1 /* 2 * CXL Flash Device Driver 3 * 4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 6 * 7 * Copyright (C) 2015 IBM Corporation 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License 11 * as published by the Free Software Foundation; either version 12 * 2 of the License, or (at your option) any later version. 13 */ 14 15 #include <linux/delay.h> 16 #include <linux/list.h> 17 #include <linux/module.h> 18 #include <linux/pci.h> 19 20 #include <asm/unaligned.h> 21 22 #include <misc/cxl.h> 23 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_host.h> 26 #include <uapi/scsi/cxlflash_ioctl.h> 27 28 #include "main.h" 29 #include "sislite.h" 30 #include "common.h" 31 32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); 33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); 34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); 35 MODULE_LICENSE("GPL"); 36 37 static struct class *cxlflash_class; 38 static u32 cxlflash_major; 39 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 40 41 /** 42 * process_cmd_err() - command error handler 43 * @cmd: AFU command that experienced the error. 44 * @scp: SCSI command associated with the AFU command in error. 45 * 46 * Translates error bits from AFU command to SCSI command results. 47 */ 48 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) 49 { 50 struct afu *afu = cmd->parent; 51 struct cxlflash_cfg *cfg = afu->parent; 52 struct device *dev = &cfg->dev->dev; 53 struct sisl_ioarcb *ioarcb; 54 struct sisl_ioasa *ioasa; 55 u32 resid; 56 57 if (unlikely(!cmd)) 58 return; 59 60 ioarcb = &(cmd->rcb); 61 ioasa = &(cmd->sa); 62 63 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { 64 resid = ioasa->resid; 65 scsi_set_resid(scp, resid); 66 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n", 67 __func__, cmd, scp, resid); 68 } 69 70 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { 71 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n", 72 __func__, cmd, scp); 73 scp->result = (DID_ERROR << 16); 74 } 75 76 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x " 77 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__, 78 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, 79 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); 80 81 if (ioasa->rc.scsi_rc) { 82 /* We have a SCSI status */ 83 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { 84 memcpy(scp->sense_buffer, ioasa->sense_data, 85 SISL_SENSE_DATA_LEN); 86 scp->result = ioasa->rc.scsi_rc; 87 } else 88 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); 89 } 90 91 /* 92 * We encountered an error. Set scp->result based on nature 93 * of error. 94 */ 95 if (ioasa->rc.fc_rc) { 96 /* We have an FC status */ 97 switch (ioasa->rc.fc_rc) { 98 case SISL_FC_RC_LINKDOWN: 99 scp->result = (DID_REQUEUE << 16); 100 break; 101 case SISL_FC_RC_RESID: 102 /* This indicates an FCP resid underrun */ 103 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { 104 /* If the SISL_RC_FLAGS_OVERRUN flag was set, 105 * then we will handle this error else where. 106 * If not then we must handle it here. 107 * This is probably an AFU bug. 108 */ 109 scp->result = (DID_ERROR << 16); 110 } 111 break; 112 case SISL_FC_RC_RESIDERR: 113 /* Resid mismatch between adapter and device */ 114 case SISL_FC_RC_TGTABORT: 115 case SISL_FC_RC_ABORTOK: 116 case SISL_FC_RC_ABORTFAIL: 117 case SISL_FC_RC_NOLOGI: 118 case SISL_FC_RC_ABORTPEND: 119 case SISL_FC_RC_WRABORTPEND: 120 case SISL_FC_RC_NOEXP: 121 case SISL_FC_RC_INUSE: 122 scp->result = (DID_ERROR << 16); 123 break; 124 } 125 } 126 127 if (ioasa->rc.afu_rc) { 128 /* We have an AFU error */ 129 switch (ioasa->rc.afu_rc) { 130 case SISL_AFU_RC_NO_CHANNELS: 131 scp->result = (DID_NO_CONNECT << 16); 132 break; 133 case SISL_AFU_RC_DATA_DMA_ERR: 134 switch (ioasa->afu_extra) { 135 case SISL_AFU_DMA_ERR_PAGE_IN: 136 /* Retry */ 137 scp->result = (DID_IMM_RETRY << 16); 138 break; 139 case SISL_AFU_DMA_ERR_INVALID_EA: 140 default: 141 scp->result = (DID_ERROR << 16); 142 } 143 break; 144 case SISL_AFU_RC_OUT_OF_DATA_BUFS: 145 /* Retry */ 146 scp->result = (DID_ALLOC_FAILURE << 16); 147 break; 148 default: 149 scp->result = (DID_ERROR << 16); 150 } 151 } 152 } 153 154 /** 155 * cmd_complete() - command completion handler 156 * @cmd: AFU command that has completed. 157 * 158 * For SCSI commands this routine prepares and submits commands that have 159 * either completed or timed out to the SCSI stack. For internal commands 160 * (TMF or AFU), this routine simply notifies the originator that the 161 * command has completed. 162 */ 163 static void cmd_complete(struct afu_cmd *cmd) 164 { 165 struct scsi_cmnd *scp; 166 ulong lock_flags; 167 struct afu *afu = cmd->parent; 168 struct cxlflash_cfg *cfg = afu->parent; 169 struct device *dev = &cfg->dev->dev; 170 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 171 172 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 173 list_del(&cmd->list); 174 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 175 176 if (cmd->scp) { 177 scp = cmd->scp; 178 if (unlikely(cmd->sa.ioasc)) 179 process_cmd_err(cmd, scp); 180 else 181 scp->result = (DID_OK << 16); 182 183 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n", 184 __func__, scp, scp->result, cmd->sa.ioasc); 185 scp->scsi_done(scp); 186 } else if (cmd->cmd_tmf) { 187 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 188 cfg->tmf_active = false; 189 wake_up_all_locked(&cfg->tmf_waitq); 190 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 191 } else 192 complete(&cmd->cevent); 193 } 194 195 /** 196 * flush_pending_cmds() - flush all pending commands on this hardware queue 197 * @hwq: Hardware queue to flush. 198 * 199 * The hardware send queue lock associated with this hardware queue must be 200 * held when calling this routine. 201 */ 202 static void flush_pending_cmds(struct hwq *hwq) 203 { 204 struct cxlflash_cfg *cfg = hwq->afu->parent; 205 struct afu_cmd *cmd, *tmp; 206 struct scsi_cmnd *scp; 207 ulong lock_flags; 208 209 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) { 210 /* Bypass command when on a doneq, cmd_complete() will handle */ 211 if (!list_empty(&cmd->queue)) 212 continue; 213 214 list_del(&cmd->list); 215 216 if (cmd->scp) { 217 scp = cmd->scp; 218 scp->result = (DID_IMM_RETRY << 16); 219 scp->scsi_done(scp); 220 } else { 221 cmd->cmd_aborted = true; 222 223 if (cmd->cmd_tmf) { 224 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 225 cfg->tmf_active = false; 226 wake_up_all_locked(&cfg->tmf_waitq); 227 spin_unlock_irqrestore(&cfg->tmf_slock, 228 lock_flags); 229 } else 230 complete(&cmd->cevent); 231 } 232 } 233 } 234 235 /** 236 * context_reset() - reset context via specified register 237 * @hwq: Hardware queue owning the context to be reset. 238 * @reset_reg: MMIO register to perform reset. 239 * 240 * When the reset is successful, the SISLite specification guarantees that 241 * the AFU has aborted all currently pending I/O. Accordingly, these commands 242 * must be flushed. 243 * 244 * Return: 0 on success, -errno on failure 245 */ 246 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg) 247 { 248 struct cxlflash_cfg *cfg = hwq->afu->parent; 249 struct device *dev = &cfg->dev->dev; 250 int rc = -ETIMEDOUT; 251 int nretry = 0; 252 u64 val = 0x1; 253 ulong lock_flags; 254 255 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq); 256 257 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 258 259 writeq_be(val, reset_reg); 260 do { 261 val = readq_be(reset_reg); 262 if ((val & 0x1) == 0x0) { 263 rc = 0; 264 break; 265 } 266 267 /* Double delay each time */ 268 udelay(1 << nretry); 269 } while (nretry++ < MC_ROOM_RETRY_CNT); 270 271 if (!rc) 272 flush_pending_cmds(hwq); 273 274 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 275 276 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n", 277 __func__, rc, val, nretry); 278 return rc; 279 } 280 281 /** 282 * context_reset_ioarrin() - reset context via IOARRIN register 283 * @hwq: Hardware queue owning the context to be reset. 284 * 285 * Return: 0 on success, -errno on failure 286 */ 287 static int context_reset_ioarrin(struct hwq *hwq) 288 { 289 return context_reset(hwq, &hwq->host_map->ioarrin); 290 } 291 292 /** 293 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register 294 * @hwq: Hardware queue owning the context to be reset. 295 * 296 * Return: 0 on success, -errno on failure 297 */ 298 static int context_reset_sq(struct hwq *hwq) 299 { 300 return context_reset(hwq, &hwq->host_map->sq_ctx_reset); 301 } 302 303 /** 304 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register 305 * @afu: AFU associated with the host. 306 * @cmd: AFU command to send. 307 * 308 * Return: 309 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 310 */ 311 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd) 312 { 313 struct cxlflash_cfg *cfg = afu->parent; 314 struct device *dev = &cfg->dev->dev; 315 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 316 int rc = 0; 317 s64 room; 318 ulong lock_flags; 319 320 /* 321 * To avoid the performance penalty of MMIO, spread the update of 322 * 'room' over multiple commands. 323 */ 324 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 325 if (--hwq->room < 0) { 326 room = readq_be(&hwq->host_map->cmd_room); 327 if (room <= 0) { 328 dev_dbg_ratelimited(dev, "%s: no cmd_room to send " 329 "0x%02X, room=0x%016llX\n", 330 __func__, cmd->rcb.cdb[0], room); 331 hwq->room = 0; 332 rc = SCSI_MLQUEUE_HOST_BUSY; 333 goto out; 334 } 335 hwq->room = room - 1; 336 } 337 338 list_add(&cmd->list, &hwq->pending_cmds); 339 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin); 340 out: 341 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 342 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__, 343 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc); 344 return rc; 345 } 346 347 /** 348 * send_cmd_sq() - sends an AFU command via SQ ring 349 * @afu: AFU associated with the host. 350 * @cmd: AFU command to send. 351 * 352 * Return: 353 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 354 */ 355 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd) 356 { 357 struct cxlflash_cfg *cfg = afu->parent; 358 struct device *dev = &cfg->dev->dev; 359 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 360 int rc = 0; 361 int newval; 362 ulong lock_flags; 363 364 newval = atomic_dec_if_positive(&hwq->hsq_credits); 365 if (newval <= 0) { 366 rc = SCSI_MLQUEUE_HOST_BUSY; 367 goto out; 368 } 369 370 cmd->rcb.ioasa = &cmd->sa; 371 372 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 373 374 *hwq->hsq_curr = cmd->rcb; 375 if (hwq->hsq_curr < hwq->hsq_end) 376 hwq->hsq_curr++; 377 else 378 hwq->hsq_curr = hwq->hsq_start; 379 380 list_add(&cmd->list, &hwq->pending_cmds); 381 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail); 382 383 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 384 out: 385 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p " 386 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len, 387 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr, 388 readq_be(&hwq->host_map->sq_head), 389 readq_be(&hwq->host_map->sq_tail)); 390 return rc; 391 } 392 393 /** 394 * wait_resp() - polls for a response or timeout to a sent AFU command 395 * @afu: AFU associated with the host. 396 * @cmd: AFU command that was sent. 397 * 398 * Return: 0 on success, -errno on failure 399 */ 400 static int wait_resp(struct afu *afu, struct afu_cmd *cmd) 401 { 402 struct cxlflash_cfg *cfg = afu->parent; 403 struct device *dev = &cfg->dev->dev; 404 int rc = 0; 405 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); 406 407 timeout = wait_for_completion_timeout(&cmd->cevent, timeout); 408 if (!timeout) 409 rc = -ETIMEDOUT; 410 411 if (cmd->cmd_aborted) 412 rc = -EAGAIN; 413 414 if (unlikely(cmd->sa.ioasc != 0)) { 415 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n", 416 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc); 417 rc = -EIO; 418 } 419 420 return rc; 421 } 422 423 /** 424 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command 425 * @host: SCSI host associated with device. 426 * @scp: SCSI command to send. 427 * @afu: SCSI command to send. 428 * 429 * Hashes a command based upon the hardware queue mode. 430 * 431 * Return: Trusted index of target hardware queue 432 */ 433 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp, 434 struct afu *afu) 435 { 436 u32 tag; 437 u32 hwq = 0; 438 439 if (afu->num_hwqs == 1) 440 return 0; 441 442 switch (afu->hwq_mode) { 443 case HWQ_MODE_RR: 444 hwq = afu->hwq_rr_count++ % afu->num_hwqs; 445 break; 446 case HWQ_MODE_TAG: 447 tag = blk_mq_unique_tag(scp->request); 448 hwq = blk_mq_unique_tag_to_hwq(tag); 449 break; 450 case HWQ_MODE_CPU: 451 hwq = smp_processor_id() % afu->num_hwqs; 452 break; 453 default: 454 WARN_ON_ONCE(1); 455 } 456 457 return hwq; 458 } 459 460 /** 461 * send_tmf() - sends a Task Management Function (TMF) 462 * @cfg: Internal structure associated with the host. 463 * @sdev: SCSI device destined for TMF. 464 * @tmfcmd: TMF command to send. 465 * 466 * Return: 467 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure 468 */ 469 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev, 470 u64 tmfcmd) 471 { 472 struct afu *afu = cfg->afu; 473 struct afu_cmd *cmd = NULL; 474 struct device *dev = &cfg->dev->dev; 475 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 476 char *buf = NULL; 477 ulong lock_flags; 478 int rc = 0; 479 ulong to; 480 481 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 482 if (unlikely(!buf)) { 483 dev_err(dev, "%s: no memory for command\n", __func__); 484 rc = -ENOMEM; 485 goto out; 486 } 487 488 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 489 INIT_LIST_HEAD(&cmd->queue); 490 491 /* When Task Management Function is active do not send another */ 492 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 493 if (cfg->tmf_active) 494 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 495 !cfg->tmf_active, 496 cfg->tmf_slock); 497 cfg->tmf_active = true; 498 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 499 500 cmd->parent = afu; 501 cmd->cmd_tmf = true; 502 cmd->hwq_index = hwq->index; 503 504 cmd->rcb.ctx_id = hwq->ctx_hndl; 505 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 506 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel); 507 cmd->rcb.lun_id = lun_to_lunid(sdev->lun); 508 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 509 SISL_REQ_FLAGS_SUP_UNDERRUN | 510 SISL_REQ_FLAGS_TMF_CMD); 511 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); 512 513 rc = afu->send_cmd(afu, cmd); 514 if (unlikely(rc)) { 515 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 516 cfg->tmf_active = false; 517 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 518 goto out; 519 } 520 521 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 522 to = msecs_to_jiffies(5000); 523 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, 524 !cfg->tmf_active, 525 cfg->tmf_slock, 526 to); 527 if (!to) { 528 dev_err(dev, "%s: TMF timed out\n", __func__); 529 rc = -ETIMEDOUT; 530 } else if (cmd->cmd_aborted) { 531 dev_err(dev, "%s: TMF aborted\n", __func__); 532 rc = -EAGAIN; 533 } else if (cmd->sa.ioasc) { 534 dev_err(dev, "%s: TMF failed ioasc=%08x\n", 535 __func__, cmd->sa.ioasc); 536 rc = -EIO; 537 } 538 cfg->tmf_active = false; 539 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 540 out: 541 kfree(buf); 542 return rc; 543 } 544 545 /** 546 * cxlflash_driver_info() - information handler for this host driver 547 * @host: SCSI host associated with device. 548 * 549 * Return: A string describing the device. 550 */ 551 static const char *cxlflash_driver_info(struct Scsi_Host *host) 552 { 553 return CXLFLASH_ADAPTER_NAME; 554 } 555 556 /** 557 * cxlflash_queuecommand() - sends a mid-layer request 558 * @host: SCSI host associated with device. 559 * @scp: SCSI command to send. 560 * 561 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 562 */ 563 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) 564 { 565 struct cxlflash_cfg *cfg = shost_priv(host); 566 struct afu *afu = cfg->afu; 567 struct device *dev = &cfg->dev->dev; 568 struct afu_cmd *cmd = sc_to_afuci(scp); 569 struct scatterlist *sg = scsi_sglist(scp); 570 int hwq_index = cmd_to_target_hwq(host, scp, afu); 571 struct hwq *hwq = get_hwq(afu, hwq_index); 572 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN; 573 ulong lock_flags; 574 int rc = 0; 575 576 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " 577 "cdb=(%08x-%08x-%08x-%08x)\n", 578 __func__, scp, host->host_no, scp->device->channel, 579 scp->device->id, scp->device->lun, 580 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 581 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 582 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 583 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 584 585 /* 586 * If a Task Management Function is active, wait for it to complete 587 * before continuing with regular commands. 588 */ 589 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 590 if (cfg->tmf_active) { 591 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 592 rc = SCSI_MLQUEUE_HOST_BUSY; 593 goto out; 594 } 595 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 596 597 switch (cfg->state) { 598 case STATE_PROBING: 599 case STATE_PROBED: 600 case STATE_RESET: 601 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__); 602 rc = SCSI_MLQUEUE_HOST_BUSY; 603 goto out; 604 case STATE_FAILTERM: 605 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__); 606 scp->result = (DID_NO_CONNECT << 16); 607 scp->scsi_done(scp); 608 rc = 0; 609 goto out; 610 default: 611 break; 612 } 613 614 if (likely(sg)) { 615 cmd->rcb.data_len = sg->length; 616 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg); 617 } 618 619 cmd->scp = scp; 620 cmd->parent = afu; 621 cmd->hwq_index = hwq_index; 622 623 cmd->rcb.ctx_id = hwq->ctx_hndl; 624 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 625 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel); 626 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 627 628 if (scp->sc_data_direction == DMA_TO_DEVICE) 629 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 630 631 cmd->rcb.req_flags = req_flags; 632 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); 633 634 rc = afu->send_cmd(afu, cmd); 635 out: 636 return rc; 637 } 638 639 /** 640 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe 641 * @cfg: Internal structure associated with the host. 642 */ 643 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) 644 { 645 struct pci_dev *pdev = cfg->dev; 646 647 if (pci_channel_offline(pdev)) 648 wait_event_timeout(cfg->reset_waitq, 649 !pci_channel_offline(pdev), 650 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); 651 } 652 653 /** 654 * free_mem() - free memory associated with the AFU 655 * @cfg: Internal structure associated with the host. 656 */ 657 static void free_mem(struct cxlflash_cfg *cfg) 658 { 659 struct afu *afu = cfg->afu; 660 661 if (cfg->afu) { 662 free_pages((ulong)afu, get_order(sizeof(struct afu))); 663 cfg->afu = NULL; 664 } 665 } 666 667 /** 668 * cxlflash_reset_sync() - synchronizing point for asynchronous resets 669 * @cfg: Internal structure associated with the host. 670 */ 671 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg) 672 { 673 if (cfg->async_reset_cookie == 0) 674 return; 675 676 /* Wait until all async calls prior to this cookie have completed */ 677 async_synchronize_cookie(cfg->async_reset_cookie + 1); 678 cfg->async_reset_cookie = 0; 679 } 680 681 /** 682 * stop_afu() - stops the AFU command timers and unmaps the MMIO space 683 * @cfg: Internal structure associated with the host. 684 * 685 * Safe to call with AFU in a partially allocated/initialized state. 686 * 687 * Cancels scheduled worker threads, waits for any active internal AFU 688 * commands to timeout, disables IRQ polling and then unmaps the MMIO space. 689 */ 690 static void stop_afu(struct cxlflash_cfg *cfg) 691 { 692 struct afu *afu = cfg->afu; 693 struct hwq *hwq; 694 int i; 695 696 cancel_work_sync(&cfg->work_q); 697 if (!current_is_async()) 698 cxlflash_reset_sync(cfg); 699 700 if (likely(afu)) { 701 while (atomic_read(&afu->cmds_active)) 702 ssleep(1); 703 704 if (afu_is_irqpoll_enabled(afu)) { 705 for (i = 0; i < afu->num_hwqs; i++) { 706 hwq = get_hwq(afu, i); 707 708 irq_poll_disable(&hwq->irqpoll); 709 } 710 } 711 712 if (likely(afu->afu_map)) { 713 cxl_psa_unmap((void __iomem *)afu->afu_map); 714 afu->afu_map = NULL; 715 } 716 } 717 } 718 719 /** 720 * term_intr() - disables all AFU interrupts 721 * @cfg: Internal structure associated with the host. 722 * @level: Depth of allocation, where to begin waterfall tear down. 723 * @index: Index of the hardware queue. 724 * 725 * Safe to call with AFU/MC in partially allocated/initialized state. 726 */ 727 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level, 728 u32 index) 729 { 730 struct afu *afu = cfg->afu; 731 struct device *dev = &cfg->dev->dev; 732 struct hwq *hwq; 733 734 if (!afu) { 735 dev_err(dev, "%s: returning with NULL afu\n", __func__); 736 return; 737 } 738 739 hwq = get_hwq(afu, index); 740 741 if (!hwq->ctx) { 742 dev_err(dev, "%s: returning with NULL MC\n", __func__); 743 return; 744 } 745 746 switch (level) { 747 case UNMAP_THREE: 748 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 749 if (index == PRIMARY_HWQ) 750 cxl_unmap_afu_irq(hwq->ctx, 3, hwq); 751 case UNMAP_TWO: 752 cxl_unmap_afu_irq(hwq->ctx, 2, hwq); 753 case UNMAP_ONE: 754 cxl_unmap_afu_irq(hwq->ctx, 1, hwq); 755 case FREE_IRQ: 756 cxl_free_afu_irqs(hwq->ctx); 757 /* fall through */ 758 case UNDO_NOOP: 759 /* No action required */ 760 break; 761 } 762 } 763 764 /** 765 * term_mc() - terminates the master context 766 * @cfg: Internal structure associated with the host. 767 * @index: Index of the hardware queue. 768 * 769 * Safe to call with AFU/MC in partially allocated/initialized state. 770 */ 771 static void term_mc(struct cxlflash_cfg *cfg, u32 index) 772 { 773 struct afu *afu = cfg->afu; 774 struct device *dev = &cfg->dev->dev; 775 struct hwq *hwq; 776 ulong lock_flags; 777 778 if (!afu) { 779 dev_err(dev, "%s: returning with NULL afu\n", __func__); 780 return; 781 } 782 783 hwq = get_hwq(afu, index); 784 785 if (!hwq->ctx) { 786 dev_err(dev, "%s: returning with NULL MC\n", __func__); 787 return; 788 } 789 790 WARN_ON(cxl_stop_context(hwq->ctx)); 791 if (index != PRIMARY_HWQ) 792 WARN_ON(cxl_release_context(hwq->ctx)); 793 hwq->ctx = NULL; 794 795 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 796 flush_pending_cmds(hwq); 797 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 798 } 799 800 /** 801 * term_afu() - terminates the AFU 802 * @cfg: Internal structure associated with the host. 803 * 804 * Safe to call with AFU/MC in partially allocated/initialized state. 805 */ 806 static void term_afu(struct cxlflash_cfg *cfg) 807 { 808 struct device *dev = &cfg->dev->dev; 809 int k; 810 811 /* 812 * Tear down is carefully orchestrated to ensure 813 * no interrupts can come in when the problem state 814 * area is unmapped. 815 * 816 * 1) Disable all AFU interrupts for each master 817 * 2) Unmap the problem state area 818 * 3) Stop each master context 819 */ 820 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 821 term_intr(cfg, UNMAP_THREE, k); 822 823 if (cfg->afu) 824 stop_afu(cfg); 825 826 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 827 term_mc(cfg, k); 828 829 dev_dbg(dev, "%s: returning\n", __func__); 830 } 831 832 /** 833 * notify_shutdown() - notifies device of pending shutdown 834 * @cfg: Internal structure associated with the host. 835 * @wait: Whether to wait for shutdown processing to complete. 836 * 837 * This function will notify the AFU that the adapter is being shutdown 838 * and will wait for shutdown processing to complete if wait is true. 839 * This notification should flush pending I/Os to the device and halt 840 * further I/Os until the next AFU reset is issued and device restarted. 841 */ 842 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) 843 { 844 struct afu *afu = cfg->afu; 845 struct device *dev = &cfg->dev->dev; 846 struct dev_dependent_vals *ddv; 847 __be64 __iomem *fc_port_regs; 848 u64 reg, status; 849 int i, retry_cnt = 0; 850 851 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; 852 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) 853 return; 854 855 if (!afu || !afu->afu_map) { 856 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__); 857 return; 858 } 859 860 /* Notify AFU */ 861 for (i = 0; i < cfg->num_fc_ports; i++) { 862 fc_port_regs = get_fc_port_regs(cfg, i); 863 864 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 865 reg |= SISL_FC_SHUTDOWN_NORMAL; 866 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 867 } 868 869 if (!wait) 870 return; 871 872 /* Wait up to 1.5 seconds for shutdown processing to complete */ 873 for (i = 0; i < cfg->num_fc_ports; i++) { 874 fc_port_regs = get_fc_port_regs(cfg, i); 875 retry_cnt = 0; 876 877 while (true) { 878 status = readq_be(&fc_port_regs[FC_STATUS / 8]); 879 if (status & SISL_STATUS_SHUTDOWN_COMPLETE) 880 break; 881 if (++retry_cnt >= MC_RETRY_CNT) { 882 dev_dbg(dev, "%s: port %d shutdown processing " 883 "not yet completed\n", __func__, i); 884 break; 885 } 886 msleep(100 * retry_cnt); 887 } 888 } 889 } 890 891 /** 892 * cxlflash_get_minor() - gets the first available minor number 893 * 894 * Return: Unique minor number that can be used to create the character device. 895 */ 896 static int cxlflash_get_minor(void) 897 { 898 int minor; 899 long bit; 900 901 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 902 if (bit >= CXLFLASH_MAX_ADAPTERS) 903 return -1; 904 905 minor = bit & MINORMASK; 906 set_bit(minor, cxlflash_minor); 907 return minor; 908 } 909 910 /** 911 * cxlflash_put_minor() - releases the minor number 912 * @minor: Minor number that is no longer needed. 913 */ 914 static void cxlflash_put_minor(int minor) 915 { 916 clear_bit(minor, cxlflash_minor); 917 } 918 919 /** 920 * cxlflash_release_chrdev() - release the character device for the host 921 * @cfg: Internal structure associated with the host. 922 */ 923 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg) 924 { 925 device_unregister(cfg->chardev); 926 cfg->chardev = NULL; 927 cdev_del(&cfg->cdev); 928 cxlflash_put_minor(MINOR(cfg->cdev.dev)); 929 } 930 931 /** 932 * cxlflash_remove() - PCI entry point to tear down host 933 * @pdev: PCI device associated with the host. 934 * 935 * Safe to use as a cleanup in partially allocated/initialized state. Note that 936 * the reset_waitq is flushed as part of the stop/termination of user contexts. 937 */ 938 static void cxlflash_remove(struct pci_dev *pdev) 939 { 940 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 941 struct device *dev = &pdev->dev; 942 ulong lock_flags; 943 944 if (!pci_is_enabled(pdev)) { 945 dev_dbg(dev, "%s: Device is disabled\n", __func__); 946 return; 947 } 948 949 /* If a Task Management Function is active, wait for it to complete 950 * before continuing with remove. 951 */ 952 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 953 if (cfg->tmf_active) 954 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 955 !cfg->tmf_active, 956 cfg->tmf_slock); 957 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 958 959 /* Notify AFU and wait for shutdown processing to complete */ 960 notify_shutdown(cfg, true); 961 962 cfg->state = STATE_FAILTERM; 963 cxlflash_stop_term_user_contexts(cfg); 964 965 switch (cfg->init_state) { 966 case INIT_STATE_CDEV: 967 cxlflash_release_chrdev(cfg); 968 case INIT_STATE_SCSI: 969 cxlflash_term_local_luns(cfg); 970 scsi_remove_host(cfg->host); 971 case INIT_STATE_AFU: 972 term_afu(cfg); 973 case INIT_STATE_PCI: 974 pci_disable_device(pdev); 975 case INIT_STATE_NONE: 976 free_mem(cfg); 977 scsi_host_put(cfg->host); 978 break; 979 } 980 981 dev_dbg(dev, "%s: returning\n", __func__); 982 } 983 984 /** 985 * alloc_mem() - allocates the AFU and its command pool 986 * @cfg: Internal structure associated with the host. 987 * 988 * A partially allocated state remains on failure. 989 * 990 * Return: 991 * 0 on success 992 * -ENOMEM on failure to allocate memory 993 */ 994 static int alloc_mem(struct cxlflash_cfg *cfg) 995 { 996 int rc = 0; 997 struct device *dev = &cfg->dev->dev; 998 999 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */ 1000 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1001 get_order(sizeof(struct afu))); 1002 if (unlikely(!cfg->afu)) { 1003 dev_err(dev, "%s: cannot get %d free pages\n", 1004 __func__, get_order(sizeof(struct afu))); 1005 rc = -ENOMEM; 1006 goto out; 1007 } 1008 cfg->afu->parent = cfg; 1009 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS; 1010 cfg->afu->afu_map = NULL; 1011 out: 1012 return rc; 1013 } 1014 1015 /** 1016 * init_pci() - initializes the host as a PCI device 1017 * @cfg: Internal structure associated with the host. 1018 * 1019 * Return: 0 on success, -errno on failure 1020 */ 1021 static int init_pci(struct cxlflash_cfg *cfg) 1022 { 1023 struct pci_dev *pdev = cfg->dev; 1024 struct device *dev = &cfg->dev->dev; 1025 int rc = 0; 1026 1027 rc = pci_enable_device(pdev); 1028 if (rc || pci_channel_offline(pdev)) { 1029 if (pci_channel_offline(pdev)) { 1030 cxlflash_wait_for_pci_err_recovery(cfg); 1031 rc = pci_enable_device(pdev); 1032 } 1033 1034 if (rc) { 1035 dev_err(dev, "%s: Cannot enable adapter\n", __func__); 1036 cxlflash_wait_for_pci_err_recovery(cfg); 1037 goto out; 1038 } 1039 } 1040 1041 out: 1042 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1043 return rc; 1044 } 1045 1046 /** 1047 * init_scsi() - adds the host to the SCSI stack and kicks off host scan 1048 * @cfg: Internal structure associated with the host. 1049 * 1050 * Return: 0 on success, -errno on failure 1051 */ 1052 static int init_scsi(struct cxlflash_cfg *cfg) 1053 { 1054 struct pci_dev *pdev = cfg->dev; 1055 struct device *dev = &cfg->dev->dev; 1056 int rc = 0; 1057 1058 rc = scsi_add_host(cfg->host, &pdev->dev); 1059 if (rc) { 1060 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc); 1061 goto out; 1062 } 1063 1064 scsi_scan_host(cfg->host); 1065 1066 out: 1067 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1068 return rc; 1069 } 1070 1071 /** 1072 * set_port_online() - transitions the specified host FC port to online state 1073 * @fc_regs: Top of MMIO region defined for specified port. 1074 * 1075 * The provided MMIO region must be mapped prior to call. Online state means 1076 * that the FC link layer has synced, completed the handshaking process, and 1077 * is ready for login to start. 1078 */ 1079 static void set_port_online(__be64 __iomem *fc_regs) 1080 { 1081 u64 cmdcfg; 1082 1083 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1084 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ 1085 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ 1086 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1087 } 1088 1089 /** 1090 * set_port_offline() - transitions the specified host FC port to offline state 1091 * @fc_regs: Top of MMIO region defined for specified port. 1092 * 1093 * The provided MMIO region must be mapped prior to call. 1094 */ 1095 static void set_port_offline(__be64 __iomem *fc_regs) 1096 { 1097 u64 cmdcfg; 1098 1099 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1100 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ 1101 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ 1102 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1103 } 1104 1105 /** 1106 * wait_port_online() - waits for the specified host FC port come online 1107 * @fc_regs: Top of MMIO region defined for specified port. 1108 * @delay_us: Number of microseconds to delay between reading port status. 1109 * @nretry: Number of cycles to retry reading port status. 1110 * 1111 * The provided MMIO region must be mapped prior to call. This will timeout 1112 * when the cable is not plugged in. 1113 * 1114 * Return: 1115 * TRUE (1) when the specified port is online 1116 * FALSE (0) when the specified port fails to come online after timeout 1117 */ 1118 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1119 { 1120 u64 status; 1121 1122 WARN_ON(delay_us < 1000); 1123 1124 do { 1125 msleep(delay_us / 1000); 1126 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1127 if (status == U64_MAX) 1128 nretry /= 2; 1129 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && 1130 nretry--); 1131 1132 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); 1133 } 1134 1135 /** 1136 * wait_port_offline() - waits for the specified host FC port go offline 1137 * @fc_regs: Top of MMIO region defined for specified port. 1138 * @delay_us: Number of microseconds to delay between reading port status. 1139 * @nretry: Number of cycles to retry reading port status. 1140 * 1141 * The provided MMIO region must be mapped prior to call. 1142 * 1143 * Return: 1144 * TRUE (1) when the specified port is offline 1145 * FALSE (0) when the specified port fails to go offline after timeout 1146 */ 1147 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1148 { 1149 u64 status; 1150 1151 WARN_ON(delay_us < 1000); 1152 1153 do { 1154 msleep(delay_us / 1000); 1155 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1156 if (status == U64_MAX) 1157 nretry /= 2; 1158 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && 1159 nretry--); 1160 1161 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); 1162 } 1163 1164 /** 1165 * afu_set_wwpn() - configures the WWPN for the specified host FC port 1166 * @afu: AFU associated with the host that owns the specified FC port. 1167 * @port: Port number being configured. 1168 * @fc_regs: Top of MMIO region defined for specified port. 1169 * @wwpn: The world-wide-port-number previously discovered for port. 1170 * 1171 * The provided MMIO region must be mapped prior to call. As part of the 1172 * sequence to configure the WWPN, the port is toggled offline and then back 1173 * online. This toggling action can cause this routine to delay up to a few 1174 * seconds. When configured to use the internal LUN feature of the AFU, a 1175 * failure to come online is overridden. 1176 */ 1177 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, 1178 u64 wwpn) 1179 { 1180 struct cxlflash_cfg *cfg = afu->parent; 1181 struct device *dev = &cfg->dev->dev; 1182 1183 set_port_offline(fc_regs); 1184 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1185 FC_PORT_STATUS_RETRY_CNT)) { 1186 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n", 1187 __func__, port); 1188 } 1189 1190 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); 1191 1192 set_port_online(fc_regs); 1193 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1194 FC_PORT_STATUS_RETRY_CNT)) { 1195 dev_dbg(dev, "%s: wait on port %d to go online timed out\n", 1196 __func__, port); 1197 } 1198 } 1199 1200 /** 1201 * afu_link_reset() - resets the specified host FC port 1202 * @afu: AFU associated with the host that owns the specified FC port. 1203 * @port: Port number being configured. 1204 * @fc_regs: Top of MMIO region defined for specified port. 1205 * 1206 * The provided MMIO region must be mapped prior to call. The sequence to 1207 * reset the port involves toggling it offline and then back online. This 1208 * action can cause this routine to delay up to a few seconds. An effort 1209 * is made to maintain link with the device by switching to host to use 1210 * the alternate port exclusively while the reset takes place. 1211 * failure to come online is overridden. 1212 */ 1213 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) 1214 { 1215 struct cxlflash_cfg *cfg = afu->parent; 1216 struct device *dev = &cfg->dev->dev; 1217 u64 port_sel; 1218 1219 /* first switch the AFU to the other links, if any */ 1220 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); 1221 port_sel &= ~(1ULL << port); 1222 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1223 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1224 1225 set_port_offline(fc_regs); 1226 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1227 FC_PORT_STATUS_RETRY_CNT)) 1228 dev_err(dev, "%s: wait on port %d to go offline timed out\n", 1229 __func__, port); 1230 1231 set_port_online(fc_regs); 1232 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1233 FC_PORT_STATUS_RETRY_CNT)) 1234 dev_err(dev, "%s: wait on port %d to go online timed out\n", 1235 __func__, port); 1236 1237 /* switch back to include this port */ 1238 port_sel |= (1ULL << port); 1239 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1240 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1241 1242 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel); 1243 } 1244 1245 /** 1246 * afu_err_intr_init() - clears and initializes the AFU for error interrupts 1247 * @afu: AFU associated with the host. 1248 */ 1249 static void afu_err_intr_init(struct afu *afu) 1250 { 1251 struct cxlflash_cfg *cfg = afu->parent; 1252 __be64 __iomem *fc_port_regs; 1253 int i; 1254 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 1255 u64 reg; 1256 1257 /* global async interrupts: AFU clears afu_ctrl on context exit 1258 * if async interrupts were sent to that context. This prevents 1259 * the AFU form sending further async interrupts when 1260 * there is 1261 * nobody to receive them. 1262 */ 1263 1264 /* mask all */ 1265 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); 1266 /* set LISN# to send and point to primary master context */ 1267 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); 1268 1269 if (afu->internal_lun) 1270 reg |= 1; /* Bit 63 indicates local lun */ 1271 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); 1272 /* clear all */ 1273 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1274 /* unmask bits that are of interest */ 1275 /* note: afu can send an interrupt after this step */ 1276 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); 1277 /* clear again in case a bit came on after previous clear but before */ 1278 /* unmask */ 1279 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1280 1281 /* Clear/Set internal lun bits */ 1282 fc_port_regs = get_fc_port_regs(cfg, 0); 1283 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 1284 reg &= SISL_FC_INTERNAL_MASK; 1285 if (afu->internal_lun) 1286 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); 1287 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 1288 1289 /* now clear FC errors */ 1290 for (i = 0; i < cfg->num_fc_ports; i++) { 1291 fc_port_regs = get_fc_port_regs(cfg, i); 1292 1293 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]); 1294 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1295 } 1296 1297 /* sync interrupts for master's IOARRIN write */ 1298 /* note that unlike asyncs, there can be no pending sync interrupts */ 1299 /* at this time (this is a fresh context and master has not written */ 1300 /* IOARRIN yet), so there is nothing to clear. */ 1301 1302 /* set LISN#, it is always sent to the context that wrote IOARRIN */ 1303 for (i = 0; i < afu->num_hwqs; i++) { 1304 hwq = get_hwq(afu, i); 1305 1306 writeq_be(SISL_MSI_SYNC_ERROR, &hwq->host_map->ctx_ctrl); 1307 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask); 1308 } 1309 } 1310 1311 /** 1312 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors 1313 * @irq: Interrupt number. 1314 * @data: Private data provided at interrupt registration, the AFU. 1315 * 1316 * Return: Always return IRQ_HANDLED. 1317 */ 1318 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) 1319 { 1320 struct hwq *hwq = (struct hwq *)data; 1321 struct cxlflash_cfg *cfg = hwq->afu->parent; 1322 struct device *dev = &cfg->dev->dev; 1323 u64 reg; 1324 u64 reg_unmasked; 1325 1326 reg = readq_be(&hwq->host_map->intr_status); 1327 reg_unmasked = (reg & SISL_ISTATUS_UNMASK); 1328 1329 if (reg_unmasked == 0UL) { 1330 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n", 1331 __func__, reg); 1332 goto cxlflash_sync_err_irq_exit; 1333 } 1334 1335 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n", 1336 __func__, reg); 1337 1338 writeq_be(reg_unmasked, &hwq->host_map->intr_clear); 1339 1340 cxlflash_sync_err_irq_exit: 1341 return IRQ_HANDLED; 1342 } 1343 1344 /** 1345 * process_hrrq() - process the read-response queue 1346 * @afu: AFU associated with the host. 1347 * @doneq: Queue of commands harvested from the RRQ. 1348 * @budget: Threshold of RRQ entries to process. 1349 * 1350 * This routine must be called holding the disabled RRQ spin lock. 1351 * 1352 * Return: The number of entries processed. 1353 */ 1354 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget) 1355 { 1356 struct afu *afu = hwq->afu; 1357 struct afu_cmd *cmd; 1358 struct sisl_ioasa *ioasa; 1359 struct sisl_ioarcb *ioarcb; 1360 bool toggle = hwq->toggle; 1361 int num_hrrq = 0; 1362 u64 entry, 1363 *hrrq_start = hwq->hrrq_start, 1364 *hrrq_end = hwq->hrrq_end, 1365 *hrrq_curr = hwq->hrrq_curr; 1366 1367 /* Process ready RRQ entries up to the specified budget (if any) */ 1368 while (true) { 1369 entry = *hrrq_curr; 1370 1371 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) 1372 break; 1373 1374 entry &= ~SISL_RESP_HANDLE_T_BIT; 1375 1376 if (afu_is_sq_cmd_mode(afu)) { 1377 ioasa = (struct sisl_ioasa *)entry; 1378 cmd = container_of(ioasa, struct afu_cmd, sa); 1379 } else { 1380 ioarcb = (struct sisl_ioarcb *)entry; 1381 cmd = container_of(ioarcb, struct afu_cmd, rcb); 1382 } 1383 1384 list_add_tail(&cmd->queue, doneq); 1385 1386 /* Advance to next entry or wrap and flip the toggle bit */ 1387 if (hrrq_curr < hrrq_end) 1388 hrrq_curr++; 1389 else { 1390 hrrq_curr = hrrq_start; 1391 toggle ^= SISL_RESP_HANDLE_T_BIT; 1392 } 1393 1394 atomic_inc(&hwq->hsq_credits); 1395 num_hrrq++; 1396 1397 if (budget > 0 && num_hrrq >= budget) 1398 break; 1399 } 1400 1401 hwq->hrrq_curr = hrrq_curr; 1402 hwq->toggle = toggle; 1403 1404 return num_hrrq; 1405 } 1406 1407 /** 1408 * process_cmd_doneq() - process a queue of harvested RRQ commands 1409 * @doneq: Queue of completed commands. 1410 * 1411 * Note that upon return the queue can no longer be trusted. 1412 */ 1413 static void process_cmd_doneq(struct list_head *doneq) 1414 { 1415 struct afu_cmd *cmd, *tmp; 1416 1417 WARN_ON(list_empty(doneq)); 1418 1419 list_for_each_entry_safe(cmd, tmp, doneq, queue) 1420 cmd_complete(cmd); 1421 } 1422 1423 /** 1424 * cxlflash_irqpoll() - process a queue of harvested RRQ commands 1425 * @irqpoll: IRQ poll structure associated with queue to poll. 1426 * @budget: Threshold of RRQ entries to process per poll. 1427 * 1428 * Return: The number of entries processed. 1429 */ 1430 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget) 1431 { 1432 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll); 1433 unsigned long hrrq_flags; 1434 LIST_HEAD(doneq); 1435 int num_entries = 0; 1436 1437 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1438 1439 num_entries = process_hrrq(hwq, &doneq, budget); 1440 if (num_entries < budget) 1441 irq_poll_complete(irqpoll); 1442 1443 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1444 1445 process_cmd_doneq(&doneq); 1446 return num_entries; 1447 } 1448 1449 /** 1450 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) 1451 * @irq: Interrupt number. 1452 * @data: Private data provided at interrupt registration, the AFU. 1453 * 1454 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found. 1455 */ 1456 static irqreturn_t cxlflash_rrq_irq(int irq, void *data) 1457 { 1458 struct hwq *hwq = (struct hwq *)data; 1459 struct afu *afu = hwq->afu; 1460 unsigned long hrrq_flags; 1461 LIST_HEAD(doneq); 1462 int num_entries = 0; 1463 1464 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1465 1466 if (afu_is_irqpoll_enabled(afu)) { 1467 irq_poll_sched(&hwq->irqpoll); 1468 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1469 return IRQ_HANDLED; 1470 } 1471 1472 num_entries = process_hrrq(hwq, &doneq, -1); 1473 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1474 1475 if (num_entries == 0) 1476 return IRQ_NONE; 1477 1478 process_cmd_doneq(&doneq); 1479 return IRQ_HANDLED; 1480 } 1481 1482 /* 1483 * Asynchronous interrupt information table 1484 * 1485 * NOTE: 1486 * - Order matters here as this array is indexed by bit position. 1487 * 1488 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro 1489 * as complex and complains due to a lack of parentheses/braces. 1490 */ 1491 #define ASTATUS_FC(_a, _b, _c, _d) \ 1492 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) } 1493 1494 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \ 1495 ASTATUS_FC(_a, LINK_UP, "link up", 0), \ 1496 ASTATUS_FC(_a, LINK_DN, "link down", 0), \ 1497 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \ 1498 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \ 1499 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \ 1500 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \ 1501 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \ 1502 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET) 1503 1504 static const struct asyc_intr_info ainfo[] = { 1505 BUILD_SISL_ASTATUS_FC_PORT(1), 1506 BUILD_SISL_ASTATUS_FC_PORT(0), 1507 BUILD_SISL_ASTATUS_FC_PORT(3), 1508 BUILD_SISL_ASTATUS_FC_PORT(2) 1509 }; 1510 1511 /** 1512 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors 1513 * @irq: Interrupt number. 1514 * @data: Private data provided at interrupt registration, the AFU. 1515 * 1516 * Return: Always return IRQ_HANDLED. 1517 */ 1518 static irqreturn_t cxlflash_async_err_irq(int irq, void *data) 1519 { 1520 struct hwq *hwq = (struct hwq *)data; 1521 struct afu *afu = hwq->afu; 1522 struct cxlflash_cfg *cfg = afu->parent; 1523 struct device *dev = &cfg->dev->dev; 1524 const struct asyc_intr_info *info; 1525 struct sisl_global_map __iomem *global = &afu->afu_map->global; 1526 __be64 __iomem *fc_port_regs; 1527 u64 reg_unmasked; 1528 u64 reg; 1529 u64 bit; 1530 u8 port; 1531 1532 reg = readq_be(&global->regs.aintr_status); 1533 reg_unmasked = (reg & SISL_ASTATUS_UNMASK); 1534 1535 if (unlikely(reg_unmasked == 0)) { 1536 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n", 1537 __func__, reg); 1538 goto out; 1539 } 1540 1541 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ 1542 writeq_be(reg_unmasked, &global->regs.aintr_clear); 1543 1544 /* Check each bit that is on */ 1545 for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) { 1546 if (unlikely(bit >= ARRAY_SIZE(ainfo))) { 1547 WARN_ON_ONCE(1); 1548 continue; 1549 } 1550 1551 info = &ainfo[bit]; 1552 if (unlikely(info->status != 1ULL << bit)) { 1553 WARN_ON_ONCE(1); 1554 continue; 1555 } 1556 1557 port = info->port; 1558 fc_port_regs = get_fc_port_regs(cfg, port); 1559 1560 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n", 1561 __func__, port, info->desc, 1562 readq_be(&fc_port_regs[FC_STATUS / 8])); 1563 1564 /* 1565 * Do link reset first, some OTHER errors will set FC_ERROR 1566 * again if cleared before or w/o a reset 1567 */ 1568 if (info->action & LINK_RESET) { 1569 dev_err(dev, "%s: FC Port %d: resetting link\n", 1570 __func__, port); 1571 cfg->lr_state = LINK_RESET_REQUIRED; 1572 cfg->lr_port = port; 1573 schedule_work(&cfg->work_q); 1574 } 1575 1576 if (info->action & CLR_FC_ERROR) { 1577 reg = readq_be(&fc_port_regs[FC_ERROR / 8]); 1578 1579 /* 1580 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP 1581 * should be the same and tracing one is sufficient. 1582 */ 1583 1584 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n", 1585 __func__, port, reg); 1586 1587 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]); 1588 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1589 } 1590 1591 if (info->action & SCAN_HOST) { 1592 atomic_inc(&cfg->scan_host_needed); 1593 schedule_work(&cfg->work_q); 1594 } 1595 } 1596 1597 out: 1598 return IRQ_HANDLED; 1599 } 1600 1601 /** 1602 * start_context() - starts the master context 1603 * @cfg: Internal structure associated with the host. 1604 * @index: Index of the hardware queue. 1605 * 1606 * Return: A success or failure value from CXL services. 1607 */ 1608 static int start_context(struct cxlflash_cfg *cfg, u32 index) 1609 { 1610 struct device *dev = &cfg->dev->dev; 1611 struct hwq *hwq = get_hwq(cfg->afu, index); 1612 int rc = 0; 1613 1614 rc = cxl_start_context(hwq->ctx, 1615 hwq->work.work_element_descriptor, 1616 NULL); 1617 1618 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1619 return rc; 1620 } 1621 1622 /** 1623 * read_vpd() - obtains the WWPNs from VPD 1624 * @cfg: Internal structure associated with the host. 1625 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs 1626 * 1627 * Return: 0 on success, -errno on failure 1628 */ 1629 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) 1630 { 1631 struct device *dev = &cfg->dev->dev; 1632 struct pci_dev *pdev = cfg->dev; 1633 int rc = 0; 1634 int ro_start, ro_size, i, j, k; 1635 ssize_t vpd_size; 1636 char vpd_data[CXLFLASH_VPD_LEN]; 1637 char tmp_buf[WWPN_BUF_LEN] = { 0 }; 1638 char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" }; 1639 1640 /* Get the VPD data from the device */ 1641 vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data)); 1642 if (unlikely(vpd_size <= 0)) { 1643 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n", 1644 __func__, vpd_size); 1645 rc = -ENODEV; 1646 goto out; 1647 } 1648 1649 /* Get the read only section offset */ 1650 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, 1651 PCI_VPD_LRDT_RO_DATA); 1652 if (unlikely(ro_start < 0)) { 1653 dev_err(dev, "%s: VPD Read-only data not found\n", __func__); 1654 rc = -ENODEV; 1655 goto out; 1656 } 1657 1658 /* Get the read only section size, cap when extends beyond read VPD */ 1659 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 1660 j = ro_size; 1661 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1662 if (unlikely((i + j) > vpd_size)) { 1663 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n", 1664 __func__, (i + j), vpd_size); 1665 ro_size = vpd_size - i; 1666 } 1667 1668 /* 1669 * Find the offset of the WWPN tag within the read only 1670 * VPD data and validate the found field (partials are 1671 * no good to us). Convert the ASCII data to an integer 1672 * value. Note that we must copy to a temporary buffer 1673 * because the conversion service requires that the ASCII 1674 * string be terminated. 1675 */ 1676 for (k = 0; k < cfg->num_fc_ports; k++) { 1677 j = ro_size; 1678 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1679 1680 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); 1681 if (unlikely(i < 0)) { 1682 dev_err(dev, "%s: Port %d WWPN not found in VPD\n", 1683 __func__, k); 1684 rc = -ENODEV; 1685 goto out; 1686 } 1687 1688 j = pci_vpd_info_field_size(&vpd_data[i]); 1689 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1690 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { 1691 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n", 1692 __func__, k); 1693 rc = -ENODEV; 1694 goto out; 1695 } 1696 1697 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); 1698 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); 1699 if (unlikely(rc)) { 1700 dev_err(dev, "%s: WWPN conversion failed for port %d\n", 1701 __func__, k); 1702 rc = -ENODEV; 1703 goto out; 1704 } 1705 1706 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]); 1707 } 1708 1709 out: 1710 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1711 return rc; 1712 } 1713 1714 /** 1715 * init_pcr() - initialize the provisioning and control registers 1716 * @cfg: Internal structure associated with the host. 1717 * 1718 * Also sets up fast access to the mapped registers and initializes AFU 1719 * command fields that never change. 1720 */ 1721 static void init_pcr(struct cxlflash_cfg *cfg) 1722 { 1723 struct afu *afu = cfg->afu; 1724 struct sisl_ctrl_map __iomem *ctrl_map; 1725 struct hwq *hwq; 1726 int i; 1727 1728 for (i = 0; i < MAX_CONTEXT; i++) { 1729 ctrl_map = &afu->afu_map->ctrls[i].ctrl; 1730 /* Disrupt any clients that could be running */ 1731 /* e.g. clients that survived a master restart */ 1732 writeq_be(0, &ctrl_map->rht_start); 1733 writeq_be(0, &ctrl_map->rht_cnt_id); 1734 writeq_be(0, &ctrl_map->ctx_cap); 1735 } 1736 1737 /* Copy frequently used fields into hwq */ 1738 for (i = 0; i < afu->num_hwqs; i++) { 1739 hwq = get_hwq(afu, i); 1740 1741 hwq->ctx_hndl = (u16) cxl_process_element(hwq->ctx); 1742 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host; 1743 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl; 1744 1745 /* Program the Endian Control for the master context */ 1746 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl); 1747 } 1748 } 1749 1750 /** 1751 * init_global() - initialize AFU global registers 1752 * @cfg: Internal structure associated with the host. 1753 */ 1754 static int init_global(struct cxlflash_cfg *cfg) 1755 { 1756 struct afu *afu = cfg->afu; 1757 struct device *dev = &cfg->dev->dev; 1758 struct hwq *hwq; 1759 struct sisl_host_map __iomem *hmap; 1760 __be64 __iomem *fc_port_regs; 1761 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */ 1762 int i = 0, num_ports = 0; 1763 int rc = 0; 1764 u64 reg; 1765 1766 rc = read_vpd(cfg, &wwpn[0]); 1767 if (rc) { 1768 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); 1769 goto out; 1770 } 1771 1772 /* Set up RRQ and SQ in HWQ for master issued cmds */ 1773 for (i = 0; i < afu->num_hwqs; i++) { 1774 hwq = get_hwq(afu, i); 1775 hmap = hwq->host_map; 1776 1777 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start); 1778 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end); 1779 1780 if (afu_is_sq_cmd_mode(afu)) { 1781 writeq_be((u64)hwq->hsq_start, &hmap->sq_start); 1782 writeq_be((u64)hwq->hsq_end, &hmap->sq_end); 1783 } 1784 } 1785 1786 /* AFU configuration */ 1787 reg = readq_be(&afu->afu_map->global.regs.afu_config); 1788 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; 1789 /* enable all auto retry options and control endianness */ 1790 /* leave others at default: */ 1791 /* CTX_CAP write protected, mbox_r does not clear on read and */ 1792 /* checker on if dual afu */ 1793 writeq_be(reg, &afu->afu_map->global.regs.afu_config); 1794 1795 /* Global port select: select either port */ 1796 if (afu->internal_lun) { 1797 /* Only use port 0 */ 1798 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); 1799 num_ports = 0; 1800 } else { 1801 writeq_be(PORT_MASK(cfg->num_fc_ports), 1802 &afu->afu_map->global.regs.afu_port_sel); 1803 num_ports = cfg->num_fc_ports; 1804 } 1805 1806 for (i = 0; i < num_ports; i++) { 1807 fc_port_regs = get_fc_port_regs(cfg, i); 1808 1809 /* Unmask all errors (but they are still masked at AFU) */ 1810 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]); 1811 /* Clear CRC error cnt & set a threshold */ 1812 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]); 1813 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]); 1814 1815 /* Set WWPNs. If already programmed, wwpn[i] is 0 */ 1816 if (wwpn[i] != 0) 1817 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]); 1818 /* Programming WWPN back to back causes additional 1819 * offline/online transitions and a PLOGI 1820 */ 1821 msleep(100); 1822 } 1823 1824 /* Set up master's own CTX_CAP to allow real mode, host translation */ 1825 /* tables, afu cmds and read/write GSCSI cmds. */ 1826 /* First, unlock ctx_cap write by reading mbox */ 1827 for (i = 0; i < afu->num_hwqs; i++) { 1828 hwq = get_hwq(afu, i); 1829 1830 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */ 1831 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | 1832 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | 1833 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), 1834 &hwq->ctrl_map->ctx_cap); 1835 } 1836 1837 /* 1838 * Determine write-same unmap support for host by evaluating the unmap 1839 * sector support bit of the context control register associated with 1840 * the primary hardware queue. Note that while this status is reflected 1841 * in a context register, the outcome can be assumed to be host-wide. 1842 */ 1843 hwq = get_hwq(afu, PRIMARY_HWQ); 1844 reg = readq_be(&hwq->host_map->ctx_ctrl); 1845 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR) 1846 cfg->ws_unmap = true; 1847 1848 /* Initialize heartbeat */ 1849 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); 1850 out: 1851 return rc; 1852 } 1853 1854 /** 1855 * start_afu() - initializes and starts the AFU 1856 * @cfg: Internal structure associated with the host. 1857 */ 1858 static int start_afu(struct cxlflash_cfg *cfg) 1859 { 1860 struct afu *afu = cfg->afu; 1861 struct device *dev = &cfg->dev->dev; 1862 struct hwq *hwq; 1863 int rc = 0; 1864 int i; 1865 1866 init_pcr(cfg); 1867 1868 /* Initialize each HWQ */ 1869 for (i = 0; i < afu->num_hwqs; i++) { 1870 hwq = get_hwq(afu, i); 1871 1872 /* After an AFU reset, RRQ entries are stale, clear them */ 1873 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry)); 1874 1875 /* Initialize RRQ pointers */ 1876 hwq->hrrq_start = &hwq->rrq_entry[0]; 1877 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1]; 1878 hwq->hrrq_curr = hwq->hrrq_start; 1879 hwq->toggle = 1; 1880 1881 /* Initialize spin locks */ 1882 spin_lock_init(&hwq->hrrq_slock); 1883 spin_lock_init(&hwq->hsq_slock); 1884 1885 /* Initialize SQ */ 1886 if (afu_is_sq_cmd_mode(afu)) { 1887 memset(&hwq->sq, 0, sizeof(hwq->sq)); 1888 hwq->hsq_start = &hwq->sq[0]; 1889 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1]; 1890 hwq->hsq_curr = hwq->hsq_start; 1891 1892 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1); 1893 } 1894 1895 /* Initialize IRQ poll */ 1896 if (afu_is_irqpoll_enabled(afu)) 1897 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight, 1898 cxlflash_irqpoll); 1899 1900 } 1901 1902 rc = init_global(cfg); 1903 1904 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1905 return rc; 1906 } 1907 1908 /** 1909 * init_intr() - setup interrupt handlers for the master context 1910 * @cfg: Internal structure associated with the host. 1911 * @hwq: Hardware queue to initialize. 1912 * 1913 * Return: 0 on success, -errno on failure 1914 */ 1915 static enum undo_level init_intr(struct cxlflash_cfg *cfg, 1916 struct hwq *hwq) 1917 { 1918 struct device *dev = &cfg->dev->dev; 1919 struct cxl_context *ctx = hwq->ctx; 1920 int rc = 0; 1921 enum undo_level level = UNDO_NOOP; 1922 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ); 1923 int num_irqs = is_primary_hwq ? 3 : 2; 1924 1925 rc = cxl_allocate_afu_irqs(ctx, num_irqs); 1926 if (unlikely(rc)) { 1927 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n", 1928 __func__, rc); 1929 level = UNDO_NOOP; 1930 goto out; 1931 } 1932 1933 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq, 1934 "SISL_MSI_SYNC_ERROR"); 1935 if (unlikely(rc <= 0)) { 1936 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__); 1937 level = FREE_IRQ; 1938 goto out; 1939 } 1940 1941 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq, 1942 "SISL_MSI_RRQ_UPDATED"); 1943 if (unlikely(rc <= 0)) { 1944 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__); 1945 level = UNMAP_ONE; 1946 goto out; 1947 } 1948 1949 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 1950 if (!is_primary_hwq) 1951 goto out; 1952 1953 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq, 1954 "SISL_MSI_ASYNC_ERROR"); 1955 if (unlikely(rc <= 0)) { 1956 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__); 1957 level = UNMAP_TWO; 1958 goto out; 1959 } 1960 out: 1961 return level; 1962 } 1963 1964 /** 1965 * init_mc() - create and register as the master context 1966 * @cfg: Internal structure associated with the host. 1967 * index: HWQ Index of the master context. 1968 * 1969 * Return: 0 on success, -errno on failure 1970 */ 1971 static int init_mc(struct cxlflash_cfg *cfg, u32 index) 1972 { 1973 struct cxl_context *ctx; 1974 struct device *dev = &cfg->dev->dev; 1975 struct hwq *hwq = get_hwq(cfg->afu, index); 1976 int rc = 0; 1977 enum undo_level level; 1978 1979 hwq->afu = cfg->afu; 1980 hwq->index = index; 1981 INIT_LIST_HEAD(&hwq->pending_cmds); 1982 1983 if (index == PRIMARY_HWQ) 1984 ctx = cxl_get_context(cfg->dev); 1985 else 1986 ctx = cxl_dev_context_init(cfg->dev); 1987 if (unlikely(!ctx)) { 1988 rc = -ENOMEM; 1989 goto err1; 1990 } 1991 1992 WARN_ON(hwq->ctx); 1993 hwq->ctx = ctx; 1994 1995 /* Set it up as a master with the CXL */ 1996 cxl_set_master(ctx); 1997 1998 /* Reset AFU when initializing primary context */ 1999 if (index == PRIMARY_HWQ) { 2000 rc = cxl_afu_reset(ctx); 2001 if (unlikely(rc)) { 2002 dev_err(dev, "%s: AFU reset failed rc=%d\n", 2003 __func__, rc); 2004 goto err1; 2005 } 2006 } 2007 2008 level = init_intr(cfg, hwq); 2009 if (unlikely(level)) { 2010 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc); 2011 goto err2; 2012 } 2013 2014 /* This performs the equivalent of the CXL_IOCTL_START_WORK. 2015 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process 2016 * element (pe) that is embedded in the context (ctx) 2017 */ 2018 rc = start_context(cfg, index); 2019 if (unlikely(rc)) { 2020 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); 2021 level = UNMAP_THREE; 2022 goto err2; 2023 } 2024 2025 out: 2026 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2027 return rc; 2028 err2: 2029 term_intr(cfg, level, index); 2030 if (index != PRIMARY_HWQ) 2031 cxl_release_context(ctx); 2032 err1: 2033 hwq->ctx = NULL; 2034 goto out; 2035 } 2036 2037 /** 2038 * get_num_afu_ports() - determines and configures the number of AFU ports 2039 * @cfg: Internal structure associated with the host. 2040 * 2041 * This routine determines the number of AFU ports by converting the global 2042 * port selection mask. The converted value is only valid following an AFU 2043 * reset (explicit or power-on). This routine must be invoked shortly after 2044 * mapping as other routines are dependent on the number of ports during the 2045 * initialization sequence. 2046 * 2047 * To support legacy AFUs that might not have reflected an initial global 2048 * port mask (value read is 0), default to the number of ports originally 2049 * supported by the cxlflash driver (2) before hardware with other port 2050 * offerings was introduced. 2051 */ 2052 static void get_num_afu_ports(struct cxlflash_cfg *cfg) 2053 { 2054 struct afu *afu = cfg->afu; 2055 struct device *dev = &cfg->dev->dev; 2056 u64 port_mask; 2057 int num_fc_ports = LEGACY_FC_PORTS; 2058 2059 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel); 2060 if (port_mask != 0ULL) 2061 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS); 2062 2063 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n", 2064 __func__, port_mask, num_fc_ports); 2065 2066 cfg->num_fc_ports = num_fc_ports; 2067 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports); 2068 } 2069 2070 /** 2071 * init_afu() - setup as master context and start AFU 2072 * @cfg: Internal structure associated with the host. 2073 * 2074 * This routine is a higher level of control for configuring the 2075 * AFU on probe and reset paths. 2076 * 2077 * Return: 0 on success, -errno on failure 2078 */ 2079 static int init_afu(struct cxlflash_cfg *cfg) 2080 { 2081 u64 reg; 2082 int rc = 0; 2083 struct afu *afu = cfg->afu; 2084 struct device *dev = &cfg->dev->dev; 2085 struct hwq *hwq; 2086 int i; 2087 2088 cxl_perst_reloads_same_image(cfg->cxl_afu, true); 2089 2090 afu->num_hwqs = afu->desired_hwqs; 2091 for (i = 0; i < afu->num_hwqs; i++) { 2092 rc = init_mc(cfg, i); 2093 if (rc) { 2094 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n", 2095 __func__, rc, i); 2096 goto err1; 2097 } 2098 } 2099 2100 /* Map the entire MMIO space of the AFU using the first context */ 2101 hwq = get_hwq(afu, PRIMARY_HWQ); 2102 afu->afu_map = cxl_psa_map(hwq->ctx); 2103 if (!afu->afu_map) { 2104 dev_err(dev, "%s: cxl_psa_map failed\n", __func__); 2105 rc = -ENOMEM; 2106 goto err1; 2107 } 2108 2109 /* No byte reverse on reading afu_version or string will be backwards */ 2110 reg = readq(&afu->afu_map->global.regs.afu_version); 2111 memcpy(afu->version, ®, sizeof(reg)); 2112 afu->interface_version = 2113 readq_be(&afu->afu_map->global.regs.interface_version); 2114 if ((afu->interface_version + 1) == 0) { 2115 dev_err(dev, "Back level AFU, please upgrade. AFU version %s " 2116 "interface version %016llx\n", afu->version, 2117 afu->interface_version); 2118 rc = -EINVAL; 2119 goto err1; 2120 } 2121 2122 if (afu_is_sq_cmd_mode(afu)) { 2123 afu->send_cmd = send_cmd_sq; 2124 afu->context_reset = context_reset_sq; 2125 } else { 2126 afu->send_cmd = send_cmd_ioarrin; 2127 afu->context_reset = context_reset_ioarrin; 2128 } 2129 2130 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__, 2131 afu->version, afu->interface_version); 2132 2133 get_num_afu_ports(cfg); 2134 2135 rc = start_afu(cfg); 2136 if (rc) { 2137 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc); 2138 goto err1; 2139 } 2140 2141 afu_err_intr_init(cfg->afu); 2142 for (i = 0; i < afu->num_hwqs; i++) { 2143 hwq = get_hwq(afu, i); 2144 2145 hwq->room = readq_be(&hwq->host_map->cmd_room); 2146 } 2147 2148 /* Restore the LUN mappings */ 2149 cxlflash_restore_luntable(cfg); 2150 out: 2151 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2152 return rc; 2153 2154 err1: 2155 for (i = afu->num_hwqs - 1; i >= 0; i--) { 2156 term_intr(cfg, UNMAP_THREE, i); 2157 term_mc(cfg, i); 2158 } 2159 goto out; 2160 } 2161 2162 /** 2163 * afu_reset() - resets the AFU 2164 * @cfg: Internal structure associated with the host. 2165 * 2166 * Return: 0 on success, -errno on failure 2167 */ 2168 static int afu_reset(struct cxlflash_cfg *cfg) 2169 { 2170 struct device *dev = &cfg->dev->dev; 2171 int rc = 0; 2172 2173 /* Stop the context before the reset. Since the context is 2174 * no longer available restart it after the reset is complete 2175 */ 2176 term_afu(cfg); 2177 2178 rc = init_afu(cfg); 2179 2180 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2181 return rc; 2182 } 2183 2184 /** 2185 * drain_ioctls() - wait until all currently executing ioctls have completed 2186 * @cfg: Internal structure associated with the host. 2187 * 2188 * Obtain write access to read/write semaphore that wraps ioctl 2189 * handling to 'drain' ioctls currently executing. 2190 */ 2191 static void drain_ioctls(struct cxlflash_cfg *cfg) 2192 { 2193 down_write(&cfg->ioctl_rwsem); 2194 up_write(&cfg->ioctl_rwsem); 2195 } 2196 2197 /** 2198 * cxlflash_async_reset_host() - asynchronous host reset handler 2199 * @data: Private data provided while scheduling reset. 2200 * @cookie: Cookie that can be used for checkpointing. 2201 */ 2202 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie) 2203 { 2204 struct cxlflash_cfg *cfg = data; 2205 struct device *dev = &cfg->dev->dev; 2206 int rc = 0; 2207 2208 if (cfg->state != STATE_RESET) { 2209 dev_dbg(dev, "%s: Not performing a reset, state=%d\n", 2210 __func__, cfg->state); 2211 goto out; 2212 } 2213 2214 drain_ioctls(cfg); 2215 cxlflash_mark_contexts_error(cfg); 2216 rc = afu_reset(cfg); 2217 if (rc) 2218 cfg->state = STATE_FAILTERM; 2219 else 2220 cfg->state = STATE_NORMAL; 2221 wake_up_all(&cfg->reset_waitq); 2222 2223 out: 2224 scsi_unblock_requests(cfg->host); 2225 } 2226 2227 /** 2228 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset 2229 * @cfg: Internal structure associated with the host. 2230 */ 2231 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg) 2232 { 2233 struct device *dev = &cfg->dev->dev; 2234 2235 if (cfg->state != STATE_NORMAL) { 2236 dev_dbg(dev, "%s: Not performing reset state=%d\n", 2237 __func__, cfg->state); 2238 return; 2239 } 2240 2241 cfg->state = STATE_RESET; 2242 scsi_block_requests(cfg->host); 2243 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host, 2244 cfg); 2245 } 2246 2247 /** 2248 * send_afu_cmd() - builds and sends an internal AFU command 2249 * @afu: AFU associated with the host. 2250 * @rcb: Pre-populated IOARCB describing command to send. 2251 * 2252 * The AFU can only take one internal AFU command at a time. This limitation is 2253 * enforced by using a mutex to provide exclusive access to the AFU during the 2254 * operation. This design point requires calling threads to not be on interrupt 2255 * context due to the possibility of sleeping during concurrent AFU operations. 2256 * 2257 * The command status is optionally passed back to the caller when the caller 2258 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure. 2259 * 2260 * Return: 2261 * 0 on success, -errno on failure 2262 */ 2263 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb) 2264 { 2265 struct cxlflash_cfg *cfg = afu->parent; 2266 struct device *dev = &cfg->dev->dev; 2267 struct afu_cmd *cmd = NULL; 2268 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 2269 char *buf = NULL; 2270 int rc = 0; 2271 int nretry = 0; 2272 static DEFINE_MUTEX(sync_active); 2273 2274 if (cfg->state != STATE_NORMAL) { 2275 dev_dbg(dev, "%s: Sync not required state=%u\n", 2276 __func__, cfg->state); 2277 return 0; 2278 } 2279 2280 mutex_lock(&sync_active); 2281 atomic_inc(&afu->cmds_active); 2282 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 2283 if (unlikely(!buf)) { 2284 dev_err(dev, "%s: no memory for command\n", __func__); 2285 rc = -ENOMEM; 2286 goto out; 2287 } 2288 2289 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 2290 2291 retry: 2292 memset(cmd, 0, sizeof(*cmd)); 2293 memcpy(&cmd->rcb, rcb, sizeof(*rcb)); 2294 INIT_LIST_HEAD(&cmd->queue); 2295 init_completion(&cmd->cevent); 2296 cmd->parent = afu; 2297 cmd->hwq_index = hwq->index; 2298 cmd->rcb.ctx_id = hwq->ctx_hndl; 2299 2300 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n", 2301 __func__, afu, cmd, cmd->rcb.cdb[0], nretry); 2302 2303 rc = afu->send_cmd(afu, cmd); 2304 if (unlikely(rc)) { 2305 rc = -ENOBUFS; 2306 goto out; 2307 } 2308 2309 rc = wait_resp(afu, cmd); 2310 switch (rc) { 2311 case -ETIMEDOUT: 2312 rc = afu->context_reset(hwq); 2313 if (rc) { 2314 cxlflash_schedule_async_reset(cfg); 2315 break; 2316 } 2317 /* fall through to retry */ 2318 case -EAGAIN: 2319 if (++nretry < 2) 2320 goto retry; 2321 /* fall through to exit */ 2322 default: 2323 break; 2324 } 2325 2326 if (rcb->ioasa) 2327 *rcb->ioasa = cmd->sa; 2328 out: 2329 atomic_dec(&afu->cmds_active); 2330 mutex_unlock(&sync_active); 2331 kfree(buf); 2332 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2333 return rc; 2334 } 2335 2336 /** 2337 * cxlflash_afu_sync() - builds and sends an AFU sync command 2338 * @afu: AFU associated with the host. 2339 * @ctx: Identifies context requesting sync. 2340 * @res: Identifies resource requesting sync. 2341 * @mode: Type of sync to issue (lightweight, heavyweight, global). 2342 * 2343 * AFU sync operations are only necessary and allowed when the device is 2344 * operating normally. When not operating normally, sync requests can occur as 2345 * part of cleaning up resources associated with an adapter prior to removal. 2346 * In this scenario, these requests are simply ignored (safe due to the AFU 2347 * going away). 2348 * 2349 * Return: 2350 * 0 on success, -errno on failure 2351 */ 2352 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode) 2353 { 2354 struct cxlflash_cfg *cfg = afu->parent; 2355 struct device *dev = &cfg->dev->dev; 2356 struct sisl_ioarcb rcb = { 0 }; 2357 2358 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n", 2359 __func__, afu, ctx, res, mode); 2360 2361 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 2362 rcb.msi = SISL_MSI_RRQ_UPDATED; 2363 rcb.timeout = MC_AFU_SYNC_TIMEOUT; 2364 2365 rcb.cdb[0] = SISL_AFU_CMD_SYNC; 2366 rcb.cdb[1] = mode; 2367 put_unaligned_be16(ctx, &rcb.cdb[2]); 2368 put_unaligned_be32(res, &rcb.cdb[4]); 2369 2370 return send_afu_cmd(afu, &rcb); 2371 } 2372 2373 /** 2374 * cxlflash_eh_abort_handler() - abort a SCSI command 2375 * @scp: SCSI command to abort. 2376 * 2377 * CXL Flash devices do not support a single command abort. Reset the context 2378 * as per SISLite specification. Flush any pending commands in the hardware 2379 * queue before the reset. 2380 * 2381 * Return: SUCCESS/FAILED as defined in scsi/scsi.h 2382 */ 2383 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp) 2384 { 2385 int rc = FAILED; 2386 struct Scsi_Host *host = scp->device->host; 2387 struct cxlflash_cfg *cfg = shost_priv(host); 2388 struct afu_cmd *cmd = sc_to_afuc(scp); 2389 struct device *dev = &cfg->dev->dev; 2390 struct afu *afu = cfg->afu; 2391 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 2392 2393 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu " 2394 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, 2395 scp->device->channel, scp->device->id, scp->device->lun, 2396 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 2397 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 2398 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 2399 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 2400 2401 /* When the state is not normal, another reset/reload is in progress. 2402 * Return failed and the mid-layer will invoke host reset handler. 2403 */ 2404 if (cfg->state != STATE_NORMAL) { 2405 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n", 2406 __func__, cfg->state); 2407 goto out; 2408 } 2409 2410 rc = afu->context_reset(hwq); 2411 if (unlikely(rc)) 2412 goto out; 2413 2414 rc = SUCCESS; 2415 2416 out: 2417 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2418 return rc; 2419 } 2420 2421 /** 2422 * cxlflash_eh_device_reset_handler() - reset a single LUN 2423 * @scp: SCSI command to send. 2424 * 2425 * Return: 2426 * SUCCESS as defined in scsi/scsi.h 2427 * FAILED as defined in scsi/scsi.h 2428 */ 2429 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) 2430 { 2431 int rc = SUCCESS; 2432 struct scsi_device *sdev = scp->device; 2433 struct Scsi_Host *host = sdev->host; 2434 struct cxlflash_cfg *cfg = shost_priv(host); 2435 struct device *dev = &cfg->dev->dev; 2436 int rcr = 0; 2437 2438 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__, 2439 host->host_no, sdev->channel, sdev->id, sdev->lun); 2440 retry: 2441 switch (cfg->state) { 2442 case STATE_NORMAL: 2443 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET); 2444 if (unlikely(rcr)) 2445 rc = FAILED; 2446 break; 2447 case STATE_RESET: 2448 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2449 goto retry; 2450 default: 2451 rc = FAILED; 2452 break; 2453 } 2454 2455 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2456 return rc; 2457 } 2458 2459 /** 2460 * cxlflash_eh_host_reset_handler() - reset the host adapter 2461 * @scp: SCSI command from stack identifying host. 2462 * 2463 * Following a reset, the state is evaluated again in case an EEH occurred 2464 * during the reset. In such a scenario, the host reset will either yield 2465 * until the EEH recovery is complete or return success or failure based 2466 * upon the current device state. 2467 * 2468 * Return: 2469 * SUCCESS as defined in scsi/scsi.h 2470 * FAILED as defined in scsi/scsi.h 2471 */ 2472 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) 2473 { 2474 int rc = SUCCESS; 2475 int rcr = 0; 2476 struct Scsi_Host *host = scp->device->host; 2477 struct cxlflash_cfg *cfg = shost_priv(host); 2478 struct device *dev = &cfg->dev->dev; 2479 2480 dev_dbg(dev, "%s: %d\n", __func__, host->host_no); 2481 2482 switch (cfg->state) { 2483 case STATE_NORMAL: 2484 cfg->state = STATE_RESET; 2485 drain_ioctls(cfg); 2486 cxlflash_mark_contexts_error(cfg); 2487 rcr = afu_reset(cfg); 2488 if (rcr) { 2489 rc = FAILED; 2490 cfg->state = STATE_FAILTERM; 2491 } else 2492 cfg->state = STATE_NORMAL; 2493 wake_up_all(&cfg->reset_waitq); 2494 ssleep(1); 2495 /* fall through */ 2496 case STATE_RESET: 2497 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2498 if (cfg->state == STATE_NORMAL) 2499 break; 2500 /* fall through */ 2501 default: 2502 rc = FAILED; 2503 break; 2504 } 2505 2506 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2507 return rc; 2508 } 2509 2510 /** 2511 * cxlflash_change_queue_depth() - change the queue depth for the device 2512 * @sdev: SCSI device destined for queue depth change. 2513 * @qdepth: Requested queue depth value to set. 2514 * 2515 * The requested queue depth is capped to the maximum supported value. 2516 * 2517 * Return: The actual queue depth set. 2518 */ 2519 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) 2520 { 2521 2522 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) 2523 qdepth = CXLFLASH_MAX_CMDS_PER_LUN; 2524 2525 scsi_change_queue_depth(sdev, qdepth); 2526 return sdev->queue_depth; 2527 } 2528 2529 /** 2530 * cxlflash_show_port_status() - queries and presents the current port status 2531 * @port: Desired port for status reporting. 2532 * @cfg: Internal structure associated with the host. 2533 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2534 * 2535 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2536 */ 2537 static ssize_t cxlflash_show_port_status(u32 port, 2538 struct cxlflash_cfg *cfg, 2539 char *buf) 2540 { 2541 struct device *dev = &cfg->dev->dev; 2542 char *disp_status; 2543 u64 status; 2544 __be64 __iomem *fc_port_regs; 2545 2546 WARN_ON(port >= MAX_FC_PORTS); 2547 2548 if (port >= cfg->num_fc_ports) { 2549 dev_info(dev, "%s: Port %d not supported on this card.\n", 2550 __func__, port); 2551 return -EINVAL; 2552 } 2553 2554 fc_port_regs = get_fc_port_regs(cfg, port); 2555 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]); 2556 status &= FC_MTIP_STATUS_MASK; 2557 2558 if (status == FC_MTIP_STATUS_ONLINE) 2559 disp_status = "online"; 2560 else if (status == FC_MTIP_STATUS_OFFLINE) 2561 disp_status = "offline"; 2562 else 2563 disp_status = "unknown"; 2564 2565 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); 2566 } 2567 2568 /** 2569 * port0_show() - queries and presents the current status of port 0 2570 * @dev: Generic device associated with the host owning the port. 2571 * @attr: Device attribute representing the port. 2572 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2573 * 2574 * Return: The size of the ASCII string returned in @buf. 2575 */ 2576 static ssize_t port0_show(struct device *dev, 2577 struct device_attribute *attr, 2578 char *buf) 2579 { 2580 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2581 2582 return cxlflash_show_port_status(0, cfg, buf); 2583 } 2584 2585 /** 2586 * port1_show() - queries and presents the current status of port 1 2587 * @dev: Generic device associated with the host owning the port. 2588 * @attr: Device attribute representing the port. 2589 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2590 * 2591 * Return: The size of the ASCII string returned in @buf. 2592 */ 2593 static ssize_t port1_show(struct device *dev, 2594 struct device_attribute *attr, 2595 char *buf) 2596 { 2597 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2598 2599 return cxlflash_show_port_status(1, cfg, buf); 2600 } 2601 2602 /** 2603 * port2_show() - queries and presents the current status of port 2 2604 * @dev: Generic device associated with the host owning the port. 2605 * @attr: Device attribute representing the port. 2606 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2607 * 2608 * Return: The size of the ASCII string returned in @buf. 2609 */ 2610 static ssize_t port2_show(struct device *dev, 2611 struct device_attribute *attr, 2612 char *buf) 2613 { 2614 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2615 2616 return cxlflash_show_port_status(2, cfg, buf); 2617 } 2618 2619 /** 2620 * port3_show() - queries and presents the current status of port 3 2621 * @dev: Generic device associated with the host owning the port. 2622 * @attr: Device attribute representing the port. 2623 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2624 * 2625 * Return: The size of the ASCII string returned in @buf. 2626 */ 2627 static ssize_t port3_show(struct device *dev, 2628 struct device_attribute *attr, 2629 char *buf) 2630 { 2631 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2632 2633 return cxlflash_show_port_status(3, cfg, buf); 2634 } 2635 2636 /** 2637 * lun_mode_show() - presents the current LUN mode of the host 2638 * @dev: Generic device associated with the host. 2639 * @attr: Device attribute representing the LUN mode. 2640 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. 2641 * 2642 * Return: The size of the ASCII string returned in @buf. 2643 */ 2644 static ssize_t lun_mode_show(struct device *dev, 2645 struct device_attribute *attr, char *buf) 2646 { 2647 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2648 struct afu *afu = cfg->afu; 2649 2650 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); 2651 } 2652 2653 /** 2654 * lun_mode_store() - sets the LUN mode of the host 2655 * @dev: Generic device associated with the host. 2656 * @attr: Device attribute representing the LUN mode. 2657 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. 2658 * @count: Length of data resizing in @buf. 2659 * 2660 * The CXL Flash AFU supports a dummy LUN mode where the external 2661 * links and storage are not required. Space on the FPGA is used 2662 * to create 1 or 2 small LUNs which are presented to the system 2663 * as if they were a normal storage device. This feature is useful 2664 * during development and also provides manufacturing with a way 2665 * to test the AFU without an actual device. 2666 * 2667 * 0 = external LUN[s] (default) 2668 * 1 = internal LUN (1 x 64K, 512B blocks, id 0) 2669 * 2 = internal LUN (1 x 64K, 4K blocks, id 0) 2670 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) 2671 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) 2672 * 2673 * Return: The size of the ASCII string returned in @buf. 2674 */ 2675 static ssize_t lun_mode_store(struct device *dev, 2676 struct device_attribute *attr, 2677 const char *buf, size_t count) 2678 { 2679 struct Scsi_Host *shost = class_to_shost(dev); 2680 struct cxlflash_cfg *cfg = shost_priv(shost); 2681 struct afu *afu = cfg->afu; 2682 int rc; 2683 u32 lun_mode; 2684 2685 rc = kstrtouint(buf, 10, &lun_mode); 2686 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { 2687 afu->internal_lun = lun_mode; 2688 2689 /* 2690 * When configured for internal LUN, there is only one channel, 2691 * channel number 0, else there will be one less than the number 2692 * of fc ports for this card. 2693 */ 2694 if (afu->internal_lun) 2695 shost->max_channel = 0; 2696 else 2697 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports); 2698 2699 afu_reset(cfg); 2700 scsi_scan_host(cfg->host); 2701 } 2702 2703 return count; 2704 } 2705 2706 /** 2707 * ioctl_version_show() - presents the current ioctl version of the host 2708 * @dev: Generic device associated with the host. 2709 * @attr: Device attribute representing the ioctl version. 2710 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. 2711 * 2712 * Return: The size of the ASCII string returned in @buf. 2713 */ 2714 static ssize_t ioctl_version_show(struct device *dev, 2715 struct device_attribute *attr, char *buf) 2716 { 2717 ssize_t bytes = 0; 2718 2719 bytes = scnprintf(buf, PAGE_SIZE, 2720 "disk: %u\n", DK_CXLFLASH_VERSION_0); 2721 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2722 "host: %u\n", HT_CXLFLASH_VERSION_0); 2723 2724 return bytes; 2725 } 2726 2727 /** 2728 * cxlflash_show_port_lun_table() - queries and presents the port LUN table 2729 * @port: Desired port for status reporting. 2730 * @cfg: Internal structure associated with the host. 2731 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2732 * 2733 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2734 */ 2735 static ssize_t cxlflash_show_port_lun_table(u32 port, 2736 struct cxlflash_cfg *cfg, 2737 char *buf) 2738 { 2739 struct device *dev = &cfg->dev->dev; 2740 __be64 __iomem *fc_port_luns; 2741 int i; 2742 ssize_t bytes = 0; 2743 2744 WARN_ON(port >= MAX_FC_PORTS); 2745 2746 if (port >= cfg->num_fc_ports) { 2747 dev_info(dev, "%s: Port %d not supported on this card.\n", 2748 __func__, port); 2749 return -EINVAL; 2750 } 2751 2752 fc_port_luns = get_fc_port_luns(cfg, port); 2753 2754 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) 2755 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2756 "%03d: %016llx\n", 2757 i, readq_be(&fc_port_luns[i])); 2758 return bytes; 2759 } 2760 2761 /** 2762 * port0_lun_table_show() - presents the current LUN table of port 0 2763 * @dev: Generic device associated with the host owning the port. 2764 * @attr: Device attribute representing the port. 2765 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2766 * 2767 * Return: The size of the ASCII string returned in @buf. 2768 */ 2769 static ssize_t port0_lun_table_show(struct device *dev, 2770 struct device_attribute *attr, 2771 char *buf) 2772 { 2773 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2774 2775 return cxlflash_show_port_lun_table(0, cfg, buf); 2776 } 2777 2778 /** 2779 * port1_lun_table_show() - presents the current LUN table of port 1 2780 * @dev: Generic device associated with the host owning the port. 2781 * @attr: Device attribute representing the port. 2782 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2783 * 2784 * Return: The size of the ASCII string returned in @buf. 2785 */ 2786 static ssize_t port1_lun_table_show(struct device *dev, 2787 struct device_attribute *attr, 2788 char *buf) 2789 { 2790 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2791 2792 return cxlflash_show_port_lun_table(1, cfg, buf); 2793 } 2794 2795 /** 2796 * port2_lun_table_show() - presents the current LUN table of port 2 2797 * @dev: Generic device associated with the host owning the port. 2798 * @attr: Device attribute representing the port. 2799 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2800 * 2801 * Return: The size of the ASCII string returned in @buf. 2802 */ 2803 static ssize_t port2_lun_table_show(struct device *dev, 2804 struct device_attribute *attr, 2805 char *buf) 2806 { 2807 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2808 2809 return cxlflash_show_port_lun_table(2, cfg, buf); 2810 } 2811 2812 /** 2813 * port3_lun_table_show() - presents the current LUN table of port 3 2814 * @dev: Generic device associated with the host owning the port. 2815 * @attr: Device attribute representing the port. 2816 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2817 * 2818 * Return: The size of the ASCII string returned in @buf. 2819 */ 2820 static ssize_t port3_lun_table_show(struct device *dev, 2821 struct device_attribute *attr, 2822 char *buf) 2823 { 2824 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2825 2826 return cxlflash_show_port_lun_table(3, cfg, buf); 2827 } 2828 2829 /** 2830 * irqpoll_weight_show() - presents the current IRQ poll weight for the host 2831 * @dev: Generic device associated with the host. 2832 * @attr: Device attribute representing the IRQ poll weight. 2833 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll 2834 * weight in ASCII. 2835 * 2836 * An IRQ poll weight of 0 indicates polling is disabled. 2837 * 2838 * Return: The size of the ASCII string returned in @buf. 2839 */ 2840 static ssize_t irqpoll_weight_show(struct device *dev, 2841 struct device_attribute *attr, char *buf) 2842 { 2843 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2844 struct afu *afu = cfg->afu; 2845 2846 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight); 2847 } 2848 2849 /** 2850 * irqpoll_weight_store() - sets the current IRQ poll weight for the host 2851 * @dev: Generic device associated with the host. 2852 * @attr: Device attribute representing the IRQ poll weight. 2853 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll 2854 * weight in ASCII. 2855 * @count: Length of data resizing in @buf. 2856 * 2857 * An IRQ poll weight of 0 indicates polling is disabled. 2858 * 2859 * Return: The size of the ASCII string returned in @buf. 2860 */ 2861 static ssize_t irqpoll_weight_store(struct device *dev, 2862 struct device_attribute *attr, 2863 const char *buf, size_t count) 2864 { 2865 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2866 struct device *cfgdev = &cfg->dev->dev; 2867 struct afu *afu = cfg->afu; 2868 struct hwq *hwq; 2869 u32 weight; 2870 int rc, i; 2871 2872 rc = kstrtouint(buf, 10, &weight); 2873 if (rc) 2874 return -EINVAL; 2875 2876 if (weight > 256) { 2877 dev_info(cfgdev, 2878 "Invalid IRQ poll weight. It must be 256 or less.\n"); 2879 return -EINVAL; 2880 } 2881 2882 if (weight == afu->irqpoll_weight) { 2883 dev_info(cfgdev, 2884 "Current IRQ poll weight has the same weight.\n"); 2885 return -EINVAL; 2886 } 2887 2888 if (afu_is_irqpoll_enabled(afu)) { 2889 for (i = 0; i < afu->num_hwqs; i++) { 2890 hwq = get_hwq(afu, i); 2891 2892 irq_poll_disable(&hwq->irqpoll); 2893 } 2894 } 2895 2896 afu->irqpoll_weight = weight; 2897 2898 if (weight > 0) { 2899 for (i = 0; i < afu->num_hwqs; i++) { 2900 hwq = get_hwq(afu, i); 2901 2902 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll); 2903 } 2904 } 2905 2906 return count; 2907 } 2908 2909 /** 2910 * num_hwqs_show() - presents the number of hardware queues for the host 2911 * @dev: Generic device associated with the host. 2912 * @attr: Device attribute representing the number of hardware queues. 2913 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware 2914 * queues in ASCII. 2915 * 2916 * Return: The size of the ASCII string returned in @buf. 2917 */ 2918 static ssize_t num_hwqs_show(struct device *dev, 2919 struct device_attribute *attr, char *buf) 2920 { 2921 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2922 struct afu *afu = cfg->afu; 2923 2924 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs); 2925 } 2926 2927 /** 2928 * num_hwqs_store() - sets the number of hardware queues for the host 2929 * @dev: Generic device associated with the host. 2930 * @attr: Device attribute representing the number of hardware queues. 2931 * @buf: Buffer of length PAGE_SIZE containing the number of hardware 2932 * queues in ASCII. 2933 * @count: Length of data resizing in @buf. 2934 * 2935 * n > 0: num_hwqs = n 2936 * n = 0: num_hwqs = num_online_cpus() 2937 * n < 0: num_online_cpus() / abs(n) 2938 * 2939 * Return: The size of the ASCII string returned in @buf. 2940 */ 2941 static ssize_t num_hwqs_store(struct device *dev, 2942 struct device_attribute *attr, 2943 const char *buf, size_t count) 2944 { 2945 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2946 struct afu *afu = cfg->afu; 2947 int rc; 2948 int nhwqs, num_hwqs; 2949 2950 rc = kstrtoint(buf, 10, &nhwqs); 2951 if (rc) 2952 return -EINVAL; 2953 2954 if (nhwqs >= 1) 2955 num_hwqs = nhwqs; 2956 else if (nhwqs == 0) 2957 num_hwqs = num_online_cpus(); 2958 else 2959 num_hwqs = num_online_cpus() / abs(nhwqs); 2960 2961 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS); 2962 WARN_ON_ONCE(afu->desired_hwqs == 0); 2963 2964 retry: 2965 switch (cfg->state) { 2966 case STATE_NORMAL: 2967 cfg->state = STATE_RESET; 2968 drain_ioctls(cfg); 2969 cxlflash_mark_contexts_error(cfg); 2970 rc = afu_reset(cfg); 2971 if (rc) 2972 cfg->state = STATE_FAILTERM; 2973 else 2974 cfg->state = STATE_NORMAL; 2975 wake_up_all(&cfg->reset_waitq); 2976 break; 2977 case STATE_RESET: 2978 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2979 if (cfg->state == STATE_NORMAL) 2980 goto retry; 2981 default: 2982 /* Ideally should not happen */ 2983 dev_err(dev, "%s: Device is not ready, state=%d\n", 2984 __func__, cfg->state); 2985 break; 2986 } 2987 2988 return count; 2989 } 2990 2991 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" }; 2992 2993 /** 2994 * hwq_mode_show() - presents the HWQ steering mode for the host 2995 * @dev: Generic device associated with the host. 2996 * @attr: Device attribute representing the HWQ steering mode. 2997 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode 2998 * as a character string. 2999 * 3000 * Return: The size of the ASCII string returned in @buf. 3001 */ 3002 static ssize_t hwq_mode_show(struct device *dev, 3003 struct device_attribute *attr, char *buf) 3004 { 3005 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 3006 struct afu *afu = cfg->afu; 3007 3008 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]); 3009 } 3010 3011 /** 3012 * hwq_mode_store() - sets the HWQ steering mode for the host 3013 * @dev: Generic device associated with the host. 3014 * @attr: Device attribute representing the HWQ steering mode. 3015 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode 3016 * as a character string. 3017 * @count: Length of data resizing in @buf. 3018 * 3019 * rr = Round-Robin 3020 * tag = Block MQ Tagging 3021 * cpu = CPU Affinity 3022 * 3023 * Return: The size of the ASCII string returned in @buf. 3024 */ 3025 static ssize_t hwq_mode_store(struct device *dev, 3026 struct device_attribute *attr, 3027 const char *buf, size_t count) 3028 { 3029 struct Scsi_Host *shost = class_to_shost(dev); 3030 struct cxlflash_cfg *cfg = shost_priv(shost); 3031 struct device *cfgdev = &cfg->dev->dev; 3032 struct afu *afu = cfg->afu; 3033 int i; 3034 u32 mode = MAX_HWQ_MODE; 3035 3036 for (i = 0; i < MAX_HWQ_MODE; i++) { 3037 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) { 3038 mode = i; 3039 break; 3040 } 3041 } 3042 3043 if (mode >= MAX_HWQ_MODE) { 3044 dev_info(cfgdev, "Invalid HWQ steering mode.\n"); 3045 return -EINVAL; 3046 } 3047 3048 if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) { 3049 dev_info(cfgdev, "SCSI-MQ is not enabled, use a different " 3050 "HWQ steering mode.\n"); 3051 return -EINVAL; 3052 } 3053 3054 afu->hwq_mode = mode; 3055 3056 return count; 3057 } 3058 3059 /** 3060 * mode_show() - presents the current mode of the device 3061 * @dev: Generic device associated with the device. 3062 * @attr: Device attribute representing the device mode. 3063 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. 3064 * 3065 * Return: The size of the ASCII string returned in @buf. 3066 */ 3067 static ssize_t mode_show(struct device *dev, 3068 struct device_attribute *attr, char *buf) 3069 { 3070 struct scsi_device *sdev = to_scsi_device(dev); 3071 3072 return scnprintf(buf, PAGE_SIZE, "%s\n", 3073 sdev->hostdata ? "superpipe" : "legacy"); 3074 } 3075 3076 /* 3077 * Host attributes 3078 */ 3079 static DEVICE_ATTR_RO(port0); 3080 static DEVICE_ATTR_RO(port1); 3081 static DEVICE_ATTR_RO(port2); 3082 static DEVICE_ATTR_RO(port3); 3083 static DEVICE_ATTR_RW(lun_mode); 3084 static DEVICE_ATTR_RO(ioctl_version); 3085 static DEVICE_ATTR_RO(port0_lun_table); 3086 static DEVICE_ATTR_RO(port1_lun_table); 3087 static DEVICE_ATTR_RO(port2_lun_table); 3088 static DEVICE_ATTR_RO(port3_lun_table); 3089 static DEVICE_ATTR_RW(irqpoll_weight); 3090 static DEVICE_ATTR_RW(num_hwqs); 3091 static DEVICE_ATTR_RW(hwq_mode); 3092 3093 static struct device_attribute *cxlflash_host_attrs[] = { 3094 &dev_attr_port0, 3095 &dev_attr_port1, 3096 &dev_attr_port2, 3097 &dev_attr_port3, 3098 &dev_attr_lun_mode, 3099 &dev_attr_ioctl_version, 3100 &dev_attr_port0_lun_table, 3101 &dev_attr_port1_lun_table, 3102 &dev_attr_port2_lun_table, 3103 &dev_attr_port3_lun_table, 3104 &dev_attr_irqpoll_weight, 3105 &dev_attr_num_hwqs, 3106 &dev_attr_hwq_mode, 3107 NULL 3108 }; 3109 3110 /* 3111 * Device attributes 3112 */ 3113 static DEVICE_ATTR_RO(mode); 3114 3115 static struct device_attribute *cxlflash_dev_attrs[] = { 3116 &dev_attr_mode, 3117 NULL 3118 }; 3119 3120 /* 3121 * Host template 3122 */ 3123 static struct scsi_host_template driver_template = { 3124 .module = THIS_MODULE, 3125 .name = CXLFLASH_ADAPTER_NAME, 3126 .info = cxlflash_driver_info, 3127 .ioctl = cxlflash_ioctl, 3128 .proc_name = CXLFLASH_NAME, 3129 .queuecommand = cxlflash_queuecommand, 3130 .eh_abort_handler = cxlflash_eh_abort_handler, 3131 .eh_device_reset_handler = cxlflash_eh_device_reset_handler, 3132 .eh_host_reset_handler = cxlflash_eh_host_reset_handler, 3133 .change_queue_depth = cxlflash_change_queue_depth, 3134 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, 3135 .can_queue = CXLFLASH_MAX_CMDS, 3136 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1, 3137 .this_id = -1, 3138 .sg_tablesize = 1, /* No scatter gather support */ 3139 .max_sectors = CXLFLASH_MAX_SECTORS, 3140 .use_clustering = ENABLE_CLUSTERING, 3141 .shost_attrs = cxlflash_host_attrs, 3142 .sdev_attrs = cxlflash_dev_attrs, 3143 }; 3144 3145 /* 3146 * Device dependent values 3147 */ 3148 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, 3149 0ULL }; 3150 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, 3151 CXLFLASH_NOTIFY_SHUTDOWN }; 3152 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS, 3153 CXLFLASH_NOTIFY_SHUTDOWN }; 3154 3155 /* 3156 * PCI device binding table 3157 */ 3158 static struct pci_device_id cxlflash_pci_table[] = { 3159 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, 3160 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, 3161 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, 3162 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, 3163 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD, 3164 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals}, 3165 {} 3166 }; 3167 3168 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); 3169 3170 /** 3171 * cxlflash_worker_thread() - work thread handler for the AFU 3172 * @work: Work structure contained within cxlflash associated with host. 3173 * 3174 * Handles the following events: 3175 * - Link reset which cannot be performed on interrupt context due to 3176 * blocking up to a few seconds 3177 * - Rescan the host 3178 */ 3179 static void cxlflash_worker_thread(struct work_struct *work) 3180 { 3181 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, 3182 work_q); 3183 struct afu *afu = cfg->afu; 3184 struct device *dev = &cfg->dev->dev; 3185 __be64 __iomem *fc_port_regs; 3186 int port; 3187 ulong lock_flags; 3188 3189 /* Avoid MMIO if the device has failed */ 3190 3191 if (cfg->state != STATE_NORMAL) 3192 return; 3193 3194 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3195 3196 if (cfg->lr_state == LINK_RESET_REQUIRED) { 3197 port = cfg->lr_port; 3198 if (port < 0) 3199 dev_err(dev, "%s: invalid port index %d\n", 3200 __func__, port); 3201 else { 3202 spin_unlock_irqrestore(cfg->host->host_lock, 3203 lock_flags); 3204 3205 /* The reset can block... */ 3206 fc_port_regs = get_fc_port_regs(cfg, port); 3207 afu_link_reset(afu, port, fc_port_regs); 3208 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3209 } 3210 3211 cfg->lr_state = LINK_RESET_COMPLETE; 3212 } 3213 3214 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); 3215 3216 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) 3217 scsi_scan_host(cfg->host); 3218 } 3219 3220 /** 3221 * cxlflash_chr_open() - character device open handler 3222 * @inode: Device inode associated with this character device. 3223 * @file: File pointer for this device. 3224 * 3225 * Only users with admin privileges are allowed to open the character device. 3226 * 3227 * Return: 0 on success, -errno on failure 3228 */ 3229 static int cxlflash_chr_open(struct inode *inode, struct file *file) 3230 { 3231 struct cxlflash_cfg *cfg; 3232 3233 if (!capable(CAP_SYS_ADMIN)) 3234 return -EACCES; 3235 3236 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev); 3237 file->private_data = cfg; 3238 3239 return 0; 3240 } 3241 3242 /** 3243 * decode_hioctl() - translates encoded host ioctl to easily identifiable string 3244 * @cmd: The host ioctl command to decode. 3245 * 3246 * Return: A string identifying the decoded host ioctl. 3247 */ 3248 static char *decode_hioctl(int cmd) 3249 { 3250 switch (cmd) { 3251 case HT_CXLFLASH_LUN_PROVISION: 3252 return __stringify_1(HT_CXLFLASH_LUN_PROVISION); 3253 } 3254 3255 return "UNKNOWN"; 3256 } 3257 3258 /** 3259 * cxlflash_lun_provision() - host LUN provisioning handler 3260 * @cfg: Internal structure associated with the host. 3261 * @arg: Kernel copy of userspace ioctl data structure. 3262 * 3263 * Return: 0 on success, -errno on failure 3264 */ 3265 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg, 3266 struct ht_cxlflash_lun_provision *lunprov) 3267 { 3268 struct afu *afu = cfg->afu; 3269 struct device *dev = &cfg->dev->dev; 3270 struct sisl_ioarcb rcb; 3271 struct sisl_ioasa asa; 3272 __be64 __iomem *fc_port_regs; 3273 u16 port = lunprov->port; 3274 u16 scmd = lunprov->hdr.subcmd; 3275 u16 type; 3276 u64 reg; 3277 u64 size; 3278 u64 lun_id; 3279 int rc = 0; 3280 3281 if (!afu_is_lun_provision(afu)) { 3282 rc = -ENOTSUPP; 3283 goto out; 3284 } 3285 3286 if (port >= cfg->num_fc_ports) { 3287 rc = -EINVAL; 3288 goto out; 3289 } 3290 3291 switch (scmd) { 3292 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN: 3293 type = SISL_AFU_LUN_PROVISION_CREATE; 3294 size = lunprov->size; 3295 lun_id = 0; 3296 break; 3297 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN: 3298 type = SISL_AFU_LUN_PROVISION_DELETE; 3299 size = 0; 3300 lun_id = lunprov->lun_id; 3301 break; 3302 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT: 3303 fc_port_regs = get_fc_port_regs(cfg, port); 3304 3305 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]); 3306 lunprov->max_num_luns = reg; 3307 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]); 3308 lunprov->cur_num_luns = reg; 3309 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]); 3310 lunprov->max_cap_port = reg; 3311 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]); 3312 lunprov->cur_cap_port = reg; 3313 3314 goto out; 3315 default: 3316 rc = -EINVAL; 3317 goto out; 3318 } 3319 3320 memset(&rcb, 0, sizeof(rcb)); 3321 memset(&asa, 0, sizeof(asa)); 3322 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 3323 rcb.lun_id = lun_id; 3324 rcb.msi = SISL_MSI_RRQ_UPDATED; 3325 rcb.timeout = MC_LUN_PROV_TIMEOUT; 3326 rcb.ioasa = &asa; 3327 3328 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION; 3329 rcb.cdb[1] = type; 3330 rcb.cdb[2] = port; 3331 put_unaligned_be64(size, &rcb.cdb[8]); 3332 3333 rc = send_afu_cmd(afu, &rcb); 3334 if (rc) { 3335 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3336 __func__, rc, asa.ioasc, asa.afu_extra); 3337 goto out; 3338 } 3339 3340 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) { 3341 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo; 3342 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid)); 3343 } 3344 out: 3345 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3346 return rc; 3347 } 3348 3349 /** 3350 * cxlflash_afu_debug() - host AFU debug handler 3351 * @cfg: Internal structure associated with the host. 3352 * @arg: Kernel copy of userspace ioctl data structure. 3353 * 3354 * For debug requests requiring a data buffer, always provide an aligned 3355 * (cache line) buffer to the AFU to appease any alignment requirements. 3356 * 3357 * Return: 0 on success, -errno on failure 3358 */ 3359 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg, 3360 struct ht_cxlflash_afu_debug *afu_dbg) 3361 { 3362 struct afu *afu = cfg->afu; 3363 struct device *dev = &cfg->dev->dev; 3364 struct sisl_ioarcb rcb; 3365 struct sisl_ioasa asa; 3366 char *buf = NULL; 3367 char *kbuf = NULL; 3368 void __user *ubuf = (__force void __user *)afu_dbg->data_ea; 3369 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD; 3370 u32 ulen = afu_dbg->data_len; 3371 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE; 3372 int rc = 0; 3373 3374 if (!afu_is_afu_debug(afu)) { 3375 rc = -ENOTSUPP; 3376 goto out; 3377 } 3378 3379 if (ulen) { 3380 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN; 3381 3382 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) { 3383 rc = -EINVAL; 3384 goto out; 3385 } 3386 3387 if (unlikely(!access_ok(is_write ? VERIFY_READ : VERIFY_WRITE, 3388 ubuf, ulen))) { 3389 rc = -EFAULT; 3390 goto out; 3391 } 3392 3393 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL); 3394 if (unlikely(!buf)) { 3395 rc = -ENOMEM; 3396 goto out; 3397 } 3398 3399 kbuf = PTR_ALIGN(buf, cache_line_size()); 3400 3401 if (is_write) { 3402 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 3403 3404 if (copy_from_user(kbuf, ubuf, ulen)) { 3405 rc = -EFAULT; 3406 goto out; 3407 } 3408 } 3409 } 3410 3411 memset(&rcb, 0, sizeof(rcb)); 3412 memset(&asa, 0, sizeof(asa)); 3413 3414 rcb.req_flags = req_flags; 3415 rcb.msi = SISL_MSI_RRQ_UPDATED; 3416 rcb.timeout = MC_AFU_DEBUG_TIMEOUT; 3417 rcb.ioasa = &asa; 3418 3419 if (ulen) { 3420 rcb.data_len = ulen; 3421 rcb.data_ea = (uintptr_t)kbuf; 3422 } 3423 3424 rcb.cdb[0] = SISL_AFU_CMD_DEBUG; 3425 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd, 3426 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN); 3427 3428 rc = send_afu_cmd(afu, &rcb); 3429 if (rc) { 3430 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3431 __func__, rc, asa.ioasc, asa.afu_extra); 3432 goto out; 3433 } 3434 3435 if (ulen && !is_write) { 3436 if (copy_to_user(ubuf, kbuf, ulen)) 3437 rc = -EFAULT; 3438 } 3439 out: 3440 kfree(buf); 3441 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3442 return rc; 3443 } 3444 3445 /** 3446 * cxlflash_chr_ioctl() - character device IOCTL handler 3447 * @file: File pointer for this device. 3448 * @cmd: IOCTL command. 3449 * @arg: Userspace ioctl data structure. 3450 * 3451 * A read/write semaphore is used to implement a 'drain' of currently 3452 * running ioctls. The read semaphore is taken at the beginning of each 3453 * ioctl thread and released upon concluding execution. Additionally the 3454 * semaphore should be released and then reacquired in any ioctl execution 3455 * path which will wait for an event to occur that is outside the scope of 3456 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running, 3457 * a thread simply needs to acquire the write semaphore. 3458 * 3459 * Return: 0 on success, -errno on failure 3460 */ 3461 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd, 3462 unsigned long arg) 3463 { 3464 typedef int (*hioctl) (struct cxlflash_cfg *, void *); 3465 3466 struct cxlflash_cfg *cfg = file->private_data; 3467 struct device *dev = &cfg->dev->dev; 3468 char buf[sizeof(union cxlflash_ht_ioctls)]; 3469 void __user *uarg = (void __user *)arg; 3470 struct ht_cxlflash_hdr *hdr; 3471 size_t size = 0; 3472 bool known_ioctl = false; 3473 int idx = 0; 3474 int rc = 0; 3475 hioctl do_ioctl = NULL; 3476 3477 static const struct { 3478 size_t size; 3479 hioctl ioctl; 3480 } ioctl_tbl[] = { /* NOTE: order matters here */ 3481 { sizeof(struct ht_cxlflash_lun_provision), 3482 (hioctl)cxlflash_lun_provision }, 3483 { sizeof(struct ht_cxlflash_afu_debug), 3484 (hioctl)cxlflash_afu_debug }, 3485 }; 3486 3487 /* Hold read semaphore so we can drain if needed */ 3488 down_read(&cfg->ioctl_rwsem); 3489 3490 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n", 3491 __func__, cmd, idx, sizeof(ioctl_tbl)); 3492 3493 switch (cmd) { 3494 case HT_CXLFLASH_LUN_PROVISION: 3495 case HT_CXLFLASH_AFU_DEBUG: 3496 known_ioctl = true; 3497 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd); 3498 size = ioctl_tbl[idx].size; 3499 do_ioctl = ioctl_tbl[idx].ioctl; 3500 3501 if (likely(do_ioctl)) 3502 break; 3503 3504 /* fall through */ 3505 default: 3506 rc = -EINVAL; 3507 goto out; 3508 } 3509 3510 if (unlikely(copy_from_user(&buf, uarg, size))) { 3511 dev_err(dev, "%s: copy_from_user() fail " 3512 "size=%lu cmd=%d (%s) uarg=%p\n", 3513 __func__, size, cmd, decode_hioctl(cmd), uarg); 3514 rc = -EFAULT; 3515 goto out; 3516 } 3517 3518 hdr = (struct ht_cxlflash_hdr *)&buf; 3519 if (hdr->version != HT_CXLFLASH_VERSION_0) { 3520 dev_dbg(dev, "%s: Version %u not supported for %s\n", 3521 __func__, hdr->version, decode_hioctl(cmd)); 3522 rc = -EINVAL; 3523 goto out; 3524 } 3525 3526 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) { 3527 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__); 3528 rc = -EINVAL; 3529 goto out; 3530 } 3531 3532 rc = do_ioctl(cfg, (void *)&buf); 3533 if (likely(!rc)) 3534 if (unlikely(copy_to_user(uarg, &buf, size))) { 3535 dev_err(dev, "%s: copy_to_user() fail " 3536 "size=%lu cmd=%d (%s) uarg=%p\n", 3537 __func__, size, cmd, decode_hioctl(cmd), uarg); 3538 rc = -EFAULT; 3539 } 3540 3541 /* fall through to exit */ 3542 3543 out: 3544 up_read(&cfg->ioctl_rwsem); 3545 if (unlikely(rc && known_ioctl)) 3546 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3547 __func__, decode_hioctl(cmd), cmd, rc); 3548 else 3549 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3550 __func__, decode_hioctl(cmd), cmd, rc); 3551 return rc; 3552 } 3553 3554 /* 3555 * Character device file operations 3556 */ 3557 static const struct file_operations cxlflash_chr_fops = { 3558 .owner = THIS_MODULE, 3559 .open = cxlflash_chr_open, 3560 .unlocked_ioctl = cxlflash_chr_ioctl, 3561 .compat_ioctl = cxlflash_chr_ioctl, 3562 }; 3563 3564 /** 3565 * init_chrdev() - initialize the character device for the host 3566 * @cfg: Internal structure associated with the host. 3567 * 3568 * Return: 0 on success, -errno on failure 3569 */ 3570 static int init_chrdev(struct cxlflash_cfg *cfg) 3571 { 3572 struct device *dev = &cfg->dev->dev; 3573 struct device *char_dev; 3574 dev_t devno; 3575 int minor; 3576 int rc = 0; 3577 3578 minor = cxlflash_get_minor(); 3579 if (unlikely(minor < 0)) { 3580 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__); 3581 rc = -ENOSPC; 3582 goto out; 3583 } 3584 3585 devno = MKDEV(cxlflash_major, minor); 3586 cdev_init(&cfg->cdev, &cxlflash_chr_fops); 3587 3588 rc = cdev_add(&cfg->cdev, devno, 1); 3589 if (rc) { 3590 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc); 3591 goto err1; 3592 } 3593 3594 char_dev = device_create(cxlflash_class, NULL, devno, 3595 NULL, "cxlflash%d", minor); 3596 if (IS_ERR(char_dev)) { 3597 rc = PTR_ERR(char_dev); 3598 dev_err(dev, "%s: device_create failed rc=%d\n", 3599 __func__, rc); 3600 goto err2; 3601 } 3602 3603 cfg->chardev = char_dev; 3604 out: 3605 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3606 return rc; 3607 err2: 3608 cdev_del(&cfg->cdev); 3609 err1: 3610 cxlflash_put_minor(minor); 3611 goto out; 3612 } 3613 3614 /** 3615 * cxlflash_probe() - PCI entry point to add host 3616 * @pdev: PCI device associated with the host. 3617 * @dev_id: PCI device id associated with device. 3618 * 3619 * The device will initially start out in a 'probing' state and 3620 * transition to the 'normal' state at the end of a successful 3621 * probe. Should an EEH event occur during probe, the notification 3622 * thread (error_detected()) will wait until the probe handler 3623 * is nearly complete. At that time, the device will be moved to 3624 * a 'probed' state and the EEH thread woken up to drive the slot 3625 * reset and recovery (device moves to 'normal' state). Meanwhile, 3626 * the probe will be allowed to exit successfully. 3627 * 3628 * Return: 0 on success, -errno on failure 3629 */ 3630 static int cxlflash_probe(struct pci_dev *pdev, 3631 const struct pci_device_id *dev_id) 3632 { 3633 struct Scsi_Host *host; 3634 struct cxlflash_cfg *cfg = NULL; 3635 struct device *dev = &pdev->dev; 3636 struct dev_dependent_vals *ddv; 3637 int rc = 0; 3638 int k; 3639 3640 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", 3641 __func__, pdev->irq); 3642 3643 ddv = (struct dev_dependent_vals *)dev_id->driver_data; 3644 driver_template.max_sectors = ddv->max_sectors; 3645 3646 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); 3647 if (!host) { 3648 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__); 3649 rc = -ENOMEM; 3650 goto out; 3651 } 3652 3653 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; 3654 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; 3655 host->unique_id = host->host_no; 3656 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; 3657 3658 cfg = shost_priv(host); 3659 cfg->host = host; 3660 rc = alloc_mem(cfg); 3661 if (rc) { 3662 dev_err(dev, "%s: alloc_mem failed\n", __func__); 3663 rc = -ENOMEM; 3664 scsi_host_put(cfg->host); 3665 goto out; 3666 } 3667 3668 cfg->init_state = INIT_STATE_NONE; 3669 cfg->dev = pdev; 3670 cfg->cxl_fops = cxlflash_cxl_fops; 3671 3672 /* 3673 * Promoted LUNs move to the top of the LUN table. The rest stay on 3674 * the bottom half. The bottom half grows from the end (index = 255), 3675 * whereas the top half grows from the beginning (index = 0). 3676 * 3677 * Initialize the last LUN index for all possible ports. 3678 */ 3679 cfg->promote_lun_index = 0; 3680 3681 for (k = 0; k < MAX_FC_PORTS; k++) 3682 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1; 3683 3684 cfg->dev_id = (struct pci_device_id *)dev_id; 3685 3686 init_waitqueue_head(&cfg->tmf_waitq); 3687 init_waitqueue_head(&cfg->reset_waitq); 3688 3689 INIT_WORK(&cfg->work_q, cxlflash_worker_thread); 3690 cfg->lr_state = LINK_RESET_INVALID; 3691 cfg->lr_port = -1; 3692 spin_lock_init(&cfg->tmf_slock); 3693 mutex_init(&cfg->ctx_tbl_list_mutex); 3694 mutex_init(&cfg->ctx_recovery_mutex); 3695 init_rwsem(&cfg->ioctl_rwsem); 3696 INIT_LIST_HEAD(&cfg->ctx_err_recovery); 3697 INIT_LIST_HEAD(&cfg->lluns); 3698 3699 pci_set_drvdata(pdev, cfg); 3700 3701 cfg->cxl_afu = cxl_pci_to_afu(pdev); 3702 3703 rc = init_pci(cfg); 3704 if (rc) { 3705 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc); 3706 goto out_remove; 3707 } 3708 cfg->init_state = INIT_STATE_PCI; 3709 3710 rc = init_afu(cfg); 3711 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) { 3712 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc); 3713 goto out_remove; 3714 } 3715 cfg->init_state = INIT_STATE_AFU; 3716 3717 rc = init_scsi(cfg); 3718 if (rc) { 3719 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc); 3720 goto out_remove; 3721 } 3722 cfg->init_state = INIT_STATE_SCSI; 3723 3724 rc = init_chrdev(cfg); 3725 if (rc) { 3726 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc); 3727 goto out_remove; 3728 } 3729 cfg->init_state = INIT_STATE_CDEV; 3730 3731 if (wq_has_sleeper(&cfg->reset_waitq)) { 3732 cfg->state = STATE_PROBED; 3733 wake_up_all(&cfg->reset_waitq); 3734 } else 3735 cfg->state = STATE_NORMAL; 3736 out: 3737 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3738 return rc; 3739 3740 out_remove: 3741 cxlflash_remove(pdev); 3742 goto out; 3743 } 3744 3745 /** 3746 * cxlflash_pci_error_detected() - called when a PCI error is detected 3747 * @pdev: PCI device struct. 3748 * @state: PCI channel state. 3749 * 3750 * When an EEH occurs during an active reset, wait until the reset is 3751 * complete and then take action based upon the device state. 3752 * 3753 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT 3754 */ 3755 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, 3756 pci_channel_state_t state) 3757 { 3758 int rc = 0; 3759 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3760 struct device *dev = &cfg->dev->dev; 3761 3762 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); 3763 3764 switch (state) { 3765 case pci_channel_io_frozen: 3766 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 3767 cfg->state != STATE_PROBING); 3768 if (cfg->state == STATE_FAILTERM) 3769 return PCI_ERS_RESULT_DISCONNECT; 3770 3771 cfg->state = STATE_RESET; 3772 scsi_block_requests(cfg->host); 3773 drain_ioctls(cfg); 3774 rc = cxlflash_mark_contexts_error(cfg); 3775 if (unlikely(rc)) 3776 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n", 3777 __func__, rc); 3778 term_afu(cfg); 3779 return PCI_ERS_RESULT_NEED_RESET; 3780 case pci_channel_io_perm_failure: 3781 cfg->state = STATE_FAILTERM; 3782 wake_up_all(&cfg->reset_waitq); 3783 scsi_unblock_requests(cfg->host); 3784 return PCI_ERS_RESULT_DISCONNECT; 3785 default: 3786 break; 3787 } 3788 return PCI_ERS_RESULT_NEED_RESET; 3789 } 3790 3791 /** 3792 * cxlflash_pci_slot_reset() - called when PCI slot has been reset 3793 * @pdev: PCI device struct. 3794 * 3795 * This routine is called by the pci error recovery code after the PCI 3796 * slot has been reset, just before we should resume normal operations. 3797 * 3798 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT 3799 */ 3800 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) 3801 { 3802 int rc = 0; 3803 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3804 struct device *dev = &cfg->dev->dev; 3805 3806 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3807 3808 rc = init_afu(cfg); 3809 if (unlikely(rc)) { 3810 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc); 3811 return PCI_ERS_RESULT_DISCONNECT; 3812 } 3813 3814 return PCI_ERS_RESULT_RECOVERED; 3815 } 3816 3817 /** 3818 * cxlflash_pci_resume() - called when normal operation can resume 3819 * @pdev: PCI device struct 3820 */ 3821 static void cxlflash_pci_resume(struct pci_dev *pdev) 3822 { 3823 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3824 struct device *dev = &cfg->dev->dev; 3825 3826 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3827 3828 cfg->state = STATE_NORMAL; 3829 wake_up_all(&cfg->reset_waitq); 3830 scsi_unblock_requests(cfg->host); 3831 } 3832 3833 /** 3834 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class 3835 * @dev: Character device. 3836 * @mode: Mode that can be used to verify access. 3837 * 3838 * Return: Allocated string describing the devtmpfs structure. 3839 */ 3840 static char *cxlflash_devnode(struct device *dev, umode_t *mode) 3841 { 3842 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev)); 3843 } 3844 3845 /** 3846 * cxlflash_class_init() - create character device class 3847 * 3848 * Return: 0 on success, -errno on failure 3849 */ 3850 static int cxlflash_class_init(void) 3851 { 3852 dev_t devno; 3853 int rc = 0; 3854 3855 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash"); 3856 if (unlikely(rc)) { 3857 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc); 3858 goto out; 3859 } 3860 3861 cxlflash_major = MAJOR(devno); 3862 3863 cxlflash_class = class_create(THIS_MODULE, "cxlflash"); 3864 if (IS_ERR(cxlflash_class)) { 3865 rc = PTR_ERR(cxlflash_class); 3866 pr_err("%s: class_create failed rc=%d\n", __func__, rc); 3867 goto err; 3868 } 3869 3870 cxlflash_class->devnode = cxlflash_devnode; 3871 out: 3872 pr_debug("%s: returning rc=%d\n", __func__, rc); 3873 return rc; 3874 err: 3875 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3876 goto out; 3877 } 3878 3879 /** 3880 * cxlflash_class_exit() - destroy character device class 3881 */ 3882 static void cxlflash_class_exit(void) 3883 { 3884 dev_t devno = MKDEV(cxlflash_major, 0); 3885 3886 class_destroy(cxlflash_class); 3887 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3888 } 3889 3890 static const struct pci_error_handlers cxlflash_err_handler = { 3891 .error_detected = cxlflash_pci_error_detected, 3892 .slot_reset = cxlflash_pci_slot_reset, 3893 .resume = cxlflash_pci_resume, 3894 }; 3895 3896 /* 3897 * PCI device structure 3898 */ 3899 static struct pci_driver cxlflash_driver = { 3900 .name = CXLFLASH_NAME, 3901 .id_table = cxlflash_pci_table, 3902 .probe = cxlflash_probe, 3903 .remove = cxlflash_remove, 3904 .shutdown = cxlflash_remove, 3905 .err_handler = &cxlflash_err_handler, 3906 }; 3907 3908 /** 3909 * init_cxlflash() - module entry point 3910 * 3911 * Return: 0 on success, -errno on failure 3912 */ 3913 static int __init init_cxlflash(void) 3914 { 3915 int rc; 3916 3917 check_sizes(); 3918 cxlflash_list_init(); 3919 rc = cxlflash_class_init(); 3920 if (unlikely(rc)) 3921 goto out; 3922 3923 rc = pci_register_driver(&cxlflash_driver); 3924 if (unlikely(rc)) 3925 goto err; 3926 out: 3927 pr_debug("%s: returning rc=%d\n", __func__, rc); 3928 return rc; 3929 err: 3930 cxlflash_class_exit(); 3931 goto out; 3932 } 3933 3934 /** 3935 * exit_cxlflash() - module exit point 3936 */ 3937 static void __exit exit_cxlflash(void) 3938 { 3939 cxlflash_term_global_luns(); 3940 cxlflash_free_errpage(); 3941 3942 pci_unregister_driver(&cxlflash_driver); 3943 cxlflash_class_exit(); 3944 } 3945 3946 module_init(init_cxlflash); 3947 module_exit(exit_cxlflash); 3948