xref: /openbmc/linux/drivers/scsi/cxlflash/main.c (revision 4e1a33b1)
1 /*
2  * CXL Flash Device Driver
3  *
4  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6  *
7  * Copyright (C) 2015 IBM Corporation
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 
20 #include <asm/unaligned.h>
21 
22 #include <misc/cxl.h>
23 
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27 
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31 
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36 
37 /**
38  * process_cmd_err() - command error handler
39  * @cmd:	AFU command that experienced the error.
40  * @scp:	SCSI command associated with the AFU command in error.
41  *
42  * Translates error bits from AFU command to SCSI command results.
43  */
44 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
45 {
46 	struct afu *afu = cmd->parent;
47 	struct cxlflash_cfg *cfg = afu->parent;
48 	struct device *dev = &cfg->dev->dev;
49 	struct sisl_ioarcb *ioarcb;
50 	struct sisl_ioasa *ioasa;
51 	u32 resid;
52 
53 	if (unlikely(!cmd))
54 		return;
55 
56 	ioarcb = &(cmd->rcb);
57 	ioasa = &(cmd->sa);
58 
59 	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
60 		resid = ioasa->resid;
61 		scsi_set_resid(scp, resid);
62 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
63 			__func__, cmd, scp, resid);
64 	}
65 
66 	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
67 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
68 			__func__, cmd, scp);
69 		scp->result = (DID_ERROR << 16);
70 	}
71 
72 	dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
73 		"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
74 		ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
75 		ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
76 
77 	if (ioasa->rc.scsi_rc) {
78 		/* We have a SCSI status */
79 		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
80 			memcpy(scp->sense_buffer, ioasa->sense_data,
81 			       SISL_SENSE_DATA_LEN);
82 			scp->result = ioasa->rc.scsi_rc;
83 		} else
84 			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
85 	}
86 
87 	/*
88 	 * We encountered an error. Set scp->result based on nature
89 	 * of error.
90 	 */
91 	if (ioasa->rc.fc_rc) {
92 		/* We have an FC status */
93 		switch (ioasa->rc.fc_rc) {
94 		case SISL_FC_RC_LINKDOWN:
95 			scp->result = (DID_REQUEUE << 16);
96 			break;
97 		case SISL_FC_RC_RESID:
98 			/* This indicates an FCP resid underrun */
99 			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
100 				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
101 				 * then we will handle this error else where.
102 				 * If not then we must handle it here.
103 				 * This is probably an AFU bug.
104 				 */
105 				scp->result = (DID_ERROR << 16);
106 			}
107 			break;
108 		case SISL_FC_RC_RESIDERR:
109 			/* Resid mismatch between adapter and device */
110 		case SISL_FC_RC_TGTABORT:
111 		case SISL_FC_RC_ABORTOK:
112 		case SISL_FC_RC_ABORTFAIL:
113 		case SISL_FC_RC_NOLOGI:
114 		case SISL_FC_RC_ABORTPEND:
115 		case SISL_FC_RC_WRABORTPEND:
116 		case SISL_FC_RC_NOEXP:
117 		case SISL_FC_RC_INUSE:
118 			scp->result = (DID_ERROR << 16);
119 			break;
120 		}
121 	}
122 
123 	if (ioasa->rc.afu_rc) {
124 		/* We have an AFU error */
125 		switch (ioasa->rc.afu_rc) {
126 		case SISL_AFU_RC_NO_CHANNELS:
127 			scp->result = (DID_NO_CONNECT << 16);
128 			break;
129 		case SISL_AFU_RC_DATA_DMA_ERR:
130 			switch (ioasa->afu_extra) {
131 			case SISL_AFU_DMA_ERR_PAGE_IN:
132 				/* Retry */
133 				scp->result = (DID_IMM_RETRY << 16);
134 				break;
135 			case SISL_AFU_DMA_ERR_INVALID_EA:
136 			default:
137 				scp->result = (DID_ERROR << 16);
138 			}
139 			break;
140 		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
141 			/* Retry */
142 			scp->result = (DID_ALLOC_FAILURE << 16);
143 			break;
144 		default:
145 			scp->result = (DID_ERROR << 16);
146 		}
147 	}
148 }
149 
150 /**
151  * cmd_complete() - command completion handler
152  * @cmd:	AFU command that has completed.
153  *
154  * Prepares and submits command that has either completed or timed out to
155  * the SCSI stack. Checks AFU command back into command pool for non-internal
156  * (cmd->scp populated) commands.
157  */
158 static void cmd_complete(struct afu_cmd *cmd)
159 {
160 	struct scsi_cmnd *scp;
161 	ulong lock_flags;
162 	struct afu *afu = cmd->parent;
163 	struct cxlflash_cfg *cfg = afu->parent;
164 	struct device *dev = &cfg->dev->dev;
165 	bool cmd_is_tmf;
166 
167 	if (cmd->scp) {
168 		scp = cmd->scp;
169 		if (unlikely(cmd->sa.ioasc))
170 			process_cmd_err(cmd, scp);
171 		else
172 			scp->result = (DID_OK << 16);
173 
174 		cmd_is_tmf = cmd->cmd_tmf;
175 
176 		dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
177 				    __func__, scp, scp->result, cmd->sa.ioasc);
178 
179 		scsi_dma_unmap(scp);
180 		scp->scsi_done(scp);
181 
182 		if (cmd_is_tmf) {
183 			spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
184 			cfg->tmf_active = false;
185 			wake_up_all_locked(&cfg->tmf_waitq);
186 			spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
187 		}
188 	} else
189 		complete(&cmd->cevent);
190 }
191 
192 /**
193  * context_reset() - reset command owner context via specified register
194  * @cmd:	AFU command that timed out.
195  * @reset_reg:	MMIO register to perform reset.
196  */
197 static void context_reset(struct afu_cmd *cmd, __be64 __iomem *reset_reg)
198 {
199 	int nretry = 0;
200 	u64 rrin = 0x1;
201 	struct afu *afu = cmd->parent;
202 	struct cxlflash_cfg *cfg = afu->parent;
203 	struct device *dev = &cfg->dev->dev;
204 
205 	dev_dbg(dev, "%s: cmd=%p\n", __func__, cmd);
206 
207 	writeq_be(rrin, reset_reg);
208 	do {
209 		rrin = readq_be(reset_reg);
210 		if (rrin != 0x1)
211 			break;
212 		/* Double delay each time */
213 		udelay(1 << nretry);
214 	} while (nretry++ < MC_ROOM_RETRY_CNT);
215 
216 	dev_dbg(dev, "%s: returning rrin=%016llx nretry=%d\n",
217 		__func__, rrin, nretry);
218 }
219 
220 /**
221  * context_reset_ioarrin() - reset command owner context via IOARRIN register
222  * @cmd:	AFU command that timed out.
223  */
224 static void context_reset_ioarrin(struct afu_cmd *cmd)
225 {
226 	struct afu *afu = cmd->parent;
227 
228 	context_reset(cmd, &afu->host_map->ioarrin);
229 }
230 
231 /**
232  * context_reset_sq() - reset command owner context w/ SQ Context Reset register
233  * @cmd:	AFU command that timed out.
234  */
235 static void context_reset_sq(struct afu_cmd *cmd)
236 {
237 	struct afu *afu = cmd->parent;
238 
239 	context_reset(cmd, &afu->host_map->sq_ctx_reset);
240 }
241 
242 /**
243  * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
244  * @afu:	AFU associated with the host.
245  * @cmd:	AFU command to send.
246  *
247  * Return:
248  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
249  */
250 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
251 {
252 	struct cxlflash_cfg *cfg = afu->parent;
253 	struct device *dev = &cfg->dev->dev;
254 	int rc = 0;
255 	s64 room;
256 	ulong lock_flags;
257 
258 	/*
259 	 * To avoid the performance penalty of MMIO, spread the update of
260 	 * 'room' over multiple commands.
261 	 */
262 	spin_lock_irqsave(&afu->rrin_slock, lock_flags);
263 	if (--afu->room < 0) {
264 		room = readq_be(&afu->host_map->cmd_room);
265 		if (room <= 0) {
266 			dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
267 					    "0x%02X, room=0x%016llX\n",
268 					    __func__, cmd->rcb.cdb[0], room);
269 			afu->room = 0;
270 			rc = SCSI_MLQUEUE_HOST_BUSY;
271 			goto out;
272 		}
273 		afu->room = room - 1;
274 	}
275 
276 	writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
277 out:
278 	spin_unlock_irqrestore(&afu->rrin_slock, lock_flags);
279 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
280 		cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
281 	return rc;
282 }
283 
284 /**
285  * send_cmd_sq() - sends an AFU command via SQ ring
286  * @afu:	AFU associated with the host.
287  * @cmd:	AFU command to send.
288  *
289  * Return:
290  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
291  */
292 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
293 {
294 	struct cxlflash_cfg *cfg = afu->parent;
295 	struct device *dev = &cfg->dev->dev;
296 	int rc = 0;
297 	int newval;
298 	ulong lock_flags;
299 
300 	newval = atomic_dec_if_positive(&afu->hsq_credits);
301 	if (newval <= 0) {
302 		rc = SCSI_MLQUEUE_HOST_BUSY;
303 		goto out;
304 	}
305 
306 	cmd->rcb.ioasa = &cmd->sa;
307 
308 	spin_lock_irqsave(&afu->hsq_slock, lock_flags);
309 
310 	*afu->hsq_curr = cmd->rcb;
311 	if (afu->hsq_curr < afu->hsq_end)
312 		afu->hsq_curr++;
313 	else
314 		afu->hsq_curr = afu->hsq_start;
315 	writeq_be((u64)afu->hsq_curr, &afu->host_map->sq_tail);
316 
317 	spin_unlock_irqrestore(&afu->hsq_slock, lock_flags);
318 out:
319 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
320 	       "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
321 	       cmd->rcb.data_ea, cmd->rcb.ioasa, rc, afu->hsq_curr,
322 	       readq_be(&afu->host_map->sq_head),
323 	       readq_be(&afu->host_map->sq_tail));
324 	return rc;
325 }
326 
327 /**
328  * wait_resp() - polls for a response or timeout to a sent AFU command
329  * @afu:	AFU associated with the host.
330  * @cmd:	AFU command that was sent.
331  *
332  * Return:
333  *	0 on success, -1 on timeout/error
334  */
335 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
336 {
337 	struct cxlflash_cfg *cfg = afu->parent;
338 	struct device *dev = &cfg->dev->dev;
339 	int rc = 0;
340 	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
341 
342 	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
343 	if (!timeout) {
344 		afu->context_reset(cmd);
345 		rc = -1;
346 	}
347 
348 	if (unlikely(cmd->sa.ioasc != 0)) {
349 		dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
350 			__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
351 		rc = -1;
352 	}
353 
354 	return rc;
355 }
356 
357 /**
358  * send_tmf() - sends a Task Management Function (TMF)
359  * @afu:	AFU to checkout from.
360  * @scp:	SCSI command from stack.
361  * @tmfcmd:	TMF command to send.
362  *
363  * Return:
364  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
365  */
366 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
367 {
368 	u32 port_sel = scp->device->channel + 1;
369 	struct cxlflash_cfg *cfg = shost_priv(scp->device->host);
370 	struct afu_cmd *cmd = sc_to_afucz(scp);
371 	struct device *dev = &cfg->dev->dev;
372 	ulong lock_flags;
373 	int rc = 0;
374 	ulong to;
375 
376 	/* When Task Management Function is active do not send another */
377 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
378 	if (cfg->tmf_active)
379 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
380 						  !cfg->tmf_active,
381 						  cfg->tmf_slock);
382 	cfg->tmf_active = true;
383 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
384 
385 	cmd->scp = scp;
386 	cmd->parent = afu;
387 	cmd->cmd_tmf = true;
388 
389 	cmd->rcb.ctx_id = afu->ctx_hndl;
390 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
391 	cmd->rcb.port_sel = port_sel;
392 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
393 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
394 			      SISL_REQ_FLAGS_SUP_UNDERRUN |
395 			      SISL_REQ_FLAGS_TMF_CMD);
396 	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
397 
398 	rc = afu->send_cmd(afu, cmd);
399 	if (unlikely(rc)) {
400 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
401 		cfg->tmf_active = false;
402 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
403 		goto out;
404 	}
405 
406 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
407 	to = msecs_to_jiffies(5000);
408 	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
409 						       !cfg->tmf_active,
410 						       cfg->tmf_slock,
411 						       to);
412 	if (!to) {
413 		cfg->tmf_active = false;
414 		dev_err(dev, "%s: TMF timed out\n", __func__);
415 		rc = -1;
416 	}
417 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
418 out:
419 	return rc;
420 }
421 
422 /**
423  * cxlflash_driver_info() - information handler for this host driver
424  * @host:	SCSI host associated with device.
425  *
426  * Return: A string describing the device.
427  */
428 static const char *cxlflash_driver_info(struct Scsi_Host *host)
429 {
430 	return CXLFLASH_ADAPTER_NAME;
431 }
432 
433 /**
434  * cxlflash_queuecommand() - sends a mid-layer request
435  * @host:	SCSI host associated with device.
436  * @scp:	SCSI command to send.
437  *
438  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
439  */
440 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
441 {
442 	struct cxlflash_cfg *cfg = shost_priv(host);
443 	struct afu *afu = cfg->afu;
444 	struct device *dev = &cfg->dev->dev;
445 	struct afu_cmd *cmd = sc_to_afucz(scp);
446 	struct scatterlist *sg = scsi_sglist(scp);
447 	u32 port_sel = scp->device->channel + 1;
448 	u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
449 	ulong lock_flags;
450 	int nseg = 0;
451 	int rc = 0;
452 
453 	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
454 			    "cdb=(%08x-%08x-%08x-%08x)\n",
455 			    __func__, scp, host->host_no, scp->device->channel,
456 			    scp->device->id, scp->device->lun,
457 			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
458 			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
459 			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
460 			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
461 
462 	/*
463 	 * If a Task Management Function is active, wait for it to complete
464 	 * before continuing with regular commands.
465 	 */
466 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
467 	if (cfg->tmf_active) {
468 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
469 		rc = SCSI_MLQUEUE_HOST_BUSY;
470 		goto out;
471 	}
472 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
473 
474 	switch (cfg->state) {
475 	case STATE_RESET:
476 		dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
477 		rc = SCSI_MLQUEUE_HOST_BUSY;
478 		goto out;
479 	case STATE_FAILTERM:
480 		dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
481 		scp->result = (DID_NO_CONNECT << 16);
482 		scp->scsi_done(scp);
483 		rc = 0;
484 		goto out;
485 	default:
486 		break;
487 	}
488 
489 	if (likely(sg)) {
490 		nseg = scsi_dma_map(scp);
491 		if (unlikely(nseg < 0)) {
492 			dev_err(dev, "%s: Fail DMA map\n", __func__);
493 			rc = SCSI_MLQUEUE_HOST_BUSY;
494 			goto out;
495 		}
496 
497 		cmd->rcb.data_len = sg_dma_len(sg);
498 		cmd->rcb.data_ea = sg_dma_address(sg);
499 	}
500 
501 	cmd->scp = scp;
502 	cmd->parent = afu;
503 
504 	cmd->rcb.ctx_id = afu->ctx_hndl;
505 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
506 	cmd->rcb.port_sel = port_sel;
507 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
508 
509 	if (scp->sc_data_direction == DMA_TO_DEVICE)
510 		req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
511 
512 	cmd->rcb.req_flags = req_flags;
513 	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
514 
515 	rc = afu->send_cmd(afu, cmd);
516 	if (unlikely(rc))
517 		scsi_dma_unmap(scp);
518 out:
519 	return rc;
520 }
521 
522 /**
523  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
524  * @cfg:	Internal structure associated with the host.
525  */
526 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
527 {
528 	struct pci_dev *pdev = cfg->dev;
529 
530 	if (pci_channel_offline(pdev))
531 		wait_event_timeout(cfg->reset_waitq,
532 				   !pci_channel_offline(pdev),
533 				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
534 }
535 
536 /**
537  * free_mem() - free memory associated with the AFU
538  * @cfg:	Internal structure associated with the host.
539  */
540 static void free_mem(struct cxlflash_cfg *cfg)
541 {
542 	struct afu *afu = cfg->afu;
543 
544 	if (cfg->afu) {
545 		free_pages((ulong)afu, get_order(sizeof(struct afu)));
546 		cfg->afu = NULL;
547 	}
548 }
549 
550 /**
551  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
552  * @cfg:	Internal structure associated with the host.
553  *
554  * Safe to call with AFU in a partially allocated/initialized state.
555  *
556  * Cancels scheduled worker threads, waits for any active internal AFU
557  * commands to timeout and then unmaps the MMIO space.
558  */
559 static void stop_afu(struct cxlflash_cfg *cfg)
560 {
561 	struct afu *afu = cfg->afu;
562 
563 	cancel_work_sync(&cfg->work_q);
564 
565 	if (likely(afu)) {
566 		while (atomic_read(&afu->cmds_active))
567 			ssleep(1);
568 		if (likely(afu->afu_map)) {
569 			cxl_psa_unmap((void __iomem *)afu->afu_map);
570 			afu->afu_map = NULL;
571 		}
572 	}
573 }
574 
575 /**
576  * term_intr() - disables all AFU interrupts
577  * @cfg:	Internal structure associated with the host.
578  * @level:	Depth of allocation, where to begin waterfall tear down.
579  *
580  * Safe to call with AFU/MC in partially allocated/initialized state.
581  */
582 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level)
583 {
584 	struct afu *afu = cfg->afu;
585 	struct device *dev = &cfg->dev->dev;
586 
587 	if (!afu || !cfg->mcctx) {
588 		dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
589 		return;
590 	}
591 
592 	switch (level) {
593 	case UNMAP_THREE:
594 		cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
595 	case UNMAP_TWO:
596 		cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
597 	case UNMAP_ONE:
598 		cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
599 	case FREE_IRQ:
600 		cxl_free_afu_irqs(cfg->mcctx);
601 		/* fall through */
602 	case UNDO_NOOP:
603 		/* No action required */
604 		break;
605 	}
606 }
607 
608 /**
609  * term_mc() - terminates the master context
610  * @cfg:	Internal structure associated with the host.
611  * @level:	Depth of allocation, where to begin waterfall tear down.
612  *
613  * Safe to call with AFU/MC in partially allocated/initialized state.
614  */
615 static void term_mc(struct cxlflash_cfg *cfg)
616 {
617 	int rc = 0;
618 	struct afu *afu = cfg->afu;
619 	struct device *dev = &cfg->dev->dev;
620 
621 	if (!afu || !cfg->mcctx) {
622 		dev_err(dev, "%s: returning with NULL afu or MC\n", __func__);
623 		return;
624 	}
625 
626 	rc = cxl_stop_context(cfg->mcctx);
627 	WARN_ON(rc);
628 	cfg->mcctx = NULL;
629 }
630 
631 /**
632  * term_afu() - terminates the AFU
633  * @cfg:	Internal structure associated with the host.
634  *
635  * Safe to call with AFU/MC in partially allocated/initialized state.
636  */
637 static void term_afu(struct cxlflash_cfg *cfg)
638 {
639 	struct device *dev = &cfg->dev->dev;
640 
641 	/*
642 	 * Tear down is carefully orchestrated to ensure
643 	 * no interrupts can come in when the problem state
644 	 * area is unmapped.
645 	 *
646 	 * 1) Disable all AFU interrupts
647 	 * 2) Unmap the problem state area
648 	 * 3) Stop the master context
649 	 */
650 	term_intr(cfg, UNMAP_THREE);
651 	if (cfg->afu)
652 		stop_afu(cfg);
653 
654 	term_mc(cfg);
655 
656 	dev_dbg(dev, "%s: returning\n", __func__);
657 }
658 
659 /**
660  * notify_shutdown() - notifies device of pending shutdown
661  * @cfg:	Internal structure associated with the host.
662  * @wait:	Whether to wait for shutdown processing to complete.
663  *
664  * This function will notify the AFU that the adapter is being shutdown
665  * and will wait for shutdown processing to complete if wait is true.
666  * This notification should flush pending I/Os to the device and halt
667  * further I/Os until the next AFU reset is issued and device restarted.
668  */
669 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
670 {
671 	struct afu *afu = cfg->afu;
672 	struct device *dev = &cfg->dev->dev;
673 	struct sisl_global_map __iomem *global;
674 	struct dev_dependent_vals *ddv;
675 	u64 reg, status;
676 	int i, retry_cnt = 0;
677 
678 	ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
679 	if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
680 		return;
681 
682 	if (!afu || !afu->afu_map) {
683 		dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
684 		return;
685 	}
686 
687 	global = &afu->afu_map->global;
688 
689 	/* Notify AFU */
690 	for (i = 0; i < NUM_FC_PORTS; i++) {
691 		reg = readq_be(&global->fc_regs[i][FC_CONFIG2 / 8]);
692 		reg |= SISL_FC_SHUTDOWN_NORMAL;
693 		writeq_be(reg, &global->fc_regs[i][FC_CONFIG2 / 8]);
694 	}
695 
696 	if (!wait)
697 		return;
698 
699 	/* Wait up to 1.5 seconds for shutdown processing to complete */
700 	for (i = 0; i < NUM_FC_PORTS; i++) {
701 		retry_cnt = 0;
702 		while (true) {
703 			status = readq_be(&global->fc_regs[i][FC_STATUS / 8]);
704 			if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
705 				break;
706 			if (++retry_cnt >= MC_RETRY_CNT) {
707 				dev_dbg(dev, "%s: port %d shutdown processing "
708 					"not yet completed\n", __func__, i);
709 				break;
710 			}
711 			msleep(100 * retry_cnt);
712 		}
713 	}
714 }
715 
716 /**
717  * cxlflash_remove() - PCI entry point to tear down host
718  * @pdev:	PCI device associated with the host.
719  *
720  * Safe to use as a cleanup in partially allocated/initialized state.
721  */
722 static void cxlflash_remove(struct pci_dev *pdev)
723 {
724 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
725 	struct device *dev = &pdev->dev;
726 	ulong lock_flags;
727 
728 	if (!pci_is_enabled(pdev)) {
729 		dev_dbg(dev, "%s: Device is disabled\n", __func__);
730 		return;
731 	}
732 
733 	/* If a Task Management Function is active, wait for it to complete
734 	 * before continuing with remove.
735 	 */
736 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
737 	if (cfg->tmf_active)
738 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
739 						  !cfg->tmf_active,
740 						  cfg->tmf_slock);
741 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
742 
743 	/* Notify AFU and wait for shutdown processing to complete */
744 	notify_shutdown(cfg, true);
745 
746 	cfg->state = STATE_FAILTERM;
747 	cxlflash_stop_term_user_contexts(cfg);
748 
749 	switch (cfg->init_state) {
750 	case INIT_STATE_SCSI:
751 		cxlflash_term_local_luns(cfg);
752 		scsi_remove_host(cfg->host);
753 		/* fall through */
754 	case INIT_STATE_AFU:
755 		term_afu(cfg);
756 	case INIT_STATE_PCI:
757 		pci_disable_device(pdev);
758 	case INIT_STATE_NONE:
759 		free_mem(cfg);
760 		scsi_host_put(cfg->host);
761 		break;
762 	}
763 
764 	dev_dbg(dev, "%s: returning\n", __func__);
765 }
766 
767 /**
768  * alloc_mem() - allocates the AFU and its command pool
769  * @cfg:	Internal structure associated with the host.
770  *
771  * A partially allocated state remains on failure.
772  *
773  * Return:
774  *	0 on success
775  *	-ENOMEM on failure to allocate memory
776  */
777 static int alloc_mem(struct cxlflash_cfg *cfg)
778 {
779 	int rc = 0;
780 	struct device *dev = &cfg->dev->dev;
781 
782 	/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
783 	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
784 					    get_order(sizeof(struct afu)));
785 	if (unlikely(!cfg->afu)) {
786 		dev_err(dev, "%s: cannot get %d free pages\n",
787 			__func__, get_order(sizeof(struct afu)));
788 		rc = -ENOMEM;
789 		goto out;
790 	}
791 	cfg->afu->parent = cfg;
792 	cfg->afu->afu_map = NULL;
793 out:
794 	return rc;
795 }
796 
797 /**
798  * init_pci() - initializes the host as a PCI device
799  * @cfg:	Internal structure associated with the host.
800  *
801  * Return: 0 on success, -errno on failure
802  */
803 static int init_pci(struct cxlflash_cfg *cfg)
804 {
805 	struct pci_dev *pdev = cfg->dev;
806 	struct device *dev = &cfg->dev->dev;
807 	int rc = 0;
808 
809 	rc = pci_enable_device(pdev);
810 	if (rc || pci_channel_offline(pdev)) {
811 		if (pci_channel_offline(pdev)) {
812 			cxlflash_wait_for_pci_err_recovery(cfg);
813 			rc = pci_enable_device(pdev);
814 		}
815 
816 		if (rc) {
817 			dev_err(dev, "%s: Cannot enable adapter\n", __func__);
818 			cxlflash_wait_for_pci_err_recovery(cfg);
819 			goto out;
820 		}
821 	}
822 
823 out:
824 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
825 	return rc;
826 }
827 
828 /**
829  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
830  * @cfg:	Internal structure associated with the host.
831  *
832  * Return: 0 on success, -errno on failure
833  */
834 static int init_scsi(struct cxlflash_cfg *cfg)
835 {
836 	struct pci_dev *pdev = cfg->dev;
837 	struct device *dev = &cfg->dev->dev;
838 	int rc = 0;
839 
840 	rc = scsi_add_host(cfg->host, &pdev->dev);
841 	if (rc) {
842 		dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
843 		goto out;
844 	}
845 
846 	scsi_scan_host(cfg->host);
847 
848 out:
849 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
850 	return rc;
851 }
852 
853 /**
854  * set_port_online() - transitions the specified host FC port to online state
855  * @fc_regs:	Top of MMIO region defined for specified port.
856  *
857  * The provided MMIO region must be mapped prior to call. Online state means
858  * that the FC link layer has synced, completed the handshaking process, and
859  * is ready for login to start.
860  */
861 static void set_port_online(__be64 __iomem *fc_regs)
862 {
863 	u64 cmdcfg;
864 
865 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
866 	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
867 	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
868 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
869 }
870 
871 /**
872  * set_port_offline() - transitions the specified host FC port to offline state
873  * @fc_regs:	Top of MMIO region defined for specified port.
874  *
875  * The provided MMIO region must be mapped prior to call.
876  */
877 static void set_port_offline(__be64 __iomem *fc_regs)
878 {
879 	u64 cmdcfg;
880 
881 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
882 	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
883 	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
884 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
885 }
886 
887 /**
888  * wait_port_online() - waits for the specified host FC port come online
889  * @fc_regs:	Top of MMIO region defined for specified port.
890  * @delay_us:	Number of microseconds to delay between reading port status.
891  * @nretry:	Number of cycles to retry reading port status.
892  *
893  * The provided MMIO region must be mapped prior to call. This will timeout
894  * when the cable is not plugged in.
895  *
896  * Return:
897  *	TRUE (1) when the specified port is online
898  *	FALSE (0) when the specified port fails to come online after timeout
899  */
900 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
901 {
902 	u64 status;
903 
904 	WARN_ON(delay_us < 1000);
905 
906 	do {
907 		msleep(delay_us / 1000);
908 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
909 		if (status == U64_MAX)
910 			nretry /= 2;
911 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
912 		 nretry--);
913 
914 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
915 }
916 
917 /**
918  * wait_port_offline() - waits for the specified host FC port go offline
919  * @fc_regs:	Top of MMIO region defined for specified port.
920  * @delay_us:	Number of microseconds to delay between reading port status.
921  * @nretry:	Number of cycles to retry reading port status.
922  *
923  * The provided MMIO region must be mapped prior to call.
924  *
925  * Return:
926  *	TRUE (1) when the specified port is offline
927  *	FALSE (0) when the specified port fails to go offline after timeout
928  */
929 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
930 {
931 	u64 status;
932 
933 	WARN_ON(delay_us < 1000);
934 
935 	do {
936 		msleep(delay_us / 1000);
937 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
938 		if (status == U64_MAX)
939 			nretry /= 2;
940 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
941 		 nretry--);
942 
943 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
944 }
945 
946 /**
947  * afu_set_wwpn() - configures the WWPN for the specified host FC port
948  * @afu:	AFU associated with the host that owns the specified FC port.
949  * @port:	Port number being configured.
950  * @fc_regs:	Top of MMIO region defined for specified port.
951  * @wwpn:	The world-wide-port-number previously discovered for port.
952  *
953  * The provided MMIO region must be mapped prior to call. As part of the
954  * sequence to configure the WWPN, the port is toggled offline and then back
955  * online. This toggling action can cause this routine to delay up to a few
956  * seconds. When configured to use the internal LUN feature of the AFU, a
957  * failure to come online is overridden.
958  */
959 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
960 			 u64 wwpn)
961 {
962 	struct cxlflash_cfg *cfg = afu->parent;
963 	struct device *dev = &cfg->dev->dev;
964 
965 	set_port_offline(fc_regs);
966 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
967 			       FC_PORT_STATUS_RETRY_CNT)) {
968 		dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
969 			__func__, port);
970 	}
971 
972 	writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
973 
974 	set_port_online(fc_regs);
975 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
976 			      FC_PORT_STATUS_RETRY_CNT)) {
977 		dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
978 			__func__, port);
979 	}
980 }
981 
982 /**
983  * afu_link_reset() - resets the specified host FC port
984  * @afu:	AFU associated with the host that owns the specified FC port.
985  * @port:	Port number being configured.
986  * @fc_regs:	Top of MMIO region defined for specified port.
987  *
988  * The provided MMIO region must be mapped prior to call. The sequence to
989  * reset the port involves toggling it offline and then back online. This
990  * action can cause this routine to delay up to a few seconds. An effort
991  * is made to maintain link with the device by switching to host to use
992  * the alternate port exclusively while the reset takes place.
993  * failure to come online is overridden.
994  */
995 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
996 {
997 	struct cxlflash_cfg *cfg = afu->parent;
998 	struct device *dev = &cfg->dev->dev;
999 	u64 port_sel;
1000 
1001 	/* first switch the AFU to the other links, if any */
1002 	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1003 	port_sel &= ~(1ULL << port);
1004 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1005 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1006 
1007 	set_port_offline(fc_regs);
1008 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1009 			       FC_PORT_STATUS_RETRY_CNT))
1010 		dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1011 			__func__, port);
1012 
1013 	set_port_online(fc_regs);
1014 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1015 			      FC_PORT_STATUS_RETRY_CNT))
1016 		dev_err(dev, "%s: wait on port %d to go online timed out\n",
1017 			__func__, port);
1018 
1019 	/* switch back to include this port */
1020 	port_sel |= (1ULL << port);
1021 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1022 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1023 
1024 	dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1025 }
1026 
1027 /*
1028  * Asynchronous interrupt information table
1029  */
1030 static const struct asyc_intr_info ainfo[] = {
1031 	{SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1032 	{SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1033 	{SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
1034 	{SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
1035 	{SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
1036 	{SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
1037 	{SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
1038 	{SISL_ASTATUS_FC0_LINK_UP, "link up", 0, 0},
1039 	{SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1040 	{SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1041 	{SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
1042 	{SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET},
1043 	{SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
1044 	{SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
1045 	{SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
1046 	{SISL_ASTATUS_FC1_LINK_UP, "link up", 1, 0},
1047 	{0x0, "", 0, 0}		/* terminator */
1048 };
1049 
1050 /**
1051  * find_ainfo() - locates and returns asynchronous interrupt information
1052  * @status:	Status code set by AFU on error.
1053  *
1054  * Return: The located information or NULL when the status code is invalid.
1055  */
1056 static const struct asyc_intr_info *find_ainfo(u64 status)
1057 {
1058 	const struct asyc_intr_info *info;
1059 
1060 	for (info = &ainfo[0]; info->status; info++)
1061 		if (info->status == status)
1062 			return info;
1063 
1064 	return NULL;
1065 }
1066 
1067 /**
1068  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1069  * @afu:	AFU associated with the host.
1070  */
1071 static void afu_err_intr_init(struct afu *afu)
1072 {
1073 	int i;
1074 	u64 reg;
1075 
1076 	/* global async interrupts: AFU clears afu_ctrl on context exit
1077 	 * if async interrupts were sent to that context. This prevents
1078 	 * the AFU form sending further async interrupts when
1079 	 * there is
1080 	 * nobody to receive them.
1081 	 */
1082 
1083 	/* mask all */
1084 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1085 	/* set LISN# to send and point to master context */
1086 	reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1087 
1088 	if (afu->internal_lun)
1089 		reg |= 1;	/* Bit 63 indicates local lun */
1090 	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1091 	/* clear all */
1092 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1093 	/* unmask bits that are of interest */
1094 	/* note: afu can send an interrupt after this step */
1095 	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1096 	/* clear again in case a bit came on after previous clear but before */
1097 	/* unmask */
1098 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1099 
1100 	/* Clear/Set internal lun bits */
1101 	reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1102 	reg &= SISL_FC_INTERNAL_MASK;
1103 	if (afu->internal_lun)
1104 		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1105 	writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1106 
1107 	/* now clear FC errors */
1108 	for (i = 0; i < NUM_FC_PORTS; i++) {
1109 		writeq_be(0xFFFFFFFFU,
1110 			  &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1111 		writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1112 	}
1113 
1114 	/* sync interrupts for master's IOARRIN write */
1115 	/* note that unlike asyncs, there can be no pending sync interrupts */
1116 	/* at this time (this is a fresh context and master has not written */
1117 	/* IOARRIN yet), so there is nothing to clear. */
1118 
1119 	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1120 	writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1121 	writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1122 }
1123 
1124 /**
1125  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1126  * @irq:	Interrupt number.
1127  * @data:	Private data provided at interrupt registration, the AFU.
1128  *
1129  * Return: Always return IRQ_HANDLED.
1130  */
1131 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1132 {
1133 	struct afu *afu = (struct afu *)data;
1134 	struct cxlflash_cfg *cfg = afu->parent;
1135 	struct device *dev = &cfg->dev->dev;
1136 	u64 reg;
1137 	u64 reg_unmasked;
1138 
1139 	reg = readq_be(&afu->host_map->intr_status);
1140 	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1141 
1142 	if (reg_unmasked == 0UL) {
1143 		dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1144 			__func__, reg);
1145 		goto cxlflash_sync_err_irq_exit;
1146 	}
1147 
1148 	dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1149 		__func__, reg);
1150 
1151 	writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1152 
1153 cxlflash_sync_err_irq_exit:
1154 	return IRQ_HANDLED;
1155 }
1156 
1157 /**
1158  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1159  * @irq:	Interrupt number.
1160  * @data:	Private data provided at interrupt registration, the AFU.
1161  *
1162  * Return: Always return IRQ_HANDLED.
1163  */
1164 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1165 {
1166 	struct afu *afu = (struct afu *)data;
1167 	struct afu_cmd *cmd;
1168 	struct sisl_ioasa *ioasa;
1169 	struct sisl_ioarcb *ioarcb;
1170 	bool toggle = afu->toggle;
1171 	u64 entry,
1172 	    *hrrq_start = afu->hrrq_start,
1173 	    *hrrq_end = afu->hrrq_end,
1174 	    *hrrq_curr = afu->hrrq_curr;
1175 
1176 	/* Process however many RRQ entries that are ready */
1177 	while (true) {
1178 		entry = *hrrq_curr;
1179 
1180 		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1181 			break;
1182 
1183 		entry &= ~SISL_RESP_HANDLE_T_BIT;
1184 
1185 		if (afu_is_sq_cmd_mode(afu)) {
1186 			ioasa = (struct sisl_ioasa *)entry;
1187 			cmd = container_of(ioasa, struct afu_cmd, sa);
1188 		} else {
1189 			ioarcb = (struct sisl_ioarcb *)entry;
1190 			cmd = container_of(ioarcb, struct afu_cmd, rcb);
1191 		}
1192 
1193 		cmd_complete(cmd);
1194 
1195 		/* Advance to next entry or wrap and flip the toggle bit */
1196 		if (hrrq_curr < hrrq_end)
1197 			hrrq_curr++;
1198 		else {
1199 			hrrq_curr = hrrq_start;
1200 			toggle ^= SISL_RESP_HANDLE_T_BIT;
1201 		}
1202 
1203 		atomic_inc(&afu->hsq_credits);
1204 	}
1205 
1206 	afu->hrrq_curr = hrrq_curr;
1207 	afu->toggle = toggle;
1208 
1209 	return IRQ_HANDLED;
1210 }
1211 
1212 /**
1213  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1214  * @irq:	Interrupt number.
1215  * @data:	Private data provided at interrupt registration, the AFU.
1216  *
1217  * Return: Always return IRQ_HANDLED.
1218  */
1219 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1220 {
1221 	struct afu *afu = (struct afu *)data;
1222 	struct cxlflash_cfg *cfg = afu->parent;
1223 	struct device *dev = &cfg->dev->dev;
1224 	u64 reg_unmasked;
1225 	const struct asyc_intr_info *info;
1226 	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1227 	u64 reg;
1228 	u8 port;
1229 	int i;
1230 
1231 	reg = readq_be(&global->regs.aintr_status);
1232 	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1233 
1234 	if (reg_unmasked == 0) {
1235 		dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1236 			__func__, reg);
1237 		goto out;
1238 	}
1239 
1240 	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1241 	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1242 
1243 	/* Check each bit that is on */
1244 	for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1245 		info = find_ainfo(1ULL << i);
1246 		if (((reg_unmasked & 0x1) == 0) || !info)
1247 			continue;
1248 
1249 		port = info->port;
1250 
1251 		dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1252 			__func__, port, info->desc,
1253 		       readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1254 
1255 		/*
1256 		 * Do link reset first, some OTHER errors will set FC_ERROR
1257 		 * again if cleared before or w/o a reset
1258 		 */
1259 		if (info->action & LINK_RESET) {
1260 			dev_err(dev, "%s: FC Port %d: resetting link\n",
1261 				__func__, port);
1262 			cfg->lr_state = LINK_RESET_REQUIRED;
1263 			cfg->lr_port = port;
1264 			schedule_work(&cfg->work_q);
1265 		}
1266 
1267 		if (info->action & CLR_FC_ERROR) {
1268 			reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1269 
1270 			/*
1271 			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1272 			 * should be the same and tracing one is sufficient.
1273 			 */
1274 
1275 			dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1276 				__func__, port, reg);
1277 
1278 			writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1279 			writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1280 		}
1281 
1282 		if (info->action & SCAN_HOST) {
1283 			atomic_inc(&cfg->scan_host_needed);
1284 			schedule_work(&cfg->work_q);
1285 		}
1286 	}
1287 
1288 out:
1289 	return IRQ_HANDLED;
1290 }
1291 
1292 /**
1293  * start_context() - starts the master context
1294  * @cfg:	Internal structure associated with the host.
1295  *
1296  * Return: A success or failure value from CXL services.
1297  */
1298 static int start_context(struct cxlflash_cfg *cfg)
1299 {
1300 	struct device *dev = &cfg->dev->dev;
1301 	int rc = 0;
1302 
1303 	rc = cxl_start_context(cfg->mcctx,
1304 			       cfg->afu->work.work_element_descriptor,
1305 			       NULL);
1306 
1307 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1308 	return rc;
1309 }
1310 
1311 /**
1312  * read_vpd() - obtains the WWPNs from VPD
1313  * @cfg:	Internal structure associated with the host.
1314  * @wwpn:	Array of size NUM_FC_PORTS to pass back WWPNs
1315  *
1316  * Return: 0 on success, -errno on failure
1317  */
1318 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1319 {
1320 	struct device *dev = &cfg->dev->dev;
1321 	struct pci_dev *pdev = cfg->dev;
1322 	int rc = 0;
1323 	int ro_start, ro_size, i, j, k;
1324 	ssize_t vpd_size;
1325 	char vpd_data[CXLFLASH_VPD_LEN];
1326 	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1327 	char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1328 
1329 	/* Get the VPD data from the device */
1330 	vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1331 	if (unlikely(vpd_size <= 0)) {
1332 		dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1333 			__func__, vpd_size);
1334 		rc = -ENODEV;
1335 		goto out;
1336 	}
1337 
1338 	/* Get the read only section offset */
1339 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1340 				    PCI_VPD_LRDT_RO_DATA);
1341 	if (unlikely(ro_start < 0)) {
1342 		dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1343 		rc = -ENODEV;
1344 		goto out;
1345 	}
1346 
1347 	/* Get the read only section size, cap when extends beyond read VPD */
1348 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1349 	j = ro_size;
1350 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1351 	if (unlikely((i + j) > vpd_size)) {
1352 		dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1353 			__func__, (i + j), vpd_size);
1354 		ro_size = vpd_size - i;
1355 	}
1356 
1357 	/*
1358 	 * Find the offset of the WWPN tag within the read only
1359 	 * VPD data and validate the found field (partials are
1360 	 * no good to us). Convert the ASCII data to an integer
1361 	 * value. Note that we must copy to a temporary buffer
1362 	 * because the conversion service requires that the ASCII
1363 	 * string be terminated.
1364 	 */
1365 	for (k = 0; k < NUM_FC_PORTS; k++) {
1366 		j = ro_size;
1367 		i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1368 
1369 		i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1370 		if (unlikely(i < 0)) {
1371 			dev_err(dev, "%s: Port %d WWPN not found in VPD\n",
1372 				__func__, k);
1373 			rc = -ENODEV;
1374 			goto out;
1375 		}
1376 
1377 		j = pci_vpd_info_field_size(&vpd_data[i]);
1378 		i += PCI_VPD_INFO_FLD_HDR_SIZE;
1379 		if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1380 			dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1381 				__func__, k);
1382 			rc = -ENODEV;
1383 			goto out;
1384 		}
1385 
1386 		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1387 		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1388 		if (unlikely(rc)) {
1389 			dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1390 				__func__, k);
1391 			rc = -ENODEV;
1392 			goto out;
1393 		}
1394 	}
1395 
1396 out:
1397 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1398 	return rc;
1399 }
1400 
1401 /**
1402  * init_pcr() - initialize the provisioning and control registers
1403  * @cfg:	Internal structure associated with the host.
1404  *
1405  * Also sets up fast access to the mapped registers and initializes AFU
1406  * command fields that never change.
1407  */
1408 static void init_pcr(struct cxlflash_cfg *cfg)
1409 {
1410 	struct afu *afu = cfg->afu;
1411 	struct sisl_ctrl_map __iomem *ctrl_map;
1412 	int i;
1413 
1414 	for (i = 0; i < MAX_CONTEXT; i++) {
1415 		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1416 		/* Disrupt any clients that could be running */
1417 		/* e.g. clients that survived a master restart */
1418 		writeq_be(0, &ctrl_map->rht_start);
1419 		writeq_be(0, &ctrl_map->rht_cnt_id);
1420 		writeq_be(0, &ctrl_map->ctx_cap);
1421 	}
1422 
1423 	/* Copy frequently used fields into afu */
1424 	afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1425 	afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1426 	afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1427 
1428 	/* Program the Endian Control for the master context */
1429 	writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1430 }
1431 
1432 /**
1433  * init_global() - initialize AFU global registers
1434  * @cfg:	Internal structure associated with the host.
1435  */
1436 static int init_global(struct cxlflash_cfg *cfg)
1437 {
1438 	struct afu *afu = cfg->afu;
1439 	struct device *dev = &cfg->dev->dev;
1440 	u64 wwpn[NUM_FC_PORTS];	/* wwpn of AFU ports */
1441 	int i = 0, num_ports = 0;
1442 	int rc = 0;
1443 	u64 reg;
1444 
1445 	rc = read_vpd(cfg, &wwpn[0]);
1446 	if (rc) {
1447 		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1448 		goto out;
1449 	}
1450 
1451 	dev_dbg(dev, "%s: wwpn0=%016llx wwpn1=%016llx\n",
1452 		__func__, wwpn[0], wwpn[1]);
1453 
1454 	/* Set up RRQ and SQ in AFU for master issued cmds */
1455 	writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1456 	writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1457 
1458 	if (afu_is_sq_cmd_mode(afu)) {
1459 		writeq_be((u64)afu->hsq_start, &afu->host_map->sq_start);
1460 		writeq_be((u64)afu->hsq_end, &afu->host_map->sq_end);
1461 	}
1462 
1463 	/* AFU configuration */
1464 	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1465 	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1466 	/* enable all auto retry options and control endianness */
1467 	/* leave others at default: */
1468 	/* CTX_CAP write protected, mbox_r does not clear on read and */
1469 	/* checker on if dual afu */
1470 	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1471 
1472 	/* Global port select: select either port */
1473 	if (afu->internal_lun) {
1474 		/* Only use port 0 */
1475 		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1476 		num_ports = NUM_FC_PORTS - 1;
1477 	} else {
1478 		writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1479 		num_ports = NUM_FC_PORTS;
1480 	}
1481 
1482 	for (i = 0; i < num_ports; i++) {
1483 		/* Unmask all errors (but they are still masked at AFU) */
1484 		writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
1485 		/* Clear CRC error cnt & set a threshold */
1486 		(void)readq_be(&afu->afu_map->global.
1487 			       fc_regs[i][FC_CNT_CRCERR / 8]);
1488 		writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1489 			  [FC_CRC_THRESH / 8]);
1490 
1491 		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1492 		if (wwpn[i] != 0)
1493 			afu_set_wwpn(afu, i,
1494 				     &afu->afu_map->global.fc_regs[i][0],
1495 				     wwpn[i]);
1496 		/* Programming WWPN back to back causes additional
1497 		 * offline/online transitions and a PLOGI
1498 		 */
1499 		msleep(100);
1500 	}
1501 
1502 	/* Set up master's own CTX_CAP to allow real mode, host translation */
1503 	/* tables, afu cmds and read/write GSCSI cmds. */
1504 	/* First, unlock ctx_cap write by reading mbox */
1505 	(void)readq_be(&afu->ctrl_map->mbox_r);	/* unlock ctx_cap */
1506 	writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1507 		   SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1508 		   SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1509 		  &afu->ctrl_map->ctx_cap);
1510 	/* Initialize heartbeat */
1511 	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1512 out:
1513 	return rc;
1514 }
1515 
1516 /**
1517  * start_afu() - initializes and starts the AFU
1518  * @cfg:	Internal structure associated with the host.
1519  */
1520 static int start_afu(struct cxlflash_cfg *cfg)
1521 {
1522 	struct afu *afu = cfg->afu;
1523 	struct device *dev = &cfg->dev->dev;
1524 	int rc = 0;
1525 
1526 	init_pcr(cfg);
1527 
1528 	/* After an AFU reset, RRQ entries are stale, clear them */
1529 	memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1530 
1531 	/* Initialize RRQ pointers */
1532 	afu->hrrq_start = &afu->rrq_entry[0];
1533 	afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1534 	afu->hrrq_curr = afu->hrrq_start;
1535 	afu->toggle = 1;
1536 
1537 	/* Initialize SQ */
1538 	if (afu_is_sq_cmd_mode(afu)) {
1539 		memset(&afu->sq, 0, sizeof(afu->sq));
1540 		afu->hsq_start = &afu->sq[0];
1541 		afu->hsq_end = &afu->sq[NUM_SQ_ENTRY - 1];
1542 		afu->hsq_curr = afu->hsq_start;
1543 
1544 		spin_lock_init(&afu->hsq_slock);
1545 		atomic_set(&afu->hsq_credits, NUM_SQ_ENTRY - 1);
1546 	}
1547 
1548 	rc = init_global(cfg);
1549 
1550 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1551 	return rc;
1552 }
1553 
1554 /**
1555  * init_intr() - setup interrupt handlers for the master context
1556  * @cfg:	Internal structure associated with the host.
1557  *
1558  * Return: 0 on success, -errno on failure
1559  */
1560 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1561 				 struct cxl_context *ctx)
1562 {
1563 	struct afu *afu = cfg->afu;
1564 	struct device *dev = &cfg->dev->dev;
1565 	int rc = 0;
1566 	enum undo_level level = UNDO_NOOP;
1567 
1568 	rc = cxl_allocate_afu_irqs(ctx, 3);
1569 	if (unlikely(rc)) {
1570 		dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1571 			__func__, rc);
1572 		level = UNDO_NOOP;
1573 		goto out;
1574 	}
1575 
1576 	rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1577 			     "SISL_MSI_SYNC_ERROR");
1578 	if (unlikely(rc <= 0)) {
1579 		dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1580 		level = FREE_IRQ;
1581 		goto out;
1582 	}
1583 
1584 	rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1585 			     "SISL_MSI_RRQ_UPDATED");
1586 	if (unlikely(rc <= 0)) {
1587 		dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1588 		level = UNMAP_ONE;
1589 		goto out;
1590 	}
1591 
1592 	rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1593 			     "SISL_MSI_ASYNC_ERROR");
1594 	if (unlikely(rc <= 0)) {
1595 		dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1596 		level = UNMAP_TWO;
1597 		goto out;
1598 	}
1599 out:
1600 	return level;
1601 }
1602 
1603 /**
1604  * init_mc() - create and register as the master context
1605  * @cfg:	Internal structure associated with the host.
1606  *
1607  * Return: 0 on success, -errno on failure
1608  */
1609 static int init_mc(struct cxlflash_cfg *cfg)
1610 {
1611 	struct cxl_context *ctx;
1612 	struct device *dev = &cfg->dev->dev;
1613 	int rc = 0;
1614 	enum undo_level level;
1615 
1616 	ctx = cxl_get_context(cfg->dev);
1617 	if (unlikely(!ctx)) {
1618 		rc = -ENOMEM;
1619 		goto ret;
1620 	}
1621 	cfg->mcctx = ctx;
1622 
1623 	/* Set it up as a master with the CXL */
1624 	cxl_set_master(ctx);
1625 
1626 	/* During initialization reset the AFU to start from a clean slate */
1627 	rc = cxl_afu_reset(cfg->mcctx);
1628 	if (unlikely(rc)) {
1629 		dev_err(dev, "%s: AFU reset failed rc=%d\n", __func__, rc);
1630 		goto ret;
1631 	}
1632 
1633 	level = init_intr(cfg, ctx);
1634 	if (unlikely(level)) {
1635 		dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
1636 		goto out;
1637 	}
1638 
1639 	/* This performs the equivalent of the CXL_IOCTL_START_WORK.
1640 	 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1641 	 * element (pe) that is embedded in the context (ctx)
1642 	 */
1643 	rc = start_context(cfg);
1644 	if (unlikely(rc)) {
1645 		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1646 		level = UNMAP_THREE;
1647 		goto out;
1648 	}
1649 ret:
1650 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1651 	return rc;
1652 out:
1653 	term_intr(cfg, level);
1654 	goto ret;
1655 }
1656 
1657 /**
1658  * init_afu() - setup as master context and start AFU
1659  * @cfg:	Internal structure associated with the host.
1660  *
1661  * This routine is a higher level of control for configuring the
1662  * AFU on probe and reset paths.
1663  *
1664  * Return: 0 on success, -errno on failure
1665  */
1666 static int init_afu(struct cxlflash_cfg *cfg)
1667 {
1668 	u64 reg;
1669 	int rc = 0;
1670 	struct afu *afu = cfg->afu;
1671 	struct device *dev = &cfg->dev->dev;
1672 
1673 	cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1674 
1675 	rc = init_mc(cfg);
1676 	if (rc) {
1677 		dev_err(dev, "%s: init_mc failed rc=%d\n",
1678 			__func__, rc);
1679 		goto out;
1680 	}
1681 
1682 	/* Map the entire MMIO space of the AFU */
1683 	afu->afu_map = cxl_psa_map(cfg->mcctx);
1684 	if (!afu->afu_map) {
1685 		dev_err(dev, "%s: cxl_psa_map failed\n", __func__);
1686 		rc = -ENOMEM;
1687 		goto err1;
1688 	}
1689 
1690 	/* No byte reverse on reading afu_version or string will be backwards */
1691 	reg = readq(&afu->afu_map->global.regs.afu_version);
1692 	memcpy(afu->version, &reg, sizeof(reg));
1693 	afu->interface_version =
1694 	    readq_be(&afu->afu_map->global.regs.interface_version);
1695 	if ((afu->interface_version + 1) == 0) {
1696 		dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
1697 			"interface version %016llx\n", afu->version,
1698 		       afu->interface_version);
1699 		rc = -EINVAL;
1700 		goto err1;
1701 	}
1702 
1703 	if (afu_is_sq_cmd_mode(afu)) {
1704 		afu->send_cmd = send_cmd_sq;
1705 		afu->context_reset = context_reset_sq;
1706 	} else {
1707 		afu->send_cmd = send_cmd_ioarrin;
1708 		afu->context_reset = context_reset_ioarrin;
1709 	}
1710 
1711 	dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
1712 		afu->version, afu->interface_version);
1713 
1714 	rc = start_afu(cfg);
1715 	if (rc) {
1716 		dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
1717 		goto err1;
1718 	}
1719 
1720 	afu_err_intr_init(cfg->afu);
1721 	spin_lock_init(&afu->rrin_slock);
1722 	afu->room = readq_be(&afu->host_map->cmd_room);
1723 
1724 	/* Restore the LUN mappings */
1725 	cxlflash_restore_luntable(cfg);
1726 out:
1727 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1728 	return rc;
1729 
1730 err1:
1731 	term_intr(cfg, UNMAP_THREE);
1732 	term_mc(cfg);
1733 	goto out;
1734 }
1735 
1736 /**
1737  * cxlflash_afu_sync() - builds and sends an AFU sync command
1738  * @afu:	AFU associated with the host.
1739  * @ctx_hndl_u:	Identifies context requesting sync.
1740  * @res_hndl_u:	Identifies resource requesting sync.
1741  * @mode:	Type of sync to issue (lightweight, heavyweight, global).
1742  *
1743  * The AFU can only take 1 sync command at a time. This routine enforces this
1744  * limitation by using a mutex to provide exclusive access to the AFU during
1745  * the sync. This design point requires calling threads to not be on interrupt
1746  * context due to the possibility of sleeping during concurrent sync operations.
1747  *
1748  * AFU sync operations are only necessary and allowed when the device is
1749  * operating normally. When not operating normally, sync requests can occur as
1750  * part of cleaning up resources associated with an adapter prior to removal.
1751  * In this scenario, these requests are simply ignored (safe due to the AFU
1752  * going away).
1753  *
1754  * Return:
1755  *	0 on success
1756  *	-1 on failure
1757  */
1758 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1759 		      res_hndl_t res_hndl_u, u8 mode)
1760 {
1761 	struct cxlflash_cfg *cfg = afu->parent;
1762 	struct device *dev = &cfg->dev->dev;
1763 	struct afu_cmd *cmd = NULL;
1764 	char *buf = NULL;
1765 	int rc = 0;
1766 	static DEFINE_MUTEX(sync_active);
1767 
1768 	if (cfg->state != STATE_NORMAL) {
1769 		dev_dbg(dev, "%s: Sync not required state=%u\n",
1770 			__func__, cfg->state);
1771 		return 0;
1772 	}
1773 
1774 	mutex_lock(&sync_active);
1775 	atomic_inc(&afu->cmds_active);
1776 	buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
1777 	if (unlikely(!buf)) {
1778 		dev_err(dev, "%s: no memory for command\n", __func__);
1779 		rc = -1;
1780 		goto out;
1781 	}
1782 
1783 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
1784 	init_completion(&cmd->cevent);
1785 	cmd->parent = afu;
1786 
1787 	dev_dbg(dev, "%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1788 
1789 	cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1790 	cmd->rcb.ctx_id = afu->ctx_hndl;
1791 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
1792 	cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1793 
1794 	cmd->rcb.cdb[0] = 0xC0;	/* AFU Sync */
1795 	cmd->rcb.cdb[1] = mode;
1796 
1797 	/* The cdb is aligned, no unaligned accessors required */
1798 	*((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1799 	*((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
1800 
1801 	rc = afu->send_cmd(afu, cmd);
1802 	if (unlikely(rc))
1803 		goto out;
1804 
1805 	rc = wait_resp(afu, cmd);
1806 	if (unlikely(rc))
1807 		rc = -1;
1808 out:
1809 	atomic_dec(&afu->cmds_active);
1810 	mutex_unlock(&sync_active);
1811 	kfree(buf);
1812 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1813 	return rc;
1814 }
1815 
1816 /**
1817  * afu_reset() - resets the AFU
1818  * @cfg:	Internal structure associated with the host.
1819  *
1820  * Return: 0 on success, -errno on failure
1821  */
1822 static int afu_reset(struct cxlflash_cfg *cfg)
1823 {
1824 	struct device *dev = &cfg->dev->dev;
1825 	int rc = 0;
1826 
1827 	/* Stop the context before the reset. Since the context is
1828 	 * no longer available restart it after the reset is complete
1829 	 */
1830 	term_afu(cfg);
1831 
1832 	rc = init_afu(cfg);
1833 
1834 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1835 	return rc;
1836 }
1837 
1838 /**
1839  * drain_ioctls() - wait until all currently executing ioctls have completed
1840  * @cfg:	Internal structure associated with the host.
1841  *
1842  * Obtain write access to read/write semaphore that wraps ioctl
1843  * handling to 'drain' ioctls currently executing.
1844  */
1845 static void drain_ioctls(struct cxlflash_cfg *cfg)
1846 {
1847 	down_write(&cfg->ioctl_rwsem);
1848 	up_write(&cfg->ioctl_rwsem);
1849 }
1850 
1851 /**
1852  * cxlflash_eh_device_reset_handler() - reset a single LUN
1853  * @scp:	SCSI command to send.
1854  *
1855  * Return:
1856  *	SUCCESS as defined in scsi/scsi.h
1857  *	FAILED as defined in scsi/scsi.h
1858  */
1859 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1860 {
1861 	int rc = SUCCESS;
1862 	struct Scsi_Host *host = scp->device->host;
1863 	struct cxlflash_cfg *cfg = shost_priv(host);
1864 	struct device *dev = &cfg->dev->dev;
1865 	struct afu *afu = cfg->afu;
1866 	int rcr = 0;
1867 
1868 	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
1869 		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
1870 		scp->device->channel, scp->device->id, scp->device->lun,
1871 		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1872 		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1873 		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1874 		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1875 
1876 retry:
1877 	switch (cfg->state) {
1878 	case STATE_NORMAL:
1879 		rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1880 		if (unlikely(rcr))
1881 			rc = FAILED;
1882 		break;
1883 	case STATE_RESET:
1884 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1885 		goto retry;
1886 	default:
1887 		rc = FAILED;
1888 		break;
1889 	}
1890 
1891 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1892 	return rc;
1893 }
1894 
1895 /**
1896  * cxlflash_eh_host_reset_handler() - reset the host adapter
1897  * @scp:	SCSI command from stack identifying host.
1898  *
1899  * Following a reset, the state is evaluated again in case an EEH occurred
1900  * during the reset. In such a scenario, the host reset will either yield
1901  * until the EEH recovery is complete or return success or failure based
1902  * upon the current device state.
1903  *
1904  * Return:
1905  *	SUCCESS as defined in scsi/scsi.h
1906  *	FAILED as defined in scsi/scsi.h
1907  */
1908 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1909 {
1910 	int rc = SUCCESS;
1911 	int rcr = 0;
1912 	struct Scsi_Host *host = scp->device->host;
1913 	struct cxlflash_cfg *cfg = shost_priv(host);
1914 	struct device *dev = &cfg->dev->dev;
1915 
1916 	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
1917 		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
1918 		scp->device->channel, scp->device->id, scp->device->lun,
1919 		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1920 		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1921 		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1922 		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1923 
1924 	switch (cfg->state) {
1925 	case STATE_NORMAL:
1926 		cfg->state = STATE_RESET;
1927 		drain_ioctls(cfg);
1928 		cxlflash_mark_contexts_error(cfg);
1929 		rcr = afu_reset(cfg);
1930 		if (rcr) {
1931 			rc = FAILED;
1932 			cfg->state = STATE_FAILTERM;
1933 		} else
1934 			cfg->state = STATE_NORMAL;
1935 		wake_up_all(&cfg->reset_waitq);
1936 		ssleep(1);
1937 		/* fall through */
1938 	case STATE_RESET:
1939 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1940 		if (cfg->state == STATE_NORMAL)
1941 			break;
1942 		/* fall through */
1943 	default:
1944 		rc = FAILED;
1945 		break;
1946 	}
1947 
1948 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1949 	return rc;
1950 }
1951 
1952 /**
1953  * cxlflash_change_queue_depth() - change the queue depth for the device
1954  * @sdev:	SCSI device destined for queue depth change.
1955  * @qdepth:	Requested queue depth value to set.
1956  *
1957  * The requested queue depth is capped to the maximum supported value.
1958  *
1959  * Return: The actual queue depth set.
1960  */
1961 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
1962 {
1963 
1964 	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
1965 		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
1966 
1967 	scsi_change_queue_depth(sdev, qdepth);
1968 	return sdev->queue_depth;
1969 }
1970 
1971 /**
1972  * cxlflash_show_port_status() - queries and presents the current port status
1973  * @port:	Desired port for status reporting.
1974  * @afu:	AFU owning the specified port.
1975  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
1976  *
1977  * Return: The size of the ASCII string returned in @buf.
1978  */
1979 static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
1980 {
1981 	char *disp_status;
1982 	u64 status;
1983 	__be64 __iomem *fc_regs;
1984 
1985 	if (port >= NUM_FC_PORTS)
1986 		return 0;
1987 
1988 	fc_regs = &afu->afu_map->global.fc_regs[port][0];
1989 	status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1990 	status &= FC_MTIP_STATUS_MASK;
1991 
1992 	if (status == FC_MTIP_STATUS_ONLINE)
1993 		disp_status = "online";
1994 	else if (status == FC_MTIP_STATUS_OFFLINE)
1995 		disp_status = "offline";
1996 	else
1997 		disp_status = "unknown";
1998 
1999 	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2000 }
2001 
2002 /**
2003  * port0_show() - queries and presents the current status of port 0
2004  * @dev:	Generic device associated with the host owning the port.
2005  * @attr:	Device attribute representing the port.
2006  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2007  *
2008  * Return: The size of the ASCII string returned in @buf.
2009  */
2010 static ssize_t port0_show(struct device *dev,
2011 			  struct device_attribute *attr,
2012 			  char *buf)
2013 {
2014 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2015 	struct afu *afu = cfg->afu;
2016 
2017 	return cxlflash_show_port_status(0, afu, buf);
2018 }
2019 
2020 /**
2021  * port1_show() - queries and presents the current status of port 1
2022  * @dev:	Generic device associated with the host owning the port.
2023  * @attr:	Device attribute representing the port.
2024  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2025  *
2026  * Return: The size of the ASCII string returned in @buf.
2027  */
2028 static ssize_t port1_show(struct device *dev,
2029 			  struct device_attribute *attr,
2030 			  char *buf)
2031 {
2032 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2033 	struct afu *afu = cfg->afu;
2034 
2035 	return cxlflash_show_port_status(1, afu, buf);
2036 }
2037 
2038 /**
2039  * lun_mode_show() - presents the current LUN mode of the host
2040  * @dev:	Generic device associated with the host.
2041  * @attr:	Device attribute representing the LUN mode.
2042  * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2043  *
2044  * Return: The size of the ASCII string returned in @buf.
2045  */
2046 static ssize_t lun_mode_show(struct device *dev,
2047 			     struct device_attribute *attr, char *buf)
2048 {
2049 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2050 	struct afu *afu = cfg->afu;
2051 
2052 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2053 }
2054 
2055 /**
2056  * lun_mode_store() - sets the LUN mode of the host
2057  * @dev:	Generic device associated with the host.
2058  * @attr:	Device attribute representing the LUN mode.
2059  * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2060  * @count:	Length of data resizing in @buf.
2061  *
2062  * The CXL Flash AFU supports a dummy LUN mode where the external
2063  * links and storage are not required. Space on the FPGA is used
2064  * to create 1 or 2 small LUNs which are presented to the system
2065  * as if they were a normal storage device. This feature is useful
2066  * during development and also provides manufacturing with a way
2067  * to test the AFU without an actual device.
2068  *
2069  * 0 = external LUN[s] (default)
2070  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2071  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2072  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2073  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2074  *
2075  * Return: The size of the ASCII string returned in @buf.
2076  */
2077 static ssize_t lun_mode_store(struct device *dev,
2078 			      struct device_attribute *attr,
2079 			      const char *buf, size_t count)
2080 {
2081 	struct Scsi_Host *shost = class_to_shost(dev);
2082 	struct cxlflash_cfg *cfg = shost_priv(shost);
2083 	struct afu *afu = cfg->afu;
2084 	int rc;
2085 	u32 lun_mode;
2086 
2087 	rc = kstrtouint(buf, 10, &lun_mode);
2088 	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2089 		afu->internal_lun = lun_mode;
2090 
2091 		/*
2092 		 * When configured for internal LUN, there is only one channel,
2093 		 * channel number 0, else there will be 2 (default).
2094 		 */
2095 		if (afu->internal_lun)
2096 			shost->max_channel = 0;
2097 		else
2098 			shost->max_channel = NUM_FC_PORTS - 1;
2099 
2100 		afu_reset(cfg);
2101 		scsi_scan_host(cfg->host);
2102 	}
2103 
2104 	return count;
2105 }
2106 
2107 /**
2108  * ioctl_version_show() - presents the current ioctl version of the host
2109  * @dev:	Generic device associated with the host.
2110  * @attr:	Device attribute representing the ioctl version.
2111  * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2112  *
2113  * Return: The size of the ASCII string returned in @buf.
2114  */
2115 static ssize_t ioctl_version_show(struct device *dev,
2116 				  struct device_attribute *attr, char *buf)
2117 {
2118 	return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2119 }
2120 
2121 /**
2122  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2123  * @port:	Desired port for status reporting.
2124  * @afu:	AFU owning the specified port.
2125  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2126  *
2127  * Return: The size of the ASCII string returned in @buf.
2128  */
2129 static ssize_t cxlflash_show_port_lun_table(u32 port,
2130 					    struct afu *afu,
2131 					    char *buf)
2132 {
2133 	int i;
2134 	ssize_t bytes = 0;
2135 	__be64 __iomem *fc_port;
2136 
2137 	if (port >= NUM_FC_PORTS)
2138 		return 0;
2139 
2140 	fc_port = &afu->afu_map->global.fc_port[port][0];
2141 
2142 	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2143 		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2144 				   "%03d: %016llx\n", i, readq_be(&fc_port[i]));
2145 	return bytes;
2146 }
2147 
2148 /**
2149  * port0_lun_table_show() - presents the current LUN table of port 0
2150  * @dev:	Generic device associated with the host owning the port.
2151  * @attr:	Device attribute representing the port.
2152  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2153  *
2154  * Return: The size of the ASCII string returned in @buf.
2155  */
2156 static ssize_t port0_lun_table_show(struct device *dev,
2157 				    struct device_attribute *attr,
2158 				    char *buf)
2159 {
2160 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2161 	struct afu *afu = cfg->afu;
2162 
2163 	return cxlflash_show_port_lun_table(0, afu, buf);
2164 }
2165 
2166 /**
2167  * port1_lun_table_show() - presents the current LUN table of port 1
2168  * @dev:	Generic device associated with the host owning the port.
2169  * @attr:	Device attribute representing the port.
2170  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2171  *
2172  * Return: The size of the ASCII string returned in @buf.
2173  */
2174 static ssize_t port1_lun_table_show(struct device *dev,
2175 				    struct device_attribute *attr,
2176 				    char *buf)
2177 {
2178 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2179 	struct afu *afu = cfg->afu;
2180 
2181 	return cxlflash_show_port_lun_table(1, afu, buf);
2182 }
2183 
2184 /**
2185  * mode_show() - presents the current mode of the device
2186  * @dev:	Generic device associated with the device.
2187  * @attr:	Device attribute representing the device mode.
2188  * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2189  *
2190  * Return: The size of the ASCII string returned in @buf.
2191  */
2192 static ssize_t mode_show(struct device *dev,
2193 			 struct device_attribute *attr, char *buf)
2194 {
2195 	struct scsi_device *sdev = to_scsi_device(dev);
2196 
2197 	return scnprintf(buf, PAGE_SIZE, "%s\n",
2198 			 sdev->hostdata ? "superpipe" : "legacy");
2199 }
2200 
2201 /*
2202  * Host attributes
2203  */
2204 static DEVICE_ATTR_RO(port0);
2205 static DEVICE_ATTR_RO(port1);
2206 static DEVICE_ATTR_RW(lun_mode);
2207 static DEVICE_ATTR_RO(ioctl_version);
2208 static DEVICE_ATTR_RO(port0_lun_table);
2209 static DEVICE_ATTR_RO(port1_lun_table);
2210 
2211 static struct device_attribute *cxlflash_host_attrs[] = {
2212 	&dev_attr_port0,
2213 	&dev_attr_port1,
2214 	&dev_attr_lun_mode,
2215 	&dev_attr_ioctl_version,
2216 	&dev_attr_port0_lun_table,
2217 	&dev_attr_port1_lun_table,
2218 	NULL
2219 };
2220 
2221 /*
2222  * Device attributes
2223  */
2224 static DEVICE_ATTR_RO(mode);
2225 
2226 static struct device_attribute *cxlflash_dev_attrs[] = {
2227 	&dev_attr_mode,
2228 	NULL
2229 };
2230 
2231 /*
2232  * Host template
2233  */
2234 static struct scsi_host_template driver_template = {
2235 	.module = THIS_MODULE,
2236 	.name = CXLFLASH_ADAPTER_NAME,
2237 	.info = cxlflash_driver_info,
2238 	.ioctl = cxlflash_ioctl,
2239 	.proc_name = CXLFLASH_NAME,
2240 	.queuecommand = cxlflash_queuecommand,
2241 	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2242 	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2243 	.change_queue_depth = cxlflash_change_queue_depth,
2244 	.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
2245 	.can_queue = CXLFLASH_MAX_CMDS,
2246 	.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
2247 	.this_id = -1,
2248 	.sg_tablesize = 1,	/* No scatter gather support */
2249 	.max_sectors = CXLFLASH_MAX_SECTORS,
2250 	.use_clustering = ENABLE_CLUSTERING,
2251 	.shost_attrs = cxlflash_host_attrs,
2252 	.sdev_attrs = cxlflash_dev_attrs,
2253 };
2254 
2255 /*
2256  * Device dependent values
2257  */
2258 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
2259 					0ULL };
2260 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
2261 					CXLFLASH_NOTIFY_SHUTDOWN };
2262 
2263 /*
2264  * PCI device binding table
2265  */
2266 static struct pci_device_id cxlflash_pci_table[] = {
2267 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2268 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2269 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2270 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
2271 	{}
2272 };
2273 
2274 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2275 
2276 /**
2277  * cxlflash_worker_thread() - work thread handler for the AFU
2278  * @work:	Work structure contained within cxlflash associated with host.
2279  *
2280  * Handles the following events:
2281  * - Link reset which cannot be performed on interrupt context due to
2282  * blocking up to a few seconds
2283  * - Rescan the host
2284  */
2285 static void cxlflash_worker_thread(struct work_struct *work)
2286 {
2287 	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2288 						work_q);
2289 	struct afu *afu = cfg->afu;
2290 	struct device *dev = &cfg->dev->dev;
2291 	int port;
2292 	ulong lock_flags;
2293 
2294 	/* Avoid MMIO if the device has failed */
2295 
2296 	if (cfg->state != STATE_NORMAL)
2297 		return;
2298 
2299 	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2300 
2301 	if (cfg->lr_state == LINK_RESET_REQUIRED) {
2302 		port = cfg->lr_port;
2303 		if (port < 0)
2304 			dev_err(dev, "%s: invalid port index %d\n",
2305 				__func__, port);
2306 		else {
2307 			spin_unlock_irqrestore(cfg->host->host_lock,
2308 					       lock_flags);
2309 
2310 			/* The reset can block... */
2311 			afu_link_reset(afu, port,
2312 				       &afu->afu_map->global.fc_regs[port][0]);
2313 			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2314 		}
2315 
2316 		cfg->lr_state = LINK_RESET_COMPLETE;
2317 	}
2318 
2319 	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2320 
2321 	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2322 		scsi_scan_host(cfg->host);
2323 }
2324 
2325 /**
2326  * cxlflash_probe() - PCI entry point to add host
2327  * @pdev:	PCI device associated with the host.
2328  * @dev_id:	PCI device id associated with device.
2329  *
2330  * Return: 0 on success, -errno on failure
2331  */
2332 static int cxlflash_probe(struct pci_dev *pdev,
2333 			  const struct pci_device_id *dev_id)
2334 {
2335 	struct Scsi_Host *host;
2336 	struct cxlflash_cfg *cfg = NULL;
2337 	struct device *dev = &pdev->dev;
2338 	struct dev_dependent_vals *ddv;
2339 	int rc = 0;
2340 
2341 	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2342 		__func__, pdev->irq);
2343 
2344 	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2345 	driver_template.max_sectors = ddv->max_sectors;
2346 
2347 	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2348 	if (!host) {
2349 		dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
2350 		rc = -ENOMEM;
2351 		goto out;
2352 	}
2353 
2354 	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2355 	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2356 	host->max_channel = NUM_FC_PORTS - 1;
2357 	host->unique_id = host->host_no;
2358 	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2359 
2360 	cfg = shost_priv(host);
2361 	cfg->host = host;
2362 	rc = alloc_mem(cfg);
2363 	if (rc) {
2364 		dev_err(dev, "%s: alloc_mem failed\n", __func__);
2365 		rc = -ENOMEM;
2366 		scsi_host_put(cfg->host);
2367 		goto out;
2368 	}
2369 
2370 	cfg->init_state = INIT_STATE_NONE;
2371 	cfg->dev = pdev;
2372 	cfg->cxl_fops = cxlflash_cxl_fops;
2373 
2374 	/*
2375 	 * The promoted LUNs move to the top of the LUN table. The rest stay
2376 	 * on the bottom half. The bottom half grows from the end
2377 	 * (index = 255), whereas the top half grows from the beginning
2378 	 * (index = 0).
2379 	 */
2380 	cfg->promote_lun_index  = 0;
2381 	cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2382 	cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2383 
2384 	cfg->dev_id = (struct pci_device_id *)dev_id;
2385 
2386 	init_waitqueue_head(&cfg->tmf_waitq);
2387 	init_waitqueue_head(&cfg->reset_waitq);
2388 
2389 	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2390 	cfg->lr_state = LINK_RESET_INVALID;
2391 	cfg->lr_port = -1;
2392 	spin_lock_init(&cfg->tmf_slock);
2393 	mutex_init(&cfg->ctx_tbl_list_mutex);
2394 	mutex_init(&cfg->ctx_recovery_mutex);
2395 	init_rwsem(&cfg->ioctl_rwsem);
2396 	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2397 	INIT_LIST_HEAD(&cfg->lluns);
2398 
2399 	pci_set_drvdata(pdev, cfg);
2400 
2401 	cfg->cxl_afu = cxl_pci_to_afu(pdev);
2402 
2403 	rc = init_pci(cfg);
2404 	if (rc) {
2405 		dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
2406 		goto out_remove;
2407 	}
2408 	cfg->init_state = INIT_STATE_PCI;
2409 
2410 	rc = init_afu(cfg);
2411 	if (rc) {
2412 		dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
2413 		goto out_remove;
2414 	}
2415 	cfg->init_state = INIT_STATE_AFU;
2416 
2417 	rc = init_scsi(cfg);
2418 	if (rc) {
2419 		dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
2420 		goto out_remove;
2421 	}
2422 	cfg->init_state = INIT_STATE_SCSI;
2423 
2424 out:
2425 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2426 	return rc;
2427 
2428 out_remove:
2429 	cxlflash_remove(pdev);
2430 	goto out;
2431 }
2432 
2433 /**
2434  * cxlflash_pci_error_detected() - called when a PCI error is detected
2435  * @pdev:	PCI device struct.
2436  * @state:	PCI channel state.
2437  *
2438  * When an EEH occurs during an active reset, wait until the reset is
2439  * complete and then take action based upon the device state.
2440  *
2441  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2442  */
2443 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2444 						    pci_channel_state_t state)
2445 {
2446 	int rc = 0;
2447 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2448 	struct device *dev = &cfg->dev->dev;
2449 
2450 	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2451 
2452 	switch (state) {
2453 	case pci_channel_io_frozen:
2454 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2455 		if (cfg->state == STATE_FAILTERM)
2456 			return PCI_ERS_RESULT_DISCONNECT;
2457 
2458 		cfg->state = STATE_RESET;
2459 		scsi_block_requests(cfg->host);
2460 		drain_ioctls(cfg);
2461 		rc = cxlflash_mark_contexts_error(cfg);
2462 		if (unlikely(rc))
2463 			dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
2464 				__func__, rc);
2465 		term_afu(cfg);
2466 		return PCI_ERS_RESULT_NEED_RESET;
2467 	case pci_channel_io_perm_failure:
2468 		cfg->state = STATE_FAILTERM;
2469 		wake_up_all(&cfg->reset_waitq);
2470 		scsi_unblock_requests(cfg->host);
2471 		return PCI_ERS_RESULT_DISCONNECT;
2472 	default:
2473 		break;
2474 	}
2475 	return PCI_ERS_RESULT_NEED_RESET;
2476 }
2477 
2478 /**
2479  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2480  * @pdev:	PCI device struct.
2481  *
2482  * This routine is called by the pci error recovery code after the PCI
2483  * slot has been reset, just before we should resume normal operations.
2484  *
2485  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2486  */
2487 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2488 {
2489 	int rc = 0;
2490 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2491 	struct device *dev = &cfg->dev->dev;
2492 
2493 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2494 
2495 	rc = init_afu(cfg);
2496 	if (unlikely(rc)) {
2497 		dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
2498 		return PCI_ERS_RESULT_DISCONNECT;
2499 	}
2500 
2501 	return PCI_ERS_RESULT_RECOVERED;
2502 }
2503 
2504 /**
2505  * cxlflash_pci_resume() - called when normal operation can resume
2506  * @pdev:	PCI device struct
2507  */
2508 static void cxlflash_pci_resume(struct pci_dev *pdev)
2509 {
2510 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2511 	struct device *dev = &cfg->dev->dev;
2512 
2513 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2514 
2515 	cfg->state = STATE_NORMAL;
2516 	wake_up_all(&cfg->reset_waitq);
2517 	scsi_unblock_requests(cfg->host);
2518 }
2519 
2520 static const struct pci_error_handlers cxlflash_err_handler = {
2521 	.error_detected = cxlflash_pci_error_detected,
2522 	.slot_reset = cxlflash_pci_slot_reset,
2523 	.resume = cxlflash_pci_resume,
2524 };
2525 
2526 /*
2527  * PCI device structure
2528  */
2529 static struct pci_driver cxlflash_driver = {
2530 	.name = CXLFLASH_NAME,
2531 	.id_table = cxlflash_pci_table,
2532 	.probe = cxlflash_probe,
2533 	.remove = cxlflash_remove,
2534 	.shutdown = cxlflash_remove,
2535 	.err_handler = &cxlflash_err_handler,
2536 };
2537 
2538 /**
2539  * init_cxlflash() - module entry point
2540  *
2541  * Return: 0 on success, -errno on failure
2542  */
2543 static int __init init_cxlflash(void)
2544 {
2545 	cxlflash_list_init();
2546 
2547 	return pci_register_driver(&cxlflash_driver);
2548 }
2549 
2550 /**
2551  * exit_cxlflash() - module exit point
2552  */
2553 static void __exit exit_cxlflash(void)
2554 {
2555 	cxlflash_term_global_luns();
2556 	cxlflash_free_errpage();
2557 
2558 	pci_unregister_driver(&cxlflash_driver);
2559 }
2560 
2561 module_init(init_cxlflash);
2562 module_exit(exit_cxlflash);
2563