xref: /openbmc/linux/drivers/scsi/cxlflash/main.c (revision 9cfc5c90)
1 /*
2  * CXL Flash Device Driver
3  *
4  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6  *
7  * Copyright (C) 2015 IBM Corporation
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 
20 #include <asm/unaligned.h>
21 
22 #include <misc/cxl.h>
23 
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27 
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31 
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36 
37 /**
38  * cmd_checkout() - checks out an AFU command
39  * @afu:	AFU to checkout from.
40  *
41  * Commands are checked out in a round-robin fashion. Note that since
42  * the command pool is larger than the hardware queue, the majority of
43  * times we will only loop once or twice before getting a command. The
44  * buffer and CDB within the command are initialized (zeroed) prior to
45  * returning.
46  *
47  * Return: The checked out command or NULL when command pool is empty.
48  */
49 static struct afu_cmd *cmd_checkout(struct afu *afu)
50 {
51 	int k, dec = CXLFLASH_NUM_CMDS;
52 	struct afu_cmd *cmd;
53 
54 	while (dec--) {
55 		k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1));
56 
57 		cmd = &afu->cmd[k];
58 
59 		if (!atomic_dec_if_positive(&cmd->free)) {
60 			pr_devel("%s: returning found index=%d cmd=%p\n",
61 				 __func__, cmd->slot, cmd);
62 			memset(cmd->buf, 0, CMD_BUFSIZE);
63 			memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
64 			return cmd;
65 		}
66 	}
67 
68 	return NULL;
69 }
70 
71 /**
72  * cmd_checkin() - checks in an AFU command
73  * @cmd:	AFU command to checkin.
74  *
75  * Safe to pass commands that have already been checked in. Several
76  * internal tracking fields are reset as part of the checkin. Note
77  * that these are intentionally reset prior to toggling the free bit
78  * to avoid clobbering values in the event that the command is checked
79  * out right away.
80  */
81 static void cmd_checkin(struct afu_cmd *cmd)
82 {
83 	cmd->rcb.scp = NULL;
84 	cmd->rcb.timeout = 0;
85 	cmd->sa.ioasc = 0;
86 	cmd->cmd_tmf = false;
87 	cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */
88 
89 	if (unlikely(atomic_inc_return(&cmd->free) != 1)) {
90 		pr_err("%s: Freeing cmd (%d) that is not in use!\n",
91 		       __func__, cmd->slot);
92 		return;
93 	}
94 
95 	pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot);
96 }
97 
98 /**
99  * process_cmd_err() - command error handler
100  * @cmd:	AFU command that experienced the error.
101  * @scp:	SCSI command associated with the AFU command in error.
102  *
103  * Translates error bits from AFU command to SCSI command results.
104  */
105 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
106 {
107 	struct sisl_ioarcb *ioarcb;
108 	struct sisl_ioasa *ioasa;
109 	u32 resid;
110 
111 	if (unlikely(!cmd))
112 		return;
113 
114 	ioarcb = &(cmd->rcb);
115 	ioasa = &(cmd->sa);
116 
117 	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
118 		resid = ioasa->resid;
119 		scsi_set_resid(scp, resid);
120 		pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
121 			 __func__, cmd, scp, resid);
122 	}
123 
124 	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
125 		pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
126 			 __func__, cmd, scp);
127 		scp->result = (DID_ERROR << 16);
128 	}
129 
130 	pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
131 		 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
132 		 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc,
133 		 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra,
134 		 ioasa->fc_extra);
135 
136 	if (ioasa->rc.scsi_rc) {
137 		/* We have a SCSI status */
138 		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
139 			memcpy(scp->sense_buffer, ioasa->sense_data,
140 			       SISL_SENSE_DATA_LEN);
141 			scp->result = ioasa->rc.scsi_rc;
142 		} else
143 			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
144 	}
145 
146 	/*
147 	 * We encountered an error. Set scp->result based on nature
148 	 * of error.
149 	 */
150 	if (ioasa->rc.fc_rc) {
151 		/* We have an FC status */
152 		switch (ioasa->rc.fc_rc) {
153 		case SISL_FC_RC_LINKDOWN:
154 			scp->result = (DID_REQUEUE << 16);
155 			break;
156 		case SISL_FC_RC_RESID:
157 			/* This indicates an FCP resid underrun */
158 			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
159 				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
160 				 * then we will handle this error else where.
161 				 * If not then we must handle it here.
162 				 * This is probably an AFU bug.
163 				 */
164 				scp->result = (DID_ERROR << 16);
165 			}
166 			break;
167 		case SISL_FC_RC_RESIDERR:
168 			/* Resid mismatch between adapter and device */
169 		case SISL_FC_RC_TGTABORT:
170 		case SISL_FC_RC_ABORTOK:
171 		case SISL_FC_RC_ABORTFAIL:
172 		case SISL_FC_RC_NOLOGI:
173 		case SISL_FC_RC_ABORTPEND:
174 		case SISL_FC_RC_WRABORTPEND:
175 		case SISL_FC_RC_NOEXP:
176 		case SISL_FC_RC_INUSE:
177 			scp->result = (DID_ERROR << 16);
178 			break;
179 		}
180 	}
181 
182 	if (ioasa->rc.afu_rc) {
183 		/* We have an AFU error */
184 		switch (ioasa->rc.afu_rc) {
185 		case SISL_AFU_RC_NO_CHANNELS:
186 			scp->result = (DID_NO_CONNECT << 16);
187 			break;
188 		case SISL_AFU_RC_DATA_DMA_ERR:
189 			switch (ioasa->afu_extra) {
190 			case SISL_AFU_DMA_ERR_PAGE_IN:
191 				/* Retry */
192 				scp->result = (DID_IMM_RETRY << 16);
193 				break;
194 			case SISL_AFU_DMA_ERR_INVALID_EA:
195 			default:
196 				scp->result = (DID_ERROR << 16);
197 			}
198 			break;
199 		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
200 			/* Retry */
201 			scp->result = (DID_ALLOC_FAILURE << 16);
202 			break;
203 		default:
204 			scp->result = (DID_ERROR << 16);
205 		}
206 	}
207 }
208 
209 /**
210  * cmd_complete() - command completion handler
211  * @cmd:	AFU command that has completed.
212  *
213  * Prepares and submits command that has either completed or timed out to
214  * the SCSI stack. Checks AFU command back into command pool for non-internal
215  * (rcb.scp populated) commands.
216  */
217 static void cmd_complete(struct afu_cmd *cmd)
218 {
219 	struct scsi_cmnd *scp;
220 	ulong lock_flags;
221 	struct afu *afu = cmd->parent;
222 	struct cxlflash_cfg *cfg = afu->parent;
223 	bool cmd_is_tmf;
224 
225 	spin_lock_irqsave(&cmd->slock, lock_flags);
226 	cmd->sa.host_use_b[0] |= B_DONE;
227 	spin_unlock_irqrestore(&cmd->slock, lock_flags);
228 
229 	if (cmd->rcb.scp) {
230 		scp = cmd->rcb.scp;
231 		if (unlikely(cmd->sa.ioasc))
232 			process_cmd_err(cmd, scp);
233 		else
234 			scp->result = (DID_OK << 16);
235 
236 		cmd_is_tmf = cmd->cmd_tmf;
237 		cmd_checkin(cmd); /* Don't use cmd after here */
238 
239 		pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
240 				     "ioasc=%d\n", __func__, scp, scp->result,
241 				     cmd->sa.ioasc);
242 
243 		scsi_dma_unmap(scp);
244 		scp->scsi_done(scp);
245 
246 		if (cmd_is_tmf) {
247 			spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
248 			cfg->tmf_active = false;
249 			wake_up_all_locked(&cfg->tmf_waitq);
250 			spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
251 		}
252 	} else
253 		complete(&cmd->cevent);
254 }
255 
256 /**
257  * context_reset() - timeout handler for AFU commands
258  * @cmd:	AFU command that timed out.
259  *
260  * Sends a reset to the AFU.
261  */
262 static void context_reset(struct afu_cmd *cmd)
263 {
264 	int nretry = 0;
265 	u64 rrin = 0x1;
266 	u64 room = 0;
267 	struct afu *afu = cmd->parent;
268 	ulong lock_flags;
269 
270 	pr_debug("%s: cmd=%p\n", __func__, cmd);
271 
272 	spin_lock_irqsave(&cmd->slock, lock_flags);
273 
274 	/* Already completed? */
275 	if (cmd->sa.host_use_b[0] & B_DONE) {
276 		spin_unlock_irqrestore(&cmd->slock, lock_flags);
277 		return;
278 	}
279 
280 	cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT);
281 	spin_unlock_irqrestore(&cmd->slock, lock_flags);
282 
283 	/*
284 	 * We really want to send this reset at all costs, so spread
285 	 * out wait time on successive retries for available room.
286 	 */
287 	do {
288 		room = readq_be(&afu->host_map->cmd_room);
289 		atomic64_set(&afu->room, room);
290 		if (room)
291 			goto write_rrin;
292 		udelay(nretry);
293 	} while (nretry++ < MC_ROOM_RETRY_CNT);
294 
295 	pr_err("%s: no cmd_room to send reset\n", __func__);
296 	return;
297 
298 write_rrin:
299 	nretry = 0;
300 	writeq_be(rrin, &afu->host_map->ioarrin);
301 	do {
302 		rrin = readq_be(&afu->host_map->ioarrin);
303 		if (rrin != 0x1)
304 			break;
305 		/* Double delay each time */
306 		udelay(2 << nretry);
307 	} while (nretry++ < MC_ROOM_RETRY_CNT);
308 }
309 
310 /**
311  * send_cmd() - sends an AFU command
312  * @afu:	AFU associated with the host.
313  * @cmd:	AFU command to send.
314  *
315  * Return:
316  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
317  */
318 static int send_cmd(struct afu *afu, struct afu_cmd *cmd)
319 {
320 	struct cxlflash_cfg *cfg = afu->parent;
321 	struct device *dev = &cfg->dev->dev;
322 	int nretry = 0;
323 	int rc = 0;
324 	u64 room;
325 	long newval;
326 
327 	/*
328 	 * This routine is used by critical users such an AFU sync and to
329 	 * send a task management function (TMF). Thus we want to retry a
330 	 * bit before returning an error. To avoid the performance penalty
331 	 * of MMIO, we spread the update of 'room' over multiple commands.
332 	 */
333 retry:
334 	newval = atomic64_dec_if_positive(&afu->room);
335 	if (!newval) {
336 		do {
337 			room = readq_be(&afu->host_map->cmd_room);
338 			atomic64_set(&afu->room, room);
339 			if (room)
340 				goto write_ioarrin;
341 			udelay(nretry);
342 		} while (nretry++ < MC_ROOM_RETRY_CNT);
343 
344 		dev_err(dev, "%s: no cmd_room to send 0x%X\n",
345 		       __func__, cmd->rcb.cdb[0]);
346 
347 		goto no_room;
348 	} else if (unlikely(newval < 0)) {
349 		/* This should be rare. i.e. Only if two threads race and
350 		 * decrement before the MMIO read is done. In this case
351 		 * just benefit from the other thread having updated
352 		 * afu->room.
353 		 */
354 		if (nretry++ < MC_ROOM_RETRY_CNT) {
355 			udelay(nretry);
356 			goto retry;
357 		}
358 
359 		goto no_room;
360 	}
361 
362 write_ioarrin:
363 	writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
364 out:
365 	pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd,
366 		 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc);
367 	return rc;
368 
369 no_room:
370 	afu->read_room = true;
371 	schedule_work(&cfg->work_q);
372 	rc = SCSI_MLQUEUE_HOST_BUSY;
373 	goto out;
374 }
375 
376 /**
377  * wait_resp() - polls for a response or timeout to a sent AFU command
378  * @afu:	AFU associated with the host.
379  * @cmd:	AFU command that was sent.
380  */
381 static void wait_resp(struct afu *afu, struct afu_cmd *cmd)
382 {
383 	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
384 
385 	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
386 	if (!timeout)
387 		context_reset(cmd);
388 
389 	if (unlikely(cmd->sa.ioasc != 0))
390 		pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
391 		       "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0],
392 		       cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc,
393 		       cmd->sa.rc.fc_rc);
394 }
395 
396 /**
397  * send_tmf() - sends a Task Management Function (TMF)
398  * @afu:	AFU to checkout from.
399  * @scp:	SCSI command from stack.
400  * @tmfcmd:	TMF command to send.
401  *
402  * Return:
403  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
404  */
405 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
406 {
407 	struct afu_cmd *cmd;
408 
409 	u32 port_sel = scp->device->channel + 1;
410 	short lflag = 0;
411 	struct Scsi_Host *host = scp->device->host;
412 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
413 	struct device *dev = &cfg->dev->dev;
414 	ulong lock_flags;
415 	int rc = 0;
416 	ulong to;
417 
418 	cmd = cmd_checkout(afu);
419 	if (unlikely(!cmd)) {
420 		dev_err(dev, "%s: could not get a free command\n", __func__);
421 		rc = SCSI_MLQUEUE_HOST_BUSY;
422 		goto out;
423 	}
424 
425 	/* When Task Management Function is active do not send another */
426 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
427 	if (cfg->tmf_active)
428 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
429 						  !cfg->tmf_active,
430 						  cfg->tmf_slock);
431 	cfg->tmf_active = true;
432 	cmd->cmd_tmf = true;
433 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
434 
435 	cmd->rcb.ctx_id = afu->ctx_hndl;
436 	cmd->rcb.port_sel = port_sel;
437 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
438 
439 	lflag = SISL_REQ_FLAGS_TMF_CMD;
440 
441 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
442 			      SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
443 
444 	/* Stash the scp in the reserved field, for reuse during interrupt */
445 	cmd->rcb.scp = scp;
446 
447 	/* Copy the CDB from the cmd passed in */
448 	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
449 
450 	/* Send the command */
451 	rc = send_cmd(afu, cmd);
452 	if (unlikely(rc)) {
453 		cmd_checkin(cmd);
454 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
455 		cfg->tmf_active = false;
456 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
457 		goto out;
458 	}
459 
460 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
461 	to = msecs_to_jiffies(5000);
462 	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
463 						       !cfg->tmf_active,
464 						       cfg->tmf_slock,
465 						       to);
466 	if (!to) {
467 		cfg->tmf_active = false;
468 		dev_err(dev, "%s: TMF timed out!\n", __func__);
469 		rc = -1;
470 	}
471 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
472 out:
473 	return rc;
474 }
475 
476 /**
477  * cxlflash_driver_info() - information handler for this host driver
478  * @host:	SCSI host associated with device.
479  *
480  * Return: A string describing the device.
481  */
482 static const char *cxlflash_driver_info(struct Scsi_Host *host)
483 {
484 	return CXLFLASH_ADAPTER_NAME;
485 }
486 
487 /**
488  * cxlflash_queuecommand() - sends a mid-layer request
489  * @host:	SCSI host associated with device.
490  * @scp:	SCSI command to send.
491  *
492  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
493  */
494 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
495 {
496 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
497 	struct afu *afu = cfg->afu;
498 	struct device *dev = &cfg->dev->dev;
499 	struct afu_cmd *cmd;
500 	u32 port_sel = scp->device->channel + 1;
501 	int nseg, i, ncount;
502 	struct scatterlist *sg;
503 	ulong lock_flags;
504 	short lflag = 0;
505 	int rc = 0;
506 
507 	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
508 			    "cdb=(%08X-%08X-%08X-%08X)\n",
509 			    __func__, scp, host->host_no, scp->device->channel,
510 			    scp->device->id, scp->device->lun,
511 			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
512 			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
513 			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
514 			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
515 
516 	/*
517 	 * If a Task Management Function is active, wait for it to complete
518 	 * before continuing with regular commands.
519 	 */
520 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
521 	if (cfg->tmf_active) {
522 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
523 		rc = SCSI_MLQUEUE_HOST_BUSY;
524 		goto out;
525 	}
526 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
527 
528 	switch (cfg->state) {
529 	case STATE_RESET:
530 		dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__);
531 		rc = SCSI_MLQUEUE_HOST_BUSY;
532 		goto out;
533 	case STATE_FAILTERM:
534 		dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__);
535 		scp->result = (DID_NO_CONNECT << 16);
536 		scp->scsi_done(scp);
537 		rc = 0;
538 		goto out;
539 	default:
540 		break;
541 	}
542 
543 	cmd = cmd_checkout(afu);
544 	if (unlikely(!cmd)) {
545 		dev_err(dev, "%s: could not get a free command\n", __func__);
546 		rc = SCSI_MLQUEUE_HOST_BUSY;
547 		goto out;
548 	}
549 
550 	cmd->rcb.ctx_id = afu->ctx_hndl;
551 	cmd->rcb.port_sel = port_sel;
552 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
553 
554 	if (scp->sc_data_direction == DMA_TO_DEVICE)
555 		lflag = SISL_REQ_FLAGS_HOST_WRITE;
556 	else
557 		lflag = SISL_REQ_FLAGS_HOST_READ;
558 
559 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
560 			      SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
561 
562 	/* Stash the scp in the reserved field, for reuse during interrupt */
563 	cmd->rcb.scp = scp;
564 
565 	nseg = scsi_dma_map(scp);
566 	if (unlikely(nseg < 0)) {
567 		dev_err(dev, "%s: Fail DMA map! nseg=%d\n",
568 			__func__, nseg);
569 		rc = SCSI_MLQUEUE_HOST_BUSY;
570 		goto out;
571 	}
572 
573 	ncount = scsi_sg_count(scp);
574 	scsi_for_each_sg(scp, sg, ncount, i) {
575 		cmd->rcb.data_len = sg_dma_len(sg);
576 		cmd->rcb.data_ea = sg_dma_address(sg);
577 	}
578 
579 	/* Copy the CDB from the scsi_cmnd passed in */
580 	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
581 
582 	/* Send the command */
583 	rc = send_cmd(afu, cmd);
584 	if (unlikely(rc)) {
585 		cmd_checkin(cmd);
586 		scsi_dma_unmap(scp);
587 	}
588 
589 out:
590 	pr_devel("%s: returning rc=%d\n", __func__, rc);
591 	return rc;
592 }
593 
594 /**
595  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
596  * @cfg:	Internal structure associated with the host.
597  */
598 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
599 {
600 	struct pci_dev *pdev = cfg->dev;
601 
602 	if (pci_channel_offline(pdev))
603 		wait_event_timeout(cfg->reset_waitq,
604 				   !pci_channel_offline(pdev),
605 				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
606 }
607 
608 /**
609  * free_mem() - free memory associated with the AFU
610  * @cfg:	Internal structure associated with the host.
611  */
612 static void free_mem(struct cxlflash_cfg *cfg)
613 {
614 	int i;
615 	char *buf = NULL;
616 	struct afu *afu = cfg->afu;
617 
618 	if (cfg->afu) {
619 		for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
620 			buf = afu->cmd[i].buf;
621 			if (!((u64)buf & (PAGE_SIZE - 1)))
622 				free_page((ulong)buf);
623 		}
624 
625 		free_pages((ulong)afu, get_order(sizeof(struct afu)));
626 		cfg->afu = NULL;
627 	}
628 }
629 
630 /**
631  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
632  * @cfg:	Internal structure associated with the host.
633  *
634  * Safe to call with AFU in a partially allocated/initialized state.
635  */
636 static void stop_afu(struct cxlflash_cfg *cfg)
637 {
638 	int i;
639 	struct afu *afu = cfg->afu;
640 
641 	if (likely(afu)) {
642 		for (i = 0; i < CXLFLASH_NUM_CMDS; i++)
643 			complete(&afu->cmd[i].cevent);
644 
645 		if (likely(afu->afu_map)) {
646 			cxl_psa_unmap((void __iomem *)afu->afu_map);
647 			afu->afu_map = NULL;
648 		}
649 	}
650 }
651 
652 /**
653  * term_mc() - terminates the master context
654  * @cfg:	Internal structure associated with the host.
655  * @level:	Depth of allocation, where to begin waterfall tear down.
656  *
657  * Safe to call with AFU/MC in partially allocated/initialized state.
658  */
659 static void term_mc(struct cxlflash_cfg *cfg, enum undo_level level)
660 {
661 	int rc = 0;
662 	struct afu *afu = cfg->afu;
663 	struct device *dev = &cfg->dev->dev;
664 
665 	if (!afu || !cfg->mcctx) {
666 		dev_err(dev, "%s: returning from term_mc with NULL afu or MC\n",
667 		       __func__);
668 		return;
669 	}
670 
671 	switch (level) {
672 	case UNDO_START:
673 		rc = cxl_stop_context(cfg->mcctx);
674 		BUG_ON(rc);
675 	case UNMAP_THREE:
676 		cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
677 	case UNMAP_TWO:
678 		cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
679 	case UNMAP_ONE:
680 		cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
681 	case FREE_IRQ:
682 		cxl_free_afu_irqs(cfg->mcctx);
683 	case RELEASE_CONTEXT:
684 		cfg->mcctx = NULL;
685 	}
686 }
687 
688 /**
689  * term_afu() - terminates the AFU
690  * @cfg:	Internal structure associated with the host.
691  *
692  * Safe to call with AFU/MC in partially allocated/initialized state.
693  */
694 static void term_afu(struct cxlflash_cfg *cfg)
695 {
696 	term_mc(cfg, UNDO_START);
697 
698 	if (cfg->afu)
699 		stop_afu(cfg);
700 
701 	pr_debug("%s: returning\n", __func__);
702 }
703 
704 /**
705  * cxlflash_remove() - PCI entry point to tear down host
706  * @pdev:	PCI device associated with the host.
707  *
708  * Safe to use as a cleanup in partially allocated/initialized state.
709  */
710 static void cxlflash_remove(struct pci_dev *pdev)
711 {
712 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
713 	ulong lock_flags;
714 
715 	/* If a Task Management Function is active, wait for it to complete
716 	 * before continuing with remove.
717 	 */
718 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
719 	if (cfg->tmf_active)
720 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
721 						  !cfg->tmf_active,
722 						  cfg->tmf_slock);
723 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
724 
725 	cfg->state = STATE_FAILTERM;
726 	cxlflash_stop_term_user_contexts(cfg);
727 
728 	switch (cfg->init_state) {
729 	case INIT_STATE_SCSI:
730 		cxlflash_term_local_luns(cfg);
731 		scsi_remove_host(cfg->host);
732 		/* fall through */
733 	case INIT_STATE_AFU:
734 		term_afu(cfg);
735 		cancel_work_sync(&cfg->work_q);
736 	case INIT_STATE_PCI:
737 		pci_release_regions(cfg->dev);
738 		pci_disable_device(pdev);
739 	case INIT_STATE_NONE:
740 		free_mem(cfg);
741 		scsi_host_put(cfg->host);
742 		break;
743 	}
744 
745 	pr_debug("%s: returning\n", __func__);
746 }
747 
748 /**
749  * alloc_mem() - allocates the AFU and its command pool
750  * @cfg:	Internal structure associated with the host.
751  *
752  * A partially allocated state remains on failure.
753  *
754  * Return:
755  *	0 on success
756  *	-ENOMEM on failure to allocate memory
757  */
758 static int alloc_mem(struct cxlflash_cfg *cfg)
759 {
760 	int rc = 0;
761 	int i;
762 	char *buf = NULL;
763 	struct device *dev = &cfg->dev->dev;
764 
765 	/* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */
766 	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
767 					    get_order(sizeof(struct afu)));
768 	if (unlikely(!cfg->afu)) {
769 		dev_err(dev, "%s: cannot get %d free pages\n",
770 			__func__, get_order(sizeof(struct afu)));
771 		rc = -ENOMEM;
772 		goto out;
773 	}
774 	cfg->afu->parent = cfg;
775 	cfg->afu->afu_map = NULL;
776 
777 	for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) {
778 		if (!((u64)buf & (PAGE_SIZE - 1))) {
779 			buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
780 			if (unlikely(!buf)) {
781 				dev_err(dev,
782 					"%s: Allocate command buffers fail!\n",
783 				       __func__);
784 				rc = -ENOMEM;
785 				free_mem(cfg);
786 				goto out;
787 			}
788 		}
789 
790 		cfg->afu->cmd[i].buf = buf;
791 		atomic_set(&cfg->afu->cmd[i].free, 1);
792 		cfg->afu->cmd[i].slot = i;
793 	}
794 
795 out:
796 	return rc;
797 }
798 
799 /**
800  * init_pci() - initializes the host as a PCI device
801  * @cfg:	Internal structure associated with the host.
802  *
803  * Return: 0 on success, -errno on failure
804  */
805 static int init_pci(struct cxlflash_cfg *cfg)
806 {
807 	struct pci_dev *pdev = cfg->dev;
808 	int rc = 0;
809 
810 	cfg->cxlflash_regs_pci = pci_resource_start(pdev, 0);
811 	rc = pci_request_regions(pdev, CXLFLASH_NAME);
812 	if (rc < 0) {
813 		dev_err(&pdev->dev,
814 			"%s: Couldn't register memory range of registers\n",
815 			__func__);
816 		goto out;
817 	}
818 
819 	rc = pci_enable_device(pdev);
820 	if (rc || pci_channel_offline(pdev)) {
821 		if (pci_channel_offline(pdev)) {
822 			cxlflash_wait_for_pci_err_recovery(cfg);
823 			rc = pci_enable_device(pdev);
824 		}
825 
826 		if (rc) {
827 			dev_err(&pdev->dev, "%s: Cannot enable adapter\n",
828 				__func__);
829 			cxlflash_wait_for_pci_err_recovery(cfg);
830 			goto out_release_regions;
831 		}
832 	}
833 
834 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
835 	if (rc < 0) {
836 		dev_dbg(&pdev->dev, "%s: Failed to set 64 bit PCI DMA mask\n",
837 			__func__);
838 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
839 	}
840 
841 	if (rc < 0) {
842 		dev_err(&pdev->dev, "%s: Failed to set PCI DMA mask\n",
843 			__func__);
844 		goto out_disable;
845 	}
846 
847 	pci_set_master(pdev);
848 
849 	if (pci_channel_offline(pdev)) {
850 		cxlflash_wait_for_pci_err_recovery(cfg);
851 		if (pci_channel_offline(pdev)) {
852 			rc = -EIO;
853 			goto out_msi_disable;
854 		}
855 	}
856 
857 	rc = pci_save_state(pdev);
858 
859 	if (rc != PCIBIOS_SUCCESSFUL) {
860 		dev_err(&pdev->dev, "%s: Failed to save PCI config space\n",
861 			__func__);
862 		rc = -EIO;
863 		goto cleanup_nolog;
864 	}
865 
866 out:
867 	pr_debug("%s: returning rc=%d\n", __func__, rc);
868 	return rc;
869 
870 cleanup_nolog:
871 out_msi_disable:
872 	cxlflash_wait_for_pci_err_recovery(cfg);
873 out_disable:
874 	pci_disable_device(pdev);
875 out_release_regions:
876 	pci_release_regions(pdev);
877 	goto out;
878 
879 }
880 
881 /**
882  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
883  * @cfg:	Internal structure associated with the host.
884  *
885  * Return: 0 on success, -errno on failure
886  */
887 static int init_scsi(struct cxlflash_cfg *cfg)
888 {
889 	struct pci_dev *pdev = cfg->dev;
890 	int rc = 0;
891 
892 	rc = scsi_add_host(cfg->host, &pdev->dev);
893 	if (rc) {
894 		dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n",
895 			__func__, rc);
896 		goto out;
897 	}
898 
899 	scsi_scan_host(cfg->host);
900 
901 out:
902 	pr_debug("%s: returning rc=%d\n", __func__, rc);
903 	return rc;
904 }
905 
906 /**
907  * set_port_online() - transitions the specified host FC port to online state
908  * @fc_regs:	Top of MMIO region defined for specified port.
909  *
910  * The provided MMIO region must be mapped prior to call. Online state means
911  * that the FC link layer has synced, completed the handshaking process, and
912  * is ready for login to start.
913  */
914 static void set_port_online(__be64 __iomem *fc_regs)
915 {
916 	u64 cmdcfg;
917 
918 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
919 	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
920 	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
921 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
922 }
923 
924 /**
925  * set_port_offline() - transitions the specified host FC port to offline state
926  * @fc_regs:	Top of MMIO region defined for specified port.
927  *
928  * The provided MMIO region must be mapped prior to call.
929  */
930 static void set_port_offline(__be64 __iomem *fc_regs)
931 {
932 	u64 cmdcfg;
933 
934 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
935 	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
936 	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
937 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
938 }
939 
940 /**
941  * wait_port_online() - waits for the specified host FC port come online
942  * @fc_regs:	Top of MMIO region defined for specified port.
943  * @delay_us:	Number of microseconds to delay between reading port status.
944  * @nretry:	Number of cycles to retry reading port status.
945  *
946  * The provided MMIO region must be mapped prior to call. This will timeout
947  * when the cable is not plugged in.
948  *
949  * Return:
950  *	TRUE (1) when the specified port is online
951  *	FALSE (0) when the specified port fails to come online after timeout
952  *	-EINVAL when @delay_us is less than 1000
953  */
954 static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
955 {
956 	u64 status;
957 
958 	if (delay_us < 1000) {
959 		pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
960 		return -EINVAL;
961 	}
962 
963 	do {
964 		msleep(delay_us / 1000);
965 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
966 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
967 		 nretry--);
968 
969 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
970 }
971 
972 /**
973  * wait_port_offline() - waits for the specified host FC port go offline
974  * @fc_regs:	Top of MMIO region defined for specified port.
975  * @delay_us:	Number of microseconds to delay between reading port status.
976  * @nretry:	Number of cycles to retry reading port status.
977  *
978  * The provided MMIO region must be mapped prior to call.
979  *
980  * Return:
981  *	TRUE (1) when the specified port is offline
982  *	FALSE (0) when the specified port fails to go offline after timeout
983  *	-EINVAL when @delay_us is less than 1000
984  */
985 static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
986 {
987 	u64 status;
988 
989 	if (delay_us < 1000) {
990 		pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
991 		return -EINVAL;
992 	}
993 
994 	do {
995 		msleep(delay_us / 1000);
996 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
997 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
998 		 nretry--);
999 
1000 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1001 }
1002 
1003 /**
1004  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1005  * @afu:	AFU associated with the host that owns the specified FC port.
1006  * @port:	Port number being configured.
1007  * @fc_regs:	Top of MMIO region defined for specified port.
1008  * @wwpn:	The world-wide-port-number previously discovered for port.
1009  *
1010  * The provided MMIO region must be mapped prior to call. As part of the
1011  * sequence to configure the WWPN, the port is toggled offline and then back
1012  * online. This toggling action can cause this routine to delay up to a few
1013  * seconds. When configured to use the internal LUN feature of the AFU, a
1014  * failure to come online is overridden.
1015  *
1016  * Return:
1017  *	0 when the WWPN is successfully written and the port comes back online
1018  *	-1 when the port fails to go offline or come back up online
1019  */
1020 static int afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1021 			u64 wwpn)
1022 {
1023 	int rc = 0;
1024 
1025 	set_port_offline(fc_regs);
1026 
1027 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1028 			       FC_PORT_STATUS_RETRY_CNT)) {
1029 		pr_debug("%s: wait on port %d to go offline timed out\n",
1030 			 __func__, port);
1031 		rc = -1; /* but continue on to leave the port back online */
1032 	}
1033 
1034 	if (rc == 0)
1035 		writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1036 
1037 	/* Always return success after programming WWPN */
1038 	rc = 0;
1039 
1040 	set_port_online(fc_regs);
1041 
1042 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1043 			      FC_PORT_STATUS_RETRY_CNT)) {
1044 		pr_err("%s: wait on port %d to go online timed out\n",
1045 		       __func__, port);
1046 	}
1047 
1048 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1049 
1050 	return rc;
1051 }
1052 
1053 /**
1054  * afu_link_reset() - resets the specified host FC port
1055  * @afu:	AFU associated with the host that owns the specified FC port.
1056  * @port:	Port number being configured.
1057  * @fc_regs:	Top of MMIO region defined for specified port.
1058  *
1059  * The provided MMIO region must be mapped prior to call. The sequence to
1060  * reset the port involves toggling it offline and then back online. This
1061  * action can cause this routine to delay up to a few seconds. An effort
1062  * is made to maintain link with the device by switching to host to use
1063  * the alternate port exclusively while the reset takes place.
1064  * failure to come online is overridden.
1065  */
1066 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1067 {
1068 	u64 port_sel;
1069 
1070 	/* first switch the AFU to the other links, if any */
1071 	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1072 	port_sel &= ~(1ULL << port);
1073 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1074 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1075 
1076 	set_port_offline(fc_regs);
1077 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1078 			       FC_PORT_STATUS_RETRY_CNT))
1079 		pr_err("%s: wait on port %d to go offline timed out\n",
1080 		       __func__, port);
1081 
1082 	set_port_online(fc_regs);
1083 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1084 			      FC_PORT_STATUS_RETRY_CNT))
1085 		pr_err("%s: wait on port %d to go online timed out\n",
1086 		       __func__, port);
1087 
1088 	/* switch back to include this port */
1089 	port_sel |= (1ULL << port);
1090 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1091 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1092 
1093 	pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel);
1094 }
1095 
1096 /*
1097  * Asynchronous interrupt information table
1098  */
1099 static const struct asyc_intr_info ainfo[] = {
1100 	{SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1101 	{SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1102 	{SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
1103 	{SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
1104 	{SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
1105 	{SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
1106 	{SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
1107 	{SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST},
1108 	{SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1109 	{SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1110 	{SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
1111 	{SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, 0},
1112 	{SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
1113 	{SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
1114 	{SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
1115 	{SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST},
1116 	{0x0, "", 0, 0}		/* terminator */
1117 };
1118 
1119 /**
1120  * find_ainfo() - locates and returns asynchronous interrupt information
1121  * @status:	Status code set by AFU on error.
1122  *
1123  * Return: The located information or NULL when the status code is invalid.
1124  */
1125 static const struct asyc_intr_info *find_ainfo(u64 status)
1126 {
1127 	const struct asyc_intr_info *info;
1128 
1129 	for (info = &ainfo[0]; info->status; info++)
1130 		if (info->status == status)
1131 			return info;
1132 
1133 	return NULL;
1134 }
1135 
1136 /**
1137  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1138  * @afu:	AFU associated with the host.
1139  */
1140 static void afu_err_intr_init(struct afu *afu)
1141 {
1142 	int i;
1143 	u64 reg;
1144 
1145 	/* global async interrupts: AFU clears afu_ctrl on context exit
1146 	 * if async interrupts were sent to that context. This prevents
1147 	 * the AFU form sending further async interrupts when
1148 	 * there is
1149 	 * nobody to receive them.
1150 	 */
1151 
1152 	/* mask all */
1153 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1154 	/* set LISN# to send and point to master context */
1155 	reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1156 
1157 	if (afu->internal_lun)
1158 		reg |= 1;	/* Bit 63 indicates local lun */
1159 	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1160 	/* clear all */
1161 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1162 	/* unmask bits that are of interest */
1163 	/* note: afu can send an interrupt after this step */
1164 	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1165 	/* clear again in case a bit came on after previous clear but before */
1166 	/* unmask */
1167 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1168 
1169 	/* Clear/Set internal lun bits */
1170 	reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1171 	reg &= SISL_FC_INTERNAL_MASK;
1172 	if (afu->internal_lun)
1173 		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1174 	writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1175 
1176 	/* now clear FC errors */
1177 	for (i = 0; i < NUM_FC_PORTS; i++) {
1178 		writeq_be(0xFFFFFFFFU,
1179 			  &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1180 		writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1181 	}
1182 
1183 	/* sync interrupts for master's IOARRIN write */
1184 	/* note that unlike asyncs, there can be no pending sync interrupts */
1185 	/* at this time (this is a fresh context and master has not written */
1186 	/* IOARRIN yet), so there is nothing to clear. */
1187 
1188 	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1189 	writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1190 	writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1191 }
1192 
1193 /**
1194  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1195  * @irq:	Interrupt number.
1196  * @data:	Private data provided at interrupt registration, the AFU.
1197  *
1198  * Return: Always return IRQ_HANDLED.
1199  */
1200 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1201 {
1202 	struct afu *afu = (struct afu *)data;
1203 	u64 reg;
1204 	u64 reg_unmasked;
1205 
1206 	reg = readq_be(&afu->host_map->intr_status);
1207 	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1208 
1209 	if (reg_unmasked == 0UL) {
1210 		pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
1211 		       __func__, (u64)afu, reg);
1212 		goto cxlflash_sync_err_irq_exit;
1213 	}
1214 
1215 	pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
1216 	       __func__, (u64)afu, reg);
1217 
1218 	writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1219 
1220 cxlflash_sync_err_irq_exit:
1221 	pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED);
1222 	return IRQ_HANDLED;
1223 }
1224 
1225 /**
1226  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1227  * @irq:	Interrupt number.
1228  * @data:	Private data provided at interrupt registration, the AFU.
1229  *
1230  * Return: Always return IRQ_HANDLED.
1231  */
1232 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1233 {
1234 	struct afu *afu = (struct afu *)data;
1235 	struct afu_cmd *cmd;
1236 	bool toggle = afu->toggle;
1237 	u64 entry,
1238 	    *hrrq_start = afu->hrrq_start,
1239 	    *hrrq_end = afu->hrrq_end,
1240 	    *hrrq_curr = afu->hrrq_curr;
1241 
1242 	/* Process however many RRQ entries that are ready */
1243 	while (true) {
1244 		entry = *hrrq_curr;
1245 
1246 		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1247 			break;
1248 
1249 		cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT);
1250 		cmd_complete(cmd);
1251 
1252 		/* Advance to next entry or wrap and flip the toggle bit */
1253 		if (hrrq_curr < hrrq_end)
1254 			hrrq_curr++;
1255 		else {
1256 			hrrq_curr = hrrq_start;
1257 			toggle ^= SISL_RESP_HANDLE_T_BIT;
1258 		}
1259 	}
1260 
1261 	afu->hrrq_curr = hrrq_curr;
1262 	afu->toggle = toggle;
1263 
1264 	return IRQ_HANDLED;
1265 }
1266 
1267 /**
1268  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1269  * @irq:	Interrupt number.
1270  * @data:	Private data provided at interrupt registration, the AFU.
1271  *
1272  * Return: Always return IRQ_HANDLED.
1273  */
1274 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1275 {
1276 	struct afu *afu = (struct afu *)data;
1277 	struct cxlflash_cfg *cfg = afu->parent;
1278 	struct device *dev = &cfg->dev->dev;
1279 	u64 reg_unmasked;
1280 	const struct asyc_intr_info *info;
1281 	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1282 	u64 reg;
1283 	u8 port;
1284 	int i;
1285 
1286 	reg = readq_be(&global->regs.aintr_status);
1287 	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1288 
1289 	if (reg_unmasked == 0) {
1290 		dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n",
1291 			__func__, reg);
1292 		goto out;
1293 	}
1294 
1295 	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1296 	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1297 
1298 	/* Check each bit that is on */
1299 	for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1300 		info = find_ainfo(1ULL << i);
1301 		if (((reg_unmasked & 0x1) == 0) || !info)
1302 			continue;
1303 
1304 		port = info->port;
1305 
1306 		dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
1307 			__func__, port, info->desc,
1308 		       readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1309 
1310 		/*
1311 		 * Do link reset first, some OTHER errors will set FC_ERROR
1312 		 * again if cleared before or w/o a reset
1313 		 */
1314 		if (info->action & LINK_RESET) {
1315 			dev_err(dev, "%s: FC Port %d: resetting link\n",
1316 				__func__, port);
1317 			cfg->lr_state = LINK_RESET_REQUIRED;
1318 			cfg->lr_port = port;
1319 			schedule_work(&cfg->work_q);
1320 		}
1321 
1322 		if (info->action & CLR_FC_ERROR) {
1323 			reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1324 
1325 			/*
1326 			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1327 			 * should be the same and tracing one is sufficient.
1328 			 */
1329 
1330 			dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n",
1331 				__func__, port, reg);
1332 
1333 			writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1334 			writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1335 		}
1336 
1337 		if (info->action & SCAN_HOST) {
1338 			atomic_inc(&cfg->scan_host_needed);
1339 			schedule_work(&cfg->work_q);
1340 		}
1341 	}
1342 
1343 out:
1344 	dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu);
1345 	return IRQ_HANDLED;
1346 }
1347 
1348 /**
1349  * start_context() - starts the master context
1350  * @cfg:	Internal structure associated with the host.
1351  *
1352  * Return: A success or failure value from CXL services.
1353  */
1354 static int start_context(struct cxlflash_cfg *cfg)
1355 {
1356 	int rc = 0;
1357 
1358 	rc = cxl_start_context(cfg->mcctx,
1359 			       cfg->afu->work.work_element_descriptor,
1360 			       NULL);
1361 
1362 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1363 	return rc;
1364 }
1365 
1366 /**
1367  * read_vpd() - obtains the WWPNs from VPD
1368  * @cfg:	Internal structure associated with the host.
1369  * @wwpn:	Array of size NUM_FC_PORTS to pass back WWPNs
1370  *
1371  * Return: 0 on success, -errno on failure
1372  */
1373 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1374 {
1375 	struct pci_dev *dev = cfg->parent_dev;
1376 	int rc = 0;
1377 	int ro_start, ro_size, i, j, k;
1378 	ssize_t vpd_size;
1379 	char vpd_data[CXLFLASH_VPD_LEN];
1380 	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1381 	char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1382 
1383 	/* Get the VPD data from the device */
1384 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
1385 	if (unlikely(vpd_size <= 0)) {
1386 		dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n",
1387 		       __func__, vpd_size);
1388 		rc = -ENODEV;
1389 		goto out;
1390 	}
1391 
1392 	/* Get the read only section offset */
1393 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1394 				    PCI_VPD_LRDT_RO_DATA);
1395 	if (unlikely(ro_start < 0)) {
1396 		dev_err(&dev->dev, "%s: VPD Read-only data not found\n",
1397 			__func__);
1398 		rc = -ENODEV;
1399 		goto out;
1400 	}
1401 
1402 	/* Get the read only section size, cap when extends beyond read VPD */
1403 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1404 	j = ro_size;
1405 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1406 	if (unlikely((i + j) > vpd_size)) {
1407 		pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
1408 			 __func__, (i + j), vpd_size);
1409 		ro_size = vpd_size - i;
1410 	}
1411 
1412 	/*
1413 	 * Find the offset of the WWPN tag within the read only
1414 	 * VPD data and validate the found field (partials are
1415 	 * no good to us). Convert the ASCII data to an integer
1416 	 * value. Note that we must copy to a temporary buffer
1417 	 * because the conversion service requires that the ASCII
1418 	 * string be terminated.
1419 	 */
1420 	for (k = 0; k < NUM_FC_PORTS; k++) {
1421 		j = ro_size;
1422 		i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1423 
1424 		i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1425 		if (unlikely(i < 0)) {
1426 			dev_err(&dev->dev, "%s: Port %d WWPN not found "
1427 				"in VPD\n", __func__, k);
1428 			rc = -ENODEV;
1429 			goto out;
1430 		}
1431 
1432 		j = pci_vpd_info_field_size(&vpd_data[i]);
1433 		i += PCI_VPD_INFO_FLD_HDR_SIZE;
1434 		if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1435 			dev_err(&dev->dev, "%s: Port %d WWPN incomplete or "
1436 				"VPD corrupt\n",
1437 			       __func__, k);
1438 			rc = -ENODEV;
1439 			goto out;
1440 		}
1441 
1442 		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1443 		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1444 		if (unlikely(rc)) {
1445 			dev_err(&dev->dev, "%s: Fail to convert port %d WWPN "
1446 				"to integer\n", __func__, k);
1447 			rc = -ENODEV;
1448 			goto out;
1449 		}
1450 	}
1451 
1452 out:
1453 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1454 	return rc;
1455 }
1456 
1457 /**
1458  * init_pcr() - initialize the provisioning and control registers
1459  * @cfg:	Internal structure associated with the host.
1460  *
1461  * Also sets up fast access to the mapped registers and initializes AFU
1462  * command fields that never change.
1463  */
1464 static void init_pcr(struct cxlflash_cfg *cfg)
1465 {
1466 	struct afu *afu = cfg->afu;
1467 	struct sisl_ctrl_map __iomem *ctrl_map;
1468 	int i;
1469 
1470 	for (i = 0; i < MAX_CONTEXT; i++) {
1471 		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1472 		/* Disrupt any clients that could be running */
1473 		/* e.g. clients that survived a master restart */
1474 		writeq_be(0, &ctrl_map->rht_start);
1475 		writeq_be(0, &ctrl_map->rht_cnt_id);
1476 		writeq_be(0, &ctrl_map->ctx_cap);
1477 	}
1478 
1479 	/* Copy frequently used fields into afu */
1480 	afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1481 	afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1482 	afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1483 
1484 	/* Program the Endian Control for the master context */
1485 	writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1486 
1487 	/* Initialize cmd fields that never change */
1488 	for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1489 		afu->cmd[i].rcb.ctx_id = afu->ctx_hndl;
1490 		afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED;
1491 		afu->cmd[i].rcb.rrq = 0x0;
1492 	}
1493 }
1494 
1495 /**
1496  * init_global() - initialize AFU global registers
1497  * @cfg:	Internal structure associated with the host.
1498  */
1499 static int init_global(struct cxlflash_cfg *cfg)
1500 {
1501 	struct afu *afu = cfg->afu;
1502 	struct device *dev = &cfg->dev->dev;
1503 	u64 wwpn[NUM_FC_PORTS];	/* wwpn of AFU ports */
1504 	int i = 0, num_ports = 0;
1505 	int rc = 0;
1506 	u64 reg;
1507 
1508 	rc = read_vpd(cfg, &wwpn[0]);
1509 	if (rc) {
1510 		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1511 		goto out;
1512 	}
1513 
1514 	pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]);
1515 
1516 	/* Set up RRQ in AFU for master issued cmds */
1517 	writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1518 	writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1519 
1520 	/* AFU configuration */
1521 	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1522 	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1523 	/* enable all auto retry options and control endianness */
1524 	/* leave others at default: */
1525 	/* CTX_CAP write protected, mbox_r does not clear on read and */
1526 	/* checker on if dual afu */
1527 	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1528 
1529 	/* Global port select: select either port */
1530 	if (afu->internal_lun) {
1531 		/* Only use port 0 */
1532 		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1533 		num_ports = NUM_FC_PORTS - 1;
1534 	} else {
1535 		writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1536 		num_ports = NUM_FC_PORTS;
1537 	}
1538 
1539 	for (i = 0; i < num_ports; i++) {
1540 		/* Unmask all errors (but they are still masked at AFU) */
1541 		writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
1542 		/* Clear CRC error cnt & set a threshold */
1543 		(void)readq_be(&afu->afu_map->global.
1544 			       fc_regs[i][FC_CNT_CRCERR / 8]);
1545 		writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1546 			  [FC_CRC_THRESH / 8]);
1547 
1548 		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1549 		if (wwpn[i] != 0 &&
1550 		    afu_set_wwpn(afu, i,
1551 				 &afu->afu_map->global.fc_regs[i][0],
1552 				 wwpn[i])) {
1553 			dev_err(dev, "%s: failed to set WWPN on port %d\n",
1554 			       __func__, i);
1555 			rc = -EIO;
1556 			goto out;
1557 		}
1558 		/* Programming WWPN back to back causes additional
1559 		 * offline/online transitions and a PLOGI
1560 		 */
1561 		msleep(100);
1562 	}
1563 
1564 	/* Set up master's own CTX_CAP to allow real mode, host translation */
1565 	/* tables, afu cmds and read/write GSCSI cmds. */
1566 	/* First, unlock ctx_cap write by reading mbox */
1567 	(void)readq_be(&afu->ctrl_map->mbox_r);	/* unlock ctx_cap */
1568 	writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1569 		   SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1570 		   SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1571 		  &afu->ctrl_map->ctx_cap);
1572 	/* Initialize heartbeat */
1573 	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1574 
1575 out:
1576 	return rc;
1577 }
1578 
1579 /**
1580  * start_afu() - initializes and starts the AFU
1581  * @cfg:	Internal structure associated with the host.
1582  */
1583 static int start_afu(struct cxlflash_cfg *cfg)
1584 {
1585 	struct afu *afu = cfg->afu;
1586 	struct afu_cmd *cmd;
1587 
1588 	int i = 0;
1589 	int rc = 0;
1590 
1591 	for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1592 		cmd = &afu->cmd[i];
1593 
1594 		init_completion(&cmd->cevent);
1595 		spin_lock_init(&cmd->slock);
1596 		cmd->parent = afu;
1597 	}
1598 
1599 	init_pcr(cfg);
1600 
1601 	/* After an AFU reset, RRQ entries are stale, clear them */
1602 	memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1603 
1604 	/* Initialize RRQ pointers */
1605 	afu->hrrq_start = &afu->rrq_entry[0];
1606 	afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1607 	afu->hrrq_curr = afu->hrrq_start;
1608 	afu->toggle = 1;
1609 
1610 	rc = init_global(cfg);
1611 
1612 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1613 	return rc;
1614 }
1615 
1616 /**
1617  * init_mc() - create and register as the master context
1618  * @cfg:	Internal structure associated with the host.
1619  *
1620  * Return: 0 on success, -errno on failure
1621  */
1622 static int init_mc(struct cxlflash_cfg *cfg)
1623 {
1624 	struct cxl_context *ctx;
1625 	struct device *dev = &cfg->dev->dev;
1626 	struct afu *afu = cfg->afu;
1627 	int rc = 0;
1628 	enum undo_level level;
1629 
1630 	ctx = cxl_get_context(cfg->dev);
1631 	if (unlikely(!ctx))
1632 		return -ENOMEM;
1633 	cfg->mcctx = ctx;
1634 
1635 	/* Set it up as a master with the CXL */
1636 	cxl_set_master(ctx);
1637 
1638 	/* During initialization reset the AFU to start from a clean slate */
1639 	rc = cxl_afu_reset(cfg->mcctx);
1640 	if (unlikely(rc)) {
1641 		dev_err(dev, "%s: initial AFU reset failed rc=%d\n",
1642 			__func__, rc);
1643 		level = RELEASE_CONTEXT;
1644 		goto out;
1645 	}
1646 
1647 	rc = cxl_allocate_afu_irqs(ctx, 3);
1648 	if (unlikely(rc)) {
1649 		dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n",
1650 			__func__, rc);
1651 		level = RELEASE_CONTEXT;
1652 		goto out;
1653 	}
1654 
1655 	rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1656 			     "SISL_MSI_SYNC_ERROR");
1657 	if (unlikely(rc <= 0)) {
1658 		dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
1659 			__func__);
1660 		level = FREE_IRQ;
1661 		goto out;
1662 	}
1663 
1664 	rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1665 			     "SISL_MSI_RRQ_UPDATED");
1666 	if (unlikely(rc <= 0)) {
1667 		dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
1668 			__func__);
1669 		level = UNMAP_ONE;
1670 		goto out;
1671 	}
1672 
1673 	rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1674 			     "SISL_MSI_ASYNC_ERROR");
1675 	if (unlikely(rc <= 0)) {
1676 		dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
1677 			__func__);
1678 		level = UNMAP_TWO;
1679 		goto out;
1680 	}
1681 
1682 	rc = 0;
1683 
1684 	/* This performs the equivalent of the CXL_IOCTL_START_WORK.
1685 	 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1686 	 * element (pe) that is embedded in the context (ctx)
1687 	 */
1688 	rc = start_context(cfg);
1689 	if (unlikely(rc)) {
1690 		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1691 		level = UNMAP_THREE;
1692 		goto out;
1693 	}
1694 ret:
1695 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1696 	return rc;
1697 out:
1698 	term_mc(cfg, level);
1699 	goto ret;
1700 }
1701 
1702 /**
1703  * init_afu() - setup as master context and start AFU
1704  * @cfg:	Internal structure associated with the host.
1705  *
1706  * This routine is a higher level of control for configuring the
1707  * AFU on probe and reset paths.
1708  *
1709  * Return: 0 on success, -errno on failure
1710  */
1711 static int init_afu(struct cxlflash_cfg *cfg)
1712 {
1713 	u64 reg;
1714 	int rc = 0;
1715 	struct afu *afu = cfg->afu;
1716 	struct device *dev = &cfg->dev->dev;
1717 
1718 	cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1719 
1720 	rc = init_mc(cfg);
1721 	if (rc) {
1722 		dev_err(dev, "%s: call to init_mc failed, rc=%d!\n",
1723 			__func__, rc);
1724 		goto out;
1725 	}
1726 
1727 	/* Map the entire MMIO space of the AFU */
1728 	afu->afu_map = cxl_psa_map(cfg->mcctx);
1729 	if (!afu->afu_map) {
1730 		dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__);
1731 		rc = -ENOMEM;
1732 		goto err1;
1733 	}
1734 
1735 	/* No byte reverse on reading afu_version or string will be backwards */
1736 	reg = readq(&afu->afu_map->global.regs.afu_version);
1737 	memcpy(afu->version, &reg, sizeof(reg));
1738 	afu->interface_version =
1739 	    readq_be(&afu->afu_map->global.regs.interface_version);
1740 	if ((afu->interface_version + 1) == 0) {
1741 		pr_err("Back level AFU, please upgrade. AFU version %s "
1742 		       "interface version 0x%llx\n", afu->version,
1743 		       afu->interface_version);
1744 		rc = -EINVAL;
1745 		goto err2;
1746 	}
1747 
1748 	pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__,
1749 		 afu->version, afu->interface_version);
1750 
1751 	rc = start_afu(cfg);
1752 	if (rc) {
1753 		dev_err(dev, "%s: call to start_afu failed, rc=%d!\n",
1754 			__func__, rc);
1755 		goto err2;
1756 	}
1757 
1758 	afu_err_intr_init(cfg->afu);
1759 	atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
1760 
1761 	/* Restore the LUN mappings */
1762 	cxlflash_restore_luntable(cfg);
1763 out:
1764 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1765 	return rc;
1766 
1767 err2:
1768 	cxl_psa_unmap((void __iomem *)afu->afu_map);
1769 	afu->afu_map = NULL;
1770 err1:
1771 	term_mc(cfg, UNDO_START);
1772 	goto out;
1773 }
1774 
1775 /**
1776  * cxlflash_afu_sync() - builds and sends an AFU sync command
1777  * @afu:	AFU associated with the host.
1778  * @ctx_hndl_u:	Identifies context requesting sync.
1779  * @res_hndl_u:	Identifies resource requesting sync.
1780  * @mode:	Type of sync to issue (lightweight, heavyweight, global).
1781  *
1782  * The AFU can only take 1 sync command at a time. This routine enforces this
1783  * limitation by using a mutex to provide exclusive access to the AFU during
1784  * the sync. This design point requires calling threads to not be on interrupt
1785  * context due to the possibility of sleeping during concurrent sync operations.
1786  *
1787  * AFU sync operations are only necessary and allowed when the device is
1788  * operating normally. When not operating normally, sync requests can occur as
1789  * part of cleaning up resources associated with an adapter prior to removal.
1790  * In this scenario, these requests are simply ignored (safe due to the AFU
1791  * going away).
1792  *
1793  * Return:
1794  *	0 on success
1795  *	-1 on failure
1796  */
1797 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1798 		      res_hndl_t res_hndl_u, u8 mode)
1799 {
1800 	struct cxlflash_cfg *cfg = afu->parent;
1801 	struct device *dev = &cfg->dev->dev;
1802 	struct afu_cmd *cmd = NULL;
1803 	int rc = 0;
1804 	int retry_cnt = 0;
1805 	static DEFINE_MUTEX(sync_active);
1806 
1807 	if (cfg->state != STATE_NORMAL) {
1808 		pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state);
1809 		return 0;
1810 	}
1811 
1812 	mutex_lock(&sync_active);
1813 retry:
1814 	cmd = cmd_checkout(afu);
1815 	if (unlikely(!cmd)) {
1816 		retry_cnt++;
1817 		udelay(1000 * retry_cnt);
1818 		if (retry_cnt < MC_RETRY_CNT)
1819 			goto retry;
1820 		dev_err(dev, "%s: could not get a free command\n", __func__);
1821 		rc = -1;
1822 		goto out;
1823 	}
1824 
1825 	pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1826 
1827 	memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
1828 
1829 	cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1830 	cmd->rcb.port_sel = 0x0;	/* NA */
1831 	cmd->rcb.lun_id = 0x0;	/* NA */
1832 	cmd->rcb.data_len = 0x0;
1833 	cmd->rcb.data_ea = 0x0;
1834 	cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1835 
1836 	cmd->rcb.cdb[0] = 0xC0;	/* AFU Sync */
1837 	cmd->rcb.cdb[1] = mode;
1838 
1839 	/* The cdb is aligned, no unaligned accessors required */
1840 	*((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1841 	*((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
1842 
1843 	rc = send_cmd(afu, cmd);
1844 	if (unlikely(rc))
1845 		goto out;
1846 
1847 	wait_resp(afu, cmd);
1848 
1849 	/* Set on timeout */
1850 	if (unlikely((cmd->sa.ioasc != 0) ||
1851 		     (cmd->sa.host_use_b[0] & B_ERROR)))
1852 		rc = -1;
1853 out:
1854 	mutex_unlock(&sync_active);
1855 	if (cmd)
1856 		cmd_checkin(cmd);
1857 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1858 	return rc;
1859 }
1860 
1861 /**
1862  * afu_reset() - resets the AFU
1863  * @cfg:	Internal structure associated with the host.
1864  *
1865  * Return: 0 on success, -errno on failure
1866  */
1867 static int afu_reset(struct cxlflash_cfg *cfg)
1868 {
1869 	int rc = 0;
1870 	/* Stop the context before the reset. Since the context is
1871 	 * no longer available restart it after the reset is complete
1872 	 */
1873 
1874 	term_afu(cfg);
1875 
1876 	rc = init_afu(cfg);
1877 
1878 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1879 	return rc;
1880 }
1881 
1882 /**
1883  * cxlflash_eh_device_reset_handler() - reset a single LUN
1884  * @scp:	SCSI command to send.
1885  *
1886  * Return:
1887  *	SUCCESS as defined in scsi/scsi.h
1888  *	FAILED as defined in scsi/scsi.h
1889  */
1890 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1891 {
1892 	int rc = SUCCESS;
1893 	struct Scsi_Host *host = scp->device->host;
1894 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1895 	struct afu *afu = cfg->afu;
1896 	int rcr = 0;
1897 
1898 	pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1899 		 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1900 		 host->host_no, scp->device->channel,
1901 		 scp->device->id, scp->device->lun,
1902 		 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1903 		 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1904 		 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1905 		 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1906 
1907 retry:
1908 	switch (cfg->state) {
1909 	case STATE_NORMAL:
1910 		rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1911 		if (unlikely(rcr))
1912 			rc = FAILED;
1913 		break;
1914 	case STATE_RESET:
1915 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1916 		goto retry;
1917 	default:
1918 		rc = FAILED;
1919 		break;
1920 	}
1921 
1922 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1923 	return rc;
1924 }
1925 
1926 /**
1927  * cxlflash_eh_host_reset_handler() - reset the host adapter
1928  * @scp:	SCSI command from stack identifying host.
1929  *
1930  * Return:
1931  *	SUCCESS as defined in scsi/scsi.h
1932  *	FAILED as defined in scsi/scsi.h
1933  */
1934 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1935 {
1936 	int rc = SUCCESS;
1937 	int rcr = 0;
1938 	struct Scsi_Host *host = scp->device->host;
1939 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1940 
1941 	pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1942 		 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1943 		 host->host_no, scp->device->channel,
1944 		 scp->device->id, scp->device->lun,
1945 		 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1946 		 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1947 		 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1948 		 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1949 
1950 	switch (cfg->state) {
1951 	case STATE_NORMAL:
1952 		cfg->state = STATE_RESET;
1953 		cxlflash_mark_contexts_error(cfg);
1954 		rcr = afu_reset(cfg);
1955 		if (rcr) {
1956 			rc = FAILED;
1957 			cfg->state = STATE_FAILTERM;
1958 		} else
1959 			cfg->state = STATE_NORMAL;
1960 		wake_up_all(&cfg->reset_waitq);
1961 		break;
1962 	case STATE_RESET:
1963 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1964 		if (cfg->state == STATE_NORMAL)
1965 			break;
1966 		/* fall through */
1967 	default:
1968 		rc = FAILED;
1969 		break;
1970 	}
1971 
1972 	pr_debug("%s: returning rc=%d\n", __func__, rc);
1973 	return rc;
1974 }
1975 
1976 /**
1977  * cxlflash_change_queue_depth() - change the queue depth for the device
1978  * @sdev:	SCSI device destined for queue depth change.
1979  * @qdepth:	Requested queue depth value to set.
1980  *
1981  * The requested queue depth is capped to the maximum supported value.
1982  *
1983  * Return: The actual queue depth set.
1984  */
1985 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
1986 {
1987 
1988 	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
1989 		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
1990 
1991 	scsi_change_queue_depth(sdev, qdepth);
1992 	return sdev->queue_depth;
1993 }
1994 
1995 /**
1996  * cxlflash_show_port_status() - queries and presents the current port status
1997  * @port:	Desired port for status reporting.
1998  * @afu:	AFU owning the specified port.
1999  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2000  *
2001  * Return: The size of the ASCII string returned in @buf.
2002  */
2003 static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
2004 {
2005 	char *disp_status;
2006 	u64 status;
2007 	__be64 __iomem *fc_regs;
2008 
2009 	if (port >= NUM_FC_PORTS)
2010 		return 0;
2011 
2012 	fc_regs = &afu->afu_map->global.fc_regs[port][0];
2013 	status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
2014 	status &= FC_MTIP_STATUS_MASK;
2015 
2016 	if (status == FC_MTIP_STATUS_ONLINE)
2017 		disp_status = "online";
2018 	else if (status == FC_MTIP_STATUS_OFFLINE)
2019 		disp_status = "offline";
2020 	else
2021 		disp_status = "unknown";
2022 
2023 	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2024 }
2025 
2026 /**
2027  * port0_show() - queries and presents the current status of port 0
2028  * @dev:	Generic device associated with the host owning the port.
2029  * @attr:	Device attribute representing the port.
2030  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2031  *
2032  * Return: The size of the ASCII string returned in @buf.
2033  */
2034 static ssize_t port0_show(struct device *dev,
2035 			  struct device_attribute *attr,
2036 			  char *buf)
2037 {
2038 	struct Scsi_Host *shost = class_to_shost(dev);
2039 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2040 	struct afu *afu = cfg->afu;
2041 
2042 	return cxlflash_show_port_status(0, afu, buf);
2043 }
2044 
2045 /**
2046  * port1_show() - queries and presents the current status of port 1
2047  * @dev:	Generic device associated with the host owning the port.
2048  * @attr:	Device attribute representing the port.
2049  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2050  *
2051  * Return: The size of the ASCII string returned in @buf.
2052  */
2053 static ssize_t port1_show(struct device *dev,
2054 			  struct device_attribute *attr,
2055 			  char *buf)
2056 {
2057 	struct Scsi_Host *shost = class_to_shost(dev);
2058 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2059 	struct afu *afu = cfg->afu;
2060 
2061 	return cxlflash_show_port_status(1, afu, buf);
2062 }
2063 
2064 /**
2065  * lun_mode_show() - presents the current LUN mode of the host
2066  * @dev:	Generic device associated with the host.
2067  * @attr:	Device attribute representing the LUN mode.
2068  * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2069  *
2070  * Return: The size of the ASCII string returned in @buf.
2071  */
2072 static ssize_t lun_mode_show(struct device *dev,
2073 			     struct device_attribute *attr, char *buf)
2074 {
2075 	struct Scsi_Host *shost = class_to_shost(dev);
2076 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2077 	struct afu *afu = cfg->afu;
2078 
2079 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2080 }
2081 
2082 /**
2083  * lun_mode_store() - sets the LUN mode of the host
2084  * @dev:	Generic device associated with the host.
2085  * @attr:	Device attribute representing the LUN mode.
2086  * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2087  * @count:	Length of data resizing in @buf.
2088  *
2089  * The CXL Flash AFU supports a dummy LUN mode where the external
2090  * links and storage are not required. Space on the FPGA is used
2091  * to create 1 or 2 small LUNs which are presented to the system
2092  * as if they were a normal storage device. This feature is useful
2093  * during development and also provides manufacturing with a way
2094  * to test the AFU without an actual device.
2095  *
2096  * 0 = external LUN[s] (default)
2097  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2098  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2099  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2100  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2101  *
2102  * Return: The size of the ASCII string returned in @buf.
2103  */
2104 static ssize_t lun_mode_store(struct device *dev,
2105 			      struct device_attribute *attr,
2106 			      const char *buf, size_t count)
2107 {
2108 	struct Scsi_Host *shost = class_to_shost(dev);
2109 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2110 	struct afu *afu = cfg->afu;
2111 	int rc;
2112 	u32 lun_mode;
2113 
2114 	rc = kstrtouint(buf, 10, &lun_mode);
2115 	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2116 		afu->internal_lun = lun_mode;
2117 		afu_reset(cfg);
2118 		scsi_scan_host(cfg->host);
2119 	}
2120 
2121 	return count;
2122 }
2123 
2124 /**
2125  * ioctl_version_show() - presents the current ioctl version of the host
2126  * @dev:	Generic device associated with the host.
2127  * @attr:	Device attribute representing the ioctl version.
2128  * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2129  *
2130  * Return: The size of the ASCII string returned in @buf.
2131  */
2132 static ssize_t ioctl_version_show(struct device *dev,
2133 				  struct device_attribute *attr, char *buf)
2134 {
2135 	return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2136 }
2137 
2138 /**
2139  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2140  * @port:	Desired port for status reporting.
2141  * @afu:	AFU owning the specified port.
2142  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2143  *
2144  * Return: The size of the ASCII string returned in @buf.
2145  */
2146 static ssize_t cxlflash_show_port_lun_table(u32 port,
2147 					    struct afu *afu,
2148 					    char *buf)
2149 {
2150 	int i;
2151 	ssize_t bytes = 0;
2152 	__be64 __iomem *fc_port;
2153 
2154 	if (port >= NUM_FC_PORTS)
2155 		return 0;
2156 
2157 	fc_port = &afu->afu_map->global.fc_port[port][0];
2158 
2159 	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2160 		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2161 				   "%03d: %016llX\n", i, readq_be(&fc_port[i]));
2162 	return bytes;
2163 }
2164 
2165 /**
2166  * port0_lun_table_show() - presents the current LUN table of port 0
2167  * @dev:	Generic device associated with the host owning the port.
2168  * @attr:	Device attribute representing the port.
2169  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2170  *
2171  * Return: The size of the ASCII string returned in @buf.
2172  */
2173 static ssize_t port0_lun_table_show(struct device *dev,
2174 				    struct device_attribute *attr,
2175 				    char *buf)
2176 {
2177 	struct Scsi_Host *shost = class_to_shost(dev);
2178 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2179 	struct afu *afu = cfg->afu;
2180 
2181 	return cxlflash_show_port_lun_table(0, afu, buf);
2182 }
2183 
2184 /**
2185  * port1_lun_table_show() - presents the current LUN table of port 1
2186  * @dev:	Generic device associated with the host owning the port.
2187  * @attr:	Device attribute representing the port.
2188  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2189  *
2190  * Return: The size of the ASCII string returned in @buf.
2191  */
2192 static ssize_t port1_lun_table_show(struct device *dev,
2193 				    struct device_attribute *attr,
2194 				    char *buf)
2195 {
2196 	struct Scsi_Host *shost = class_to_shost(dev);
2197 	struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2198 	struct afu *afu = cfg->afu;
2199 
2200 	return cxlflash_show_port_lun_table(1, afu, buf);
2201 }
2202 
2203 /**
2204  * mode_show() - presents the current mode of the device
2205  * @dev:	Generic device associated with the device.
2206  * @attr:	Device attribute representing the device mode.
2207  * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2208  *
2209  * Return: The size of the ASCII string returned in @buf.
2210  */
2211 static ssize_t mode_show(struct device *dev,
2212 			 struct device_attribute *attr, char *buf)
2213 {
2214 	struct scsi_device *sdev = to_scsi_device(dev);
2215 
2216 	return scnprintf(buf, PAGE_SIZE, "%s\n",
2217 			 sdev->hostdata ? "superpipe" : "legacy");
2218 }
2219 
2220 /*
2221  * Host attributes
2222  */
2223 static DEVICE_ATTR_RO(port0);
2224 static DEVICE_ATTR_RO(port1);
2225 static DEVICE_ATTR_RW(lun_mode);
2226 static DEVICE_ATTR_RO(ioctl_version);
2227 static DEVICE_ATTR_RO(port0_lun_table);
2228 static DEVICE_ATTR_RO(port1_lun_table);
2229 
2230 static struct device_attribute *cxlflash_host_attrs[] = {
2231 	&dev_attr_port0,
2232 	&dev_attr_port1,
2233 	&dev_attr_lun_mode,
2234 	&dev_attr_ioctl_version,
2235 	&dev_attr_port0_lun_table,
2236 	&dev_attr_port1_lun_table,
2237 	NULL
2238 };
2239 
2240 /*
2241  * Device attributes
2242  */
2243 static DEVICE_ATTR_RO(mode);
2244 
2245 static struct device_attribute *cxlflash_dev_attrs[] = {
2246 	&dev_attr_mode,
2247 	NULL
2248 };
2249 
2250 /*
2251  * Host template
2252  */
2253 static struct scsi_host_template driver_template = {
2254 	.module = THIS_MODULE,
2255 	.name = CXLFLASH_ADAPTER_NAME,
2256 	.info = cxlflash_driver_info,
2257 	.ioctl = cxlflash_ioctl,
2258 	.proc_name = CXLFLASH_NAME,
2259 	.queuecommand = cxlflash_queuecommand,
2260 	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2261 	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2262 	.change_queue_depth = cxlflash_change_queue_depth,
2263 	.cmd_per_lun = 16,
2264 	.can_queue = CXLFLASH_MAX_CMDS,
2265 	.this_id = -1,
2266 	.sg_tablesize = SG_NONE,	/* No scatter gather support */
2267 	.max_sectors = CXLFLASH_MAX_SECTORS,
2268 	.use_clustering = ENABLE_CLUSTERING,
2269 	.shost_attrs = cxlflash_host_attrs,
2270 	.sdev_attrs = cxlflash_dev_attrs,
2271 };
2272 
2273 /*
2274  * Device dependent values
2275  */
2276 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS };
2277 
2278 /*
2279  * PCI device binding table
2280  */
2281 static struct pci_device_id cxlflash_pci_table[] = {
2282 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2283 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2284 	{}
2285 };
2286 
2287 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2288 
2289 /**
2290  * cxlflash_worker_thread() - work thread handler for the AFU
2291  * @work:	Work structure contained within cxlflash associated with host.
2292  *
2293  * Handles the following events:
2294  * - Link reset which cannot be performed on interrupt context due to
2295  * blocking up to a few seconds
2296  * - Read AFU command room
2297  * - Rescan the host
2298  */
2299 static void cxlflash_worker_thread(struct work_struct *work)
2300 {
2301 	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2302 						work_q);
2303 	struct afu *afu = cfg->afu;
2304 	struct device *dev = &cfg->dev->dev;
2305 	int port;
2306 	ulong lock_flags;
2307 
2308 	/* Avoid MMIO if the device has failed */
2309 
2310 	if (cfg->state != STATE_NORMAL)
2311 		return;
2312 
2313 	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2314 
2315 	if (cfg->lr_state == LINK_RESET_REQUIRED) {
2316 		port = cfg->lr_port;
2317 		if (port < 0)
2318 			dev_err(dev, "%s: invalid port index %d\n",
2319 				__func__, port);
2320 		else {
2321 			spin_unlock_irqrestore(cfg->host->host_lock,
2322 					       lock_flags);
2323 
2324 			/* The reset can block... */
2325 			afu_link_reset(afu, port,
2326 				       &afu->afu_map->global.fc_regs[port][0]);
2327 			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2328 		}
2329 
2330 		cfg->lr_state = LINK_RESET_COMPLETE;
2331 	}
2332 
2333 	if (afu->read_room) {
2334 		atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
2335 		afu->read_room = false;
2336 	}
2337 
2338 	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2339 
2340 	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2341 		scsi_scan_host(cfg->host);
2342 }
2343 
2344 /**
2345  * cxlflash_probe() - PCI entry point to add host
2346  * @pdev:	PCI device associated with the host.
2347  * @dev_id:	PCI device id associated with device.
2348  *
2349  * Return: 0 on success, -errno on failure
2350  */
2351 static int cxlflash_probe(struct pci_dev *pdev,
2352 			  const struct pci_device_id *dev_id)
2353 {
2354 	struct Scsi_Host *host;
2355 	struct cxlflash_cfg *cfg = NULL;
2356 	struct device *phys_dev;
2357 	struct dev_dependent_vals *ddv;
2358 	int rc = 0;
2359 
2360 	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2361 		__func__, pdev->irq);
2362 
2363 	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2364 	driver_template.max_sectors = ddv->max_sectors;
2365 
2366 	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2367 	if (!host) {
2368 		dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2369 			__func__);
2370 		rc = -ENOMEM;
2371 		goto out;
2372 	}
2373 
2374 	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2375 	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2376 	host->max_channel = NUM_FC_PORTS - 1;
2377 	host->unique_id = host->host_no;
2378 	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2379 
2380 	cfg = (struct cxlflash_cfg *)host->hostdata;
2381 	cfg->host = host;
2382 	rc = alloc_mem(cfg);
2383 	if (rc) {
2384 		dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n",
2385 			__func__);
2386 		rc = -ENOMEM;
2387 		scsi_host_put(cfg->host);
2388 		goto out;
2389 	}
2390 
2391 	cfg->init_state = INIT_STATE_NONE;
2392 	cfg->dev = pdev;
2393 	cfg->cxl_fops = cxlflash_cxl_fops;
2394 
2395 	/*
2396 	 * The promoted LUNs move to the top of the LUN table. The rest stay
2397 	 * on the bottom half. The bottom half grows from the end
2398 	 * (index = 255), whereas the top half grows from the beginning
2399 	 * (index = 0).
2400 	 */
2401 	cfg->promote_lun_index  = 0;
2402 	cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2403 	cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2404 
2405 	cfg->dev_id = (struct pci_device_id *)dev_id;
2406 
2407 	init_waitqueue_head(&cfg->tmf_waitq);
2408 	init_waitqueue_head(&cfg->reset_waitq);
2409 
2410 	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2411 	cfg->lr_state = LINK_RESET_INVALID;
2412 	cfg->lr_port = -1;
2413 	spin_lock_init(&cfg->tmf_slock);
2414 	mutex_init(&cfg->ctx_tbl_list_mutex);
2415 	mutex_init(&cfg->ctx_recovery_mutex);
2416 	init_rwsem(&cfg->ioctl_rwsem);
2417 	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2418 	INIT_LIST_HEAD(&cfg->lluns);
2419 
2420 	pci_set_drvdata(pdev, cfg);
2421 
2422 	/*
2423 	 * Use the special service provided to look up the physical
2424 	 * PCI device, since we are called on the probe of the virtual
2425 	 * PCI host bus (vphb)
2426 	 */
2427 	phys_dev = cxl_get_phys_dev(pdev);
2428 	if (!dev_is_pci(phys_dev)) {
2429 		dev_err(&pdev->dev, "%s: not a pci dev\n", __func__);
2430 		rc = -ENODEV;
2431 		goto out_remove;
2432 	}
2433 	cfg->parent_dev = to_pci_dev(phys_dev);
2434 
2435 	cfg->cxl_afu = cxl_pci_to_afu(pdev);
2436 
2437 	rc = init_pci(cfg);
2438 	if (rc) {
2439 		dev_err(&pdev->dev, "%s: call to init_pci "
2440 			"failed rc=%d!\n", __func__, rc);
2441 		goto out_remove;
2442 	}
2443 	cfg->init_state = INIT_STATE_PCI;
2444 
2445 	rc = init_afu(cfg);
2446 	if (rc) {
2447 		dev_err(&pdev->dev, "%s: call to init_afu "
2448 			"failed rc=%d!\n", __func__, rc);
2449 		goto out_remove;
2450 	}
2451 	cfg->init_state = INIT_STATE_AFU;
2452 
2453 	rc = init_scsi(cfg);
2454 	if (rc) {
2455 		dev_err(&pdev->dev, "%s: call to init_scsi "
2456 			"failed rc=%d!\n", __func__, rc);
2457 		goto out_remove;
2458 	}
2459 	cfg->init_state = INIT_STATE_SCSI;
2460 
2461 out:
2462 	pr_debug("%s: returning rc=%d\n", __func__, rc);
2463 	return rc;
2464 
2465 out_remove:
2466 	cxlflash_remove(pdev);
2467 	goto out;
2468 }
2469 
2470 /**
2471  * drain_ioctls() - wait until all currently executing ioctls have completed
2472  * @cfg:	Internal structure associated with the host.
2473  *
2474  * Obtain write access to read/write semaphore that wraps ioctl
2475  * handling to 'drain' ioctls currently executing.
2476  */
2477 static void drain_ioctls(struct cxlflash_cfg *cfg)
2478 {
2479 	down_write(&cfg->ioctl_rwsem);
2480 	up_write(&cfg->ioctl_rwsem);
2481 }
2482 
2483 /**
2484  * cxlflash_pci_error_detected() - called when a PCI error is detected
2485  * @pdev:	PCI device struct.
2486  * @state:	PCI channel state.
2487  *
2488  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2489  */
2490 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2491 						    pci_channel_state_t state)
2492 {
2493 	int rc = 0;
2494 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2495 	struct device *dev = &cfg->dev->dev;
2496 
2497 	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2498 
2499 	switch (state) {
2500 	case pci_channel_io_frozen:
2501 		cfg->state = STATE_RESET;
2502 		scsi_block_requests(cfg->host);
2503 		drain_ioctls(cfg);
2504 		rc = cxlflash_mark_contexts_error(cfg);
2505 		if (unlikely(rc))
2506 			dev_err(dev, "%s: Failed to mark user contexts!(%d)\n",
2507 				__func__, rc);
2508 		term_mc(cfg, UNDO_START);
2509 		stop_afu(cfg);
2510 		return PCI_ERS_RESULT_NEED_RESET;
2511 	case pci_channel_io_perm_failure:
2512 		cfg->state = STATE_FAILTERM;
2513 		wake_up_all(&cfg->reset_waitq);
2514 		scsi_unblock_requests(cfg->host);
2515 		return PCI_ERS_RESULT_DISCONNECT;
2516 	default:
2517 		break;
2518 	}
2519 	return PCI_ERS_RESULT_NEED_RESET;
2520 }
2521 
2522 /**
2523  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2524  * @pdev:	PCI device struct.
2525  *
2526  * This routine is called by the pci error recovery code after the PCI
2527  * slot has been reset, just before we should resume normal operations.
2528  *
2529  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2530  */
2531 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2532 {
2533 	int rc = 0;
2534 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2535 	struct device *dev = &cfg->dev->dev;
2536 
2537 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2538 
2539 	rc = init_afu(cfg);
2540 	if (unlikely(rc)) {
2541 		dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc);
2542 		return PCI_ERS_RESULT_DISCONNECT;
2543 	}
2544 
2545 	return PCI_ERS_RESULT_RECOVERED;
2546 }
2547 
2548 /**
2549  * cxlflash_pci_resume() - called when normal operation can resume
2550  * @pdev:	PCI device struct
2551  */
2552 static void cxlflash_pci_resume(struct pci_dev *pdev)
2553 {
2554 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2555 	struct device *dev = &cfg->dev->dev;
2556 
2557 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2558 
2559 	cfg->state = STATE_NORMAL;
2560 	wake_up_all(&cfg->reset_waitq);
2561 	scsi_unblock_requests(cfg->host);
2562 }
2563 
2564 static const struct pci_error_handlers cxlflash_err_handler = {
2565 	.error_detected = cxlflash_pci_error_detected,
2566 	.slot_reset = cxlflash_pci_slot_reset,
2567 	.resume = cxlflash_pci_resume,
2568 };
2569 
2570 /*
2571  * PCI device structure
2572  */
2573 static struct pci_driver cxlflash_driver = {
2574 	.name = CXLFLASH_NAME,
2575 	.id_table = cxlflash_pci_table,
2576 	.probe = cxlflash_probe,
2577 	.remove = cxlflash_remove,
2578 	.err_handler = &cxlflash_err_handler,
2579 };
2580 
2581 /**
2582  * init_cxlflash() - module entry point
2583  *
2584  * Return: 0 on success, -errno on failure
2585  */
2586 static int __init init_cxlflash(void)
2587 {
2588 	pr_info("%s: IBM Power CXL Flash Adapter: %s\n",
2589 		__func__, CXLFLASH_DRIVER_DATE);
2590 
2591 	cxlflash_list_init();
2592 
2593 	return pci_register_driver(&cxlflash_driver);
2594 }
2595 
2596 /**
2597  * exit_cxlflash() - module exit point
2598  */
2599 static void __exit exit_cxlflash(void)
2600 {
2601 	cxlflash_term_global_luns();
2602 	cxlflash_free_errpage();
2603 
2604 	pci_unregister_driver(&cxlflash_driver);
2605 }
2606 
2607 module_init(init_cxlflash);
2608 module_exit(exit_cxlflash);
2609