xref: /openbmc/linux/drivers/scsi/cxlflash/main.c (revision 4da722ca)
1 /*
2  * CXL Flash Device Driver
3  *
4  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6  *
7  * Copyright (C) 2015 IBM Corporation
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 
20 #include <asm/unaligned.h>
21 
22 #include <misc/cxl.h>
23 
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27 
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31 
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36 
37 static struct class *cxlflash_class;
38 static u32 cxlflash_major;
39 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
40 
41 /**
42  * process_cmd_err() - command error handler
43  * @cmd:	AFU command that experienced the error.
44  * @scp:	SCSI command associated with the AFU command in error.
45  *
46  * Translates error bits from AFU command to SCSI command results.
47  */
48 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
49 {
50 	struct afu *afu = cmd->parent;
51 	struct cxlflash_cfg *cfg = afu->parent;
52 	struct device *dev = &cfg->dev->dev;
53 	struct sisl_ioarcb *ioarcb;
54 	struct sisl_ioasa *ioasa;
55 	u32 resid;
56 
57 	if (unlikely(!cmd))
58 		return;
59 
60 	ioarcb = &(cmd->rcb);
61 	ioasa = &(cmd->sa);
62 
63 	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
64 		resid = ioasa->resid;
65 		scsi_set_resid(scp, resid);
66 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
67 			__func__, cmd, scp, resid);
68 	}
69 
70 	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
71 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
72 			__func__, cmd, scp);
73 		scp->result = (DID_ERROR << 16);
74 	}
75 
76 	dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
77 		"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
78 		ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
79 		ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
80 
81 	if (ioasa->rc.scsi_rc) {
82 		/* We have a SCSI status */
83 		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
84 			memcpy(scp->sense_buffer, ioasa->sense_data,
85 			       SISL_SENSE_DATA_LEN);
86 			scp->result = ioasa->rc.scsi_rc;
87 		} else
88 			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
89 	}
90 
91 	/*
92 	 * We encountered an error. Set scp->result based on nature
93 	 * of error.
94 	 */
95 	if (ioasa->rc.fc_rc) {
96 		/* We have an FC status */
97 		switch (ioasa->rc.fc_rc) {
98 		case SISL_FC_RC_LINKDOWN:
99 			scp->result = (DID_REQUEUE << 16);
100 			break;
101 		case SISL_FC_RC_RESID:
102 			/* This indicates an FCP resid underrun */
103 			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
104 				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
105 				 * then we will handle this error else where.
106 				 * If not then we must handle it here.
107 				 * This is probably an AFU bug.
108 				 */
109 				scp->result = (DID_ERROR << 16);
110 			}
111 			break;
112 		case SISL_FC_RC_RESIDERR:
113 			/* Resid mismatch between adapter and device */
114 		case SISL_FC_RC_TGTABORT:
115 		case SISL_FC_RC_ABORTOK:
116 		case SISL_FC_RC_ABORTFAIL:
117 		case SISL_FC_RC_NOLOGI:
118 		case SISL_FC_RC_ABORTPEND:
119 		case SISL_FC_RC_WRABORTPEND:
120 		case SISL_FC_RC_NOEXP:
121 		case SISL_FC_RC_INUSE:
122 			scp->result = (DID_ERROR << 16);
123 			break;
124 		}
125 	}
126 
127 	if (ioasa->rc.afu_rc) {
128 		/* We have an AFU error */
129 		switch (ioasa->rc.afu_rc) {
130 		case SISL_AFU_RC_NO_CHANNELS:
131 			scp->result = (DID_NO_CONNECT << 16);
132 			break;
133 		case SISL_AFU_RC_DATA_DMA_ERR:
134 			switch (ioasa->afu_extra) {
135 			case SISL_AFU_DMA_ERR_PAGE_IN:
136 				/* Retry */
137 				scp->result = (DID_IMM_RETRY << 16);
138 				break;
139 			case SISL_AFU_DMA_ERR_INVALID_EA:
140 			default:
141 				scp->result = (DID_ERROR << 16);
142 			}
143 			break;
144 		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
145 			/* Retry */
146 			scp->result = (DID_ALLOC_FAILURE << 16);
147 			break;
148 		default:
149 			scp->result = (DID_ERROR << 16);
150 		}
151 	}
152 }
153 
154 /**
155  * cmd_complete() - command completion handler
156  * @cmd:	AFU command that has completed.
157  *
158  * For SCSI commands this routine prepares and submits commands that have
159  * either completed or timed out to the SCSI stack. For internal commands
160  * (TMF or AFU), this routine simply notifies the originator that the
161  * command has completed.
162  */
163 static void cmd_complete(struct afu_cmd *cmd)
164 {
165 	struct scsi_cmnd *scp;
166 	ulong lock_flags;
167 	struct afu *afu = cmd->parent;
168 	struct cxlflash_cfg *cfg = afu->parent;
169 	struct device *dev = &cfg->dev->dev;
170 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
171 
172 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
173 	list_del(&cmd->list);
174 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
175 
176 	if (cmd->scp) {
177 		scp = cmd->scp;
178 		if (unlikely(cmd->sa.ioasc))
179 			process_cmd_err(cmd, scp);
180 		else
181 			scp->result = (DID_OK << 16);
182 
183 		dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
184 				    __func__, scp, scp->result, cmd->sa.ioasc);
185 		scp->scsi_done(scp);
186 	} else if (cmd->cmd_tmf) {
187 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
188 		cfg->tmf_active = false;
189 		wake_up_all_locked(&cfg->tmf_waitq);
190 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
191 	} else
192 		complete(&cmd->cevent);
193 }
194 
195 /**
196  * flush_pending_cmds() - flush all pending commands on this hardware queue
197  * @hwq:	Hardware queue to flush.
198  *
199  * The hardware send queue lock associated with this hardware queue must be
200  * held when calling this routine.
201  */
202 static void flush_pending_cmds(struct hwq *hwq)
203 {
204 	struct cxlflash_cfg *cfg = hwq->afu->parent;
205 	struct afu_cmd *cmd, *tmp;
206 	struct scsi_cmnd *scp;
207 	ulong lock_flags;
208 
209 	list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
210 		/* Bypass command when on a doneq, cmd_complete() will handle */
211 		if (!list_empty(&cmd->queue))
212 			continue;
213 
214 		list_del(&cmd->list);
215 
216 		if (cmd->scp) {
217 			scp = cmd->scp;
218 			scp->result = (DID_IMM_RETRY << 16);
219 			scp->scsi_done(scp);
220 		} else {
221 			cmd->cmd_aborted = true;
222 
223 			if (cmd->cmd_tmf) {
224 				spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
225 				cfg->tmf_active = false;
226 				wake_up_all_locked(&cfg->tmf_waitq);
227 				spin_unlock_irqrestore(&cfg->tmf_slock,
228 						       lock_flags);
229 			} else
230 				complete(&cmd->cevent);
231 		}
232 	}
233 }
234 
235 /**
236  * context_reset() - reset context via specified register
237  * @hwq:	Hardware queue owning the context to be reset.
238  * @reset_reg:	MMIO register to perform reset.
239  *
240  * When the reset is successful, the SISLite specification guarantees that
241  * the AFU has aborted all currently pending I/O. Accordingly, these commands
242  * must be flushed.
243  *
244  * Return: 0 on success, -errno on failure
245  */
246 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
247 {
248 	struct cxlflash_cfg *cfg = hwq->afu->parent;
249 	struct device *dev = &cfg->dev->dev;
250 	int rc = -ETIMEDOUT;
251 	int nretry = 0;
252 	u64 val = 0x1;
253 	ulong lock_flags;
254 
255 	dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
256 
257 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
258 
259 	writeq_be(val, reset_reg);
260 	do {
261 		val = readq_be(reset_reg);
262 		if ((val & 0x1) == 0x0) {
263 			rc = 0;
264 			break;
265 		}
266 
267 		/* Double delay each time */
268 		udelay(1 << nretry);
269 	} while (nretry++ < MC_ROOM_RETRY_CNT);
270 
271 	if (!rc)
272 		flush_pending_cmds(hwq);
273 
274 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
275 
276 	dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
277 		__func__, rc, val, nretry);
278 	return rc;
279 }
280 
281 /**
282  * context_reset_ioarrin() - reset context via IOARRIN register
283  * @hwq:	Hardware queue owning the context to be reset.
284  *
285  * Return: 0 on success, -errno on failure
286  */
287 static int context_reset_ioarrin(struct hwq *hwq)
288 {
289 	return context_reset(hwq, &hwq->host_map->ioarrin);
290 }
291 
292 /**
293  * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
294  * @hwq:	Hardware queue owning the context to be reset.
295  *
296  * Return: 0 on success, -errno on failure
297  */
298 static int context_reset_sq(struct hwq *hwq)
299 {
300 	return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
301 }
302 
303 /**
304  * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
305  * @afu:	AFU associated with the host.
306  * @cmd:	AFU command to send.
307  *
308  * Return:
309  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
310  */
311 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
312 {
313 	struct cxlflash_cfg *cfg = afu->parent;
314 	struct device *dev = &cfg->dev->dev;
315 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
316 	int rc = 0;
317 	s64 room;
318 	ulong lock_flags;
319 
320 	/*
321 	 * To avoid the performance penalty of MMIO, spread the update of
322 	 * 'room' over multiple commands.
323 	 */
324 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
325 	if (--hwq->room < 0) {
326 		room = readq_be(&hwq->host_map->cmd_room);
327 		if (room <= 0) {
328 			dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
329 					    "0x%02X, room=0x%016llX\n",
330 					    __func__, cmd->rcb.cdb[0], room);
331 			hwq->room = 0;
332 			rc = SCSI_MLQUEUE_HOST_BUSY;
333 			goto out;
334 		}
335 		hwq->room = room - 1;
336 	}
337 
338 	list_add(&cmd->list, &hwq->pending_cmds);
339 	writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
340 out:
341 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
342 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
343 		cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
344 	return rc;
345 }
346 
347 /**
348  * send_cmd_sq() - sends an AFU command via SQ ring
349  * @afu:	AFU associated with the host.
350  * @cmd:	AFU command to send.
351  *
352  * Return:
353  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
354  */
355 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
356 {
357 	struct cxlflash_cfg *cfg = afu->parent;
358 	struct device *dev = &cfg->dev->dev;
359 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
360 	int rc = 0;
361 	int newval;
362 	ulong lock_flags;
363 
364 	newval = atomic_dec_if_positive(&hwq->hsq_credits);
365 	if (newval <= 0) {
366 		rc = SCSI_MLQUEUE_HOST_BUSY;
367 		goto out;
368 	}
369 
370 	cmd->rcb.ioasa = &cmd->sa;
371 
372 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
373 
374 	*hwq->hsq_curr = cmd->rcb;
375 	if (hwq->hsq_curr < hwq->hsq_end)
376 		hwq->hsq_curr++;
377 	else
378 		hwq->hsq_curr = hwq->hsq_start;
379 
380 	list_add(&cmd->list, &hwq->pending_cmds);
381 	writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
382 
383 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
384 out:
385 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
386 	       "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
387 	       cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
388 	       readq_be(&hwq->host_map->sq_head),
389 	       readq_be(&hwq->host_map->sq_tail));
390 	return rc;
391 }
392 
393 /**
394  * wait_resp() - polls for a response or timeout to a sent AFU command
395  * @afu:	AFU associated with the host.
396  * @cmd:	AFU command that was sent.
397  *
398  * Return: 0 on success, -errno on failure
399  */
400 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
401 {
402 	struct cxlflash_cfg *cfg = afu->parent;
403 	struct device *dev = &cfg->dev->dev;
404 	int rc = 0;
405 	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
406 
407 	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
408 	if (!timeout)
409 		rc = -ETIMEDOUT;
410 
411 	if (cmd->cmd_aborted)
412 		rc = -EAGAIN;
413 
414 	if (unlikely(cmd->sa.ioasc != 0)) {
415 		dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
416 			__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
417 		rc = -EIO;
418 	}
419 
420 	return rc;
421 }
422 
423 /**
424  * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
425  * @host:	SCSI host associated with device.
426  * @scp:	SCSI command to send.
427  * @afu:	SCSI command to send.
428  *
429  * Hashes a command based upon the hardware queue mode.
430  *
431  * Return: Trusted index of target hardware queue
432  */
433 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
434 			     struct afu *afu)
435 {
436 	u32 tag;
437 	u32 hwq = 0;
438 
439 	if (afu->num_hwqs == 1)
440 		return 0;
441 
442 	switch (afu->hwq_mode) {
443 	case HWQ_MODE_RR:
444 		hwq = afu->hwq_rr_count++ % afu->num_hwqs;
445 		break;
446 	case HWQ_MODE_TAG:
447 		tag = blk_mq_unique_tag(scp->request);
448 		hwq = blk_mq_unique_tag_to_hwq(tag);
449 		break;
450 	case HWQ_MODE_CPU:
451 		hwq = smp_processor_id() % afu->num_hwqs;
452 		break;
453 	default:
454 		WARN_ON_ONCE(1);
455 	}
456 
457 	return hwq;
458 }
459 
460 /**
461  * send_tmf() - sends a Task Management Function (TMF)
462  * @cfg:	Internal structure associated with the host.
463  * @sdev:	SCSI device destined for TMF.
464  * @tmfcmd:	TMF command to send.
465  *
466  * Return:
467  *	0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
468  */
469 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
470 		    u64 tmfcmd)
471 {
472 	struct afu *afu = cfg->afu;
473 	struct afu_cmd *cmd = NULL;
474 	struct device *dev = &cfg->dev->dev;
475 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
476 	char *buf = NULL;
477 	ulong lock_flags;
478 	int rc = 0;
479 	ulong to;
480 
481 	buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
482 	if (unlikely(!buf)) {
483 		dev_err(dev, "%s: no memory for command\n", __func__);
484 		rc = -ENOMEM;
485 		goto out;
486 	}
487 
488 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
489 	INIT_LIST_HEAD(&cmd->queue);
490 
491 	/* When Task Management Function is active do not send another */
492 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
493 	if (cfg->tmf_active)
494 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
495 						  !cfg->tmf_active,
496 						  cfg->tmf_slock);
497 	cfg->tmf_active = true;
498 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
499 
500 	cmd->parent = afu;
501 	cmd->cmd_tmf = true;
502 	cmd->hwq_index = hwq->index;
503 
504 	cmd->rcb.ctx_id = hwq->ctx_hndl;
505 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
506 	cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
507 	cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
508 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
509 			      SISL_REQ_FLAGS_SUP_UNDERRUN |
510 			      SISL_REQ_FLAGS_TMF_CMD);
511 	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
512 
513 	rc = afu->send_cmd(afu, cmd);
514 	if (unlikely(rc)) {
515 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
516 		cfg->tmf_active = false;
517 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
518 		goto out;
519 	}
520 
521 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
522 	to = msecs_to_jiffies(5000);
523 	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
524 						       !cfg->tmf_active,
525 						       cfg->tmf_slock,
526 						       to);
527 	if (!to) {
528 		dev_err(dev, "%s: TMF timed out\n", __func__);
529 		rc = -ETIMEDOUT;
530 	} else if (cmd->cmd_aborted) {
531 		dev_err(dev, "%s: TMF aborted\n", __func__);
532 		rc = -EAGAIN;
533 	} else if (cmd->sa.ioasc) {
534 		dev_err(dev, "%s: TMF failed ioasc=%08x\n",
535 			__func__, cmd->sa.ioasc);
536 		rc = -EIO;
537 	}
538 	cfg->tmf_active = false;
539 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
540 out:
541 	kfree(buf);
542 	return rc;
543 }
544 
545 /**
546  * cxlflash_driver_info() - information handler for this host driver
547  * @host:	SCSI host associated with device.
548  *
549  * Return: A string describing the device.
550  */
551 static const char *cxlflash_driver_info(struct Scsi_Host *host)
552 {
553 	return CXLFLASH_ADAPTER_NAME;
554 }
555 
556 /**
557  * cxlflash_queuecommand() - sends a mid-layer request
558  * @host:	SCSI host associated with device.
559  * @scp:	SCSI command to send.
560  *
561  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
562  */
563 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
564 {
565 	struct cxlflash_cfg *cfg = shost_priv(host);
566 	struct afu *afu = cfg->afu;
567 	struct device *dev = &cfg->dev->dev;
568 	struct afu_cmd *cmd = sc_to_afuci(scp);
569 	struct scatterlist *sg = scsi_sglist(scp);
570 	int hwq_index = cmd_to_target_hwq(host, scp, afu);
571 	struct hwq *hwq = get_hwq(afu, hwq_index);
572 	u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
573 	ulong lock_flags;
574 	int rc = 0;
575 
576 	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
577 			    "cdb=(%08x-%08x-%08x-%08x)\n",
578 			    __func__, scp, host->host_no, scp->device->channel,
579 			    scp->device->id, scp->device->lun,
580 			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
581 			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
582 			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
583 			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
584 
585 	/*
586 	 * If a Task Management Function is active, wait for it to complete
587 	 * before continuing with regular commands.
588 	 */
589 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
590 	if (cfg->tmf_active) {
591 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
592 		rc = SCSI_MLQUEUE_HOST_BUSY;
593 		goto out;
594 	}
595 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
596 
597 	switch (cfg->state) {
598 	case STATE_PROBING:
599 	case STATE_PROBED:
600 	case STATE_RESET:
601 		dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
602 		rc = SCSI_MLQUEUE_HOST_BUSY;
603 		goto out;
604 	case STATE_FAILTERM:
605 		dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
606 		scp->result = (DID_NO_CONNECT << 16);
607 		scp->scsi_done(scp);
608 		rc = 0;
609 		goto out;
610 	default:
611 		break;
612 	}
613 
614 	if (likely(sg)) {
615 		cmd->rcb.data_len = sg->length;
616 		cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
617 	}
618 
619 	cmd->scp = scp;
620 	cmd->parent = afu;
621 	cmd->hwq_index = hwq_index;
622 
623 	cmd->rcb.ctx_id = hwq->ctx_hndl;
624 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
625 	cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
626 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
627 
628 	if (scp->sc_data_direction == DMA_TO_DEVICE)
629 		req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
630 
631 	cmd->rcb.req_flags = req_flags;
632 	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
633 
634 	rc = afu->send_cmd(afu, cmd);
635 out:
636 	return rc;
637 }
638 
639 /**
640  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
641  * @cfg:	Internal structure associated with the host.
642  */
643 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
644 {
645 	struct pci_dev *pdev = cfg->dev;
646 
647 	if (pci_channel_offline(pdev))
648 		wait_event_timeout(cfg->reset_waitq,
649 				   !pci_channel_offline(pdev),
650 				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
651 }
652 
653 /**
654  * free_mem() - free memory associated with the AFU
655  * @cfg:	Internal structure associated with the host.
656  */
657 static void free_mem(struct cxlflash_cfg *cfg)
658 {
659 	struct afu *afu = cfg->afu;
660 
661 	if (cfg->afu) {
662 		free_pages((ulong)afu, get_order(sizeof(struct afu)));
663 		cfg->afu = NULL;
664 	}
665 }
666 
667 /**
668  * cxlflash_reset_sync() - synchronizing point for asynchronous resets
669  * @cfg:	Internal structure associated with the host.
670  */
671 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
672 {
673 	if (cfg->async_reset_cookie == 0)
674 		return;
675 
676 	/* Wait until all async calls prior to this cookie have completed */
677 	async_synchronize_cookie(cfg->async_reset_cookie + 1);
678 	cfg->async_reset_cookie = 0;
679 }
680 
681 /**
682  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
683  * @cfg:	Internal structure associated with the host.
684  *
685  * Safe to call with AFU in a partially allocated/initialized state.
686  *
687  * Cancels scheduled worker threads, waits for any active internal AFU
688  * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
689  */
690 static void stop_afu(struct cxlflash_cfg *cfg)
691 {
692 	struct afu *afu = cfg->afu;
693 	struct hwq *hwq;
694 	int i;
695 
696 	cancel_work_sync(&cfg->work_q);
697 	if (!current_is_async())
698 		cxlflash_reset_sync(cfg);
699 
700 	if (likely(afu)) {
701 		while (atomic_read(&afu->cmds_active))
702 			ssleep(1);
703 
704 		if (afu_is_irqpoll_enabled(afu)) {
705 			for (i = 0; i < afu->num_hwqs; i++) {
706 				hwq = get_hwq(afu, i);
707 
708 				irq_poll_disable(&hwq->irqpoll);
709 			}
710 		}
711 
712 		if (likely(afu->afu_map)) {
713 			cxl_psa_unmap((void __iomem *)afu->afu_map);
714 			afu->afu_map = NULL;
715 		}
716 	}
717 }
718 
719 /**
720  * term_intr() - disables all AFU interrupts
721  * @cfg:	Internal structure associated with the host.
722  * @level:	Depth of allocation, where to begin waterfall tear down.
723  * @index:	Index of the hardware queue.
724  *
725  * Safe to call with AFU/MC in partially allocated/initialized state.
726  */
727 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
728 		      u32 index)
729 {
730 	struct afu *afu = cfg->afu;
731 	struct device *dev = &cfg->dev->dev;
732 	struct hwq *hwq;
733 
734 	if (!afu) {
735 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
736 		return;
737 	}
738 
739 	hwq = get_hwq(afu, index);
740 
741 	if (!hwq->ctx) {
742 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
743 		return;
744 	}
745 
746 	switch (level) {
747 	case UNMAP_THREE:
748 		/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
749 		if (index == PRIMARY_HWQ)
750 			cxl_unmap_afu_irq(hwq->ctx, 3, hwq);
751 	case UNMAP_TWO:
752 		cxl_unmap_afu_irq(hwq->ctx, 2, hwq);
753 	case UNMAP_ONE:
754 		cxl_unmap_afu_irq(hwq->ctx, 1, hwq);
755 	case FREE_IRQ:
756 		cxl_free_afu_irqs(hwq->ctx);
757 		/* fall through */
758 	case UNDO_NOOP:
759 		/* No action required */
760 		break;
761 	}
762 }
763 
764 /**
765  * term_mc() - terminates the master context
766  * @cfg:	Internal structure associated with the host.
767  * @index:	Index of the hardware queue.
768  *
769  * Safe to call with AFU/MC in partially allocated/initialized state.
770  */
771 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
772 {
773 	struct afu *afu = cfg->afu;
774 	struct device *dev = &cfg->dev->dev;
775 	struct hwq *hwq;
776 	ulong lock_flags;
777 
778 	if (!afu) {
779 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
780 		return;
781 	}
782 
783 	hwq = get_hwq(afu, index);
784 
785 	if (!hwq->ctx) {
786 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
787 		return;
788 	}
789 
790 	WARN_ON(cxl_stop_context(hwq->ctx));
791 	if (index != PRIMARY_HWQ)
792 		WARN_ON(cxl_release_context(hwq->ctx));
793 	hwq->ctx = NULL;
794 
795 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
796 	flush_pending_cmds(hwq);
797 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
798 }
799 
800 /**
801  * term_afu() - terminates the AFU
802  * @cfg:	Internal structure associated with the host.
803  *
804  * Safe to call with AFU/MC in partially allocated/initialized state.
805  */
806 static void term_afu(struct cxlflash_cfg *cfg)
807 {
808 	struct device *dev = &cfg->dev->dev;
809 	int k;
810 
811 	/*
812 	 * Tear down is carefully orchestrated to ensure
813 	 * no interrupts can come in when the problem state
814 	 * area is unmapped.
815 	 *
816 	 * 1) Disable all AFU interrupts for each master
817 	 * 2) Unmap the problem state area
818 	 * 3) Stop each master context
819 	 */
820 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
821 		term_intr(cfg, UNMAP_THREE, k);
822 
823 	if (cfg->afu)
824 		stop_afu(cfg);
825 
826 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
827 		term_mc(cfg, k);
828 
829 	dev_dbg(dev, "%s: returning\n", __func__);
830 }
831 
832 /**
833  * notify_shutdown() - notifies device of pending shutdown
834  * @cfg:	Internal structure associated with the host.
835  * @wait:	Whether to wait for shutdown processing to complete.
836  *
837  * This function will notify the AFU that the adapter is being shutdown
838  * and will wait for shutdown processing to complete if wait is true.
839  * This notification should flush pending I/Os to the device and halt
840  * further I/Os until the next AFU reset is issued and device restarted.
841  */
842 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
843 {
844 	struct afu *afu = cfg->afu;
845 	struct device *dev = &cfg->dev->dev;
846 	struct dev_dependent_vals *ddv;
847 	__be64 __iomem *fc_port_regs;
848 	u64 reg, status;
849 	int i, retry_cnt = 0;
850 
851 	ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
852 	if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
853 		return;
854 
855 	if (!afu || !afu->afu_map) {
856 		dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
857 		return;
858 	}
859 
860 	/* Notify AFU */
861 	for (i = 0; i < cfg->num_fc_ports; i++) {
862 		fc_port_regs = get_fc_port_regs(cfg, i);
863 
864 		reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
865 		reg |= SISL_FC_SHUTDOWN_NORMAL;
866 		writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
867 	}
868 
869 	if (!wait)
870 		return;
871 
872 	/* Wait up to 1.5 seconds for shutdown processing to complete */
873 	for (i = 0; i < cfg->num_fc_ports; i++) {
874 		fc_port_regs = get_fc_port_regs(cfg, i);
875 		retry_cnt = 0;
876 
877 		while (true) {
878 			status = readq_be(&fc_port_regs[FC_STATUS / 8]);
879 			if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
880 				break;
881 			if (++retry_cnt >= MC_RETRY_CNT) {
882 				dev_dbg(dev, "%s: port %d shutdown processing "
883 					"not yet completed\n", __func__, i);
884 				break;
885 			}
886 			msleep(100 * retry_cnt);
887 		}
888 	}
889 }
890 
891 /**
892  * cxlflash_get_minor() - gets the first available minor number
893  *
894  * Return: Unique minor number that can be used to create the character device.
895  */
896 static int cxlflash_get_minor(void)
897 {
898 	int minor;
899 	long bit;
900 
901 	bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
902 	if (bit >= CXLFLASH_MAX_ADAPTERS)
903 		return -1;
904 
905 	minor = bit & MINORMASK;
906 	set_bit(minor, cxlflash_minor);
907 	return minor;
908 }
909 
910 /**
911  * cxlflash_put_minor() - releases the minor number
912  * @minor:	Minor number that is no longer needed.
913  */
914 static void cxlflash_put_minor(int minor)
915 {
916 	clear_bit(minor, cxlflash_minor);
917 }
918 
919 /**
920  * cxlflash_release_chrdev() - release the character device for the host
921  * @cfg:	Internal structure associated with the host.
922  */
923 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
924 {
925 	device_unregister(cfg->chardev);
926 	cfg->chardev = NULL;
927 	cdev_del(&cfg->cdev);
928 	cxlflash_put_minor(MINOR(cfg->cdev.dev));
929 }
930 
931 /**
932  * cxlflash_remove() - PCI entry point to tear down host
933  * @pdev:	PCI device associated with the host.
934  *
935  * Safe to use as a cleanup in partially allocated/initialized state. Note that
936  * the reset_waitq is flushed as part of the stop/termination of user contexts.
937  */
938 static void cxlflash_remove(struct pci_dev *pdev)
939 {
940 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
941 	struct device *dev = &pdev->dev;
942 	ulong lock_flags;
943 
944 	if (!pci_is_enabled(pdev)) {
945 		dev_dbg(dev, "%s: Device is disabled\n", __func__);
946 		return;
947 	}
948 
949 	/* If a Task Management Function is active, wait for it to complete
950 	 * before continuing with remove.
951 	 */
952 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
953 	if (cfg->tmf_active)
954 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
955 						  !cfg->tmf_active,
956 						  cfg->tmf_slock);
957 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
958 
959 	/* Notify AFU and wait for shutdown processing to complete */
960 	notify_shutdown(cfg, true);
961 
962 	cfg->state = STATE_FAILTERM;
963 	cxlflash_stop_term_user_contexts(cfg);
964 
965 	switch (cfg->init_state) {
966 	case INIT_STATE_CDEV:
967 		cxlflash_release_chrdev(cfg);
968 	case INIT_STATE_SCSI:
969 		cxlflash_term_local_luns(cfg);
970 		scsi_remove_host(cfg->host);
971 	case INIT_STATE_AFU:
972 		term_afu(cfg);
973 	case INIT_STATE_PCI:
974 		pci_disable_device(pdev);
975 	case INIT_STATE_NONE:
976 		free_mem(cfg);
977 		scsi_host_put(cfg->host);
978 		break;
979 	}
980 
981 	dev_dbg(dev, "%s: returning\n", __func__);
982 }
983 
984 /**
985  * alloc_mem() - allocates the AFU and its command pool
986  * @cfg:	Internal structure associated with the host.
987  *
988  * A partially allocated state remains on failure.
989  *
990  * Return:
991  *	0 on success
992  *	-ENOMEM on failure to allocate memory
993  */
994 static int alloc_mem(struct cxlflash_cfg *cfg)
995 {
996 	int rc = 0;
997 	struct device *dev = &cfg->dev->dev;
998 
999 	/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1000 	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1001 					    get_order(sizeof(struct afu)));
1002 	if (unlikely(!cfg->afu)) {
1003 		dev_err(dev, "%s: cannot get %d free pages\n",
1004 			__func__, get_order(sizeof(struct afu)));
1005 		rc = -ENOMEM;
1006 		goto out;
1007 	}
1008 	cfg->afu->parent = cfg;
1009 	cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1010 	cfg->afu->afu_map = NULL;
1011 out:
1012 	return rc;
1013 }
1014 
1015 /**
1016  * init_pci() - initializes the host as a PCI device
1017  * @cfg:	Internal structure associated with the host.
1018  *
1019  * Return: 0 on success, -errno on failure
1020  */
1021 static int init_pci(struct cxlflash_cfg *cfg)
1022 {
1023 	struct pci_dev *pdev = cfg->dev;
1024 	struct device *dev = &cfg->dev->dev;
1025 	int rc = 0;
1026 
1027 	rc = pci_enable_device(pdev);
1028 	if (rc || pci_channel_offline(pdev)) {
1029 		if (pci_channel_offline(pdev)) {
1030 			cxlflash_wait_for_pci_err_recovery(cfg);
1031 			rc = pci_enable_device(pdev);
1032 		}
1033 
1034 		if (rc) {
1035 			dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1036 			cxlflash_wait_for_pci_err_recovery(cfg);
1037 			goto out;
1038 		}
1039 	}
1040 
1041 out:
1042 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1043 	return rc;
1044 }
1045 
1046 /**
1047  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1048  * @cfg:	Internal structure associated with the host.
1049  *
1050  * Return: 0 on success, -errno on failure
1051  */
1052 static int init_scsi(struct cxlflash_cfg *cfg)
1053 {
1054 	struct pci_dev *pdev = cfg->dev;
1055 	struct device *dev = &cfg->dev->dev;
1056 	int rc = 0;
1057 
1058 	rc = scsi_add_host(cfg->host, &pdev->dev);
1059 	if (rc) {
1060 		dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1061 		goto out;
1062 	}
1063 
1064 	scsi_scan_host(cfg->host);
1065 
1066 out:
1067 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1068 	return rc;
1069 }
1070 
1071 /**
1072  * set_port_online() - transitions the specified host FC port to online state
1073  * @fc_regs:	Top of MMIO region defined for specified port.
1074  *
1075  * The provided MMIO region must be mapped prior to call. Online state means
1076  * that the FC link layer has synced, completed the handshaking process, and
1077  * is ready for login to start.
1078  */
1079 static void set_port_online(__be64 __iomem *fc_regs)
1080 {
1081 	u64 cmdcfg;
1082 
1083 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1084 	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
1085 	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
1086 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1087 }
1088 
1089 /**
1090  * set_port_offline() - transitions the specified host FC port to offline state
1091  * @fc_regs:	Top of MMIO region defined for specified port.
1092  *
1093  * The provided MMIO region must be mapped prior to call.
1094  */
1095 static void set_port_offline(__be64 __iomem *fc_regs)
1096 {
1097 	u64 cmdcfg;
1098 
1099 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1100 	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
1101 	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
1102 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1103 }
1104 
1105 /**
1106  * wait_port_online() - waits for the specified host FC port come online
1107  * @fc_regs:	Top of MMIO region defined for specified port.
1108  * @delay_us:	Number of microseconds to delay between reading port status.
1109  * @nretry:	Number of cycles to retry reading port status.
1110  *
1111  * The provided MMIO region must be mapped prior to call. This will timeout
1112  * when the cable is not plugged in.
1113  *
1114  * Return:
1115  *	TRUE (1) when the specified port is online
1116  *	FALSE (0) when the specified port fails to come online after timeout
1117  */
1118 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1119 {
1120 	u64 status;
1121 
1122 	WARN_ON(delay_us < 1000);
1123 
1124 	do {
1125 		msleep(delay_us / 1000);
1126 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1127 		if (status == U64_MAX)
1128 			nretry /= 2;
1129 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1130 		 nretry--);
1131 
1132 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1133 }
1134 
1135 /**
1136  * wait_port_offline() - waits for the specified host FC port go offline
1137  * @fc_regs:	Top of MMIO region defined for specified port.
1138  * @delay_us:	Number of microseconds to delay between reading port status.
1139  * @nretry:	Number of cycles to retry reading port status.
1140  *
1141  * The provided MMIO region must be mapped prior to call.
1142  *
1143  * Return:
1144  *	TRUE (1) when the specified port is offline
1145  *	FALSE (0) when the specified port fails to go offline after timeout
1146  */
1147 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1148 {
1149 	u64 status;
1150 
1151 	WARN_ON(delay_us < 1000);
1152 
1153 	do {
1154 		msleep(delay_us / 1000);
1155 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1156 		if (status == U64_MAX)
1157 			nretry /= 2;
1158 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1159 		 nretry--);
1160 
1161 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1162 }
1163 
1164 /**
1165  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1166  * @afu:	AFU associated with the host that owns the specified FC port.
1167  * @port:	Port number being configured.
1168  * @fc_regs:	Top of MMIO region defined for specified port.
1169  * @wwpn:	The world-wide-port-number previously discovered for port.
1170  *
1171  * The provided MMIO region must be mapped prior to call. As part of the
1172  * sequence to configure the WWPN, the port is toggled offline and then back
1173  * online. This toggling action can cause this routine to delay up to a few
1174  * seconds. When configured to use the internal LUN feature of the AFU, a
1175  * failure to come online is overridden.
1176  */
1177 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1178 			 u64 wwpn)
1179 {
1180 	struct cxlflash_cfg *cfg = afu->parent;
1181 	struct device *dev = &cfg->dev->dev;
1182 
1183 	set_port_offline(fc_regs);
1184 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1185 			       FC_PORT_STATUS_RETRY_CNT)) {
1186 		dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1187 			__func__, port);
1188 	}
1189 
1190 	writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1191 
1192 	set_port_online(fc_regs);
1193 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1194 			      FC_PORT_STATUS_RETRY_CNT)) {
1195 		dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1196 			__func__, port);
1197 	}
1198 }
1199 
1200 /**
1201  * afu_link_reset() - resets the specified host FC port
1202  * @afu:	AFU associated with the host that owns the specified FC port.
1203  * @port:	Port number being configured.
1204  * @fc_regs:	Top of MMIO region defined for specified port.
1205  *
1206  * The provided MMIO region must be mapped prior to call. The sequence to
1207  * reset the port involves toggling it offline and then back online. This
1208  * action can cause this routine to delay up to a few seconds. An effort
1209  * is made to maintain link with the device by switching to host to use
1210  * the alternate port exclusively while the reset takes place.
1211  * failure to come online is overridden.
1212  */
1213 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1214 {
1215 	struct cxlflash_cfg *cfg = afu->parent;
1216 	struct device *dev = &cfg->dev->dev;
1217 	u64 port_sel;
1218 
1219 	/* first switch the AFU to the other links, if any */
1220 	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1221 	port_sel &= ~(1ULL << port);
1222 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1223 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1224 
1225 	set_port_offline(fc_regs);
1226 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1227 			       FC_PORT_STATUS_RETRY_CNT))
1228 		dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1229 			__func__, port);
1230 
1231 	set_port_online(fc_regs);
1232 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1233 			      FC_PORT_STATUS_RETRY_CNT))
1234 		dev_err(dev, "%s: wait on port %d to go online timed out\n",
1235 			__func__, port);
1236 
1237 	/* switch back to include this port */
1238 	port_sel |= (1ULL << port);
1239 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1240 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1241 
1242 	dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1243 }
1244 
1245 /**
1246  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1247  * @afu:	AFU associated with the host.
1248  */
1249 static void afu_err_intr_init(struct afu *afu)
1250 {
1251 	struct cxlflash_cfg *cfg = afu->parent;
1252 	__be64 __iomem *fc_port_regs;
1253 	int i;
1254 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1255 	u64 reg;
1256 
1257 	/* global async interrupts: AFU clears afu_ctrl on context exit
1258 	 * if async interrupts were sent to that context. This prevents
1259 	 * the AFU form sending further async interrupts when
1260 	 * there is
1261 	 * nobody to receive them.
1262 	 */
1263 
1264 	/* mask all */
1265 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1266 	/* set LISN# to send and point to primary master context */
1267 	reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1268 
1269 	if (afu->internal_lun)
1270 		reg |= 1;	/* Bit 63 indicates local lun */
1271 	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1272 	/* clear all */
1273 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1274 	/* unmask bits that are of interest */
1275 	/* note: afu can send an interrupt after this step */
1276 	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1277 	/* clear again in case a bit came on after previous clear but before */
1278 	/* unmask */
1279 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1280 
1281 	/* Clear/Set internal lun bits */
1282 	fc_port_regs = get_fc_port_regs(cfg, 0);
1283 	reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1284 	reg &= SISL_FC_INTERNAL_MASK;
1285 	if (afu->internal_lun)
1286 		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1287 	writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1288 
1289 	/* now clear FC errors */
1290 	for (i = 0; i < cfg->num_fc_ports; i++) {
1291 		fc_port_regs = get_fc_port_regs(cfg, i);
1292 
1293 		writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1294 		writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1295 	}
1296 
1297 	/* sync interrupts for master's IOARRIN write */
1298 	/* note that unlike asyncs, there can be no pending sync interrupts */
1299 	/* at this time (this is a fresh context and master has not written */
1300 	/* IOARRIN yet), so there is nothing to clear. */
1301 
1302 	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1303 	for (i = 0; i < afu->num_hwqs; i++) {
1304 		hwq = get_hwq(afu, i);
1305 
1306 		writeq_be(SISL_MSI_SYNC_ERROR, &hwq->host_map->ctx_ctrl);
1307 		writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1308 	}
1309 }
1310 
1311 /**
1312  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1313  * @irq:	Interrupt number.
1314  * @data:	Private data provided at interrupt registration, the AFU.
1315  *
1316  * Return: Always return IRQ_HANDLED.
1317  */
1318 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1319 {
1320 	struct hwq *hwq = (struct hwq *)data;
1321 	struct cxlflash_cfg *cfg = hwq->afu->parent;
1322 	struct device *dev = &cfg->dev->dev;
1323 	u64 reg;
1324 	u64 reg_unmasked;
1325 
1326 	reg = readq_be(&hwq->host_map->intr_status);
1327 	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1328 
1329 	if (reg_unmasked == 0UL) {
1330 		dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1331 			__func__, reg);
1332 		goto cxlflash_sync_err_irq_exit;
1333 	}
1334 
1335 	dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1336 		__func__, reg);
1337 
1338 	writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1339 
1340 cxlflash_sync_err_irq_exit:
1341 	return IRQ_HANDLED;
1342 }
1343 
1344 /**
1345  * process_hrrq() - process the read-response queue
1346  * @afu:	AFU associated with the host.
1347  * @doneq:	Queue of commands harvested from the RRQ.
1348  * @budget:	Threshold of RRQ entries to process.
1349  *
1350  * This routine must be called holding the disabled RRQ spin lock.
1351  *
1352  * Return: The number of entries processed.
1353  */
1354 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1355 {
1356 	struct afu *afu = hwq->afu;
1357 	struct afu_cmd *cmd;
1358 	struct sisl_ioasa *ioasa;
1359 	struct sisl_ioarcb *ioarcb;
1360 	bool toggle = hwq->toggle;
1361 	int num_hrrq = 0;
1362 	u64 entry,
1363 	    *hrrq_start = hwq->hrrq_start,
1364 	    *hrrq_end = hwq->hrrq_end,
1365 	    *hrrq_curr = hwq->hrrq_curr;
1366 
1367 	/* Process ready RRQ entries up to the specified budget (if any) */
1368 	while (true) {
1369 		entry = *hrrq_curr;
1370 
1371 		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1372 			break;
1373 
1374 		entry &= ~SISL_RESP_HANDLE_T_BIT;
1375 
1376 		if (afu_is_sq_cmd_mode(afu)) {
1377 			ioasa = (struct sisl_ioasa *)entry;
1378 			cmd = container_of(ioasa, struct afu_cmd, sa);
1379 		} else {
1380 			ioarcb = (struct sisl_ioarcb *)entry;
1381 			cmd = container_of(ioarcb, struct afu_cmd, rcb);
1382 		}
1383 
1384 		list_add_tail(&cmd->queue, doneq);
1385 
1386 		/* Advance to next entry or wrap and flip the toggle bit */
1387 		if (hrrq_curr < hrrq_end)
1388 			hrrq_curr++;
1389 		else {
1390 			hrrq_curr = hrrq_start;
1391 			toggle ^= SISL_RESP_HANDLE_T_BIT;
1392 		}
1393 
1394 		atomic_inc(&hwq->hsq_credits);
1395 		num_hrrq++;
1396 
1397 		if (budget > 0 && num_hrrq >= budget)
1398 			break;
1399 	}
1400 
1401 	hwq->hrrq_curr = hrrq_curr;
1402 	hwq->toggle = toggle;
1403 
1404 	return num_hrrq;
1405 }
1406 
1407 /**
1408  * process_cmd_doneq() - process a queue of harvested RRQ commands
1409  * @doneq:	Queue of completed commands.
1410  *
1411  * Note that upon return the queue can no longer be trusted.
1412  */
1413 static void process_cmd_doneq(struct list_head *doneq)
1414 {
1415 	struct afu_cmd *cmd, *tmp;
1416 
1417 	WARN_ON(list_empty(doneq));
1418 
1419 	list_for_each_entry_safe(cmd, tmp, doneq, queue)
1420 		cmd_complete(cmd);
1421 }
1422 
1423 /**
1424  * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1425  * @irqpoll:	IRQ poll structure associated with queue to poll.
1426  * @budget:	Threshold of RRQ entries to process per poll.
1427  *
1428  * Return: The number of entries processed.
1429  */
1430 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1431 {
1432 	struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1433 	unsigned long hrrq_flags;
1434 	LIST_HEAD(doneq);
1435 	int num_entries = 0;
1436 
1437 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1438 
1439 	num_entries = process_hrrq(hwq, &doneq, budget);
1440 	if (num_entries < budget)
1441 		irq_poll_complete(irqpoll);
1442 
1443 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1444 
1445 	process_cmd_doneq(&doneq);
1446 	return num_entries;
1447 }
1448 
1449 /**
1450  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1451  * @irq:	Interrupt number.
1452  * @data:	Private data provided at interrupt registration, the AFU.
1453  *
1454  * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1455  */
1456 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1457 {
1458 	struct hwq *hwq = (struct hwq *)data;
1459 	struct afu *afu = hwq->afu;
1460 	unsigned long hrrq_flags;
1461 	LIST_HEAD(doneq);
1462 	int num_entries = 0;
1463 
1464 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1465 
1466 	if (afu_is_irqpoll_enabled(afu)) {
1467 		irq_poll_sched(&hwq->irqpoll);
1468 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1469 		return IRQ_HANDLED;
1470 	}
1471 
1472 	num_entries = process_hrrq(hwq, &doneq, -1);
1473 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1474 
1475 	if (num_entries == 0)
1476 		return IRQ_NONE;
1477 
1478 	process_cmd_doneq(&doneq);
1479 	return IRQ_HANDLED;
1480 }
1481 
1482 /*
1483  * Asynchronous interrupt information table
1484  *
1485  * NOTE:
1486  *	- Order matters here as this array is indexed by bit position.
1487  *
1488  *	- The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1489  *	  as complex and complains due to a lack of parentheses/braces.
1490  */
1491 #define ASTATUS_FC(_a, _b, _c, _d)					 \
1492 	{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1493 
1494 #define BUILD_SISL_ASTATUS_FC_PORT(_a)					 \
1495 	ASTATUS_FC(_a, LINK_UP, "link up", 0),				 \
1496 	ASTATUS_FC(_a, LINK_DN, "link down", 0),			 \
1497 	ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),		 \
1498 	ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),		 \
1499 	ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1500 	ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),	 \
1501 	ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),		 \
1502 	ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1503 
1504 static const struct asyc_intr_info ainfo[] = {
1505 	BUILD_SISL_ASTATUS_FC_PORT(1),
1506 	BUILD_SISL_ASTATUS_FC_PORT(0),
1507 	BUILD_SISL_ASTATUS_FC_PORT(3),
1508 	BUILD_SISL_ASTATUS_FC_PORT(2)
1509 };
1510 
1511 /**
1512  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1513  * @irq:	Interrupt number.
1514  * @data:	Private data provided at interrupt registration, the AFU.
1515  *
1516  * Return: Always return IRQ_HANDLED.
1517  */
1518 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1519 {
1520 	struct hwq *hwq = (struct hwq *)data;
1521 	struct afu *afu = hwq->afu;
1522 	struct cxlflash_cfg *cfg = afu->parent;
1523 	struct device *dev = &cfg->dev->dev;
1524 	const struct asyc_intr_info *info;
1525 	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1526 	__be64 __iomem *fc_port_regs;
1527 	u64 reg_unmasked;
1528 	u64 reg;
1529 	u64 bit;
1530 	u8 port;
1531 
1532 	reg = readq_be(&global->regs.aintr_status);
1533 	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1534 
1535 	if (unlikely(reg_unmasked == 0)) {
1536 		dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1537 			__func__, reg);
1538 		goto out;
1539 	}
1540 
1541 	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1542 	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1543 
1544 	/* Check each bit that is on */
1545 	for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1546 		if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1547 			WARN_ON_ONCE(1);
1548 			continue;
1549 		}
1550 
1551 		info = &ainfo[bit];
1552 		if (unlikely(info->status != 1ULL << bit)) {
1553 			WARN_ON_ONCE(1);
1554 			continue;
1555 		}
1556 
1557 		port = info->port;
1558 		fc_port_regs = get_fc_port_regs(cfg, port);
1559 
1560 		dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1561 			__func__, port, info->desc,
1562 		       readq_be(&fc_port_regs[FC_STATUS / 8]));
1563 
1564 		/*
1565 		 * Do link reset first, some OTHER errors will set FC_ERROR
1566 		 * again if cleared before or w/o a reset
1567 		 */
1568 		if (info->action & LINK_RESET) {
1569 			dev_err(dev, "%s: FC Port %d: resetting link\n",
1570 				__func__, port);
1571 			cfg->lr_state = LINK_RESET_REQUIRED;
1572 			cfg->lr_port = port;
1573 			schedule_work(&cfg->work_q);
1574 		}
1575 
1576 		if (info->action & CLR_FC_ERROR) {
1577 			reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1578 
1579 			/*
1580 			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1581 			 * should be the same and tracing one is sufficient.
1582 			 */
1583 
1584 			dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1585 				__func__, port, reg);
1586 
1587 			writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1588 			writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1589 		}
1590 
1591 		if (info->action & SCAN_HOST) {
1592 			atomic_inc(&cfg->scan_host_needed);
1593 			schedule_work(&cfg->work_q);
1594 		}
1595 	}
1596 
1597 out:
1598 	return IRQ_HANDLED;
1599 }
1600 
1601 /**
1602  * start_context() - starts the master context
1603  * @cfg:	Internal structure associated with the host.
1604  * @index:	Index of the hardware queue.
1605  *
1606  * Return: A success or failure value from CXL services.
1607  */
1608 static int start_context(struct cxlflash_cfg *cfg, u32 index)
1609 {
1610 	struct device *dev = &cfg->dev->dev;
1611 	struct hwq *hwq = get_hwq(cfg->afu, index);
1612 	int rc = 0;
1613 
1614 	rc = cxl_start_context(hwq->ctx,
1615 			       hwq->work.work_element_descriptor,
1616 			       NULL);
1617 
1618 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1619 	return rc;
1620 }
1621 
1622 /**
1623  * read_vpd() - obtains the WWPNs from VPD
1624  * @cfg:	Internal structure associated with the host.
1625  * @wwpn:	Array of size MAX_FC_PORTS to pass back WWPNs
1626  *
1627  * Return: 0 on success, -errno on failure
1628  */
1629 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1630 {
1631 	struct device *dev = &cfg->dev->dev;
1632 	struct pci_dev *pdev = cfg->dev;
1633 	int rc = 0;
1634 	int ro_start, ro_size, i, j, k;
1635 	ssize_t vpd_size;
1636 	char vpd_data[CXLFLASH_VPD_LEN];
1637 	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1638 	char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1639 
1640 	/* Get the VPD data from the device */
1641 	vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1642 	if (unlikely(vpd_size <= 0)) {
1643 		dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1644 			__func__, vpd_size);
1645 		rc = -ENODEV;
1646 		goto out;
1647 	}
1648 
1649 	/* Get the read only section offset */
1650 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1651 				    PCI_VPD_LRDT_RO_DATA);
1652 	if (unlikely(ro_start < 0)) {
1653 		dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1654 		rc = -ENODEV;
1655 		goto out;
1656 	}
1657 
1658 	/* Get the read only section size, cap when extends beyond read VPD */
1659 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1660 	j = ro_size;
1661 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1662 	if (unlikely((i + j) > vpd_size)) {
1663 		dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1664 			__func__, (i + j), vpd_size);
1665 		ro_size = vpd_size - i;
1666 	}
1667 
1668 	/*
1669 	 * Find the offset of the WWPN tag within the read only
1670 	 * VPD data and validate the found field (partials are
1671 	 * no good to us). Convert the ASCII data to an integer
1672 	 * value. Note that we must copy to a temporary buffer
1673 	 * because the conversion service requires that the ASCII
1674 	 * string be terminated.
1675 	 */
1676 	for (k = 0; k < cfg->num_fc_ports; k++) {
1677 		j = ro_size;
1678 		i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1679 
1680 		i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1681 		if (unlikely(i < 0)) {
1682 			dev_err(dev, "%s: Port %d WWPN not found in VPD\n",
1683 				__func__, k);
1684 			rc = -ENODEV;
1685 			goto out;
1686 		}
1687 
1688 		j = pci_vpd_info_field_size(&vpd_data[i]);
1689 		i += PCI_VPD_INFO_FLD_HDR_SIZE;
1690 		if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1691 			dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1692 				__func__, k);
1693 			rc = -ENODEV;
1694 			goto out;
1695 		}
1696 
1697 		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1698 		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1699 		if (unlikely(rc)) {
1700 			dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1701 				__func__, k);
1702 			rc = -ENODEV;
1703 			goto out;
1704 		}
1705 
1706 		dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1707 	}
1708 
1709 out:
1710 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1711 	return rc;
1712 }
1713 
1714 /**
1715  * init_pcr() - initialize the provisioning and control registers
1716  * @cfg:	Internal structure associated with the host.
1717  *
1718  * Also sets up fast access to the mapped registers and initializes AFU
1719  * command fields that never change.
1720  */
1721 static void init_pcr(struct cxlflash_cfg *cfg)
1722 {
1723 	struct afu *afu = cfg->afu;
1724 	struct sisl_ctrl_map __iomem *ctrl_map;
1725 	struct hwq *hwq;
1726 	int i;
1727 
1728 	for (i = 0; i < MAX_CONTEXT; i++) {
1729 		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1730 		/* Disrupt any clients that could be running */
1731 		/* e.g. clients that survived a master restart */
1732 		writeq_be(0, &ctrl_map->rht_start);
1733 		writeq_be(0, &ctrl_map->rht_cnt_id);
1734 		writeq_be(0, &ctrl_map->ctx_cap);
1735 	}
1736 
1737 	/* Copy frequently used fields into hwq */
1738 	for (i = 0; i < afu->num_hwqs; i++) {
1739 		hwq = get_hwq(afu, i);
1740 
1741 		hwq->ctx_hndl = (u16) cxl_process_element(hwq->ctx);
1742 		hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1743 		hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1744 
1745 		/* Program the Endian Control for the master context */
1746 		writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1747 	}
1748 }
1749 
1750 /**
1751  * init_global() - initialize AFU global registers
1752  * @cfg:	Internal structure associated with the host.
1753  */
1754 static int init_global(struct cxlflash_cfg *cfg)
1755 {
1756 	struct afu *afu = cfg->afu;
1757 	struct device *dev = &cfg->dev->dev;
1758 	struct hwq *hwq;
1759 	struct sisl_host_map __iomem *hmap;
1760 	__be64 __iomem *fc_port_regs;
1761 	u64 wwpn[MAX_FC_PORTS];	/* wwpn of AFU ports */
1762 	int i = 0, num_ports = 0;
1763 	int rc = 0;
1764 	u64 reg;
1765 
1766 	rc = read_vpd(cfg, &wwpn[0]);
1767 	if (rc) {
1768 		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1769 		goto out;
1770 	}
1771 
1772 	/* Set up RRQ and SQ in HWQ for master issued cmds */
1773 	for (i = 0; i < afu->num_hwqs; i++) {
1774 		hwq = get_hwq(afu, i);
1775 		hmap = hwq->host_map;
1776 
1777 		writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1778 		writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1779 
1780 		if (afu_is_sq_cmd_mode(afu)) {
1781 			writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1782 			writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1783 		}
1784 	}
1785 
1786 	/* AFU configuration */
1787 	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1788 	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1789 	/* enable all auto retry options and control endianness */
1790 	/* leave others at default: */
1791 	/* CTX_CAP write protected, mbox_r does not clear on read and */
1792 	/* checker on if dual afu */
1793 	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1794 
1795 	/* Global port select: select either port */
1796 	if (afu->internal_lun) {
1797 		/* Only use port 0 */
1798 		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1799 		num_ports = 0;
1800 	} else {
1801 		writeq_be(PORT_MASK(cfg->num_fc_ports),
1802 			  &afu->afu_map->global.regs.afu_port_sel);
1803 		num_ports = cfg->num_fc_ports;
1804 	}
1805 
1806 	for (i = 0; i < num_ports; i++) {
1807 		fc_port_regs = get_fc_port_regs(cfg, i);
1808 
1809 		/* Unmask all errors (but they are still masked at AFU) */
1810 		writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1811 		/* Clear CRC error cnt & set a threshold */
1812 		(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1813 		writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1814 
1815 		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1816 		if (wwpn[i] != 0)
1817 			afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1818 		/* Programming WWPN back to back causes additional
1819 		 * offline/online transitions and a PLOGI
1820 		 */
1821 		msleep(100);
1822 	}
1823 
1824 	/* Set up master's own CTX_CAP to allow real mode, host translation */
1825 	/* tables, afu cmds and read/write GSCSI cmds. */
1826 	/* First, unlock ctx_cap write by reading mbox */
1827 	for (i = 0; i < afu->num_hwqs; i++) {
1828 		hwq = get_hwq(afu, i);
1829 
1830 		(void)readq_be(&hwq->ctrl_map->mbox_r);	/* unlock ctx_cap */
1831 		writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1832 			SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1833 			SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1834 			&hwq->ctrl_map->ctx_cap);
1835 	}
1836 
1837 	/*
1838 	 * Determine write-same unmap support for host by evaluating the unmap
1839 	 * sector support bit of the context control register associated with
1840 	 * the primary hardware queue. Note that while this status is reflected
1841 	 * in a context register, the outcome can be assumed to be host-wide.
1842 	 */
1843 	hwq = get_hwq(afu, PRIMARY_HWQ);
1844 	reg = readq_be(&hwq->host_map->ctx_ctrl);
1845 	if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1846 		cfg->ws_unmap = true;
1847 
1848 	/* Initialize heartbeat */
1849 	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1850 out:
1851 	return rc;
1852 }
1853 
1854 /**
1855  * start_afu() - initializes and starts the AFU
1856  * @cfg:	Internal structure associated with the host.
1857  */
1858 static int start_afu(struct cxlflash_cfg *cfg)
1859 {
1860 	struct afu *afu = cfg->afu;
1861 	struct device *dev = &cfg->dev->dev;
1862 	struct hwq *hwq;
1863 	int rc = 0;
1864 	int i;
1865 
1866 	init_pcr(cfg);
1867 
1868 	/* Initialize each HWQ */
1869 	for (i = 0; i < afu->num_hwqs; i++) {
1870 		hwq = get_hwq(afu, i);
1871 
1872 		/* After an AFU reset, RRQ entries are stale, clear them */
1873 		memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1874 
1875 		/* Initialize RRQ pointers */
1876 		hwq->hrrq_start = &hwq->rrq_entry[0];
1877 		hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1878 		hwq->hrrq_curr = hwq->hrrq_start;
1879 		hwq->toggle = 1;
1880 
1881 		/* Initialize spin locks */
1882 		spin_lock_init(&hwq->hrrq_slock);
1883 		spin_lock_init(&hwq->hsq_slock);
1884 
1885 		/* Initialize SQ */
1886 		if (afu_is_sq_cmd_mode(afu)) {
1887 			memset(&hwq->sq, 0, sizeof(hwq->sq));
1888 			hwq->hsq_start = &hwq->sq[0];
1889 			hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1890 			hwq->hsq_curr = hwq->hsq_start;
1891 
1892 			atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1893 		}
1894 
1895 		/* Initialize IRQ poll */
1896 		if (afu_is_irqpoll_enabled(afu))
1897 			irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1898 				      cxlflash_irqpoll);
1899 
1900 	}
1901 
1902 	rc = init_global(cfg);
1903 
1904 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1905 	return rc;
1906 }
1907 
1908 /**
1909  * init_intr() - setup interrupt handlers for the master context
1910  * @cfg:	Internal structure associated with the host.
1911  * @hwq:	Hardware queue to initialize.
1912  *
1913  * Return: 0 on success, -errno on failure
1914  */
1915 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1916 				 struct hwq *hwq)
1917 {
1918 	struct device *dev = &cfg->dev->dev;
1919 	struct cxl_context *ctx = hwq->ctx;
1920 	int rc = 0;
1921 	enum undo_level level = UNDO_NOOP;
1922 	bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1923 	int num_irqs = is_primary_hwq ? 3 : 2;
1924 
1925 	rc = cxl_allocate_afu_irqs(ctx, num_irqs);
1926 	if (unlikely(rc)) {
1927 		dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1928 			__func__, rc);
1929 		level = UNDO_NOOP;
1930 		goto out;
1931 	}
1932 
1933 	rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1934 			     "SISL_MSI_SYNC_ERROR");
1935 	if (unlikely(rc <= 0)) {
1936 		dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1937 		level = FREE_IRQ;
1938 		goto out;
1939 	}
1940 
1941 	rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1942 			     "SISL_MSI_RRQ_UPDATED");
1943 	if (unlikely(rc <= 0)) {
1944 		dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1945 		level = UNMAP_ONE;
1946 		goto out;
1947 	}
1948 
1949 	/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1950 	if (!is_primary_hwq)
1951 		goto out;
1952 
1953 	rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1954 			     "SISL_MSI_ASYNC_ERROR");
1955 	if (unlikely(rc <= 0)) {
1956 		dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1957 		level = UNMAP_TWO;
1958 		goto out;
1959 	}
1960 out:
1961 	return level;
1962 }
1963 
1964 /**
1965  * init_mc() - create and register as the master context
1966  * @cfg:	Internal structure associated with the host.
1967  * index:	HWQ Index of the master context.
1968  *
1969  * Return: 0 on success, -errno on failure
1970  */
1971 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1972 {
1973 	struct cxl_context *ctx;
1974 	struct device *dev = &cfg->dev->dev;
1975 	struct hwq *hwq = get_hwq(cfg->afu, index);
1976 	int rc = 0;
1977 	enum undo_level level;
1978 
1979 	hwq->afu = cfg->afu;
1980 	hwq->index = index;
1981 	INIT_LIST_HEAD(&hwq->pending_cmds);
1982 
1983 	if (index == PRIMARY_HWQ)
1984 		ctx = cxl_get_context(cfg->dev);
1985 	else
1986 		ctx = cxl_dev_context_init(cfg->dev);
1987 	if (unlikely(!ctx)) {
1988 		rc = -ENOMEM;
1989 		goto err1;
1990 	}
1991 
1992 	WARN_ON(hwq->ctx);
1993 	hwq->ctx = ctx;
1994 
1995 	/* Set it up as a master with the CXL */
1996 	cxl_set_master(ctx);
1997 
1998 	/* Reset AFU when initializing primary context */
1999 	if (index == PRIMARY_HWQ) {
2000 		rc = cxl_afu_reset(ctx);
2001 		if (unlikely(rc)) {
2002 			dev_err(dev, "%s: AFU reset failed rc=%d\n",
2003 				      __func__, rc);
2004 			goto err1;
2005 		}
2006 	}
2007 
2008 	level = init_intr(cfg, hwq);
2009 	if (unlikely(level)) {
2010 		dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2011 		goto err2;
2012 	}
2013 
2014 	/* This performs the equivalent of the CXL_IOCTL_START_WORK.
2015 	 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
2016 	 * element (pe) that is embedded in the context (ctx)
2017 	 */
2018 	rc = start_context(cfg, index);
2019 	if (unlikely(rc)) {
2020 		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2021 		level = UNMAP_THREE;
2022 		goto err2;
2023 	}
2024 
2025 out:
2026 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2027 	return rc;
2028 err2:
2029 	term_intr(cfg, level, index);
2030 	if (index != PRIMARY_HWQ)
2031 		cxl_release_context(ctx);
2032 err1:
2033 	hwq->ctx = NULL;
2034 	goto out;
2035 }
2036 
2037 /**
2038  * get_num_afu_ports() - determines and configures the number of AFU ports
2039  * @cfg:	Internal structure associated with the host.
2040  *
2041  * This routine determines the number of AFU ports by converting the global
2042  * port selection mask. The converted value is only valid following an AFU
2043  * reset (explicit or power-on). This routine must be invoked shortly after
2044  * mapping as other routines are dependent on the number of ports during the
2045  * initialization sequence.
2046  *
2047  * To support legacy AFUs that might not have reflected an initial global
2048  * port mask (value read is 0), default to the number of ports originally
2049  * supported by the cxlflash driver (2) before hardware with other port
2050  * offerings was introduced.
2051  */
2052 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2053 {
2054 	struct afu *afu = cfg->afu;
2055 	struct device *dev = &cfg->dev->dev;
2056 	u64 port_mask;
2057 	int num_fc_ports = LEGACY_FC_PORTS;
2058 
2059 	port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2060 	if (port_mask != 0ULL)
2061 		num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2062 
2063 	dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2064 		__func__, port_mask, num_fc_ports);
2065 
2066 	cfg->num_fc_ports = num_fc_ports;
2067 	cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2068 }
2069 
2070 /**
2071  * init_afu() - setup as master context and start AFU
2072  * @cfg:	Internal structure associated with the host.
2073  *
2074  * This routine is a higher level of control for configuring the
2075  * AFU on probe and reset paths.
2076  *
2077  * Return: 0 on success, -errno on failure
2078  */
2079 static int init_afu(struct cxlflash_cfg *cfg)
2080 {
2081 	u64 reg;
2082 	int rc = 0;
2083 	struct afu *afu = cfg->afu;
2084 	struct device *dev = &cfg->dev->dev;
2085 	struct hwq *hwq;
2086 	int i;
2087 
2088 	cxl_perst_reloads_same_image(cfg->cxl_afu, true);
2089 
2090 	afu->num_hwqs = afu->desired_hwqs;
2091 	for (i = 0; i < afu->num_hwqs; i++) {
2092 		rc = init_mc(cfg, i);
2093 		if (rc) {
2094 			dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2095 				__func__, rc, i);
2096 			goto err1;
2097 		}
2098 	}
2099 
2100 	/* Map the entire MMIO space of the AFU using the first context */
2101 	hwq = get_hwq(afu, PRIMARY_HWQ);
2102 	afu->afu_map = cxl_psa_map(hwq->ctx);
2103 	if (!afu->afu_map) {
2104 		dev_err(dev, "%s: cxl_psa_map failed\n", __func__);
2105 		rc = -ENOMEM;
2106 		goto err1;
2107 	}
2108 
2109 	/* No byte reverse on reading afu_version or string will be backwards */
2110 	reg = readq(&afu->afu_map->global.regs.afu_version);
2111 	memcpy(afu->version, &reg, sizeof(reg));
2112 	afu->interface_version =
2113 	    readq_be(&afu->afu_map->global.regs.interface_version);
2114 	if ((afu->interface_version + 1) == 0) {
2115 		dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2116 			"interface version %016llx\n", afu->version,
2117 		       afu->interface_version);
2118 		rc = -EINVAL;
2119 		goto err1;
2120 	}
2121 
2122 	if (afu_is_sq_cmd_mode(afu)) {
2123 		afu->send_cmd = send_cmd_sq;
2124 		afu->context_reset = context_reset_sq;
2125 	} else {
2126 		afu->send_cmd = send_cmd_ioarrin;
2127 		afu->context_reset = context_reset_ioarrin;
2128 	}
2129 
2130 	dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2131 		afu->version, afu->interface_version);
2132 
2133 	get_num_afu_ports(cfg);
2134 
2135 	rc = start_afu(cfg);
2136 	if (rc) {
2137 		dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2138 		goto err1;
2139 	}
2140 
2141 	afu_err_intr_init(cfg->afu);
2142 	for (i = 0; i < afu->num_hwqs; i++) {
2143 		hwq = get_hwq(afu, i);
2144 
2145 		hwq->room = readq_be(&hwq->host_map->cmd_room);
2146 	}
2147 
2148 	/* Restore the LUN mappings */
2149 	cxlflash_restore_luntable(cfg);
2150 out:
2151 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2152 	return rc;
2153 
2154 err1:
2155 	for (i = afu->num_hwqs - 1; i >= 0; i--) {
2156 		term_intr(cfg, UNMAP_THREE, i);
2157 		term_mc(cfg, i);
2158 	}
2159 	goto out;
2160 }
2161 
2162 /**
2163  * afu_reset() - resets the AFU
2164  * @cfg:	Internal structure associated with the host.
2165  *
2166  * Return: 0 on success, -errno on failure
2167  */
2168 static int afu_reset(struct cxlflash_cfg *cfg)
2169 {
2170 	struct device *dev = &cfg->dev->dev;
2171 	int rc = 0;
2172 
2173 	/* Stop the context before the reset. Since the context is
2174 	 * no longer available restart it after the reset is complete
2175 	 */
2176 	term_afu(cfg);
2177 
2178 	rc = init_afu(cfg);
2179 
2180 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2181 	return rc;
2182 }
2183 
2184 /**
2185  * drain_ioctls() - wait until all currently executing ioctls have completed
2186  * @cfg:	Internal structure associated with the host.
2187  *
2188  * Obtain write access to read/write semaphore that wraps ioctl
2189  * handling to 'drain' ioctls currently executing.
2190  */
2191 static void drain_ioctls(struct cxlflash_cfg *cfg)
2192 {
2193 	down_write(&cfg->ioctl_rwsem);
2194 	up_write(&cfg->ioctl_rwsem);
2195 }
2196 
2197 /**
2198  * cxlflash_async_reset_host() - asynchronous host reset handler
2199  * @data:	Private data provided while scheduling reset.
2200  * @cookie:	Cookie that can be used for checkpointing.
2201  */
2202 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2203 {
2204 	struct cxlflash_cfg *cfg = data;
2205 	struct device *dev = &cfg->dev->dev;
2206 	int rc = 0;
2207 
2208 	if (cfg->state != STATE_RESET) {
2209 		dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2210 			__func__, cfg->state);
2211 		goto out;
2212 	}
2213 
2214 	drain_ioctls(cfg);
2215 	cxlflash_mark_contexts_error(cfg);
2216 	rc = afu_reset(cfg);
2217 	if (rc)
2218 		cfg->state = STATE_FAILTERM;
2219 	else
2220 		cfg->state = STATE_NORMAL;
2221 	wake_up_all(&cfg->reset_waitq);
2222 
2223 out:
2224 	scsi_unblock_requests(cfg->host);
2225 }
2226 
2227 /**
2228  * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2229  * @cfg:	Internal structure associated with the host.
2230  */
2231 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2232 {
2233 	struct device *dev = &cfg->dev->dev;
2234 
2235 	if (cfg->state != STATE_NORMAL) {
2236 		dev_dbg(dev, "%s: Not performing reset state=%d\n",
2237 			__func__, cfg->state);
2238 		return;
2239 	}
2240 
2241 	cfg->state = STATE_RESET;
2242 	scsi_block_requests(cfg->host);
2243 	cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2244 						 cfg);
2245 }
2246 
2247 /**
2248  * send_afu_cmd() - builds and sends an internal AFU command
2249  * @afu:	AFU associated with the host.
2250  * @rcb:	Pre-populated IOARCB describing command to send.
2251  *
2252  * The AFU can only take one internal AFU command at a time. This limitation is
2253  * enforced by using a mutex to provide exclusive access to the AFU during the
2254  * operation. This design point requires calling threads to not be on interrupt
2255  * context due to the possibility of sleeping during concurrent AFU operations.
2256  *
2257  * The command status is optionally passed back to the caller when the caller
2258  * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2259  *
2260  * Return:
2261  *	0 on success, -errno on failure
2262  */
2263 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2264 {
2265 	struct cxlflash_cfg *cfg = afu->parent;
2266 	struct device *dev = &cfg->dev->dev;
2267 	struct afu_cmd *cmd = NULL;
2268 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2269 	char *buf = NULL;
2270 	int rc = 0;
2271 	int nretry = 0;
2272 	static DEFINE_MUTEX(sync_active);
2273 
2274 	if (cfg->state != STATE_NORMAL) {
2275 		dev_dbg(dev, "%s: Sync not required state=%u\n",
2276 			__func__, cfg->state);
2277 		return 0;
2278 	}
2279 
2280 	mutex_lock(&sync_active);
2281 	atomic_inc(&afu->cmds_active);
2282 	buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2283 	if (unlikely(!buf)) {
2284 		dev_err(dev, "%s: no memory for command\n", __func__);
2285 		rc = -ENOMEM;
2286 		goto out;
2287 	}
2288 
2289 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2290 
2291 retry:
2292 	memset(cmd, 0, sizeof(*cmd));
2293 	memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2294 	INIT_LIST_HEAD(&cmd->queue);
2295 	init_completion(&cmd->cevent);
2296 	cmd->parent = afu;
2297 	cmd->hwq_index = hwq->index;
2298 	cmd->rcb.ctx_id = hwq->ctx_hndl;
2299 
2300 	dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2301 		__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2302 
2303 	rc = afu->send_cmd(afu, cmd);
2304 	if (unlikely(rc)) {
2305 		rc = -ENOBUFS;
2306 		goto out;
2307 	}
2308 
2309 	rc = wait_resp(afu, cmd);
2310 	switch (rc) {
2311 	case -ETIMEDOUT:
2312 		rc = afu->context_reset(hwq);
2313 		if (rc) {
2314 			cxlflash_schedule_async_reset(cfg);
2315 			break;
2316 		}
2317 		/* fall through to retry */
2318 	case -EAGAIN:
2319 		if (++nretry < 2)
2320 			goto retry;
2321 		/* fall through to exit */
2322 	default:
2323 		break;
2324 	}
2325 
2326 	if (rcb->ioasa)
2327 		*rcb->ioasa = cmd->sa;
2328 out:
2329 	atomic_dec(&afu->cmds_active);
2330 	mutex_unlock(&sync_active);
2331 	kfree(buf);
2332 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2333 	return rc;
2334 }
2335 
2336 /**
2337  * cxlflash_afu_sync() - builds and sends an AFU sync command
2338  * @afu:	AFU associated with the host.
2339  * @ctx:	Identifies context requesting sync.
2340  * @res:	Identifies resource requesting sync.
2341  * @mode:	Type of sync to issue (lightweight, heavyweight, global).
2342  *
2343  * AFU sync operations are only necessary and allowed when the device is
2344  * operating normally. When not operating normally, sync requests can occur as
2345  * part of cleaning up resources associated with an adapter prior to removal.
2346  * In this scenario, these requests are simply ignored (safe due to the AFU
2347  * going away).
2348  *
2349  * Return:
2350  *	0 on success, -errno on failure
2351  */
2352 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2353 {
2354 	struct cxlflash_cfg *cfg = afu->parent;
2355 	struct device *dev = &cfg->dev->dev;
2356 	struct sisl_ioarcb rcb = { 0 };
2357 
2358 	dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2359 		__func__, afu, ctx, res, mode);
2360 
2361 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2362 	rcb.msi = SISL_MSI_RRQ_UPDATED;
2363 	rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2364 
2365 	rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2366 	rcb.cdb[1] = mode;
2367 	put_unaligned_be16(ctx, &rcb.cdb[2]);
2368 	put_unaligned_be32(res, &rcb.cdb[4]);
2369 
2370 	return send_afu_cmd(afu, &rcb);
2371 }
2372 
2373 /**
2374  * cxlflash_eh_abort_handler() - abort a SCSI command
2375  * @scp:	SCSI command to abort.
2376  *
2377  * CXL Flash devices do not support a single command abort. Reset the context
2378  * as per SISLite specification. Flush any pending commands in the hardware
2379  * queue before the reset.
2380  *
2381  * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2382  */
2383 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2384 {
2385 	int rc = FAILED;
2386 	struct Scsi_Host *host = scp->device->host;
2387 	struct cxlflash_cfg *cfg = shost_priv(host);
2388 	struct afu_cmd *cmd = sc_to_afuc(scp);
2389 	struct device *dev = &cfg->dev->dev;
2390 	struct afu *afu = cfg->afu;
2391 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2392 
2393 	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2394 		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2395 		scp->device->channel, scp->device->id, scp->device->lun,
2396 		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2397 		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2398 		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2399 		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2400 
2401 	/* When the state is not normal, another reset/reload is in progress.
2402 	 * Return failed and the mid-layer will invoke host reset handler.
2403 	 */
2404 	if (cfg->state != STATE_NORMAL) {
2405 		dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2406 			__func__, cfg->state);
2407 		goto out;
2408 	}
2409 
2410 	rc = afu->context_reset(hwq);
2411 	if (unlikely(rc))
2412 		goto out;
2413 
2414 	rc = SUCCESS;
2415 
2416 out:
2417 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2418 	return rc;
2419 }
2420 
2421 /**
2422  * cxlflash_eh_device_reset_handler() - reset a single LUN
2423  * @scp:	SCSI command to send.
2424  *
2425  * Return:
2426  *	SUCCESS as defined in scsi/scsi.h
2427  *	FAILED as defined in scsi/scsi.h
2428  */
2429 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2430 {
2431 	int rc = SUCCESS;
2432 	struct scsi_device *sdev = scp->device;
2433 	struct Scsi_Host *host = sdev->host;
2434 	struct cxlflash_cfg *cfg = shost_priv(host);
2435 	struct device *dev = &cfg->dev->dev;
2436 	int rcr = 0;
2437 
2438 	dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2439 		host->host_no, sdev->channel, sdev->id, sdev->lun);
2440 retry:
2441 	switch (cfg->state) {
2442 	case STATE_NORMAL:
2443 		rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2444 		if (unlikely(rcr))
2445 			rc = FAILED;
2446 		break;
2447 	case STATE_RESET:
2448 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2449 		goto retry;
2450 	default:
2451 		rc = FAILED;
2452 		break;
2453 	}
2454 
2455 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2456 	return rc;
2457 }
2458 
2459 /**
2460  * cxlflash_eh_host_reset_handler() - reset the host adapter
2461  * @scp:	SCSI command from stack identifying host.
2462  *
2463  * Following a reset, the state is evaluated again in case an EEH occurred
2464  * during the reset. In such a scenario, the host reset will either yield
2465  * until the EEH recovery is complete or return success or failure based
2466  * upon the current device state.
2467  *
2468  * Return:
2469  *	SUCCESS as defined in scsi/scsi.h
2470  *	FAILED as defined in scsi/scsi.h
2471  */
2472 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2473 {
2474 	int rc = SUCCESS;
2475 	int rcr = 0;
2476 	struct Scsi_Host *host = scp->device->host;
2477 	struct cxlflash_cfg *cfg = shost_priv(host);
2478 	struct device *dev = &cfg->dev->dev;
2479 
2480 	dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2481 
2482 	switch (cfg->state) {
2483 	case STATE_NORMAL:
2484 		cfg->state = STATE_RESET;
2485 		drain_ioctls(cfg);
2486 		cxlflash_mark_contexts_error(cfg);
2487 		rcr = afu_reset(cfg);
2488 		if (rcr) {
2489 			rc = FAILED;
2490 			cfg->state = STATE_FAILTERM;
2491 		} else
2492 			cfg->state = STATE_NORMAL;
2493 		wake_up_all(&cfg->reset_waitq);
2494 		ssleep(1);
2495 		/* fall through */
2496 	case STATE_RESET:
2497 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2498 		if (cfg->state == STATE_NORMAL)
2499 			break;
2500 		/* fall through */
2501 	default:
2502 		rc = FAILED;
2503 		break;
2504 	}
2505 
2506 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2507 	return rc;
2508 }
2509 
2510 /**
2511  * cxlflash_change_queue_depth() - change the queue depth for the device
2512  * @sdev:	SCSI device destined for queue depth change.
2513  * @qdepth:	Requested queue depth value to set.
2514  *
2515  * The requested queue depth is capped to the maximum supported value.
2516  *
2517  * Return: The actual queue depth set.
2518  */
2519 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2520 {
2521 
2522 	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2523 		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2524 
2525 	scsi_change_queue_depth(sdev, qdepth);
2526 	return sdev->queue_depth;
2527 }
2528 
2529 /**
2530  * cxlflash_show_port_status() - queries and presents the current port status
2531  * @port:	Desired port for status reporting.
2532  * @cfg:	Internal structure associated with the host.
2533  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2534  *
2535  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2536  */
2537 static ssize_t cxlflash_show_port_status(u32 port,
2538 					 struct cxlflash_cfg *cfg,
2539 					 char *buf)
2540 {
2541 	struct device *dev = &cfg->dev->dev;
2542 	char *disp_status;
2543 	u64 status;
2544 	__be64 __iomem *fc_port_regs;
2545 
2546 	WARN_ON(port >= MAX_FC_PORTS);
2547 
2548 	if (port >= cfg->num_fc_ports) {
2549 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2550 			__func__, port);
2551 		return -EINVAL;
2552 	}
2553 
2554 	fc_port_regs = get_fc_port_regs(cfg, port);
2555 	status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2556 	status &= FC_MTIP_STATUS_MASK;
2557 
2558 	if (status == FC_MTIP_STATUS_ONLINE)
2559 		disp_status = "online";
2560 	else if (status == FC_MTIP_STATUS_OFFLINE)
2561 		disp_status = "offline";
2562 	else
2563 		disp_status = "unknown";
2564 
2565 	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2566 }
2567 
2568 /**
2569  * port0_show() - queries and presents the current status of port 0
2570  * @dev:	Generic device associated with the host owning the port.
2571  * @attr:	Device attribute representing the port.
2572  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2573  *
2574  * Return: The size of the ASCII string returned in @buf.
2575  */
2576 static ssize_t port0_show(struct device *dev,
2577 			  struct device_attribute *attr,
2578 			  char *buf)
2579 {
2580 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2581 
2582 	return cxlflash_show_port_status(0, cfg, buf);
2583 }
2584 
2585 /**
2586  * port1_show() - queries and presents the current status of port 1
2587  * @dev:	Generic device associated with the host owning the port.
2588  * @attr:	Device attribute representing the port.
2589  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2590  *
2591  * Return: The size of the ASCII string returned in @buf.
2592  */
2593 static ssize_t port1_show(struct device *dev,
2594 			  struct device_attribute *attr,
2595 			  char *buf)
2596 {
2597 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2598 
2599 	return cxlflash_show_port_status(1, cfg, buf);
2600 }
2601 
2602 /**
2603  * port2_show() - queries and presents the current status of port 2
2604  * @dev:	Generic device associated with the host owning the port.
2605  * @attr:	Device attribute representing the port.
2606  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2607  *
2608  * Return: The size of the ASCII string returned in @buf.
2609  */
2610 static ssize_t port2_show(struct device *dev,
2611 			  struct device_attribute *attr,
2612 			  char *buf)
2613 {
2614 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2615 
2616 	return cxlflash_show_port_status(2, cfg, buf);
2617 }
2618 
2619 /**
2620  * port3_show() - queries and presents the current status of port 3
2621  * @dev:	Generic device associated with the host owning the port.
2622  * @attr:	Device attribute representing the port.
2623  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2624  *
2625  * Return: The size of the ASCII string returned in @buf.
2626  */
2627 static ssize_t port3_show(struct device *dev,
2628 			  struct device_attribute *attr,
2629 			  char *buf)
2630 {
2631 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2632 
2633 	return cxlflash_show_port_status(3, cfg, buf);
2634 }
2635 
2636 /**
2637  * lun_mode_show() - presents the current LUN mode of the host
2638  * @dev:	Generic device associated with the host.
2639  * @attr:	Device attribute representing the LUN mode.
2640  * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2641  *
2642  * Return: The size of the ASCII string returned in @buf.
2643  */
2644 static ssize_t lun_mode_show(struct device *dev,
2645 			     struct device_attribute *attr, char *buf)
2646 {
2647 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2648 	struct afu *afu = cfg->afu;
2649 
2650 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2651 }
2652 
2653 /**
2654  * lun_mode_store() - sets the LUN mode of the host
2655  * @dev:	Generic device associated with the host.
2656  * @attr:	Device attribute representing the LUN mode.
2657  * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2658  * @count:	Length of data resizing in @buf.
2659  *
2660  * The CXL Flash AFU supports a dummy LUN mode where the external
2661  * links and storage are not required. Space on the FPGA is used
2662  * to create 1 or 2 small LUNs which are presented to the system
2663  * as if they were a normal storage device. This feature is useful
2664  * during development and also provides manufacturing with a way
2665  * to test the AFU without an actual device.
2666  *
2667  * 0 = external LUN[s] (default)
2668  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2669  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2670  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2671  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2672  *
2673  * Return: The size of the ASCII string returned in @buf.
2674  */
2675 static ssize_t lun_mode_store(struct device *dev,
2676 			      struct device_attribute *attr,
2677 			      const char *buf, size_t count)
2678 {
2679 	struct Scsi_Host *shost = class_to_shost(dev);
2680 	struct cxlflash_cfg *cfg = shost_priv(shost);
2681 	struct afu *afu = cfg->afu;
2682 	int rc;
2683 	u32 lun_mode;
2684 
2685 	rc = kstrtouint(buf, 10, &lun_mode);
2686 	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2687 		afu->internal_lun = lun_mode;
2688 
2689 		/*
2690 		 * When configured for internal LUN, there is only one channel,
2691 		 * channel number 0, else there will be one less than the number
2692 		 * of fc ports for this card.
2693 		 */
2694 		if (afu->internal_lun)
2695 			shost->max_channel = 0;
2696 		else
2697 			shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2698 
2699 		afu_reset(cfg);
2700 		scsi_scan_host(cfg->host);
2701 	}
2702 
2703 	return count;
2704 }
2705 
2706 /**
2707  * ioctl_version_show() - presents the current ioctl version of the host
2708  * @dev:	Generic device associated with the host.
2709  * @attr:	Device attribute representing the ioctl version.
2710  * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2711  *
2712  * Return: The size of the ASCII string returned in @buf.
2713  */
2714 static ssize_t ioctl_version_show(struct device *dev,
2715 				  struct device_attribute *attr, char *buf)
2716 {
2717 	ssize_t bytes = 0;
2718 
2719 	bytes = scnprintf(buf, PAGE_SIZE,
2720 			  "disk: %u\n", DK_CXLFLASH_VERSION_0);
2721 	bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2722 			   "host: %u\n", HT_CXLFLASH_VERSION_0);
2723 
2724 	return bytes;
2725 }
2726 
2727 /**
2728  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2729  * @port:	Desired port for status reporting.
2730  * @cfg:	Internal structure associated with the host.
2731  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2732  *
2733  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2734  */
2735 static ssize_t cxlflash_show_port_lun_table(u32 port,
2736 					    struct cxlflash_cfg *cfg,
2737 					    char *buf)
2738 {
2739 	struct device *dev = &cfg->dev->dev;
2740 	__be64 __iomem *fc_port_luns;
2741 	int i;
2742 	ssize_t bytes = 0;
2743 
2744 	WARN_ON(port >= MAX_FC_PORTS);
2745 
2746 	if (port >= cfg->num_fc_ports) {
2747 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2748 			__func__, port);
2749 		return -EINVAL;
2750 	}
2751 
2752 	fc_port_luns = get_fc_port_luns(cfg, port);
2753 
2754 	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2755 		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2756 				   "%03d: %016llx\n",
2757 				   i, readq_be(&fc_port_luns[i]));
2758 	return bytes;
2759 }
2760 
2761 /**
2762  * port0_lun_table_show() - presents the current LUN table of port 0
2763  * @dev:	Generic device associated with the host owning the port.
2764  * @attr:	Device attribute representing the port.
2765  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2766  *
2767  * Return: The size of the ASCII string returned in @buf.
2768  */
2769 static ssize_t port0_lun_table_show(struct device *dev,
2770 				    struct device_attribute *attr,
2771 				    char *buf)
2772 {
2773 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2774 
2775 	return cxlflash_show_port_lun_table(0, cfg, buf);
2776 }
2777 
2778 /**
2779  * port1_lun_table_show() - presents the current LUN table of port 1
2780  * @dev:	Generic device associated with the host owning the port.
2781  * @attr:	Device attribute representing the port.
2782  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2783  *
2784  * Return: The size of the ASCII string returned in @buf.
2785  */
2786 static ssize_t port1_lun_table_show(struct device *dev,
2787 				    struct device_attribute *attr,
2788 				    char *buf)
2789 {
2790 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2791 
2792 	return cxlflash_show_port_lun_table(1, cfg, buf);
2793 }
2794 
2795 /**
2796  * port2_lun_table_show() - presents the current LUN table of port 2
2797  * @dev:	Generic device associated with the host owning the port.
2798  * @attr:	Device attribute representing the port.
2799  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2800  *
2801  * Return: The size of the ASCII string returned in @buf.
2802  */
2803 static ssize_t port2_lun_table_show(struct device *dev,
2804 				    struct device_attribute *attr,
2805 				    char *buf)
2806 {
2807 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2808 
2809 	return cxlflash_show_port_lun_table(2, cfg, buf);
2810 }
2811 
2812 /**
2813  * port3_lun_table_show() - presents the current LUN table of port 3
2814  * @dev:	Generic device associated with the host owning the port.
2815  * @attr:	Device attribute representing the port.
2816  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2817  *
2818  * Return: The size of the ASCII string returned in @buf.
2819  */
2820 static ssize_t port3_lun_table_show(struct device *dev,
2821 				    struct device_attribute *attr,
2822 				    char *buf)
2823 {
2824 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2825 
2826 	return cxlflash_show_port_lun_table(3, cfg, buf);
2827 }
2828 
2829 /**
2830  * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2831  * @dev:	Generic device associated with the host.
2832  * @attr:	Device attribute representing the IRQ poll weight.
2833  * @buf:	Buffer of length PAGE_SIZE to report back the current IRQ poll
2834  *		weight in ASCII.
2835  *
2836  * An IRQ poll weight of 0 indicates polling is disabled.
2837  *
2838  * Return: The size of the ASCII string returned in @buf.
2839  */
2840 static ssize_t irqpoll_weight_show(struct device *dev,
2841 				   struct device_attribute *attr, char *buf)
2842 {
2843 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2844 	struct afu *afu = cfg->afu;
2845 
2846 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2847 }
2848 
2849 /**
2850  * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2851  * @dev:	Generic device associated with the host.
2852  * @attr:	Device attribute representing the IRQ poll weight.
2853  * @buf:	Buffer of length PAGE_SIZE containing the desired IRQ poll
2854  *		weight in ASCII.
2855  * @count:	Length of data resizing in @buf.
2856  *
2857  * An IRQ poll weight of 0 indicates polling is disabled.
2858  *
2859  * Return: The size of the ASCII string returned in @buf.
2860  */
2861 static ssize_t irqpoll_weight_store(struct device *dev,
2862 				    struct device_attribute *attr,
2863 				    const char *buf, size_t count)
2864 {
2865 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2866 	struct device *cfgdev = &cfg->dev->dev;
2867 	struct afu *afu = cfg->afu;
2868 	struct hwq *hwq;
2869 	u32 weight;
2870 	int rc, i;
2871 
2872 	rc = kstrtouint(buf, 10, &weight);
2873 	if (rc)
2874 		return -EINVAL;
2875 
2876 	if (weight > 256) {
2877 		dev_info(cfgdev,
2878 			 "Invalid IRQ poll weight. It must be 256 or less.\n");
2879 		return -EINVAL;
2880 	}
2881 
2882 	if (weight == afu->irqpoll_weight) {
2883 		dev_info(cfgdev,
2884 			 "Current IRQ poll weight has the same weight.\n");
2885 		return -EINVAL;
2886 	}
2887 
2888 	if (afu_is_irqpoll_enabled(afu)) {
2889 		for (i = 0; i < afu->num_hwqs; i++) {
2890 			hwq = get_hwq(afu, i);
2891 
2892 			irq_poll_disable(&hwq->irqpoll);
2893 		}
2894 	}
2895 
2896 	afu->irqpoll_weight = weight;
2897 
2898 	if (weight > 0) {
2899 		for (i = 0; i < afu->num_hwqs; i++) {
2900 			hwq = get_hwq(afu, i);
2901 
2902 			irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2903 		}
2904 	}
2905 
2906 	return count;
2907 }
2908 
2909 /**
2910  * num_hwqs_show() - presents the number of hardware queues for the host
2911  * @dev:	Generic device associated with the host.
2912  * @attr:	Device attribute representing the number of hardware queues.
2913  * @buf:	Buffer of length PAGE_SIZE to report back the number of hardware
2914  *		queues in ASCII.
2915  *
2916  * Return: The size of the ASCII string returned in @buf.
2917  */
2918 static ssize_t num_hwqs_show(struct device *dev,
2919 			     struct device_attribute *attr, char *buf)
2920 {
2921 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2922 	struct afu *afu = cfg->afu;
2923 
2924 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2925 }
2926 
2927 /**
2928  * num_hwqs_store() - sets the number of hardware queues for the host
2929  * @dev:	Generic device associated with the host.
2930  * @attr:	Device attribute representing the number of hardware queues.
2931  * @buf:	Buffer of length PAGE_SIZE containing the number of hardware
2932  *		queues in ASCII.
2933  * @count:	Length of data resizing in @buf.
2934  *
2935  * n > 0: num_hwqs = n
2936  * n = 0: num_hwqs = num_online_cpus()
2937  * n < 0: num_online_cpus() / abs(n)
2938  *
2939  * Return: The size of the ASCII string returned in @buf.
2940  */
2941 static ssize_t num_hwqs_store(struct device *dev,
2942 			      struct device_attribute *attr,
2943 			      const char *buf, size_t count)
2944 {
2945 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2946 	struct afu *afu = cfg->afu;
2947 	int rc;
2948 	int nhwqs, num_hwqs;
2949 
2950 	rc = kstrtoint(buf, 10, &nhwqs);
2951 	if (rc)
2952 		return -EINVAL;
2953 
2954 	if (nhwqs >= 1)
2955 		num_hwqs = nhwqs;
2956 	else if (nhwqs == 0)
2957 		num_hwqs = num_online_cpus();
2958 	else
2959 		num_hwqs = num_online_cpus() / abs(nhwqs);
2960 
2961 	afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2962 	WARN_ON_ONCE(afu->desired_hwqs == 0);
2963 
2964 retry:
2965 	switch (cfg->state) {
2966 	case STATE_NORMAL:
2967 		cfg->state = STATE_RESET;
2968 		drain_ioctls(cfg);
2969 		cxlflash_mark_contexts_error(cfg);
2970 		rc = afu_reset(cfg);
2971 		if (rc)
2972 			cfg->state = STATE_FAILTERM;
2973 		else
2974 			cfg->state = STATE_NORMAL;
2975 		wake_up_all(&cfg->reset_waitq);
2976 		break;
2977 	case STATE_RESET:
2978 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2979 		if (cfg->state == STATE_NORMAL)
2980 			goto retry;
2981 	default:
2982 		/* Ideally should not happen */
2983 		dev_err(dev, "%s: Device is not ready, state=%d\n",
2984 			__func__, cfg->state);
2985 		break;
2986 	}
2987 
2988 	return count;
2989 }
2990 
2991 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
2992 
2993 /**
2994  * hwq_mode_show() - presents the HWQ steering mode for the host
2995  * @dev:	Generic device associated with the host.
2996  * @attr:	Device attribute representing the HWQ steering mode.
2997  * @buf:	Buffer of length PAGE_SIZE to report back the HWQ steering mode
2998  *		as a character string.
2999  *
3000  * Return: The size of the ASCII string returned in @buf.
3001  */
3002 static ssize_t hwq_mode_show(struct device *dev,
3003 			     struct device_attribute *attr, char *buf)
3004 {
3005 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3006 	struct afu *afu = cfg->afu;
3007 
3008 	return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3009 }
3010 
3011 /**
3012  * hwq_mode_store() - sets the HWQ steering mode for the host
3013  * @dev:	Generic device associated with the host.
3014  * @attr:	Device attribute representing the HWQ steering mode.
3015  * @buf:	Buffer of length PAGE_SIZE containing the HWQ steering mode
3016  *		as a character string.
3017  * @count:	Length of data resizing in @buf.
3018  *
3019  * rr = Round-Robin
3020  * tag = Block MQ Tagging
3021  * cpu = CPU Affinity
3022  *
3023  * Return: The size of the ASCII string returned in @buf.
3024  */
3025 static ssize_t hwq_mode_store(struct device *dev,
3026 			      struct device_attribute *attr,
3027 			      const char *buf, size_t count)
3028 {
3029 	struct Scsi_Host *shost = class_to_shost(dev);
3030 	struct cxlflash_cfg *cfg = shost_priv(shost);
3031 	struct device *cfgdev = &cfg->dev->dev;
3032 	struct afu *afu = cfg->afu;
3033 	int i;
3034 	u32 mode = MAX_HWQ_MODE;
3035 
3036 	for (i = 0; i < MAX_HWQ_MODE; i++) {
3037 		if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3038 			mode = i;
3039 			break;
3040 		}
3041 	}
3042 
3043 	if (mode >= MAX_HWQ_MODE) {
3044 		dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3045 		return -EINVAL;
3046 	}
3047 
3048 	if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) {
3049 		dev_info(cfgdev, "SCSI-MQ is not enabled, use a different "
3050 			 "HWQ steering mode.\n");
3051 		return -EINVAL;
3052 	}
3053 
3054 	afu->hwq_mode = mode;
3055 
3056 	return count;
3057 }
3058 
3059 /**
3060  * mode_show() - presents the current mode of the device
3061  * @dev:	Generic device associated with the device.
3062  * @attr:	Device attribute representing the device mode.
3063  * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3064  *
3065  * Return: The size of the ASCII string returned in @buf.
3066  */
3067 static ssize_t mode_show(struct device *dev,
3068 			 struct device_attribute *attr, char *buf)
3069 {
3070 	struct scsi_device *sdev = to_scsi_device(dev);
3071 
3072 	return scnprintf(buf, PAGE_SIZE, "%s\n",
3073 			 sdev->hostdata ? "superpipe" : "legacy");
3074 }
3075 
3076 /*
3077  * Host attributes
3078  */
3079 static DEVICE_ATTR_RO(port0);
3080 static DEVICE_ATTR_RO(port1);
3081 static DEVICE_ATTR_RO(port2);
3082 static DEVICE_ATTR_RO(port3);
3083 static DEVICE_ATTR_RW(lun_mode);
3084 static DEVICE_ATTR_RO(ioctl_version);
3085 static DEVICE_ATTR_RO(port0_lun_table);
3086 static DEVICE_ATTR_RO(port1_lun_table);
3087 static DEVICE_ATTR_RO(port2_lun_table);
3088 static DEVICE_ATTR_RO(port3_lun_table);
3089 static DEVICE_ATTR_RW(irqpoll_weight);
3090 static DEVICE_ATTR_RW(num_hwqs);
3091 static DEVICE_ATTR_RW(hwq_mode);
3092 
3093 static struct device_attribute *cxlflash_host_attrs[] = {
3094 	&dev_attr_port0,
3095 	&dev_attr_port1,
3096 	&dev_attr_port2,
3097 	&dev_attr_port3,
3098 	&dev_attr_lun_mode,
3099 	&dev_attr_ioctl_version,
3100 	&dev_attr_port0_lun_table,
3101 	&dev_attr_port1_lun_table,
3102 	&dev_attr_port2_lun_table,
3103 	&dev_attr_port3_lun_table,
3104 	&dev_attr_irqpoll_weight,
3105 	&dev_attr_num_hwqs,
3106 	&dev_attr_hwq_mode,
3107 	NULL
3108 };
3109 
3110 /*
3111  * Device attributes
3112  */
3113 static DEVICE_ATTR_RO(mode);
3114 
3115 static struct device_attribute *cxlflash_dev_attrs[] = {
3116 	&dev_attr_mode,
3117 	NULL
3118 };
3119 
3120 /*
3121  * Host template
3122  */
3123 static struct scsi_host_template driver_template = {
3124 	.module = THIS_MODULE,
3125 	.name = CXLFLASH_ADAPTER_NAME,
3126 	.info = cxlflash_driver_info,
3127 	.ioctl = cxlflash_ioctl,
3128 	.proc_name = CXLFLASH_NAME,
3129 	.queuecommand = cxlflash_queuecommand,
3130 	.eh_abort_handler = cxlflash_eh_abort_handler,
3131 	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3132 	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3133 	.change_queue_depth = cxlflash_change_queue_depth,
3134 	.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3135 	.can_queue = CXLFLASH_MAX_CMDS,
3136 	.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3137 	.this_id = -1,
3138 	.sg_tablesize = 1,	/* No scatter gather support */
3139 	.max_sectors = CXLFLASH_MAX_SECTORS,
3140 	.use_clustering = ENABLE_CLUSTERING,
3141 	.shost_attrs = cxlflash_host_attrs,
3142 	.sdev_attrs = cxlflash_dev_attrs,
3143 };
3144 
3145 /*
3146  * Device dependent values
3147  */
3148 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3149 					0ULL };
3150 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3151 					CXLFLASH_NOTIFY_SHUTDOWN };
3152 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3153 					CXLFLASH_NOTIFY_SHUTDOWN };
3154 
3155 /*
3156  * PCI device binding table
3157  */
3158 static struct pci_device_id cxlflash_pci_table[] = {
3159 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3160 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3161 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3162 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3163 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3164 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3165 	{}
3166 };
3167 
3168 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3169 
3170 /**
3171  * cxlflash_worker_thread() - work thread handler for the AFU
3172  * @work:	Work structure contained within cxlflash associated with host.
3173  *
3174  * Handles the following events:
3175  * - Link reset which cannot be performed on interrupt context due to
3176  * blocking up to a few seconds
3177  * - Rescan the host
3178  */
3179 static void cxlflash_worker_thread(struct work_struct *work)
3180 {
3181 	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3182 						work_q);
3183 	struct afu *afu = cfg->afu;
3184 	struct device *dev = &cfg->dev->dev;
3185 	__be64 __iomem *fc_port_regs;
3186 	int port;
3187 	ulong lock_flags;
3188 
3189 	/* Avoid MMIO if the device has failed */
3190 
3191 	if (cfg->state != STATE_NORMAL)
3192 		return;
3193 
3194 	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3195 
3196 	if (cfg->lr_state == LINK_RESET_REQUIRED) {
3197 		port = cfg->lr_port;
3198 		if (port < 0)
3199 			dev_err(dev, "%s: invalid port index %d\n",
3200 				__func__, port);
3201 		else {
3202 			spin_unlock_irqrestore(cfg->host->host_lock,
3203 					       lock_flags);
3204 
3205 			/* The reset can block... */
3206 			fc_port_regs = get_fc_port_regs(cfg, port);
3207 			afu_link_reset(afu, port, fc_port_regs);
3208 			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3209 		}
3210 
3211 		cfg->lr_state = LINK_RESET_COMPLETE;
3212 	}
3213 
3214 	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3215 
3216 	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3217 		scsi_scan_host(cfg->host);
3218 }
3219 
3220 /**
3221  * cxlflash_chr_open() - character device open handler
3222  * @inode:	Device inode associated with this character device.
3223  * @file:	File pointer for this device.
3224  *
3225  * Only users with admin privileges are allowed to open the character device.
3226  *
3227  * Return: 0 on success, -errno on failure
3228  */
3229 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3230 {
3231 	struct cxlflash_cfg *cfg;
3232 
3233 	if (!capable(CAP_SYS_ADMIN))
3234 		return -EACCES;
3235 
3236 	cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3237 	file->private_data = cfg;
3238 
3239 	return 0;
3240 }
3241 
3242 /**
3243  * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3244  * @cmd:        The host ioctl command to decode.
3245  *
3246  * Return: A string identifying the decoded host ioctl.
3247  */
3248 static char *decode_hioctl(int cmd)
3249 {
3250 	switch (cmd) {
3251 	case HT_CXLFLASH_LUN_PROVISION:
3252 		return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3253 	}
3254 
3255 	return "UNKNOWN";
3256 }
3257 
3258 /**
3259  * cxlflash_lun_provision() - host LUN provisioning handler
3260  * @cfg:	Internal structure associated with the host.
3261  * @arg:	Kernel copy of userspace ioctl data structure.
3262  *
3263  * Return: 0 on success, -errno on failure
3264  */
3265 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3266 				  struct ht_cxlflash_lun_provision *lunprov)
3267 {
3268 	struct afu *afu = cfg->afu;
3269 	struct device *dev = &cfg->dev->dev;
3270 	struct sisl_ioarcb rcb;
3271 	struct sisl_ioasa asa;
3272 	__be64 __iomem *fc_port_regs;
3273 	u16 port = lunprov->port;
3274 	u16 scmd = lunprov->hdr.subcmd;
3275 	u16 type;
3276 	u64 reg;
3277 	u64 size;
3278 	u64 lun_id;
3279 	int rc = 0;
3280 
3281 	if (!afu_is_lun_provision(afu)) {
3282 		rc = -ENOTSUPP;
3283 		goto out;
3284 	}
3285 
3286 	if (port >= cfg->num_fc_ports) {
3287 		rc = -EINVAL;
3288 		goto out;
3289 	}
3290 
3291 	switch (scmd) {
3292 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3293 		type = SISL_AFU_LUN_PROVISION_CREATE;
3294 		size = lunprov->size;
3295 		lun_id = 0;
3296 		break;
3297 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3298 		type = SISL_AFU_LUN_PROVISION_DELETE;
3299 		size = 0;
3300 		lun_id = lunprov->lun_id;
3301 		break;
3302 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3303 		fc_port_regs = get_fc_port_regs(cfg, port);
3304 
3305 		reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3306 		lunprov->max_num_luns = reg;
3307 		reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3308 		lunprov->cur_num_luns = reg;
3309 		reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3310 		lunprov->max_cap_port = reg;
3311 		reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3312 		lunprov->cur_cap_port = reg;
3313 
3314 		goto out;
3315 	default:
3316 		rc = -EINVAL;
3317 		goto out;
3318 	}
3319 
3320 	memset(&rcb, 0, sizeof(rcb));
3321 	memset(&asa, 0, sizeof(asa));
3322 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3323 	rcb.lun_id = lun_id;
3324 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3325 	rcb.timeout = MC_LUN_PROV_TIMEOUT;
3326 	rcb.ioasa = &asa;
3327 
3328 	rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3329 	rcb.cdb[1] = type;
3330 	rcb.cdb[2] = port;
3331 	put_unaligned_be64(size, &rcb.cdb[8]);
3332 
3333 	rc = send_afu_cmd(afu, &rcb);
3334 	if (rc) {
3335 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3336 			__func__, rc, asa.ioasc, asa.afu_extra);
3337 		goto out;
3338 	}
3339 
3340 	if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3341 		lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3342 		memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3343 	}
3344 out:
3345 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3346 	return rc;
3347 }
3348 
3349 /**
3350  * cxlflash_afu_debug() - host AFU debug handler
3351  * @cfg:	Internal structure associated with the host.
3352  * @arg:	Kernel copy of userspace ioctl data structure.
3353  *
3354  * For debug requests requiring a data buffer, always provide an aligned
3355  * (cache line) buffer to the AFU to appease any alignment requirements.
3356  *
3357  * Return: 0 on success, -errno on failure
3358  */
3359 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3360 			      struct ht_cxlflash_afu_debug *afu_dbg)
3361 {
3362 	struct afu *afu = cfg->afu;
3363 	struct device *dev = &cfg->dev->dev;
3364 	struct sisl_ioarcb rcb;
3365 	struct sisl_ioasa asa;
3366 	char *buf = NULL;
3367 	char *kbuf = NULL;
3368 	void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3369 	u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3370 	u32 ulen = afu_dbg->data_len;
3371 	bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3372 	int rc = 0;
3373 
3374 	if (!afu_is_afu_debug(afu)) {
3375 		rc = -ENOTSUPP;
3376 		goto out;
3377 	}
3378 
3379 	if (ulen) {
3380 		req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3381 
3382 		if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3383 			rc = -EINVAL;
3384 			goto out;
3385 		}
3386 
3387 		if (unlikely(!access_ok(is_write ? VERIFY_READ : VERIFY_WRITE,
3388 					ubuf, ulen))) {
3389 			rc = -EFAULT;
3390 			goto out;
3391 		}
3392 
3393 		buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3394 		if (unlikely(!buf)) {
3395 			rc = -ENOMEM;
3396 			goto out;
3397 		}
3398 
3399 		kbuf = PTR_ALIGN(buf, cache_line_size());
3400 
3401 		if (is_write) {
3402 			req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3403 
3404 			rc = copy_from_user(kbuf, ubuf, ulen);
3405 			if (unlikely(rc))
3406 				goto out;
3407 		}
3408 	}
3409 
3410 	memset(&rcb, 0, sizeof(rcb));
3411 	memset(&asa, 0, sizeof(asa));
3412 
3413 	rcb.req_flags = req_flags;
3414 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3415 	rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3416 	rcb.ioasa = &asa;
3417 
3418 	if (ulen) {
3419 		rcb.data_len = ulen;
3420 		rcb.data_ea = (uintptr_t)kbuf;
3421 	}
3422 
3423 	rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3424 	memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3425 	       HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3426 
3427 	rc = send_afu_cmd(afu, &rcb);
3428 	if (rc) {
3429 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3430 			__func__, rc, asa.ioasc, asa.afu_extra);
3431 		goto out;
3432 	}
3433 
3434 	if (ulen && !is_write)
3435 		rc = copy_to_user(ubuf, kbuf, ulen);
3436 out:
3437 	kfree(buf);
3438 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3439 	return rc;
3440 }
3441 
3442 /**
3443  * cxlflash_chr_ioctl() - character device IOCTL handler
3444  * @file:	File pointer for this device.
3445  * @cmd:	IOCTL command.
3446  * @arg:	Userspace ioctl data structure.
3447  *
3448  * A read/write semaphore is used to implement a 'drain' of currently
3449  * running ioctls. The read semaphore is taken at the beginning of each
3450  * ioctl thread and released upon concluding execution. Additionally the
3451  * semaphore should be released and then reacquired in any ioctl execution
3452  * path which will wait for an event to occur that is outside the scope of
3453  * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3454  * a thread simply needs to acquire the write semaphore.
3455  *
3456  * Return: 0 on success, -errno on failure
3457  */
3458 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3459 			       unsigned long arg)
3460 {
3461 	typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3462 
3463 	struct cxlflash_cfg *cfg = file->private_data;
3464 	struct device *dev = &cfg->dev->dev;
3465 	char buf[sizeof(union cxlflash_ht_ioctls)];
3466 	void __user *uarg = (void __user *)arg;
3467 	struct ht_cxlflash_hdr *hdr;
3468 	size_t size = 0;
3469 	bool known_ioctl = false;
3470 	int idx = 0;
3471 	int rc = 0;
3472 	hioctl do_ioctl = NULL;
3473 
3474 	static const struct {
3475 		size_t size;
3476 		hioctl ioctl;
3477 	} ioctl_tbl[] = {	/* NOTE: order matters here */
3478 	{ sizeof(struct ht_cxlflash_lun_provision),
3479 		(hioctl)cxlflash_lun_provision },
3480 	{ sizeof(struct ht_cxlflash_afu_debug),
3481 		(hioctl)cxlflash_afu_debug },
3482 	};
3483 
3484 	/* Hold read semaphore so we can drain if needed */
3485 	down_read(&cfg->ioctl_rwsem);
3486 
3487 	dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3488 		__func__, cmd, idx, sizeof(ioctl_tbl));
3489 
3490 	switch (cmd) {
3491 	case HT_CXLFLASH_LUN_PROVISION:
3492 	case HT_CXLFLASH_AFU_DEBUG:
3493 		known_ioctl = true;
3494 		idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3495 		size = ioctl_tbl[idx].size;
3496 		do_ioctl = ioctl_tbl[idx].ioctl;
3497 
3498 		if (likely(do_ioctl))
3499 			break;
3500 
3501 		/* fall through */
3502 	default:
3503 		rc = -EINVAL;
3504 		goto out;
3505 	}
3506 
3507 	if (unlikely(copy_from_user(&buf, uarg, size))) {
3508 		dev_err(dev, "%s: copy_from_user() fail "
3509 			"size=%lu cmd=%d (%s) uarg=%p\n",
3510 			__func__, size, cmd, decode_hioctl(cmd), uarg);
3511 		rc = -EFAULT;
3512 		goto out;
3513 	}
3514 
3515 	hdr = (struct ht_cxlflash_hdr *)&buf;
3516 	if (hdr->version != HT_CXLFLASH_VERSION_0) {
3517 		dev_dbg(dev, "%s: Version %u not supported for %s\n",
3518 			__func__, hdr->version, decode_hioctl(cmd));
3519 		rc = -EINVAL;
3520 		goto out;
3521 	}
3522 
3523 	if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3524 		dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3525 		rc = -EINVAL;
3526 		goto out;
3527 	}
3528 
3529 	rc = do_ioctl(cfg, (void *)&buf);
3530 	if (likely(!rc))
3531 		if (unlikely(copy_to_user(uarg, &buf, size))) {
3532 			dev_err(dev, "%s: copy_to_user() fail "
3533 				"size=%lu cmd=%d (%s) uarg=%p\n",
3534 				__func__, size, cmd, decode_hioctl(cmd), uarg);
3535 			rc = -EFAULT;
3536 		}
3537 
3538 	/* fall through to exit */
3539 
3540 out:
3541 	up_read(&cfg->ioctl_rwsem);
3542 	if (unlikely(rc && known_ioctl))
3543 		dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3544 			__func__, decode_hioctl(cmd), cmd, rc);
3545 	else
3546 		dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3547 			__func__, decode_hioctl(cmd), cmd, rc);
3548 	return rc;
3549 }
3550 
3551 /*
3552  * Character device file operations
3553  */
3554 static const struct file_operations cxlflash_chr_fops = {
3555 	.owner          = THIS_MODULE,
3556 	.open           = cxlflash_chr_open,
3557 	.unlocked_ioctl	= cxlflash_chr_ioctl,
3558 	.compat_ioctl	= cxlflash_chr_ioctl,
3559 };
3560 
3561 /**
3562  * init_chrdev() - initialize the character device for the host
3563  * @cfg:	Internal structure associated with the host.
3564  *
3565  * Return: 0 on success, -errno on failure
3566  */
3567 static int init_chrdev(struct cxlflash_cfg *cfg)
3568 {
3569 	struct device *dev = &cfg->dev->dev;
3570 	struct device *char_dev;
3571 	dev_t devno;
3572 	int minor;
3573 	int rc = 0;
3574 
3575 	minor = cxlflash_get_minor();
3576 	if (unlikely(minor < 0)) {
3577 		dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3578 		rc = -ENOSPC;
3579 		goto out;
3580 	}
3581 
3582 	devno = MKDEV(cxlflash_major, minor);
3583 	cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3584 
3585 	rc = cdev_add(&cfg->cdev, devno, 1);
3586 	if (rc) {
3587 		dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3588 		goto err1;
3589 	}
3590 
3591 	char_dev = device_create(cxlflash_class, NULL, devno,
3592 				 NULL, "cxlflash%d", minor);
3593 	if (IS_ERR(char_dev)) {
3594 		rc = PTR_ERR(char_dev);
3595 		dev_err(dev, "%s: device_create failed rc=%d\n",
3596 			__func__, rc);
3597 		goto err2;
3598 	}
3599 
3600 	cfg->chardev = char_dev;
3601 out:
3602 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3603 	return rc;
3604 err2:
3605 	cdev_del(&cfg->cdev);
3606 err1:
3607 	cxlflash_put_minor(minor);
3608 	goto out;
3609 }
3610 
3611 /**
3612  * cxlflash_probe() - PCI entry point to add host
3613  * @pdev:	PCI device associated with the host.
3614  * @dev_id:	PCI device id associated with device.
3615  *
3616  * The device will initially start out in a 'probing' state and
3617  * transition to the 'normal' state at the end of a successful
3618  * probe. Should an EEH event occur during probe, the notification
3619  * thread (error_detected()) will wait until the probe handler
3620  * is nearly complete. At that time, the device will be moved to
3621  * a 'probed' state and the EEH thread woken up to drive the slot
3622  * reset and recovery (device moves to 'normal' state). Meanwhile,
3623  * the probe will be allowed to exit successfully.
3624  *
3625  * Return: 0 on success, -errno on failure
3626  */
3627 static int cxlflash_probe(struct pci_dev *pdev,
3628 			  const struct pci_device_id *dev_id)
3629 {
3630 	struct Scsi_Host *host;
3631 	struct cxlflash_cfg *cfg = NULL;
3632 	struct device *dev = &pdev->dev;
3633 	struct dev_dependent_vals *ddv;
3634 	int rc = 0;
3635 	int k;
3636 
3637 	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3638 		__func__, pdev->irq);
3639 
3640 	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3641 	driver_template.max_sectors = ddv->max_sectors;
3642 
3643 	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3644 	if (!host) {
3645 		dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3646 		rc = -ENOMEM;
3647 		goto out;
3648 	}
3649 
3650 	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3651 	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3652 	host->unique_id = host->host_no;
3653 	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3654 
3655 	cfg = shost_priv(host);
3656 	cfg->host = host;
3657 	rc = alloc_mem(cfg);
3658 	if (rc) {
3659 		dev_err(dev, "%s: alloc_mem failed\n", __func__);
3660 		rc = -ENOMEM;
3661 		scsi_host_put(cfg->host);
3662 		goto out;
3663 	}
3664 
3665 	cfg->init_state = INIT_STATE_NONE;
3666 	cfg->dev = pdev;
3667 	cfg->cxl_fops = cxlflash_cxl_fops;
3668 
3669 	/*
3670 	 * Promoted LUNs move to the top of the LUN table. The rest stay on
3671 	 * the bottom half. The bottom half grows from the end (index = 255),
3672 	 * whereas the top half grows from the beginning (index = 0).
3673 	 *
3674 	 * Initialize the last LUN index for all possible ports.
3675 	 */
3676 	cfg->promote_lun_index = 0;
3677 
3678 	for (k = 0; k < MAX_FC_PORTS; k++)
3679 		cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3680 
3681 	cfg->dev_id = (struct pci_device_id *)dev_id;
3682 
3683 	init_waitqueue_head(&cfg->tmf_waitq);
3684 	init_waitqueue_head(&cfg->reset_waitq);
3685 
3686 	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3687 	cfg->lr_state = LINK_RESET_INVALID;
3688 	cfg->lr_port = -1;
3689 	spin_lock_init(&cfg->tmf_slock);
3690 	mutex_init(&cfg->ctx_tbl_list_mutex);
3691 	mutex_init(&cfg->ctx_recovery_mutex);
3692 	init_rwsem(&cfg->ioctl_rwsem);
3693 	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3694 	INIT_LIST_HEAD(&cfg->lluns);
3695 
3696 	pci_set_drvdata(pdev, cfg);
3697 
3698 	cfg->cxl_afu = cxl_pci_to_afu(pdev);
3699 
3700 	rc = init_pci(cfg);
3701 	if (rc) {
3702 		dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3703 		goto out_remove;
3704 	}
3705 	cfg->init_state = INIT_STATE_PCI;
3706 
3707 	rc = init_afu(cfg);
3708 	if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3709 		dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3710 		goto out_remove;
3711 	}
3712 	cfg->init_state = INIT_STATE_AFU;
3713 
3714 	rc = init_scsi(cfg);
3715 	if (rc) {
3716 		dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3717 		goto out_remove;
3718 	}
3719 	cfg->init_state = INIT_STATE_SCSI;
3720 
3721 	rc = init_chrdev(cfg);
3722 	if (rc) {
3723 		dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3724 		goto out_remove;
3725 	}
3726 	cfg->init_state = INIT_STATE_CDEV;
3727 
3728 	if (wq_has_sleeper(&cfg->reset_waitq)) {
3729 		cfg->state = STATE_PROBED;
3730 		wake_up_all(&cfg->reset_waitq);
3731 	} else
3732 		cfg->state = STATE_NORMAL;
3733 out:
3734 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3735 	return rc;
3736 
3737 out_remove:
3738 	cxlflash_remove(pdev);
3739 	goto out;
3740 }
3741 
3742 /**
3743  * cxlflash_pci_error_detected() - called when a PCI error is detected
3744  * @pdev:	PCI device struct.
3745  * @state:	PCI channel state.
3746  *
3747  * When an EEH occurs during an active reset, wait until the reset is
3748  * complete and then take action based upon the device state.
3749  *
3750  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3751  */
3752 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3753 						    pci_channel_state_t state)
3754 {
3755 	int rc = 0;
3756 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3757 	struct device *dev = &cfg->dev->dev;
3758 
3759 	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3760 
3761 	switch (state) {
3762 	case pci_channel_io_frozen:
3763 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3764 					     cfg->state != STATE_PROBING);
3765 		if (cfg->state == STATE_FAILTERM)
3766 			return PCI_ERS_RESULT_DISCONNECT;
3767 
3768 		cfg->state = STATE_RESET;
3769 		scsi_block_requests(cfg->host);
3770 		drain_ioctls(cfg);
3771 		rc = cxlflash_mark_contexts_error(cfg);
3772 		if (unlikely(rc))
3773 			dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3774 				__func__, rc);
3775 		term_afu(cfg);
3776 		return PCI_ERS_RESULT_NEED_RESET;
3777 	case pci_channel_io_perm_failure:
3778 		cfg->state = STATE_FAILTERM;
3779 		wake_up_all(&cfg->reset_waitq);
3780 		scsi_unblock_requests(cfg->host);
3781 		return PCI_ERS_RESULT_DISCONNECT;
3782 	default:
3783 		break;
3784 	}
3785 	return PCI_ERS_RESULT_NEED_RESET;
3786 }
3787 
3788 /**
3789  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3790  * @pdev:	PCI device struct.
3791  *
3792  * This routine is called by the pci error recovery code after the PCI
3793  * slot has been reset, just before we should resume normal operations.
3794  *
3795  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3796  */
3797 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3798 {
3799 	int rc = 0;
3800 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3801 	struct device *dev = &cfg->dev->dev;
3802 
3803 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3804 
3805 	rc = init_afu(cfg);
3806 	if (unlikely(rc)) {
3807 		dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3808 		return PCI_ERS_RESULT_DISCONNECT;
3809 	}
3810 
3811 	return PCI_ERS_RESULT_RECOVERED;
3812 }
3813 
3814 /**
3815  * cxlflash_pci_resume() - called when normal operation can resume
3816  * @pdev:	PCI device struct
3817  */
3818 static void cxlflash_pci_resume(struct pci_dev *pdev)
3819 {
3820 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3821 	struct device *dev = &cfg->dev->dev;
3822 
3823 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3824 
3825 	cfg->state = STATE_NORMAL;
3826 	wake_up_all(&cfg->reset_waitq);
3827 	scsi_unblock_requests(cfg->host);
3828 }
3829 
3830 /**
3831  * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3832  * @dev:	Character device.
3833  * @mode:	Mode that can be used to verify access.
3834  *
3835  * Return: Allocated string describing the devtmpfs structure.
3836  */
3837 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3838 {
3839 	return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3840 }
3841 
3842 /**
3843  * cxlflash_class_init() - create character device class
3844  *
3845  * Return: 0 on success, -errno on failure
3846  */
3847 static int cxlflash_class_init(void)
3848 {
3849 	dev_t devno;
3850 	int rc = 0;
3851 
3852 	rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3853 	if (unlikely(rc)) {
3854 		pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3855 		goto out;
3856 	}
3857 
3858 	cxlflash_major = MAJOR(devno);
3859 
3860 	cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3861 	if (IS_ERR(cxlflash_class)) {
3862 		rc = PTR_ERR(cxlflash_class);
3863 		pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3864 		goto err;
3865 	}
3866 
3867 	cxlflash_class->devnode = cxlflash_devnode;
3868 out:
3869 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3870 	return rc;
3871 err:
3872 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3873 	goto out;
3874 }
3875 
3876 /**
3877  * cxlflash_class_exit() - destroy character device class
3878  */
3879 static void cxlflash_class_exit(void)
3880 {
3881 	dev_t devno = MKDEV(cxlflash_major, 0);
3882 
3883 	class_destroy(cxlflash_class);
3884 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3885 }
3886 
3887 static const struct pci_error_handlers cxlflash_err_handler = {
3888 	.error_detected = cxlflash_pci_error_detected,
3889 	.slot_reset = cxlflash_pci_slot_reset,
3890 	.resume = cxlflash_pci_resume,
3891 };
3892 
3893 /*
3894  * PCI device structure
3895  */
3896 static struct pci_driver cxlflash_driver = {
3897 	.name = CXLFLASH_NAME,
3898 	.id_table = cxlflash_pci_table,
3899 	.probe = cxlflash_probe,
3900 	.remove = cxlflash_remove,
3901 	.shutdown = cxlflash_remove,
3902 	.err_handler = &cxlflash_err_handler,
3903 };
3904 
3905 /**
3906  * init_cxlflash() - module entry point
3907  *
3908  * Return: 0 on success, -errno on failure
3909  */
3910 static int __init init_cxlflash(void)
3911 {
3912 	int rc;
3913 
3914 	check_sizes();
3915 	cxlflash_list_init();
3916 	rc = cxlflash_class_init();
3917 	if (unlikely(rc))
3918 		goto out;
3919 
3920 	rc = pci_register_driver(&cxlflash_driver);
3921 	if (unlikely(rc))
3922 		goto err;
3923 out:
3924 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3925 	return rc;
3926 err:
3927 	cxlflash_class_exit();
3928 	goto out;
3929 }
3930 
3931 /**
3932  * exit_cxlflash() - module exit point
3933  */
3934 static void __exit exit_cxlflash(void)
3935 {
3936 	cxlflash_term_global_luns();
3937 	cxlflash_free_errpage();
3938 
3939 	pci_unregister_driver(&cxlflash_driver);
3940 	cxlflash_class_exit();
3941 }
3942 
3943 module_init(init_cxlflash);
3944 module_exit(exit_cxlflash);
3945