1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CXL Flash Device Driver 4 * 5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 6 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 7 * 8 * Copyright (C) 2015 IBM Corporation 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/pci.h> 15 16 #include <asm/unaligned.h> 17 18 #include <scsi/scsi_cmnd.h> 19 #include <scsi/scsi_host.h> 20 #include <uapi/scsi/cxlflash_ioctl.h> 21 22 #include "main.h" 23 #include "sislite.h" 24 #include "common.h" 25 26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); 27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); 28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); 29 MODULE_LICENSE("GPL"); 30 31 static struct class *cxlflash_class; 32 static u32 cxlflash_major; 33 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 34 35 /** 36 * process_cmd_err() - command error handler 37 * @cmd: AFU command that experienced the error. 38 * @scp: SCSI command associated with the AFU command in error. 39 * 40 * Translates error bits from AFU command to SCSI command results. 41 */ 42 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) 43 { 44 struct afu *afu = cmd->parent; 45 struct cxlflash_cfg *cfg = afu->parent; 46 struct device *dev = &cfg->dev->dev; 47 struct sisl_ioasa *ioasa; 48 u32 resid; 49 50 if (unlikely(!cmd)) 51 return; 52 53 ioasa = &(cmd->sa); 54 55 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { 56 resid = ioasa->resid; 57 scsi_set_resid(scp, resid); 58 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n", 59 __func__, cmd, scp, resid); 60 } 61 62 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { 63 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n", 64 __func__, cmd, scp); 65 scp->result = (DID_ERROR << 16); 66 } 67 68 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x " 69 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__, 70 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, 71 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); 72 73 if (ioasa->rc.scsi_rc) { 74 /* We have a SCSI status */ 75 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { 76 memcpy(scp->sense_buffer, ioasa->sense_data, 77 SISL_SENSE_DATA_LEN); 78 scp->result = ioasa->rc.scsi_rc; 79 } else 80 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); 81 } 82 83 /* 84 * We encountered an error. Set scp->result based on nature 85 * of error. 86 */ 87 if (ioasa->rc.fc_rc) { 88 /* We have an FC status */ 89 switch (ioasa->rc.fc_rc) { 90 case SISL_FC_RC_LINKDOWN: 91 scp->result = (DID_REQUEUE << 16); 92 break; 93 case SISL_FC_RC_RESID: 94 /* This indicates an FCP resid underrun */ 95 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { 96 /* If the SISL_RC_FLAGS_OVERRUN flag was set, 97 * then we will handle this error else where. 98 * If not then we must handle it here. 99 * This is probably an AFU bug. 100 */ 101 scp->result = (DID_ERROR << 16); 102 } 103 break; 104 case SISL_FC_RC_RESIDERR: 105 /* Resid mismatch between adapter and device */ 106 case SISL_FC_RC_TGTABORT: 107 case SISL_FC_RC_ABORTOK: 108 case SISL_FC_RC_ABORTFAIL: 109 case SISL_FC_RC_NOLOGI: 110 case SISL_FC_RC_ABORTPEND: 111 case SISL_FC_RC_WRABORTPEND: 112 case SISL_FC_RC_NOEXP: 113 case SISL_FC_RC_INUSE: 114 scp->result = (DID_ERROR << 16); 115 break; 116 } 117 } 118 119 if (ioasa->rc.afu_rc) { 120 /* We have an AFU error */ 121 switch (ioasa->rc.afu_rc) { 122 case SISL_AFU_RC_NO_CHANNELS: 123 scp->result = (DID_NO_CONNECT << 16); 124 break; 125 case SISL_AFU_RC_DATA_DMA_ERR: 126 switch (ioasa->afu_extra) { 127 case SISL_AFU_DMA_ERR_PAGE_IN: 128 /* Retry */ 129 scp->result = (DID_IMM_RETRY << 16); 130 break; 131 case SISL_AFU_DMA_ERR_INVALID_EA: 132 default: 133 scp->result = (DID_ERROR << 16); 134 } 135 break; 136 case SISL_AFU_RC_OUT_OF_DATA_BUFS: 137 /* Retry */ 138 scp->result = (DID_ALLOC_FAILURE << 16); 139 break; 140 default: 141 scp->result = (DID_ERROR << 16); 142 } 143 } 144 } 145 146 /** 147 * cmd_complete() - command completion handler 148 * @cmd: AFU command that has completed. 149 * 150 * For SCSI commands this routine prepares and submits commands that have 151 * either completed or timed out to the SCSI stack. For internal commands 152 * (TMF or AFU), this routine simply notifies the originator that the 153 * command has completed. 154 */ 155 static void cmd_complete(struct afu_cmd *cmd) 156 { 157 struct scsi_cmnd *scp; 158 ulong lock_flags; 159 struct afu *afu = cmd->parent; 160 struct cxlflash_cfg *cfg = afu->parent; 161 struct device *dev = &cfg->dev->dev; 162 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 163 164 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 165 list_del(&cmd->list); 166 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 167 168 if (cmd->scp) { 169 scp = cmd->scp; 170 if (unlikely(cmd->sa.ioasc)) 171 process_cmd_err(cmd, scp); 172 else 173 scp->result = (DID_OK << 16); 174 175 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n", 176 __func__, scp, scp->result, cmd->sa.ioasc); 177 scp->scsi_done(scp); 178 } else if (cmd->cmd_tmf) { 179 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 180 cfg->tmf_active = false; 181 wake_up_all_locked(&cfg->tmf_waitq); 182 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 183 } else 184 complete(&cmd->cevent); 185 } 186 187 /** 188 * flush_pending_cmds() - flush all pending commands on this hardware queue 189 * @hwq: Hardware queue to flush. 190 * 191 * The hardware send queue lock associated with this hardware queue must be 192 * held when calling this routine. 193 */ 194 static void flush_pending_cmds(struct hwq *hwq) 195 { 196 struct cxlflash_cfg *cfg = hwq->afu->parent; 197 struct afu_cmd *cmd, *tmp; 198 struct scsi_cmnd *scp; 199 ulong lock_flags; 200 201 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) { 202 /* Bypass command when on a doneq, cmd_complete() will handle */ 203 if (!list_empty(&cmd->queue)) 204 continue; 205 206 list_del(&cmd->list); 207 208 if (cmd->scp) { 209 scp = cmd->scp; 210 scp->result = (DID_IMM_RETRY << 16); 211 scp->scsi_done(scp); 212 } else { 213 cmd->cmd_aborted = true; 214 215 if (cmd->cmd_tmf) { 216 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 217 cfg->tmf_active = false; 218 wake_up_all_locked(&cfg->tmf_waitq); 219 spin_unlock_irqrestore(&cfg->tmf_slock, 220 lock_flags); 221 } else 222 complete(&cmd->cevent); 223 } 224 } 225 } 226 227 /** 228 * context_reset() - reset context via specified register 229 * @hwq: Hardware queue owning the context to be reset. 230 * @reset_reg: MMIO register to perform reset. 231 * 232 * When the reset is successful, the SISLite specification guarantees that 233 * the AFU has aborted all currently pending I/O. Accordingly, these commands 234 * must be flushed. 235 * 236 * Return: 0 on success, -errno on failure 237 */ 238 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg) 239 { 240 struct cxlflash_cfg *cfg = hwq->afu->parent; 241 struct device *dev = &cfg->dev->dev; 242 int rc = -ETIMEDOUT; 243 int nretry = 0; 244 u64 val = 0x1; 245 ulong lock_flags; 246 247 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq); 248 249 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 250 251 writeq_be(val, reset_reg); 252 do { 253 val = readq_be(reset_reg); 254 if ((val & 0x1) == 0x0) { 255 rc = 0; 256 break; 257 } 258 259 /* Double delay each time */ 260 udelay(1 << nretry); 261 } while (nretry++ < MC_ROOM_RETRY_CNT); 262 263 if (!rc) 264 flush_pending_cmds(hwq); 265 266 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 267 268 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n", 269 __func__, rc, val, nretry); 270 return rc; 271 } 272 273 /** 274 * context_reset_ioarrin() - reset context via IOARRIN register 275 * @hwq: Hardware queue owning the context to be reset. 276 * 277 * Return: 0 on success, -errno on failure 278 */ 279 static int context_reset_ioarrin(struct hwq *hwq) 280 { 281 return context_reset(hwq, &hwq->host_map->ioarrin); 282 } 283 284 /** 285 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register 286 * @hwq: Hardware queue owning the context to be reset. 287 * 288 * Return: 0 on success, -errno on failure 289 */ 290 static int context_reset_sq(struct hwq *hwq) 291 { 292 return context_reset(hwq, &hwq->host_map->sq_ctx_reset); 293 } 294 295 /** 296 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register 297 * @afu: AFU associated with the host. 298 * @cmd: AFU command to send. 299 * 300 * Return: 301 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 302 */ 303 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd) 304 { 305 struct cxlflash_cfg *cfg = afu->parent; 306 struct device *dev = &cfg->dev->dev; 307 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 308 int rc = 0; 309 s64 room; 310 ulong lock_flags; 311 312 /* 313 * To avoid the performance penalty of MMIO, spread the update of 314 * 'room' over multiple commands. 315 */ 316 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 317 if (--hwq->room < 0) { 318 room = readq_be(&hwq->host_map->cmd_room); 319 if (room <= 0) { 320 dev_dbg_ratelimited(dev, "%s: no cmd_room to send " 321 "0x%02X, room=0x%016llX\n", 322 __func__, cmd->rcb.cdb[0], room); 323 hwq->room = 0; 324 rc = SCSI_MLQUEUE_HOST_BUSY; 325 goto out; 326 } 327 hwq->room = room - 1; 328 } 329 330 list_add(&cmd->list, &hwq->pending_cmds); 331 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin); 332 out: 333 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 334 dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", 335 __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc); 336 return rc; 337 } 338 339 /** 340 * send_cmd_sq() - sends an AFU command via SQ ring 341 * @afu: AFU associated with the host. 342 * @cmd: AFU command to send. 343 * 344 * Return: 345 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 346 */ 347 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd) 348 { 349 struct cxlflash_cfg *cfg = afu->parent; 350 struct device *dev = &cfg->dev->dev; 351 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 352 int rc = 0; 353 int newval; 354 ulong lock_flags; 355 356 newval = atomic_dec_if_positive(&hwq->hsq_credits); 357 if (newval <= 0) { 358 rc = SCSI_MLQUEUE_HOST_BUSY; 359 goto out; 360 } 361 362 cmd->rcb.ioasa = &cmd->sa; 363 364 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 365 366 *hwq->hsq_curr = cmd->rcb; 367 if (hwq->hsq_curr < hwq->hsq_end) 368 hwq->hsq_curr++; 369 else 370 hwq->hsq_curr = hwq->hsq_start; 371 372 list_add(&cmd->list, &hwq->pending_cmds); 373 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail); 374 375 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 376 out: 377 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p " 378 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len, 379 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr, 380 readq_be(&hwq->host_map->sq_head), 381 readq_be(&hwq->host_map->sq_tail)); 382 return rc; 383 } 384 385 /** 386 * wait_resp() - polls for a response or timeout to a sent AFU command 387 * @afu: AFU associated with the host. 388 * @cmd: AFU command that was sent. 389 * 390 * Return: 0 on success, -errno on failure 391 */ 392 static int wait_resp(struct afu *afu, struct afu_cmd *cmd) 393 { 394 struct cxlflash_cfg *cfg = afu->parent; 395 struct device *dev = &cfg->dev->dev; 396 int rc = 0; 397 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); 398 399 timeout = wait_for_completion_timeout(&cmd->cevent, timeout); 400 if (!timeout) 401 rc = -ETIMEDOUT; 402 403 if (cmd->cmd_aborted) 404 rc = -EAGAIN; 405 406 if (unlikely(cmd->sa.ioasc != 0)) { 407 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n", 408 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc); 409 rc = -EIO; 410 } 411 412 return rc; 413 } 414 415 /** 416 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command 417 * @host: SCSI host associated with device. 418 * @scp: SCSI command to send. 419 * @afu: SCSI command to send. 420 * 421 * Hashes a command based upon the hardware queue mode. 422 * 423 * Return: Trusted index of target hardware queue 424 */ 425 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp, 426 struct afu *afu) 427 { 428 u32 tag; 429 u32 hwq = 0; 430 431 if (afu->num_hwqs == 1) 432 return 0; 433 434 switch (afu->hwq_mode) { 435 case HWQ_MODE_RR: 436 hwq = afu->hwq_rr_count++ % afu->num_hwqs; 437 break; 438 case HWQ_MODE_TAG: 439 tag = blk_mq_unique_tag(scp->request); 440 hwq = blk_mq_unique_tag_to_hwq(tag); 441 break; 442 case HWQ_MODE_CPU: 443 hwq = smp_processor_id() % afu->num_hwqs; 444 break; 445 default: 446 WARN_ON_ONCE(1); 447 } 448 449 return hwq; 450 } 451 452 /** 453 * send_tmf() - sends a Task Management Function (TMF) 454 * @cfg: Internal structure associated with the host. 455 * @sdev: SCSI device destined for TMF. 456 * @tmfcmd: TMF command to send. 457 * 458 * Return: 459 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure 460 */ 461 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev, 462 u64 tmfcmd) 463 { 464 struct afu *afu = cfg->afu; 465 struct afu_cmd *cmd = NULL; 466 struct device *dev = &cfg->dev->dev; 467 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 468 bool needs_deletion = false; 469 char *buf = NULL; 470 ulong lock_flags; 471 int rc = 0; 472 ulong to; 473 474 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 475 if (unlikely(!buf)) { 476 dev_err(dev, "%s: no memory for command\n", __func__); 477 rc = -ENOMEM; 478 goto out; 479 } 480 481 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 482 INIT_LIST_HEAD(&cmd->queue); 483 484 /* When Task Management Function is active do not send another */ 485 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 486 if (cfg->tmf_active) 487 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 488 !cfg->tmf_active, 489 cfg->tmf_slock); 490 cfg->tmf_active = true; 491 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 492 493 cmd->parent = afu; 494 cmd->cmd_tmf = true; 495 cmd->hwq_index = hwq->index; 496 497 cmd->rcb.ctx_id = hwq->ctx_hndl; 498 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 499 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel); 500 cmd->rcb.lun_id = lun_to_lunid(sdev->lun); 501 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 502 SISL_REQ_FLAGS_SUP_UNDERRUN | 503 SISL_REQ_FLAGS_TMF_CMD); 504 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); 505 506 rc = afu->send_cmd(afu, cmd); 507 if (unlikely(rc)) { 508 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 509 cfg->tmf_active = false; 510 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 511 goto out; 512 } 513 514 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 515 to = msecs_to_jiffies(5000); 516 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, 517 !cfg->tmf_active, 518 cfg->tmf_slock, 519 to); 520 if (!to) { 521 dev_err(dev, "%s: TMF timed out\n", __func__); 522 rc = -ETIMEDOUT; 523 needs_deletion = true; 524 } else if (cmd->cmd_aborted) { 525 dev_err(dev, "%s: TMF aborted\n", __func__); 526 rc = -EAGAIN; 527 } else if (cmd->sa.ioasc) { 528 dev_err(dev, "%s: TMF failed ioasc=%08x\n", 529 __func__, cmd->sa.ioasc); 530 rc = -EIO; 531 } 532 cfg->tmf_active = false; 533 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 534 535 if (needs_deletion) { 536 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 537 list_del(&cmd->list); 538 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 539 } 540 out: 541 kfree(buf); 542 return rc; 543 } 544 545 /** 546 * cxlflash_driver_info() - information handler for this host driver 547 * @host: SCSI host associated with device. 548 * 549 * Return: A string describing the device. 550 */ 551 static const char *cxlflash_driver_info(struct Scsi_Host *host) 552 { 553 return CXLFLASH_ADAPTER_NAME; 554 } 555 556 /** 557 * cxlflash_queuecommand() - sends a mid-layer request 558 * @host: SCSI host associated with device. 559 * @scp: SCSI command to send. 560 * 561 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 562 */ 563 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) 564 { 565 struct cxlflash_cfg *cfg = shost_priv(host); 566 struct afu *afu = cfg->afu; 567 struct device *dev = &cfg->dev->dev; 568 struct afu_cmd *cmd = sc_to_afuci(scp); 569 struct scatterlist *sg = scsi_sglist(scp); 570 int hwq_index = cmd_to_target_hwq(host, scp, afu); 571 struct hwq *hwq = get_hwq(afu, hwq_index); 572 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN; 573 ulong lock_flags; 574 int rc = 0; 575 576 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " 577 "cdb=(%08x-%08x-%08x-%08x)\n", 578 __func__, scp, host->host_no, scp->device->channel, 579 scp->device->id, scp->device->lun, 580 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 581 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 582 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 583 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 584 585 /* 586 * If a Task Management Function is active, wait for it to complete 587 * before continuing with regular commands. 588 */ 589 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 590 if (cfg->tmf_active) { 591 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 592 rc = SCSI_MLQUEUE_HOST_BUSY; 593 goto out; 594 } 595 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 596 597 switch (cfg->state) { 598 case STATE_PROBING: 599 case STATE_PROBED: 600 case STATE_RESET: 601 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__); 602 rc = SCSI_MLQUEUE_HOST_BUSY; 603 goto out; 604 case STATE_FAILTERM: 605 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__); 606 scp->result = (DID_NO_CONNECT << 16); 607 scp->scsi_done(scp); 608 rc = 0; 609 goto out; 610 default: 611 atomic_inc(&afu->cmds_active); 612 break; 613 } 614 615 if (likely(sg)) { 616 cmd->rcb.data_len = sg->length; 617 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg); 618 } 619 620 cmd->scp = scp; 621 cmd->parent = afu; 622 cmd->hwq_index = hwq_index; 623 624 cmd->sa.ioasc = 0; 625 cmd->rcb.ctx_id = hwq->ctx_hndl; 626 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 627 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel); 628 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 629 630 if (scp->sc_data_direction == DMA_TO_DEVICE) 631 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 632 633 cmd->rcb.req_flags = req_flags; 634 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); 635 636 rc = afu->send_cmd(afu, cmd); 637 atomic_dec(&afu->cmds_active); 638 out: 639 return rc; 640 } 641 642 /** 643 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe 644 * @cfg: Internal structure associated with the host. 645 */ 646 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) 647 { 648 struct pci_dev *pdev = cfg->dev; 649 650 if (pci_channel_offline(pdev)) 651 wait_event_timeout(cfg->reset_waitq, 652 !pci_channel_offline(pdev), 653 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); 654 } 655 656 /** 657 * free_mem() - free memory associated with the AFU 658 * @cfg: Internal structure associated with the host. 659 */ 660 static void free_mem(struct cxlflash_cfg *cfg) 661 { 662 struct afu *afu = cfg->afu; 663 664 if (cfg->afu) { 665 free_pages((ulong)afu, get_order(sizeof(struct afu))); 666 cfg->afu = NULL; 667 } 668 } 669 670 /** 671 * cxlflash_reset_sync() - synchronizing point for asynchronous resets 672 * @cfg: Internal structure associated with the host. 673 */ 674 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg) 675 { 676 if (cfg->async_reset_cookie == 0) 677 return; 678 679 /* Wait until all async calls prior to this cookie have completed */ 680 async_synchronize_cookie(cfg->async_reset_cookie + 1); 681 cfg->async_reset_cookie = 0; 682 } 683 684 /** 685 * stop_afu() - stops the AFU command timers and unmaps the MMIO space 686 * @cfg: Internal structure associated with the host. 687 * 688 * Safe to call with AFU in a partially allocated/initialized state. 689 * 690 * Cancels scheduled worker threads, waits for any active internal AFU 691 * commands to timeout, disables IRQ polling and then unmaps the MMIO space. 692 */ 693 static void stop_afu(struct cxlflash_cfg *cfg) 694 { 695 struct afu *afu = cfg->afu; 696 struct hwq *hwq; 697 int i; 698 699 cancel_work_sync(&cfg->work_q); 700 if (!current_is_async()) 701 cxlflash_reset_sync(cfg); 702 703 if (likely(afu)) { 704 while (atomic_read(&afu->cmds_active)) 705 ssleep(1); 706 707 if (afu_is_irqpoll_enabled(afu)) { 708 for (i = 0; i < afu->num_hwqs; i++) { 709 hwq = get_hwq(afu, i); 710 711 irq_poll_disable(&hwq->irqpoll); 712 } 713 } 714 715 if (likely(afu->afu_map)) { 716 cfg->ops->psa_unmap(afu->afu_map); 717 afu->afu_map = NULL; 718 } 719 } 720 } 721 722 /** 723 * term_intr() - disables all AFU interrupts 724 * @cfg: Internal structure associated with the host. 725 * @level: Depth of allocation, where to begin waterfall tear down. 726 * @index: Index of the hardware queue. 727 * 728 * Safe to call with AFU/MC in partially allocated/initialized state. 729 */ 730 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level, 731 u32 index) 732 { 733 struct afu *afu = cfg->afu; 734 struct device *dev = &cfg->dev->dev; 735 struct hwq *hwq; 736 737 if (!afu) { 738 dev_err(dev, "%s: returning with NULL afu\n", __func__); 739 return; 740 } 741 742 hwq = get_hwq(afu, index); 743 744 if (!hwq->ctx_cookie) { 745 dev_err(dev, "%s: returning with NULL MC\n", __func__); 746 return; 747 } 748 749 switch (level) { 750 case UNMAP_THREE: 751 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 752 if (index == PRIMARY_HWQ) 753 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq); 754 /* fall through */ 755 case UNMAP_TWO: 756 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq); 757 /* fall through */ 758 case UNMAP_ONE: 759 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq); 760 /* fall through */ 761 case FREE_IRQ: 762 cfg->ops->free_afu_irqs(hwq->ctx_cookie); 763 /* fall through */ 764 case UNDO_NOOP: 765 /* No action required */ 766 break; 767 } 768 } 769 770 /** 771 * term_mc() - terminates the master context 772 * @cfg: Internal structure associated with the host. 773 * @index: Index of the hardware queue. 774 * 775 * Safe to call with AFU/MC in partially allocated/initialized state. 776 */ 777 static void term_mc(struct cxlflash_cfg *cfg, u32 index) 778 { 779 struct afu *afu = cfg->afu; 780 struct device *dev = &cfg->dev->dev; 781 struct hwq *hwq; 782 ulong lock_flags; 783 784 if (!afu) { 785 dev_err(dev, "%s: returning with NULL afu\n", __func__); 786 return; 787 } 788 789 hwq = get_hwq(afu, index); 790 791 if (!hwq->ctx_cookie) { 792 dev_err(dev, "%s: returning with NULL MC\n", __func__); 793 return; 794 } 795 796 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie)); 797 if (index != PRIMARY_HWQ) 798 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie)); 799 hwq->ctx_cookie = NULL; 800 801 spin_lock_irqsave(&hwq->hrrq_slock, lock_flags); 802 hwq->hrrq_online = false; 803 spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags); 804 805 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 806 flush_pending_cmds(hwq); 807 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 808 } 809 810 /** 811 * term_afu() - terminates the AFU 812 * @cfg: Internal structure associated with the host. 813 * 814 * Safe to call with AFU/MC in partially allocated/initialized state. 815 */ 816 static void term_afu(struct cxlflash_cfg *cfg) 817 { 818 struct device *dev = &cfg->dev->dev; 819 int k; 820 821 /* 822 * Tear down is carefully orchestrated to ensure 823 * no interrupts can come in when the problem state 824 * area is unmapped. 825 * 826 * 1) Disable all AFU interrupts for each master 827 * 2) Unmap the problem state area 828 * 3) Stop each master context 829 */ 830 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 831 term_intr(cfg, UNMAP_THREE, k); 832 833 stop_afu(cfg); 834 835 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 836 term_mc(cfg, k); 837 838 dev_dbg(dev, "%s: returning\n", __func__); 839 } 840 841 /** 842 * notify_shutdown() - notifies device of pending shutdown 843 * @cfg: Internal structure associated with the host. 844 * @wait: Whether to wait for shutdown processing to complete. 845 * 846 * This function will notify the AFU that the adapter is being shutdown 847 * and will wait for shutdown processing to complete if wait is true. 848 * This notification should flush pending I/Os to the device and halt 849 * further I/Os until the next AFU reset is issued and device restarted. 850 */ 851 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) 852 { 853 struct afu *afu = cfg->afu; 854 struct device *dev = &cfg->dev->dev; 855 struct dev_dependent_vals *ddv; 856 __be64 __iomem *fc_port_regs; 857 u64 reg, status; 858 int i, retry_cnt = 0; 859 860 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; 861 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) 862 return; 863 864 if (!afu || !afu->afu_map) { 865 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__); 866 return; 867 } 868 869 /* Notify AFU */ 870 for (i = 0; i < cfg->num_fc_ports; i++) { 871 fc_port_regs = get_fc_port_regs(cfg, i); 872 873 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 874 reg |= SISL_FC_SHUTDOWN_NORMAL; 875 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 876 } 877 878 if (!wait) 879 return; 880 881 /* Wait up to 1.5 seconds for shutdown processing to complete */ 882 for (i = 0; i < cfg->num_fc_ports; i++) { 883 fc_port_regs = get_fc_port_regs(cfg, i); 884 retry_cnt = 0; 885 886 while (true) { 887 status = readq_be(&fc_port_regs[FC_STATUS / 8]); 888 if (status & SISL_STATUS_SHUTDOWN_COMPLETE) 889 break; 890 if (++retry_cnt >= MC_RETRY_CNT) { 891 dev_dbg(dev, "%s: port %d shutdown processing " 892 "not yet completed\n", __func__, i); 893 break; 894 } 895 msleep(100 * retry_cnt); 896 } 897 } 898 } 899 900 /** 901 * cxlflash_get_minor() - gets the first available minor number 902 * 903 * Return: Unique minor number that can be used to create the character device. 904 */ 905 static int cxlflash_get_minor(void) 906 { 907 int minor; 908 long bit; 909 910 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 911 if (bit >= CXLFLASH_MAX_ADAPTERS) 912 return -1; 913 914 minor = bit & MINORMASK; 915 set_bit(minor, cxlflash_minor); 916 return minor; 917 } 918 919 /** 920 * cxlflash_put_minor() - releases the minor number 921 * @minor: Minor number that is no longer needed. 922 */ 923 static void cxlflash_put_minor(int minor) 924 { 925 clear_bit(minor, cxlflash_minor); 926 } 927 928 /** 929 * cxlflash_release_chrdev() - release the character device for the host 930 * @cfg: Internal structure associated with the host. 931 */ 932 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg) 933 { 934 device_unregister(cfg->chardev); 935 cfg->chardev = NULL; 936 cdev_del(&cfg->cdev); 937 cxlflash_put_minor(MINOR(cfg->cdev.dev)); 938 } 939 940 /** 941 * cxlflash_remove() - PCI entry point to tear down host 942 * @pdev: PCI device associated with the host. 943 * 944 * Safe to use as a cleanup in partially allocated/initialized state. Note that 945 * the reset_waitq is flushed as part of the stop/termination of user contexts. 946 */ 947 static void cxlflash_remove(struct pci_dev *pdev) 948 { 949 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 950 struct device *dev = &pdev->dev; 951 ulong lock_flags; 952 953 if (!pci_is_enabled(pdev)) { 954 dev_dbg(dev, "%s: Device is disabled\n", __func__); 955 return; 956 } 957 958 /* Yield to running recovery threads before continuing with remove */ 959 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 960 cfg->state != STATE_PROBING); 961 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 962 if (cfg->tmf_active) 963 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 964 !cfg->tmf_active, 965 cfg->tmf_slock); 966 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 967 968 /* Notify AFU and wait for shutdown processing to complete */ 969 notify_shutdown(cfg, true); 970 971 cfg->state = STATE_FAILTERM; 972 cxlflash_stop_term_user_contexts(cfg); 973 974 switch (cfg->init_state) { 975 case INIT_STATE_CDEV: 976 cxlflash_release_chrdev(cfg); 977 /* fall through */ 978 case INIT_STATE_SCSI: 979 cxlflash_term_local_luns(cfg); 980 scsi_remove_host(cfg->host); 981 /* fall through */ 982 case INIT_STATE_AFU: 983 term_afu(cfg); 984 /* fall through */ 985 case INIT_STATE_PCI: 986 cfg->ops->destroy_afu(cfg->afu_cookie); 987 pci_disable_device(pdev); 988 /* fall through */ 989 case INIT_STATE_NONE: 990 free_mem(cfg); 991 scsi_host_put(cfg->host); 992 break; 993 } 994 995 dev_dbg(dev, "%s: returning\n", __func__); 996 } 997 998 /** 999 * alloc_mem() - allocates the AFU and its command pool 1000 * @cfg: Internal structure associated with the host. 1001 * 1002 * A partially allocated state remains on failure. 1003 * 1004 * Return: 1005 * 0 on success 1006 * -ENOMEM on failure to allocate memory 1007 */ 1008 static int alloc_mem(struct cxlflash_cfg *cfg) 1009 { 1010 int rc = 0; 1011 struct device *dev = &cfg->dev->dev; 1012 1013 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */ 1014 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1015 get_order(sizeof(struct afu))); 1016 if (unlikely(!cfg->afu)) { 1017 dev_err(dev, "%s: cannot get %d free pages\n", 1018 __func__, get_order(sizeof(struct afu))); 1019 rc = -ENOMEM; 1020 goto out; 1021 } 1022 cfg->afu->parent = cfg; 1023 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS; 1024 cfg->afu->afu_map = NULL; 1025 out: 1026 return rc; 1027 } 1028 1029 /** 1030 * init_pci() - initializes the host as a PCI device 1031 * @cfg: Internal structure associated with the host. 1032 * 1033 * Return: 0 on success, -errno on failure 1034 */ 1035 static int init_pci(struct cxlflash_cfg *cfg) 1036 { 1037 struct pci_dev *pdev = cfg->dev; 1038 struct device *dev = &cfg->dev->dev; 1039 int rc = 0; 1040 1041 rc = pci_enable_device(pdev); 1042 if (rc || pci_channel_offline(pdev)) { 1043 if (pci_channel_offline(pdev)) { 1044 cxlflash_wait_for_pci_err_recovery(cfg); 1045 rc = pci_enable_device(pdev); 1046 } 1047 1048 if (rc) { 1049 dev_err(dev, "%s: Cannot enable adapter\n", __func__); 1050 cxlflash_wait_for_pci_err_recovery(cfg); 1051 goto out; 1052 } 1053 } 1054 1055 out: 1056 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1057 return rc; 1058 } 1059 1060 /** 1061 * init_scsi() - adds the host to the SCSI stack and kicks off host scan 1062 * @cfg: Internal structure associated with the host. 1063 * 1064 * Return: 0 on success, -errno on failure 1065 */ 1066 static int init_scsi(struct cxlflash_cfg *cfg) 1067 { 1068 struct pci_dev *pdev = cfg->dev; 1069 struct device *dev = &cfg->dev->dev; 1070 int rc = 0; 1071 1072 rc = scsi_add_host(cfg->host, &pdev->dev); 1073 if (rc) { 1074 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc); 1075 goto out; 1076 } 1077 1078 scsi_scan_host(cfg->host); 1079 1080 out: 1081 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1082 return rc; 1083 } 1084 1085 /** 1086 * set_port_online() - transitions the specified host FC port to online state 1087 * @fc_regs: Top of MMIO region defined for specified port. 1088 * 1089 * The provided MMIO region must be mapped prior to call. Online state means 1090 * that the FC link layer has synced, completed the handshaking process, and 1091 * is ready for login to start. 1092 */ 1093 static void set_port_online(__be64 __iomem *fc_regs) 1094 { 1095 u64 cmdcfg; 1096 1097 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1098 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ 1099 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ 1100 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1101 } 1102 1103 /** 1104 * set_port_offline() - transitions the specified host FC port to offline state 1105 * @fc_regs: Top of MMIO region defined for specified port. 1106 * 1107 * The provided MMIO region must be mapped prior to call. 1108 */ 1109 static void set_port_offline(__be64 __iomem *fc_regs) 1110 { 1111 u64 cmdcfg; 1112 1113 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1114 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ 1115 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ 1116 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1117 } 1118 1119 /** 1120 * wait_port_online() - waits for the specified host FC port come online 1121 * @fc_regs: Top of MMIO region defined for specified port. 1122 * @delay_us: Number of microseconds to delay between reading port status. 1123 * @nretry: Number of cycles to retry reading port status. 1124 * 1125 * The provided MMIO region must be mapped prior to call. This will timeout 1126 * when the cable is not plugged in. 1127 * 1128 * Return: 1129 * TRUE (1) when the specified port is online 1130 * FALSE (0) when the specified port fails to come online after timeout 1131 */ 1132 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1133 { 1134 u64 status; 1135 1136 WARN_ON(delay_us < 1000); 1137 1138 do { 1139 msleep(delay_us / 1000); 1140 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1141 if (status == U64_MAX) 1142 nretry /= 2; 1143 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && 1144 nretry--); 1145 1146 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); 1147 } 1148 1149 /** 1150 * wait_port_offline() - waits for the specified host FC port go offline 1151 * @fc_regs: Top of MMIO region defined for specified port. 1152 * @delay_us: Number of microseconds to delay between reading port status. 1153 * @nretry: Number of cycles to retry reading port status. 1154 * 1155 * The provided MMIO region must be mapped prior to call. 1156 * 1157 * Return: 1158 * TRUE (1) when the specified port is offline 1159 * FALSE (0) when the specified port fails to go offline after timeout 1160 */ 1161 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1162 { 1163 u64 status; 1164 1165 WARN_ON(delay_us < 1000); 1166 1167 do { 1168 msleep(delay_us / 1000); 1169 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1170 if (status == U64_MAX) 1171 nretry /= 2; 1172 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && 1173 nretry--); 1174 1175 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); 1176 } 1177 1178 /** 1179 * afu_set_wwpn() - configures the WWPN for the specified host FC port 1180 * @afu: AFU associated with the host that owns the specified FC port. 1181 * @port: Port number being configured. 1182 * @fc_regs: Top of MMIO region defined for specified port. 1183 * @wwpn: The world-wide-port-number previously discovered for port. 1184 * 1185 * The provided MMIO region must be mapped prior to call. As part of the 1186 * sequence to configure the WWPN, the port is toggled offline and then back 1187 * online. This toggling action can cause this routine to delay up to a few 1188 * seconds. When configured to use the internal LUN feature of the AFU, a 1189 * failure to come online is overridden. 1190 */ 1191 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, 1192 u64 wwpn) 1193 { 1194 struct cxlflash_cfg *cfg = afu->parent; 1195 struct device *dev = &cfg->dev->dev; 1196 1197 set_port_offline(fc_regs); 1198 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1199 FC_PORT_STATUS_RETRY_CNT)) { 1200 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n", 1201 __func__, port); 1202 } 1203 1204 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); 1205 1206 set_port_online(fc_regs); 1207 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1208 FC_PORT_STATUS_RETRY_CNT)) { 1209 dev_dbg(dev, "%s: wait on port %d to go online timed out\n", 1210 __func__, port); 1211 } 1212 } 1213 1214 /** 1215 * afu_link_reset() - resets the specified host FC port 1216 * @afu: AFU associated with the host that owns the specified FC port. 1217 * @port: Port number being configured. 1218 * @fc_regs: Top of MMIO region defined for specified port. 1219 * 1220 * The provided MMIO region must be mapped prior to call. The sequence to 1221 * reset the port involves toggling it offline and then back online. This 1222 * action can cause this routine to delay up to a few seconds. An effort 1223 * is made to maintain link with the device by switching to host to use 1224 * the alternate port exclusively while the reset takes place. 1225 * failure to come online is overridden. 1226 */ 1227 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) 1228 { 1229 struct cxlflash_cfg *cfg = afu->parent; 1230 struct device *dev = &cfg->dev->dev; 1231 u64 port_sel; 1232 1233 /* first switch the AFU to the other links, if any */ 1234 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); 1235 port_sel &= ~(1ULL << port); 1236 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1237 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1238 1239 set_port_offline(fc_regs); 1240 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1241 FC_PORT_STATUS_RETRY_CNT)) 1242 dev_err(dev, "%s: wait on port %d to go offline timed out\n", 1243 __func__, port); 1244 1245 set_port_online(fc_regs); 1246 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1247 FC_PORT_STATUS_RETRY_CNT)) 1248 dev_err(dev, "%s: wait on port %d to go online timed out\n", 1249 __func__, port); 1250 1251 /* switch back to include this port */ 1252 port_sel |= (1ULL << port); 1253 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1254 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1255 1256 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel); 1257 } 1258 1259 /** 1260 * afu_err_intr_init() - clears and initializes the AFU for error interrupts 1261 * @afu: AFU associated with the host. 1262 */ 1263 static void afu_err_intr_init(struct afu *afu) 1264 { 1265 struct cxlflash_cfg *cfg = afu->parent; 1266 __be64 __iomem *fc_port_regs; 1267 int i; 1268 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 1269 u64 reg; 1270 1271 /* global async interrupts: AFU clears afu_ctrl on context exit 1272 * if async interrupts were sent to that context. This prevents 1273 * the AFU form sending further async interrupts when 1274 * there is 1275 * nobody to receive them. 1276 */ 1277 1278 /* mask all */ 1279 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); 1280 /* set LISN# to send and point to primary master context */ 1281 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); 1282 1283 if (afu->internal_lun) 1284 reg |= 1; /* Bit 63 indicates local lun */ 1285 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); 1286 /* clear all */ 1287 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1288 /* unmask bits that are of interest */ 1289 /* note: afu can send an interrupt after this step */ 1290 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); 1291 /* clear again in case a bit came on after previous clear but before */ 1292 /* unmask */ 1293 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1294 1295 /* Clear/Set internal lun bits */ 1296 fc_port_regs = get_fc_port_regs(cfg, 0); 1297 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 1298 reg &= SISL_FC_INTERNAL_MASK; 1299 if (afu->internal_lun) 1300 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); 1301 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 1302 1303 /* now clear FC errors */ 1304 for (i = 0; i < cfg->num_fc_ports; i++) { 1305 fc_port_regs = get_fc_port_regs(cfg, i); 1306 1307 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]); 1308 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1309 } 1310 1311 /* sync interrupts for master's IOARRIN write */ 1312 /* note that unlike asyncs, there can be no pending sync interrupts */ 1313 /* at this time (this is a fresh context and master has not written */ 1314 /* IOARRIN yet), so there is nothing to clear. */ 1315 1316 /* set LISN#, it is always sent to the context that wrote IOARRIN */ 1317 for (i = 0; i < afu->num_hwqs; i++) { 1318 hwq = get_hwq(afu, i); 1319 1320 reg = readq_be(&hwq->host_map->ctx_ctrl); 1321 WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0); 1322 reg |= SISL_MSI_SYNC_ERROR; 1323 writeq_be(reg, &hwq->host_map->ctx_ctrl); 1324 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask); 1325 } 1326 } 1327 1328 /** 1329 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors 1330 * @irq: Interrupt number. 1331 * @data: Private data provided at interrupt registration, the AFU. 1332 * 1333 * Return: Always return IRQ_HANDLED. 1334 */ 1335 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) 1336 { 1337 struct hwq *hwq = (struct hwq *)data; 1338 struct cxlflash_cfg *cfg = hwq->afu->parent; 1339 struct device *dev = &cfg->dev->dev; 1340 u64 reg; 1341 u64 reg_unmasked; 1342 1343 reg = readq_be(&hwq->host_map->intr_status); 1344 reg_unmasked = (reg & SISL_ISTATUS_UNMASK); 1345 1346 if (reg_unmasked == 0UL) { 1347 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n", 1348 __func__, reg); 1349 goto cxlflash_sync_err_irq_exit; 1350 } 1351 1352 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n", 1353 __func__, reg); 1354 1355 writeq_be(reg_unmasked, &hwq->host_map->intr_clear); 1356 1357 cxlflash_sync_err_irq_exit: 1358 return IRQ_HANDLED; 1359 } 1360 1361 /** 1362 * process_hrrq() - process the read-response queue 1363 * @afu: AFU associated with the host. 1364 * @doneq: Queue of commands harvested from the RRQ. 1365 * @budget: Threshold of RRQ entries to process. 1366 * 1367 * This routine must be called holding the disabled RRQ spin lock. 1368 * 1369 * Return: The number of entries processed. 1370 */ 1371 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget) 1372 { 1373 struct afu *afu = hwq->afu; 1374 struct afu_cmd *cmd; 1375 struct sisl_ioasa *ioasa; 1376 struct sisl_ioarcb *ioarcb; 1377 bool toggle = hwq->toggle; 1378 int num_hrrq = 0; 1379 u64 entry, 1380 *hrrq_start = hwq->hrrq_start, 1381 *hrrq_end = hwq->hrrq_end, 1382 *hrrq_curr = hwq->hrrq_curr; 1383 1384 /* Process ready RRQ entries up to the specified budget (if any) */ 1385 while (true) { 1386 entry = *hrrq_curr; 1387 1388 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) 1389 break; 1390 1391 entry &= ~SISL_RESP_HANDLE_T_BIT; 1392 1393 if (afu_is_sq_cmd_mode(afu)) { 1394 ioasa = (struct sisl_ioasa *)entry; 1395 cmd = container_of(ioasa, struct afu_cmd, sa); 1396 } else { 1397 ioarcb = (struct sisl_ioarcb *)entry; 1398 cmd = container_of(ioarcb, struct afu_cmd, rcb); 1399 } 1400 1401 list_add_tail(&cmd->queue, doneq); 1402 1403 /* Advance to next entry or wrap and flip the toggle bit */ 1404 if (hrrq_curr < hrrq_end) 1405 hrrq_curr++; 1406 else { 1407 hrrq_curr = hrrq_start; 1408 toggle ^= SISL_RESP_HANDLE_T_BIT; 1409 } 1410 1411 atomic_inc(&hwq->hsq_credits); 1412 num_hrrq++; 1413 1414 if (budget > 0 && num_hrrq >= budget) 1415 break; 1416 } 1417 1418 hwq->hrrq_curr = hrrq_curr; 1419 hwq->toggle = toggle; 1420 1421 return num_hrrq; 1422 } 1423 1424 /** 1425 * process_cmd_doneq() - process a queue of harvested RRQ commands 1426 * @doneq: Queue of completed commands. 1427 * 1428 * Note that upon return the queue can no longer be trusted. 1429 */ 1430 static void process_cmd_doneq(struct list_head *doneq) 1431 { 1432 struct afu_cmd *cmd, *tmp; 1433 1434 WARN_ON(list_empty(doneq)); 1435 1436 list_for_each_entry_safe(cmd, tmp, doneq, queue) 1437 cmd_complete(cmd); 1438 } 1439 1440 /** 1441 * cxlflash_irqpoll() - process a queue of harvested RRQ commands 1442 * @irqpoll: IRQ poll structure associated with queue to poll. 1443 * @budget: Threshold of RRQ entries to process per poll. 1444 * 1445 * Return: The number of entries processed. 1446 */ 1447 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget) 1448 { 1449 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll); 1450 unsigned long hrrq_flags; 1451 LIST_HEAD(doneq); 1452 int num_entries = 0; 1453 1454 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1455 1456 num_entries = process_hrrq(hwq, &doneq, budget); 1457 if (num_entries < budget) 1458 irq_poll_complete(irqpoll); 1459 1460 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1461 1462 process_cmd_doneq(&doneq); 1463 return num_entries; 1464 } 1465 1466 /** 1467 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) 1468 * @irq: Interrupt number. 1469 * @data: Private data provided at interrupt registration, the AFU. 1470 * 1471 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found. 1472 */ 1473 static irqreturn_t cxlflash_rrq_irq(int irq, void *data) 1474 { 1475 struct hwq *hwq = (struct hwq *)data; 1476 struct afu *afu = hwq->afu; 1477 unsigned long hrrq_flags; 1478 LIST_HEAD(doneq); 1479 int num_entries = 0; 1480 1481 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1482 1483 /* Silently drop spurious interrupts when queue is not online */ 1484 if (!hwq->hrrq_online) { 1485 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1486 return IRQ_HANDLED; 1487 } 1488 1489 if (afu_is_irqpoll_enabled(afu)) { 1490 irq_poll_sched(&hwq->irqpoll); 1491 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1492 return IRQ_HANDLED; 1493 } 1494 1495 num_entries = process_hrrq(hwq, &doneq, -1); 1496 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1497 1498 if (num_entries == 0) 1499 return IRQ_NONE; 1500 1501 process_cmd_doneq(&doneq); 1502 return IRQ_HANDLED; 1503 } 1504 1505 /* 1506 * Asynchronous interrupt information table 1507 * 1508 * NOTE: 1509 * - Order matters here as this array is indexed by bit position. 1510 * 1511 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro 1512 * as complex and complains due to a lack of parentheses/braces. 1513 */ 1514 #define ASTATUS_FC(_a, _b, _c, _d) \ 1515 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) } 1516 1517 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \ 1518 ASTATUS_FC(_a, LINK_UP, "link up", 0), \ 1519 ASTATUS_FC(_a, LINK_DN, "link down", 0), \ 1520 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \ 1521 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \ 1522 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \ 1523 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \ 1524 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \ 1525 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET) 1526 1527 static const struct asyc_intr_info ainfo[] = { 1528 BUILD_SISL_ASTATUS_FC_PORT(1), 1529 BUILD_SISL_ASTATUS_FC_PORT(0), 1530 BUILD_SISL_ASTATUS_FC_PORT(3), 1531 BUILD_SISL_ASTATUS_FC_PORT(2) 1532 }; 1533 1534 /** 1535 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors 1536 * @irq: Interrupt number. 1537 * @data: Private data provided at interrupt registration, the AFU. 1538 * 1539 * Return: Always return IRQ_HANDLED. 1540 */ 1541 static irqreturn_t cxlflash_async_err_irq(int irq, void *data) 1542 { 1543 struct hwq *hwq = (struct hwq *)data; 1544 struct afu *afu = hwq->afu; 1545 struct cxlflash_cfg *cfg = afu->parent; 1546 struct device *dev = &cfg->dev->dev; 1547 const struct asyc_intr_info *info; 1548 struct sisl_global_map __iomem *global = &afu->afu_map->global; 1549 __be64 __iomem *fc_port_regs; 1550 u64 reg_unmasked; 1551 u64 reg; 1552 u64 bit; 1553 u8 port; 1554 1555 reg = readq_be(&global->regs.aintr_status); 1556 reg_unmasked = (reg & SISL_ASTATUS_UNMASK); 1557 1558 if (unlikely(reg_unmasked == 0)) { 1559 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n", 1560 __func__, reg); 1561 goto out; 1562 } 1563 1564 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ 1565 writeq_be(reg_unmasked, &global->regs.aintr_clear); 1566 1567 /* Check each bit that is on */ 1568 for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) { 1569 if (unlikely(bit >= ARRAY_SIZE(ainfo))) { 1570 WARN_ON_ONCE(1); 1571 continue; 1572 } 1573 1574 info = &ainfo[bit]; 1575 if (unlikely(info->status != 1ULL << bit)) { 1576 WARN_ON_ONCE(1); 1577 continue; 1578 } 1579 1580 port = info->port; 1581 fc_port_regs = get_fc_port_regs(cfg, port); 1582 1583 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n", 1584 __func__, port, info->desc, 1585 readq_be(&fc_port_regs[FC_STATUS / 8])); 1586 1587 /* 1588 * Do link reset first, some OTHER errors will set FC_ERROR 1589 * again if cleared before or w/o a reset 1590 */ 1591 if (info->action & LINK_RESET) { 1592 dev_err(dev, "%s: FC Port %d: resetting link\n", 1593 __func__, port); 1594 cfg->lr_state = LINK_RESET_REQUIRED; 1595 cfg->lr_port = port; 1596 schedule_work(&cfg->work_q); 1597 } 1598 1599 if (info->action & CLR_FC_ERROR) { 1600 reg = readq_be(&fc_port_regs[FC_ERROR / 8]); 1601 1602 /* 1603 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP 1604 * should be the same and tracing one is sufficient. 1605 */ 1606 1607 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n", 1608 __func__, port, reg); 1609 1610 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]); 1611 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1612 } 1613 1614 if (info->action & SCAN_HOST) { 1615 atomic_inc(&cfg->scan_host_needed); 1616 schedule_work(&cfg->work_q); 1617 } 1618 } 1619 1620 out: 1621 return IRQ_HANDLED; 1622 } 1623 1624 /** 1625 * read_vpd() - obtains the WWPNs from VPD 1626 * @cfg: Internal structure associated with the host. 1627 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs 1628 * 1629 * Return: 0 on success, -errno on failure 1630 */ 1631 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) 1632 { 1633 struct device *dev = &cfg->dev->dev; 1634 struct pci_dev *pdev = cfg->dev; 1635 int rc = 0; 1636 int ro_start, ro_size, i, j, k; 1637 ssize_t vpd_size; 1638 char vpd_data[CXLFLASH_VPD_LEN]; 1639 char tmp_buf[WWPN_BUF_LEN] = { 0 }; 1640 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *) 1641 cfg->dev_id->driver_data; 1642 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED; 1643 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" }; 1644 1645 /* Get the VPD data from the device */ 1646 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data)); 1647 if (unlikely(vpd_size <= 0)) { 1648 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n", 1649 __func__, vpd_size); 1650 rc = -ENODEV; 1651 goto out; 1652 } 1653 1654 /* Get the read only section offset */ 1655 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, 1656 PCI_VPD_LRDT_RO_DATA); 1657 if (unlikely(ro_start < 0)) { 1658 dev_err(dev, "%s: VPD Read-only data not found\n", __func__); 1659 rc = -ENODEV; 1660 goto out; 1661 } 1662 1663 /* Get the read only section size, cap when extends beyond read VPD */ 1664 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 1665 j = ro_size; 1666 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1667 if (unlikely((i + j) > vpd_size)) { 1668 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n", 1669 __func__, (i + j), vpd_size); 1670 ro_size = vpd_size - i; 1671 } 1672 1673 /* 1674 * Find the offset of the WWPN tag within the read only 1675 * VPD data and validate the found field (partials are 1676 * no good to us). Convert the ASCII data to an integer 1677 * value. Note that we must copy to a temporary buffer 1678 * because the conversion service requires that the ASCII 1679 * string be terminated. 1680 * 1681 * Allow for WWPN not being found for all devices, setting 1682 * the returned WWPN to zero when not found. Notify with a 1683 * log error for cards that should have had WWPN keywords 1684 * in the VPD - cards requiring WWPN will not have their 1685 * ports programmed and operate in an undefined state. 1686 */ 1687 for (k = 0; k < cfg->num_fc_ports; k++) { 1688 j = ro_size; 1689 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1690 1691 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); 1692 if (i < 0) { 1693 if (wwpn_vpd_required) 1694 dev_err(dev, "%s: Port %d WWPN not found\n", 1695 __func__, k); 1696 wwpn[k] = 0ULL; 1697 continue; 1698 } 1699 1700 j = pci_vpd_info_field_size(&vpd_data[i]); 1701 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1702 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { 1703 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n", 1704 __func__, k); 1705 rc = -ENODEV; 1706 goto out; 1707 } 1708 1709 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); 1710 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); 1711 if (unlikely(rc)) { 1712 dev_err(dev, "%s: WWPN conversion failed for port %d\n", 1713 __func__, k); 1714 rc = -ENODEV; 1715 goto out; 1716 } 1717 1718 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]); 1719 } 1720 1721 out: 1722 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1723 return rc; 1724 } 1725 1726 /** 1727 * init_pcr() - initialize the provisioning and control registers 1728 * @cfg: Internal structure associated with the host. 1729 * 1730 * Also sets up fast access to the mapped registers and initializes AFU 1731 * command fields that never change. 1732 */ 1733 static void init_pcr(struct cxlflash_cfg *cfg) 1734 { 1735 struct afu *afu = cfg->afu; 1736 struct sisl_ctrl_map __iomem *ctrl_map; 1737 struct hwq *hwq; 1738 void *cookie; 1739 int i; 1740 1741 for (i = 0; i < MAX_CONTEXT; i++) { 1742 ctrl_map = &afu->afu_map->ctrls[i].ctrl; 1743 /* Disrupt any clients that could be running */ 1744 /* e.g. clients that survived a master restart */ 1745 writeq_be(0, &ctrl_map->rht_start); 1746 writeq_be(0, &ctrl_map->rht_cnt_id); 1747 writeq_be(0, &ctrl_map->ctx_cap); 1748 } 1749 1750 /* Copy frequently used fields into hwq */ 1751 for (i = 0; i < afu->num_hwqs; i++) { 1752 hwq = get_hwq(afu, i); 1753 cookie = hwq->ctx_cookie; 1754 1755 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie); 1756 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host; 1757 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl; 1758 1759 /* Program the Endian Control for the master context */ 1760 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl); 1761 } 1762 } 1763 1764 /** 1765 * init_global() - initialize AFU global registers 1766 * @cfg: Internal structure associated with the host. 1767 */ 1768 static int init_global(struct cxlflash_cfg *cfg) 1769 { 1770 struct afu *afu = cfg->afu; 1771 struct device *dev = &cfg->dev->dev; 1772 struct hwq *hwq; 1773 struct sisl_host_map __iomem *hmap; 1774 __be64 __iomem *fc_port_regs; 1775 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */ 1776 int i = 0, num_ports = 0; 1777 int rc = 0; 1778 int j; 1779 void *ctx; 1780 u64 reg; 1781 1782 rc = read_vpd(cfg, &wwpn[0]); 1783 if (rc) { 1784 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); 1785 goto out; 1786 } 1787 1788 /* Set up RRQ and SQ in HWQ for master issued cmds */ 1789 for (i = 0; i < afu->num_hwqs; i++) { 1790 hwq = get_hwq(afu, i); 1791 hmap = hwq->host_map; 1792 1793 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start); 1794 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end); 1795 hwq->hrrq_online = true; 1796 1797 if (afu_is_sq_cmd_mode(afu)) { 1798 writeq_be((u64)hwq->hsq_start, &hmap->sq_start); 1799 writeq_be((u64)hwq->hsq_end, &hmap->sq_end); 1800 } 1801 } 1802 1803 /* AFU configuration */ 1804 reg = readq_be(&afu->afu_map->global.regs.afu_config); 1805 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; 1806 /* enable all auto retry options and control endianness */ 1807 /* leave others at default: */ 1808 /* CTX_CAP write protected, mbox_r does not clear on read and */ 1809 /* checker on if dual afu */ 1810 writeq_be(reg, &afu->afu_map->global.regs.afu_config); 1811 1812 /* Global port select: select either port */ 1813 if (afu->internal_lun) { 1814 /* Only use port 0 */ 1815 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); 1816 num_ports = 0; 1817 } else { 1818 writeq_be(PORT_MASK(cfg->num_fc_ports), 1819 &afu->afu_map->global.regs.afu_port_sel); 1820 num_ports = cfg->num_fc_ports; 1821 } 1822 1823 for (i = 0; i < num_ports; i++) { 1824 fc_port_regs = get_fc_port_regs(cfg, i); 1825 1826 /* Unmask all errors (but they are still masked at AFU) */ 1827 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]); 1828 /* Clear CRC error cnt & set a threshold */ 1829 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]); 1830 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]); 1831 1832 /* Set WWPNs. If already programmed, wwpn[i] is 0 */ 1833 if (wwpn[i] != 0) 1834 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]); 1835 /* Programming WWPN back to back causes additional 1836 * offline/online transitions and a PLOGI 1837 */ 1838 msleep(100); 1839 } 1840 1841 if (afu_is_ocxl_lisn(afu)) { 1842 /* Set up the LISN effective address for each master */ 1843 for (i = 0; i < afu->num_hwqs; i++) { 1844 hwq = get_hwq(afu, i); 1845 ctx = hwq->ctx_cookie; 1846 1847 for (j = 0; j < hwq->num_irqs; j++) { 1848 reg = cfg->ops->get_irq_objhndl(ctx, j); 1849 writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]); 1850 } 1851 1852 reg = hwq->ctx_hndl; 1853 writeq_be(SISL_LISN_PASID(reg, reg), 1854 &hwq->ctrl_map->lisn_pasid[0]); 1855 writeq_be(SISL_LISN_PASID(0UL, reg), 1856 &hwq->ctrl_map->lisn_pasid[1]); 1857 } 1858 } 1859 1860 /* Set up master's own CTX_CAP to allow real mode, host translation */ 1861 /* tables, afu cmds and read/write GSCSI cmds. */ 1862 /* First, unlock ctx_cap write by reading mbox */ 1863 for (i = 0; i < afu->num_hwqs; i++) { 1864 hwq = get_hwq(afu, i); 1865 1866 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */ 1867 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | 1868 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | 1869 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), 1870 &hwq->ctrl_map->ctx_cap); 1871 } 1872 1873 /* 1874 * Determine write-same unmap support for host by evaluating the unmap 1875 * sector support bit of the context control register associated with 1876 * the primary hardware queue. Note that while this status is reflected 1877 * in a context register, the outcome can be assumed to be host-wide. 1878 */ 1879 hwq = get_hwq(afu, PRIMARY_HWQ); 1880 reg = readq_be(&hwq->host_map->ctx_ctrl); 1881 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR) 1882 cfg->ws_unmap = true; 1883 1884 /* Initialize heartbeat */ 1885 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); 1886 out: 1887 return rc; 1888 } 1889 1890 /** 1891 * start_afu() - initializes and starts the AFU 1892 * @cfg: Internal structure associated with the host. 1893 */ 1894 static int start_afu(struct cxlflash_cfg *cfg) 1895 { 1896 struct afu *afu = cfg->afu; 1897 struct device *dev = &cfg->dev->dev; 1898 struct hwq *hwq; 1899 int rc = 0; 1900 int i; 1901 1902 init_pcr(cfg); 1903 1904 /* Initialize each HWQ */ 1905 for (i = 0; i < afu->num_hwqs; i++) { 1906 hwq = get_hwq(afu, i); 1907 1908 /* After an AFU reset, RRQ entries are stale, clear them */ 1909 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry)); 1910 1911 /* Initialize RRQ pointers */ 1912 hwq->hrrq_start = &hwq->rrq_entry[0]; 1913 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1]; 1914 hwq->hrrq_curr = hwq->hrrq_start; 1915 hwq->toggle = 1; 1916 1917 /* Initialize spin locks */ 1918 spin_lock_init(&hwq->hrrq_slock); 1919 spin_lock_init(&hwq->hsq_slock); 1920 1921 /* Initialize SQ */ 1922 if (afu_is_sq_cmd_mode(afu)) { 1923 memset(&hwq->sq, 0, sizeof(hwq->sq)); 1924 hwq->hsq_start = &hwq->sq[0]; 1925 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1]; 1926 hwq->hsq_curr = hwq->hsq_start; 1927 1928 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1); 1929 } 1930 1931 /* Initialize IRQ poll */ 1932 if (afu_is_irqpoll_enabled(afu)) 1933 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight, 1934 cxlflash_irqpoll); 1935 1936 } 1937 1938 rc = init_global(cfg); 1939 1940 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1941 return rc; 1942 } 1943 1944 /** 1945 * init_intr() - setup interrupt handlers for the master context 1946 * @cfg: Internal structure associated with the host. 1947 * @hwq: Hardware queue to initialize. 1948 * 1949 * Return: 0 on success, -errno on failure 1950 */ 1951 static enum undo_level init_intr(struct cxlflash_cfg *cfg, 1952 struct hwq *hwq) 1953 { 1954 struct device *dev = &cfg->dev->dev; 1955 void *ctx = hwq->ctx_cookie; 1956 int rc = 0; 1957 enum undo_level level = UNDO_NOOP; 1958 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ); 1959 int num_irqs = hwq->num_irqs; 1960 1961 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs); 1962 if (unlikely(rc)) { 1963 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n", 1964 __func__, rc); 1965 level = UNDO_NOOP; 1966 goto out; 1967 } 1968 1969 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq, 1970 "SISL_MSI_SYNC_ERROR"); 1971 if (unlikely(rc <= 0)) { 1972 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__); 1973 level = FREE_IRQ; 1974 goto out; 1975 } 1976 1977 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq, 1978 "SISL_MSI_RRQ_UPDATED"); 1979 if (unlikely(rc <= 0)) { 1980 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__); 1981 level = UNMAP_ONE; 1982 goto out; 1983 } 1984 1985 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 1986 if (!is_primary_hwq) 1987 goto out; 1988 1989 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq, 1990 "SISL_MSI_ASYNC_ERROR"); 1991 if (unlikely(rc <= 0)) { 1992 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__); 1993 level = UNMAP_TWO; 1994 goto out; 1995 } 1996 out: 1997 return level; 1998 } 1999 2000 /** 2001 * init_mc() - create and register as the master context 2002 * @cfg: Internal structure associated with the host. 2003 * index: HWQ Index of the master context. 2004 * 2005 * Return: 0 on success, -errno on failure 2006 */ 2007 static int init_mc(struct cxlflash_cfg *cfg, u32 index) 2008 { 2009 void *ctx; 2010 struct device *dev = &cfg->dev->dev; 2011 struct hwq *hwq = get_hwq(cfg->afu, index); 2012 int rc = 0; 2013 int num_irqs; 2014 enum undo_level level; 2015 2016 hwq->afu = cfg->afu; 2017 hwq->index = index; 2018 INIT_LIST_HEAD(&hwq->pending_cmds); 2019 2020 if (index == PRIMARY_HWQ) { 2021 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie); 2022 num_irqs = 3; 2023 } else { 2024 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie); 2025 num_irqs = 2; 2026 } 2027 if (IS_ERR_OR_NULL(ctx)) { 2028 rc = -ENOMEM; 2029 goto err1; 2030 } 2031 2032 WARN_ON(hwq->ctx_cookie); 2033 hwq->ctx_cookie = ctx; 2034 hwq->num_irqs = num_irqs; 2035 2036 /* Set it up as a master with the CXL */ 2037 cfg->ops->set_master(ctx); 2038 2039 /* Reset AFU when initializing primary context */ 2040 if (index == PRIMARY_HWQ) { 2041 rc = cfg->ops->afu_reset(ctx); 2042 if (unlikely(rc)) { 2043 dev_err(dev, "%s: AFU reset failed rc=%d\n", 2044 __func__, rc); 2045 goto err1; 2046 } 2047 } 2048 2049 level = init_intr(cfg, hwq); 2050 if (unlikely(level)) { 2051 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc); 2052 goto err2; 2053 } 2054 2055 /* Finally, activate the context by starting it */ 2056 rc = cfg->ops->start_context(hwq->ctx_cookie); 2057 if (unlikely(rc)) { 2058 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); 2059 level = UNMAP_THREE; 2060 goto err2; 2061 } 2062 2063 out: 2064 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2065 return rc; 2066 err2: 2067 term_intr(cfg, level, index); 2068 if (index != PRIMARY_HWQ) 2069 cfg->ops->release_context(ctx); 2070 err1: 2071 hwq->ctx_cookie = NULL; 2072 goto out; 2073 } 2074 2075 /** 2076 * get_num_afu_ports() - determines and configures the number of AFU ports 2077 * @cfg: Internal structure associated with the host. 2078 * 2079 * This routine determines the number of AFU ports by converting the global 2080 * port selection mask. The converted value is only valid following an AFU 2081 * reset (explicit or power-on). This routine must be invoked shortly after 2082 * mapping as other routines are dependent on the number of ports during the 2083 * initialization sequence. 2084 * 2085 * To support legacy AFUs that might not have reflected an initial global 2086 * port mask (value read is 0), default to the number of ports originally 2087 * supported by the cxlflash driver (2) before hardware with other port 2088 * offerings was introduced. 2089 */ 2090 static void get_num_afu_ports(struct cxlflash_cfg *cfg) 2091 { 2092 struct afu *afu = cfg->afu; 2093 struct device *dev = &cfg->dev->dev; 2094 u64 port_mask; 2095 int num_fc_ports = LEGACY_FC_PORTS; 2096 2097 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel); 2098 if (port_mask != 0ULL) 2099 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS); 2100 2101 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n", 2102 __func__, port_mask, num_fc_ports); 2103 2104 cfg->num_fc_ports = num_fc_ports; 2105 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports); 2106 } 2107 2108 /** 2109 * init_afu() - setup as master context and start AFU 2110 * @cfg: Internal structure associated with the host. 2111 * 2112 * This routine is a higher level of control for configuring the 2113 * AFU on probe and reset paths. 2114 * 2115 * Return: 0 on success, -errno on failure 2116 */ 2117 static int init_afu(struct cxlflash_cfg *cfg) 2118 { 2119 u64 reg; 2120 int rc = 0; 2121 struct afu *afu = cfg->afu; 2122 struct device *dev = &cfg->dev->dev; 2123 struct hwq *hwq; 2124 int i; 2125 2126 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true); 2127 2128 mutex_init(&afu->sync_active); 2129 afu->num_hwqs = afu->desired_hwqs; 2130 for (i = 0; i < afu->num_hwqs; i++) { 2131 rc = init_mc(cfg, i); 2132 if (rc) { 2133 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n", 2134 __func__, rc, i); 2135 goto err1; 2136 } 2137 } 2138 2139 /* Map the entire MMIO space of the AFU using the first context */ 2140 hwq = get_hwq(afu, PRIMARY_HWQ); 2141 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie); 2142 if (!afu->afu_map) { 2143 dev_err(dev, "%s: psa_map failed\n", __func__); 2144 rc = -ENOMEM; 2145 goto err1; 2146 } 2147 2148 /* No byte reverse on reading afu_version or string will be backwards */ 2149 reg = readq(&afu->afu_map->global.regs.afu_version); 2150 memcpy(afu->version, ®, sizeof(reg)); 2151 afu->interface_version = 2152 readq_be(&afu->afu_map->global.regs.interface_version); 2153 if ((afu->interface_version + 1) == 0) { 2154 dev_err(dev, "Back level AFU, please upgrade. AFU version %s " 2155 "interface version %016llx\n", afu->version, 2156 afu->interface_version); 2157 rc = -EINVAL; 2158 goto err1; 2159 } 2160 2161 if (afu_is_sq_cmd_mode(afu)) { 2162 afu->send_cmd = send_cmd_sq; 2163 afu->context_reset = context_reset_sq; 2164 } else { 2165 afu->send_cmd = send_cmd_ioarrin; 2166 afu->context_reset = context_reset_ioarrin; 2167 } 2168 2169 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__, 2170 afu->version, afu->interface_version); 2171 2172 get_num_afu_ports(cfg); 2173 2174 rc = start_afu(cfg); 2175 if (rc) { 2176 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc); 2177 goto err1; 2178 } 2179 2180 afu_err_intr_init(cfg->afu); 2181 for (i = 0; i < afu->num_hwqs; i++) { 2182 hwq = get_hwq(afu, i); 2183 2184 hwq->room = readq_be(&hwq->host_map->cmd_room); 2185 } 2186 2187 /* Restore the LUN mappings */ 2188 cxlflash_restore_luntable(cfg); 2189 out: 2190 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2191 return rc; 2192 2193 err1: 2194 for (i = afu->num_hwqs - 1; i >= 0; i--) { 2195 term_intr(cfg, UNMAP_THREE, i); 2196 term_mc(cfg, i); 2197 } 2198 goto out; 2199 } 2200 2201 /** 2202 * afu_reset() - resets the AFU 2203 * @cfg: Internal structure associated with the host. 2204 * 2205 * Return: 0 on success, -errno on failure 2206 */ 2207 static int afu_reset(struct cxlflash_cfg *cfg) 2208 { 2209 struct device *dev = &cfg->dev->dev; 2210 int rc = 0; 2211 2212 /* Stop the context before the reset. Since the context is 2213 * no longer available restart it after the reset is complete 2214 */ 2215 term_afu(cfg); 2216 2217 rc = init_afu(cfg); 2218 2219 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2220 return rc; 2221 } 2222 2223 /** 2224 * drain_ioctls() - wait until all currently executing ioctls have completed 2225 * @cfg: Internal structure associated with the host. 2226 * 2227 * Obtain write access to read/write semaphore that wraps ioctl 2228 * handling to 'drain' ioctls currently executing. 2229 */ 2230 static void drain_ioctls(struct cxlflash_cfg *cfg) 2231 { 2232 down_write(&cfg->ioctl_rwsem); 2233 up_write(&cfg->ioctl_rwsem); 2234 } 2235 2236 /** 2237 * cxlflash_async_reset_host() - asynchronous host reset handler 2238 * @data: Private data provided while scheduling reset. 2239 * @cookie: Cookie that can be used for checkpointing. 2240 */ 2241 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie) 2242 { 2243 struct cxlflash_cfg *cfg = data; 2244 struct device *dev = &cfg->dev->dev; 2245 int rc = 0; 2246 2247 if (cfg->state != STATE_RESET) { 2248 dev_dbg(dev, "%s: Not performing a reset, state=%d\n", 2249 __func__, cfg->state); 2250 goto out; 2251 } 2252 2253 drain_ioctls(cfg); 2254 cxlflash_mark_contexts_error(cfg); 2255 rc = afu_reset(cfg); 2256 if (rc) 2257 cfg->state = STATE_FAILTERM; 2258 else 2259 cfg->state = STATE_NORMAL; 2260 wake_up_all(&cfg->reset_waitq); 2261 2262 out: 2263 scsi_unblock_requests(cfg->host); 2264 } 2265 2266 /** 2267 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset 2268 * @cfg: Internal structure associated with the host. 2269 */ 2270 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg) 2271 { 2272 struct device *dev = &cfg->dev->dev; 2273 2274 if (cfg->state != STATE_NORMAL) { 2275 dev_dbg(dev, "%s: Not performing reset state=%d\n", 2276 __func__, cfg->state); 2277 return; 2278 } 2279 2280 cfg->state = STATE_RESET; 2281 scsi_block_requests(cfg->host); 2282 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host, 2283 cfg); 2284 } 2285 2286 /** 2287 * send_afu_cmd() - builds and sends an internal AFU command 2288 * @afu: AFU associated with the host. 2289 * @rcb: Pre-populated IOARCB describing command to send. 2290 * 2291 * The AFU can only take one internal AFU command at a time. This limitation is 2292 * enforced by using a mutex to provide exclusive access to the AFU during the 2293 * operation. This design point requires calling threads to not be on interrupt 2294 * context due to the possibility of sleeping during concurrent AFU operations. 2295 * 2296 * The command status is optionally passed back to the caller when the caller 2297 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure. 2298 * 2299 * Return: 2300 * 0 on success, -errno on failure 2301 */ 2302 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb) 2303 { 2304 struct cxlflash_cfg *cfg = afu->parent; 2305 struct device *dev = &cfg->dev->dev; 2306 struct afu_cmd *cmd = NULL; 2307 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 2308 ulong lock_flags; 2309 char *buf = NULL; 2310 int rc = 0; 2311 int nretry = 0; 2312 2313 if (cfg->state != STATE_NORMAL) { 2314 dev_dbg(dev, "%s: Sync not required state=%u\n", 2315 __func__, cfg->state); 2316 return 0; 2317 } 2318 2319 mutex_lock(&afu->sync_active); 2320 atomic_inc(&afu->cmds_active); 2321 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 2322 if (unlikely(!buf)) { 2323 dev_err(dev, "%s: no memory for command\n", __func__); 2324 rc = -ENOMEM; 2325 goto out; 2326 } 2327 2328 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 2329 2330 retry: 2331 memset(cmd, 0, sizeof(*cmd)); 2332 memcpy(&cmd->rcb, rcb, sizeof(*rcb)); 2333 INIT_LIST_HEAD(&cmd->queue); 2334 init_completion(&cmd->cevent); 2335 cmd->parent = afu; 2336 cmd->hwq_index = hwq->index; 2337 cmd->rcb.ctx_id = hwq->ctx_hndl; 2338 2339 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n", 2340 __func__, afu, cmd, cmd->rcb.cdb[0], nretry); 2341 2342 rc = afu->send_cmd(afu, cmd); 2343 if (unlikely(rc)) { 2344 rc = -ENOBUFS; 2345 goto out; 2346 } 2347 2348 rc = wait_resp(afu, cmd); 2349 switch (rc) { 2350 case -ETIMEDOUT: 2351 rc = afu->context_reset(hwq); 2352 if (rc) { 2353 /* Delete the command from pending_cmds list */ 2354 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 2355 list_del(&cmd->list); 2356 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 2357 2358 cxlflash_schedule_async_reset(cfg); 2359 break; 2360 } 2361 /* fall through - to retry */ 2362 case -EAGAIN: 2363 if (++nretry < 2) 2364 goto retry; 2365 /* fall through - to exit */ 2366 default: 2367 break; 2368 } 2369 2370 if (rcb->ioasa) 2371 *rcb->ioasa = cmd->sa; 2372 out: 2373 atomic_dec(&afu->cmds_active); 2374 mutex_unlock(&afu->sync_active); 2375 kfree(buf); 2376 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2377 return rc; 2378 } 2379 2380 /** 2381 * cxlflash_afu_sync() - builds and sends an AFU sync command 2382 * @afu: AFU associated with the host. 2383 * @ctx: Identifies context requesting sync. 2384 * @res: Identifies resource requesting sync. 2385 * @mode: Type of sync to issue (lightweight, heavyweight, global). 2386 * 2387 * AFU sync operations are only necessary and allowed when the device is 2388 * operating normally. When not operating normally, sync requests can occur as 2389 * part of cleaning up resources associated with an adapter prior to removal. 2390 * In this scenario, these requests are simply ignored (safe due to the AFU 2391 * going away). 2392 * 2393 * Return: 2394 * 0 on success, -errno on failure 2395 */ 2396 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode) 2397 { 2398 struct cxlflash_cfg *cfg = afu->parent; 2399 struct device *dev = &cfg->dev->dev; 2400 struct sisl_ioarcb rcb = { 0 }; 2401 2402 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n", 2403 __func__, afu, ctx, res, mode); 2404 2405 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 2406 rcb.msi = SISL_MSI_RRQ_UPDATED; 2407 rcb.timeout = MC_AFU_SYNC_TIMEOUT; 2408 2409 rcb.cdb[0] = SISL_AFU_CMD_SYNC; 2410 rcb.cdb[1] = mode; 2411 put_unaligned_be16(ctx, &rcb.cdb[2]); 2412 put_unaligned_be32(res, &rcb.cdb[4]); 2413 2414 return send_afu_cmd(afu, &rcb); 2415 } 2416 2417 /** 2418 * cxlflash_eh_abort_handler() - abort a SCSI command 2419 * @scp: SCSI command to abort. 2420 * 2421 * CXL Flash devices do not support a single command abort. Reset the context 2422 * as per SISLite specification. Flush any pending commands in the hardware 2423 * queue before the reset. 2424 * 2425 * Return: SUCCESS/FAILED as defined in scsi/scsi.h 2426 */ 2427 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp) 2428 { 2429 int rc = FAILED; 2430 struct Scsi_Host *host = scp->device->host; 2431 struct cxlflash_cfg *cfg = shost_priv(host); 2432 struct afu_cmd *cmd = sc_to_afuc(scp); 2433 struct device *dev = &cfg->dev->dev; 2434 struct afu *afu = cfg->afu; 2435 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 2436 2437 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu " 2438 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, 2439 scp->device->channel, scp->device->id, scp->device->lun, 2440 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 2441 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 2442 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 2443 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 2444 2445 /* When the state is not normal, another reset/reload is in progress. 2446 * Return failed and the mid-layer will invoke host reset handler. 2447 */ 2448 if (cfg->state != STATE_NORMAL) { 2449 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n", 2450 __func__, cfg->state); 2451 goto out; 2452 } 2453 2454 rc = afu->context_reset(hwq); 2455 if (unlikely(rc)) 2456 goto out; 2457 2458 rc = SUCCESS; 2459 2460 out: 2461 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2462 return rc; 2463 } 2464 2465 /** 2466 * cxlflash_eh_device_reset_handler() - reset a single LUN 2467 * @scp: SCSI command to send. 2468 * 2469 * Return: 2470 * SUCCESS as defined in scsi/scsi.h 2471 * FAILED as defined in scsi/scsi.h 2472 */ 2473 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) 2474 { 2475 int rc = SUCCESS; 2476 struct scsi_device *sdev = scp->device; 2477 struct Scsi_Host *host = sdev->host; 2478 struct cxlflash_cfg *cfg = shost_priv(host); 2479 struct device *dev = &cfg->dev->dev; 2480 int rcr = 0; 2481 2482 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__, 2483 host->host_no, sdev->channel, sdev->id, sdev->lun); 2484 retry: 2485 switch (cfg->state) { 2486 case STATE_NORMAL: 2487 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET); 2488 if (unlikely(rcr)) 2489 rc = FAILED; 2490 break; 2491 case STATE_RESET: 2492 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2493 goto retry; 2494 default: 2495 rc = FAILED; 2496 break; 2497 } 2498 2499 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2500 return rc; 2501 } 2502 2503 /** 2504 * cxlflash_eh_host_reset_handler() - reset the host adapter 2505 * @scp: SCSI command from stack identifying host. 2506 * 2507 * Following a reset, the state is evaluated again in case an EEH occurred 2508 * during the reset. In such a scenario, the host reset will either yield 2509 * until the EEH recovery is complete or return success or failure based 2510 * upon the current device state. 2511 * 2512 * Return: 2513 * SUCCESS as defined in scsi/scsi.h 2514 * FAILED as defined in scsi/scsi.h 2515 */ 2516 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) 2517 { 2518 int rc = SUCCESS; 2519 int rcr = 0; 2520 struct Scsi_Host *host = scp->device->host; 2521 struct cxlflash_cfg *cfg = shost_priv(host); 2522 struct device *dev = &cfg->dev->dev; 2523 2524 dev_dbg(dev, "%s: %d\n", __func__, host->host_no); 2525 2526 switch (cfg->state) { 2527 case STATE_NORMAL: 2528 cfg->state = STATE_RESET; 2529 drain_ioctls(cfg); 2530 cxlflash_mark_contexts_error(cfg); 2531 rcr = afu_reset(cfg); 2532 if (rcr) { 2533 rc = FAILED; 2534 cfg->state = STATE_FAILTERM; 2535 } else 2536 cfg->state = STATE_NORMAL; 2537 wake_up_all(&cfg->reset_waitq); 2538 ssleep(1); 2539 /* fall through */ 2540 case STATE_RESET: 2541 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2542 if (cfg->state == STATE_NORMAL) 2543 break; 2544 /* fall through */ 2545 default: 2546 rc = FAILED; 2547 break; 2548 } 2549 2550 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2551 return rc; 2552 } 2553 2554 /** 2555 * cxlflash_change_queue_depth() - change the queue depth for the device 2556 * @sdev: SCSI device destined for queue depth change. 2557 * @qdepth: Requested queue depth value to set. 2558 * 2559 * The requested queue depth is capped to the maximum supported value. 2560 * 2561 * Return: The actual queue depth set. 2562 */ 2563 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) 2564 { 2565 2566 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) 2567 qdepth = CXLFLASH_MAX_CMDS_PER_LUN; 2568 2569 scsi_change_queue_depth(sdev, qdepth); 2570 return sdev->queue_depth; 2571 } 2572 2573 /** 2574 * cxlflash_show_port_status() - queries and presents the current port status 2575 * @port: Desired port for status reporting. 2576 * @cfg: Internal structure associated with the host. 2577 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2578 * 2579 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2580 */ 2581 static ssize_t cxlflash_show_port_status(u32 port, 2582 struct cxlflash_cfg *cfg, 2583 char *buf) 2584 { 2585 struct device *dev = &cfg->dev->dev; 2586 char *disp_status; 2587 u64 status; 2588 __be64 __iomem *fc_port_regs; 2589 2590 WARN_ON(port >= MAX_FC_PORTS); 2591 2592 if (port >= cfg->num_fc_ports) { 2593 dev_info(dev, "%s: Port %d not supported on this card.\n", 2594 __func__, port); 2595 return -EINVAL; 2596 } 2597 2598 fc_port_regs = get_fc_port_regs(cfg, port); 2599 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]); 2600 status &= FC_MTIP_STATUS_MASK; 2601 2602 if (status == FC_MTIP_STATUS_ONLINE) 2603 disp_status = "online"; 2604 else if (status == FC_MTIP_STATUS_OFFLINE) 2605 disp_status = "offline"; 2606 else 2607 disp_status = "unknown"; 2608 2609 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); 2610 } 2611 2612 /** 2613 * port0_show() - queries and presents the current status of port 0 2614 * @dev: Generic device associated with the host owning the port. 2615 * @attr: Device attribute representing the port. 2616 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2617 * 2618 * Return: The size of the ASCII string returned in @buf. 2619 */ 2620 static ssize_t port0_show(struct device *dev, 2621 struct device_attribute *attr, 2622 char *buf) 2623 { 2624 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2625 2626 return cxlflash_show_port_status(0, cfg, buf); 2627 } 2628 2629 /** 2630 * port1_show() - queries and presents the current status of port 1 2631 * @dev: Generic device associated with the host owning the port. 2632 * @attr: Device attribute representing the port. 2633 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2634 * 2635 * Return: The size of the ASCII string returned in @buf. 2636 */ 2637 static ssize_t port1_show(struct device *dev, 2638 struct device_attribute *attr, 2639 char *buf) 2640 { 2641 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2642 2643 return cxlflash_show_port_status(1, cfg, buf); 2644 } 2645 2646 /** 2647 * port2_show() - queries and presents the current status of port 2 2648 * @dev: Generic device associated with the host owning the port. 2649 * @attr: Device attribute representing the port. 2650 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2651 * 2652 * Return: The size of the ASCII string returned in @buf. 2653 */ 2654 static ssize_t port2_show(struct device *dev, 2655 struct device_attribute *attr, 2656 char *buf) 2657 { 2658 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2659 2660 return cxlflash_show_port_status(2, cfg, buf); 2661 } 2662 2663 /** 2664 * port3_show() - queries and presents the current status of port 3 2665 * @dev: Generic device associated with the host owning the port. 2666 * @attr: Device attribute representing the port. 2667 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2668 * 2669 * Return: The size of the ASCII string returned in @buf. 2670 */ 2671 static ssize_t port3_show(struct device *dev, 2672 struct device_attribute *attr, 2673 char *buf) 2674 { 2675 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2676 2677 return cxlflash_show_port_status(3, cfg, buf); 2678 } 2679 2680 /** 2681 * lun_mode_show() - presents the current LUN mode of the host 2682 * @dev: Generic device associated with the host. 2683 * @attr: Device attribute representing the LUN mode. 2684 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. 2685 * 2686 * Return: The size of the ASCII string returned in @buf. 2687 */ 2688 static ssize_t lun_mode_show(struct device *dev, 2689 struct device_attribute *attr, char *buf) 2690 { 2691 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2692 struct afu *afu = cfg->afu; 2693 2694 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); 2695 } 2696 2697 /** 2698 * lun_mode_store() - sets the LUN mode of the host 2699 * @dev: Generic device associated with the host. 2700 * @attr: Device attribute representing the LUN mode. 2701 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. 2702 * @count: Length of data resizing in @buf. 2703 * 2704 * The CXL Flash AFU supports a dummy LUN mode where the external 2705 * links and storage are not required. Space on the FPGA is used 2706 * to create 1 or 2 small LUNs which are presented to the system 2707 * as if they were a normal storage device. This feature is useful 2708 * during development and also provides manufacturing with a way 2709 * to test the AFU without an actual device. 2710 * 2711 * 0 = external LUN[s] (default) 2712 * 1 = internal LUN (1 x 64K, 512B blocks, id 0) 2713 * 2 = internal LUN (1 x 64K, 4K blocks, id 0) 2714 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) 2715 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) 2716 * 2717 * Return: The size of the ASCII string returned in @buf. 2718 */ 2719 static ssize_t lun_mode_store(struct device *dev, 2720 struct device_attribute *attr, 2721 const char *buf, size_t count) 2722 { 2723 struct Scsi_Host *shost = class_to_shost(dev); 2724 struct cxlflash_cfg *cfg = shost_priv(shost); 2725 struct afu *afu = cfg->afu; 2726 int rc; 2727 u32 lun_mode; 2728 2729 rc = kstrtouint(buf, 10, &lun_mode); 2730 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { 2731 afu->internal_lun = lun_mode; 2732 2733 /* 2734 * When configured for internal LUN, there is only one channel, 2735 * channel number 0, else there will be one less than the number 2736 * of fc ports for this card. 2737 */ 2738 if (afu->internal_lun) 2739 shost->max_channel = 0; 2740 else 2741 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports); 2742 2743 afu_reset(cfg); 2744 scsi_scan_host(cfg->host); 2745 } 2746 2747 return count; 2748 } 2749 2750 /** 2751 * ioctl_version_show() - presents the current ioctl version of the host 2752 * @dev: Generic device associated with the host. 2753 * @attr: Device attribute representing the ioctl version. 2754 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. 2755 * 2756 * Return: The size of the ASCII string returned in @buf. 2757 */ 2758 static ssize_t ioctl_version_show(struct device *dev, 2759 struct device_attribute *attr, char *buf) 2760 { 2761 ssize_t bytes = 0; 2762 2763 bytes = scnprintf(buf, PAGE_SIZE, 2764 "disk: %u\n", DK_CXLFLASH_VERSION_0); 2765 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2766 "host: %u\n", HT_CXLFLASH_VERSION_0); 2767 2768 return bytes; 2769 } 2770 2771 /** 2772 * cxlflash_show_port_lun_table() - queries and presents the port LUN table 2773 * @port: Desired port for status reporting. 2774 * @cfg: Internal structure associated with the host. 2775 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2776 * 2777 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2778 */ 2779 static ssize_t cxlflash_show_port_lun_table(u32 port, 2780 struct cxlflash_cfg *cfg, 2781 char *buf) 2782 { 2783 struct device *dev = &cfg->dev->dev; 2784 __be64 __iomem *fc_port_luns; 2785 int i; 2786 ssize_t bytes = 0; 2787 2788 WARN_ON(port >= MAX_FC_PORTS); 2789 2790 if (port >= cfg->num_fc_ports) { 2791 dev_info(dev, "%s: Port %d not supported on this card.\n", 2792 __func__, port); 2793 return -EINVAL; 2794 } 2795 2796 fc_port_luns = get_fc_port_luns(cfg, port); 2797 2798 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) 2799 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2800 "%03d: %016llx\n", 2801 i, readq_be(&fc_port_luns[i])); 2802 return bytes; 2803 } 2804 2805 /** 2806 * port0_lun_table_show() - presents the current LUN table of port 0 2807 * @dev: Generic device associated with the host owning the port. 2808 * @attr: Device attribute representing the port. 2809 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2810 * 2811 * Return: The size of the ASCII string returned in @buf. 2812 */ 2813 static ssize_t port0_lun_table_show(struct device *dev, 2814 struct device_attribute *attr, 2815 char *buf) 2816 { 2817 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2818 2819 return cxlflash_show_port_lun_table(0, cfg, buf); 2820 } 2821 2822 /** 2823 * port1_lun_table_show() - presents the current LUN table of port 1 2824 * @dev: Generic device associated with the host owning the port. 2825 * @attr: Device attribute representing the port. 2826 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2827 * 2828 * Return: The size of the ASCII string returned in @buf. 2829 */ 2830 static ssize_t port1_lun_table_show(struct device *dev, 2831 struct device_attribute *attr, 2832 char *buf) 2833 { 2834 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2835 2836 return cxlflash_show_port_lun_table(1, cfg, buf); 2837 } 2838 2839 /** 2840 * port2_lun_table_show() - presents the current LUN table of port 2 2841 * @dev: Generic device associated with the host owning the port. 2842 * @attr: Device attribute representing the port. 2843 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2844 * 2845 * Return: The size of the ASCII string returned in @buf. 2846 */ 2847 static ssize_t port2_lun_table_show(struct device *dev, 2848 struct device_attribute *attr, 2849 char *buf) 2850 { 2851 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2852 2853 return cxlflash_show_port_lun_table(2, cfg, buf); 2854 } 2855 2856 /** 2857 * port3_lun_table_show() - presents the current LUN table of port 3 2858 * @dev: Generic device associated with the host owning the port. 2859 * @attr: Device attribute representing the port. 2860 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2861 * 2862 * Return: The size of the ASCII string returned in @buf. 2863 */ 2864 static ssize_t port3_lun_table_show(struct device *dev, 2865 struct device_attribute *attr, 2866 char *buf) 2867 { 2868 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2869 2870 return cxlflash_show_port_lun_table(3, cfg, buf); 2871 } 2872 2873 /** 2874 * irqpoll_weight_show() - presents the current IRQ poll weight for the host 2875 * @dev: Generic device associated with the host. 2876 * @attr: Device attribute representing the IRQ poll weight. 2877 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll 2878 * weight in ASCII. 2879 * 2880 * An IRQ poll weight of 0 indicates polling is disabled. 2881 * 2882 * Return: The size of the ASCII string returned in @buf. 2883 */ 2884 static ssize_t irqpoll_weight_show(struct device *dev, 2885 struct device_attribute *attr, char *buf) 2886 { 2887 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2888 struct afu *afu = cfg->afu; 2889 2890 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight); 2891 } 2892 2893 /** 2894 * irqpoll_weight_store() - sets the current IRQ poll weight for the host 2895 * @dev: Generic device associated with the host. 2896 * @attr: Device attribute representing the IRQ poll weight. 2897 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll 2898 * weight in ASCII. 2899 * @count: Length of data resizing in @buf. 2900 * 2901 * An IRQ poll weight of 0 indicates polling is disabled. 2902 * 2903 * Return: The size of the ASCII string returned in @buf. 2904 */ 2905 static ssize_t irqpoll_weight_store(struct device *dev, 2906 struct device_attribute *attr, 2907 const char *buf, size_t count) 2908 { 2909 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2910 struct device *cfgdev = &cfg->dev->dev; 2911 struct afu *afu = cfg->afu; 2912 struct hwq *hwq; 2913 u32 weight; 2914 int rc, i; 2915 2916 rc = kstrtouint(buf, 10, &weight); 2917 if (rc) 2918 return -EINVAL; 2919 2920 if (weight > 256) { 2921 dev_info(cfgdev, 2922 "Invalid IRQ poll weight. It must be 256 or less.\n"); 2923 return -EINVAL; 2924 } 2925 2926 if (weight == afu->irqpoll_weight) { 2927 dev_info(cfgdev, 2928 "Current IRQ poll weight has the same weight.\n"); 2929 return -EINVAL; 2930 } 2931 2932 if (afu_is_irqpoll_enabled(afu)) { 2933 for (i = 0; i < afu->num_hwqs; i++) { 2934 hwq = get_hwq(afu, i); 2935 2936 irq_poll_disable(&hwq->irqpoll); 2937 } 2938 } 2939 2940 afu->irqpoll_weight = weight; 2941 2942 if (weight > 0) { 2943 for (i = 0; i < afu->num_hwqs; i++) { 2944 hwq = get_hwq(afu, i); 2945 2946 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll); 2947 } 2948 } 2949 2950 return count; 2951 } 2952 2953 /** 2954 * num_hwqs_show() - presents the number of hardware queues for the host 2955 * @dev: Generic device associated with the host. 2956 * @attr: Device attribute representing the number of hardware queues. 2957 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware 2958 * queues in ASCII. 2959 * 2960 * Return: The size of the ASCII string returned in @buf. 2961 */ 2962 static ssize_t num_hwqs_show(struct device *dev, 2963 struct device_attribute *attr, char *buf) 2964 { 2965 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2966 struct afu *afu = cfg->afu; 2967 2968 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs); 2969 } 2970 2971 /** 2972 * num_hwqs_store() - sets the number of hardware queues for the host 2973 * @dev: Generic device associated with the host. 2974 * @attr: Device attribute representing the number of hardware queues. 2975 * @buf: Buffer of length PAGE_SIZE containing the number of hardware 2976 * queues in ASCII. 2977 * @count: Length of data resizing in @buf. 2978 * 2979 * n > 0: num_hwqs = n 2980 * n = 0: num_hwqs = num_online_cpus() 2981 * n < 0: num_online_cpus() / abs(n) 2982 * 2983 * Return: The size of the ASCII string returned in @buf. 2984 */ 2985 static ssize_t num_hwqs_store(struct device *dev, 2986 struct device_attribute *attr, 2987 const char *buf, size_t count) 2988 { 2989 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2990 struct afu *afu = cfg->afu; 2991 int rc; 2992 int nhwqs, num_hwqs; 2993 2994 rc = kstrtoint(buf, 10, &nhwqs); 2995 if (rc) 2996 return -EINVAL; 2997 2998 if (nhwqs >= 1) 2999 num_hwqs = nhwqs; 3000 else if (nhwqs == 0) 3001 num_hwqs = num_online_cpus(); 3002 else 3003 num_hwqs = num_online_cpus() / abs(nhwqs); 3004 3005 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS); 3006 WARN_ON_ONCE(afu->desired_hwqs == 0); 3007 3008 retry: 3009 switch (cfg->state) { 3010 case STATE_NORMAL: 3011 cfg->state = STATE_RESET; 3012 drain_ioctls(cfg); 3013 cxlflash_mark_contexts_error(cfg); 3014 rc = afu_reset(cfg); 3015 if (rc) 3016 cfg->state = STATE_FAILTERM; 3017 else 3018 cfg->state = STATE_NORMAL; 3019 wake_up_all(&cfg->reset_waitq); 3020 break; 3021 case STATE_RESET: 3022 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 3023 if (cfg->state == STATE_NORMAL) 3024 goto retry; 3025 /* else, fall through */ 3026 default: 3027 /* Ideally should not happen */ 3028 dev_err(dev, "%s: Device is not ready, state=%d\n", 3029 __func__, cfg->state); 3030 break; 3031 } 3032 3033 return count; 3034 } 3035 3036 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" }; 3037 3038 /** 3039 * hwq_mode_show() - presents the HWQ steering mode for the host 3040 * @dev: Generic device associated with the host. 3041 * @attr: Device attribute representing the HWQ steering mode. 3042 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode 3043 * as a character string. 3044 * 3045 * Return: The size of the ASCII string returned in @buf. 3046 */ 3047 static ssize_t hwq_mode_show(struct device *dev, 3048 struct device_attribute *attr, char *buf) 3049 { 3050 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 3051 struct afu *afu = cfg->afu; 3052 3053 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]); 3054 } 3055 3056 /** 3057 * hwq_mode_store() - sets the HWQ steering mode for the host 3058 * @dev: Generic device associated with the host. 3059 * @attr: Device attribute representing the HWQ steering mode. 3060 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode 3061 * as a character string. 3062 * @count: Length of data resizing in @buf. 3063 * 3064 * rr = Round-Robin 3065 * tag = Block MQ Tagging 3066 * cpu = CPU Affinity 3067 * 3068 * Return: The size of the ASCII string returned in @buf. 3069 */ 3070 static ssize_t hwq_mode_store(struct device *dev, 3071 struct device_attribute *attr, 3072 const char *buf, size_t count) 3073 { 3074 struct Scsi_Host *shost = class_to_shost(dev); 3075 struct cxlflash_cfg *cfg = shost_priv(shost); 3076 struct device *cfgdev = &cfg->dev->dev; 3077 struct afu *afu = cfg->afu; 3078 int i; 3079 u32 mode = MAX_HWQ_MODE; 3080 3081 for (i = 0; i < MAX_HWQ_MODE; i++) { 3082 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) { 3083 mode = i; 3084 break; 3085 } 3086 } 3087 3088 if (mode >= MAX_HWQ_MODE) { 3089 dev_info(cfgdev, "Invalid HWQ steering mode.\n"); 3090 return -EINVAL; 3091 } 3092 3093 afu->hwq_mode = mode; 3094 3095 return count; 3096 } 3097 3098 /** 3099 * mode_show() - presents the current mode of the device 3100 * @dev: Generic device associated with the device. 3101 * @attr: Device attribute representing the device mode. 3102 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. 3103 * 3104 * Return: The size of the ASCII string returned in @buf. 3105 */ 3106 static ssize_t mode_show(struct device *dev, 3107 struct device_attribute *attr, char *buf) 3108 { 3109 struct scsi_device *sdev = to_scsi_device(dev); 3110 3111 return scnprintf(buf, PAGE_SIZE, "%s\n", 3112 sdev->hostdata ? "superpipe" : "legacy"); 3113 } 3114 3115 /* 3116 * Host attributes 3117 */ 3118 static DEVICE_ATTR_RO(port0); 3119 static DEVICE_ATTR_RO(port1); 3120 static DEVICE_ATTR_RO(port2); 3121 static DEVICE_ATTR_RO(port3); 3122 static DEVICE_ATTR_RW(lun_mode); 3123 static DEVICE_ATTR_RO(ioctl_version); 3124 static DEVICE_ATTR_RO(port0_lun_table); 3125 static DEVICE_ATTR_RO(port1_lun_table); 3126 static DEVICE_ATTR_RO(port2_lun_table); 3127 static DEVICE_ATTR_RO(port3_lun_table); 3128 static DEVICE_ATTR_RW(irqpoll_weight); 3129 static DEVICE_ATTR_RW(num_hwqs); 3130 static DEVICE_ATTR_RW(hwq_mode); 3131 3132 static struct device_attribute *cxlflash_host_attrs[] = { 3133 &dev_attr_port0, 3134 &dev_attr_port1, 3135 &dev_attr_port2, 3136 &dev_attr_port3, 3137 &dev_attr_lun_mode, 3138 &dev_attr_ioctl_version, 3139 &dev_attr_port0_lun_table, 3140 &dev_attr_port1_lun_table, 3141 &dev_attr_port2_lun_table, 3142 &dev_attr_port3_lun_table, 3143 &dev_attr_irqpoll_weight, 3144 &dev_attr_num_hwqs, 3145 &dev_attr_hwq_mode, 3146 NULL 3147 }; 3148 3149 /* 3150 * Device attributes 3151 */ 3152 static DEVICE_ATTR_RO(mode); 3153 3154 static struct device_attribute *cxlflash_dev_attrs[] = { 3155 &dev_attr_mode, 3156 NULL 3157 }; 3158 3159 /* 3160 * Host template 3161 */ 3162 static struct scsi_host_template driver_template = { 3163 .module = THIS_MODULE, 3164 .name = CXLFLASH_ADAPTER_NAME, 3165 .info = cxlflash_driver_info, 3166 .ioctl = cxlflash_ioctl, 3167 .proc_name = CXLFLASH_NAME, 3168 .queuecommand = cxlflash_queuecommand, 3169 .eh_abort_handler = cxlflash_eh_abort_handler, 3170 .eh_device_reset_handler = cxlflash_eh_device_reset_handler, 3171 .eh_host_reset_handler = cxlflash_eh_host_reset_handler, 3172 .change_queue_depth = cxlflash_change_queue_depth, 3173 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, 3174 .can_queue = CXLFLASH_MAX_CMDS, 3175 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1, 3176 .this_id = -1, 3177 .sg_tablesize = 1, /* No scatter gather support */ 3178 .max_sectors = CXLFLASH_MAX_SECTORS, 3179 .shost_attrs = cxlflash_host_attrs, 3180 .sdev_attrs = cxlflash_dev_attrs, 3181 }; 3182 3183 /* 3184 * Device dependent values 3185 */ 3186 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, 3187 CXLFLASH_WWPN_VPD_REQUIRED }; 3188 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, 3189 CXLFLASH_NOTIFY_SHUTDOWN }; 3190 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS, 3191 (CXLFLASH_NOTIFY_SHUTDOWN | 3192 CXLFLASH_OCXL_DEV) }; 3193 3194 /* 3195 * PCI device binding table 3196 */ 3197 static struct pci_device_id cxlflash_pci_table[] = { 3198 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, 3199 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, 3200 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, 3201 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, 3202 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD, 3203 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals}, 3204 {} 3205 }; 3206 3207 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); 3208 3209 /** 3210 * cxlflash_worker_thread() - work thread handler for the AFU 3211 * @work: Work structure contained within cxlflash associated with host. 3212 * 3213 * Handles the following events: 3214 * - Link reset which cannot be performed on interrupt context due to 3215 * blocking up to a few seconds 3216 * - Rescan the host 3217 */ 3218 static void cxlflash_worker_thread(struct work_struct *work) 3219 { 3220 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, 3221 work_q); 3222 struct afu *afu = cfg->afu; 3223 struct device *dev = &cfg->dev->dev; 3224 __be64 __iomem *fc_port_regs; 3225 int port; 3226 ulong lock_flags; 3227 3228 /* Avoid MMIO if the device has failed */ 3229 3230 if (cfg->state != STATE_NORMAL) 3231 return; 3232 3233 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3234 3235 if (cfg->lr_state == LINK_RESET_REQUIRED) { 3236 port = cfg->lr_port; 3237 if (port < 0) 3238 dev_err(dev, "%s: invalid port index %d\n", 3239 __func__, port); 3240 else { 3241 spin_unlock_irqrestore(cfg->host->host_lock, 3242 lock_flags); 3243 3244 /* The reset can block... */ 3245 fc_port_regs = get_fc_port_regs(cfg, port); 3246 afu_link_reset(afu, port, fc_port_regs); 3247 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3248 } 3249 3250 cfg->lr_state = LINK_RESET_COMPLETE; 3251 } 3252 3253 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); 3254 3255 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) 3256 scsi_scan_host(cfg->host); 3257 } 3258 3259 /** 3260 * cxlflash_chr_open() - character device open handler 3261 * @inode: Device inode associated with this character device. 3262 * @file: File pointer for this device. 3263 * 3264 * Only users with admin privileges are allowed to open the character device. 3265 * 3266 * Return: 0 on success, -errno on failure 3267 */ 3268 static int cxlflash_chr_open(struct inode *inode, struct file *file) 3269 { 3270 struct cxlflash_cfg *cfg; 3271 3272 if (!capable(CAP_SYS_ADMIN)) 3273 return -EACCES; 3274 3275 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev); 3276 file->private_data = cfg; 3277 3278 return 0; 3279 } 3280 3281 /** 3282 * decode_hioctl() - translates encoded host ioctl to easily identifiable string 3283 * @cmd: The host ioctl command to decode. 3284 * 3285 * Return: A string identifying the decoded host ioctl. 3286 */ 3287 static char *decode_hioctl(unsigned int cmd) 3288 { 3289 switch (cmd) { 3290 case HT_CXLFLASH_LUN_PROVISION: 3291 return __stringify_1(HT_CXLFLASH_LUN_PROVISION); 3292 } 3293 3294 return "UNKNOWN"; 3295 } 3296 3297 /** 3298 * cxlflash_lun_provision() - host LUN provisioning handler 3299 * @cfg: Internal structure associated with the host. 3300 * @arg: Kernel copy of userspace ioctl data structure. 3301 * 3302 * Return: 0 on success, -errno on failure 3303 */ 3304 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg, 3305 struct ht_cxlflash_lun_provision *lunprov) 3306 { 3307 struct afu *afu = cfg->afu; 3308 struct device *dev = &cfg->dev->dev; 3309 struct sisl_ioarcb rcb; 3310 struct sisl_ioasa asa; 3311 __be64 __iomem *fc_port_regs; 3312 u16 port = lunprov->port; 3313 u16 scmd = lunprov->hdr.subcmd; 3314 u16 type; 3315 u64 reg; 3316 u64 size; 3317 u64 lun_id; 3318 int rc = 0; 3319 3320 if (!afu_is_lun_provision(afu)) { 3321 rc = -ENOTSUPP; 3322 goto out; 3323 } 3324 3325 if (port >= cfg->num_fc_ports) { 3326 rc = -EINVAL; 3327 goto out; 3328 } 3329 3330 switch (scmd) { 3331 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN: 3332 type = SISL_AFU_LUN_PROVISION_CREATE; 3333 size = lunprov->size; 3334 lun_id = 0; 3335 break; 3336 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN: 3337 type = SISL_AFU_LUN_PROVISION_DELETE; 3338 size = 0; 3339 lun_id = lunprov->lun_id; 3340 break; 3341 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT: 3342 fc_port_regs = get_fc_port_regs(cfg, port); 3343 3344 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]); 3345 lunprov->max_num_luns = reg; 3346 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]); 3347 lunprov->cur_num_luns = reg; 3348 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]); 3349 lunprov->max_cap_port = reg; 3350 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]); 3351 lunprov->cur_cap_port = reg; 3352 3353 goto out; 3354 default: 3355 rc = -EINVAL; 3356 goto out; 3357 } 3358 3359 memset(&rcb, 0, sizeof(rcb)); 3360 memset(&asa, 0, sizeof(asa)); 3361 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 3362 rcb.lun_id = lun_id; 3363 rcb.msi = SISL_MSI_RRQ_UPDATED; 3364 rcb.timeout = MC_LUN_PROV_TIMEOUT; 3365 rcb.ioasa = &asa; 3366 3367 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION; 3368 rcb.cdb[1] = type; 3369 rcb.cdb[2] = port; 3370 put_unaligned_be64(size, &rcb.cdb[8]); 3371 3372 rc = send_afu_cmd(afu, &rcb); 3373 if (rc) { 3374 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3375 __func__, rc, asa.ioasc, asa.afu_extra); 3376 goto out; 3377 } 3378 3379 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) { 3380 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo; 3381 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid)); 3382 } 3383 out: 3384 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3385 return rc; 3386 } 3387 3388 /** 3389 * cxlflash_afu_debug() - host AFU debug handler 3390 * @cfg: Internal structure associated with the host. 3391 * @arg: Kernel copy of userspace ioctl data structure. 3392 * 3393 * For debug requests requiring a data buffer, always provide an aligned 3394 * (cache line) buffer to the AFU to appease any alignment requirements. 3395 * 3396 * Return: 0 on success, -errno on failure 3397 */ 3398 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg, 3399 struct ht_cxlflash_afu_debug *afu_dbg) 3400 { 3401 struct afu *afu = cfg->afu; 3402 struct device *dev = &cfg->dev->dev; 3403 struct sisl_ioarcb rcb; 3404 struct sisl_ioasa asa; 3405 char *buf = NULL; 3406 char *kbuf = NULL; 3407 void __user *ubuf = (__force void __user *)afu_dbg->data_ea; 3408 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD; 3409 u32 ulen = afu_dbg->data_len; 3410 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE; 3411 int rc = 0; 3412 3413 if (!afu_is_afu_debug(afu)) { 3414 rc = -ENOTSUPP; 3415 goto out; 3416 } 3417 3418 if (ulen) { 3419 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN; 3420 3421 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) { 3422 rc = -EINVAL; 3423 goto out; 3424 } 3425 3426 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL); 3427 if (unlikely(!buf)) { 3428 rc = -ENOMEM; 3429 goto out; 3430 } 3431 3432 kbuf = PTR_ALIGN(buf, cache_line_size()); 3433 3434 if (is_write) { 3435 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 3436 3437 if (copy_from_user(kbuf, ubuf, ulen)) { 3438 rc = -EFAULT; 3439 goto out; 3440 } 3441 } 3442 } 3443 3444 memset(&rcb, 0, sizeof(rcb)); 3445 memset(&asa, 0, sizeof(asa)); 3446 3447 rcb.req_flags = req_flags; 3448 rcb.msi = SISL_MSI_RRQ_UPDATED; 3449 rcb.timeout = MC_AFU_DEBUG_TIMEOUT; 3450 rcb.ioasa = &asa; 3451 3452 if (ulen) { 3453 rcb.data_len = ulen; 3454 rcb.data_ea = (uintptr_t)kbuf; 3455 } 3456 3457 rcb.cdb[0] = SISL_AFU_CMD_DEBUG; 3458 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd, 3459 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN); 3460 3461 rc = send_afu_cmd(afu, &rcb); 3462 if (rc) { 3463 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3464 __func__, rc, asa.ioasc, asa.afu_extra); 3465 goto out; 3466 } 3467 3468 if (ulen && !is_write) { 3469 if (copy_to_user(ubuf, kbuf, ulen)) 3470 rc = -EFAULT; 3471 } 3472 out: 3473 kfree(buf); 3474 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3475 return rc; 3476 } 3477 3478 /** 3479 * cxlflash_chr_ioctl() - character device IOCTL handler 3480 * @file: File pointer for this device. 3481 * @cmd: IOCTL command. 3482 * @arg: Userspace ioctl data structure. 3483 * 3484 * A read/write semaphore is used to implement a 'drain' of currently 3485 * running ioctls. The read semaphore is taken at the beginning of each 3486 * ioctl thread and released upon concluding execution. Additionally the 3487 * semaphore should be released and then reacquired in any ioctl execution 3488 * path which will wait for an event to occur that is outside the scope of 3489 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running, 3490 * a thread simply needs to acquire the write semaphore. 3491 * 3492 * Return: 0 on success, -errno on failure 3493 */ 3494 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd, 3495 unsigned long arg) 3496 { 3497 typedef int (*hioctl) (struct cxlflash_cfg *, void *); 3498 3499 struct cxlflash_cfg *cfg = file->private_data; 3500 struct device *dev = &cfg->dev->dev; 3501 char buf[sizeof(union cxlflash_ht_ioctls)]; 3502 void __user *uarg = (void __user *)arg; 3503 struct ht_cxlflash_hdr *hdr; 3504 size_t size = 0; 3505 bool known_ioctl = false; 3506 int idx = 0; 3507 int rc = 0; 3508 hioctl do_ioctl = NULL; 3509 3510 static const struct { 3511 size_t size; 3512 hioctl ioctl; 3513 } ioctl_tbl[] = { /* NOTE: order matters here */ 3514 { sizeof(struct ht_cxlflash_lun_provision), 3515 (hioctl)cxlflash_lun_provision }, 3516 { sizeof(struct ht_cxlflash_afu_debug), 3517 (hioctl)cxlflash_afu_debug }, 3518 }; 3519 3520 /* Hold read semaphore so we can drain if needed */ 3521 down_read(&cfg->ioctl_rwsem); 3522 3523 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n", 3524 __func__, cmd, idx, sizeof(ioctl_tbl)); 3525 3526 switch (cmd) { 3527 case HT_CXLFLASH_LUN_PROVISION: 3528 case HT_CXLFLASH_AFU_DEBUG: 3529 known_ioctl = true; 3530 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd); 3531 size = ioctl_tbl[idx].size; 3532 do_ioctl = ioctl_tbl[idx].ioctl; 3533 3534 if (likely(do_ioctl)) 3535 break; 3536 3537 /* fall through */ 3538 default: 3539 rc = -EINVAL; 3540 goto out; 3541 } 3542 3543 if (unlikely(copy_from_user(&buf, uarg, size))) { 3544 dev_err(dev, "%s: copy_from_user() fail " 3545 "size=%lu cmd=%d (%s) uarg=%p\n", 3546 __func__, size, cmd, decode_hioctl(cmd), uarg); 3547 rc = -EFAULT; 3548 goto out; 3549 } 3550 3551 hdr = (struct ht_cxlflash_hdr *)&buf; 3552 if (hdr->version != HT_CXLFLASH_VERSION_0) { 3553 dev_dbg(dev, "%s: Version %u not supported for %s\n", 3554 __func__, hdr->version, decode_hioctl(cmd)); 3555 rc = -EINVAL; 3556 goto out; 3557 } 3558 3559 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) { 3560 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__); 3561 rc = -EINVAL; 3562 goto out; 3563 } 3564 3565 rc = do_ioctl(cfg, (void *)&buf); 3566 if (likely(!rc)) 3567 if (unlikely(copy_to_user(uarg, &buf, size))) { 3568 dev_err(dev, "%s: copy_to_user() fail " 3569 "size=%lu cmd=%d (%s) uarg=%p\n", 3570 __func__, size, cmd, decode_hioctl(cmd), uarg); 3571 rc = -EFAULT; 3572 } 3573 3574 /* fall through to exit */ 3575 3576 out: 3577 up_read(&cfg->ioctl_rwsem); 3578 if (unlikely(rc && known_ioctl)) 3579 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3580 __func__, decode_hioctl(cmd), cmd, rc); 3581 else 3582 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3583 __func__, decode_hioctl(cmd), cmd, rc); 3584 return rc; 3585 } 3586 3587 /* 3588 * Character device file operations 3589 */ 3590 static const struct file_operations cxlflash_chr_fops = { 3591 .owner = THIS_MODULE, 3592 .open = cxlflash_chr_open, 3593 .unlocked_ioctl = cxlflash_chr_ioctl, 3594 .compat_ioctl = compat_ptr_ioctl, 3595 }; 3596 3597 /** 3598 * init_chrdev() - initialize the character device for the host 3599 * @cfg: Internal structure associated with the host. 3600 * 3601 * Return: 0 on success, -errno on failure 3602 */ 3603 static int init_chrdev(struct cxlflash_cfg *cfg) 3604 { 3605 struct device *dev = &cfg->dev->dev; 3606 struct device *char_dev; 3607 dev_t devno; 3608 int minor; 3609 int rc = 0; 3610 3611 minor = cxlflash_get_minor(); 3612 if (unlikely(minor < 0)) { 3613 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__); 3614 rc = -ENOSPC; 3615 goto out; 3616 } 3617 3618 devno = MKDEV(cxlflash_major, minor); 3619 cdev_init(&cfg->cdev, &cxlflash_chr_fops); 3620 3621 rc = cdev_add(&cfg->cdev, devno, 1); 3622 if (rc) { 3623 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc); 3624 goto err1; 3625 } 3626 3627 char_dev = device_create(cxlflash_class, NULL, devno, 3628 NULL, "cxlflash%d", minor); 3629 if (IS_ERR(char_dev)) { 3630 rc = PTR_ERR(char_dev); 3631 dev_err(dev, "%s: device_create failed rc=%d\n", 3632 __func__, rc); 3633 goto err2; 3634 } 3635 3636 cfg->chardev = char_dev; 3637 out: 3638 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3639 return rc; 3640 err2: 3641 cdev_del(&cfg->cdev); 3642 err1: 3643 cxlflash_put_minor(minor); 3644 goto out; 3645 } 3646 3647 /** 3648 * cxlflash_probe() - PCI entry point to add host 3649 * @pdev: PCI device associated with the host. 3650 * @dev_id: PCI device id associated with device. 3651 * 3652 * The device will initially start out in a 'probing' state and 3653 * transition to the 'normal' state at the end of a successful 3654 * probe. Should an EEH event occur during probe, the notification 3655 * thread (error_detected()) will wait until the probe handler 3656 * is nearly complete. At that time, the device will be moved to 3657 * a 'probed' state and the EEH thread woken up to drive the slot 3658 * reset and recovery (device moves to 'normal' state). Meanwhile, 3659 * the probe will be allowed to exit successfully. 3660 * 3661 * Return: 0 on success, -errno on failure 3662 */ 3663 static int cxlflash_probe(struct pci_dev *pdev, 3664 const struct pci_device_id *dev_id) 3665 { 3666 struct Scsi_Host *host; 3667 struct cxlflash_cfg *cfg = NULL; 3668 struct device *dev = &pdev->dev; 3669 struct dev_dependent_vals *ddv; 3670 int rc = 0; 3671 int k; 3672 3673 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", 3674 __func__, pdev->irq); 3675 3676 ddv = (struct dev_dependent_vals *)dev_id->driver_data; 3677 driver_template.max_sectors = ddv->max_sectors; 3678 3679 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); 3680 if (!host) { 3681 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__); 3682 rc = -ENOMEM; 3683 goto out; 3684 } 3685 3686 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; 3687 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; 3688 host->unique_id = host->host_no; 3689 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; 3690 3691 cfg = shost_priv(host); 3692 cfg->state = STATE_PROBING; 3693 cfg->host = host; 3694 rc = alloc_mem(cfg); 3695 if (rc) { 3696 dev_err(dev, "%s: alloc_mem failed\n", __func__); 3697 rc = -ENOMEM; 3698 scsi_host_put(cfg->host); 3699 goto out; 3700 } 3701 3702 cfg->init_state = INIT_STATE_NONE; 3703 cfg->dev = pdev; 3704 cfg->cxl_fops = cxlflash_cxl_fops; 3705 cfg->ops = cxlflash_assign_ops(ddv); 3706 WARN_ON_ONCE(!cfg->ops); 3707 3708 /* 3709 * Promoted LUNs move to the top of the LUN table. The rest stay on 3710 * the bottom half. The bottom half grows from the end (index = 255), 3711 * whereas the top half grows from the beginning (index = 0). 3712 * 3713 * Initialize the last LUN index for all possible ports. 3714 */ 3715 cfg->promote_lun_index = 0; 3716 3717 for (k = 0; k < MAX_FC_PORTS; k++) 3718 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1; 3719 3720 cfg->dev_id = (struct pci_device_id *)dev_id; 3721 3722 init_waitqueue_head(&cfg->tmf_waitq); 3723 init_waitqueue_head(&cfg->reset_waitq); 3724 3725 INIT_WORK(&cfg->work_q, cxlflash_worker_thread); 3726 cfg->lr_state = LINK_RESET_INVALID; 3727 cfg->lr_port = -1; 3728 spin_lock_init(&cfg->tmf_slock); 3729 mutex_init(&cfg->ctx_tbl_list_mutex); 3730 mutex_init(&cfg->ctx_recovery_mutex); 3731 init_rwsem(&cfg->ioctl_rwsem); 3732 INIT_LIST_HEAD(&cfg->ctx_err_recovery); 3733 INIT_LIST_HEAD(&cfg->lluns); 3734 3735 pci_set_drvdata(pdev, cfg); 3736 3737 rc = init_pci(cfg); 3738 if (rc) { 3739 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc); 3740 goto out_remove; 3741 } 3742 cfg->init_state = INIT_STATE_PCI; 3743 3744 cfg->afu_cookie = cfg->ops->create_afu(pdev); 3745 if (unlikely(!cfg->afu_cookie)) { 3746 dev_err(dev, "%s: create_afu failed\n", __func__); 3747 goto out_remove; 3748 } 3749 3750 rc = init_afu(cfg); 3751 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) { 3752 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc); 3753 goto out_remove; 3754 } 3755 cfg->init_state = INIT_STATE_AFU; 3756 3757 rc = init_scsi(cfg); 3758 if (rc) { 3759 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc); 3760 goto out_remove; 3761 } 3762 cfg->init_state = INIT_STATE_SCSI; 3763 3764 rc = init_chrdev(cfg); 3765 if (rc) { 3766 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc); 3767 goto out_remove; 3768 } 3769 cfg->init_state = INIT_STATE_CDEV; 3770 3771 if (wq_has_sleeper(&cfg->reset_waitq)) { 3772 cfg->state = STATE_PROBED; 3773 wake_up_all(&cfg->reset_waitq); 3774 } else 3775 cfg->state = STATE_NORMAL; 3776 out: 3777 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3778 return rc; 3779 3780 out_remove: 3781 cfg->state = STATE_PROBED; 3782 cxlflash_remove(pdev); 3783 goto out; 3784 } 3785 3786 /** 3787 * cxlflash_pci_error_detected() - called when a PCI error is detected 3788 * @pdev: PCI device struct. 3789 * @state: PCI channel state. 3790 * 3791 * When an EEH occurs during an active reset, wait until the reset is 3792 * complete and then take action based upon the device state. 3793 * 3794 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT 3795 */ 3796 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, 3797 pci_channel_state_t state) 3798 { 3799 int rc = 0; 3800 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3801 struct device *dev = &cfg->dev->dev; 3802 3803 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); 3804 3805 switch (state) { 3806 case pci_channel_io_frozen: 3807 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 3808 cfg->state != STATE_PROBING); 3809 if (cfg->state == STATE_FAILTERM) 3810 return PCI_ERS_RESULT_DISCONNECT; 3811 3812 cfg->state = STATE_RESET; 3813 scsi_block_requests(cfg->host); 3814 drain_ioctls(cfg); 3815 rc = cxlflash_mark_contexts_error(cfg); 3816 if (unlikely(rc)) 3817 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n", 3818 __func__, rc); 3819 term_afu(cfg); 3820 return PCI_ERS_RESULT_NEED_RESET; 3821 case pci_channel_io_perm_failure: 3822 cfg->state = STATE_FAILTERM; 3823 wake_up_all(&cfg->reset_waitq); 3824 scsi_unblock_requests(cfg->host); 3825 return PCI_ERS_RESULT_DISCONNECT; 3826 default: 3827 break; 3828 } 3829 return PCI_ERS_RESULT_NEED_RESET; 3830 } 3831 3832 /** 3833 * cxlflash_pci_slot_reset() - called when PCI slot has been reset 3834 * @pdev: PCI device struct. 3835 * 3836 * This routine is called by the pci error recovery code after the PCI 3837 * slot has been reset, just before we should resume normal operations. 3838 * 3839 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT 3840 */ 3841 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) 3842 { 3843 int rc = 0; 3844 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3845 struct device *dev = &cfg->dev->dev; 3846 3847 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3848 3849 rc = init_afu(cfg); 3850 if (unlikely(rc)) { 3851 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc); 3852 return PCI_ERS_RESULT_DISCONNECT; 3853 } 3854 3855 return PCI_ERS_RESULT_RECOVERED; 3856 } 3857 3858 /** 3859 * cxlflash_pci_resume() - called when normal operation can resume 3860 * @pdev: PCI device struct 3861 */ 3862 static void cxlflash_pci_resume(struct pci_dev *pdev) 3863 { 3864 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3865 struct device *dev = &cfg->dev->dev; 3866 3867 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3868 3869 cfg->state = STATE_NORMAL; 3870 wake_up_all(&cfg->reset_waitq); 3871 scsi_unblock_requests(cfg->host); 3872 } 3873 3874 /** 3875 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class 3876 * @dev: Character device. 3877 * @mode: Mode that can be used to verify access. 3878 * 3879 * Return: Allocated string describing the devtmpfs structure. 3880 */ 3881 static char *cxlflash_devnode(struct device *dev, umode_t *mode) 3882 { 3883 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev)); 3884 } 3885 3886 /** 3887 * cxlflash_class_init() - create character device class 3888 * 3889 * Return: 0 on success, -errno on failure 3890 */ 3891 static int cxlflash_class_init(void) 3892 { 3893 dev_t devno; 3894 int rc = 0; 3895 3896 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash"); 3897 if (unlikely(rc)) { 3898 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc); 3899 goto out; 3900 } 3901 3902 cxlflash_major = MAJOR(devno); 3903 3904 cxlflash_class = class_create(THIS_MODULE, "cxlflash"); 3905 if (IS_ERR(cxlflash_class)) { 3906 rc = PTR_ERR(cxlflash_class); 3907 pr_err("%s: class_create failed rc=%d\n", __func__, rc); 3908 goto err; 3909 } 3910 3911 cxlflash_class->devnode = cxlflash_devnode; 3912 out: 3913 pr_debug("%s: returning rc=%d\n", __func__, rc); 3914 return rc; 3915 err: 3916 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3917 goto out; 3918 } 3919 3920 /** 3921 * cxlflash_class_exit() - destroy character device class 3922 */ 3923 static void cxlflash_class_exit(void) 3924 { 3925 dev_t devno = MKDEV(cxlflash_major, 0); 3926 3927 class_destroy(cxlflash_class); 3928 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3929 } 3930 3931 static const struct pci_error_handlers cxlflash_err_handler = { 3932 .error_detected = cxlflash_pci_error_detected, 3933 .slot_reset = cxlflash_pci_slot_reset, 3934 .resume = cxlflash_pci_resume, 3935 }; 3936 3937 /* 3938 * PCI device structure 3939 */ 3940 static struct pci_driver cxlflash_driver = { 3941 .name = CXLFLASH_NAME, 3942 .id_table = cxlflash_pci_table, 3943 .probe = cxlflash_probe, 3944 .remove = cxlflash_remove, 3945 .shutdown = cxlflash_remove, 3946 .err_handler = &cxlflash_err_handler, 3947 }; 3948 3949 /** 3950 * init_cxlflash() - module entry point 3951 * 3952 * Return: 0 on success, -errno on failure 3953 */ 3954 static int __init init_cxlflash(void) 3955 { 3956 int rc; 3957 3958 check_sizes(); 3959 cxlflash_list_init(); 3960 rc = cxlflash_class_init(); 3961 if (unlikely(rc)) 3962 goto out; 3963 3964 rc = pci_register_driver(&cxlflash_driver); 3965 if (unlikely(rc)) 3966 goto err; 3967 out: 3968 pr_debug("%s: returning rc=%d\n", __func__, rc); 3969 return rc; 3970 err: 3971 cxlflash_class_exit(); 3972 goto out; 3973 } 3974 3975 /** 3976 * exit_cxlflash() - module exit point 3977 */ 3978 static void __exit exit_cxlflash(void) 3979 { 3980 cxlflash_term_global_luns(); 3981 cxlflash_free_errpage(); 3982 3983 pci_unregister_driver(&cxlflash_driver); 3984 cxlflash_class_exit(); 3985 } 3986 3987 module_init(init_cxlflash); 3988 module_exit(exit_cxlflash); 3989