1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/delay.h> 16 #include <linux/list.h> 17 #include <linux/module.h> 18 #include <linux/pci.h> 19 20 #include <asm/unaligned.h> 21 22 #include <misc/cxl.h> 23 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_host.h> 26 #include <uapi/scsi/cxlflash_ioctl.h> 27 28 #include "main.h" 29 #include "sislite.h" 30 #include "common.h" 31 32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); 33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); 34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); 35 MODULE_LICENSE("GPL"); 36 37 /** 38 * cmd_checkout() - checks out an AFU command 39 * @afu: AFU to checkout from. 40 * 41 * Commands are checked out in a round-robin fashion. Note that since 42 * the command pool is larger than the hardware queue, the majority of 43 * times we will only loop once or twice before getting a command. The 44 * buffer and CDB within the command are initialized (zeroed) prior to 45 * returning. 46 * 47 * Return: The checked out command or NULL when command pool is empty. 48 */ 49 static struct afu_cmd *cmd_checkout(struct afu *afu) 50 { 51 int k, dec = CXLFLASH_NUM_CMDS; 52 struct afu_cmd *cmd; 53 54 while (dec--) { 55 k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1)); 56 57 cmd = &afu->cmd[k]; 58 59 if (!atomic_dec_if_positive(&cmd->free)) { 60 pr_devel("%s: returning found index=%d cmd=%p\n", 61 __func__, cmd->slot, cmd); 62 memset(cmd->buf, 0, CMD_BUFSIZE); 63 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb)); 64 return cmd; 65 } 66 } 67 68 return NULL; 69 } 70 71 /** 72 * cmd_checkin() - checks in an AFU command 73 * @cmd: AFU command to checkin. 74 * 75 * Safe to pass commands that have already been checked in. Several 76 * internal tracking fields are reset as part of the checkin. Note 77 * that these are intentionally reset prior to toggling the free bit 78 * to avoid clobbering values in the event that the command is checked 79 * out right away. 80 */ 81 static void cmd_checkin(struct afu_cmd *cmd) 82 { 83 cmd->rcb.scp = NULL; 84 cmd->rcb.timeout = 0; 85 cmd->sa.ioasc = 0; 86 cmd->cmd_tmf = false; 87 cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */ 88 89 if (unlikely(atomic_inc_return(&cmd->free) != 1)) { 90 pr_err("%s: Freeing cmd (%d) that is not in use!\n", 91 __func__, cmd->slot); 92 return; 93 } 94 95 pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot); 96 } 97 98 /** 99 * process_cmd_err() - command error handler 100 * @cmd: AFU command that experienced the error. 101 * @scp: SCSI command associated with the AFU command in error. 102 * 103 * Translates error bits from AFU command to SCSI command results. 104 */ 105 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) 106 { 107 struct sisl_ioarcb *ioarcb; 108 struct sisl_ioasa *ioasa; 109 u32 resid; 110 111 if (unlikely(!cmd)) 112 return; 113 114 ioarcb = &(cmd->rcb); 115 ioasa = &(cmd->sa); 116 117 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { 118 resid = ioasa->resid; 119 scsi_set_resid(scp, resid); 120 pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n", 121 __func__, cmd, scp, resid); 122 } 123 124 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { 125 pr_debug("%s: cmd underrun cmd = %p scp = %p\n", 126 __func__, cmd, scp); 127 scp->result = (DID_ERROR << 16); 128 } 129 130 pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d " 131 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n", 132 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc, 133 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra, 134 ioasa->fc_extra); 135 136 if (ioasa->rc.scsi_rc) { 137 /* We have a SCSI status */ 138 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { 139 memcpy(scp->sense_buffer, ioasa->sense_data, 140 SISL_SENSE_DATA_LEN); 141 scp->result = ioasa->rc.scsi_rc; 142 } else 143 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); 144 } 145 146 /* 147 * We encountered an error. Set scp->result based on nature 148 * of error. 149 */ 150 if (ioasa->rc.fc_rc) { 151 /* We have an FC status */ 152 switch (ioasa->rc.fc_rc) { 153 case SISL_FC_RC_LINKDOWN: 154 scp->result = (DID_REQUEUE << 16); 155 break; 156 case SISL_FC_RC_RESID: 157 /* This indicates an FCP resid underrun */ 158 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { 159 /* If the SISL_RC_FLAGS_OVERRUN flag was set, 160 * then we will handle this error else where. 161 * If not then we must handle it here. 162 * This is probably an AFU bug. 163 */ 164 scp->result = (DID_ERROR << 16); 165 } 166 break; 167 case SISL_FC_RC_RESIDERR: 168 /* Resid mismatch between adapter and device */ 169 case SISL_FC_RC_TGTABORT: 170 case SISL_FC_RC_ABORTOK: 171 case SISL_FC_RC_ABORTFAIL: 172 case SISL_FC_RC_NOLOGI: 173 case SISL_FC_RC_ABORTPEND: 174 case SISL_FC_RC_WRABORTPEND: 175 case SISL_FC_RC_NOEXP: 176 case SISL_FC_RC_INUSE: 177 scp->result = (DID_ERROR << 16); 178 break; 179 } 180 } 181 182 if (ioasa->rc.afu_rc) { 183 /* We have an AFU error */ 184 switch (ioasa->rc.afu_rc) { 185 case SISL_AFU_RC_NO_CHANNELS: 186 scp->result = (DID_NO_CONNECT << 16); 187 break; 188 case SISL_AFU_RC_DATA_DMA_ERR: 189 switch (ioasa->afu_extra) { 190 case SISL_AFU_DMA_ERR_PAGE_IN: 191 /* Retry */ 192 scp->result = (DID_IMM_RETRY << 16); 193 break; 194 case SISL_AFU_DMA_ERR_INVALID_EA: 195 default: 196 scp->result = (DID_ERROR << 16); 197 } 198 break; 199 case SISL_AFU_RC_OUT_OF_DATA_BUFS: 200 /* Retry */ 201 scp->result = (DID_ALLOC_FAILURE << 16); 202 break; 203 default: 204 scp->result = (DID_ERROR << 16); 205 } 206 } 207 } 208 209 /** 210 * cmd_complete() - command completion handler 211 * @cmd: AFU command that has completed. 212 * 213 * Prepares and submits command that has either completed or timed out to 214 * the SCSI stack. Checks AFU command back into command pool for non-internal 215 * (rcb.scp populated) commands. 216 */ 217 static void cmd_complete(struct afu_cmd *cmd) 218 { 219 struct scsi_cmnd *scp; 220 ulong lock_flags; 221 struct afu *afu = cmd->parent; 222 struct cxlflash_cfg *cfg = afu->parent; 223 bool cmd_is_tmf; 224 225 spin_lock_irqsave(&cmd->slock, lock_flags); 226 cmd->sa.host_use_b[0] |= B_DONE; 227 spin_unlock_irqrestore(&cmd->slock, lock_flags); 228 229 if (cmd->rcb.scp) { 230 scp = cmd->rcb.scp; 231 if (unlikely(cmd->sa.ioasc)) 232 process_cmd_err(cmd, scp); 233 else 234 scp->result = (DID_OK << 16); 235 236 cmd_is_tmf = cmd->cmd_tmf; 237 cmd_checkin(cmd); /* Don't use cmd after here */ 238 239 pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X " 240 "ioasc=%d\n", __func__, scp, scp->result, 241 cmd->sa.ioasc); 242 243 scsi_dma_unmap(scp); 244 scp->scsi_done(scp); 245 246 if (cmd_is_tmf) { 247 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 248 cfg->tmf_active = false; 249 wake_up_all_locked(&cfg->tmf_waitq); 250 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 251 } 252 } else 253 complete(&cmd->cevent); 254 } 255 256 /** 257 * context_reset() - timeout handler for AFU commands 258 * @cmd: AFU command that timed out. 259 * 260 * Sends a reset to the AFU. 261 */ 262 static void context_reset(struct afu_cmd *cmd) 263 { 264 int nretry = 0; 265 u64 rrin = 0x1; 266 u64 room = 0; 267 struct afu *afu = cmd->parent; 268 ulong lock_flags; 269 270 pr_debug("%s: cmd=%p\n", __func__, cmd); 271 272 spin_lock_irqsave(&cmd->slock, lock_flags); 273 274 /* Already completed? */ 275 if (cmd->sa.host_use_b[0] & B_DONE) { 276 spin_unlock_irqrestore(&cmd->slock, lock_flags); 277 return; 278 } 279 280 cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT); 281 spin_unlock_irqrestore(&cmd->slock, lock_flags); 282 283 /* 284 * We really want to send this reset at all costs, so spread 285 * out wait time on successive retries for available room. 286 */ 287 do { 288 room = readq_be(&afu->host_map->cmd_room); 289 atomic64_set(&afu->room, room); 290 if (room) 291 goto write_rrin; 292 udelay(nretry); 293 } while (nretry++ < MC_ROOM_RETRY_CNT); 294 295 pr_err("%s: no cmd_room to send reset\n", __func__); 296 return; 297 298 write_rrin: 299 nretry = 0; 300 writeq_be(rrin, &afu->host_map->ioarrin); 301 do { 302 rrin = readq_be(&afu->host_map->ioarrin); 303 if (rrin != 0x1) 304 break; 305 /* Double delay each time */ 306 udelay(2 << nretry); 307 } while (nretry++ < MC_ROOM_RETRY_CNT); 308 } 309 310 /** 311 * send_cmd() - sends an AFU command 312 * @afu: AFU associated with the host. 313 * @cmd: AFU command to send. 314 * 315 * Return: 316 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 317 */ 318 static int send_cmd(struct afu *afu, struct afu_cmd *cmd) 319 { 320 struct cxlflash_cfg *cfg = afu->parent; 321 struct device *dev = &cfg->dev->dev; 322 int nretry = 0; 323 int rc = 0; 324 u64 room; 325 long newval; 326 327 /* 328 * This routine is used by critical users such an AFU sync and to 329 * send a task management function (TMF). Thus we want to retry a 330 * bit before returning an error. To avoid the performance penalty 331 * of MMIO, we spread the update of 'room' over multiple commands. 332 */ 333 retry: 334 newval = atomic64_dec_if_positive(&afu->room); 335 if (!newval) { 336 do { 337 room = readq_be(&afu->host_map->cmd_room); 338 atomic64_set(&afu->room, room); 339 if (room) 340 goto write_ioarrin; 341 udelay(nretry); 342 } while (nretry++ < MC_ROOM_RETRY_CNT); 343 344 dev_err(dev, "%s: no cmd_room to send 0x%X\n", 345 __func__, cmd->rcb.cdb[0]); 346 347 goto no_room; 348 } else if (unlikely(newval < 0)) { 349 /* This should be rare. i.e. Only if two threads race and 350 * decrement before the MMIO read is done. In this case 351 * just benefit from the other thread having updated 352 * afu->room. 353 */ 354 if (nretry++ < MC_ROOM_RETRY_CNT) { 355 udelay(nretry); 356 goto retry; 357 } 358 359 goto no_room; 360 } 361 362 write_ioarrin: 363 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin); 364 out: 365 pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd, 366 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc); 367 return rc; 368 369 no_room: 370 afu->read_room = true; 371 schedule_work(&cfg->work_q); 372 rc = SCSI_MLQUEUE_HOST_BUSY; 373 goto out; 374 } 375 376 /** 377 * wait_resp() - polls for a response or timeout to a sent AFU command 378 * @afu: AFU associated with the host. 379 * @cmd: AFU command that was sent. 380 */ 381 static void wait_resp(struct afu *afu, struct afu_cmd *cmd) 382 { 383 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); 384 385 timeout = wait_for_completion_timeout(&cmd->cevent, timeout); 386 if (!timeout) 387 context_reset(cmd); 388 389 if (unlikely(cmd->sa.ioasc != 0)) 390 pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, " 391 "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0], 392 cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc, 393 cmd->sa.rc.fc_rc); 394 } 395 396 /** 397 * send_tmf() - sends a Task Management Function (TMF) 398 * @afu: AFU to checkout from. 399 * @scp: SCSI command from stack. 400 * @tmfcmd: TMF command to send. 401 * 402 * Return: 403 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 404 */ 405 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd) 406 { 407 struct afu_cmd *cmd; 408 409 u32 port_sel = scp->device->channel + 1; 410 short lflag = 0; 411 struct Scsi_Host *host = scp->device->host; 412 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; 413 struct device *dev = &cfg->dev->dev; 414 ulong lock_flags; 415 int rc = 0; 416 ulong to; 417 418 cmd = cmd_checkout(afu); 419 if (unlikely(!cmd)) { 420 dev_err(dev, "%s: could not get a free command\n", __func__); 421 rc = SCSI_MLQUEUE_HOST_BUSY; 422 goto out; 423 } 424 425 /* When Task Management Function is active do not send another */ 426 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 427 if (cfg->tmf_active) 428 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 429 !cfg->tmf_active, 430 cfg->tmf_slock); 431 cfg->tmf_active = true; 432 cmd->cmd_tmf = true; 433 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 434 435 cmd->rcb.ctx_id = afu->ctx_hndl; 436 cmd->rcb.port_sel = port_sel; 437 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 438 439 lflag = SISL_REQ_FLAGS_TMF_CMD; 440 441 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 442 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag); 443 444 /* Stash the scp in the reserved field, for reuse during interrupt */ 445 cmd->rcb.scp = scp; 446 447 /* Copy the CDB from the cmd passed in */ 448 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); 449 450 /* Send the command */ 451 rc = send_cmd(afu, cmd); 452 if (unlikely(rc)) { 453 cmd_checkin(cmd); 454 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 455 cfg->tmf_active = false; 456 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 457 goto out; 458 } 459 460 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 461 to = msecs_to_jiffies(5000); 462 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, 463 !cfg->tmf_active, 464 cfg->tmf_slock, 465 to); 466 if (!to) { 467 cfg->tmf_active = false; 468 dev_err(dev, "%s: TMF timed out!\n", __func__); 469 rc = -1; 470 } 471 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 472 out: 473 return rc; 474 } 475 476 /** 477 * cxlflash_driver_info() - information handler for this host driver 478 * @host: SCSI host associated with device. 479 * 480 * Return: A string describing the device. 481 */ 482 static const char *cxlflash_driver_info(struct Scsi_Host *host) 483 { 484 return CXLFLASH_ADAPTER_NAME; 485 } 486 487 /** 488 * cxlflash_queuecommand() - sends a mid-layer request 489 * @host: SCSI host associated with device. 490 * @scp: SCSI command to send. 491 * 492 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 493 */ 494 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) 495 { 496 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; 497 struct afu *afu = cfg->afu; 498 struct device *dev = &cfg->dev->dev; 499 struct afu_cmd *cmd; 500 u32 port_sel = scp->device->channel + 1; 501 int nseg, i, ncount; 502 struct scatterlist *sg; 503 ulong lock_flags; 504 short lflag = 0; 505 int rc = 0; 506 507 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " 508 "cdb=(%08X-%08X-%08X-%08X)\n", 509 __func__, scp, host->host_no, scp->device->channel, 510 scp->device->id, scp->device->lun, 511 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 512 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 513 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 514 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 515 516 /* 517 * If a Task Management Function is active, wait for it to complete 518 * before continuing with regular commands. 519 */ 520 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 521 if (cfg->tmf_active) { 522 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 523 rc = SCSI_MLQUEUE_HOST_BUSY; 524 goto out; 525 } 526 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 527 528 switch (cfg->state) { 529 case STATE_RESET: 530 dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__); 531 rc = SCSI_MLQUEUE_HOST_BUSY; 532 goto out; 533 case STATE_FAILTERM: 534 dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__); 535 scp->result = (DID_NO_CONNECT << 16); 536 scp->scsi_done(scp); 537 rc = 0; 538 goto out; 539 default: 540 break; 541 } 542 543 cmd = cmd_checkout(afu); 544 if (unlikely(!cmd)) { 545 dev_err(dev, "%s: could not get a free command\n", __func__); 546 rc = SCSI_MLQUEUE_HOST_BUSY; 547 goto out; 548 } 549 550 cmd->rcb.ctx_id = afu->ctx_hndl; 551 cmd->rcb.port_sel = port_sel; 552 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 553 554 if (scp->sc_data_direction == DMA_TO_DEVICE) 555 lflag = SISL_REQ_FLAGS_HOST_WRITE; 556 else 557 lflag = SISL_REQ_FLAGS_HOST_READ; 558 559 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 560 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag); 561 562 /* Stash the scp in the reserved field, for reuse during interrupt */ 563 cmd->rcb.scp = scp; 564 565 nseg = scsi_dma_map(scp); 566 if (unlikely(nseg < 0)) { 567 dev_err(dev, "%s: Fail DMA map! nseg=%d\n", 568 __func__, nseg); 569 rc = SCSI_MLQUEUE_HOST_BUSY; 570 goto out; 571 } 572 573 ncount = scsi_sg_count(scp); 574 scsi_for_each_sg(scp, sg, ncount, i) { 575 cmd->rcb.data_len = sg_dma_len(sg); 576 cmd->rcb.data_ea = sg_dma_address(sg); 577 } 578 579 /* Copy the CDB from the scsi_cmnd passed in */ 580 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); 581 582 /* Send the command */ 583 rc = send_cmd(afu, cmd); 584 if (unlikely(rc)) { 585 cmd_checkin(cmd); 586 scsi_dma_unmap(scp); 587 } 588 589 out: 590 pr_devel("%s: returning rc=%d\n", __func__, rc); 591 return rc; 592 } 593 594 /** 595 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe 596 * @cfg: Internal structure associated with the host. 597 */ 598 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) 599 { 600 struct pci_dev *pdev = cfg->dev; 601 602 if (pci_channel_offline(pdev)) 603 wait_event_timeout(cfg->reset_waitq, 604 !pci_channel_offline(pdev), 605 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); 606 } 607 608 /** 609 * free_mem() - free memory associated with the AFU 610 * @cfg: Internal structure associated with the host. 611 */ 612 static void free_mem(struct cxlflash_cfg *cfg) 613 { 614 int i; 615 char *buf = NULL; 616 struct afu *afu = cfg->afu; 617 618 if (cfg->afu) { 619 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { 620 buf = afu->cmd[i].buf; 621 if (!((u64)buf & (PAGE_SIZE - 1))) 622 free_page((ulong)buf); 623 } 624 625 free_pages((ulong)afu, get_order(sizeof(struct afu))); 626 cfg->afu = NULL; 627 } 628 } 629 630 /** 631 * stop_afu() - stops the AFU command timers and unmaps the MMIO space 632 * @cfg: Internal structure associated with the host. 633 * 634 * Safe to call with AFU in a partially allocated/initialized state. 635 */ 636 static void stop_afu(struct cxlflash_cfg *cfg) 637 { 638 int i; 639 struct afu *afu = cfg->afu; 640 641 if (likely(afu)) { 642 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) 643 complete(&afu->cmd[i].cevent); 644 645 if (likely(afu->afu_map)) { 646 cxl_psa_unmap((void __iomem *)afu->afu_map); 647 afu->afu_map = NULL; 648 } 649 } 650 } 651 652 /** 653 * term_mc() - terminates the master context 654 * @cfg: Internal structure associated with the host. 655 * @level: Depth of allocation, where to begin waterfall tear down. 656 * 657 * Safe to call with AFU/MC in partially allocated/initialized state. 658 */ 659 static void term_mc(struct cxlflash_cfg *cfg, enum undo_level level) 660 { 661 int rc = 0; 662 struct afu *afu = cfg->afu; 663 struct device *dev = &cfg->dev->dev; 664 665 if (!afu || !cfg->mcctx) { 666 dev_err(dev, "%s: returning from term_mc with NULL afu or MC\n", 667 __func__); 668 return; 669 } 670 671 switch (level) { 672 case UNDO_START: 673 rc = cxl_stop_context(cfg->mcctx); 674 BUG_ON(rc); 675 case UNMAP_THREE: 676 cxl_unmap_afu_irq(cfg->mcctx, 3, afu); 677 case UNMAP_TWO: 678 cxl_unmap_afu_irq(cfg->mcctx, 2, afu); 679 case UNMAP_ONE: 680 cxl_unmap_afu_irq(cfg->mcctx, 1, afu); 681 case FREE_IRQ: 682 cxl_free_afu_irqs(cfg->mcctx); 683 case RELEASE_CONTEXT: 684 cfg->mcctx = NULL; 685 } 686 } 687 688 /** 689 * term_afu() - terminates the AFU 690 * @cfg: Internal structure associated with the host. 691 * 692 * Safe to call with AFU/MC in partially allocated/initialized state. 693 */ 694 static void term_afu(struct cxlflash_cfg *cfg) 695 { 696 term_mc(cfg, UNDO_START); 697 698 if (cfg->afu) 699 stop_afu(cfg); 700 701 pr_debug("%s: returning\n", __func__); 702 } 703 704 /** 705 * cxlflash_remove() - PCI entry point to tear down host 706 * @pdev: PCI device associated with the host. 707 * 708 * Safe to use as a cleanup in partially allocated/initialized state. 709 */ 710 static void cxlflash_remove(struct pci_dev *pdev) 711 { 712 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 713 ulong lock_flags; 714 715 /* If a Task Management Function is active, wait for it to complete 716 * before continuing with remove. 717 */ 718 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 719 if (cfg->tmf_active) 720 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 721 !cfg->tmf_active, 722 cfg->tmf_slock); 723 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 724 725 cfg->state = STATE_FAILTERM; 726 cxlflash_stop_term_user_contexts(cfg); 727 728 switch (cfg->init_state) { 729 case INIT_STATE_SCSI: 730 cxlflash_term_local_luns(cfg); 731 scsi_remove_host(cfg->host); 732 /* fall through */ 733 case INIT_STATE_AFU: 734 term_afu(cfg); 735 cancel_work_sync(&cfg->work_q); 736 case INIT_STATE_PCI: 737 pci_release_regions(cfg->dev); 738 pci_disable_device(pdev); 739 case INIT_STATE_NONE: 740 free_mem(cfg); 741 scsi_host_put(cfg->host); 742 break; 743 } 744 745 pr_debug("%s: returning\n", __func__); 746 } 747 748 /** 749 * alloc_mem() - allocates the AFU and its command pool 750 * @cfg: Internal structure associated with the host. 751 * 752 * A partially allocated state remains on failure. 753 * 754 * Return: 755 * 0 on success 756 * -ENOMEM on failure to allocate memory 757 */ 758 static int alloc_mem(struct cxlflash_cfg *cfg) 759 { 760 int rc = 0; 761 int i; 762 char *buf = NULL; 763 struct device *dev = &cfg->dev->dev; 764 765 /* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */ 766 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 767 get_order(sizeof(struct afu))); 768 if (unlikely(!cfg->afu)) { 769 dev_err(dev, "%s: cannot get %d free pages\n", 770 __func__, get_order(sizeof(struct afu))); 771 rc = -ENOMEM; 772 goto out; 773 } 774 cfg->afu->parent = cfg; 775 cfg->afu->afu_map = NULL; 776 777 for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) { 778 if (!((u64)buf & (PAGE_SIZE - 1))) { 779 buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 780 if (unlikely(!buf)) { 781 dev_err(dev, 782 "%s: Allocate command buffers fail!\n", 783 __func__); 784 rc = -ENOMEM; 785 free_mem(cfg); 786 goto out; 787 } 788 } 789 790 cfg->afu->cmd[i].buf = buf; 791 atomic_set(&cfg->afu->cmd[i].free, 1); 792 cfg->afu->cmd[i].slot = i; 793 } 794 795 out: 796 return rc; 797 } 798 799 /** 800 * init_pci() - initializes the host as a PCI device 801 * @cfg: Internal structure associated with the host. 802 * 803 * Return: 0 on success, -errno on failure 804 */ 805 static int init_pci(struct cxlflash_cfg *cfg) 806 { 807 struct pci_dev *pdev = cfg->dev; 808 int rc = 0; 809 810 cfg->cxlflash_regs_pci = pci_resource_start(pdev, 0); 811 rc = pci_request_regions(pdev, CXLFLASH_NAME); 812 if (rc < 0) { 813 dev_err(&pdev->dev, 814 "%s: Couldn't register memory range of registers\n", 815 __func__); 816 goto out; 817 } 818 819 rc = pci_enable_device(pdev); 820 if (rc || pci_channel_offline(pdev)) { 821 if (pci_channel_offline(pdev)) { 822 cxlflash_wait_for_pci_err_recovery(cfg); 823 rc = pci_enable_device(pdev); 824 } 825 826 if (rc) { 827 dev_err(&pdev->dev, "%s: Cannot enable adapter\n", 828 __func__); 829 cxlflash_wait_for_pci_err_recovery(cfg); 830 goto out_release_regions; 831 } 832 } 833 834 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 835 if (rc < 0) { 836 dev_dbg(&pdev->dev, "%s: Failed to set 64 bit PCI DMA mask\n", 837 __func__); 838 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 839 } 840 841 if (rc < 0) { 842 dev_err(&pdev->dev, "%s: Failed to set PCI DMA mask\n", 843 __func__); 844 goto out_disable; 845 } 846 847 pci_set_master(pdev); 848 849 if (pci_channel_offline(pdev)) { 850 cxlflash_wait_for_pci_err_recovery(cfg); 851 if (pci_channel_offline(pdev)) { 852 rc = -EIO; 853 goto out_msi_disable; 854 } 855 } 856 857 rc = pci_save_state(pdev); 858 859 if (rc != PCIBIOS_SUCCESSFUL) { 860 dev_err(&pdev->dev, "%s: Failed to save PCI config space\n", 861 __func__); 862 rc = -EIO; 863 goto cleanup_nolog; 864 } 865 866 out: 867 pr_debug("%s: returning rc=%d\n", __func__, rc); 868 return rc; 869 870 cleanup_nolog: 871 out_msi_disable: 872 cxlflash_wait_for_pci_err_recovery(cfg); 873 out_disable: 874 pci_disable_device(pdev); 875 out_release_regions: 876 pci_release_regions(pdev); 877 goto out; 878 879 } 880 881 /** 882 * init_scsi() - adds the host to the SCSI stack and kicks off host scan 883 * @cfg: Internal structure associated with the host. 884 * 885 * Return: 0 on success, -errno on failure 886 */ 887 static int init_scsi(struct cxlflash_cfg *cfg) 888 { 889 struct pci_dev *pdev = cfg->dev; 890 int rc = 0; 891 892 rc = scsi_add_host(cfg->host, &pdev->dev); 893 if (rc) { 894 dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n", 895 __func__, rc); 896 goto out; 897 } 898 899 scsi_scan_host(cfg->host); 900 901 out: 902 pr_debug("%s: returning rc=%d\n", __func__, rc); 903 return rc; 904 } 905 906 /** 907 * set_port_online() - transitions the specified host FC port to online state 908 * @fc_regs: Top of MMIO region defined for specified port. 909 * 910 * The provided MMIO region must be mapped prior to call. Online state means 911 * that the FC link layer has synced, completed the handshaking process, and 912 * is ready for login to start. 913 */ 914 static void set_port_online(__be64 __iomem *fc_regs) 915 { 916 u64 cmdcfg; 917 918 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 919 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ 920 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ 921 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 922 } 923 924 /** 925 * set_port_offline() - transitions the specified host FC port to offline state 926 * @fc_regs: Top of MMIO region defined for specified port. 927 * 928 * The provided MMIO region must be mapped prior to call. 929 */ 930 static void set_port_offline(__be64 __iomem *fc_regs) 931 { 932 u64 cmdcfg; 933 934 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 935 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ 936 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ 937 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 938 } 939 940 /** 941 * wait_port_online() - waits for the specified host FC port come online 942 * @fc_regs: Top of MMIO region defined for specified port. 943 * @delay_us: Number of microseconds to delay between reading port status. 944 * @nretry: Number of cycles to retry reading port status. 945 * 946 * The provided MMIO region must be mapped prior to call. This will timeout 947 * when the cable is not plugged in. 948 * 949 * Return: 950 * TRUE (1) when the specified port is online 951 * FALSE (0) when the specified port fails to come online after timeout 952 * -EINVAL when @delay_us is less than 1000 953 */ 954 static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 955 { 956 u64 status; 957 958 if (delay_us < 1000) { 959 pr_err("%s: invalid delay specified %d\n", __func__, delay_us); 960 return -EINVAL; 961 } 962 963 do { 964 msleep(delay_us / 1000); 965 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 966 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && 967 nretry--); 968 969 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); 970 } 971 972 /** 973 * wait_port_offline() - waits for the specified host FC port go offline 974 * @fc_regs: Top of MMIO region defined for specified port. 975 * @delay_us: Number of microseconds to delay between reading port status. 976 * @nretry: Number of cycles to retry reading port status. 977 * 978 * The provided MMIO region must be mapped prior to call. 979 * 980 * Return: 981 * TRUE (1) when the specified port is offline 982 * FALSE (0) when the specified port fails to go offline after timeout 983 * -EINVAL when @delay_us is less than 1000 984 */ 985 static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 986 { 987 u64 status; 988 989 if (delay_us < 1000) { 990 pr_err("%s: invalid delay specified %d\n", __func__, delay_us); 991 return -EINVAL; 992 } 993 994 do { 995 msleep(delay_us / 1000); 996 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 997 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && 998 nretry--); 999 1000 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); 1001 } 1002 1003 /** 1004 * afu_set_wwpn() - configures the WWPN for the specified host FC port 1005 * @afu: AFU associated with the host that owns the specified FC port. 1006 * @port: Port number being configured. 1007 * @fc_regs: Top of MMIO region defined for specified port. 1008 * @wwpn: The world-wide-port-number previously discovered for port. 1009 * 1010 * The provided MMIO region must be mapped prior to call. As part of the 1011 * sequence to configure the WWPN, the port is toggled offline and then back 1012 * online. This toggling action can cause this routine to delay up to a few 1013 * seconds. When configured to use the internal LUN feature of the AFU, a 1014 * failure to come online is overridden. 1015 * 1016 * Return: 1017 * 0 when the WWPN is successfully written and the port comes back online 1018 * -1 when the port fails to go offline or come back up online 1019 */ 1020 static int afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, 1021 u64 wwpn) 1022 { 1023 int rc = 0; 1024 1025 set_port_offline(fc_regs); 1026 1027 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1028 FC_PORT_STATUS_RETRY_CNT)) { 1029 pr_debug("%s: wait on port %d to go offline timed out\n", 1030 __func__, port); 1031 rc = -1; /* but continue on to leave the port back online */ 1032 } 1033 1034 if (rc == 0) 1035 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); 1036 1037 /* Always return success after programming WWPN */ 1038 rc = 0; 1039 1040 set_port_online(fc_regs); 1041 1042 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1043 FC_PORT_STATUS_RETRY_CNT)) { 1044 pr_err("%s: wait on port %d to go online timed out\n", 1045 __func__, port); 1046 } 1047 1048 pr_debug("%s: returning rc=%d\n", __func__, rc); 1049 1050 return rc; 1051 } 1052 1053 /** 1054 * afu_link_reset() - resets the specified host FC port 1055 * @afu: AFU associated with the host that owns the specified FC port. 1056 * @port: Port number being configured. 1057 * @fc_regs: Top of MMIO region defined for specified port. 1058 * 1059 * The provided MMIO region must be mapped prior to call. The sequence to 1060 * reset the port involves toggling it offline and then back online. This 1061 * action can cause this routine to delay up to a few seconds. An effort 1062 * is made to maintain link with the device by switching to host to use 1063 * the alternate port exclusively while the reset takes place. 1064 * failure to come online is overridden. 1065 */ 1066 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) 1067 { 1068 u64 port_sel; 1069 1070 /* first switch the AFU to the other links, if any */ 1071 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); 1072 port_sel &= ~(1ULL << port); 1073 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1074 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1075 1076 set_port_offline(fc_regs); 1077 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1078 FC_PORT_STATUS_RETRY_CNT)) 1079 pr_err("%s: wait on port %d to go offline timed out\n", 1080 __func__, port); 1081 1082 set_port_online(fc_regs); 1083 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1084 FC_PORT_STATUS_RETRY_CNT)) 1085 pr_err("%s: wait on port %d to go online timed out\n", 1086 __func__, port); 1087 1088 /* switch back to include this port */ 1089 port_sel |= (1ULL << port); 1090 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1091 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1092 1093 pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel); 1094 } 1095 1096 /* 1097 * Asynchronous interrupt information table 1098 */ 1099 static const struct asyc_intr_info ainfo[] = { 1100 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET}, 1101 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0}, 1102 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET}, 1103 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET}, 1104 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR}, 1105 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST}, 1106 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0}, 1107 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST}, 1108 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET}, 1109 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0}, 1110 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET}, 1111 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, 0}, 1112 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR}, 1113 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST}, 1114 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0}, 1115 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST}, 1116 {0x0, "", 0, 0} /* terminator */ 1117 }; 1118 1119 /** 1120 * find_ainfo() - locates and returns asynchronous interrupt information 1121 * @status: Status code set by AFU on error. 1122 * 1123 * Return: The located information or NULL when the status code is invalid. 1124 */ 1125 static const struct asyc_intr_info *find_ainfo(u64 status) 1126 { 1127 const struct asyc_intr_info *info; 1128 1129 for (info = &ainfo[0]; info->status; info++) 1130 if (info->status == status) 1131 return info; 1132 1133 return NULL; 1134 } 1135 1136 /** 1137 * afu_err_intr_init() - clears and initializes the AFU for error interrupts 1138 * @afu: AFU associated with the host. 1139 */ 1140 static void afu_err_intr_init(struct afu *afu) 1141 { 1142 int i; 1143 u64 reg; 1144 1145 /* global async interrupts: AFU clears afu_ctrl on context exit 1146 * if async interrupts were sent to that context. This prevents 1147 * the AFU form sending further async interrupts when 1148 * there is 1149 * nobody to receive them. 1150 */ 1151 1152 /* mask all */ 1153 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); 1154 /* set LISN# to send and point to master context */ 1155 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); 1156 1157 if (afu->internal_lun) 1158 reg |= 1; /* Bit 63 indicates local lun */ 1159 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); 1160 /* clear all */ 1161 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1162 /* unmask bits that are of interest */ 1163 /* note: afu can send an interrupt after this step */ 1164 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); 1165 /* clear again in case a bit came on after previous clear but before */ 1166 /* unmask */ 1167 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1168 1169 /* Clear/Set internal lun bits */ 1170 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]); 1171 reg &= SISL_FC_INTERNAL_MASK; 1172 if (afu->internal_lun) 1173 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); 1174 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]); 1175 1176 /* now clear FC errors */ 1177 for (i = 0; i < NUM_FC_PORTS; i++) { 1178 writeq_be(0xFFFFFFFFU, 1179 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]); 1180 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]); 1181 } 1182 1183 /* sync interrupts for master's IOARRIN write */ 1184 /* note that unlike asyncs, there can be no pending sync interrupts */ 1185 /* at this time (this is a fresh context and master has not written */ 1186 /* IOARRIN yet), so there is nothing to clear. */ 1187 1188 /* set LISN#, it is always sent to the context that wrote IOARRIN */ 1189 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl); 1190 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask); 1191 } 1192 1193 /** 1194 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors 1195 * @irq: Interrupt number. 1196 * @data: Private data provided at interrupt registration, the AFU. 1197 * 1198 * Return: Always return IRQ_HANDLED. 1199 */ 1200 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) 1201 { 1202 struct afu *afu = (struct afu *)data; 1203 u64 reg; 1204 u64 reg_unmasked; 1205 1206 reg = readq_be(&afu->host_map->intr_status); 1207 reg_unmasked = (reg & SISL_ISTATUS_UNMASK); 1208 1209 if (reg_unmasked == 0UL) { 1210 pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n", 1211 __func__, (u64)afu, reg); 1212 goto cxlflash_sync_err_irq_exit; 1213 } 1214 1215 pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n", 1216 __func__, (u64)afu, reg); 1217 1218 writeq_be(reg_unmasked, &afu->host_map->intr_clear); 1219 1220 cxlflash_sync_err_irq_exit: 1221 pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED); 1222 return IRQ_HANDLED; 1223 } 1224 1225 /** 1226 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) 1227 * @irq: Interrupt number. 1228 * @data: Private data provided at interrupt registration, the AFU. 1229 * 1230 * Return: Always return IRQ_HANDLED. 1231 */ 1232 static irqreturn_t cxlflash_rrq_irq(int irq, void *data) 1233 { 1234 struct afu *afu = (struct afu *)data; 1235 struct afu_cmd *cmd; 1236 bool toggle = afu->toggle; 1237 u64 entry, 1238 *hrrq_start = afu->hrrq_start, 1239 *hrrq_end = afu->hrrq_end, 1240 *hrrq_curr = afu->hrrq_curr; 1241 1242 /* Process however many RRQ entries that are ready */ 1243 while (true) { 1244 entry = *hrrq_curr; 1245 1246 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) 1247 break; 1248 1249 cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT); 1250 cmd_complete(cmd); 1251 1252 /* Advance to next entry or wrap and flip the toggle bit */ 1253 if (hrrq_curr < hrrq_end) 1254 hrrq_curr++; 1255 else { 1256 hrrq_curr = hrrq_start; 1257 toggle ^= SISL_RESP_HANDLE_T_BIT; 1258 } 1259 } 1260 1261 afu->hrrq_curr = hrrq_curr; 1262 afu->toggle = toggle; 1263 1264 return IRQ_HANDLED; 1265 } 1266 1267 /** 1268 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors 1269 * @irq: Interrupt number. 1270 * @data: Private data provided at interrupt registration, the AFU. 1271 * 1272 * Return: Always return IRQ_HANDLED. 1273 */ 1274 static irqreturn_t cxlflash_async_err_irq(int irq, void *data) 1275 { 1276 struct afu *afu = (struct afu *)data; 1277 struct cxlflash_cfg *cfg = afu->parent; 1278 struct device *dev = &cfg->dev->dev; 1279 u64 reg_unmasked; 1280 const struct asyc_intr_info *info; 1281 struct sisl_global_map __iomem *global = &afu->afu_map->global; 1282 u64 reg; 1283 u8 port; 1284 int i; 1285 1286 reg = readq_be(&global->regs.aintr_status); 1287 reg_unmasked = (reg & SISL_ASTATUS_UNMASK); 1288 1289 if (reg_unmasked == 0) { 1290 dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n", 1291 __func__, reg); 1292 goto out; 1293 } 1294 1295 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ 1296 writeq_be(reg_unmasked, &global->regs.aintr_clear); 1297 1298 /* Check each bit that is on */ 1299 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) { 1300 info = find_ainfo(1ULL << i); 1301 if (((reg_unmasked & 0x1) == 0) || !info) 1302 continue; 1303 1304 port = info->port; 1305 1306 dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n", 1307 __func__, port, info->desc, 1308 readq_be(&global->fc_regs[port][FC_STATUS / 8])); 1309 1310 /* 1311 * Do link reset first, some OTHER errors will set FC_ERROR 1312 * again if cleared before or w/o a reset 1313 */ 1314 if (info->action & LINK_RESET) { 1315 dev_err(dev, "%s: FC Port %d: resetting link\n", 1316 __func__, port); 1317 cfg->lr_state = LINK_RESET_REQUIRED; 1318 cfg->lr_port = port; 1319 schedule_work(&cfg->work_q); 1320 } 1321 1322 if (info->action & CLR_FC_ERROR) { 1323 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]); 1324 1325 /* 1326 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP 1327 * should be the same and tracing one is sufficient. 1328 */ 1329 1330 dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n", 1331 __func__, port, reg); 1332 1333 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]); 1334 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]); 1335 } 1336 1337 if (info->action & SCAN_HOST) { 1338 atomic_inc(&cfg->scan_host_needed); 1339 schedule_work(&cfg->work_q); 1340 } 1341 } 1342 1343 out: 1344 dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu); 1345 return IRQ_HANDLED; 1346 } 1347 1348 /** 1349 * start_context() - starts the master context 1350 * @cfg: Internal structure associated with the host. 1351 * 1352 * Return: A success or failure value from CXL services. 1353 */ 1354 static int start_context(struct cxlflash_cfg *cfg) 1355 { 1356 int rc = 0; 1357 1358 rc = cxl_start_context(cfg->mcctx, 1359 cfg->afu->work.work_element_descriptor, 1360 NULL); 1361 1362 pr_debug("%s: returning rc=%d\n", __func__, rc); 1363 return rc; 1364 } 1365 1366 /** 1367 * read_vpd() - obtains the WWPNs from VPD 1368 * @cfg: Internal structure associated with the host. 1369 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs 1370 * 1371 * Return: 0 on success, -errno on failure 1372 */ 1373 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) 1374 { 1375 struct pci_dev *dev = cfg->parent_dev; 1376 int rc = 0; 1377 int ro_start, ro_size, i, j, k; 1378 ssize_t vpd_size; 1379 char vpd_data[CXLFLASH_VPD_LEN]; 1380 char tmp_buf[WWPN_BUF_LEN] = { 0 }; 1381 char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" }; 1382 1383 /* Get the VPD data from the device */ 1384 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 1385 if (unlikely(vpd_size <= 0)) { 1386 dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n", 1387 __func__, vpd_size); 1388 rc = -ENODEV; 1389 goto out; 1390 } 1391 1392 /* Get the read only section offset */ 1393 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, 1394 PCI_VPD_LRDT_RO_DATA); 1395 if (unlikely(ro_start < 0)) { 1396 dev_err(&dev->dev, "%s: VPD Read-only data not found\n", 1397 __func__); 1398 rc = -ENODEV; 1399 goto out; 1400 } 1401 1402 /* Get the read only section size, cap when extends beyond read VPD */ 1403 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 1404 j = ro_size; 1405 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1406 if (unlikely((i + j) > vpd_size)) { 1407 pr_debug("%s: Might need to read more VPD (%d > %ld)\n", 1408 __func__, (i + j), vpd_size); 1409 ro_size = vpd_size - i; 1410 } 1411 1412 /* 1413 * Find the offset of the WWPN tag within the read only 1414 * VPD data and validate the found field (partials are 1415 * no good to us). Convert the ASCII data to an integer 1416 * value. Note that we must copy to a temporary buffer 1417 * because the conversion service requires that the ASCII 1418 * string be terminated. 1419 */ 1420 for (k = 0; k < NUM_FC_PORTS; k++) { 1421 j = ro_size; 1422 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1423 1424 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); 1425 if (unlikely(i < 0)) { 1426 dev_err(&dev->dev, "%s: Port %d WWPN not found " 1427 "in VPD\n", __func__, k); 1428 rc = -ENODEV; 1429 goto out; 1430 } 1431 1432 j = pci_vpd_info_field_size(&vpd_data[i]); 1433 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1434 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { 1435 dev_err(&dev->dev, "%s: Port %d WWPN incomplete or " 1436 "VPD corrupt\n", 1437 __func__, k); 1438 rc = -ENODEV; 1439 goto out; 1440 } 1441 1442 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); 1443 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); 1444 if (unlikely(rc)) { 1445 dev_err(&dev->dev, "%s: Fail to convert port %d WWPN " 1446 "to integer\n", __func__, k); 1447 rc = -ENODEV; 1448 goto out; 1449 } 1450 } 1451 1452 out: 1453 pr_debug("%s: returning rc=%d\n", __func__, rc); 1454 return rc; 1455 } 1456 1457 /** 1458 * init_pcr() - initialize the provisioning and control registers 1459 * @cfg: Internal structure associated with the host. 1460 * 1461 * Also sets up fast access to the mapped registers and initializes AFU 1462 * command fields that never change. 1463 */ 1464 static void init_pcr(struct cxlflash_cfg *cfg) 1465 { 1466 struct afu *afu = cfg->afu; 1467 struct sisl_ctrl_map __iomem *ctrl_map; 1468 int i; 1469 1470 for (i = 0; i < MAX_CONTEXT; i++) { 1471 ctrl_map = &afu->afu_map->ctrls[i].ctrl; 1472 /* Disrupt any clients that could be running */ 1473 /* e.g. clients that survived a master restart */ 1474 writeq_be(0, &ctrl_map->rht_start); 1475 writeq_be(0, &ctrl_map->rht_cnt_id); 1476 writeq_be(0, &ctrl_map->ctx_cap); 1477 } 1478 1479 /* Copy frequently used fields into afu */ 1480 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx); 1481 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host; 1482 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl; 1483 1484 /* Program the Endian Control for the master context */ 1485 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl); 1486 1487 /* Initialize cmd fields that never change */ 1488 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { 1489 afu->cmd[i].rcb.ctx_id = afu->ctx_hndl; 1490 afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED; 1491 afu->cmd[i].rcb.rrq = 0x0; 1492 } 1493 } 1494 1495 /** 1496 * init_global() - initialize AFU global registers 1497 * @cfg: Internal structure associated with the host. 1498 */ 1499 static int init_global(struct cxlflash_cfg *cfg) 1500 { 1501 struct afu *afu = cfg->afu; 1502 struct device *dev = &cfg->dev->dev; 1503 u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */ 1504 int i = 0, num_ports = 0; 1505 int rc = 0; 1506 u64 reg; 1507 1508 rc = read_vpd(cfg, &wwpn[0]); 1509 if (rc) { 1510 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); 1511 goto out; 1512 } 1513 1514 pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]); 1515 1516 /* Set up RRQ in AFU for master issued cmds */ 1517 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start); 1518 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end); 1519 1520 /* AFU configuration */ 1521 reg = readq_be(&afu->afu_map->global.regs.afu_config); 1522 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; 1523 /* enable all auto retry options and control endianness */ 1524 /* leave others at default: */ 1525 /* CTX_CAP write protected, mbox_r does not clear on read and */ 1526 /* checker on if dual afu */ 1527 writeq_be(reg, &afu->afu_map->global.regs.afu_config); 1528 1529 /* Global port select: select either port */ 1530 if (afu->internal_lun) { 1531 /* Only use port 0 */ 1532 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); 1533 num_ports = NUM_FC_PORTS - 1; 1534 } else { 1535 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel); 1536 num_ports = NUM_FC_PORTS; 1537 } 1538 1539 for (i = 0; i < num_ports; i++) { 1540 /* Unmask all errors (but they are still masked at AFU) */ 1541 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]); 1542 /* Clear CRC error cnt & set a threshold */ 1543 (void)readq_be(&afu->afu_map->global. 1544 fc_regs[i][FC_CNT_CRCERR / 8]); 1545 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i] 1546 [FC_CRC_THRESH / 8]); 1547 1548 /* Set WWPNs. If already programmed, wwpn[i] is 0 */ 1549 if (wwpn[i] != 0 && 1550 afu_set_wwpn(afu, i, 1551 &afu->afu_map->global.fc_regs[i][0], 1552 wwpn[i])) { 1553 dev_err(dev, "%s: failed to set WWPN on port %d\n", 1554 __func__, i); 1555 rc = -EIO; 1556 goto out; 1557 } 1558 /* Programming WWPN back to back causes additional 1559 * offline/online transitions and a PLOGI 1560 */ 1561 msleep(100); 1562 } 1563 1564 /* Set up master's own CTX_CAP to allow real mode, host translation */ 1565 /* tables, afu cmds and read/write GSCSI cmds. */ 1566 /* First, unlock ctx_cap write by reading mbox */ 1567 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */ 1568 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | 1569 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | 1570 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), 1571 &afu->ctrl_map->ctx_cap); 1572 /* Initialize heartbeat */ 1573 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); 1574 1575 out: 1576 return rc; 1577 } 1578 1579 /** 1580 * start_afu() - initializes and starts the AFU 1581 * @cfg: Internal structure associated with the host. 1582 */ 1583 static int start_afu(struct cxlflash_cfg *cfg) 1584 { 1585 struct afu *afu = cfg->afu; 1586 struct afu_cmd *cmd; 1587 1588 int i = 0; 1589 int rc = 0; 1590 1591 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { 1592 cmd = &afu->cmd[i]; 1593 1594 init_completion(&cmd->cevent); 1595 spin_lock_init(&cmd->slock); 1596 cmd->parent = afu; 1597 } 1598 1599 init_pcr(cfg); 1600 1601 /* After an AFU reset, RRQ entries are stale, clear them */ 1602 memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry)); 1603 1604 /* Initialize RRQ pointers */ 1605 afu->hrrq_start = &afu->rrq_entry[0]; 1606 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1]; 1607 afu->hrrq_curr = afu->hrrq_start; 1608 afu->toggle = 1; 1609 1610 rc = init_global(cfg); 1611 1612 pr_debug("%s: returning rc=%d\n", __func__, rc); 1613 return rc; 1614 } 1615 1616 /** 1617 * init_mc() - create and register as the master context 1618 * @cfg: Internal structure associated with the host. 1619 * 1620 * Return: 0 on success, -errno on failure 1621 */ 1622 static int init_mc(struct cxlflash_cfg *cfg) 1623 { 1624 struct cxl_context *ctx; 1625 struct device *dev = &cfg->dev->dev; 1626 struct afu *afu = cfg->afu; 1627 int rc = 0; 1628 enum undo_level level; 1629 1630 ctx = cxl_get_context(cfg->dev); 1631 if (unlikely(!ctx)) 1632 return -ENOMEM; 1633 cfg->mcctx = ctx; 1634 1635 /* Set it up as a master with the CXL */ 1636 cxl_set_master(ctx); 1637 1638 /* During initialization reset the AFU to start from a clean slate */ 1639 rc = cxl_afu_reset(cfg->mcctx); 1640 if (unlikely(rc)) { 1641 dev_err(dev, "%s: initial AFU reset failed rc=%d\n", 1642 __func__, rc); 1643 level = RELEASE_CONTEXT; 1644 goto out; 1645 } 1646 1647 rc = cxl_allocate_afu_irqs(ctx, 3); 1648 if (unlikely(rc)) { 1649 dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n", 1650 __func__, rc); 1651 level = RELEASE_CONTEXT; 1652 goto out; 1653 } 1654 1655 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu, 1656 "SISL_MSI_SYNC_ERROR"); 1657 if (unlikely(rc <= 0)) { 1658 dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n", 1659 __func__); 1660 level = FREE_IRQ; 1661 goto out; 1662 } 1663 1664 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu, 1665 "SISL_MSI_RRQ_UPDATED"); 1666 if (unlikely(rc <= 0)) { 1667 dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n", 1668 __func__); 1669 level = UNMAP_ONE; 1670 goto out; 1671 } 1672 1673 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu, 1674 "SISL_MSI_ASYNC_ERROR"); 1675 if (unlikely(rc <= 0)) { 1676 dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n", 1677 __func__); 1678 level = UNMAP_TWO; 1679 goto out; 1680 } 1681 1682 rc = 0; 1683 1684 /* This performs the equivalent of the CXL_IOCTL_START_WORK. 1685 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process 1686 * element (pe) that is embedded in the context (ctx) 1687 */ 1688 rc = start_context(cfg); 1689 if (unlikely(rc)) { 1690 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); 1691 level = UNMAP_THREE; 1692 goto out; 1693 } 1694 ret: 1695 pr_debug("%s: returning rc=%d\n", __func__, rc); 1696 return rc; 1697 out: 1698 term_mc(cfg, level); 1699 goto ret; 1700 } 1701 1702 /** 1703 * init_afu() - setup as master context and start AFU 1704 * @cfg: Internal structure associated with the host. 1705 * 1706 * This routine is a higher level of control for configuring the 1707 * AFU on probe and reset paths. 1708 * 1709 * Return: 0 on success, -errno on failure 1710 */ 1711 static int init_afu(struct cxlflash_cfg *cfg) 1712 { 1713 u64 reg; 1714 int rc = 0; 1715 struct afu *afu = cfg->afu; 1716 struct device *dev = &cfg->dev->dev; 1717 1718 cxl_perst_reloads_same_image(cfg->cxl_afu, true); 1719 1720 rc = init_mc(cfg); 1721 if (rc) { 1722 dev_err(dev, "%s: call to init_mc failed, rc=%d!\n", 1723 __func__, rc); 1724 goto out; 1725 } 1726 1727 /* Map the entire MMIO space of the AFU */ 1728 afu->afu_map = cxl_psa_map(cfg->mcctx); 1729 if (!afu->afu_map) { 1730 dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__); 1731 rc = -ENOMEM; 1732 goto err1; 1733 } 1734 1735 /* No byte reverse on reading afu_version or string will be backwards */ 1736 reg = readq(&afu->afu_map->global.regs.afu_version); 1737 memcpy(afu->version, ®, sizeof(reg)); 1738 afu->interface_version = 1739 readq_be(&afu->afu_map->global.regs.interface_version); 1740 if ((afu->interface_version + 1) == 0) { 1741 pr_err("Back level AFU, please upgrade. AFU version %s " 1742 "interface version 0x%llx\n", afu->version, 1743 afu->interface_version); 1744 rc = -EINVAL; 1745 goto err2; 1746 } 1747 1748 pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__, 1749 afu->version, afu->interface_version); 1750 1751 rc = start_afu(cfg); 1752 if (rc) { 1753 dev_err(dev, "%s: call to start_afu failed, rc=%d!\n", 1754 __func__, rc); 1755 goto err2; 1756 } 1757 1758 afu_err_intr_init(cfg->afu); 1759 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room)); 1760 1761 /* Restore the LUN mappings */ 1762 cxlflash_restore_luntable(cfg); 1763 out: 1764 pr_debug("%s: returning rc=%d\n", __func__, rc); 1765 return rc; 1766 1767 err2: 1768 cxl_psa_unmap((void __iomem *)afu->afu_map); 1769 afu->afu_map = NULL; 1770 err1: 1771 term_mc(cfg, UNDO_START); 1772 goto out; 1773 } 1774 1775 /** 1776 * cxlflash_afu_sync() - builds and sends an AFU sync command 1777 * @afu: AFU associated with the host. 1778 * @ctx_hndl_u: Identifies context requesting sync. 1779 * @res_hndl_u: Identifies resource requesting sync. 1780 * @mode: Type of sync to issue (lightweight, heavyweight, global). 1781 * 1782 * The AFU can only take 1 sync command at a time. This routine enforces this 1783 * limitation by using a mutex to provide exclusive access to the AFU during 1784 * the sync. This design point requires calling threads to not be on interrupt 1785 * context due to the possibility of sleeping during concurrent sync operations. 1786 * 1787 * AFU sync operations are only necessary and allowed when the device is 1788 * operating normally. When not operating normally, sync requests can occur as 1789 * part of cleaning up resources associated with an adapter prior to removal. 1790 * In this scenario, these requests are simply ignored (safe due to the AFU 1791 * going away). 1792 * 1793 * Return: 1794 * 0 on success 1795 * -1 on failure 1796 */ 1797 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u, 1798 res_hndl_t res_hndl_u, u8 mode) 1799 { 1800 struct cxlflash_cfg *cfg = afu->parent; 1801 struct device *dev = &cfg->dev->dev; 1802 struct afu_cmd *cmd = NULL; 1803 int rc = 0; 1804 int retry_cnt = 0; 1805 static DEFINE_MUTEX(sync_active); 1806 1807 if (cfg->state != STATE_NORMAL) { 1808 pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state); 1809 return 0; 1810 } 1811 1812 mutex_lock(&sync_active); 1813 retry: 1814 cmd = cmd_checkout(afu); 1815 if (unlikely(!cmd)) { 1816 retry_cnt++; 1817 udelay(1000 * retry_cnt); 1818 if (retry_cnt < MC_RETRY_CNT) 1819 goto retry; 1820 dev_err(dev, "%s: could not get a free command\n", __func__); 1821 rc = -1; 1822 goto out; 1823 } 1824 1825 pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u); 1826 1827 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb)); 1828 1829 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 1830 cmd->rcb.port_sel = 0x0; /* NA */ 1831 cmd->rcb.lun_id = 0x0; /* NA */ 1832 cmd->rcb.data_len = 0x0; 1833 cmd->rcb.data_ea = 0x0; 1834 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT; 1835 1836 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */ 1837 cmd->rcb.cdb[1] = mode; 1838 1839 /* The cdb is aligned, no unaligned accessors required */ 1840 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u); 1841 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u); 1842 1843 rc = send_cmd(afu, cmd); 1844 if (unlikely(rc)) 1845 goto out; 1846 1847 wait_resp(afu, cmd); 1848 1849 /* Set on timeout */ 1850 if (unlikely((cmd->sa.ioasc != 0) || 1851 (cmd->sa.host_use_b[0] & B_ERROR))) 1852 rc = -1; 1853 out: 1854 mutex_unlock(&sync_active); 1855 if (cmd) 1856 cmd_checkin(cmd); 1857 pr_debug("%s: returning rc=%d\n", __func__, rc); 1858 return rc; 1859 } 1860 1861 /** 1862 * afu_reset() - resets the AFU 1863 * @cfg: Internal structure associated with the host. 1864 * 1865 * Return: 0 on success, -errno on failure 1866 */ 1867 static int afu_reset(struct cxlflash_cfg *cfg) 1868 { 1869 int rc = 0; 1870 /* Stop the context before the reset. Since the context is 1871 * no longer available restart it after the reset is complete 1872 */ 1873 1874 term_afu(cfg); 1875 1876 rc = init_afu(cfg); 1877 1878 pr_debug("%s: returning rc=%d\n", __func__, rc); 1879 return rc; 1880 } 1881 1882 /** 1883 * cxlflash_eh_device_reset_handler() - reset a single LUN 1884 * @scp: SCSI command to send. 1885 * 1886 * Return: 1887 * SUCCESS as defined in scsi/scsi.h 1888 * FAILED as defined in scsi/scsi.h 1889 */ 1890 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) 1891 { 1892 int rc = SUCCESS; 1893 struct Scsi_Host *host = scp->device->host; 1894 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; 1895 struct afu *afu = cfg->afu; 1896 int rcr = 0; 1897 1898 pr_debug("%s: (scp=%p) %d/%d/%d/%llu " 1899 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp, 1900 host->host_no, scp->device->channel, 1901 scp->device->id, scp->device->lun, 1902 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 1903 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 1904 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 1905 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 1906 1907 retry: 1908 switch (cfg->state) { 1909 case STATE_NORMAL: 1910 rcr = send_tmf(afu, scp, TMF_LUN_RESET); 1911 if (unlikely(rcr)) 1912 rc = FAILED; 1913 break; 1914 case STATE_RESET: 1915 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 1916 goto retry; 1917 default: 1918 rc = FAILED; 1919 break; 1920 } 1921 1922 pr_debug("%s: returning rc=%d\n", __func__, rc); 1923 return rc; 1924 } 1925 1926 /** 1927 * cxlflash_eh_host_reset_handler() - reset the host adapter 1928 * @scp: SCSI command from stack identifying host. 1929 * 1930 * Return: 1931 * SUCCESS as defined in scsi/scsi.h 1932 * FAILED as defined in scsi/scsi.h 1933 */ 1934 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) 1935 { 1936 int rc = SUCCESS; 1937 int rcr = 0; 1938 struct Scsi_Host *host = scp->device->host; 1939 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; 1940 1941 pr_debug("%s: (scp=%p) %d/%d/%d/%llu " 1942 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp, 1943 host->host_no, scp->device->channel, 1944 scp->device->id, scp->device->lun, 1945 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 1946 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 1947 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 1948 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 1949 1950 switch (cfg->state) { 1951 case STATE_NORMAL: 1952 cfg->state = STATE_RESET; 1953 cxlflash_mark_contexts_error(cfg); 1954 rcr = afu_reset(cfg); 1955 if (rcr) { 1956 rc = FAILED; 1957 cfg->state = STATE_FAILTERM; 1958 } else 1959 cfg->state = STATE_NORMAL; 1960 wake_up_all(&cfg->reset_waitq); 1961 break; 1962 case STATE_RESET: 1963 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 1964 if (cfg->state == STATE_NORMAL) 1965 break; 1966 /* fall through */ 1967 default: 1968 rc = FAILED; 1969 break; 1970 } 1971 1972 pr_debug("%s: returning rc=%d\n", __func__, rc); 1973 return rc; 1974 } 1975 1976 /** 1977 * cxlflash_change_queue_depth() - change the queue depth for the device 1978 * @sdev: SCSI device destined for queue depth change. 1979 * @qdepth: Requested queue depth value to set. 1980 * 1981 * The requested queue depth is capped to the maximum supported value. 1982 * 1983 * Return: The actual queue depth set. 1984 */ 1985 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) 1986 { 1987 1988 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) 1989 qdepth = CXLFLASH_MAX_CMDS_PER_LUN; 1990 1991 scsi_change_queue_depth(sdev, qdepth); 1992 return sdev->queue_depth; 1993 } 1994 1995 /** 1996 * cxlflash_show_port_status() - queries and presents the current port status 1997 * @port: Desired port for status reporting. 1998 * @afu: AFU owning the specified port. 1999 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2000 * 2001 * Return: The size of the ASCII string returned in @buf. 2002 */ 2003 static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf) 2004 { 2005 char *disp_status; 2006 u64 status; 2007 __be64 __iomem *fc_regs; 2008 2009 if (port >= NUM_FC_PORTS) 2010 return 0; 2011 2012 fc_regs = &afu->afu_map->global.fc_regs[port][0]; 2013 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 2014 status &= FC_MTIP_STATUS_MASK; 2015 2016 if (status == FC_MTIP_STATUS_ONLINE) 2017 disp_status = "online"; 2018 else if (status == FC_MTIP_STATUS_OFFLINE) 2019 disp_status = "offline"; 2020 else 2021 disp_status = "unknown"; 2022 2023 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); 2024 } 2025 2026 /** 2027 * port0_show() - queries and presents the current status of port 0 2028 * @dev: Generic device associated with the host owning the port. 2029 * @attr: Device attribute representing the port. 2030 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2031 * 2032 * Return: The size of the ASCII string returned in @buf. 2033 */ 2034 static ssize_t port0_show(struct device *dev, 2035 struct device_attribute *attr, 2036 char *buf) 2037 { 2038 struct Scsi_Host *shost = class_to_shost(dev); 2039 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2040 struct afu *afu = cfg->afu; 2041 2042 return cxlflash_show_port_status(0, afu, buf); 2043 } 2044 2045 /** 2046 * port1_show() - queries and presents the current status of port 1 2047 * @dev: Generic device associated with the host owning the port. 2048 * @attr: Device attribute representing the port. 2049 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2050 * 2051 * Return: The size of the ASCII string returned in @buf. 2052 */ 2053 static ssize_t port1_show(struct device *dev, 2054 struct device_attribute *attr, 2055 char *buf) 2056 { 2057 struct Scsi_Host *shost = class_to_shost(dev); 2058 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2059 struct afu *afu = cfg->afu; 2060 2061 return cxlflash_show_port_status(1, afu, buf); 2062 } 2063 2064 /** 2065 * lun_mode_show() - presents the current LUN mode of the host 2066 * @dev: Generic device associated with the host. 2067 * @attr: Device attribute representing the LUN mode. 2068 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. 2069 * 2070 * Return: The size of the ASCII string returned in @buf. 2071 */ 2072 static ssize_t lun_mode_show(struct device *dev, 2073 struct device_attribute *attr, char *buf) 2074 { 2075 struct Scsi_Host *shost = class_to_shost(dev); 2076 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2077 struct afu *afu = cfg->afu; 2078 2079 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); 2080 } 2081 2082 /** 2083 * lun_mode_store() - sets the LUN mode of the host 2084 * @dev: Generic device associated with the host. 2085 * @attr: Device attribute representing the LUN mode. 2086 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. 2087 * @count: Length of data resizing in @buf. 2088 * 2089 * The CXL Flash AFU supports a dummy LUN mode where the external 2090 * links and storage are not required. Space on the FPGA is used 2091 * to create 1 or 2 small LUNs which are presented to the system 2092 * as if they were a normal storage device. This feature is useful 2093 * during development and also provides manufacturing with a way 2094 * to test the AFU without an actual device. 2095 * 2096 * 0 = external LUN[s] (default) 2097 * 1 = internal LUN (1 x 64K, 512B blocks, id 0) 2098 * 2 = internal LUN (1 x 64K, 4K blocks, id 0) 2099 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) 2100 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) 2101 * 2102 * Return: The size of the ASCII string returned in @buf. 2103 */ 2104 static ssize_t lun_mode_store(struct device *dev, 2105 struct device_attribute *attr, 2106 const char *buf, size_t count) 2107 { 2108 struct Scsi_Host *shost = class_to_shost(dev); 2109 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2110 struct afu *afu = cfg->afu; 2111 int rc; 2112 u32 lun_mode; 2113 2114 rc = kstrtouint(buf, 10, &lun_mode); 2115 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { 2116 afu->internal_lun = lun_mode; 2117 afu_reset(cfg); 2118 scsi_scan_host(cfg->host); 2119 } 2120 2121 return count; 2122 } 2123 2124 /** 2125 * ioctl_version_show() - presents the current ioctl version of the host 2126 * @dev: Generic device associated with the host. 2127 * @attr: Device attribute representing the ioctl version. 2128 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. 2129 * 2130 * Return: The size of the ASCII string returned in @buf. 2131 */ 2132 static ssize_t ioctl_version_show(struct device *dev, 2133 struct device_attribute *attr, char *buf) 2134 { 2135 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0); 2136 } 2137 2138 /** 2139 * cxlflash_show_port_lun_table() - queries and presents the port LUN table 2140 * @port: Desired port for status reporting. 2141 * @afu: AFU owning the specified port. 2142 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2143 * 2144 * Return: The size of the ASCII string returned in @buf. 2145 */ 2146 static ssize_t cxlflash_show_port_lun_table(u32 port, 2147 struct afu *afu, 2148 char *buf) 2149 { 2150 int i; 2151 ssize_t bytes = 0; 2152 __be64 __iomem *fc_port; 2153 2154 if (port >= NUM_FC_PORTS) 2155 return 0; 2156 2157 fc_port = &afu->afu_map->global.fc_port[port][0]; 2158 2159 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) 2160 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2161 "%03d: %016llX\n", i, readq_be(&fc_port[i])); 2162 return bytes; 2163 } 2164 2165 /** 2166 * port0_lun_table_show() - presents the current LUN table of port 0 2167 * @dev: Generic device associated with the host owning the port. 2168 * @attr: Device attribute representing the port. 2169 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2170 * 2171 * Return: The size of the ASCII string returned in @buf. 2172 */ 2173 static ssize_t port0_lun_table_show(struct device *dev, 2174 struct device_attribute *attr, 2175 char *buf) 2176 { 2177 struct Scsi_Host *shost = class_to_shost(dev); 2178 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2179 struct afu *afu = cfg->afu; 2180 2181 return cxlflash_show_port_lun_table(0, afu, buf); 2182 } 2183 2184 /** 2185 * port1_lun_table_show() - presents the current LUN table of port 1 2186 * @dev: Generic device associated with the host owning the port. 2187 * @attr: Device attribute representing the port. 2188 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2189 * 2190 * Return: The size of the ASCII string returned in @buf. 2191 */ 2192 static ssize_t port1_lun_table_show(struct device *dev, 2193 struct device_attribute *attr, 2194 char *buf) 2195 { 2196 struct Scsi_Host *shost = class_to_shost(dev); 2197 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; 2198 struct afu *afu = cfg->afu; 2199 2200 return cxlflash_show_port_lun_table(1, afu, buf); 2201 } 2202 2203 /** 2204 * mode_show() - presents the current mode of the device 2205 * @dev: Generic device associated with the device. 2206 * @attr: Device attribute representing the device mode. 2207 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. 2208 * 2209 * Return: The size of the ASCII string returned in @buf. 2210 */ 2211 static ssize_t mode_show(struct device *dev, 2212 struct device_attribute *attr, char *buf) 2213 { 2214 struct scsi_device *sdev = to_scsi_device(dev); 2215 2216 return scnprintf(buf, PAGE_SIZE, "%s\n", 2217 sdev->hostdata ? "superpipe" : "legacy"); 2218 } 2219 2220 /* 2221 * Host attributes 2222 */ 2223 static DEVICE_ATTR_RO(port0); 2224 static DEVICE_ATTR_RO(port1); 2225 static DEVICE_ATTR_RW(lun_mode); 2226 static DEVICE_ATTR_RO(ioctl_version); 2227 static DEVICE_ATTR_RO(port0_lun_table); 2228 static DEVICE_ATTR_RO(port1_lun_table); 2229 2230 static struct device_attribute *cxlflash_host_attrs[] = { 2231 &dev_attr_port0, 2232 &dev_attr_port1, 2233 &dev_attr_lun_mode, 2234 &dev_attr_ioctl_version, 2235 &dev_attr_port0_lun_table, 2236 &dev_attr_port1_lun_table, 2237 NULL 2238 }; 2239 2240 /* 2241 * Device attributes 2242 */ 2243 static DEVICE_ATTR_RO(mode); 2244 2245 static struct device_attribute *cxlflash_dev_attrs[] = { 2246 &dev_attr_mode, 2247 NULL 2248 }; 2249 2250 /* 2251 * Host template 2252 */ 2253 static struct scsi_host_template driver_template = { 2254 .module = THIS_MODULE, 2255 .name = CXLFLASH_ADAPTER_NAME, 2256 .info = cxlflash_driver_info, 2257 .ioctl = cxlflash_ioctl, 2258 .proc_name = CXLFLASH_NAME, 2259 .queuecommand = cxlflash_queuecommand, 2260 .eh_device_reset_handler = cxlflash_eh_device_reset_handler, 2261 .eh_host_reset_handler = cxlflash_eh_host_reset_handler, 2262 .change_queue_depth = cxlflash_change_queue_depth, 2263 .cmd_per_lun = 16, 2264 .can_queue = CXLFLASH_MAX_CMDS, 2265 .this_id = -1, 2266 .sg_tablesize = SG_NONE, /* No scatter gather support */ 2267 .max_sectors = CXLFLASH_MAX_SECTORS, 2268 .use_clustering = ENABLE_CLUSTERING, 2269 .shost_attrs = cxlflash_host_attrs, 2270 .sdev_attrs = cxlflash_dev_attrs, 2271 }; 2272 2273 /* 2274 * Device dependent values 2275 */ 2276 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS }; 2277 2278 /* 2279 * PCI device binding table 2280 */ 2281 static struct pci_device_id cxlflash_pci_table[] = { 2282 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, 2283 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, 2284 {} 2285 }; 2286 2287 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); 2288 2289 /** 2290 * cxlflash_worker_thread() - work thread handler for the AFU 2291 * @work: Work structure contained within cxlflash associated with host. 2292 * 2293 * Handles the following events: 2294 * - Link reset which cannot be performed on interrupt context due to 2295 * blocking up to a few seconds 2296 * - Read AFU command room 2297 * - Rescan the host 2298 */ 2299 static void cxlflash_worker_thread(struct work_struct *work) 2300 { 2301 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, 2302 work_q); 2303 struct afu *afu = cfg->afu; 2304 struct device *dev = &cfg->dev->dev; 2305 int port; 2306 ulong lock_flags; 2307 2308 /* Avoid MMIO if the device has failed */ 2309 2310 if (cfg->state != STATE_NORMAL) 2311 return; 2312 2313 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 2314 2315 if (cfg->lr_state == LINK_RESET_REQUIRED) { 2316 port = cfg->lr_port; 2317 if (port < 0) 2318 dev_err(dev, "%s: invalid port index %d\n", 2319 __func__, port); 2320 else { 2321 spin_unlock_irqrestore(cfg->host->host_lock, 2322 lock_flags); 2323 2324 /* The reset can block... */ 2325 afu_link_reset(afu, port, 2326 &afu->afu_map->global.fc_regs[port][0]); 2327 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 2328 } 2329 2330 cfg->lr_state = LINK_RESET_COMPLETE; 2331 } 2332 2333 if (afu->read_room) { 2334 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room)); 2335 afu->read_room = false; 2336 } 2337 2338 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); 2339 2340 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) 2341 scsi_scan_host(cfg->host); 2342 } 2343 2344 /** 2345 * cxlflash_probe() - PCI entry point to add host 2346 * @pdev: PCI device associated with the host. 2347 * @dev_id: PCI device id associated with device. 2348 * 2349 * Return: 0 on success, -errno on failure 2350 */ 2351 static int cxlflash_probe(struct pci_dev *pdev, 2352 const struct pci_device_id *dev_id) 2353 { 2354 struct Scsi_Host *host; 2355 struct cxlflash_cfg *cfg = NULL; 2356 struct device *phys_dev; 2357 struct dev_dependent_vals *ddv; 2358 int rc = 0; 2359 2360 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", 2361 __func__, pdev->irq); 2362 2363 ddv = (struct dev_dependent_vals *)dev_id->driver_data; 2364 driver_template.max_sectors = ddv->max_sectors; 2365 2366 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); 2367 if (!host) { 2368 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n", 2369 __func__); 2370 rc = -ENOMEM; 2371 goto out; 2372 } 2373 2374 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; 2375 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; 2376 host->max_channel = NUM_FC_PORTS - 1; 2377 host->unique_id = host->host_no; 2378 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; 2379 2380 cfg = (struct cxlflash_cfg *)host->hostdata; 2381 cfg->host = host; 2382 rc = alloc_mem(cfg); 2383 if (rc) { 2384 dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n", 2385 __func__); 2386 rc = -ENOMEM; 2387 scsi_host_put(cfg->host); 2388 goto out; 2389 } 2390 2391 cfg->init_state = INIT_STATE_NONE; 2392 cfg->dev = pdev; 2393 cfg->cxl_fops = cxlflash_cxl_fops; 2394 2395 /* 2396 * The promoted LUNs move to the top of the LUN table. The rest stay 2397 * on the bottom half. The bottom half grows from the end 2398 * (index = 255), whereas the top half grows from the beginning 2399 * (index = 0). 2400 */ 2401 cfg->promote_lun_index = 0; 2402 cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1; 2403 cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1; 2404 2405 cfg->dev_id = (struct pci_device_id *)dev_id; 2406 2407 init_waitqueue_head(&cfg->tmf_waitq); 2408 init_waitqueue_head(&cfg->reset_waitq); 2409 2410 INIT_WORK(&cfg->work_q, cxlflash_worker_thread); 2411 cfg->lr_state = LINK_RESET_INVALID; 2412 cfg->lr_port = -1; 2413 spin_lock_init(&cfg->tmf_slock); 2414 mutex_init(&cfg->ctx_tbl_list_mutex); 2415 mutex_init(&cfg->ctx_recovery_mutex); 2416 init_rwsem(&cfg->ioctl_rwsem); 2417 INIT_LIST_HEAD(&cfg->ctx_err_recovery); 2418 INIT_LIST_HEAD(&cfg->lluns); 2419 2420 pci_set_drvdata(pdev, cfg); 2421 2422 /* 2423 * Use the special service provided to look up the physical 2424 * PCI device, since we are called on the probe of the virtual 2425 * PCI host bus (vphb) 2426 */ 2427 phys_dev = cxl_get_phys_dev(pdev); 2428 if (!dev_is_pci(phys_dev)) { 2429 dev_err(&pdev->dev, "%s: not a pci dev\n", __func__); 2430 rc = -ENODEV; 2431 goto out_remove; 2432 } 2433 cfg->parent_dev = to_pci_dev(phys_dev); 2434 2435 cfg->cxl_afu = cxl_pci_to_afu(pdev); 2436 2437 rc = init_pci(cfg); 2438 if (rc) { 2439 dev_err(&pdev->dev, "%s: call to init_pci " 2440 "failed rc=%d!\n", __func__, rc); 2441 goto out_remove; 2442 } 2443 cfg->init_state = INIT_STATE_PCI; 2444 2445 rc = init_afu(cfg); 2446 if (rc) { 2447 dev_err(&pdev->dev, "%s: call to init_afu " 2448 "failed rc=%d!\n", __func__, rc); 2449 goto out_remove; 2450 } 2451 cfg->init_state = INIT_STATE_AFU; 2452 2453 rc = init_scsi(cfg); 2454 if (rc) { 2455 dev_err(&pdev->dev, "%s: call to init_scsi " 2456 "failed rc=%d!\n", __func__, rc); 2457 goto out_remove; 2458 } 2459 cfg->init_state = INIT_STATE_SCSI; 2460 2461 out: 2462 pr_debug("%s: returning rc=%d\n", __func__, rc); 2463 return rc; 2464 2465 out_remove: 2466 cxlflash_remove(pdev); 2467 goto out; 2468 } 2469 2470 /** 2471 * drain_ioctls() - wait until all currently executing ioctls have completed 2472 * @cfg: Internal structure associated with the host. 2473 * 2474 * Obtain write access to read/write semaphore that wraps ioctl 2475 * handling to 'drain' ioctls currently executing. 2476 */ 2477 static void drain_ioctls(struct cxlflash_cfg *cfg) 2478 { 2479 down_write(&cfg->ioctl_rwsem); 2480 up_write(&cfg->ioctl_rwsem); 2481 } 2482 2483 /** 2484 * cxlflash_pci_error_detected() - called when a PCI error is detected 2485 * @pdev: PCI device struct. 2486 * @state: PCI channel state. 2487 * 2488 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT 2489 */ 2490 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, 2491 pci_channel_state_t state) 2492 { 2493 int rc = 0; 2494 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 2495 struct device *dev = &cfg->dev->dev; 2496 2497 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); 2498 2499 switch (state) { 2500 case pci_channel_io_frozen: 2501 cfg->state = STATE_RESET; 2502 scsi_block_requests(cfg->host); 2503 drain_ioctls(cfg); 2504 rc = cxlflash_mark_contexts_error(cfg); 2505 if (unlikely(rc)) 2506 dev_err(dev, "%s: Failed to mark user contexts!(%d)\n", 2507 __func__, rc); 2508 term_mc(cfg, UNDO_START); 2509 stop_afu(cfg); 2510 return PCI_ERS_RESULT_NEED_RESET; 2511 case pci_channel_io_perm_failure: 2512 cfg->state = STATE_FAILTERM; 2513 wake_up_all(&cfg->reset_waitq); 2514 scsi_unblock_requests(cfg->host); 2515 return PCI_ERS_RESULT_DISCONNECT; 2516 default: 2517 break; 2518 } 2519 return PCI_ERS_RESULT_NEED_RESET; 2520 } 2521 2522 /** 2523 * cxlflash_pci_slot_reset() - called when PCI slot has been reset 2524 * @pdev: PCI device struct. 2525 * 2526 * This routine is called by the pci error recovery code after the PCI 2527 * slot has been reset, just before we should resume normal operations. 2528 * 2529 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT 2530 */ 2531 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) 2532 { 2533 int rc = 0; 2534 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 2535 struct device *dev = &cfg->dev->dev; 2536 2537 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 2538 2539 rc = init_afu(cfg); 2540 if (unlikely(rc)) { 2541 dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc); 2542 return PCI_ERS_RESULT_DISCONNECT; 2543 } 2544 2545 return PCI_ERS_RESULT_RECOVERED; 2546 } 2547 2548 /** 2549 * cxlflash_pci_resume() - called when normal operation can resume 2550 * @pdev: PCI device struct 2551 */ 2552 static void cxlflash_pci_resume(struct pci_dev *pdev) 2553 { 2554 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 2555 struct device *dev = &cfg->dev->dev; 2556 2557 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 2558 2559 cfg->state = STATE_NORMAL; 2560 wake_up_all(&cfg->reset_waitq); 2561 scsi_unblock_requests(cfg->host); 2562 } 2563 2564 static const struct pci_error_handlers cxlflash_err_handler = { 2565 .error_detected = cxlflash_pci_error_detected, 2566 .slot_reset = cxlflash_pci_slot_reset, 2567 .resume = cxlflash_pci_resume, 2568 }; 2569 2570 /* 2571 * PCI device structure 2572 */ 2573 static struct pci_driver cxlflash_driver = { 2574 .name = CXLFLASH_NAME, 2575 .id_table = cxlflash_pci_table, 2576 .probe = cxlflash_probe, 2577 .remove = cxlflash_remove, 2578 .err_handler = &cxlflash_err_handler, 2579 }; 2580 2581 /** 2582 * init_cxlflash() - module entry point 2583 * 2584 * Return: 0 on success, -errno on failure 2585 */ 2586 static int __init init_cxlflash(void) 2587 { 2588 pr_info("%s: IBM Power CXL Flash Adapter: %s\n", 2589 __func__, CXLFLASH_DRIVER_DATE); 2590 2591 cxlflash_list_init(); 2592 2593 return pci_register_driver(&cxlflash_driver); 2594 } 2595 2596 /** 2597 * exit_cxlflash() - module exit point 2598 */ 2599 static void __exit exit_cxlflash(void) 2600 { 2601 cxlflash_term_global_luns(); 2602 cxlflash_free_errpage(); 2603 2604 pci_unregister_driver(&cxlflash_driver); 2605 } 2606 2607 module_init(init_cxlflash); 2608 module_exit(exit_cxlflash); 2609