SISL_FC_RC_LINKDOWN:
154 			scp->result = (DID_REQUEUE << 16);
155 			break;
156 		case SISL_FC_RC_RESID:
157 			/* This indicates an FCP resid underrun */
158 			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
159 				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
160 				 * then we will handle this error else where.
161 				 * If not then we must handle it here.
162 				 * This is probably an AFU bug.
163 				 */
164 				scp->result = (DID_ERROR << 16);
165 			}
166 			break;
167 		case SISL_FC_RC_RESIDERR:
168 			/* Resid mismatch between adapter and device */
169 		case SISL_FC_RC_TGTABORT:
170 		case SISL_FC_RC_ABORTOK:
171 		case SISL_FC_RC_ABORTFAIL:
172 		case SISL_FC_RC_NOLOGI:
173 		case SISL_FC_RC_ABORTPEND:
174 		case SISL_FC_RC_WRABORTPEND:
175 		case SISL_FC_RC_NOEXP:
176 		case SISL_FC_RC_INUSE:
177 			scp->result = (DID_ERROR << 16);
178 			break;
179 		}
180 	}
181 
182 	if (ioasa->rc.afu_rc) {
183 		/* We have an AFU error */
184 		switch (ioasa->rc.afu_rc) {
185 		case SISL_AFU_RC_NO_CHANNELS:
186 			scp->result = (DID_NO_CONNECT << 16);
187 			break;
188 		case SISL_AFU_RC_DATA_DMA_ERR:
189 			switch (ioasa->afu_extra) {
190 			case SISL_AFU_DMA_ERR_PAGE_IN:
191 				/* Retry */
192 				scp->result = (DID_IMM_RETRY << 16);
193 				break;
194 			case SISL_AFU_DMA_ERR_INVALID_EA:
195 			default:
196 				scp->result = (DID_ERROR << 16);
197 			}
198 			break;
199 		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
200 			/* Retry */
201 			scp->result = (DID_ALLOC_FAILURE << 16);
202 			break;
203 		default:
204 			scp->result = (DID_ERROR << 16);
205 		}
206 	}
207 }
208 
209 /**
210  * cmd_complete() - command completion handler
211  * @cmd:	AFU command that has completed.
212  *
213  * Prepares and submits command that has either completed or timed out to
214  * the SCSI stack. Checks AFU command back into command pool for non-internal
215  * (rcb.scp populated) commands.
216  */
217 static void cmd_complete(struct afu_cmd *cmd)
218 {
219 	struct scsi_cmnd *scp;
220 	ulong lock_flags;
221 	struct afu *afu = cmd->parent;
222 	struct cxlflash_cfg *cfg = afu->parent;
223 	bool cmd_is_tmf;
224 
225 	spin_lock_irqsave(&cmd->slock, lock_flags);
226 	cmd->sa.host_use_b[0] |= B_DONE;
227 	spin_unlock_irqrestore(&cmd->slock, lock_flags);
228 
229 	if (cmd->rcb.scp) {
230 		scp = cmd->rcb.scp;
231 		if (unlikely(cmd->sa.ioasc))
232 			process_cmd_err(cmd, scp);
233 		else
234 			scp->result = (DID_OK << 16);
235 
236 		cmd_is_tmf = cmd->cmd_tmf;
237 		cmd_checkin(cmd); /* Don't use cmd after here */
238 
239 		pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
240 				     "ioasc=%d\n", __func__, scp, scp->result,
241 				     cmd->sa.ioasc);
242 
243 		scsi_dma_unmap(scp);
244 		scp->scsi_done(scp);
245 
246 		if (cmd_is_tmf) {
247 			spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
248 			cfg->tmf_active = false;
249 			wake_up_all_locked(&cfg->tmf_waitq);
250 			spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
251 		}
252 	} else
253 		complete(&cmd->cevent);
254 }
255 
256 /**
257  * context_reset() - timeout handler for AFU commands
258  * @cmd:	AFU command that timed out.
259  *
260  * Sends a reset to the AFU.
261  */
262 static void context_reset(struct afu_cmd *cmd)
263 {
264 	int nretry = 0;
265 	u64 rrin = 0x1;
266 	u64 room = 0;
267 	struct afu *afu = cmd->parent;
268 	ulong lock_flags;
269 
270 	pr_debug("%s: cmd=%p\n", __func__, cmd);
271 
272 	spin_lock_irqsave(&cmd->slock, lock_flags);
273 
274 	/* Already completed? */
275 	if (cmd->sa.host_use_b[0] & B_DONE) {
276 		spin_unlock_irqrestore(&cmd->slock, lock_flags);
277 		return;
278 	}
279 
280 	cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT);
281 	spin_unlock_irqrestore(&cmd->slock, lock_flags);
282 
283 	/*
284 	 * We really want to send this reset at all costs, so spread
285 	 * out wait time on successive retries for available room.
286 	 */
287 	do {
288 		room = readq_be(&afu->host_map->cmd_room);
289 		atomic64_set(&afu->room, room);
290 		if (room)
291 			goto write_rrin;
292 		udelay(nretry);
293 	} while (nretry++ < MC_ROOM_RETRY_CNT);
294 
295 	pr_err("%s: no cmd_room to send reset\n", __func__);
296 	return;
297 
298 write_rrin:
299 	nretry = 0;
300 	writeq_be(rrin, &afu->host_map->ioarrin);
301 	do {
302 		rrin = readq_be(&afu->host_map->ioarrin);
303 		if (rrin != 0x1)
304 			break;
305 		/* Double delay each time */
306 		udelay(2 << nretry);
307 	} while (nretry++ < MC_ROOM_RETRY_CNT);
308 }
309 
310 /**
311  * send_cmd() - sends an AFU command
312  * @afu:	AFU associated with the host.
313  * @cmd:	AFU command to send.
314  *
315  * Return:
316  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
317  */
318 static int send_cmd(struct afu *afu, struct afu_cmd *cmd)
319 {
320 	struct cxlflash_cfg *cfg = afu->parent;
321 	struct device *dev = &cfg->dev->dev;
322 	int nretry = 0;
323 	int rc = 0;
324 	u64 room;
325 	long newval;
326 
327 	/*
328 	 * This routine is used by critical users such an AFU sync and to
329 	 * send a task management function (TMF). Thus we want to retry a
330 	 * bit before returning an error. To avoid the performance penalty
331 	 * of MMIO, we spread the update of 'room' over multiple commands.
332 	 */
333 retry:
334 	newval = atomic64_dec_if_positive(&afu->room);
335 	if (!newval) {
336 		do {
337 			room = readq_be(&afu->host_map->cmd_room);
338 			atomic64_set(&afu->room, room);
339 			if (room)
340 				goto write_ioarrin;
341 			udelay(nretry);
342 		} while (nretry++ < MC_ROOM_RETRY_CNT);
343 
344 		dev_err(dev, "%s: no cmd_room to send 0x%X\n",
345 		       __func__, cmd->rcb.cdb[0]);
346 
347 		goto no_room;
348 	} else if (unlikely(newval < 0)) {
349 		/* This should be rare. i.e. Only if two threads race and
350 		 * decrement before the MMIO read is done. In this case
351 		 * just benefit from the other thread having updated
352 		 * afu->room.
353 		 */
354 		if (nretry++ < MC_ROOM_RETRY_CNT) {
355 			udelay(nretry);
356 			goto retry;
357 		}
358 
359 		goto no_room;
360 	}
361 
362 write_ioarrin:
363 	writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
364 out:
365 	pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd,
366 		 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc);
367 	return rc;
368 
369 no_room:
370 	afu->read_room = true;
371 	kref_get(&cfg->afu->mapcount);
372 	schedule_work(&cfg->work_q);
373 	rc = SCSI_MLQUEUE_HOST_BUSY;
374 	goto out;
375 }
376 
377 /**
378  * wait_resp() - polls for a response or timeout to a sent AFU command
379  * @afu:	AFU associated with the host.
380  * @cmd:	AFU command that was sent.
381  */
382 static void wait_resp(struct afu *afu, struct afu_cmd *cmd)
383 {
384 	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
385 
386 	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
387 	if (!timeout)
388 		context_reset(cmd);
389 
390 	if (unlikely(cmd->sa.ioasc != 0))
391 		pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
392 		       "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0],
393 		       cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc,
394 		       cmd->sa.rc.fc_rc);
395 }
396 
397 /**
398  * send_tmf() - sends a Task Management Function (TMF)
399  * @afu:	AFU to checkout from.
400  * @scp:	SCSI command from stack.
401  * @tmfcmd:	TMF command to send.
402  *
403  * Return:
404  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
405  */
406 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
407 {
408 	struct afu_cmd *cmd;
409 
410 	u32 port_sel = scp->device->channel + 1;
411 	short lflag = 0;
412 	struct Scsi_Host *host = scp->device->host;
413 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
414 	struct device *dev = &cfg->dev->dev;
415 	ulong lock_flags;
416 	int rc = 0;
417 	ulong to;
418 
419 	cmd = cmd_checkout(afu);
420 	if (unlikely(!cmd)) {
421 		dev_err(dev, "%s: could not get a free command\n", __func__);
422 		rc = SCSI_MLQUEUE_HOST_BUSY;
423 		goto out;
424 	}
425 
426 	/* When Task Management Function is active do not send another */
427 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
428 	if (cfg->tmf_active)
429 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
430 						  !cfg->tmf_active,
431 						  cfg->tmf_slock);
432 	cfg->tmf_active = true;
433 	cmd->cmd_tmf = true;
434 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
435 
436 	cmd->rcb.ctx_id = afu->ctx_hndl;
437 	cmd->rcb.port_sel = port_sel;
438 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
439 
440 	lflag = SISL_REQ_FLAGS_TMF_CMD;
441 
442 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
443 			      SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
444 
445 	/* Stash the scp in the reserved field, for reuse during interrupt */
446 	cmd->rcb.scp = scp;
447 
448 	/* Copy the CDB from the cmd passed in */
449 	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
450 
451 	/* Send the command */
452 	rc = send_cmd(afu, cmd);
453 	if (unlikely(rc)) {
454 		cmd_checkin(cmd);
455 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
456 		cfg->tmf_active = false;
457 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
458 		goto out;
459 	}
460 
461 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
462 	to = msecs_to_jiffies(5000);
463 	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
464 						       !cfg->tmf_active,
465 						       cfg->tmf_slock,
466 						       to);
467 	if (!to) {
468 		cfg->tmf_active = false;
469 		dev_err(dev, "%s: TMF timed out!\n", __func__);
470 		rc = -1;
471 	}
472 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
473 out:
474 	return rc;
475 }
476 
477 static void afu_unmap(struct kref *ref)
478 {
479 	struct afu *afu = container_of(ref, struct afu, mapcount);
480 
481 	if (likely(afu->afu_map)) {
482 		cxl_psa_unmap((void __iomem *)afu->afu_map);
483 		afu->afu_map = NULL;
484 	}
485 }
486 
487 /**
488  * cxlflash_driver_info() - information handler for this host driver
489  * @host:	SCSI host associated with device.
490  *
491  * Return: A string describing the device.
492  */
493 static const char *cxlflash_driver_info(struct Scsi_Host *host)
494 {
495 	return CXLFLASH_ADAPTER_NAME;
496 }
497 
498 /**
499  * cxlflash_queuecommand() - sends a mid-layer request
500  * @host:	SCSI host associated with device.
501  * @scp:	SCSI command to send.
502  *
503  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
504  */
505 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
506 {
507 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
508 	struct afu *afu = cfg->afu;
509 	struct device *dev = &cfg->dev->dev;
510 	struct afu_cmd *cmd;
511 	u32 port_sel = scp->device->channel + 1;
512 	int nseg, i, ncount;
513 	struct scatterlist *sg;
514 	ulong lock_flags;
515 	short lflag = 0;
516 	int rc = 0;
517 	int kref_got = 0;
518 
519 	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
520 			    "cdb=(%08X-%08X-%08X-%08X)\n",
521 			    __func__, scp, host->host_no, scp->device->channel,
522 			    scp->device->id, scp->device->lun,
523 			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
524 			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
525 			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
526 			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
527 
528 	/*
529 	 * If a Task Management Function is active, wait for it to complete
530 	 * before continuing with regular commands.
531 	 */
532 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
533 	if (cfg->tmf_active) {
534 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
535 		rc = SCSI_MLQUEUE_HOST_BUSY;
536 		goto out;
537 	}
538 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
539 
540 	switch (cfg->state) {
541 	case STATE_RESET:
542 		dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__);
543 		rc = SCSI_MLQUEUE_HOST_BUSY;
544 		goto out;
545 	case STATE_FAILTERM:
546 		dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__);
547 		scp->result = (DID_NO_CONNECT << 16);
548 		scp->scsi_done(scp);
549 		rc = 0;
550 		goto out;
551 	default:
552 		break;
553 	}
554 
555 	cmd = cmd_checkout(afu);
556 	if (unlikely(!cmd)) {
557 		dev_err(dev, "%s: could not get a free command\n", __func__);
558 		rc = SCSI_MLQUEUE_HOST_BUSY;
559 		goto out;
560 	}
561 
562 	kref_get(&cfg->afu->mapcount);
563 	kref_got = 1;
564 
565 	cmd->rcb.ctx_id = afu->ctx_hndl;
566 	cmd->rcb.port_sel = port_sel;
567 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
568 
569 	if (scp->sc_data_direction == DMA_TO_DEVICE)
570 		lflag = SISL_REQ_FLAGS_HOST_WRITE;
571 	else
572 		lflag = SISL_REQ_FLAGS_HOST_READ;
573 
574 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
575 			      SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
576 
577 	/* Stash the scp in the reserved field, for reuse during interrupt */
578 	cmd->rcb.scp = scp;
579 
580 	nseg = scsi_dma_map(scp);
581 	if (unlikely(nseg < 0)) {
582 		dev_err(dev, "%s: Fail DMA map! nseg=%d\n",
583 			__func__, nseg);
584 		rc = SCSI_MLQUEUE_HOST_BUSY;
585 		goto out;
586 	}
587 
588 	ncount = scsi_sg_count(scp);
589 	scsi_for_each_sg(scp, sg, ncount, i) {
590 		cmd->rcb.data_len = sg_dma_len(sg);
591 		cmd->rcb.data_ea = sg_dma_address(sg);
592 	}
593 
594 	/* Copy the CDB from the scsi_cmnd passed in */
595 	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
596 
597 	/* Send the command */
598 	rc = send_cmd(afu, cmd);
599 	if (unlikely(rc)) {
600 		cmd_checkin(cmd);
601 		scsi_dma_unmap(scp);
602 	}
603 
604 out:
605 	if (kref_got)
606 		kref_put(&afu->mapcount, afu_unmap);
607 	pr_devel("%s: returning rc=%d\n", __func__, rc);
608 	return rc;
609 }
610 
611 /**
612  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
613  * @cfg:	Internal structure associated with the host.
614  */
615 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
616 {
617 	struct pci_dev *pdev = cfg->dev;
618 
619 	if (pci_channel_offline(pdev))
620 		wait_event_timeout(cfg->reset_waitq,
621 				   !pci_channel_offline(pdev),
622 				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
623 }
624 
625 /**
626  * free_mem() - free memory associated with the AFU
627  * @cfg:	Internal structure associated with the host.
628  */
629 static void free_mem(struct cxlflash_cfg *cfg)
630 {
631 	int i;
632 	char *buf = NULL;
633 	struct afu *afu = cfg->afu;
634 
635 	if (cfg->afu) {
636 		for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
637 			buf = afu->cmd[i].buf;
638 			if (!((u64)buf & (PAGE_SIZE - 1)))
639 				free_page((ulong)buf);
640 		}
641 
642 		free_pages((ulong)afu, get_order(sizeof(struct afu)));
643 		cfg->afu = NULL;
644 	}
645 }
646 
647 /**
648  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
649  * @cfg:	Internal structure associated with the host.
650  *
651  * Safe to call with AFU in a partially allocated/initialized state.
652  *
653  * Cleans up all state associated with the command queue, and unmaps
654  * the MMIO space.
655  *
656  *  - complete() will take care of commands we initiated (they'll be checked
657  *  in as part of the cleanup that occurs after the completion)
658  *
659  *  - cmd_checkin() will take care of entries that we did not initiate and that
660  *  have not (and will not) complete because they are sitting on a [now stale]
661  *  hardware queue
662  */
663 static void stop_afu(struct cxlflash_cfg *cfg)
664 {
665 	int i;
666 	struct afu *afu = cfg->afu;
667 	struct afu_cmd *cmd;
668 
669 	if (likely(afu)) {
670 		for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
671 			cmd = &afu->cmd[i];
672 			complete(&cmd->cevent);
673 			if (!atomic_read(&cmd->free))
674 				cmd_checkin(cmd);
675 		}
676 
677 		if (likely(afu->afu_map)) {
678 			cxl_psa_unmap((void __iomem *)afu->afu_map);
679 			afu->afu_map = NULL;
680 		}
681 		kref_put(&afu->mapcount, afu_unmap);
682 	}
683 }
684 
685 /**
686  * term_mc() - terminates the master context
687  * @cfg:	Internal structure associated with the host.
688  * @level:	Depth of allocation, where to begin waterfall tear down.
689  *
690  * Safe to call with AFU/MC in partially allocated/initialized state.
691  */
692 static void term_mc(struct cxlflash_cfg *cfg, enum undo_level level)
693 {
694 	int rc = 0;
695 	struct afu *afu = cfg->afu;
696 	struct device *dev = &cfg->dev->dev;
697 
698 	if (!afu || !cfg->mcctx) {
699 		dev_err(dev, "%s: returning from term_mc with NULL afu or MC\n",
700 		       __func__);
701 		return;
702 	}
703 
704 	switch (level) {
705 	case UNDO_START:
706 		rc = cxl_stop_context(cfg->mcctx);
707 		BUG_ON(rc);
708 	case UNMAP_THREE:
709 		cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
710 	case UNMAP_TWO:
711 		cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
712 	case UNMAP_ONE:
713 		cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
714 	case FREE_IRQ:
715 		cxl_free_afu_irqs(cfg->mcctx);
716 	case RELEASE_CONTEXT:
717 		cfg->mcctx = NULL;
718 	}
719 }
720 
721 /**
722  * term_afu() - terminates the AFU
723  * @cfg:	Internal structure associated with the host.
724  *
725  * Safe to call with AFU/MC in partially allocated/initialized state.
726  */
727 static void term_afu(struct cxlflash_cfg *cfg)
728 {
729 	term_mc(cfg, UNDO_START);
730 
731 	if (cfg->afu)
732 		stop_afu(cfg);
733 
734 	pr_debug("%s: returning\n", __func__);
735 }
736 
737 /**
738  * cxlflash_remove() - PCI entry point to tear down host
739  * @pdev:	PCI device associated with the host.
740  *
741  * Safe to use as a cleanup in partially allocated/initialized state.
742  */
743 static void cxlflash_remove(struct pci_dev *pdev)
744 {
745 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
746 	ulong lock_flags;
747 
748 	/* If a Task Management Function is active, wait for it to complete
749 	 * before continuing with remove.
750 	 */
751 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
752 	if (cfg->tmf_active)
753 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
754 						  !cfg->tmf_active,
755 						  cfg->tmf_slock);
756 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
757 
758 	cfg->state = STATE_FAILTERM;
759 	cxlflash_stop_term_user_contexts(cfg);
760 
761 	switch (cfg->init_state) {
762 	case INIT_STATE_SCSI:
763 		cxlflash_term_local_luns(cfg);
764 		scsi_remove_host(cfg->host);
765 		/* fall through */
766 	case INIT_STATE_AFU:
767 		cancel_work_sync(&cfg->work_q);
768 		term_afu(cfg);
769 	case INIT_STATE_PCI:
770 		pci_release_regions(cfg->dev);
771 		pci_disable_device(pdev);
772 	case INIT_STATE_NONE:
773 		free_mem(cfg);
774 		scsi_host_put(cfg->host);
775 		break;
776 	}
777 
778 	pr_debug("%s: returning\n", __func__);
779 }
780 
781 /**
782  * alloc_mem() - allocates the AFU and its command pool
783  * @cfg:	Internal structure associated with the host.
784  *
785  * A partially allocated state remains on failure.
786  *
787  * Return:
788  *	0 on success
789  *	-ENOMEM on failure to allocate memory
790  */
791 static int alloc_mem(struct cxlflash_cfg *cfg)
792 {
793 	int rc = 0;
794 	int i;
795 	char *buf = NULL;
796 	struct device *dev = &cfg->dev->dev;
797 
798 	/* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */
799 	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
800 					    get_order(sizeof(struct afu)));
801 	if (unlikely(!cfg->afu)) {
802 		dev_err(dev, "%s: cannot get %d free pages\n",
803 			__func__, get_order(sizeof(struct afu)));
804 		rc = -ENOMEM;
805 		goto out;
806 	}
807 	cfg->afu->parent = cfg;
808 	cfg->afu->afu_map = NULL;
809 
810 	for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) {
811 		if (!((u64)buf & (PAGE_SIZE - 1))) {
812 			buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
813 			if (unlikely(!buf)) {
814 				dev_err(dev,
815 					"%s: Allocate command buffers fail!\n",
816 				       __func__);
817 				rc = -ENOMEM;
818 				free_mem(cfg);
819 				goto out;
820 			}
821 		}
822 
823 		cfg->afu->cmd[i].buf = buf;
824 		atomic_set(&cfg->afu->cmd[i].free, 1);
825 		cfg->afu->cmd[i].slot = i;
826 	}
827 
828 out:
829 	return rc;
830 }
831 
832 /**
833  * init_pci() - initializes the host as a PCI device
834  * @cfg:	Internal structure associated with the host.
835  *
836  * Return: 0 on success, -errno on failure
837  */
838 static int init_pci(struct cxlflash_cfg *cfg)
839 {
840 	struct pci_dev *pdev = cfg->dev;
841 	int rc = 0;
842 
843 	cfg->cxlflash_regs_pci = pci_resource_start(pdev, 0);
844 	rc = pci_request_regions(pdev, CXLFLASH_NAME);
845 	if (rc < 0) {
846 		dev_err(&pdev->dev,
847 			"%s: Couldn't register memory range of registers\n",
848 			__func__);
849 		goto out;
850 	}
851 
852 	rc = pci_enable_device(pdev);
853 	if (rc || pci_channel_offline(pdev)) {
854 		if (pci_channel_offline(pdev)) {
855 			cxlflash_wait_for_pci_err_recovery(cfg);
856 			rc = pci_enable_device(pdev);
857 		}
858 
859 		if (rc) {
860 			dev_err(&pdev->dev, "%s: Cannot enable adapter\n",
861 				__func__);
862 			cxlflash_wait_for_pci_err_recovery(cfg);
863 			goto out_release_regions;
864 		}
865 	}
866 
867 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
868 	if (rc < 0) {
869 		dev_dbg(&pdev->dev, "%s: Failed to set 64 bit PCI DMA mask\n",
870 			__func__);
871 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
872 	}
873 
874 	if (rc < 0) {
875 		dev_err(&pdev->dev, "%s: Failed to set PCI DMA mask\n",
876 			__func__);
877 		goto out_disable;
878 	}
879 
880 	pci_set_master(pdev);
881 
882 	if (pci_channel_offline(pdev)) {
883 		cxlflash_wait_for_pci_err_recovery(cfg);
884 		if (pci_channel_offline(pdev)) {
885 			rc = -EIO;
886 			goto out_msi_disable;
887 		}
888 	}
889 
890 	rc = pci_save_state(pdev);
891 
892 	if (rc != PCIBIOS_SUCCESSFUL) {
893 		dev_err(&pdev->dev, "%s: Failed to save PCI config space\n",
894 			__func__);
895 		rc = -EIO;
896 		goto cleanup_nolog;
897 	}
898 
899 out:
900 	pr_debug("%s: returning rc=%d\n", __func__, rc);
901 	return rc;
902 
903 cleanup_nolog:
904 out_msi_disable:
905 	cxlflash_wait_for_pci_err_recovery(cfg);
906 out_disable:
907 	pci_disable_device(pdev);
908 out_release_regions:
909 	pci_release_regions(pdev);
910 	goto out;
911 
912 }
913 
914 /**
915  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
916  * @cfg:	Internal structure associated with the host.
917  *
918  * Return: 0 on success, -errno on failure
919  */
920 static int init_scsi(struct cxlflash_cfg *cfg)
921 {
922 	struct pci_dev *pdev = cfg->dev;
923 	int rc = 0;
924 
925 	rc = scsi_add_host(cfg->host, &pdev->dev);
926 	if (rc) {
927 		dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n",
928 			__func__, rc);
929 		goto out;
930 	}
931 
932 	scsi_scan_host(cfg->host);
933 
934 out:
935 	pr_debug("%s: returning rc=%d\n", __func__, rc);
936 	return rc;
937 }
938 
939 /**
940  * set_port_online() - transitions the specified host FC port to online state
941  * @fc_regs:	Top of MMIO region defined for specified port.
942  *
943  * The provided MMIO region must be mapped prior to call. Online state means
944  * that the FC link layer has synced, completed the handshaking process, and
945  * is ready for login to start.
946  */
947 static void set_port_online(__be64 __iomem *fc_regs)
948 {
949 	u64 cmdcfg;
950 
951 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
952 	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
953 	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
954 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
955 }
956 
957 /**
958  * set_port_offline() - transitions the specified host FC port to offline state
959  * @fc_regs:	Top of MMIO region defined for specified port.
960  *
961  * The provided MMIO region must be mapped prior to call.
962  */
963 static void set_port_offline(__be64 __iomem *fc_regs)
964 {
965 	u64 cmdcfg;
966 
967 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
968 	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
969 	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
970 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
971 }
972 
973 /**
974  * wait_port_online() - waits for the specified host FC port come online
975  * @fc_regs:	Top of MMIO region defined for specified port.
976  * @delay_us:	Number of microseconds to delay between reading port status.
977  * @nretry:	Number of cycles to retry reading port status.
978  *
979  * The provided MMIO region must be mapped prior to call. This will timeout
980  * when the cable is not plugged in.
981  *
982  * Return:
983  *	TRUE (1) when the specified port is online
984  *	FALSE (0) when the specified port fails to come online after timeout
985  *	-EINVAL when @delay_us is less than 1000
986  */
987 static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
988 {
989 	u64 status;
990 
991 	if (delay_us < 1000) {
992 		pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
993 		return -EINVAL;
994 	}
995 
996 	do {
997 		msleep(delay_us / 1000);
998 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
999 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1000 		 nretry--);
1001 
1002 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1003 }
1004 
1005 /**
1006  * wait_port_offline() - waits for the specified host FC port go offline
1007  * @fc_regs:	Top of MMIO region defined for specified port.
1008  * @delay_us:	Number of microseconds to delay between reading port status.
1009  * @nretry:	Number of cycles to retry reading port status.
1010  *
1011  * The provided MMIO region must be mapped prior to call.
1012  *
1013  * Return:
1014  *	TRUE (1) when the specified port is offline
1015  *	FALSE (0) when the specified port fails to go offline after timeout
1016  *	-EINVAL when @delay_us is less than 1000
1017  */
1018 static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1019 {
1020 	u64 status;
1021 
1022 	if (delay_us < 1000) {
1023 		pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
1024 		return -EINVAL;
1025 	}
1026 
1027 	do {
1028 		msleep(delay_us / 1000);
1029 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1030 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1031 		 nretry--);
1032 
1033 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1034 }
1035 
1036 /**
1037  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1038  * @afu:	AFU associated with the host that owns the specified FC port.
1039  * @port:	Port number being configured.
1040  * @fc_regs:	Top of MMIO region defined for specified port.
1041  * @wwpn:	The world-wide-port-number previously discovered for port.
1042  *
1043  * The provided MMIO region must be mapped prior to call. As part of the
1044  * sequence to configure the WWPN, the port is toggled offline and then back
1045  * online. This toggling action can cause this routine to delay up to a few
1046  * seconds. When configured to use the internal LUN feature of the AFU, a
1047  * failure to come online is overridden.
1048  *
1049  * Return:
1050  *	0 when the WWPN is successfully written and the port comes back online
1051  *	-1 when the port fails to go offline or come back up online
1052  */
1053 static int afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1054 			u64 wwpn)
1055 {
1056 	int rc = 0;
1057 
1058 	set_port_offline(fc_regs);
1059 
1060 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1061 			       FC_PORT_STATUS_RETRY_CNT)) {
1062 		pr_debug("%s: wait on port %d to go offline timed out\n",
1063 			 __func__, port);
1064 		rc = -1; /* but continue on to leave the port back online */
1065 	}
1066 
1067 	if (rc == 0)
1068 		writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1069 
1070 	/* Always return success after programming WWPN */
1071 	rc = 0;
1072 
1073 	set_port_online(fc_regs);
1074 
1075 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1076 			      FC_PORT_STATUS_RETRY_CNT)) {
1077 		pr_err("%s: wait on port %d to go online timed out\n",
1078 		       __func__, port);
1079 	}
1080 
1081 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1082 
1083 	return rc;
1084 }
1085 
1086 /**
1087  * afu_link_reset() - resets the specified host FC port
1088  * @afu:	AFU associated with the host that owns the specified FC port.
1089  * @port:	Port number being configured.
1090  * @fc_regs:	Top of MMIO region defined for specified port.
1091  *
1092  * The provided MMIO region must be mapped prior to call. The sequence to
1093  * reset the port involves toggling it offline and then back online. This
1094  * action can cause this routine to delay up to a few seconds. An effort
1095  * is made to maintain link with the device by switching to host to use
1096  * the alternate port exclusively while the reset takes place.
1097  * failure to come online is overridden.
1098  */
1099 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1100 {
1101 	u64 port_sel;
1102 
1103 	/* first switch the AFU to the other links, if any */
1104 	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1105 	port_sel &= ~(1ULL << port);
1106 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1107 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1108 
1109 	set_port_offline(fc_regs);
1110 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1111 			       FC_PORT_STATUS_RETRY_CNT))
1112 		pr_err("%s: wait on port %d to go offline timed out\n",
1113 		       __func__, port);
1114 
1115 	set_port_online(fc_regs);
1116 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1117 			      FC_PORT_STATUS_RETRY_CNT))
1118 		pr_err("%s: wait on port %d to go online timed out\n",
1119 		       __func__, port);
1120 
1121 	/* switch back to include this port */
1122 	port_sel |= (1ULL << port);
1123 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1124 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1125 
1126 	pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel);
1127 }
1128 
1129 /*
1130  * Asynchronous interrupt information table
1131  */
1132 static const struct asyc_intr_info ainfo[] = {
1133 	{SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1134 	{SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1135 	{SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
1136 	{SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
1137 	{SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
1138 	{SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
1139 	{SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
1140 	{SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST},
1141 	{SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1142 	{SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1143 	{SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
1144 	{SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET},
1145 	{SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
1146 	{SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
1147 	{SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
1148 	{SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST},
1149 	{0x0, "", 0, 0}		/* terminator */
1150 };
1151 
1152 /**
1153  * find_ainfo() - locates and returns asynchronous interrupt information
1154  * @status:	Status code set by AFU on error.
1155  *
1156  * Return: The located information or NULL when the status code is invalid.
1157  */
1158 static const struct asyc_intr_info *find_ainfo(u64 status)
1159 {
1160 	const struct asyc_intr_info *info;
1161 
1162 	for (info = &ainfo[0]; info->status; info++)
1163 		if (info->status == status)
1164 			return info;
1165 
1166 	return NULL;
1167 }
1168 
1169 /**
1170  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1171  * @afu:	AFU associated with the host.
1172  */
1173 static void afu_err_intr_init(struct afu *afu)
1174 {
1175 	int i;
1176 	u64 reg;
1177 
1178 	/* global async interrupts: AFU clears afu_ctrl on context exit
1179 	 * if async interrupts were sent to that context. This prevents
1180 	 * the AFU form sending further async interrupts when
1181 	 * there is
1182 	 * nobody to receive them.
1183 	 */
1184 
1185 	/* mask all */
1186 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1187 	/* set LISN# to send and point to master context */
1188 	reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1189 
1190 	if (afu->internal_lun)
1191 		reg |= 1;	/* Bit 63 indicates local lun */
1192 	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1193 	/* clear all */
1194 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1195 	/* unmask bits that are of interest */
1196 	/* note: afu can send an interrupt after this step */
1197 	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1198 	/* clear again in case a bit came on after previous clear but before */
1199 	/* unmask */
1200 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1201 
1202 	/* Clear/Set internal lun bits */
1203 	reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1204 	reg &= SISL_FC_INTERNAL_MASK;
1205 	if (afu->internal_lun)
1206 		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1207 	writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1208 
1209 	/* now clear FC errors */
1210 	for (i = 0; i < NUM_FC_PORTS; i++) {
1211 		writeq_be(0xFFFFFFFFU,
1212 			  &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1213 		writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1214 	}
1215 
1216 	/* sync interrupts for master's IOARRIN write */
1217 	/* note that unlike asyncs, there can be no pending sync interrupts */
1218 	/* at this time (this is a fresh context and master has not written */
1219 	/* IOARRIN yet), so there is nothing to clear. */
1220 
1221 	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1222 	writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1223 	writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1224 }
1225 
1226 /**
1227  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1228  * @irq:	Interrupt number.
1229  * @data:	Private data provided at interrupt registration, the AFU.
1230  *
1231  * Return: Always return IRQ_HANDLED.
1232  */
1233 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1234 {
1235 	struct afu *afu = (struct afu *)data;
1236 	u64 reg;
1237 	u64 reg_unmasked;
1238 
1239 	reg = readq_be(&afu->host_map->intr_status);
1240 	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1241 
1242 	if (reg_unmasked == 0UL) {
1243 		pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
1244 		       __func__, (u64)afu, reg);
1245 		goto cxlflash_sync_err_irq_exit;
1246 	}
1247 
1248 	pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
1249 	       __func__, (u64)afu, reg);
1250 
1251 	writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1252 
1253 cxlflash_sync_err_irq_exit:
1254 	pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED);
1255 	return IRQ_HANDLED;
1256 }
1257 
1258 /**
1259  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1260  * @irq:	Interrupt number.
1261  * @data:	Private data provided at interrupt registration, the AFU.
1262  *
1263  * Return: Always return IRQ_HANDLED.
1264  */
1265 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1266 {
1267 	struct afu *afu = (struct afu *)data;
1268 	struct afu_cmd *cmd;
1269 	bool toggle = afu->toggle;
1270 	u64 entry,
1271 	    *hrrq_start = afu->hrrq_start,
1272 	    *hrrq_end = afu->hrrq_end,
1273 	    *hrrq_curr = afu->hrrq_curr;
1274 
1275 	/* Process however many RRQ entries that are ready */
1276 	while (true) {
1277 		entry = *hrrq_curr;
1278 
1279 		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1280 			break;
1281 
1282 		cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT);
1283 		cmd_complete(cmd);
1284 
1285 		/* Advance to next entry or wrap and flip the toggle bit */
1286 		if (hrrq_curr < hrrq_end)
1287 			hrrq_curr++;
1288 		else {
1289 			hrrq_curr = hrrq_start;
1290 			toggle ^= SISL_RESP_HANDLE_T_BIT;
1291 		}
1292 	}
1293 
1294 	afu->hrrq_curr = hrrq_curr;
1295 	afu->toggle = toggle;
1296 
1297 	return IRQ_HANDLED;
1298 }
1299 
1300 /**
1301  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1302  * @irq:	Interrupt number.
1303  * @data:	Private data provided at interrupt registration, the AFU.
1304  *
1305  * Return: Always return IRQ_HANDLED.
1306  */
1307 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1308 {
1309 	struct afu *afu = (struct afu *)data;
1310 	struct cxlflash_cfg *cfg = afu->parent;
1311 	struct device *dev = &cfg->dev->dev;
1312 	u64 reg_unmasked;
1313 	const struct asyc_intr_info *info;
1314 	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1315 	u64 reg;
1316 	u8 port;
1317 	int i;
1318 
1319 	reg = readq_be(&global->regs.aintr_status);
1320 	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1321 
1322 	if (reg_unmasked == 0) {
1323 		dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n",
1324 			__func__, reg);
1325 		goto out;
1326 	}
1327 
1328 	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1329 	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1330 
1331 	/* Check each bit that is on */
1332 	for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1333 		info = find_ainfo(1ULL << i);
1334 		if (((reg_unmasked & 0x1) == 0) || !info)
1335 			continue;
1336 
1337 		port = info->port;
1338 
1339 		dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
1340 			__func__, port, info->desc,
1341 		       readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1342 
1343 		/*
1344 		 * Do link reset first, some OTHER errors will set FC_ERROR
1345 		 * again if cleared before or w/o a reset
1346 		 */
1347 		if (info->action & LINK_RESET) {
1348 			dev_err(dev, "%s: FC Port %d: resetting link\n",
1349 				__func__, port);
1350 			cfg->lr_state = LINK_RESET_REQUIRED;
1351 			cfg->lr_port = port;
1352 			kref_get(&cfg->afu->mapcount);
1353 			schedule_work(&cfg->work_q);
1354 		}
1355 
1356 		if (info->action & CLR_FC_ERROR) {
1357 			reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1358 
1359 			/*
1360 			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1361 			 * should be the same and tracing one is sufficient.
1362 			 */
1363 
1364 			dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n",
1365 				__func__, port, reg);
1366 
1367 			writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1368 			writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1369 		}
1370 
1371 		if (info->action & SCAN_HOST) {
1372 			atomic_inc(&cfg->scan_host_needed);
1373 			kref_get(&cfg->afu->mapcount);
1374 			schedule_work(&cfg->work_q);
1375 		}
1376 	}
1377 
1378 out:
1379 	dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu);
1380 	return IRQ_HANDLED;
1381 }
1382 
1383 /**
1384  * start_context() - starts the master context
1385  * @cfg:	Internal structure associated with the host.
1386  *
1387  * Return: A success or failure value from CXL services.
1388  */
1389 static int start_context(struct cxlflash_cfg *cfg)
1390 {
1391 	int rc = 0;
1392 
1393 	rc = cxl_start_context(cfg->mcctx,
1394 			       cfg->afu->work.work_element_descriptor,
1395 			       NULL);
1396 
1397 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1398 	return rc;
1399 }
1400 
1401 /**
1402  * read_vpd() - obtains the WWPNs from VPD
1403  * @cfg:	Internal structure associated with the host.
1404  * @wwpn:	Array of size NUM_FC_PORTS to pass back WWPNs
1405  *
1406  * Return: 0 on success, -errno on failure
1407  */
1408 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1409 {
1410 	struct pci_dev *dev = cfg->parent_dev;
1411 	int rc = 0;
1412 	int ro_start, ro_size, i, j, k;
1413 	ssize_t vpd_size;
1414 	char vpd_data[CXLFLASH_VPD_LEN];
1415 	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1416 	char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1417 
1418 	/* Get the VPD data from the device */
1419 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
1420 	if (unlikely(vpd_size <= 0)) {
1421 		dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n",
1422 		       __func__, vpd_size);
1423 		rc = -ENODEV;
1424 		goto out;
1425 	}
1426 
1427 	/* Get the read only section offset */
1428 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1429 				    PCI_VPD_LRDT_RO_DATA);
1430 	if (unlikely(ro_start < 0)) {
1431 		dev_err(&dev->dev, "%s: VPD Read-only data not found\n",
1432 			__func__);
1433 		rc = -ENODEV;
1434 		goto out;
1435 	}
1436 
1437 	/* Get the read only section size, cap when extends beyond read VPD */
1438 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1439 	j = ro_size;
1440 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1441 	if (unlikely((i + j) > vpd_size)) {
1442 		pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
1443 			 __func__, (i + j), vpd_size);
1444 		ro_size = vpd_size - i;
1445 	}
1446 
1447 	/*
1448 	 * Find the offset of the WWPN tag within the read only
1449 	 * VPD data and validate the found field (partials are
1450 	 * no good to us). Convert the ASCII data to an integer
1451 	 * value. Note that we must copy to a temporary buffer
1452 	 * because the conversion service requires that the ASCII
1453 	 * string be terminated.
1454 	 */
1455 	for (k = 0; k < NUM_FC_PORTS; k++) {
1456 		j = ro_size;
1457 		i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1458 
1459 		i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1460 		if (unlikely(i < 0)) {
1461 			dev_err(&dev->dev, "%s: Port %d WWPN not found "
1462 				"in VPD\n", __func__, k);
1463 			rc = -ENODEV;
1464 			goto out;
1465 		}
1466 
1467 		j = pci_vpd_info_field_size(&vpd_data[i]);
1468 		i += PCI_VPD_INFO_FLD_HDR_SIZE;
1469 		if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1470 			dev_err(&dev->dev, "%s: Port %d WWPN incomplete or "
1471 				"VPD corrupt\n",
1472 			       __func__, k);
1473 			rc = -ENODEV;
1474 			goto out;
1475 		}
1476 
1477 		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1478 		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1479 		if (unlikely(rc)) {
1480 			dev_err(&dev->dev, "%s: Fail to convert port %d WWPN "
1481 				"to integer\n", __func__, k);
1482 			rc = -ENODEV;
1483 			goto out;
1484 		}
1485 	}
1486 
1487 out:
1488 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1489 	return rc;
1490 }
1491 
1492 /**
1493  * init_pcr() - initialize the provisioning and control registers
1494  * @cfg:	Internal structure associated with the host.
1495  *
1496  * Also sets up fast access to the mapped registers and initializes AFU
1497  * command fields that never change.
1498  */
1499 static void init_pcr(struct cxlflash_cfg *cfg)
1500 {
1501 	struct afu *afu = cfg->afu;
1502 	struct sisl_ctrl_map __iomem *ctrl_map;
1503 	int i;
1504 
1505 	for (i = 0; i < MAX_CONTEXT; i++) {
1506 		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1507 		/* Disrupt any clients that could be running */
1508 		/* e.g. clients that survived a master restart */
1509 		writeq_be(0, &ctrl_map->rht_start);
1510 		writeq_be(0, &ctrl_map->rht_cnt_id);
1511 		writeq_be(0, &ctrl_map->ctx_cap);
1512 	}
1513 
1514 	/* Copy frequently used fields into afu */
1515 	afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1516 	afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1517 	afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1518 
1519 	/* Program the Endian Control for the master context */
1520 	writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1521 
1522 	/* Initialize cmd fields that never change */
1523 	for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1524 		afu->cmd[i].rcb.ctx_id = afu->ctx_hndl;
1525 		afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED;
1526 		afu->cmd[i].rcb.rrq = 0x0;
1527 	}
1528 }
1529 
1530 /**
1531  * init_global() - initialize AFU global registers
1532  * @cfg:	Internal structure associated with the host.
1533  */
1534 static int init_global(struct cxlflash_cfg *cfg)
1535 {
1536 	struct afu *afu = cfg->afu;
1537 	struct device *dev = &cfg->dev->dev;
1538 	u64 wwpn[NUM_FC_PORTS];	/* wwpn of AFU ports */
1539 	int i = 0, num_ports = 0;
1540 	int rc = 0;
1541 	u64 reg;
1542 
1543 	rc = read_vpd(cfg, &wwpn[0]);
1544 	if (rc) {
1545 		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1546 		goto out;
1547 	}
1548 
1549 	pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]);
1550 
1551 	/* Set up RRQ in AFU for master issued cmds */
1552 	writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1553 	writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1554 
1555 	/* AFU configuration */
1556 	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1557 	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1558 	/* enable all auto retry options and control endianness */
1559 	/* leave others at default: */
1560 	/* CTX_CAP write protected, mbox_r does not clear on read and */
1561 	/* checker on if dual afu */
1562 	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1563 
1564 	/* Global port select: select either port */
1565 	if (afu->internal_lun) {
1566 		/* Only use port 0 */
1567 		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1568 		num_ports = NUM_FC_PORTS - 1;
1569 	} else {
1570 		writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1571 		num_ports = NUM_FC_PORTS;
1572 	}
1573 
1574 	for (i = 0; i < num_ports; i++) {
1575 		/* Unmask all errors (but they are still masked at AFU) */
1576 		writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
1577 		/* Clear CRC error cnt & set a threshold */
1578 		(void)readq_be(&afu->afu_map->global.
1579 			       fc_regs[i][FC_CNT_CRCERR / 8]);
1580 		writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1581 			  [FC_CRC_THRESH / 8]);
1582 
1583 		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1584 		if (wwpn[i] != 0 &&
1585 		    afu_set_wwpn(afu, i,
1586 				 &afu->afu_map->global.fc_regs[i][0],
1587 				 wwpn[i])) {
1588 			dev_err(dev, "%s: failed to set WWPN on port %d\n",
1589 			       __func__, i);
1590 			rc = -EIO;
1591 			goto out;
1592 		}
1593 		/* Programming WWPN back to back causes additional
1594 		 * offline/online transitions and a PLOGI
1595 		 */
1596 		msleep(100);
1597 	}
1598 
1599 	/* Set up master's own CTX_CAP to allow real mode, host translation */
1600 	/* tables, afu cmds and read/write GSCSI cmds. */
1601 	/* First, unlock ctx_cap write by reading mbox */
1602 	(void)readq_be(&afu->ctrl_map->mbox_r);	/* unlock ctx_cap */
1603 	writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1604 		   SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1605 		   SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1606 		  &afu->ctrl_map->ctx_cap);
1607 	/* Initialize heartbeat */
1608 	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1609 
1610 out:
1611 	return rc;
1612 }
1613 
1614 /**
1615  * start_afu() - initializes and starts the AFU
1616  * @cfg:	Internal structure associated with the host.
1617  */
1618 static int start_afu(struct cxlflash_cfg *cfg)
1619 {
1620 	struct afu *afu = cfg->afu;
1621 	struct afu_cmd *cmd;
1622 
1623 	int i = 0;
1624 	int rc = 0;
1625 
1626 	for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1627 		cmd = &afu->cmd[i];
1628 
1629 		init_completion(&cmd->cevent);
1630 		spin_lock_init(&cmd->slock);
1631 		cmd->parent = afu;
1632 	}
1633 
1634 	init_pcr(cfg);
1635 
1636 	/* After an AFU reset, RRQ entries are stale, clear them */
1637 	memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1638 
1639 	/* Initialize RRQ pointers */
1640 	afu->hrrq_start = &afu->rrq_entry[0];
1641 	afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1642 	afu->hrrq_curr = afu->hrrq_start;
1643 	afu->toggle = 1;
1644 
1645 	rc = init_global(cfg);
1646 
1647 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1648 	return rc;
1649 }
1650 
1651 /**
1652  * init_mc() - create and register as the master context
1653  * @cfg:	Internal structure associated with the host.
1654  *
1655  * Return: 0 on success, -errno on failure
1656  */
1657 static int init_mc(struct cxlflash_cfg *cfg)
1658 {
1659 	struct cxl_context *ctx;
1660 	struct device *dev = &cfg->dev->dev;
1661 	struct afu *afu = cfg->afu;
1662 	int rc = 0;
1663 	enum undo_level level;
1664 
1665 	ctx = cxl_get_context(cfg->dev);
1666 	if (unlikely(!ctx))
1667 		return -ENOMEM;
1668 	cfg->mcctx = ctx;
1669 
1670 	/* Set it up as a master with the CXL */
1671 	cxl_set_master(ctx);
1672 
1673 	/* During initialization reset the AFU to start from a clean slate */
1674 	rc = cxl_afu_reset(cfg->mcctx);
1675 	if (unlikely(rc)) {
1676 		dev_err(dev, "%s: initial AFU reset failed rc=%d\n",
1677 			__func__, rc);
1678 		level = RELEASE_CONTEXT;
1679 		goto out;
1680 	}
1681 
1682 	rc = cxl_allocate_afu_irqs(ctx, 3);
1683 	if (unlikely(rc)) {
1684 		dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n",
1685 			__func__, rc);
1686 		level = RELEASE_CONTEXT;
1687 		goto out;
1688 	}
1689 
1690 	rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1691 			     "SISL_MSI_SYNC_ERROR");
1692 	if (unlikely(rc <= 0)) {
1693 		dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
1694 			__func__);
1695 		level = FREE_IRQ;
1696 		goto out;
1697 	}
1698 
1699 	rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1700 			     "SISL_MSI_RRQ_UPDATED");
1701 	if (unlikely(rc <= 0)) {
1702 		dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
1703 			__func__);
1704 		level = UNMAP_ONE;
1705 		goto out;
1706 	}
1707 
1708 	rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1709 			     "SISL_MSI_ASYNC_ERROR");
1710 	if (unlikely(rc <= 0)) {
1711 		dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
1712 			__func__);
1713 		level = UNMAP_TWO;
1714 		goto out;
1715 	}
1716 
1717 	rc = 0;
1718 
1719 	/* This performs the equivalent of the CXL_IOCTL_START_WORK.
1720 	 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1721 	 * element (pe) that is embedded in the context (ctx)
1722 	 */
1723 	rc = start_context(cfg);
1724 	if (unlikely(rc)) {
1725 		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1726 		level = UNMAP_THREE;
1727 		goto out;
1728 	}
1729 ret:
1730 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1731 	return rc;
1732 out:
1733 	term_mc(cfg, level);
1734 	goto ret;
1735 }
1736 
1737 /**
1738  * init_afu() - setup as master context and start AFU
1739  * @cfg:	Internal structure associated with the host.
1740  *
1741  * This routine is a higher level of control for configuring the
1742  * AFU on probe and reset paths.
1743  *
1744  * Return: 0 on success, -errno on failure
1745  */
1746 static int init_afu(struct cxlflash_cfg *cfg)
1747 {
1748 	u64 reg;
1749 	int rc = 0;
1750 	struct afu *afu = cfg->afu;
1751 	struct device *dev = &cfg->dev->dev;
1752 
1753 	cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1754 
1755 	rc = init_mc(cfg);
1756 	if (rc) {
1757 		dev_err(dev, "%s: call to init_mc failed, rc=%d!\n",
1758 			__func__, rc);
1759 		goto out;
1760 	}
1761 
1762 	/* Map the entire MMIO space of the AFU */
1763 	afu->afu_map = cxl_psa_map(cfg->mcctx);
1764 	if (!afu->afu_map) {
1765 		dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__);
1766 		rc = -ENOMEM;
1767 		goto err1;
1768 	}
1769 	kref_init(&afu->mapcount);
1770 
1771 	/* No byte reverse on reading afu_version or string will be backwards */
1772 	reg = readq(&afu->afu_map->global.regs.afu_version);
1773 	memcpy(afu->version, &reg, sizeof(reg));
1774 	afu->interface_version =
1775 	    readq_be(&afu->afu_map->global.regs.interface_version);
1776 	if ((afu->interface_version + 1) == 0) {
1777 		pr_err("Back level AFU, please upgrade. AFU version %s "
1778 		       "interface version 0x%llx\n", afu->version,
1779 		       afu->interface_version);
1780 		rc = -EINVAL;
1781 		goto err2;
1782 	}
1783 
1784 	pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__,
1785 		 afu->version, afu->interface_version);
1786 
1787 	rc = start_afu(cfg);
1788 	if (rc) {
1789 		dev_err(dev, "%s: call to start_afu failed, rc=%d!\n",
1790 			__func__, rc);
1791 		goto err2;
1792 	}
1793 
1794 	afu_err_intr_init(cfg->afu);
1795 	atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
1796 
1797 	/* Restore the LUN mappings */
1798 	cxlflash_restore_luntable(cfg);
1799 out:
1800 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1801 	return rc;
1802 
1803 err2:
1804 	kref_put(&afu->mapcount, afu_unmap);
1805 err1:
1806 	term_mc(cfg, UNDO_START);
1807 	goto out;
1808 }
1809 
1810 /**
1811  * cxlflash_afu_sync() - builds and sends an AFU sync command
1812  * @afu:	AFU associated with the host.
1813  * @ctx_hndl_u:	Identifies context requesting sync.
1814  * @res_hndl_u:	Identifies resource requesting sync.
1815  * @mode:	Type of sync to issue (lightweight, heavyweight, global).
1816  *
1817  * The AFU can only take 1 sync command at a time. This routine enforces this
1818  * limitation by using a mutex to provide exclusive access to the AFU during
1819  * the sync. This design point requires calling threads to not be on interrupt
1820  * context due to the possibility of sleeping during concurrent sync operations.
1821  *
1822  * AFU sync operations are only necessary and allowed when the device is
1823  * operating normally. When not operating normally, sync requests can occur as
1824  * part of cleaning up resources associated with an adapter prior to removal.
1825  * In this scenario, these requests are simply ignored (safe due to the AFU
1826  * going away).
1827  *
1828  * Return:
1829  *	0 on success
1830  *	-1 on failure
1831  */
1832 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1833 		      res_hndl_t res_hndl_u, u8 mode)
1834 {
1835 	struct cxlflash_cfg *cfg = afu->parent;
1836 	struct device *dev = &cfg->dev->dev;
1837 	struct afu_cmd *cmd = NULL;
1838 	int rc = 0;
1839 	int retry_cnt = 0;
1840 	static DEFINE_MUTEX(sync_active);
1841 
1842 	if (cfg->state != STATE_NORMAL) {
1843 		pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state);
1844 		return 0;
1845 	}
1846 
1847 	mutex_lock(&sync_active);
1848 retry:
1849 	cmd = cmd_checkout(afu);
1850 	if (unlikely(!cmd)) {
1851 		retry_cnt++;
1852 		udelay(1000 * retry_cnt);
1853 		if (retry_cnt < MC_RETRY_CNT)
1854 			goto retry;
1855 		dev_err(dev, "%s: could not get a free command\n", __func__);
1856 		rc = -1;
1857 		goto out;
1858 	}
1859 
1860 	pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1861 
1862 	memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
1863 
1864 	cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1865 	cmd->rcb.port_sel = 0x0;	/* NA */
1866 	cmd->rcb.lun_id = 0x0;	/* NA */
1867 	cmd->rcb.data_len = 0x0;
1868 	cmd->rcb.data_ea = 0x0;
1869 	cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1870 
1871 	cmd->rcb.cdb[0] = 0xC0;	/* AFU Sync */
1872 	cmd->rcb.cdb[1] = mode;
1873 
1874 	/* The cdb is aligned, no unaligned accessors required */
1875 	*((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1876 	*((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
1877 
1878 	rc = send_cmd(afu, cmd);
1879 	if (unlikely(rc))
1880 		goto out;
1881 
1882 	wait_resp(afu, cmd);
1883 
1884 	/* Set on timeout */
1885 	if (unlikely((cmd->sa.ioasc != 0) ||
1886 		     (cmd->sa.host_use_b[0] & B_ERROR)))
1887 		rc = -1;
1888 out:
1889 	mutex_unlock(&sync_active);
1890 	if (cmd)
1891 		cmd_checkin(cmd);
1892 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1893 	return rc;
1894 }
1895 
1896 /**
1897  * afu_reset() - resets the AFU
1898  * @cfg:	Internal structure associated with the host.
1899  *
1900  * Return: 0 on success, -errno on failure
1901  */
1902 static int afu_reset(struct cxlflash_cfg *cfg)
1903 {
1904 	int rc = 0;
1905 	/* Stop the context before the reset. Since the context is
1906 	 * no longer available restart it after the reset is complete
1907 	 */
1908 
1909 	term_afu(cfg);
1910 
1911 	rc = init_afu(cfg);
1912 
1913 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1914 	return rc;
1915 }
1916 
1917 /**
1918  * cxlflash_eh_device_reset_handler() - reset a single LUN
1919  * @scp:	SCSI command to send.
1920  *
1921  * Return:
1922  *	SUCCESS as defined in scsi/scsi.h
1923  *	FAILED as defined in scsi/scsi.h
1924  */
1925 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1926 {
1927 	int rc = SUCCESS;
1928 	struct Scsi_Host *host = scp->device->host;
1929 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1930 	struct afu *afu = cfg->afu;
1931 	int rcr = 0;
1932 
1933 	pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1934 		 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1935 		 host->host_no, scp->device->channel,
1936 		 scp->device->id, scp->device->lun,
1937 		 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1938 		 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1939 		 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1940 		 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1941 
1942 retry:
1943 	switch (cfg->state) {
1944 	case STATE_NORMAL:
1945 		rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1946 		if (unlikely(rcr))
1947 			rc = FAILED;
1948 		break;
1949 	case STATE_RESET:
1950 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1951 		goto retry;
1952 	default:
1953 		rc = FAILED;
1954 		break;
1955 	}
1956 
1957 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1958 	return rc;
1959 }
1960 
1961 /**
1962  * cxlflash_eh_host_reset_handler() - reset the host adapter
1963  * @scp:	SCSI command from stack identifying host.
1964  *
1965  * Return:
1966  *	SUCCESS as defined in scsi/scsi.h
1967  *	FAILED as defined in scsi/scsi.h
1968  */
1969 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1970 {
1971 	int rc = SUCCESS;
1972 	int rcr = 0;
1973 	struct Scsi_Host *host = scp->device->host;
1974 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1975 
1976 	pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1977 		 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1978 		 host->host_no, scp->device->channel,
1979 		 scp->device->id, scp->device->lun,
1980 		 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1981 		 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1982 		 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1983 		 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1984 
1985 	switch (cfg->state) {
1986 	case STATE_NORMAL:
1987 		cfg->state = STATE_RESET;
1988 		cxlflash_mark_contexts_error(cfg);
1989 		rcr = afu_reset(cfg);
1990 		if (rcr) {
1991 			rc = FAILED;
1992 			cfg->state = STATE_FAILTERM;
1993 		} else
1994 			cfg->state = STATE_NORMAL;
1995 		wake_up_all(&cfg->reset_waitq);
1996 		break;
1997 	case STATE_RESET:
1998 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1999 		if (cfg->state == STATE_NORMAL)
2000 			break;
2001 		/* fall through */
2002 	default:
2003 		rc = FAILED;
2004 		break;
2005 	}
2006 
2007 	pr_debug("%s: returning rc=%d\n", __func__, rc);
2008 	return rc;
2009 }
2010 
2011 /**
2012  * cxlflash_change_queue_depth() - change the queue depth for the device
2013  * @sdev:	SCSI device destined for queue depth change.
2014  * @qdepth:	Requested queue depth value to set.
2015  *
2016  * The requested queue depth is capped to the maximum supported value.
2017  *
2018  * Return: The actual queue depth set.
2019  */
2020 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2021 {
2022 
2023 	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2024 		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2025 
2026 	scsi_change_queue_depth(sdev, qdepth);
2027 	return sdev->queue_depth;
2028 }
2029 
2030 /**
2031  * cxlflash_show_port_status() - queries and presents the current port status
2032  * @port:	Desired port for status reporting.
2033  * @afu:	AFU owning the specified port.
2034  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2035  *
2036  * Return: The size of the ASCII string returned in @buf.
2037  */
2038 static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
2039 {
2040 	char *disp_status;
2041 	u64 status;
2042 	__be64 __iomem *fc_regs;
2043 
2044 	if (port >= NUM_FC_PORTS)
2045 		return 0;
2046 
2047 	fc_regs = &afu->afu_map->global.fc_regs[port][0];
2048 	status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
2049 	status &= FC_MTIP_STATUS_MASK;
2050 
2051 	if (status == FC_MTIP_STATUS_ONLINE)
2052 		disp_status = "online";
2053 	else if (status == FC_MTIP_STATUS_OFFLINE)
2054 		disp_status = "offline";
2055 	else
2056 		disp_status = "unknown";
2057 
2058 	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2059 }
2060 
2061 /**
2062  * port0_show() - queries and presents the current status of port 0
2063  * @dev:	Generic device associated with the host owning the port.
2064  * @attr:	Device attribute representing the port.
2065  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2066  *
2067  * Return: The size of the ASCII string returned in @buf.
2068  */
2069 static ssize_t port0_show(struct device *dev,
2070 			  struct device_attribute *attr,
2071 			  char *buf)
2072 {
2073 	struct Scsi_Host *shost = class_to_shost(dev);
2074 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2075 	struct afu *afu = cfg->afu;
2076 
2077 	return cxlflash_show_port_status(0, afu, buf);
2078 }
2079 
2080 /**
2081  * port1_show() - queries and presents the current status of port 1
2082  * @dev:	Generic device associated with the host owning the port.
2083  * @attr:	Device attribute representing the port.
2084  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2085  *
2086  * Return: The size of the ASCII string returned in @buf.
2087  */
2088 static ssize_t port1_show(struct device *dev,
2089 			  struct device_attribute *attr,
2090 			  char *buf)
2091 {
2092 	struct Scsi_Host *shost = class_to_shost(dev);
2093 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2094 	struct afu *afu = cfg->afu;
2095 
2096 	return cxlflash_show_port_status(1, afu, buf);
2097 }
2098 
2099 /**
2100  * lun_mode_show() - presents the current LUN mode of the host
2101  * @dev:	Generic device associated with the host.
2102  * @attr:	Device attribute representing the LUN mode.
2103  * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2104  *
2105  * Return: The size of the ASCII string returned in @buf.
2106  */
2107 static ssize_t lun_mode_show(struct device *dev,
2108 			     struct device_attribute *attr, char *buf)
2109 {
2110 	struct Scsi_Host *shost = class_to_shost(dev);
2111 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2112 	struct afu *afu = cfg->afu;
2113 
2114 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2115 }
2116 
2117 /**
2118  * lun_mode_store() - sets the LUN mode of the host
2119  * @dev:	Generic device associated with the host.
2120  * @attr:	Device attribute representing the LUN mode.
2121  * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2122  * @count:	Length of data resizing in @buf.
2123  *
2124  * The CXL Flash AFU supports a dummy LUN mode where the external
2125  * links and storage are not required. Space on the FPGA is used
2126  * to create 1 or 2 small LUNs which are presented to the system
2127  * as if they were a normal storage device. This feature is useful
2128  * during development and also provides manufacturing with a way
2129  * to test the AFU without an actual device.
2130  *
2131  * 0 = external LUN[s] (default)
2132  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2133  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2134  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2135  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2136  *
2137  * Return: The size of the ASCII string returned in @buf.
2138  */
2139 static ssize_t lun_mode_store(struct device *dev,
2140 			      struct device_attribute *attr,
2141 			      const char *buf, size_t count)
2142 {
2143 	struct Scsi_Host *shost = class_to_shost(dev);
2144 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2145 	struct afu *afu = cfg->afu;
2146 	int rc;
2147 	u32 lun_mode;
2148 
2149 	rc = kstrtouint(buf, 10, &lun_mode);
2150 	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2151 		afu->internal_lun = lun_mode;
2152 		afu_reset(cfg);
2153 		scsi_scan_host(cfg->host);
2154 	}
2155 
2156 	return count;
2157 }
2158 
2159 /**
2160  * ioctl_version_show() - presents the current ioctl version of the host
2161  * @dev:	Generic device associated with the host.
2162  * @attr:	Device attribute representing the ioctl version.
2163  * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2164  *
2165  * Return: The size of the ASCII string returned in @buf.
2166  */
2167 static ssize_t ioctl_version_show(struct device *dev,
2168 				  struct device_attribute *attr, char *buf)
2169 {
2170 	return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2171 }
2172 
2173 /**
2174  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2175  * @port:	Desired port for status reporting.
2176  * @afu:	AFU owning the specified port.
2177  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2178  *
2179  * Return: The size of the ASCII string returned in @buf.
2180  */
2181 static ssize_t cxlflash_show_port_lun_table(u32 port,
2182 					    struct afu *afu,
2183 					    char *buf)
2184 {
2185 	int i;
2186 	ssize_t bytes = 0;
2187 	__be64 __iomem *fc_port;
2188 
2189 	if (port >= NUM_FC_PORTS)
2190 		return 0;
2191 
2192 	fc_port = &afu->afu_map->global.fc_port[port][0];
2193 
2194 	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2195 		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2196 				   "%03d: %016llX\n", i, readq_be(&fc_port[i]));
2197 	return bytes;
2198 }
2199 
2200 /**
2201  * port0_lun_table_show() - presents the current LUN table of port 0
2202  * @dev:	Generic device associated with the host owning the port.
2203  * @attr:	Device attribute representing the port.
2204  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2205  *
2206  * Return: The size of the ASCII string returned in @buf.
2207  */
2208 static ssize_t port0_lun_table_show(struct device *dev,
2209 				    struct device_attribute *attr,
2210 				    char *buf)
2211 {
2212 	struct Scsi_Host *shost = class_to_shost(dev);
2213 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2214 	struct afu *afu = cfg->afu;
2215 
2216 	return cxlflash_show_port_lun_table(0, afu, buf);
2217 }
2218 
2219 /**
2220  * port1_lun_table_show() - presents the current LUN table of port 1
2221  * @dev:	Generic device associated with the host owning the port.
2222  * @attr:	Device attribute representing the port.
2223  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2224  *
2225  * Return: The size of the ASCII string returned in @buf.
2226  */
2227 static ssize_t port1_lun_table_show(struct device *dev,
2228 				    struct device_attribute *attr,
2229 				    char *buf)
2230 {
2231 	struct Scsi_Host *shost = class_to_shost(dev);
2232 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2233 	struct afu *afu = cfg->afu;
2234 
2235 	return cxlflash_show_port_lun_table(1, afu, buf);
2236 }
2237 
2238 /**
2239  * mode_show() - presents the current mode of the device
2240  * @dev:	Generic device associated with the device.
2241  * @attr:	Device attribute representing the device mode.
2242  * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2243  *
2244  * Return: The size of the ASCII string returned in @buf.
2245  */
2246 static ssize_t mode_show(struct device *dev,
2247 			 struct device_attribute *attr, char *buf)
2248 {
2249 	struct scsi_device *sdev = to_scsi_device(dev);
2250 
2251 	return scnprintf(buf, PAGE_SIZE, "%s\n",
2252 			 sdev->hostdata ? "superpipe" : "legacy");
2253 }
2254 
2255 /*
2256  * Host attributes
2257  */
2258 static DEVICE_ATTR_RO(port0);
2259 static DEVICE_ATTR_RO(port1);
2260 static DEVICE_ATTR_RW(lun_mode);
2261 static DEVICE_ATTR_RO(ioctl_version);
2262 static DEVICE_ATTR_RO(port0_lun_table);
2263 static DEVICE_ATTR_RO(port1_lun_table);
2264 
2265 static struct device_attribute *cxlflash_host_attrs[] = {
2266 	&dev_attr_port0,
2267 	&dev_attr_port1,
2268 	&dev_attr_lun_mode,
2269 	&dev_attr_ioctl_version,
2270 	&dev_attr_port0_lun_table,
2271 	&dev_attr_port1_lun_table,
2272 	NULL
2273 };
2274 
2275 /*
2276  * Device attributes
2277  */
2278 static DEVICE_ATTR_RO(mode);
2279 
2280 static struct device_attribute *cxlflash_dev_attrs[] = {
2281 	&dev_attr_mode,
2282 	NULL
2283 };
2284 
2285 /*
2286  * Host template
2287  */
2288 static struct scsi_host_template driver_template = {
2289 	.module = THIS_MODULE,
2290 	.name = CXLFLASH_ADAPTER_NAME,
2291 	.info = cxlflash_driver_info,
2292 	.ioctl = cxlflash_ioctl,
2293 	.proc_name = CXLFLASH_NAME,
2294 	.queuecommand = cxlflash_queuecommand,
2295 	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2296 	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2297 	.change_queue_depth = cxlflash_change_queue_depth,
2298 	.cmd_per_lun = 16,
2299 	.can_queue = CXLFLASH_MAX_CMDS,
2300 	.this_id = -1,
2301 	.sg_tablesize = SG_NONE,	/* No scatter gather support */
2302 	.max_sectors = CXLFLASH_MAX_SECTORS,
2303 	.use_clustering = ENABLE_CLUSTERING,
2304 	.shost_attrs = cxlflash_host_attrs,
2305 	.sdev_attrs = cxlflash_dev_attrs,
2306 };
2307 
2308 /*
2309  * Device dependent values
2310  */
2311 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS };
2312 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS };
2313 
2314 /*
2315  * PCI device binding table
2316  */
2317 static struct pci_device_id cxlflash_pci_table[] = {
2318 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2319 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2320 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2321 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
2322 	{}
2323 };
2324 
2325 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2326 
2327 /**
2328  * cxlflash_worker_thread() - work thread handler for the AFU
2329  * @work:	Work structure contained within cxlflash associated with host.
2330  *
2331  * Handles the following events:
2332  * - Link reset which cannot be performed on interrupt context due to
2333  * blocking up to a few seconds
2334  * - Read AFU command room
2335  * - Rescan the host
2336  */
2337 static void cxlflash_worker_thread(struct work_struct *work)
2338 {
2339 	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2340 						work_q);
2341 	struct afu *afu = cfg->afu;
2342 	struct device *dev = &cfg->dev->dev;
2343 	int port;
2344 	ulong lock_flags;
2345 
2346 	/* Avoid MMIO if the device has failed */
2347 
2348 	if (cfg->state != STATE_NORMAL)
2349 		return;
2350 
2351 	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2352 
2353 	if (cfg->lr_state == LINK_RESET_REQUIRED) {
2354 		port = cfg->lr_port;
2355 		if (port < 0)
2356 			dev_err(dev, "%s: invalid port index %d\n",
2357 				__func__, port);
2358 		else {
2359 			spin_unlock_irqrestore(cfg->host->host_lock,
2360 					       lock_flags);
2361 
2362 			/* The reset can block... */
2363 			afu_link_reset(afu, port,
2364 				       &afu->afu_map->global.fc_regs[port][0]);
2365 			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2366 		}
2367 
2368 		cfg->lr_state = LINK_RESET_COMPLETE;
2369 	}
2370 
2371 	if (afu->read_room) {
2372 		atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
2373 		afu->read_room = false;
2374 	}
2375 
2376 	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2377 
2378 	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2379 		scsi_scan_host(cfg->host);
2380 	kref_put(&afu->mapcount, afu_unmap);
2381 }
2382 
2383 /**
2384  * cxlflash_probe() - PCI entry point to add host
2385  * @pdev:	PCI device associated with the host.
2386  * @dev_id:	PCI device id associated with device.
2387  *
2388  * Return: 0 on success, -errno on failure
2389  */
2390 static int cxlflash_probe(struct pci_dev *pdev,
2391 			  const struct pci_device_id *dev_id)
2392 {
2393 	struct Scsi_Host *host;
2394 	struct cxlflash_cfg *cfg = NULL;
2395 	struct device *phys_dev;
2396 	struct dev_dependent_vals *ddv;
2397 	int rc = 0;
2398 
2399 	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2400 		__func__, pdev->irq);
2401 
2402 	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2403 	driver_template.max_sectors = ddv->max_sectors;
2404 
2405 	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2406 	if (!host) {
2407 		dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2408 			__func__);
2409 		rc = -ENOMEM;
2410 		goto out;
2411 	}
2412 
2413 	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2414 	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2415 	host->max_channel = NUM_FC_PORTS - 1;
2416 	host->unique_id = host->host_no;
2417 	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2418 
2419 	cfg = (struct cxlflash_cfg *)host->hostdata;
2420 	cfg->host = host;
2421 	rc = alloc_mem(cfg);
2422 	if (rc) {
2423 		dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n",
2424 			__func__);
2425 		rc = -ENOMEM;
2426 		scsi_host_put(cfg->host);
2427 		goto out;
2428 	}
2429 
2430 	cfg->init_state = INIT_STATE_NONE;
2431 	cfg->dev = pdev;
2432 	cfg->cxl_fops = cxlflash_cxl_fops;
2433 
2434 	/*
2435 	 * The promoted LUNs move to the top of the LUN table. The rest stay
2436 	 * on the bottom half. The bottom half grows from the end
2437 	 * (index = 255), whereas the top half grows from the beginning
2438 	 * (index = 0).
2439 	 */
2440 	cfg->promote_lun_index  = 0;
2441 	cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2442 	cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2443 
2444 	cfg->dev_id = (struct pci_device_id *)dev_id;
2445 
2446 	init_waitqueue_head(&cfg->tmf_waitq);
2447 	init_waitqueue_head(&cfg->reset_waitq);
2448 
2449 	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2450 	cfg->lr_state = LINK_RESET_INVALID;
2451 	cfg->lr_port = -1;
2452 	spin_lock_init(&cfg->tmf_slock);
2453 	mutex_init(&cfg->ctx_tbl_list_mutex);
2454 	mutex_init(&cfg->ctx_recovery_mutex);
2455 	init_rwsem(&cfg->ioctl_rwsem);
2456 	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2457 	INIT_LIST_HEAD(&cfg->lluns);
2458 
2459 	pci_set_drvdata(pdev, cfg);
2460 
2461 	/*
2462 	 * Use the special service provided to look up the physical
2463 	 * PCI device, since we are called on the probe of the virtual
2464 	 * PCI host bus (vphb)
2465 	 */
2466 	phys_dev = cxl_get_phys_dev(pdev);
2467 	if (!dev_is_pci(phys_dev)) {
2468 		dev_err(&pdev->dev, "%s: not a pci dev\n", __func__);
2469 		rc = -ENODEV;
2470 		goto out_remove;
2471 	}
2472 	cfg->parent_dev = to_pci_dev(phys_dev);
2473 
2474 	cfg->cxl_afu = cxl_pci_to_afu(pdev);
2475 
2476 	rc = init_pci(cfg);
2477 	if (rc) {
2478 		dev_err(&pdev->dev, "%s: call to init_pci "
2479 			"failed rc=%d!\n", __func__, rc);
2480 		goto out_remove;
2481 	}
2482 	cfg->init_state = INIT_STATE_PCI;
2483 
2484 	rc = init_afu(cfg);
2485 	if (rc) {
2486 		dev_err(&pdev->dev, "%s: call to init_afu "
2487 			"failed rc=%d!\n", __func__, rc);
2488 		goto out_remove;
2489 	}
2490 	cfg->init_state = INIT_STATE_AFU;
2491 
2492 	rc = init_scsi(cfg);
2493 	if (rc) {
2494 		dev_err(&pdev->dev, "%s: call to init_scsi "
2495 			"failed rc=%d!\n", __func__, rc);
2496 		goto out_remove;
2497 	}
2498 	cfg->init_state = INIT_STATE_SCSI;
2499 
2500 out:
2501 	pr_debug("%s: returning rc=%d\n", __func__, rc);
2502 	return rc;
2503 
2504 out_remove:
2505 	cxlflash_remove(pdev);
2506 	goto out;
2507 }
2508 
2509 /**
2510  * drain_ioctls() - wait until all currently executing ioctls have completed
2511  * @cfg:	Internal structure associated with the host.
2512  *
2513  * Obtain write access to read/write semaphore that wraps ioctl
2514  * handling to 'drain' ioctls currently executing.
2515  */
2516 static void drain_ioctls(struct cxlflash_cfg *cfg)
2517 {
2518 	down_write(&cfg->ioctl_rwsem);
2519 	up_write(&cfg->ioctl_rwsem);
2520 }
2521 
2522 /**
2523  * cxlflash_pci_error_detected() - called when a PCI error is detected
2524  * @pdev:	PCI device struct.
2525  * @state:	PCI channel state.
2526  *
2527  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2528  */
2529 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2530 						    pci_channel_state_t state)
2531 {
2532 	int rc = 0;
2533 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2534 	struct device *dev = &cfg->dev->dev;
2535 
2536 	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2537 
2538 	switch (state) {
2539 	case pci_channel_io_frozen:
2540 		cfg->state = STATE_RESET;
2541 		scsi_block_requests(cfg->host);
2542 		drain_ioctls(cfg);
2543 		rc = cxlflash_mark_contexts_error(cfg);
2544 		if (unlikely(rc))
2545 			dev_err(dev, "%s: Failed to mark user contexts!(%d)\n",
2546 				__func__, rc);
2547 		term_mc(cfg, UNDO_START);
2548 		stop_afu(cfg);
2549 		return PCI_ERS_RESULT_NEED_RESET;
2550 	case pci_channel_io_perm_failure:
2551 		cfg->state = STATE_FAILTERM;
2552 		wake_up_all(&cfg->reset_waitq);
2553 		scsi_unblock_requests(cfg->host);
2554 		return PCI_ERS_RESULT_DISCONNECT;
2555 	default:
2556 		break;
2557 	}
2558 	return PCI_ERS_RESULT_NEED_RESET;
2559 }
2560 
2561 /**
2562  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2563  * @pdev:	PCI device struct.
2564  *
2565  * This routine is called by the pci error recovery code after the PCI
2566  * slot has been reset, just before we should resume normal operations.
2567  *
2568  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2569  */
2570 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2571 {
2572 	int rc = 0;
2573 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2574 	struct device *dev = &cfg->dev->dev;
2575 
2576 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2577 
2578 	rc = init_afu(cfg);
2579 	if (unlikely(rc)) {
2580 		dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc);
2581 		return PCI_ERS_RESULT_DISCONNECT;
2582 	}
2583 
2584 	return PCI_ERS_RESULT_RECOVERED;
2585 }
2586 
2587 /**
2588  * cxlflash_pci_resume() - called when normal operation can resume
2589  * @pdev:	PCI device struct
2590  */
2591 static void cxlflash_pci_resume(struct pci_dev *pdev)
2592 {
2593 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2594 	struct device *dev = &cfg->dev->dev;
2595 
2596 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2597 
2598 	cfg->state = STATE_NORMAL;
2599 	wake_up_all(&cfg->reset_waitq);
2600 	scsi_unblock_requests(cfg->host);
2601 }
2602 
2603 static const struct pci_error_handlers cxlflash_err_handler = {
2604 	.error_detected = cxlflash_pci_error_detected,
2605 	.slot_reset = cxlflash_pci_slot_reset,
2606 	.resume = cxlflash_pci_resume,
2607 };
2608 
2609 /*
2610  * PCI device structure
2611  */
2612 static struct pci_driver cxlflash_driver = {
2613 	.name = CXLFLASH_NAME,
2614 	.id_table = cxlflash_pci_table,
2615 	.probe = cxlflash_probe,
2616 	.remove = cxlflash_remove,
2617 	.err_handler = &cxlflash_err_handler,
2618 };
2619 
2620 /**
2621  * init_cxlflash() - module entry point
2622  *
2623  * Return: 0 on success, -errno on failure
2624  */
2625 static int __init init_cxlflash(void)
2626 {
2627 	pr_info("%s: %s\n", __func__, CXLFLASH_ADAPTER_NAME);
2628 
2629 	cxlflash_list_init();
2630 
2631 	return pci_register_driver(&cxlflash_driver);
2632 }
2633 
2634 /**
2635  * exit_cxlflash() - module exit point
2636  */
2637 static void __exit exit_cxlflash(void)
2638 {
2639 	cxlflash_term_global_luns();
2640 	cxlflash_free_errpage();
2641 
2642 	pci_unregister_driver(&cxlflash_driver);
2643 }
2644 
2645 module_init(init_cxlflash);
2646 module_exit(exit_cxlflash);
2647