xref: /openbmc/linux/drivers/scsi/cxlflash/main.c (revision 965f22bc)
1 /*
2  * CXL Flash Device Driver
3  *
4  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6  *
7  * Copyright (C) 2015 IBM Corporation
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 
20 #include <asm/unaligned.h>
21 
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_host.h>
24 #include <uapi/scsi/cxlflash_ioctl.h>
25 
26 #include "main.h"
27 #include "sislite.h"
28 #include "common.h"
29 
30 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
31 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
32 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
33 MODULE_LICENSE("GPL");
34 
35 static struct class *cxlflash_class;
36 static u32 cxlflash_major;
37 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
38 
39 /**
40  * process_cmd_err() - command error handler
41  * @cmd:	AFU command that experienced the error.
42  * @scp:	SCSI command associated with the AFU command in error.
43  *
44  * Translates error bits from AFU command to SCSI command results.
45  */
46 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
47 {
48 	struct afu *afu = cmd->parent;
49 	struct cxlflash_cfg *cfg = afu->parent;
50 	struct device *dev = &cfg->dev->dev;
51 	struct sisl_ioarcb *ioarcb;
52 	struct sisl_ioasa *ioasa;
53 	u32 resid;
54 
55 	if (unlikely(!cmd))
56 		return;
57 
58 	ioarcb = &(cmd->rcb);
59 	ioasa = &(cmd->sa);
60 
61 	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
62 		resid = ioasa->resid;
63 		scsi_set_resid(scp, resid);
64 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
65 			__func__, cmd, scp, resid);
66 	}
67 
68 	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
69 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
70 			__func__, cmd, scp);
71 		scp->result = (DID_ERROR << 16);
72 	}
73 
74 	dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
75 		"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
76 		ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
77 		ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
78 
79 	if (ioasa->rc.scsi_rc) {
80 		/* We have a SCSI status */
81 		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
82 			memcpy(scp->sense_buffer, ioasa->sense_data,
83 			       SISL_SENSE_DATA_LEN);
84 			scp->result = ioasa->rc.scsi_rc;
85 		} else
86 			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
87 	}
88 
89 	/*
90 	 * We encountered an error. Set scp->result based on nature
91 	 * of error.
92 	 */
93 	if (ioasa->rc.fc_rc) {
94 		/* We have an FC status */
95 		switch (ioasa->rc.fc_rc) {
96 		case SISL_FC_RC_LINKDOWN:
97 			scp->result = (DID_REQUEUE << 16);
98 			break;
99 		case SISL_FC_RC_RESID:
100 			/* This indicates an FCP resid underrun */
101 			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
102 				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
103 				 * then we will handle this error else where.
104 				 * If not then we must handle it here.
105 				 * This is probably an AFU bug.
106 				 */
107 				scp->result = (DID_ERROR << 16);
108 			}
109 			break;
110 		case SISL_FC_RC_RESIDERR:
111 			/* Resid mismatch between adapter and device */
112 		case SISL_FC_RC_TGTABORT:
113 		case SISL_FC_RC_ABORTOK:
114 		case SISL_FC_RC_ABORTFAIL:
115 		case SISL_FC_RC_NOLOGI:
116 		case SISL_FC_RC_ABORTPEND:
117 		case SISL_FC_RC_WRABORTPEND:
118 		case SISL_FC_RC_NOEXP:
119 		case SISL_FC_RC_INUSE:
120 			scp->result = (DID_ERROR << 16);
121 			break;
122 		}
123 	}
124 
125 	if (ioasa->rc.afu_rc) {
126 		/* We have an AFU error */
127 		switch (ioasa->rc.afu_rc) {
128 		case SISL_AFU_RC_NO_CHANNELS:
129 			scp->result = (DID_NO_CONNECT << 16);
130 			break;
131 		case SISL_AFU_RC_DATA_DMA_ERR:
132 			switch (ioasa->afu_extra) {
133 			case SISL_AFU_DMA_ERR_PAGE_IN:
134 				/* Retry */
135 				scp->result = (DID_IMM_RETRY << 16);
136 				break;
137 			case SISL_AFU_DMA_ERR_INVALID_EA:
138 			default:
139 				scp->result = (DID_ERROR << 16);
140 			}
141 			break;
142 		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
143 			/* Retry */
144 			scp->result = (DID_ALLOC_FAILURE << 16);
145 			break;
146 		default:
147 			scp->result = (DID_ERROR << 16);
148 		}
149 	}
150 }
151 
152 /**
153  * cmd_complete() - command completion handler
154  * @cmd:	AFU command that has completed.
155  *
156  * For SCSI commands this routine prepares and submits commands that have
157  * either completed or timed out to the SCSI stack. For internal commands
158  * (TMF or AFU), this routine simply notifies the originator that the
159  * command has completed.
160  */
161 static void cmd_complete(struct afu_cmd *cmd)
162 {
163 	struct scsi_cmnd *scp;
164 	ulong lock_flags;
165 	struct afu *afu = cmd->parent;
166 	struct cxlflash_cfg *cfg = afu->parent;
167 	struct device *dev = &cfg->dev->dev;
168 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
169 
170 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
171 	list_del(&cmd->list);
172 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
173 
174 	if (cmd->scp) {
175 		scp = cmd->scp;
176 		if (unlikely(cmd->sa.ioasc))
177 			process_cmd_err(cmd, scp);
178 		else
179 			scp->result = (DID_OK << 16);
180 
181 		dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
182 				    __func__, scp, scp->result, cmd->sa.ioasc);
183 		scp->scsi_done(scp);
184 	} else if (cmd->cmd_tmf) {
185 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
186 		cfg->tmf_active = false;
187 		wake_up_all_locked(&cfg->tmf_waitq);
188 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
189 	} else
190 		complete(&cmd->cevent);
191 }
192 
193 /**
194  * flush_pending_cmds() - flush all pending commands on this hardware queue
195  * @hwq:	Hardware queue to flush.
196  *
197  * The hardware send queue lock associated with this hardware queue must be
198  * held when calling this routine.
199  */
200 static void flush_pending_cmds(struct hwq *hwq)
201 {
202 	struct cxlflash_cfg *cfg = hwq->afu->parent;
203 	struct afu_cmd *cmd, *tmp;
204 	struct scsi_cmnd *scp;
205 	ulong lock_flags;
206 
207 	list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
208 		/* Bypass command when on a doneq, cmd_complete() will handle */
209 		if (!list_empty(&cmd->queue))
210 			continue;
211 
212 		list_del(&cmd->list);
213 
214 		if (cmd->scp) {
215 			scp = cmd->scp;
216 			scp->result = (DID_IMM_RETRY << 16);
217 			scp->scsi_done(scp);
218 		} else {
219 			cmd->cmd_aborted = true;
220 
221 			if (cmd->cmd_tmf) {
222 				spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
223 				cfg->tmf_active = false;
224 				wake_up_all_locked(&cfg->tmf_waitq);
225 				spin_unlock_irqrestore(&cfg->tmf_slock,
226 						       lock_flags);
227 			} else
228 				complete(&cmd->cevent);
229 		}
230 	}
231 }
232 
233 /**
234  * context_reset() - reset context via specified register
235  * @hwq:	Hardware queue owning the context to be reset.
236  * @reset_reg:	MMIO register to perform reset.
237  *
238  * When the reset is successful, the SISLite specification guarantees that
239  * the AFU has aborted all currently pending I/O. Accordingly, these commands
240  * must be flushed.
241  *
242  * Return: 0 on success, -errno on failure
243  */
244 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
245 {
246 	struct cxlflash_cfg *cfg = hwq->afu->parent;
247 	struct device *dev = &cfg->dev->dev;
248 	int rc = -ETIMEDOUT;
249 	int nretry = 0;
250 	u64 val = 0x1;
251 	ulong lock_flags;
252 
253 	dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
254 
255 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
256 
257 	writeq_be(val, reset_reg);
258 	do {
259 		val = readq_be(reset_reg);
260 		if ((val & 0x1) == 0x0) {
261 			rc = 0;
262 			break;
263 		}
264 
265 		/* Double delay each time */
266 		udelay(1 << nretry);
267 	} while (nretry++ < MC_ROOM_RETRY_CNT);
268 
269 	if (!rc)
270 		flush_pending_cmds(hwq);
271 
272 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
273 
274 	dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
275 		__func__, rc, val, nretry);
276 	return rc;
277 }
278 
279 /**
280  * context_reset_ioarrin() - reset context via IOARRIN register
281  * @hwq:	Hardware queue owning the context to be reset.
282  *
283  * Return: 0 on success, -errno on failure
284  */
285 static int context_reset_ioarrin(struct hwq *hwq)
286 {
287 	return context_reset(hwq, &hwq->host_map->ioarrin);
288 }
289 
290 /**
291  * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
292  * @hwq:	Hardware queue owning the context to be reset.
293  *
294  * Return: 0 on success, -errno on failure
295  */
296 static int context_reset_sq(struct hwq *hwq)
297 {
298 	return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
299 }
300 
301 /**
302  * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
303  * @afu:	AFU associated with the host.
304  * @cmd:	AFU command to send.
305  *
306  * Return:
307  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
308  */
309 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
310 {
311 	struct cxlflash_cfg *cfg = afu->parent;
312 	struct device *dev = &cfg->dev->dev;
313 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
314 	int rc = 0;
315 	s64 room;
316 	ulong lock_flags;
317 
318 	/*
319 	 * To avoid the performance penalty of MMIO, spread the update of
320 	 * 'room' over multiple commands.
321 	 */
322 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
323 	if (--hwq->room < 0) {
324 		room = readq_be(&hwq->host_map->cmd_room);
325 		if (room <= 0) {
326 			dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
327 					    "0x%02X, room=0x%016llX\n",
328 					    __func__, cmd->rcb.cdb[0], room);
329 			hwq->room = 0;
330 			rc = SCSI_MLQUEUE_HOST_BUSY;
331 			goto out;
332 		}
333 		hwq->room = room - 1;
334 	}
335 
336 	list_add(&cmd->list, &hwq->pending_cmds);
337 	writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
338 out:
339 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
340 	dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
341 		__func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
342 	return rc;
343 }
344 
345 /**
346  * send_cmd_sq() - sends an AFU command via SQ ring
347  * @afu:	AFU associated with the host.
348  * @cmd:	AFU command to send.
349  *
350  * Return:
351  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
352  */
353 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
354 {
355 	struct cxlflash_cfg *cfg = afu->parent;
356 	struct device *dev = &cfg->dev->dev;
357 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
358 	int rc = 0;
359 	int newval;
360 	ulong lock_flags;
361 
362 	newval = atomic_dec_if_positive(&hwq->hsq_credits);
363 	if (newval <= 0) {
364 		rc = SCSI_MLQUEUE_HOST_BUSY;
365 		goto out;
366 	}
367 
368 	cmd->rcb.ioasa = &cmd->sa;
369 
370 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
371 
372 	*hwq->hsq_curr = cmd->rcb;
373 	if (hwq->hsq_curr < hwq->hsq_end)
374 		hwq->hsq_curr++;
375 	else
376 		hwq->hsq_curr = hwq->hsq_start;
377 
378 	list_add(&cmd->list, &hwq->pending_cmds);
379 	writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
380 
381 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
382 out:
383 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
384 	       "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
385 	       cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
386 	       readq_be(&hwq->host_map->sq_head),
387 	       readq_be(&hwq->host_map->sq_tail));
388 	return rc;
389 }
390 
391 /**
392  * wait_resp() - polls for a response or timeout to a sent AFU command
393  * @afu:	AFU associated with the host.
394  * @cmd:	AFU command that was sent.
395  *
396  * Return: 0 on success, -errno on failure
397  */
398 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
399 {
400 	struct cxlflash_cfg *cfg = afu->parent;
401 	struct device *dev = &cfg->dev->dev;
402 	int rc = 0;
403 	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
404 
405 	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
406 	if (!timeout)
407 		rc = -ETIMEDOUT;
408 
409 	if (cmd->cmd_aborted)
410 		rc = -EAGAIN;
411 
412 	if (unlikely(cmd->sa.ioasc != 0)) {
413 		dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
414 			__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
415 		rc = -EIO;
416 	}
417 
418 	return rc;
419 }
420 
421 /**
422  * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
423  * @host:	SCSI host associated with device.
424  * @scp:	SCSI command to send.
425  * @afu:	SCSI command to send.
426  *
427  * Hashes a command based upon the hardware queue mode.
428  *
429  * Return: Trusted index of target hardware queue
430  */
431 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
432 			     struct afu *afu)
433 {
434 	u32 tag;
435 	u32 hwq = 0;
436 
437 	if (afu->num_hwqs == 1)
438 		return 0;
439 
440 	switch (afu->hwq_mode) {
441 	case HWQ_MODE_RR:
442 		hwq = afu->hwq_rr_count++ % afu->num_hwqs;
443 		break;
444 	case HWQ_MODE_TAG:
445 		tag = blk_mq_unique_tag(scp->request);
446 		hwq = blk_mq_unique_tag_to_hwq(tag);
447 		break;
448 	case HWQ_MODE_CPU:
449 		hwq = smp_processor_id() % afu->num_hwqs;
450 		break;
451 	default:
452 		WARN_ON_ONCE(1);
453 	}
454 
455 	return hwq;
456 }
457 
458 /**
459  * send_tmf() - sends a Task Management Function (TMF)
460  * @cfg:	Internal structure associated with the host.
461  * @sdev:	SCSI device destined for TMF.
462  * @tmfcmd:	TMF command to send.
463  *
464  * Return:
465  *	0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
466  */
467 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
468 		    u64 tmfcmd)
469 {
470 	struct afu *afu = cfg->afu;
471 	struct afu_cmd *cmd = NULL;
472 	struct device *dev = &cfg->dev->dev;
473 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
474 	bool needs_deletion = false;
475 	char *buf = NULL;
476 	ulong lock_flags;
477 	int rc = 0;
478 	ulong to;
479 
480 	buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
481 	if (unlikely(!buf)) {
482 		dev_err(dev, "%s: no memory for command\n", __func__);
483 		rc = -ENOMEM;
484 		goto out;
485 	}
486 
487 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
488 	INIT_LIST_HEAD(&cmd->queue);
489 
490 	/* When Task Management Function is active do not send another */
491 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
492 	if (cfg->tmf_active)
493 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
494 						  !cfg->tmf_active,
495 						  cfg->tmf_slock);
496 	cfg->tmf_active = true;
497 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
498 
499 	cmd->parent = afu;
500 	cmd->cmd_tmf = true;
501 	cmd->hwq_index = hwq->index;
502 
503 	cmd->rcb.ctx_id = hwq->ctx_hndl;
504 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
505 	cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
506 	cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
507 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
508 			      SISL_REQ_FLAGS_SUP_UNDERRUN |
509 			      SISL_REQ_FLAGS_TMF_CMD);
510 	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
511 
512 	rc = afu->send_cmd(afu, cmd);
513 	if (unlikely(rc)) {
514 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
515 		cfg->tmf_active = false;
516 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
517 		goto out;
518 	}
519 
520 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
521 	to = msecs_to_jiffies(5000);
522 	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
523 						       !cfg->tmf_active,
524 						       cfg->tmf_slock,
525 						       to);
526 	if (!to) {
527 		dev_err(dev, "%s: TMF timed out\n", __func__);
528 		rc = -ETIMEDOUT;
529 		needs_deletion = true;
530 	} else if (cmd->cmd_aborted) {
531 		dev_err(dev, "%s: TMF aborted\n", __func__);
532 		rc = -EAGAIN;
533 	} else if (cmd->sa.ioasc) {
534 		dev_err(dev, "%s: TMF failed ioasc=%08x\n",
535 			__func__, cmd->sa.ioasc);
536 		rc = -EIO;
537 	}
538 	cfg->tmf_active = false;
539 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
540 
541 	if (needs_deletion) {
542 		spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
543 		list_del(&cmd->list);
544 		spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
545 	}
546 out:
547 	kfree(buf);
548 	return rc;
549 }
550 
551 /**
552  * cxlflash_driver_info() - information handler for this host driver
553  * @host:	SCSI host associated with device.
554  *
555  * Return: A string describing the device.
556  */
557 static const char *cxlflash_driver_info(struct Scsi_Host *host)
558 {
559 	return CXLFLASH_ADAPTER_NAME;
560 }
561 
562 /**
563  * cxlflash_queuecommand() - sends a mid-layer request
564  * @host:	SCSI host associated with device.
565  * @scp:	SCSI command to send.
566  *
567  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
568  */
569 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
570 {
571 	struct cxlflash_cfg *cfg = shost_priv(host);
572 	struct afu *afu = cfg->afu;
573 	struct device *dev = &cfg->dev->dev;
574 	struct afu_cmd *cmd = sc_to_afuci(scp);
575 	struct scatterlist *sg = scsi_sglist(scp);
576 	int hwq_index = cmd_to_target_hwq(host, scp, afu);
577 	struct hwq *hwq = get_hwq(afu, hwq_index);
578 	u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
579 	ulong lock_flags;
580 	int rc = 0;
581 
582 	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
583 			    "cdb=(%08x-%08x-%08x-%08x)\n",
584 			    __func__, scp, host->host_no, scp->device->channel,
585 			    scp->device->id, scp->device->lun,
586 			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
587 			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
588 			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
589 			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
590 
591 	/*
592 	 * If a Task Management Function is active, wait for it to complete
593 	 * before continuing with regular commands.
594 	 */
595 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
596 	if (cfg->tmf_active) {
597 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
598 		rc = SCSI_MLQUEUE_HOST_BUSY;
599 		goto out;
600 	}
601 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
602 
603 	switch (cfg->state) {
604 	case STATE_PROBING:
605 	case STATE_PROBED:
606 	case STATE_RESET:
607 		dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
608 		rc = SCSI_MLQUEUE_HOST_BUSY;
609 		goto out;
610 	case STATE_FAILTERM:
611 		dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
612 		scp->result = (DID_NO_CONNECT << 16);
613 		scp->scsi_done(scp);
614 		rc = 0;
615 		goto out;
616 	default:
617 		atomic_inc(&afu->cmds_active);
618 		break;
619 	}
620 
621 	if (likely(sg)) {
622 		cmd->rcb.data_len = sg->length;
623 		cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
624 	}
625 
626 	cmd->scp = scp;
627 	cmd->parent = afu;
628 	cmd->hwq_index = hwq_index;
629 
630 	cmd->sa.ioasc = 0;
631 	cmd->rcb.ctx_id = hwq->ctx_hndl;
632 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
633 	cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
634 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
635 
636 	if (scp->sc_data_direction == DMA_TO_DEVICE)
637 		req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
638 
639 	cmd->rcb.req_flags = req_flags;
640 	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
641 
642 	rc = afu->send_cmd(afu, cmd);
643 	atomic_dec(&afu->cmds_active);
644 out:
645 	return rc;
646 }
647 
648 /**
649  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
650  * @cfg:	Internal structure associated with the host.
651  */
652 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
653 {
654 	struct pci_dev *pdev = cfg->dev;
655 
656 	if (pci_channel_offline(pdev))
657 		wait_event_timeout(cfg->reset_waitq,
658 				   !pci_channel_offline(pdev),
659 				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
660 }
661 
662 /**
663  * free_mem() - free memory associated with the AFU
664  * @cfg:	Internal structure associated with the host.
665  */
666 static void free_mem(struct cxlflash_cfg *cfg)
667 {
668 	struct afu *afu = cfg->afu;
669 
670 	if (cfg->afu) {
671 		free_pages((ulong)afu, get_order(sizeof(struct afu)));
672 		cfg->afu = NULL;
673 	}
674 }
675 
676 /**
677  * cxlflash_reset_sync() - synchronizing point for asynchronous resets
678  * @cfg:	Internal structure associated with the host.
679  */
680 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
681 {
682 	if (cfg->async_reset_cookie == 0)
683 		return;
684 
685 	/* Wait until all async calls prior to this cookie have completed */
686 	async_synchronize_cookie(cfg->async_reset_cookie + 1);
687 	cfg->async_reset_cookie = 0;
688 }
689 
690 /**
691  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
692  * @cfg:	Internal structure associated with the host.
693  *
694  * Safe to call with AFU in a partially allocated/initialized state.
695  *
696  * Cancels scheduled worker threads, waits for any active internal AFU
697  * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
698  */
699 static void stop_afu(struct cxlflash_cfg *cfg)
700 {
701 	struct afu *afu = cfg->afu;
702 	struct hwq *hwq;
703 	int i;
704 
705 	cancel_work_sync(&cfg->work_q);
706 	if (!current_is_async())
707 		cxlflash_reset_sync(cfg);
708 
709 	if (likely(afu)) {
710 		while (atomic_read(&afu->cmds_active))
711 			ssleep(1);
712 
713 		if (afu_is_irqpoll_enabled(afu)) {
714 			for (i = 0; i < afu->num_hwqs; i++) {
715 				hwq = get_hwq(afu, i);
716 
717 				irq_poll_disable(&hwq->irqpoll);
718 			}
719 		}
720 
721 		if (likely(afu->afu_map)) {
722 			cfg->ops->psa_unmap(afu->afu_map);
723 			afu->afu_map = NULL;
724 		}
725 	}
726 }
727 
728 /**
729  * term_intr() - disables all AFU interrupts
730  * @cfg:	Internal structure associated with the host.
731  * @level:	Depth of allocation, where to begin waterfall tear down.
732  * @index:	Index of the hardware queue.
733  *
734  * Safe to call with AFU/MC in partially allocated/initialized state.
735  */
736 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
737 		      u32 index)
738 {
739 	struct afu *afu = cfg->afu;
740 	struct device *dev = &cfg->dev->dev;
741 	struct hwq *hwq;
742 
743 	if (!afu) {
744 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
745 		return;
746 	}
747 
748 	hwq = get_hwq(afu, index);
749 
750 	if (!hwq->ctx_cookie) {
751 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
752 		return;
753 	}
754 
755 	switch (level) {
756 	case UNMAP_THREE:
757 		/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
758 		if (index == PRIMARY_HWQ)
759 			cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
760 	case UNMAP_TWO:
761 		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
762 	case UNMAP_ONE:
763 		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
764 	case FREE_IRQ:
765 		cfg->ops->free_afu_irqs(hwq->ctx_cookie);
766 		/* fall through */
767 	case UNDO_NOOP:
768 		/* No action required */
769 		break;
770 	}
771 }
772 
773 /**
774  * term_mc() - terminates the master context
775  * @cfg:	Internal structure associated with the host.
776  * @index:	Index of the hardware queue.
777  *
778  * Safe to call with AFU/MC in partially allocated/initialized state.
779  */
780 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
781 {
782 	struct afu *afu = cfg->afu;
783 	struct device *dev = &cfg->dev->dev;
784 	struct hwq *hwq;
785 	ulong lock_flags;
786 
787 	if (!afu) {
788 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
789 		return;
790 	}
791 
792 	hwq = get_hwq(afu, index);
793 
794 	if (!hwq->ctx_cookie) {
795 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
796 		return;
797 	}
798 
799 	WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
800 	if (index != PRIMARY_HWQ)
801 		WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
802 	hwq->ctx_cookie = NULL;
803 
804 	spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
805 	hwq->hrrq_online = false;
806 	spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
807 
808 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
809 	flush_pending_cmds(hwq);
810 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
811 }
812 
813 /**
814  * term_afu() - terminates the AFU
815  * @cfg:	Internal structure associated with the host.
816  *
817  * Safe to call with AFU/MC in partially allocated/initialized state.
818  */
819 static void term_afu(struct cxlflash_cfg *cfg)
820 {
821 	struct device *dev = &cfg->dev->dev;
822 	int k;
823 
824 	/*
825 	 * Tear down is carefully orchestrated to ensure
826 	 * no interrupts can come in when the problem state
827 	 * area is unmapped.
828 	 *
829 	 * 1) Disable all AFU interrupts for each master
830 	 * 2) Unmap the problem state area
831 	 * 3) Stop each master context
832 	 */
833 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
834 		term_intr(cfg, UNMAP_THREE, k);
835 
836 	stop_afu(cfg);
837 
838 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
839 		term_mc(cfg, k);
840 
841 	dev_dbg(dev, "%s: returning\n", __func__);
842 }
843 
844 /**
845  * notify_shutdown() - notifies device of pending shutdown
846  * @cfg:	Internal structure associated with the host.
847  * @wait:	Whether to wait for shutdown processing to complete.
848  *
849  * This function will notify the AFU that the adapter is being shutdown
850  * and will wait for shutdown processing to complete if wait is true.
851  * This notification should flush pending I/Os to the device and halt
852  * further I/Os until the next AFU reset is issued and device restarted.
853  */
854 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
855 {
856 	struct afu *afu = cfg->afu;
857 	struct device *dev = &cfg->dev->dev;
858 	struct dev_dependent_vals *ddv;
859 	__be64 __iomem *fc_port_regs;
860 	u64 reg, status;
861 	int i, retry_cnt = 0;
862 
863 	ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
864 	if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
865 		return;
866 
867 	if (!afu || !afu->afu_map) {
868 		dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
869 		return;
870 	}
871 
872 	/* Notify AFU */
873 	for (i = 0; i < cfg->num_fc_ports; i++) {
874 		fc_port_regs = get_fc_port_regs(cfg, i);
875 
876 		reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
877 		reg |= SISL_FC_SHUTDOWN_NORMAL;
878 		writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
879 	}
880 
881 	if (!wait)
882 		return;
883 
884 	/* Wait up to 1.5 seconds for shutdown processing to complete */
885 	for (i = 0; i < cfg->num_fc_ports; i++) {
886 		fc_port_regs = get_fc_port_regs(cfg, i);
887 		retry_cnt = 0;
888 
889 		while (true) {
890 			status = readq_be(&fc_port_regs[FC_STATUS / 8]);
891 			if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
892 				break;
893 			if (++retry_cnt >= MC_RETRY_CNT) {
894 				dev_dbg(dev, "%s: port %d shutdown processing "
895 					"not yet completed\n", __func__, i);
896 				break;
897 			}
898 			msleep(100 * retry_cnt);
899 		}
900 	}
901 }
902 
903 /**
904  * cxlflash_get_minor() - gets the first available minor number
905  *
906  * Return: Unique minor number that can be used to create the character device.
907  */
908 static int cxlflash_get_minor(void)
909 {
910 	int minor;
911 	long bit;
912 
913 	bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
914 	if (bit >= CXLFLASH_MAX_ADAPTERS)
915 		return -1;
916 
917 	minor = bit & MINORMASK;
918 	set_bit(minor, cxlflash_minor);
919 	return minor;
920 }
921 
922 /**
923  * cxlflash_put_minor() - releases the minor number
924  * @minor:	Minor number that is no longer needed.
925  */
926 static void cxlflash_put_minor(int minor)
927 {
928 	clear_bit(minor, cxlflash_minor);
929 }
930 
931 /**
932  * cxlflash_release_chrdev() - release the character device for the host
933  * @cfg:	Internal structure associated with the host.
934  */
935 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
936 {
937 	device_unregister(cfg->chardev);
938 	cfg->chardev = NULL;
939 	cdev_del(&cfg->cdev);
940 	cxlflash_put_minor(MINOR(cfg->cdev.dev));
941 }
942 
943 /**
944  * cxlflash_remove() - PCI entry point to tear down host
945  * @pdev:	PCI device associated with the host.
946  *
947  * Safe to use as a cleanup in partially allocated/initialized state. Note that
948  * the reset_waitq is flushed as part of the stop/termination of user contexts.
949  */
950 static void cxlflash_remove(struct pci_dev *pdev)
951 {
952 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
953 	struct device *dev = &pdev->dev;
954 	ulong lock_flags;
955 
956 	if (!pci_is_enabled(pdev)) {
957 		dev_dbg(dev, "%s: Device is disabled\n", __func__);
958 		return;
959 	}
960 
961 	/* Yield to running recovery threads before continuing with remove */
962 	wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
963 				     cfg->state != STATE_PROBING);
964 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
965 	if (cfg->tmf_active)
966 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
967 						  !cfg->tmf_active,
968 						  cfg->tmf_slock);
969 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
970 
971 	/* Notify AFU and wait for shutdown processing to complete */
972 	notify_shutdown(cfg, true);
973 
974 	cfg->state = STATE_FAILTERM;
975 	cxlflash_stop_term_user_contexts(cfg);
976 
977 	switch (cfg->init_state) {
978 	case INIT_STATE_CDEV:
979 		cxlflash_release_chrdev(cfg);
980 	case INIT_STATE_SCSI:
981 		cxlflash_term_local_luns(cfg);
982 		scsi_remove_host(cfg->host);
983 	case INIT_STATE_AFU:
984 		term_afu(cfg);
985 	case INIT_STATE_PCI:
986 		cfg->ops->destroy_afu(cfg->afu_cookie);
987 		pci_disable_device(pdev);
988 	case INIT_STATE_NONE:
989 		free_mem(cfg);
990 		scsi_host_put(cfg->host);
991 		break;
992 	}
993 
994 	dev_dbg(dev, "%s: returning\n", __func__);
995 }
996 
997 /**
998  * alloc_mem() - allocates the AFU and its command pool
999  * @cfg:	Internal structure associated with the host.
1000  *
1001  * A partially allocated state remains on failure.
1002  *
1003  * Return:
1004  *	0 on success
1005  *	-ENOMEM on failure to allocate memory
1006  */
1007 static int alloc_mem(struct cxlflash_cfg *cfg)
1008 {
1009 	int rc = 0;
1010 	struct device *dev = &cfg->dev->dev;
1011 
1012 	/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1013 	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1014 					    get_order(sizeof(struct afu)));
1015 	if (unlikely(!cfg->afu)) {
1016 		dev_err(dev, "%s: cannot get %d free pages\n",
1017 			__func__, get_order(sizeof(struct afu)));
1018 		rc = -ENOMEM;
1019 		goto out;
1020 	}
1021 	cfg->afu->parent = cfg;
1022 	cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1023 	cfg->afu->afu_map = NULL;
1024 out:
1025 	return rc;
1026 }
1027 
1028 /**
1029  * init_pci() - initializes the host as a PCI device
1030  * @cfg:	Internal structure associated with the host.
1031  *
1032  * Return: 0 on success, -errno on failure
1033  */
1034 static int init_pci(struct cxlflash_cfg *cfg)
1035 {
1036 	struct pci_dev *pdev = cfg->dev;
1037 	struct device *dev = &cfg->dev->dev;
1038 	int rc = 0;
1039 
1040 	rc = pci_enable_device(pdev);
1041 	if (rc || pci_channel_offline(pdev)) {
1042 		if (pci_channel_offline(pdev)) {
1043 			cxlflash_wait_for_pci_err_recovery(cfg);
1044 			rc = pci_enable_device(pdev);
1045 		}
1046 
1047 		if (rc) {
1048 			dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1049 			cxlflash_wait_for_pci_err_recovery(cfg);
1050 			goto out;
1051 		}
1052 	}
1053 
1054 out:
1055 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1056 	return rc;
1057 }
1058 
1059 /**
1060  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1061  * @cfg:	Internal structure associated with the host.
1062  *
1063  * Return: 0 on success, -errno on failure
1064  */
1065 static int init_scsi(struct cxlflash_cfg *cfg)
1066 {
1067 	struct pci_dev *pdev = cfg->dev;
1068 	struct device *dev = &cfg->dev->dev;
1069 	int rc = 0;
1070 
1071 	rc = scsi_add_host(cfg->host, &pdev->dev);
1072 	if (rc) {
1073 		dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1074 		goto out;
1075 	}
1076 
1077 	scsi_scan_host(cfg->host);
1078 
1079 out:
1080 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1081 	return rc;
1082 }
1083 
1084 /**
1085  * set_port_online() - transitions the specified host FC port to online state
1086  * @fc_regs:	Top of MMIO region defined for specified port.
1087  *
1088  * The provided MMIO region must be mapped prior to call. Online state means
1089  * that the FC link layer has synced, completed the handshaking process, and
1090  * is ready for login to start.
1091  */
1092 static void set_port_online(__be64 __iomem *fc_regs)
1093 {
1094 	u64 cmdcfg;
1095 
1096 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1097 	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
1098 	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
1099 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1100 }
1101 
1102 /**
1103  * set_port_offline() - transitions the specified host FC port to offline state
1104  * @fc_regs:	Top of MMIO region defined for specified port.
1105  *
1106  * The provided MMIO region must be mapped prior to call.
1107  */
1108 static void set_port_offline(__be64 __iomem *fc_regs)
1109 {
1110 	u64 cmdcfg;
1111 
1112 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1113 	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
1114 	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
1115 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1116 }
1117 
1118 /**
1119  * wait_port_online() - waits for the specified host FC port come online
1120  * @fc_regs:	Top of MMIO region defined for specified port.
1121  * @delay_us:	Number of microseconds to delay between reading port status.
1122  * @nretry:	Number of cycles to retry reading port status.
1123  *
1124  * The provided MMIO region must be mapped prior to call. This will timeout
1125  * when the cable is not plugged in.
1126  *
1127  * Return:
1128  *	TRUE (1) when the specified port is online
1129  *	FALSE (0) when the specified port fails to come online after timeout
1130  */
1131 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1132 {
1133 	u64 status;
1134 
1135 	WARN_ON(delay_us < 1000);
1136 
1137 	do {
1138 		msleep(delay_us / 1000);
1139 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1140 		if (status == U64_MAX)
1141 			nretry /= 2;
1142 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1143 		 nretry--);
1144 
1145 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1146 }
1147 
1148 /**
1149  * wait_port_offline() - waits for the specified host FC port go offline
1150  * @fc_regs:	Top of MMIO region defined for specified port.
1151  * @delay_us:	Number of microseconds to delay between reading port status.
1152  * @nretry:	Number of cycles to retry reading port status.
1153  *
1154  * The provided MMIO region must be mapped prior to call.
1155  *
1156  * Return:
1157  *	TRUE (1) when the specified port is offline
1158  *	FALSE (0) when the specified port fails to go offline after timeout
1159  */
1160 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1161 {
1162 	u64 status;
1163 
1164 	WARN_ON(delay_us < 1000);
1165 
1166 	do {
1167 		msleep(delay_us / 1000);
1168 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1169 		if (status == U64_MAX)
1170 			nretry /= 2;
1171 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1172 		 nretry--);
1173 
1174 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1175 }
1176 
1177 /**
1178  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1179  * @afu:	AFU associated with the host that owns the specified FC port.
1180  * @port:	Port number being configured.
1181  * @fc_regs:	Top of MMIO region defined for specified port.
1182  * @wwpn:	The world-wide-port-number previously discovered for port.
1183  *
1184  * The provided MMIO region must be mapped prior to call. As part of the
1185  * sequence to configure the WWPN, the port is toggled offline and then back
1186  * online. This toggling action can cause this routine to delay up to a few
1187  * seconds. When configured to use the internal LUN feature of the AFU, a
1188  * failure to come online is overridden.
1189  */
1190 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1191 			 u64 wwpn)
1192 {
1193 	struct cxlflash_cfg *cfg = afu->parent;
1194 	struct device *dev = &cfg->dev->dev;
1195 
1196 	set_port_offline(fc_regs);
1197 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1198 			       FC_PORT_STATUS_RETRY_CNT)) {
1199 		dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1200 			__func__, port);
1201 	}
1202 
1203 	writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1204 
1205 	set_port_online(fc_regs);
1206 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1207 			      FC_PORT_STATUS_RETRY_CNT)) {
1208 		dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1209 			__func__, port);
1210 	}
1211 }
1212 
1213 /**
1214  * afu_link_reset() - resets the specified host FC port
1215  * @afu:	AFU associated with the host that owns the specified FC port.
1216  * @port:	Port number being configured.
1217  * @fc_regs:	Top of MMIO region defined for specified port.
1218  *
1219  * The provided MMIO region must be mapped prior to call. The sequence to
1220  * reset the port involves toggling it offline and then back online. This
1221  * action can cause this routine to delay up to a few seconds. An effort
1222  * is made to maintain link with the device by switching to host to use
1223  * the alternate port exclusively while the reset takes place.
1224  * failure to come online is overridden.
1225  */
1226 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1227 {
1228 	struct cxlflash_cfg *cfg = afu->parent;
1229 	struct device *dev = &cfg->dev->dev;
1230 	u64 port_sel;
1231 
1232 	/* first switch the AFU to the other links, if any */
1233 	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1234 	port_sel &= ~(1ULL << port);
1235 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1236 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1237 
1238 	set_port_offline(fc_regs);
1239 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1240 			       FC_PORT_STATUS_RETRY_CNT))
1241 		dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1242 			__func__, port);
1243 
1244 	set_port_online(fc_regs);
1245 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1246 			      FC_PORT_STATUS_RETRY_CNT))
1247 		dev_err(dev, "%s: wait on port %d to go online timed out\n",
1248 			__func__, port);
1249 
1250 	/* switch back to include this port */
1251 	port_sel |= (1ULL << port);
1252 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1253 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1254 
1255 	dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1256 }
1257 
1258 /**
1259  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1260  * @afu:	AFU associated with the host.
1261  */
1262 static void afu_err_intr_init(struct afu *afu)
1263 {
1264 	struct cxlflash_cfg *cfg = afu->parent;
1265 	__be64 __iomem *fc_port_regs;
1266 	int i;
1267 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1268 	u64 reg;
1269 
1270 	/* global async interrupts: AFU clears afu_ctrl on context exit
1271 	 * if async interrupts were sent to that context. This prevents
1272 	 * the AFU form sending further async interrupts when
1273 	 * there is
1274 	 * nobody to receive them.
1275 	 */
1276 
1277 	/* mask all */
1278 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1279 	/* set LISN# to send and point to primary master context */
1280 	reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1281 
1282 	if (afu->internal_lun)
1283 		reg |= 1;	/* Bit 63 indicates local lun */
1284 	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1285 	/* clear all */
1286 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1287 	/* unmask bits that are of interest */
1288 	/* note: afu can send an interrupt after this step */
1289 	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1290 	/* clear again in case a bit came on after previous clear but before */
1291 	/* unmask */
1292 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1293 
1294 	/* Clear/Set internal lun bits */
1295 	fc_port_regs = get_fc_port_regs(cfg, 0);
1296 	reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1297 	reg &= SISL_FC_INTERNAL_MASK;
1298 	if (afu->internal_lun)
1299 		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1300 	writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1301 
1302 	/* now clear FC errors */
1303 	for (i = 0; i < cfg->num_fc_ports; i++) {
1304 		fc_port_regs = get_fc_port_regs(cfg, i);
1305 
1306 		writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1307 		writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1308 	}
1309 
1310 	/* sync interrupts for master's IOARRIN write */
1311 	/* note that unlike asyncs, there can be no pending sync interrupts */
1312 	/* at this time (this is a fresh context and master has not written */
1313 	/* IOARRIN yet), so there is nothing to clear. */
1314 
1315 	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1316 	for (i = 0; i < afu->num_hwqs; i++) {
1317 		hwq = get_hwq(afu, i);
1318 
1319 		reg = readq_be(&hwq->host_map->ctx_ctrl);
1320 		WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
1321 		reg |= SISL_MSI_SYNC_ERROR;
1322 		writeq_be(reg, &hwq->host_map->ctx_ctrl);
1323 		writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1324 	}
1325 }
1326 
1327 /**
1328  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1329  * @irq:	Interrupt number.
1330  * @data:	Private data provided at interrupt registration, the AFU.
1331  *
1332  * Return: Always return IRQ_HANDLED.
1333  */
1334 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1335 {
1336 	struct hwq *hwq = (struct hwq *)data;
1337 	struct cxlflash_cfg *cfg = hwq->afu->parent;
1338 	struct device *dev = &cfg->dev->dev;
1339 	u64 reg;
1340 	u64 reg_unmasked;
1341 
1342 	reg = readq_be(&hwq->host_map->intr_status);
1343 	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1344 
1345 	if (reg_unmasked == 0UL) {
1346 		dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1347 			__func__, reg);
1348 		goto cxlflash_sync_err_irq_exit;
1349 	}
1350 
1351 	dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1352 		__func__, reg);
1353 
1354 	writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1355 
1356 cxlflash_sync_err_irq_exit:
1357 	return IRQ_HANDLED;
1358 }
1359 
1360 /**
1361  * process_hrrq() - process the read-response queue
1362  * @afu:	AFU associated with the host.
1363  * @doneq:	Queue of commands harvested from the RRQ.
1364  * @budget:	Threshold of RRQ entries to process.
1365  *
1366  * This routine must be called holding the disabled RRQ spin lock.
1367  *
1368  * Return: The number of entries processed.
1369  */
1370 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1371 {
1372 	struct afu *afu = hwq->afu;
1373 	struct afu_cmd *cmd;
1374 	struct sisl_ioasa *ioasa;
1375 	struct sisl_ioarcb *ioarcb;
1376 	bool toggle = hwq->toggle;
1377 	int num_hrrq = 0;
1378 	u64 entry,
1379 	    *hrrq_start = hwq->hrrq_start,
1380 	    *hrrq_end = hwq->hrrq_end,
1381 	    *hrrq_curr = hwq->hrrq_curr;
1382 
1383 	/* Process ready RRQ entries up to the specified budget (if any) */
1384 	while (true) {
1385 		entry = *hrrq_curr;
1386 
1387 		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1388 			break;
1389 
1390 		entry &= ~SISL_RESP_HANDLE_T_BIT;
1391 
1392 		if (afu_is_sq_cmd_mode(afu)) {
1393 			ioasa = (struct sisl_ioasa *)entry;
1394 			cmd = container_of(ioasa, struct afu_cmd, sa);
1395 		} else {
1396 			ioarcb = (struct sisl_ioarcb *)entry;
1397 			cmd = container_of(ioarcb, struct afu_cmd, rcb);
1398 		}
1399 
1400 		list_add_tail(&cmd->queue, doneq);
1401 
1402 		/* Advance to next entry or wrap and flip the toggle bit */
1403 		if (hrrq_curr < hrrq_end)
1404 			hrrq_curr++;
1405 		else {
1406 			hrrq_curr = hrrq_start;
1407 			toggle ^= SISL_RESP_HANDLE_T_BIT;
1408 		}
1409 
1410 		atomic_inc(&hwq->hsq_credits);
1411 		num_hrrq++;
1412 
1413 		if (budget > 0 && num_hrrq >= budget)
1414 			break;
1415 	}
1416 
1417 	hwq->hrrq_curr = hrrq_curr;
1418 	hwq->toggle = toggle;
1419 
1420 	return num_hrrq;
1421 }
1422 
1423 /**
1424  * process_cmd_doneq() - process a queue of harvested RRQ commands
1425  * @doneq:	Queue of completed commands.
1426  *
1427  * Note that upon return the queue can no longer be trusted.
1428  */
1429 static void process_cmd_doneq(struct list_head *doneq)
1430 {
1431 	struct afu_cmd *cmd, *tmp;
1432 
1433 	WARN_ON(list_empty(doneq));
1434 
1435 	list_for_each_entry_safe(cmd, tmp, doneq, queue)
1436 		cmd_complete(cmd);
1437 }
1438 
1439 /**
1440  * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1441  * @irqpoll:	IRQ poll structure associated with queue to poll.
1442  * @budget:	Threshold of RRQ entries to process per poll.
1443  *
1444  * Return: The number of entries processed.
1445  */
1446 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1447 {
1448 	struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1449 	unsigned long hrrq_flags;
1450 	LIST_HEAD(doneq);
1451 	int num_entries = 0;
1452 
1453 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1454 
1455 	num_entries = process_hrrq(hwq, &doneq, budget);
1456 	if (num_entries < budget)
1457 		irq_poll_complete(irqpoll);
1458 
1459 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1460 
1461 	process_cmd_doneq(&doneq);
1462 	return num_entries;
1463 }
1464 
1465 /**
1466  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1467  * @irq:	Interrupt number.
1468  * @data:	Private data provided at interrupt registration, the AFU.
1469  *
1470  * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1471  */
1472 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1473 {
1474 	struct hwq *hwq = (struct hwq *)data;
1475 	struct afu *afu = hwq->afu;
1476 	unsigned long hrrq_flags;
1477 	LIST_HEAD(doneq);
1478 	int num_entries = 0;
1479 
1480 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1481 
1482 	/* Silently drop spurious interrupts when queue is not online */
1483 	if (!hwq->hrrq_online) {
1484 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1485 		return IRQ_HANDLED;
1486 	}
1487 
1488 	if (afu_is_irqpoll_enabled(afu)) {
1489 		irq_poll_sched(&hwq->irqpoll);
1490 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1491 		return IRQ_HANDLED;
1492 	}
1493 
1494 	num_entries = process_hrrq(hwq, &doneq, -1);
1495 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1496 
1497 	if (num_entries == 0)
1498 		return IRQ_NONE;
1499 
1500 	process_cmd_doneq(&doneq);
1501 	return IRQ_HANDLED;
1502 }
1503 
1504 /*
1505  * Asynchronous interrupt information table
1506  *
1507  * NOTE:
1508  *	- Order matters here as this array is indexed by bit position.
1509  *
1510  *	- The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1511  *	  as complex and complains due to a lack of parentheses/braces.
1512  */
1513 #define ASTATUS_FC(_a, _b, _c, _d)					 \
1514 	{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1515 
1516 #define BUILD_SISL_ASTATUS_FC_PORT(_a)					 \
1517 	ASTATUS_FC(_a, LINK_UP, "link up", 0),				 \
1518 	ASTATUS_FC(_a, LINK_DN, "link down", 0),			 \
1519 	ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),		 \
1520 	ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),		 \
1521 	ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1522 	ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),	 \
1523 	ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),		 \
1524 	ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1525 
1526 static const struct asyc_intr_info ainfo[] = {
1527 	BUILD_SISL_ASTATUS_FC_PORT(1),
1528 	BUILD_SISL_ASTATUS_FC_PORT(0),
1529 	BUILD_SISL_ASTATUS_FC_PORT(3),
1530 	BUILD_SISL_ASTATUS_FC_PORT(2)
1531 };
1532 
1533 /**
1534  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1535  * @irq:	Interrupt number.
1536  * @data:	Private data provided at interrupt registration, the AFU.
1537  *
1538  * Return: Always return IRQ_HANDLED.
1539  */
1540 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1541 {
1542 	struct hwq *hwq = (struct hwq *)data;
1543 	struct afu *afu = hwq->afu;
1544 	struct cxlflash_cfg *cfg = afu->parent;
1545 	struct device *dev = &cfg->dev->dev;
1546 	const struct asyc_intr_info *info;
1547 	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1548 	__be64 __iomem *fc_port_regs;
1549 	u64 reg_unmasked;
1550 	u64 reg;
1551 	u64 bit;
1552 	u8 port;
1553 
1554 	reg = readq_be(&global->regs.aintr_status);
1555 	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1556 
1557 	if (unlikely(reg_unmasked == 0)) {
1558 		dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1559 			__func__, reg);
1560 		goto out;
1561 	}
1562 
1563 	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1564 	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1565 
1566 	/* Check each bit that is on */
1567 	for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1568 		if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1569 			WARN_ON_ONCE(1);
1570 			continue;
1571 		}
1572 
1573 		info = &ainfo[bit];
1574 		if (unlikely(info->status != 1ULL << bit)) {
1575 			WARN_ON_ONCE(1);
1576 			continue;
1577 		}
1578 
1579 		port = info->port;
1580 		fc_port_regs = get_fc_port_regs(cfg, port);
1581 
1582 		dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1583 			__func__, port, info->desc,
1584 		       readq_be(&fc_port_regs[FC_STATUS / 8]));
1585 
1586 		/*
1587 		 * Do link reset first, some OTHER errors will set FC_ERROR
1588 		 * again if cleared before or w/o a reset
1589 		 */
1590 		if (info->action & LINK_RESET) {
1591 			dev_err(dev, "%s: FC Port %d: resetting link\n",
1592 				__func__, port);
1593 			cfg->lr_state = LINK_RESET_REQUIRED;
1594 			cfg->lr_port = port;
1595 			schedule_work(&cfg->work_q);
1596 		}
1597 
1598 		if (info->action & CLR_FC_ERROR) {
1599 			reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1600 
1601 			/*
1602 			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1603 			 * should be the same and tracing one is sufficient.
1604 			 */
1605 
1606 			dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1607 				__func__, port, reg);
1608 
1609 			writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1610 			writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1611 		}
1612 
1613 		if (info->action & SCAN_HOST) {
1614 			atomic_inc(&cfg->scan_host_needed);
1615 			schedule_work(&cfg->work_q);
1616 		}
1617 	}
1618 
1619 out:
1620 	return IRQ_HANDLED;
1621 }
1622 
1623 /**
1624  * read_vpd() - obtains the WWPNs from VPD
1625  * @cfg:	Internal structure associated with the host.
1626  * @wwpn:	Array of size MAX_FC_PORTS to pass back WWPNs
1627  *
1628  * Return: 0 on success, -errno on failure
1629  */
1630 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1631 {
1632 	struct device *dev = &cfg->dev->dev;
1633 	struct pci_dev *pdev = cfg->dev;
1634 	int rc = 0;
1635 	int ro_start, ro_size, i, j, k;
1636 	ssize_t vpd_size;
1637 	char vpd_data[CXLFLASH_VPD_LEN];
1638 	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1639 	const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1640 						cfg->dev_id->driver_data;
1641 	const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1642 	const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1643 
1644 	/* Get the VPD data from the device */
1645 	vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1646 	if (unlikely(vpd_size <= 0)) {
1647 		dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1648 			__func__, vpd_size);
1649 		rc = -ENODEV;
1650 		goto out;
1651 	}
1652 
1653 	/* Get the read only section offset */
1654 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1655 				    PCI_VPD_LRDT_RO_DATA);
1656 	if (unlikely(ro_start < 0)) {
1657 		dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1658 		rc = -ENODEV;
1659 		goto out;
1660 	}
1661 
1662 	/* Get the read only section size, cap when extends beyond read VPD */
1663 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1664 	j = ro_size;
1665 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1666 	if (unlikely((i + j) > vpd_size)) {
1667 		dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1668 			__func__, (i + j), vpd_size);
1669 		ro_size = vpd_size - i;
1670 	}
1671 
1672 	/*
1673 	 * Find the offset of the WWPN tag within the read only
1674 	 * VPD data and validate the found field (partials are
1675 	 * no good to us). Convert the ASCII data to an integer
1676 	 * value. Note that we must copy to a temporary buffer
1677 	 * because the conversion service requires that the ASCII
1678 	 * string be terminated.
1679 	 *
1680 	 * Allow for WWPN not being found for all devices, setting
1681 	 * the returned WWPN to zero when not found. Notify with a
1682 	 * log error for cards that should have had WWPN keywords
1683 	 * in the VPD - cards requiring WWPN will not have their
1684 	 * ports programmed and operate in an undefined state.
1685 	 */
1686 	for (k = 0; k < cfg->num_fc_ports; k++) {
1687 		j = ro_size;
1688 		i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1689 
1690 		i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1691 		if (i < 0) {
1692 			if (wwpn_vpd_required)
1693 				dev_err(dev, "%s: Port %d WWPN not found\n",
1694 					__func__, k);
1695 			wwpn[k] = 0ULL;
1696 			continue;
1697 		}
1698 
1699 		j = pci_vpd_info_field_size(&vpd_data[i]);
1700 		i += PCI_VPD_INFO_FLD_HDR_SIZE;
1701 		if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1702 			dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1703 				__func__, k);
1704 			rc = -ENODEV;
1705 			goto out;
1706 		}
1707 
1708 		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1709 		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1710 		if (unlikely(rc)) {
1711 			dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1712 				__func__, k);
1713 			rc = -ENODEV;
1714 			goto out;
1715 		}
1716 
1717 		dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1718 	}
1719 
1720 out:
1721 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1722 	return rc;
1723 }
1724 
1725 /**
1726  * init_pcr() - initialize the provisioning and control registers
1727  * @cfg:	Internal structure associated with the host.
1728  *
1729  * Also sets up fast access to the mapped registers and initializes AFU
1730  * command fields that never change.
1731  */
1732 static void init_pcr(struct cxlflash_cfg *cfg)
1733 {
1734 	struct afu *afu = cfg->afu;
1735 	struct sisl_ctrl_map __iomem *ctrl_map;
1736 	struct hwq *hwq;
1737 	void *cookie;
1738 	int i;
1739 
1740 	for (i = 0; i < MAX_CONTEXT; i++) {
1741 		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1742 		/* Disrupt any clients that could be running */
1743 		/* e.g. clients that survived a master restart */
1744 		writeq_be(0, &ctrl_map->rht_start);
1745 		writeq_be(0, &ctrl_map->rht_cnt_id);
1746 		writeq_be(0, &ctrl_map->ctx_cap);
1747 	}
1748 
1749 	/* Copy frequently used fields into hwq */
1750 	for (i = 0; i < afu->num_hwqs; i++) {
1751 		hwq = get_hwq(afu, i);
1752 		cookie = hwq->ctx_cookie;
1753 
1754 		hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1755 		hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1756 		hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1757 
1758 		/* Program the Endian Control for the master context */
1759 		writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1760 	}
1761 }
1762 
1763 /**
1764  * init_global() - initialize AFU global registers
1765  * @cfg:	Internal structure associated with the host.
1766  */
1767 static int init_global(struct cxlflash_cfg *cfg)
1768 {
1769 	struct afu *afu = cfg->afu;
1770 	struct device *dev = &cfg->dev->dev;
1771 	struct hwq *hwq;
1772 	struct sisl_host_map __iomem *hmap;
1773 	__be64 __iomem *fc_port_regs;
1774 	u64 wwpn[MAX_FC_PORTS];	/* wwpn of AFU ports */
1775 	int i = 0, num_ports = 0;
1776 	int rc = 0;
1777 	int j;
1778 	void *ctx;
1779 	u64 reg;
1780 
1781 	rc = read_vpd(cfg, &wwpn[0]);
1782 	if (rc) {
1783 		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1784 		goto out;
1785 	}
1786 
1787 	/* Set up RRQ and SQ in HWQ for master issued cmds */
1788 	for (i = 0; i < afu->num_hwqs; i++) {
1789 		hwq = get_hwq(afu, i);
1790 		hmap = hwq->host_map;
1791 
1792 		writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1793 		writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1794 		hwq->hrrq_online = true;
1795 
1796 		if (afu_is_sq_cmd_mode(afu)) {
1797 			writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1798 			writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1799 		}
1800 	}
1801 
1802 	/* AFU configuration */
1803 	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1804 	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1805 	/* enable all auto retry options and control endianness */
1806 	/* leave others at default: */
1807 	/* CTX_CAP write protected, mbox_r does not clear on read and */
1808 	/* checker on if dual afu */
1809 	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1810 
1811 	/* Global port select: select either port */
1812 	if (afu->internal_lun) {
1813 		/* Only use port 0 */
1814 		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1815 		num_ports = 0;
1816 	} else {
1817 		writeq_be(PORT_MASK(cfg->num_fc_ports),
1818 			  &afu->afu_map->global.regs.afu_port_sel);
1819 		num_ports = cfg->num_fc_ports;
1820 	}
1821 
1822 	for (i = 0; i < num_ports; i++) {
1823 		fc_port_regs = get_fc_port_regs(cfg, i);
1824 
1825 		/* Unmask all errors (but they are still masked at AFU) */
1826 		writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1827 		/* Clear CRC error cnt & set a threshold */
1828 		(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1829 		writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1830 
1831 		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1832 		if (wwpn[i] != 0)
1833 			afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1834 		/* Programming WWPN back to back causes additional
1835 		 * offline/online transitions and a PLOGI
1836 		 */
1837 		msleep(100);
1838 	}
1839 
1840 	if (afu_is_ocxl_lisn(afu)) {
1841 		/* Set up the LISN effective address for each master */
1842 		for (i = 0; i < afu->num_hwqs; i++) {
1843 			hwq = get_hwq(afu, i);
1844 			ctx = hwq->ctx_cookie;
1845 
1846 			for (j = 0; j < hwq->num_irqs; j++) {
1847 				reg = cfg->ops->get_irq_objhndl(ctx, j);
1848 				writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
1849 			}
1850 
1851 			reg = hwq->ctx_hndl;
1852 			writeq_be(SISL_LISN_PASID(reg, reg),
1853 				  &hwq->ctrl_map->lisn_pasid[0]);
1854 			writeq_be(SISL_LISN_PASID(0UL, reg),
1855 				  &hwq->ctrl_map->lisn_pasid[1]);
1856 		}
1857 	}
1858 
1859 	/* Set up master's own CTX_CAP to allow real mode, host translation */
1860 	/* tables, afu cmds and read/write GSCSI cmds. */
1861 	/* First, unlock ctx_cap write by reading mbox */
1862 	for (i = 0; i < afu->num_hwqs; i++) {
1863 		hwq = get_hwq(afu, i);
1864 
1865 		(void)readq_be(&hwq->ctrl_map->mbox_r);	/* unlock ctx_cap */
1866 		writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1867 			SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1868 			SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1869 			&hwq->ctrl_map->ctx_cap);
1870 	}
1871 
1872 	/*
1873 	 * Determine write-same unmap support for host by evaluating the unmap
1874 	 * sector support bit of the context control register associated with
1875 	 * the primary hardware queue. Note that while this status is reflected
1876 	 * in a context register, the outcome can be assumed to be host-wide.
1877 	 */
1878 	hwq = get_hwq(afu, PRIMARY_HWQ);
1879 	reg = readq_be(&hwq->host_map->ctx_ctrl);
1880 	if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1881 		cfg->ws_unmap = true;
1882 
1883 	/* Initialize heartbeat */
1884 	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1885 out:
1886 	return rc;
1887 }
1888 
1889 /**
1890  * start_afu() - initializes and starts the AFU
1891  * @cfg:	Internal structure associated with the host.
1892  */
1893 static int start_afu(struct cxlflash_cfg *cfg)
1894 {
1895 	struct afu *afu = cfg->afu;
1896 	struct device *dev = &cfg->dev->dev;
1897 	struct hwq *hwq;
1898 	int rc = 0;
1899 	int i;
1900 
1901 	init_pcr(cfg);
1902 
1903 	/* Initialize each HWQ */
1904 	for (i = 0; i < afu->num_hwqs; i++) {
1905 		hwq = get_hwq(afu, i);
1906 
1907 		/* After an AFU reset, RRQ entries are stale, clear them */
1908 		memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1909 
1910 		/* Initialize RRQ pointers */
1911 		hwq->hrrq_start = &hwq->rrq_entry[0];
1912 		hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1913 		hwq->hrrq_curr = hwq->hrrq_start;
1914 		hwq->toggle = 1;
1915 
1916 		/* Initialize spin locks */
1917 		spin_lock_init(&hwq->hrrq_slock);
1918 		spin_lock_init(&hwq->hsq_slock);
1919 
1920 		/* Initialize SQ */
1921 		if (afu_is_sq_cmd_mode(afu)) {
1922 			memset(&hwq->sq, 0, sizeof(hwq->sq));
1923 			hwq->hsq_start = &hwq->sq[0];
1924 			hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1925 			hwq->hsq_curr = hwq->hsq_start;
1926 
1927 			atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1928 		}
1929 
1930 		/* Initialize IRQ poll */
1931 		if (afu_is_irqpoll_enabled(afu))
1932 			irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1933 				      cxlflash_irqpoll);
1934 
1935 	}
1936 
1937 	rc = init_global(cfg);
1938 
1939 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1940 	return rc;
1941 }
1942 
1943 /**
1944  * init_intr() - setup interrupt handlers for the master context
1945  * @cfg:	Internal structure associated with the host.
1946  * @hwq:	Hardware queue to initialize.
1947  *
1948  * Return: 0 on success, -errno on failure
1949  */
1950 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1951 				 struct hwq *hwq)
1952 {
1953 	struct device *dev = &cfg->dev->dev;
1954 	void *ctx = hwq->ctx_cookie;
1955 	int rc = 0;
1956 	enum undo_level level = UNDO_NOOP;
1957 	bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1958 	int num_irqs = hwq->num_irqs;
1959 
1960 	rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1961 	if (unlikely(rc)) {
1962 		dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1963 			__func__, rc);
1964 		level = UNDO_NOOP;
1965 		goto out;
1966 	}
1967 
1968 	rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1969 				   "SISL_MSI_SYNC_ERROR");
1970 	if (unlikely(rc <= 0)) {
1971 		dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1972 		level = FREE_IRQ;
1973 		goto out;
1974 	}
1975 
1976 	rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1977 				   "SISL_MSI_RRQ_UPDATED");
1978 	if (unlikely(rc <= 0)) {
1979 		dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1980 		level = UNMAP_ONE;
1981 		goto out;
1982 	}
1983 
1984 	/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1985 	if (!is_primary_hwq)
1986 		goto out;
1987 
1988 	rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1989 				   "SISL_MSI_ASYNC_ERROR");
1990 	if (unlikely(rc <= 0)) {
1991 		dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1992 		level = UNMAP_TWO;
1993 		goto out;
1994 	}
1995 out:
1996 	return level;
1997 }
1998 
1999 /**
2000  * init_mc() - create and register as the master context
2001  * @cfg:	Internal structure associated with the host.
2002  * index:	HWQ Index of the master context.
2003  *
2004  * Return: 0 on success, -errno on failure
2005  */
2006 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
2007 {
2008 	void *ctx;
2009 	struct device *dev = &cfg->dev->dev;
2010 	struct hwq *hwq = get_hwq(cfg->afu, index);
2011 	int rc = 0;
2012 	int num_irqs;
2013 	enum undo_level level;
2014 
2015 	hwq->afu = cfg->afu;
2016 	hwq->index = index;
2017 	INIT_LIST_HEAD(&hwq->pending_cmds);
2018 
2019 	if (index == PRIMARY_HWQ) {
2020 		ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
2021 		num_irqs = 3;
2022 	} else {
2023 		ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
2024 		num_irqs = 2;
2025 	}
2026 	if (IS_ERR_OR_NULL(ctx)) {
2027 		rc = -ENOMEM;
2028 		goto err1;
2029 	}
2030 
2031 	WARN_ON(hwq->ctx_cookie);
2032 	hwq->ctx_cookie = ctx;
2033 	hwq->num_irqs = num_irqs;
2034 
2035 	/* Set it up as a master with the CXL */
2036 	cfg->ops->set_master(ctx);
2037 
2038 	/* Reset AFU when initializing primary context */
2039 	if (index == PRIMARY_HWQ) {
2040 		rc = cfg->ops->afu_reset(ctx);
2041 		if (unlikely(rc)) {
2042 			dev_err(dev, "%s: AFU reset failed rc=%d\n",
2043 				      __func__, rc);
2044 			goto err1;
2045 		}
2046 	}
2047 
2048 	level = init_intr(cfg, hwq);
2049 	if (unlikely(level)) {
2050 		dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2051 		goto err2;
2052 	}
2053 
2054 	/* Finally, activate the context by starting it */
2055 	rc = cfg->ops->start_context(hwq->ctx_cookie);
2056 	if (unlikely(rc)) {
2057 		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2058 		level = UNMAP_THREE;
2059 		goto err2;
2060 	}
2061 
2062 out:
2063 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2064 	return rc;
2065 err2:
2066 	term_intr(cfg, level, index);
2067 	if (index != PRIMARY_HWQ)
2068 		cfg->ops->release_context(ctx);
2069 err1:
2070 	hwq->ctx_cookie = NULL;
2071 	goto out;
2072 }
2073 
2074 /**
2075  * get_num_afu_ports() - determines and configures the number of AFU ports
2076  * @cfg:	Internal structure associated with the host.
2077  *
2078  * This routine determines the number of AFU ports by converting the global
2079  * port selection mask. The converted value is only valid following an AFU
2080  * reset (explicit or power-on). This routine must be invoked shortly after
2081  * mapping as other routines are dependent on the number of ports during the
2082  * initialization sequence.
2083  *
2084  * To support legacy AFUs that might not have reflected an initial global
2085  * port mask (value read is 0), default to the number of ports originally
2086  * supported by the cxlflash driver (2) before hardware with other port
2087  * offerings was introduced.
2088  */
2089 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2090 {
2091 	struct afu *afu = cfg->afu;
2092 	struct device *dev = &cfg->dev->dev;
2093 	u64 port_mask;
2094 	int num_fc_ports = LEGACY_FC_PORTS;
2095 
2096 	port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2097 	if (port_mask != 0ULL)
2098 		num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2099 
2100 	dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2101 		__func__, port_mask, num_fc_ports);
2102 
2103 	cfg->num_fc_ports = num_fc_ports;
2104 	cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2105 }
2106 
2107 /**
2108  * init_afu() - setup as master context and start AFU
2109  * @cfg:	Internal structure associated with the host.
2110  *
2111  * This routine is a higher level of control for configuring the
2112  * AFU on probe and reset paths.
2113  *
2114  * Return: 0 on success, -errno on failure
2115  */
2116 static int init_afu(struct cxlflash_cfg *cfg)
2117 {
2118 	u64 reg;
2119 	int rc = 0;
2120 	struct afu *afu = cfg->afu;
2121 	struct device *dev = &cfg->dev->dev;
2122 	struct hwq *hwq;
2123 	int i;
2124 
2125 	cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2126 
2127 	mutex_init(&afu->sync_active);
2128 	afu->num_hwqs = afu->desired_hwqs;
2129 	for (i = 0; i < afu->num_hwqs; i++) {
2130 		rc = init_mc(cfg, i);
2131 		if (rc) {
2132 			dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2133 				__func__, rc, i);
2134 			goto err1;
2135 		}
2136 	}
2137 
2138 	/* Map the entire MMIO space of the AFU using the first context */
2139 	hwq = get_hwq(afu, PRIMARY_HWQ);
2140 	afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2141 	if (!afu->afu_map) {
2142 		dev_err(dev, "%s: psa_map failed\n", __func__);
2143 		rc = -ENOMEM;
2144 		goto err1;
2145 	}
2146 
2147 	/* No byte reverse on reading afu_version or string will be backwards */
2148 	reg = readq(&afu->afu_map->global.regs.afu_version);
2149 	memcpy(afu->version, &reg, sizeof(reg));
2150 	afu->interface_version =
2151 	    readq_be(&afu->afu_map->global.regs.interface_version);
2152 	if ((afu->interface_version + 1) == 0) {
2153 		dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2154 			"interface version %016llx\n", afu->version,
2155 		       afu->interface_version);
2156 		rc = -EINVAL;
2157 		goto err1;
2158 	}
2159 
2160 	if (afu_is_sq_cmd_mode(afu)) {
2161 		afu->send_cmd = send_cmd_sq;
2162 		afu->context_reset = context_reset_sq;
2163 	} else {
2164 		afu->send_cmd = send_cmd_ioarrin;
2165 		afu->context_reset = context_reset_ioarrin;
2166 	}
2167 
2168 	dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2169 		afu->version, afu->interface_version);
2170 
2171 	get_num_afu_ports(cfg);
2172 
2173 	rc = start_afu(cfg);
2174 	if (rc) {
2175 		dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2176 		goto err1;
2177 	}
2178 
2179 	afu_err_intr_init(cfg->afu);
2180 	for (i = 0; i < afu->num_hwqs; i++) {
2181 		hwq = get_hwq(afu, i);
2182 
2183 		hwq->room = readq_be(&hwq->host_map->cmd_room);
2184 	}
2185 
2186 	/* Restore the LUN mappings */
2187 	cxlflash_restore_luntable(cfg);
2188 out:
2189 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2190 	return rc;
2191 
2192 err1:
2193 	for (i = afu->num_hwqs - 1; i >= 0; i--) {
2194 		term_intr(cfg, UNMAP_THREE, i);
2195 		term_mc(cfg, i);
2196 	}
2197 	goto out;
2198 }
2199 
2200 /**
2201  * afu_reset() - resets the AFU
2202  * @cfg:	Internal structure associated with the host.
2203  *
2204  * Return: 0 on success, -errno on failure
2205  */
2206 static int afu_reset(struct cxlflash_cfg *cfg)
2207 {
2208 	struct device *dev = &cfg->dev->dev;
2209 	int rc = 0;
2210 
2211 	/* Stop the context before the reset. Since the context is
2212 	 * no longer available restart it after the reset is complete
2213 	 */
2214 	term_afu(cfg);
2215 
2216 	rc = init_afu(cfg);
2217 
2218 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2219 	return rc;
2220 }
2221 
2222 /**
2223  * drain_ioctls() - wait until all currently executing ioctls have completed
2224  * @cfg:	Internal structure associated with the host.
2225  *
2226  * Obtain write access to read/write semaphore that wraps ioctl
2227  * handling to 'drain' ioctls currently executing.
2228  */
2229 static void drain_ioctls(struct cxlflash_cfg *cfg)
2230 {
2231 	down_write(&cfg->ioctl_rwsem);
2232 	up_write(&cfg->ioctl_rwsem);
2233 }
2234 
2235 /**
2236  * cxlflash_async_reset_host() - asynchronous host reset handler
2237  * @data:	Private data provided while scheduling reset.
2238  * @cookie:	Cookie that can be used for checkpointing.
2239  */
2240 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2241 {
2242 	struct cxlflash_cfg *cfg = data;
2243 	struct device *dev = &cfg->dev->dev;
2244 	int rc = 0;
2245 
2246 	if (cfg->state != STATE_RESET) {
2247 		dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2248 			__func__, cfg->state);
2249 		goto out;
2250 	}
2251 
2252 	drain_ioctls(cfg);
2253 	cxlflash_mark_contexts_error(cfg);
2254 	rc = afu_reset(cfg);
2255 	if (rc)
2256 		cfg->state = STATE_FAILTERM;
2257 	else
2258 		cfg->state = STATE_NORMAL;
2259 	wake_up_all(&cfg->reset_waitq);
2260 
2261 out:
2262 	scsi_unblock_requests(cfg->host);
2263 }
2264 
2265 /**
2266  * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2267  * @cfg:	Internal structure associated with the host.
2268  */
2269 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2270 {
2271 	struct device *dev = &cfg->dev->dev;
2272 
2273 	if (cfg->state != STATE_NORMAL) {
2274 		dev_dbg(dev, "%s: Not performing reset state=%d\n",
2275 			__func__, cfg->state);
2276 		return;
2277 	}
2278 
2279 	cfg->state = STATE_RESET;
2280 	scsi_block_requests(cfg->host);
2281 	cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2282 						 cfg);
2283 }
2284 
2285 /**
2286  * send_afu_cmd() - builds and sends an internal AFU command
2287  * @afu:	AFU associated with the host.
2288  * @rcb:	Pre-populated IOARCB describing command to send.
2289  *
2290  * The AFU can only take one internal AFU command at a time. This limitation is
2291  * enforced by using a mutex to provide exclusive access to the AFU during the
2292  * operation. This design point requires calling threads to not be on interrupt
2293  * context due to the possibility of sleeping during concurrent AFU operations.
2294  *
2295  * The command status is optionally passed back to the caller when the caller
2296  * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2297  *
2298  * Return:
2299  *	0 on success, -errno on failure
2300  */
2301 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2302 {
2303 	struct cxlflash_cfg *cfg = afu->parent;
2304 	struct device *dev = &cfg->dev->dev;
2305 	struct afu_cmd *cmd = NULL;
2306 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2307 	ulong lock_flags;
2308 	char *buf = NULL;
2309 	int rc = 0;
2310 	int nretry = 0;
2311 
2312 	if (cfg->state != STATE_NORMAL) {
2313 		dev_dbg(dev, "%s: Sync not required state=%u\n",
2314 			__func__, cfg->state);
2315 		return 0;
2316 	}
2317 
2318 	mutex_lock(&afu->sync_active);
2319 	atomic_inc(&afu->cmds_active);
2320 	buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2321 	if (unlikely(!buf)) {
2322 		dev_err(dev, "%s: no memory for command\n", __func__);
2323 		rc = -ENOMEM;
2324 		goto out;
2325 	}
2326 
2327 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2328 
2329 retry:
2330 	memset(cmd, 0, sizeof(*cmd));
2331 	memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2332 	INIT_LIST_HEAD(&cmd->queue);
2333 	init_completion(&cmd->cevent);
2334 	cmd->parent = afu;
2335 	cmd->hwq_index = hwq->index;
2336 	cmd->rcb.ctx_id = hwq->ctx_hndl;
2337 
2338 	dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2339 		__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2340 
2341 	rc = afu->send_cmd(afu, cmd);
2342 	if (unlikely(rc)) {
2343 		rc = -ENOBUFS;
2344 		goto out;
2345 	}
2346 
2347 	rc = wait_resp(afu, cmd);
2348 	switch (rc) {
2349 	case -ETIMEDOUT:
2350 		rc = afu->context_reset(hwq);
2351 		if (rc) {
2352 			/* Delete the command from pending_cmds list */
2353 			spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
2354 			list_del(&cmd->list);
2355 			spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
2356 
2357 			cxlflash_schedule_async_reset(cfg);
2358 			break;
2359 		}
2360 		/* fall through to retry */
2361 	case -EAGAIN:
2362 		if (++nretry < 2)
2363 			goto retry;
2364 		/* fall through to exit */
2365 	default:
2366 		break;
2367 	}
2368 
2369 	if (rcb->ioasa)
2370 		*rcb->ioasa = cmd->sa;
2371 out:
2372 	atomic_dec(&afu->cmds_active);
2373 	mutex_unlock(&afu->sync_active);
2374 	kfree(buf);
2375 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2376 	return rc;
2377 }
2378 
2379 /**
2380  * cxlflash_afu_sync() - builds and sends an AFU sync command
2381  * @afu:	AFU associated with the host.
2382  * @ctx:	Identifies context requesting sync.
2383  * @res:	Identifies resource requesting sync.
2384  * @mode:	Type of sync to issue (lightweight, heavyweight, global).
2385  *
2386  * AFU sync operations are only necessary and allowed when the device is
2387  * operating normally. When not operating normally, sync requests can occur as
2388  * part of cleaning up resources associated with an adapter prior to removal.
2389  * In this scenario, these requests are simply ignored (safe due to the AFU
2390  * going away).
2391  *
2392  * Return:
2393  *	0 on success, -errno on failure
2394  */
2395 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2396 {
2397 	struct cxlflash_cfg *cfg = afu->parent;
2398 	struct device *dev = &cfg->dev->dev;
2399 	struct sisl_ioarcb rcb = { 0 };
2400 
2401 	dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2402 		__func__, afu, ctx, res, mode);
2403 
2404 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2405 	rcb.msi = SISL_MSI_RRQ_UPDATED;
2406 	rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2407 
2408 	rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2409 	rcb.cdb[1] = mode;
2410 	put_unaligned_be16(ctx, &rcb.cdb[2]);
2411 	put_unaligned_be32(res, &rcb.cdb[4]);
2412 
2413 	return send_afu_cmd(afu, &rcb);
2414 }
2415 
2416 /**
2417  * cxlflash_eh_abort_handler() - abort a SCSI command
2418  * @scp:	SCSI command to abort.
2419  *
2420  * CXL Flash devices do not support a single command abort. Reset the context
2421  * as per SISLite specification. Flush any pending commands in the hardware
2422  * queue before the reset.
2423  *
2424  * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2425  */
2426 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2427 {
2428 	int rc = FAILED;
2429 	struct Scsi_Host *host = scp->device->host;
2430 	struct cxlflash_cfg *cfg = shost_priv(host);
2431 	struct afu_cmd *cmd = sc_to_afuc(scp);
2432 	struct device *dev = &cfg->dev->dev;
2433 	struct afu *afu = cfg->afu;
2434 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2435 
2436 	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2437 		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2438 		scp->device->channel, scp->device->id, scp->device->lun,
2439 		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2440 		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2441 		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2442 		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2443 
2444 	/* When the state is not normal, another reset/reload is in progress.
2445 	 * Return failed and the mid-layer will invoke host reset handler.
2446 	 */
2447 	if (cfg->state != STATE_NORMAL) {
2448 		dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2449 			__func__, cfg->state);
2450 		goto out;
2451 	}
2452 
2453 	rc = afu->context_reset(hwq);
2454 	if (unlikely(rc))
2455 		goto out;
2456 
2457 	rc = SUCCESS;
2458 
2459 out:
2460 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2461 	return rc;
2462 }
2463 
2464 /**
2465  * cxlflash_eh_device_reset_handler() - reset a single LUN
2466  * @scp:	SCSI command to send.
2467  *
2468  * Return:
2469  *	SUCCESS as defined in scsi/scsi.h
2470  *	FAILED as defined in scsi/scsi.h
2471  */
2472 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2473 {
2474 	int rc = SUCCESS;
2475 	struct scsi_device *sdev = scp->device;
2476 	struct Scsi_Host *host = sdev->host;
2477 	struct cxlflash_cfg *cfg = shost_priv(host);
2478 	struct device *dev = &cfg->dev->dev;
2479 	int rcr = 0;
2480 
2481 	dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2482 		host->host_no, sdev->channel, sdev->id, sdev->lun);
2483 retry:
2484 	switch (cfg->state) {
2485 	case STATE_NORMAL:
2486 		rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2487 		if (unlikely(rcr))
2488 			rc = FAILED;
2489 		break;
2490 	case STATE_RESET:
2491 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2492 		goto retry;
2493 	default:
2494 		rc = FAILED;
2495 		break;
2496 	}
2497 
2498 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2499 	return rc;
2500 }
2501 
2502 /**
2503  * cxlflash_eh_host_reset_handler() - reset the host adapter
2504  * @scp:	SCSI command from stack identifying host.
2505  *
2506  * Following a reset, the state is evaluated again in case an EEH occurred
2507  * during the reset. In such a scenario, the host reset will either yield
2508  * until the EEH recovery is complete or return success or failure based
2509  * upon the current device state.
2510  *
2511  * Return:
2512  *	SUCCESS as defined in scsi/scsi.h
2513  *	FAILED as defined in scsi/scsi.h
2514  */
2515 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2516 {
2517 	int rc = SUCCESS;
2518 	int rcr = 0;
2519 	struct Scsi_Host *host = scp->device->host;
2520 	struct cxlflash_cfg *cfg = shost_priv(host);
2521 	struct device *dev = &cfg->dev->dev;
2522 
2523 	dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2524 
2525 	switch (cfg->state) {
2526 	case STATE_NORMAL:
2527 		cfg->state = STATE_RESET;
2528 		drain_ioctls(cfg);
2529 		cxlflash_mark_contexts_error(cfg);
2530 		rcr = afu_reset(cfg);
2531 		if (rcr) {
2532 			rc = FAILED;
2533 			cfg->state = STATE_FAILTERM;
2534 		} else
2535 			cfg->state = STATE_NORMAL;
2536 		wake_up_all(&cfg->reset_waitq);
2537 		ssleep(1);
2538 		/* fall through */
2539 	case STATE_RESET:
2540 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2541 		if (cfg->state == STATE_NORMAL)
2542 			break;
2543 		/* fall through */
2544 	default:
2545 		rc = FAILED;
2546 		break;
2547 	}
2548 
2549 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2550 	return rc;
2551 }
2552 
2553 /**
2554  * cxlflash_change_queue_depth() - change the queue depth for the device
2555  * @sdev:	SCSI device destined for queue depth change.
2556  * @qdepth:	Requested queue depth value to set.
2557  *
2558  * The requested queue depth is capped to the maximum supported value.
2559  *
2560  * Return: The actual queue depth set.
2561  */
2562 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2563 {
2564 
2565 	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2566 		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2567 
2568 	scsi_change_queue_depth(sdev, qdepth);
2569 	return sdev->queue_depth;
2570 }
2571 
2572 /**
2573  * cxlflash_show_port_status() - queries and presents the current port status
2574  * @port:	Desired port for status reporting.
2575  * @cfg:	Internal structure associated with the host.
2576  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2577  *
2578  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2579  */
2580 static ssize_t cxlflash_show_port_status(u32 port,
2581 					 struct cxlflash_cfg *cfg,
2582 					 char *buf)
2583 {
2584 	struct device *dev = &cfg->dev->dev;
2585 	char *disp_status;
2586 	u64 status;
2587 	__be64 __iomem *fc_port_regs;
2588 
2589 	WARN_ON(port >= MAX_FC_PORTS);
2590 
2591 	if (port >= cfg->num_fc_ports) {
2592 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2593 			__func__, port);
2594 		return -EINVAL;
2595 	}
2596 
2597 	fc_port_regs = get_fc_port_regs(cfg, port);
2598 	status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2599 	status &= FC_MTIP_STATUS_MASK;
2600 
2601 	if (status == FC_MTIP_STATUS_ONLINE)
2602 		disp_status = "online";
2603 	else if (status == FC_MTIP_STATUS_OFFLINE)
2604 		disp_status = "offline";
2605 	else
2606 		disp_status = "unknown";
2607 
2608 	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2609 }
2610 
2611 /**
2612  * port0_show() - queries and presents the current status of port 0
2613  * @dev:	Generic device associated with the host owning the port.
2614  * @attr:	Device attribute representing the port.
2615  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2616  *
2617  * Return: The size of the ASCII string returned in @buf.
2618  */
2619 static ssize_t port0_show(struct device *dev,
2620 			  struct device_attribute *attr,
2621 			  char *buf)
2622 {
2623 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2624 
2625 	return cxlflash_show_port_status(0, cfg, buf);
2626 }
2627 
2628 /**
2629  * port1_show() - queries and presents the current status of port 1
2630  * @dev:	Generic device associated with the host owning the port.
2631  * @attr:	Device attribute representing the port.
2632  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2633  *
2634  * Return: The size of the ASCII string returned in @buf.
2635  */
2636 static ssize_t port1_show(struct device *dev,
2637 			  struct device_attribute *attr,
2638 			  char *buf)
2639 {
2640 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2641 
2642 	return cxlflash_show_port_status(1, cfg, buf);
2643 }
2644 
2645 /**
2646  * port2_show() - queries and presents the current status of port 2
2647  * @dev:	Generic device associated with the host owning the port.
2648  * @attr:	Device attribute representing the port.
2649  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2650  *
2651  * Return: The size of the ASCII string returned in @buf.
2652  */
2653 static ssize_t port2_show(struct device *dev,
2654 			  struct device_attribute *attr,
2655 			  char *buf)
2656 {
2657 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2658 
2659 	return cxlflash_show_port_status(2, cfg, buf);
2660 }
2661 
2662 /**
2663  * port3_show() - queries and presents the current status of port 3
2664  * @dev:	Generic device associated with the host owning the port.
2665  * @attr:	Device attribute representing the port.
2666  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2667  *
2668  * Return: The size of the ASCII string returned in @buf.
2669  */
2670 static ssize_t port3_show(struct device *dev,
2671 			  struct device_attribute *attr,
2672 			  char *buf)
2673 {
2674 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2675 
2676 	return cxlflash_show_port_status(3, cfg, buf);
2677 }
2678 
2679 /**
2680  * lun_mode_show() - presents the current LUN mode of the host
2681  * @dev:	Generic device associated with the host.
2682  * @attr:	Device attribute representing the LUN mode.
2683  * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2684  *
2685  * Return: The size of the ASCII string returned in @buf.
2686  */
2687 static ssize_t lun_mode_show(struct device *dev,
2688 			     struct device_attribute *attr, char *buf)
2689 {
2690 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2691 	struct afu *afu = cfg->afu;
2692 
2693 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2694 }
2695 
2696 /**
2697  * lun_mode_store() - sets the LUN mode of the host
2698  * @dev:	Generic device associated with the host.
2699  * @attr:	Device attribute representing the LUN mode.
2700  * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2701  * @count:	Length of data resizing in @buf.
2702  *
2703  * The CXL Flash AFU supports a dummy LUN mode where the external
2704  * links and storage are not required. Space on the FPGA is used
2705  * to create 1 or 2 small LUNs which are presented to the system
2706  * as if they were a normal storage device. This feature is useful
2707  * during development and also provides manufacturing with a way
2708  * to test the AFU without an actual device.
2709  *
2710  * 0 = external LUN[s] (default)
2711  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2712  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2713  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2714  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2715  *
2716  * Return: The size of the ASCII string returned in @buf.
2717  */
2718 static ssize_t lun_mode_store(struct device *dev,
2719 			      struct device_attribute *attr,
2720 			      const char *buf, size_t count)
2721 {
2722 	struct Scsi_Host *shost = class_to_shost(dev);
2723 	struct cxlflash_cfg *cfg = shost_priv(shost);
2724 	struct afu *afu = cfg->afu;
2725 	int rc;
2726 	u32 lun_mode;
2727 
2728 	rc = kstrtouint(buf, 10, &lun_mode);
2729 	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2730 		afu->internal_lun = lun_mode;
2731 
2732 		/*
2733 		 * When configured for internal LUN, there is only one channel,
2734 		 * channel number 0, else there will be one less than the number
2735 		 * of fc ports for this card.
2736 		 */
2737 		if (afu->internal_lun)
2738 			shost->max_channel = 0;
2739 		else
2740 			shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2741 
2742 		afu_reset(cfg);
2743 		scsi_scan_host(cfg->host);
2744 	}
2745 
2746 	return count;
2747 }
2748 
2749 /**
2750  * ioctl_version_show() - presents the current ioctl version of the host
2751  * @dev:	Generic device associated with the host.
2752  * @attr:	Device attribute representing the ioctl version.
2753  * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2754  *
2755  * Return: The size of the ASCII string returned in @buf.
2756  */
2757 static ssize_t ioctl_version_show(struct device *dev,
2758 				  struct device_attribute *attr, char *buf)
2759 {
2760 	ssize_t bytes = 0;
2761 
2762 	bytes = scnprintf(buf, PAGE_SIZE,
2763 			  "disk: %u\n", DK_CXLFLASH_VERSION_0);
2764 	bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2765 			   "host: %u\n", HT_CXLFLASH_VERSION_0);
2766 
2767 	return bytes;
2768 }
2769 
2770 /**
2771  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2772  * @port:	Desired port for status reporting.
2773  * @cfg:	Internal structure associated with the host.
2774  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2775  *
2776  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2777  */
2778 static ssize_t cxlflash_show_port_lun_table(u32 port,
2779 					    struct cxlflash_cfg *cfg,
2780 					    char *buf)
2781 {
2782 	struct device *dev = &cfg->dev->dev;
2783 	__be64 __iomem *fc_port_luns;
2784 	int i;
2785 	ssize_t bytes = 0;
2786 
2787 	WARN_ON(port >= MAX_FC_PORTS);
2788 
2789 	if (port >= cfg->num_fc_ports) {
2790 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2791 			__func__, port);
2792 		return -EINVAL;
2793 	}
2794 
2795 	fc_port_luns = get_fc_port_luns(cfg, port);
2796 
2797 	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2798 		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2799 				   "%03d: %016llx\n",
2800 				   i, readq_be(&fc_port_luns[i]));
2801 	return bytes;
2802 }
2803 
2804 /**
2805  * port0_lun_table_show() - presents the current LUN table of port 0
2806  * @dev:	Generic device associated with the host owning the port.
2807  * @attr:	Device attribute representing the port.
2808  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2809  *
2810  * Return: The size of the ASCII string returned in @buf.
2811  */
2812 static ssize_t port0_lun_table_show(struct device *dev,
2813 				    struct device_attribute *attr,
2814 				    char *buf)
2815 {
2816 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2817 
2818 	return cxlflash_show_port_lun_table(0, cfg, buf);
2819 }
2820 
2821 /**
2822  * port1_lun_table_show() - presents the current LUN table of port 1
2823  * @dev:	Generic device associated with the host owning the port.
2824  * @attr:	Device attribute representing the port.
2825  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2826  *
2827  * Return: The size of the ASCII string returned in @buf.
2828  */
2829 static ssize_t port1_lun_table_show(struct device *dev,
2830 				    struct device_attribute *attr,
2831 				    char *buf)
2832 {
2833 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2834 
2835 	return cxlflash_show_port_lun_table(1, cfg, buf);
2836 }
2837 
2838 /**
2839  * port2_lun_table_show() - presents the current LUN table of port 2
2840  * @dev:	Generic device associated with the host owning the port.
2841  * @attr:	Device attribute representing the port.
2842  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2843  *
2844  * Return: The size of the ASCII string returned in @buf.
2845  */
2846 static ssize_t port2_lun_table_show(struct device *dev,
2847 				    struct device_attribute *attr,
2848 				    char *buf)
2849 {
2850 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2851 
2852 	return cxlflash_show_port_lun_table(2, cfg, buf);
2853 }
2854 
2855 /**
2856  * port3_lun_table_show() - presents the current LUN table of port 3
2857  * @dev:	Generic device associated with the host owning the port.
2858  * @attr:	Device attribute representing the port.
2859  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2860  *
2861  * Return: The size of the ASCII string returned in @buf.
2862  */
2863 static ssize_t port3_lun_table_show(struct device *dev,
2864 				    struct device_attribute *attr,
2865 				    char *buf)
2866 {
2867 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2868 
2869 	return cxlflash_show_port_lun_table(3, cfg, buf);
2870 }
2871 
2872 /**
2873  * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2874  * @dev:	Generic device associated with the host.
2875  * @attr:	Device attribute representing the IRQ poll weight.
2876  * @buf:	Buffer of length PAGE_SIZE to report back the current IRQ poll
2877  *		weight in ASCII.
2878  *
2879  * An IRQ poll weight of 0 indicates polling is disabled.
2880  *
2881  * Return: The size of the ASCII string returned in @buf.
2882  */
2883 static ssize_t irqpoll_weight_show(struct device *dev,
2884 				   struct device_attribute *attr, char *buf)
2885 {
2886 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2887 	struct afu *afu = cfg->afu;
2888 
2889 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2890 }
2891 
2892 /**
2893  * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2894  * @dev:	Generic device associated with the host.
2895  * @attr:	Device attribute representing the IRQ poll weight.
2896  * @buf:	Buffer of length PAGE_SIZE containing the desired IRQ poll
2897  *		weight in ASCII.
2898  * @count:	Length of data resizing in @buf.
2899  *
2900  * An IRQ poll weight of 0 indicates polling is disabled.
2901  *
2902  * Return: The size of the ASCII string returned in @buf.
2903  */
2904 static ssize_t irqpoll_weight_store(struct device *dev,
2905 				    struct device_attribute *attr,
2906 				    const char *buf, size_t count)
2907 {
2908 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2909 	struct device *cfgdev = &cfg->dev->dev;
2910 	struct afu *afu = cfg->afu;
2911 	struct hwq *hwq;
2912 	u32 weight;
2913 	int rc, i;
2914 
2915 	rc = kstrtouint(buf, 10, &weight);
2916 	if (rc)
2917 		return -EINVAL;
2918 
2919 	if (weight > 256) {
2920 		dev_info(cfgdev,
2921 			 "Invalid IRQ poll weight. It must be 256 or less.\n");
2922 		return -EINVAL;
2923 	}
2924 
2925 	if (weight == afu->irqpoll_weight) {
2926 		dev_info(cfgdev,
2927 			 "Current IRQ poll weight has the same weight.\n");
2928 		return -EINVAL;
2929 	}
2930 
2931 	if (afu_is_irqpoll_enabled(afu)) {
2932 		for (i = 0; i < afu->num_hwqs; i++) {
2933 			hwq = get_hwq(afu, i);
2934 
2935 			irq_poll_disable(&hwq->irqpoll);
2936 		}
2937 	}
2938 
2939 	afu->irqpoll_weight = weight;
2940 
2941 	if (weight > 0) {
2942 		for (i = 0; i < afu->num_hwqs; i++) {
2943 			hwq = get_hwq(afu, i);
2944 
2945 			irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2946 		}
2947 	}
2948 
2949 	return count;
2950 }
2951 
2952 /**
2953  * num_hwqs_show() - presents the number of hardware queues for the host
2954  * @dev:	Generic device associated with the host.
2955  * @attr:	Device attribute representing the number of hardware queues.
2956  * @buf:	Buffer of length PAGE_SIZE to report back the number of hardware
2957  *		queues in ASCII.
2958  *
2959  * Return: The size of the ASCII string returned in @buf.
2960  */
2961 static ssize_t num_hwqs_show(struct device *dev,
2962 			     struct device_attribute *attr, char *buf)
2963 {
2964 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2965 	struct afu *afu = cfg->afu;
2966 
2967 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2968 }
2969 
2970 /**
2971  * num_hwqs_store() - sets the number of hardware queues for the host
2972  * @dev:	Generic device associated with the host.
2973  * @attr:	Device attribute representing the number of hardware queues.
2974  * @buf:	Buffer of length PAGE_SIZE containing the number of hardware
2975  *		queues in ASCII.
2976  * @count:	Length of data resizing in @buf.
2977  *
2978  * n > 0: num_hwqs = n
2979  * n = 0: num_hwqs = num_online_cpus()
2980  * n < 0: num_online_cpus() / abs(n)
2981  *
2982  * Return: The size of the ASCII string returned in @buf.
2983  */
2984 static ssize_t num_hwqs_store(struct device *dev,
2985 			      struct device_attribute *attr,
2986 			      const char *buf, size_t count)
2987 {
2988 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2989 	struct afu *afu = cfg->afu;
2990 	int rc;
2991 	int nhwqs, num_hwqs;
2992 
2993 	rc = kstrtoint(buf, 10, &nhwqs);
2994 	if (rc)
2995 		return -EINVAL;
2996 
2997 	if (nhwqs >= 1)
2998 		num_hwqs = nhwqs;
2999 	else if (nhwqs == 0)
3000 		num_hwqs = num_online_cpus();
3001 	else
3002 		num_hwqs = num_online_cpus() / abs(nhwqs);
3003 
3004 	afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
3005 	WARN_ON_ONCE(afu->desired_hwqs == 0);
3006 
3007 retry:
3008 	switch (cfg->state) {
3009 	case STATE_NORMAL:
3010 		cfg->state = STATE_RESET;
3011 		drain_ioctls(cfg);
3012 		cxlflash_mark_contexts_error(cfg);
3013 		rc = afu_reset(cfg);
3014 		if (rc)
3015 			cfg->state = STATE_FAILTERM;
3016 		else
3017 			cfg->state = STATE_NORMAL;
3018 		wake_up_all(&cfg->reset_waitq);
3019 		break;
3020 	case STATE_RESET:
3021 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
3022 		if (cfg->state == STATE_NORMAL)
3023 			goto retry;
3024 	default:
3025 		/* Ideally should not happen */
3026 		dev_err(dev, "%s: Device is not ready, state=%d\n",
3027 			__func__, cfg->state);
3028 		break;
3029 	}
3030 
3031 	return count;
3032 }
3033 
3034 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3035 
3036 /**
3037  * hwq_mode_show() - presents the HWQ steering mode for the host
3038  * @dev:	Generic device associated with the host.
3039  * @attr:	Device attribute representing the HWQ steering mode.
3040  * @buf:	Buffer of length PAGE_SIZE to report back the HWQ steering mode
3041  *		as a character string.
3042  *
3043  * Return: The size of the ASCII string returned in @buf.
3044  */
3045 static ssize_t hwq_mode_show(struct device *dev,
3046 			     struct device_attribute *attr, char *buf)
3047 {
3048 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3049 	struct afu *afu = cfg->afu;
3050 
3051 	return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3052 }
3053 
3054 /**
3055  * hwq_mode_store() - sets the HWQ steering mode for the host
3056  * @dev:	Generic device associated with the host.
3057  * @attr:	Device attribute representing the HWQ steering mode.
3058  * @buf:	Buffer of length PAGE_SIZE containing the HWQ steering mode
3059  *		as a character string.
3060  * @count:	Length of data resizing in @buf.
3061  *
3062  * rr = Round-Robin
3063  * tag = Block MQ Tagging
3064  * cpu = CPU Affinity
3065  *
3066  * Return: The size of the ASCII string returned in @buf.
3067  */
3068 static ssize_t hwq_mode_store(struct device *dev,
3069 			      struct device_attribute *attr,
3070 			      const char *buf, size_t count)
3071 {
3072 	struct Scsi_Host *shost = class_to_shost(dev);
3073 	struct cxlflash_cfg *cfg = shost_priv(shost);
3074 	struct device *cfgdev = &cfg->dev->dev;
3075 	struct afu *afu = cfg->afu;
3076 	int i;
3077 	u32 mode = MAX_HWQ_MODE;
3078 
3079 	for (i = 0; i < MAX_HWQ_MODE; i++) {
3080 		if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3081 			mode = i;
3082 			break;
3083 		}
3084 	}
3085 
3086 	if (mode >= MAX_HWQ_MODE) {
3087 		dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3088 		return -EINVAL;
3089 	}
3090 
3091 	if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) {
3092 		dev_info(cfgdev, "SCSI-MQ is not enabled, use a different "
3093 			 "HWQ steering mode.\n");
3094 		return -EINVAL;
3095 	}
3096 
3097 	afu->hwq_mode = mode;
3098 
3099 	return count;
3100 }
3101 
3102 /**
3103  * mode_show() - presents the current mode of the device
3104  * @dev:	Generic device associated with the device.
3105  * @attr:	Device attribute representing the device mode.
3106  * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3107  *
3108  * Return: The size of the ASCII string returned in @buf.
3109  */
3110 static ssize_t mode_show(struct device *dev,
3111 			 struct device_attribute *attr, char *buf)
3112 {
3113 	struct scsi_device *sdev = to_scsi_device(dev);
3114 
3115 	return scnprintf(buf, PAGE_SIZE, "%s\n",
3116 			 sdev->hostdata ? "superpipe" : "legacy");
3117 }
3118 
3119 /*
3120  * Host attributes
3121  */
3122 static DEVICE_ATTR_RO(port0);
3123 static DEVICE_ATTR_RO(port1);
3124 static DEVICE_ATTR_RO(port2);
3125 static DEVICE_ATTR_RO(port3);
3126 static DEVICE_ATTR_RW(lun_mode);
3127 static DEVICE_ATTR_RO(ioctl_version);
3128 static DEVICE_ATTR_RO(port0_lun_table);
3129 static DEVICE_ATTR_RO(port1_lun_table);
3130 static DEVICE_ATTR_RO(port2_lun_table);
3131 static DEVICE_ATTR_RO(port3_lun_table);
3132 static DEVICE_ATTR_RW(irqpoll_weight);
3133 static DEVICE_ATTR_RW(num_hwqs);
3134 static DEVICE_ATTR_RW(hwq_mode);
3135 
3136 static struct device_attribute *cxlflash_host_attrs[] = {
3137 	&dev_attr_port0,
3138 	&dev_attr_port1,
3139 	&dev_attr_port2,
3140 	&dev_attr_port3,
3141 	&dev_attr_lun_mode,
3142 	&dev_attr_ioctl_version,
3143 	&dev_attr_port0_lun_table,
3144 	&dev_attr_port1_lun_table,
3145 	&dev_attr_port2_lun_table,
3146 	&dev_attr_port3_lun_table,
3147 	&dev_attr_irqpoll_weight,
3148 	&dev_attr_num_hwqs,
3149 	&dev_attr_hwq_mode,
3150 	NULL
3151 };
3152 
3153 /*
3154  * Device attributes
3155  */
3156 static DEVICE_ATTR_RO(mode);
3157 
3158 static struct device_attribute *cxlflash_dev_attrs[] = {
3159 	&dev_attr_mode,
3160 	NULL
3161 };
3162 
3163 /*
3164  * Host template
3165  */
3166 static struct scsi_host_template driver_template = {
3167 	.module = THIS_MODULE,
3168 	.name = CXLFLASH_ADAPTER_NAME,
3169 	.info = cxlflash_driver_info,
3170 	.ioctl = cxlflash_ioctl,
3171 	.proc_name = CXLFLASH_NAME,
3172 	.queuecommand = cxlflash_queuecommand,
3173 	.eh_abort_handler = cxlflash_eh_abort_handler,
3174 	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3175 	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3176 	.change_queue_depth = cxlflash_change_queue_depth,
3177 	.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3178 	.can_queue = CXLFLASH_MAX_CMDS,
3179 	.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3180 	.this_id = -1,
3181 	.sg_tablesize = 1,	/* No scatter gather support */
3182 	.max_sectors = CXLFLASH_MAX_SECTORS,
3183 	.use_clustering = ENABLE_CLUSTERING,
3184 	.shost_attrs = cxlflash_host_attrs,
3185 	.sdev_attrs = cxlflash_dev_attrs,
3186 };
3187 
3188 /*
3189  * Device dependent values
3190  */
3191 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3192 					CXLFLASH_WWPN_VPD_REQUIRED };
3193 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3194 					CXLFLASH_NOTIFY_SHUTDOWN };
3195 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3196 					(CXLFLASH_NOTIFY_SHUTDOWN |
3197 					CXLFLASH_OCXL_DEV) };
3198 
3199 /*
3200  * PCI device binding table
3201  */
3202 static struct pci_device_id cxlflash_pci_table[] = {
3203 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3204 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3205 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3206 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3207 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3208 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3209 	{}
3210 };
3211 
3212 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3213 
3214 /**
3215  * cxlflash_worker_thread() - work thread handler for the AFU
3216  * @work:	Work structure contained within cxlflash associated with host.
3217  *
3218  * Handles the following events:
3219  * - Link reset which cannot be performed on interrupt context due to
3220  * blocking up to a few seconds
3221  * - Rescan the host
3222  */
3223 static void cxlflash_worker_thread(struct work_struct *work)
3224 {
3225 	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3226 						work_q);
3227 	struct afu *afu = cfg->afu;
3228 	struct device *dev = &cfg->dev->dev;
3229 	__be64 __iomem *fc_port_regs;
3230 	int port;
3231 	ulong lock_flags;
3232 
3233 	/* Avoid MMIO if the device has failed */
3234 
3235 	if (cfg->state != STATE_NORMAL)
3236 		return;
3237 
3238 	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3239 
3240 	if (cfg->lr_state == LINK_RESET_REQUIRED) {
3241 		port = cfg->lr_port;
3242 		if (port < 0)
3243 			dev_err(dev, "%s: invalid port index %d\n",
3244 				__func__, port);
3245 		else {
3246 			spin_unlock_irqrestore(cfg->host->host_lock,
3247 					       lock_flags);
3248 
3249 			/* The reset can block... */
3250 			fc_port_regs = get_fc_port_regs(cfg, port);
3251 			afu_link_reset(afu, port, fc_port_regs);
3252 			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3253 		}
3254 
3255 		cfg->lr_state = LINK_RESET_COMPLETE;
3256 	}
3257 
3258 	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3259 
3260 	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3261 		scsi_scan_host(cfg->host);
3262 }
3263 
3264 /**
3265  * cxlflash_chr_open() - character device open handler
3266  * @inode:	Device inode associated with this character device.
3267  * @file:	File pointer for this device.
3268  *
3269  * Only users with admin privileges are allowed to open the character device.
3270  *
3271  * Return: 0 on success, -errno on failure
3272  */
3273 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3274 {
3275 	struct cxlflash_cfg *cfg;
3276 
3277 	if (!capable(CAP_SYS_ADMIN))
3278 		return -EACCES;
3279 
3280 	cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3281 	file->private_data = cfg;
3282 
3283 	return 0;
3284 }
3285 
3286 /**
3287  * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3288  * @cmd:        The host ioctl command to decode.
3289  *
3290  * Return: A string identifying the decoded host ioctl.
3291  */
3292 static char *decode_hioctl(int cmd)
3293 {
3294 	switch (cmd) {
3295 	case HT_CXLFLASH_LUN_PROVISION:
3296 		return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3297 	}
3298 
3299 	return "UNKNOWN";
3300 }
3301 
3302 /**
3303  * cxlflash_lun_provision() - host LUN provisioning handler
3304  * @cfg:	Internal structure associated with the host.
3305  * @arg:	Kernel copy of userspace ioctl data structure.
3306  *
3307  * Return: 0 on success, -errno on failure
3308  */
3309 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3310 				  struct ht_cxlflash_lun_provision *lunprov)
3311 {
3312 	struct afu *afu = cfg->afu;
3313 	struct device *dev = &cfg->dev->dev;
3314 	struct sisl_ioarcb rcb;
3315 	struct sisl_ioasa asa;
3316 	__be64 __iomem *fc_port_regs;
3317 	u16 port = lunprov->port;
3318 	u16 scmd = lunprov->hdr.subcmd;
3319 	u16 type;
3320 	u64 reg;
3321 	u64 size;
3322 	u64 lun_id;
3323 	int rc = 0;
3324 
3325 	if (!afu_is_lun_provision(afu)) {
3326 		rc = -ENOTSUPP;
3327 		goto out;
3328 	}
3329 
3330 	if (port >= cfg->num_fc_ports) {
3331 		rc = -EINVAL;
3332 		goto out;
3333 	}
3334 
3335 	switch (scmd) {
3336 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3337 		type = SISL_AFU_LUN_PROVISION_CREATE;
3338 		size = lunprov->size;
3339 		lun_id = 0;
3340 		break;
3341 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3342 		type = SISL_AFU_LUN_PROVISION_DELETE;
3343 		size = 0;
3344 		lun_id = lunprov->lun_id;
3345 		break;
3346 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3347 		fc_port_regs = get_fc_port_regs(cfg, port);
3348 
3349 		reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3350 		lunprov->max_num_luns = reg;
3351 		reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3352 		lunprov->cur_num_luns = reg;
3353 		reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3354 		lunprov->max_cap_port = reg;
3355 		reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3356 		lunprov->cur_cap_port = reg;
3357 
3358 		goto out;
3359 	default:
3360 		rc = -EINVAL;
3361 		goto out;
3362 	}
3363 
3364 	memset(&rcb, 0, sizeof(rcb));
3365 	memset(&asa, 0, sizeof(asa));
3366 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3367 	rcb.lun_id = lun_id;
3368 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3369 	rcb.timeout = MC_LUN_PROV_TIMEOUT;
3370 	rcb.ioasa = &asa;
3371 
3372 	rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3373 	rcb.cdb[1] = type;
3374 	rcb.cdb[2] = port;
3375 	put_unaligned_be64(size, &rcb.cdb[8]);
3376 
3377 	rc = send_afu_cmd(afu, &rcb);
3378 	if (rc) {
3379 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3380 			__func__, rc, asa.ioasc, asa.afu_extra);
3381 		goto out;
3382 	}
3383 
3384 	if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3385 		lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3386 		memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3387 	}
3388 out:
3389 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3390 	return rc;
3391 }
3392 
3393 /**
3394  * cxlflash_afu_debug() - host AFU debug handler
3395  * @cfg:	Internal structure associated with the host.
3396  * @arg:	Kernel copy of userspace ioctl data structure.
3397  *
3398  * For debug requests requiring a data buffer, always provide an aligned
3399  * (cache line) buffer to the AFU to appease any alignment requirements.
3400  *
3401  * Return: 0 on success, -errno on failure
3402  */
3403 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3404 			      struct ht_cxlflash_afu_debug *afu_dbg)
3405 {
3406 	struct afu *afu = cfg->afu;
3407 	struct device *dev = &cfg->dev->dev;
3408 	struct sisl_ioarcb rcb;
3409 	struct sisl_ioasa asa;
3410 	char *buf = NULL;
3411 	char *kbuf = NULL;
3412 	void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3413 	u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3414 	u32 ulen = afu_dbg->data_len;
3415 	bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3416 	int rc = 0;
3417 
3418 	if (!afu_is_afu_debug(afu)) {
3419 		rc = -ENOTSUPP;
3420 		goto out;
3421 	}
3422 
3423 	if (ulen) {
3424 		req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3425 
3426 		if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3427 			rc = -EINVAL;
3428 			goto out;
3429 		}
3430 
3431 		buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3432 		if (unlikely(!buf)) {
3433 			rc = -ENOMEM;
3434 			goto out;
3435 		}
3436 
3437 		kbuf = PTR_ALIGN(buf, cache_line_size());
3438 
3439 		if (is_write) {
3440 			req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3441 
3442 			if (copy_from_user(kbuf, ubuf, ulen)) {
3443 				rc = -EFAULT;
3444 				goto out;
3445 			}
3446 		}
3447 	}
3448 
3449 	memset(&rcb, 0, sizeof(rcb));
3450 	memset(&asa, 0, sizeof(asa));
3451 
3452 	rcb.req_flags = req_flags;
3453 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3454 	rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3455 	rcb.ioasa = &asa;
3456 
3457 	if (ulen) {
3458 		rcb.data_len = ulen;
3459 		rcb.data_ea = (uintptr_t)kbuf;
3460 	}
3461 
3462 	rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3463 	memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3464 	       HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3465 
3466 	rc = send_afu_cmd(afu, &rcb);
3467 	if (rc) {
3468 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3469 			__func__, rc, asa.ioasc, asa.afu_extra);
3470 		goto out;
3471 	}
3472 
3473 	if (ulen && !is_write) {
3474 		if (copy_to_user(ubuf, kbuf, ulen))
3475 			rc = -EFAULT;
3476 	}
3477 out:
3478 	kfree(buf);
3479 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3480 	return rc;
3481 }
3482 
3483 /**
3484  * cxlflash_chr_ioctl() - character device IOCTL handler
3485  * @file:	File pointer for this device.
3486  * @cmd:	IOCTL command.
3487  * @arg:	Userspace ioctl data structure.
3488  *
3489  * A read/write semaphore is used to implement a 'drain' of currently
3490  * running ioctls. The read semaphore is taken at the beginning of each
3491  * ioctl thread and released upon concluding execution. Additionally the
3492  * semaphore should be released and then reacquired in any ioctl execution
3493  * path which will wait for an event to occur that is outside the scope of
3494  * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3495  * a thread simply needs to acquire the write semaphore.
3496  *
3497  * Return: 0 on success, -errno on failure
3498  */
3499 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3500 			       unsigned long arg)
3501 {
3502 	typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3503 
3504 	struct cxlflash_cfg *cfg = file->private_data;
3505 	struct device *dev = &cfg->dev->dev;
3506 	char buf[sizeof(union cxlflash_ht_ioctls)];
3507 	void __user *uarg = (void __user *)arg;
3508 	struct ht_cxlflash_hdr *hdr;
3509 	size_t size = 0;
3510 	bool known_ioctl = false;
3511 	int idx = 0;
3512 	int rc = 0;
3513 	hioctl do_ioctl = NULL;
3514 
3515 	static const struct {
3516 		size_t size;
3517 		hioctl ioctl;
3518 	} ioctl_tbl[] = {	/* NOTE: order matters here */
3519 	{ sizeof(struct ht_cxlflash_lun_provision),
3520 		(hioctl)cxlflash_lun_provision },
3521 	{ sizeof(struct ht_cxlflash_afu_debug),
3522 		(hioctl)cxlflash_afu_debug },
3523 	};
3524 
3525 	/* Hold read semaphore so we can drain if needed */
3526 	down_read(&cfg->ioctl_rwsem);
3527 
3528 	dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3529 		__func__, cmd, idx, sizeof(ioctl_tbl));
3530 
3531 	switch (cmd) {
3532 	case HT_CXLFLASH_LUN_PROVISION:
3533 	case HT_CXLFLASH_AFU_DEBUG:
3534 		known_ioctl = true;
3535 		idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3536 		size = ioctl_tbl[idx].size;
3537 		do_ioctl = ioctl_tbl[idx].ioctl;
3538 
3539 		if (likely(do_ioctl))
3540 			break;
3541 
3542 		/* fall through */
3543 	default:
3544 		rc = -EINVAL;
3545 		goto out;
3546 	}
3547 
3548 	if (unlikely(copy_from_user(&buf, uarg, size))) {
3549 		dev_err(dev, "%s: copy_from_user() fail "
3550 			"size=%lu cmd=%d (%s) uarg=%p\n",
3551 			__func__, size, cmd, decode_hioctl(cmd), uarg);
3552 		rc = -EFAULT;
3553 		goto out;
3554 	}
3555 
3556 	hdr = (struct ht_cxlflash_hdr *)&buf;
3557 	if (hdr->version != HT_CXLFLASH_VERSION_0) {
3558 		dev_dbg(dev, "%s: Version %u not supported for %s\n",
3559 			__func__, hdr->version, decode_hioctl(cmd));
3560 		rc = -EINVAL;
3561 		goto out;
3562 	}
3563 
3564 	if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3565 		dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3566 		rc = -EINVAL;
3567 		goto out;
3568 	}
3569 
3570 	rc = do_ioctl(cfg, (void *)&buf);
3571 	if (likely(!rc))
3572 		if (unlikely(copy_to_user(uarg, &buf, size))) {
3573 			dev_err(dev, "%s: copy_to_user() fail "
3574 				"size=%lu cmd=%d (%s) uarg=%p\n",
3575 				__func__, size, cmd, decode_hioctl(cmd), uarg);
3576 			rc = -EFAULT;
3577 		}
3578 
3579 	/* fall through to exit */
3580 
3581 out:
3582 	up_read(&cfg->ioctl_rwsem);
3583 	if (unlikely(rc && known_ioctl))
3584 		dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3585 			__func__, decode_hioctl(cmd), cmd, rc);
3586 	else
3587 		dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3588 			__func__, decode_hioctl(cmd), cmd, rc);
3589 	return rc;
3590 }
3591 
3592 /*
3593  * Character device file operations
3594  */
3595 static const struct file_operations cxlflash_chr_fops = {
3596 	.owner          = THIS_MODULE,
3597 	.open           = cxlflash_chr_open,
3598 	.unlocked_ioctl	= cxlflash_chr_ioctl,
3599 	.compat_ioctl	= cxlflash_chr_ioctl,
3600 };
3601 
3602 /**
3603  * init_chrdev() - initialize the character device for the host
3604  * @cfg:	Internal structure associated with the host.
3605  *
3606  * Return: 0 on success, -errno on failure
3607  */
3608 static int init_chrdev(struct cxlflash_cfg *cfg)
3609 {
3610 	struct device *dev = &cfg->dev->dev;
3611 	struct device *char_dev;
3612 	dev_t devno;
3613 	int minor;
3614 	int rc = 0;
3615 
3616 	minor = cxlflash_get_minor();
3617 	if (unlikely(minor < 0)) {
3618 		dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3619 		rc = -ENOSPC;
3620 		goto out;
3621 	}
3622 
3623 	devno = MKDEV(cxlflash_major, minor);
3624 	cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3625 
3626 	rc = cdev_add(&cfg->cdev, devno, 1);
3627 	if (rc) {
3628 		dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3629 		goto err1;
3630 	}
3631 
3632 	char_dev = device_create(cxlflash_class, NULL, devno,
3633 				 NULL, "cxlflash%d", minor);
3634 	if (IS_ERR(char_dev)) {
3635 		rc = PTR_ERR(char_dev);
3636 		dev_err(dev, "%s: device_create failed rc=%d\n",
3637 			__func__, rc);
3638 		goto err2;
3639 	}
3640 
3641 	cfg->chardev = char_dev;
3642 out:
3643 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3644 	return rc;
3645 err2:
3646 	cdev_del(&cfg->cdev);
3647 err1:
3648 	cxlflash_put_minor(minor);
3649 	goto out;
3650 }
3651 
3652 /**
3653  * cxlflash_probe() - PCI entry point to add host
3654  * @pdev:	PCI device associated with the host.
3655  * @dev_id:	PCI device id associated with device.
3656  *
3657  * The device will initially start out in a 'probing' state and
3658  * transition to the 'normal' state at the end of a successful
3659  * probe. Should an EEH event occur during probe, the notification
3660  * thread (error_detected()) will wait until the probe handler
3661  * is nearly complete. At that time, the device will be moved to
3662  * a 'probed' state and the EEH thread woken up to drive the slot
3663  * reset and recovery (device moves to 'normal' state). Meanwhile,
3664  * the probe will be allowed to exit successfully.
3665  *
3666  * Return: 0 on success, -errno on failure
3667  */
3668 static int cxlflash_probe(struct pci_dev *pdev,
3669 			  const struct pci_device_id *dev_id)
3670 {
3671 	struct Scsi_Host *host;
3672 	struct cxlflash_cfg *cfg = NULL;
3673 	struct device *dev = &pdev->dev;
3674 	struct dev_dependent_vals *ddv;
3675 	int rc = 0;
3676 	int k;
3677 
3678 	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3679 		__func__, pdev->irq);
3680 
3681 	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3682 	driver_template.max_sectors = ddv->max_sectors;
3683 
3684 	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3685 	if (!host) {
3686 		dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3687 		rc = -ENOMEM;
3688 		goto out;
3689 	}
3690 
3691 	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3692 	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3693 	host->unique_id = host->host_no;
3694 	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3695 
3696 	cfg = shost_priv(host);
3697 	cfg->host = host;
3698 	rc = alloc_mem(cfg);
3699 	if (rc) {
3700 		dev_err(dev, "%s: alloc_mem failed\n", __func__);
3701 		rc = -ENOMEM;
3702 		scsi_host_put(cfg->host);
3703 		goto out;
3704 	}
3705 
3706 	cfg->init_state = INIT_STATE_NONE;
3707 	cfg->dev = pdev;
3708 	cfg->cxl_fops = cxlflash_cxl_fops;
3709 	cfg->ops = cxlflash_assign_ops(ddv);
3710 	WARN_ON_ONCE(!cfg->ops);
3711 
3712 	/*
3713 	 * Promoted LUNs move to the top of the LUN table. The rest stay on
3714 	 * the bottom half. The bottom half grows from the end (index = 255),
3715 	 * whereas the top half grows from the beginning (index = 0).
3716 	 *
3717 	 * Initialize the last LUN index for all possible ports.
3718 	 */
3719 	cfg->promote_lun_index = 0;
3720 
3721 	for (k = 0; k < MAX_FC_PORTS; k++)
3722 		cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3723 
3724 	cfg->dev_id = (struct pci_device_id *)dev_id;
3725 
3726 	init_waitqueue_head(&cfg->tmf_waitq);
3727 	init_waitqueue_head(&cfg->reset_waitq);
3728 
3729 	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3730 	cfg->lr_state = LINK_RESET_INVALID;
3731 	cfg->lr_port = -1;
3732 	spin_lock_init(&cfg->tmf_slock);
3733 	mutex_init(&cfg->ctx_tbl_list_mutex);
3734 	mutex_init(&cfg->ctx_recovery_mutex);
3735 	init_rwsem(&cfg->ioctl_rwsem);
3736 	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3737 	INIT_LIST_HEAD(&cfg->lluns);
3738 
3739 	pci_set_drvdata(pdev, cfg);
3740 
3741 	rc = init_pci(cfg);
3742 	if (rc) {
3743 		dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3744 		goto out_remove;
3745 	}
3746 	cfg->init_state = INIT_STATE_PCI;
3747 
3748 	cfg->afu_cookie = cfg->ops->create_afu(pdev);
3749 	if (unlikely(!cfg->afu_cookie)) {
3750 		dev_err(dev, "%s: create_afu failed\n", __func__);
3751 		goto out_remove;
3752 	}
3753 
3754 	rc = init_afu(cfg);
3755 	if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3756 		dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3757 		goto out_remove;
3758 	}
3759 	cfg->init_state = INIT_STATE_AFU;
3760 
3761 	rc = init_scsi(cfg);
3762 	if (rc) {
3763 		dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3764 		goto out_remove;
3765 	}
3766 	cfg->init_state = INIT_STATE_SCSI;
3767 
3768 	rc = init_chrdev(cfg);
3769 	if (rc) {
3770 		dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3771 		goto out_remove;
3772 	}
3773 	cfg->init_state = INIT_STATE_CDEV;
3774 
3775 	if (wq_has_sleeper(&cfg->reset_waitq)) {
3776 		cfg->state = STATE_PROBED;
3777 		wake_up_all(&cfg->reset_waitq);
3778 	} else
3779 		cfg->state = STATE_NORMAL;
3780 out:
3781 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3782 	return rc;
3783 
3784 out_remove:
3785 	cxlflash_remove(pdev);
3786 	goto out;
3787 }
3788 
3789 /**
3790  * cxlflash_pci_error_detected() - called when a PCI error is detected
3791  * @pdev:	PCI device struct.
3792  * @state:	PCI channel state.
3793  *
3794  * When an EEH occurs during an active reset, wait until the reset is
3795  * complete and then take action based upon the device state.
3796  *
3797  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3798  */
3799 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3800 						    pci_channel_state_t state)
3801 {
3802 	int rc = 0;
3803 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3804 	struct device *dev = &cfg->dev->dev;
3805 
3806 	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3807 
3808 	switch (state) {
3809 	case pci_channel_io_frozen:
3810 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3811 					     cfg->state != STATE_PROBING);
3812 		if (cfg->state == STATE_FAILTERM)
3813 			return PCI_ERS_RESULT_DISCONNECT;
3814 
3815 		cfg->state = STATE_RESET;
3816 		scsi_block_requests(cfg->host);
3817 		drain_ioctls(cfg);
3818 		rc = cxlflash_mark_contexts_error(cfg);
3819 		if (unlikely(rc))
3820 			dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3821 				__func__, rc);
3822 		term_afu(cfg);
3823 		return PCI_ERS_RESULT_NEED_RESET;
3824 	case pci_channel_io_perm_failure:
3825 		cfg->state = STATE_FAILTERM;
3826 		wake_up_all(&cfg->reset_waitq);
3827 		scsi_unblock_requests(cfg->host);
3828 		return PCI_ERS_RESULT_DISCONNECT;
3829 	default:
3830 		break;
3831 	}
3832 	return PCI_ERS_RESULT_NEED_RESET;
3833 }
3834 
3835 /**
3836  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3837  * @pdev:	PCI device struct.
3838  *
3839  * This routine is called by the pci error recovery code after the PCI
3840  * slot has been reset, just before we should resume normal operations.
3841  *
3842  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3843  */
3844 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3845 {
3846 	int rc = 0;
3847 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3848 	struct device *dev = &cfg->dev->dev;
3849 
3850 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3851 
3852 	rc = init_afu(cfg);
3853 	if (unlikely(rc)) {
3854 		dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3855 		return PCI_ERS_RESULT_DISCONNECT;
3856 	}
3857 
3858 	return PCI_ERS_RESULT_RECOVERED;
3859 }
3860 
3861 /**
3862  * cxlflash_pci_resume() - called when normal operation can resume
3863  * @pdev:	PCI device struct
3864  */
3865 static void cxlflash_pci_resume(struct pci_dev *pdev)
3866 {
3867 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3868 	struct device *dev = &cfg->dev->dev;
3869 
3870 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3871 
3872 	cfg->state = STATE_NORMAL;
3873 	wake_up_all(&cfg->reset_waitq);
3874 	scsi_unblock_requests(cfg->host);
3875 }
3876 
3877 /**
3878  * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3879  * @dev:	Character device.
3880  * @mode:	Mode that can be used to verify access.
3881  *
3882  * Return: Allocated string describing the devtmpfs structure.
3883  */
3884 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3885 {
3886 	return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3887 }
3888 
3889 /**
3890  * cxlflash_class_init() - create character device class
3891  *
3892  * Return: 0 on success, -errno on failure
3893  */
3894 static int cxlflash_class_init(void)
3895 {
3896 	dev_t devno;
3897 	int rc = 0;
3898 
3899 	rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3900 	if (unlikely(rc)) {
3901 		pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3902 		goto out;
3903 	}
3904 
3905 	cxlflash_major = MAJOR(devno);
3906 
3907 	cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3908 	if (IS_ERR(cxlflash_class)) {
3909 		rc = PTR_ERR(cxlflash_class);
3910 		pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3911 		goto err;
3912 	}
3913 
3914 	cxlflash_class->devnode = cxlflash_devnode;
3915 out:
3916 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3917 	return rc;
3918 err:
3919 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3920 	goto out;
3921 }
3922 
3923 /**
3924  * cxlflash_class_exit() - destroy character device class
3925  */
3926 static void cxlflash_class_exit(void)
3927 {
3928 	dev_t devno = MKDEV(cxlflash_major, 0);
3929 
3930 	class_destroy(cxlflash_class);
3931 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3932 }
3933 
3934 static const struct pci_error_handlers cxlflash_err_handler = {
3935 	.error_detected = cxlflash_pci_error_detected,
3936 	.slot_reset = cxlflash_pci_slot_reset,
3937 	.resume = cxlflash_pci_resume,
3938 };
3939 
3940 /*
3941  * PCI device structure
3942  */
3943 static struct pci_driver cxlflash_driver = {
3944 	.name = CXLFLASH_NAME,
3945 	.id_table = cxlflash_pci_table,
3946 	.probe = cxlflash_probe,
3947 	.remove = cxlflash_remove,
3948 	.shutdown = cxlflash_remove,
3949 	.err_handler = &cxlflash_err_handler,
3950 };
3951 
3952 /**
3953  * init_cxlflash() - module entry point
3954  *
3955  * Return: 0 on success, -errno on failure
3956  */
3957 static int __init init_cxlflash(void)
3958 {
3959 	int rc;
3960 
3961 	check_sizes();
3962 	cxlflash_list_init();
3963 	rc = cxlflash_class_init();
3964 	if (unlikely(rc))
3965 		goto out;
3966 
3967 	rc = pci_register_driver(&cxlflash_driver);
3968 	if (unlikely(rc))
3969 		goto err;
3970 out:
3971 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3972 	return rc;
3973 err:
3974 	cxlflash_class_exit();
3975 	goto out;
3976 }
3977 
3978 /**
3979  * exit_cxlflash() - module exit point
3980  */
3981 static void __exit exit_cxlflash(void)
3982 {
3983 	cxlflash_term_global_luns();
3984 	cxlflash_free_errpage();
3985 
3986 	pci_unregister_driver(&cxlflash_driver);
3987 	cxlflash_class_exit();
3988 }
3989 
3990 module_init(init_cxlflash);
3991 module_exit(exit_cxlflash);
3992