1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CXL Flash Device Driver 4 * 5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation 6 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation 7 * 8 * Copyright (C) 2015 IBM Corporation 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/pci.h> 15 16 #include <asm/unaligned.h> 17 18 #include <scsi/scsi_cmnd.h> 19 #include <scsi/scsi_host.h> 20 #include <uapi/scsi/cxlflash_ioctl.h> 21 22 #include "main.h" 23 #include "sislite.h" 24 #include "common.h" 25 26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); 27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>"); 28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>"); 29 MODULE_LICENSE("GPL"); 30 31 static struct class *cxlflash_class; 32 static u32 cxlflash_major; 33 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 34 35 /** 36 * process_cmd_err() - command error handler 37 * @cmd: AFU command that experienced the error. 38 * @scp: SCSI command associated with the AFU command in error. 39 * 40 * Translates error bits from AFU command to SCSI command results. 41 */ 42 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) 43 { 44 struct afu *afu = cmd->parent; 45 struct cxlflash_cfg *cfg = afu->parent; 46 struct device *dev = &cfg->dev->dev; 47 struct sisl_ioarcb *ioarcb; 48 struct sisl_ioasa *ioasa; 49 u32 resid; 50 51 if (unlikely(!cmd)) 52 return; 53 54 ioarcb = &(cmd->rcb); 55 ioasa = &(cmd->sa); 56 57 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { 58 resid = ioasa->resid; 59 scsi_set_resid(scp, resid); 60 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n", 61 __func__, cmd, scp, resid); 62 } 63 64 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { 65 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n", 66 __func__, cmd, scp); 67 scp->result = (DID_ERROR << 16); 68 } 69 70 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x " 71 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__, 72 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, 73 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); 74 75 if (ioasa->rc.scsi_rc) { 76 /* We have a SCSI status */ 77 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { 78 memcpy(scp->sense_buffer, ioasa->sense_data, 79 SISL_SENSE_DATA_LEN); 80 scp->result = ioasa->rc.scsi_rc; 81 } else 82 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); 83 } 84 85 /* 86 * We encountered an error. Set scp->result based on nature 87 * of error. 88 */ 89 if (ioasa->rc.fc_rc) { 90 /* We have an FC status */ 91 switch (ioasa->rc.fc_rc) { 92 case SISL_FC_RC_LINKDOWN: 93 scp->result = (DID_REQUEUE << 16); 94 break; 95 case SISL_FC_RC_RESID: 96 /* This indicates an FCP resid underrun */ 97 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { 98 /* If the SISL_RC_FLAGS_OVERRUN flag was set, 99 * then we will handle this error else where. 100 * If not then we must handle it here. 101 * This is probably an AFU bug. 102 */ 103 scp->result = (DID_ERROR << 16); 104 } 105 break; 106 case SISL_FC_RC_RESIDERR: 107 /* Resid mismatch between adapter and device */ 108 case SISL_FC_RC_TGTABORT: 109 case SISL_FC_RC_ABORTOK: 110 case SISL_FC_RC_ABORTFAIL: 111 case SISL_FC_RC_NOLOGI: 112 case SISL_FC_RC_ABORTPEND: 113 case SISL_FC_RC_WRABORTPEND: 114 case SISL_FC_RC_NOEXP: 115 case SISL_FC_RC_INUSE: 116 scp->result = (DID_ERROR << 16); 117 break; 118 } 119 } 120 121 if (ioasa->rc.afu_rc) { 122 /* We have an AFU error */ 123 switch (ioasa->rc.afu_rc) { 124 case SISL_AFU_RC_NO_CHANNELS: 125 scp->result = (DID_NO_CONNECT << 16); 126 break; 127 case SISL_AFU_RC_DATA_DMA_ERR: 128 switch (ioasa->afu_extra) { 129 case SISL_AFU_DMA_ERR_PAGE_IN: 130 /* Retry */ 131 scp->result = (DID_IMM_RETRY << 16); 132 break; 133 case SISL_AFU_DMA_ERR_INVALID_EA: 134 default: 135 scp->result = (DID_ERROR << 16); 136 } 137 break; 138 case SISL_AFU_RC_OUT_OF_DATA_BUFS: 139 /* Retry */ 140 scp->result = (DID_ALLOC_FAILURE << 16); 141 break; 142 default: 143 scp->result = (DID_ERROR << 16); 144 } 145 } 146 } 147 148 /** 149 * cmd_complete() - command completion handler 150 * @cmd: AFU command that has completed. 151 * 152 * For SCSI commands this routine prepares and submits commands that have 153 * either completed or timed out to the SCSI stack. For internal commands 154 * (TMF or AFU), this routine simply notifies the originator that the 155 * command has completed. 156 */ 157 static void cmd_complete(struct afu_cmd *cmd) 158 { 159 struct scsi_cmnd *scp; 160 ulong lock_flags; 161 struct afu *afu = cmd->parent; 162 struct cxlflash_cfg *cfg = afu->parent; 163 struct device *dev = &cfg->dev->dev; 164 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 165 166 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 167 list_del(&cmd->list); 168 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 169 170 if (cmd->scp) { 171 scp = cmd->scp; 172 if (unlikely(cmd->sa.ioasc)) 173 process_cmd_err(cmd, scp); 174 else 175 scp->result = (DID_OK << 16); 176 177 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n", 178 __func__, scp, scp->result, cmd->sa.ioasc); 179 scp->scsi_done(scp); 180 } else if (cmd->cmd_tmf) { 181 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 182 cfg->tmf_active = false; 183 wake_up_all_locked(&cfg->tmf_waitq); 184 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 185 } else 186 complete(&cmd->cevent); 187 } 188 189 /** 190 * flush_pending_cmds() - flush all pending commands on this hardware queue 191 * @hwq: Hardware queue to flush. 192 * 193 * The hardware send queue lock associated with this hardware queue must be 194 * held when calling this routine. 195 */ 196 static void flush_pending_cmds(struct hwq *hwq) 197 { 198 struct cxlflash_cfg *cfg = hwq->afu->parent; 199 struct afu_cmd *cmd, *tmp; 200 struct scsi_cmnd *scp; 201 ulong lock_flags; 202 203 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) { 204 /* Bypass command when on a doneq, cmd_complete() will handle */ 205 if (!list_empty(&cmd->queue)) 206 continue; 207 208 list_del(&cmd->list); 209 210 if (cmd->scp) { 211 scp = cmd->scp; 212 scp->result = (DID_IMM_RETRY << 16); 213 scp->scsi_done(scp); 214 } else { 215 cmd->cmd_aborted = true; 216 217 if (cmd->cmd_tmf) { 218 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 219 cfg->tmf_active = false; 220 wake_up_all_locked(&cfg->tmf_waitq); 221 spin_unlock_irqrestore(&cfg->tmf_slock, 222 lock_flags); 223 } else 224 complete(&cmd->cevent); 225 } 226 } 227 } 228 229 /** 230 * context_reset() - reset context via specified register 231 * @hwq: Hardware queue owning the context to be reset. 232 * @reset_reg: MMIO register to perform reset. 233 * 234 * When the reset is successful, the SISLite specification guarantees that 235 * the AFU has aborted all currently pending I/O. Accordingly, these commands 236 * must be flushed. 237 * 238 * Return: 0 on success, -errno on failure 239 */ 240 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg) 241 { 242 struct cxlflash_cfg *cfg = hwq->afu->parent; 243 struct device *dev = &cfg->dev->dev; 244 int rc = -ETIMEDOUT; 245 int nretry = 0; 246 u64 val = 0x1; 247 ulong lock_flags; 248 249 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq); 250 251 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 252 253 writeq_be(val, reset_reg); 254 do { 255 val = readq_be(reset_reg); 256 if ((val & 0x1) == 0x0) { 257 rc = 0; 258 break; 259 } 260 261 /* Double delay each time */ 262 udelay(1 << nretry); 263 } while (nretry++ < MC_ROOM_RETRY_CNT); 264 265 if (!rc) 266 flush_pending_cmds(hwq); 267 268 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 269 270 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n", 271 __func__, rc, val, nretry); 272 return rc; 273 } 274 275 /** 276 * context_reset_ioarrin() - reset context via IOARRIN register 277 * @hwq: Hardware queue owning the context to be reset. 278 * 279 * Return: 0 on success, -errno on failure 280 */ 281 static int context_reset_ioarrin(struct hwq *hwq) 282 { 283 return context_reset(hwq, &hwq->host_map->ioarrin); 284 } 285 286 /** 287 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register 288 * @hwq: Hardware queue owning the context to be reset. 289 * 290 * Return: 0 on success, -errno on failure 291 */ 292 static int context_reset_sq(struct hwq *hwq) 293 { 294 return context_reset(hwq, &hwq->host_map->sq_ctx_reset); 295 } 296 297 /** 298 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register 299 * @afu: AFU associated with the host. 300 * @cmd: AFU command to send. 301 * 302 * Return: 303 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 304 */ 305 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd) 306 { 307 struct cxlflash_cfg *cfg = afu->parent; 308 struct device *dev = &cfg->dev->dev; 309 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 310 int rc = 0; 311 s64 room; 312 ulong lock_flags; 313 314 /* 315 * To avoid the performance penalty of MMIO, spread the update of 316 * 'room' over multiple commands. 317 */ 318 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 319 if (--hwq->room < 0) { 320 room = readq_be(&hwq->host_map->cmd_room); 321 if (room <= 0) { 322 dev_dbg_ratelimited(dev, "%s: no cmd_room to send " 323 "0x%02X, room=0x%016llX\n", 324 __func__, cmd->rcb.cdb[0], room); 325 hwq->room = 0; 326 rc = SCSI_MLQUEUE_HOST_BUSY; 327 goto out; 328 } 329 hwq->room = room - 1; 330 } 331 332 list_add(&cmd->list, &hwq->pending_cmds); 333 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin); 334 out: 335 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 336 dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", 337 __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc); 338 return rc; 339 } 340 341 /** 342 * send_cmd_sq() - sends an AFU command via SQ ring 343 * @afu: AFU associated with the host. 344 * @cmd: AFU command to send. 345 * 346 * Return: 347 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 348 */ 349 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd) 350 { 351 struct cxlflash_cfg *cfg = afu->parent; 352 struct device *dev = &cfg->dev->dev; 353 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 354 int rc = 0; 355 int newval; 356 ulong lock_flags; 357 358 newval = atomic_dec_if_positive(&hwq->hsq_credits); 359 if (newval <= 0) { 360 rc = SCSI_MLQUEUE_HOST_BUSY; 361 goto out; 362 } 363 364 cmd->rcb.ioasa = &cmd->sa; 365 366 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 367 368 *hwq->hsq_curr = cmd->rcb; 369 if (hwq->hsq_curr < hwq->hsq_end) 370 hwq->hsq_curr++; 371 else 372 hwq->hsq_curr = hwq->hsq_start; 373 374 list_add(&cmd->list, &hwq->pending_cmds); 375 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail); 376 377 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 378 out: 379 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p " 380 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len, 381 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr, 382 readq_be(&hwq->host_map->sq_head), 383 readq_be(&hwq->host_map->sq_tail)); 384 return rc; 385 } 386 387 /** 388 * wait_resp() - polls for a response or timeout to a sent AFU command 389 * @afu: AFU associated with the host. 390 * @cmd: AFU command that was sent. 391 * 392 * Return: 0 on success, -errno on failure 393 */ 394 static int wait_resp(struct afu *afu, struct afu_cmd *cmd) 395 { 396 struct cxlflash_cfg *cfg = afu->parent; 397 struct device *dev = &cfg->dev->dev; 398 int rc = 0; 399 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); 400 401 timeout = wait_for_completion_timeout(&cmd->cevent, timeout); 402 if (!timeout) 403 rc = -ETIMEDOUT; 404 405 if (cmd->cmd_aborted) 406 rc = -EAGAIN; 407 408 if (unlikely(cmd->sa.ioasc != 0)) { 409 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n", 410 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc); 411 rc = -EIO; 412 } 413 414 return rc; 415 } 416 417 /** 418 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command 419 * @host: SCSI host associated with device. 420 * @scp: SCSI command to send. 421 * @afu: SCSI command to send. 422 * 423 * Hashes a command based upon the hardware queue mode. 424 * 425 * Return: Trusted index of target hardware queue 426 */ 427 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp, 428 struct afu *afu) 429 { 430 u32 tag; 431 u32 hwq = 0; 432 433 if (afu->num_hwqs == 1) 434 return 0; 435 436 switch (afu->hwq_mode) { 437 case HWQ_MODE_RR: 438 hwq = afu->hwq_rr_count++ % afu->num_hwqs; 439 break; 440 case HWQ_MODE_TAG: 441 tag = blk_mq_unique_tag(scp->request); 442 hwq = blk_mq_unique_tag_to_hwq(tag); 443 break; 444 case HWQ_MODE_CPU: 445 hwq = smp_processor_id() % afu->num_hwqs; 446 break; 447 default: 448 WARN_ON_ONCE(1); 449 } 450 451 return hwq; 452 } 453 454 /** 455 * send_tmf() - sends a Task Management Function (TMF) 456 * @cfg: Internal structure associated with the host. 457 * @sdev: SCSI device destined for TMF. 458 * @tmfcmd: TMF command to send. 459 * 460 * Return: 461 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure 462 */ 463 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev, 464 u64 tmfcmd) 465 { 466 struct afu *afu = cfg->afu; 467 struct afu_cmd *cmd = NULL; 468 struct device *dev = &cfg->dev->dev; 469 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 470 bool needs_deletion = false; 471 char *buf = NULL; 472 ulong lock_flags; 473 int rc = 0; 474 ulong to; 475 476 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 477 if (unlikely(!buf)) { 478 dev_err(dev, "%s: no memory for command\n", __func__); 479 rc = -ENOMEM; 480 goto out; 481 } 482 483 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 484 INIT_LIST_HEAD(&cmd->queue); 485 486 /* When Task Management Function is active do not send another */ 487 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 488 if (cfg->tmf_active) 489 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 490 !cfg->tmf_active, 491 cfg->tmf_slock); 492 cfg->tmf_active = true; 493 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 494 495 cmd->parent = afu; 496 cmd->cmd_tmf = true; 497 cmd->hwq_index = hwq->index; 498 499 cmd->rcb.ctx_id = hwq->ctx_hndl; 500 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 501 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel); 502 cmd->rcb.lun_id = lun_to_lunid(sdev->lun); 503 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | 504 SISL_REQ_FLAGS_SUP_UNDERRUN | 505 SISL_REQ_FLAGS_TMF_CMD); 506 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); 507 508 rc = afu->send_cmd(afu, cmd); 509 if (unlikely(rc)) { 510 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 511 cfg->tmf_active = false; 512 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 513 goto out; 514 } 515 516 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 517 to = msecs_to_jiffies(5000); 518 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, 519 !cfg->tmf_active, 520 cfg->tmf_slock, 521 to); 522 if (!to) { 523 dev_err(dev, "%s: TMF timed out\n", __func__); 524 rc = -ETIMEDOUT; 525 needs_deletion = true; 526 } else if (cmd->cmd_aborted) { 527 dev_err(dev, "%s: TMF aborted\n", __func__); 528 rc = -EAGAIN; 529 } else if (cmd->sa.ioasc) { 530 dev_err(dev, "%s: TMF failed ioasc=%08x\n", 531 __func__, cmd->sa.ioasc); 532 rc = -EIO; 533 } 534 cfg->tmf_active = false; 535 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 536 537 if (needs_deletion) { 538 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 539 list_del(&cmd->list); 540 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 541 } 542 out: 543 kfree(buf); 544 return rc; 545 } 546 547 /** 548 * cxlflash_driver_info() - information handler for this host driver 549 * @host: SCSI host associated with device. 550 * 551 * Return: A string describing the device. 552 */ 553 static const char *cxlflash_driver_info(struct Scsi_Host *host) 554 { 555 return CXLFLASH_ADAPTER_NAME; 556 } 557 558 /** 559 * cxlflash_queuecommand() - sends a mid-layer request 560 * @host: SCSI host associated with device. 561 * @scp: SCSI command to send. 562 * 563 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure 564 */ 565 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) 566 { 567 struct cxlflash_cfg *cfg = shost_priv(host); 568 struct afu *afu = cfg->afu; 569 struct device *dev = &cfg->dev->dev; 570 struct afu_cmd *cmd = sc_to_afuci(scp); 571 struct scatterlist *sg = scsi_sglist(scp); 572 int hwq_index = cmd_to_target_hwq(host, scp, afu); 573 struct hwq *hwq = get_hwq(afu, hwq_index); 574 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN; 575 ulong lock_flags; 576 int rc = 0; 577 578 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " 579 "cdb=(%08x-%08x-%08x-%08x)\n", 580 __func__, scp, host->host_no, scp->device->channel, 581 scp->device->id, scp->device->lun, 582 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 583 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 584 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 585 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 586 587 /* 588 * If a Task Management Function is active, wait for it to complete 589 * before continuing with regular commands. 590 */ 591 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 592 if (cfg->tmf_active) { 593 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 594 rc = SCSI_MLQUEUE_HOST_BUSY; 595 goto out; 596 } 597 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 598 599 switch (cfg->state) { 600 case STATE_PROBING: 601 case STATE_PROBED: 602 case STATE_RESET: 603 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__); 604 rc = SCSI_MLQUEUE_HOST_BUSY; 605 goto out; 606 case STATE_FAILTERM: 607 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__); 608 scp->result = (DID_NO_CONNECT << 16); 609 scp->scsi_done(scp); 610 rc = 0; 611 goto out; 612 default: 613 atomic_inc(&afu->cmds_active); 614 break; 615 } 616 617 if (likely(sg)) { 618 cmd->rcb.data_len = sg->length; 619 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg); 620 } 621 622 cmd->scp = scp; 623 cmd->parent = afu; 624 cmd->hwq_index = hwq_index; 625 626 cmd->sa.ioasc = 0; 627 cmd->rcb.ctx_id = hwq->ctx_hndl; 628 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED; 629 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel); 630 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); 631 632 if (scp->sc_data_direction == DMA_TO_DEVICE) 633 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 634 635 cmd->rcb.req_flags = req_flags; 636 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); 637 638 rc = afu->send_cmd(afu, cmd); 639 atomic_dec(&afu->cmds_active); 640 out: 641 return rc; 642 } 643 644 /** 645 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe 646 * @cfg: Internal structure associated with the host. 647 */ 648 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) 649 { 650 struct pci_dev *pdev = cfg->dev; 651 652 if (pci_channel_offline(pdev)) 653 wait_event_timeout(cfg->reset_waitq, 654 !pci_channel_offline(pdev), 655 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); 656 } 657 658 /** 659 * free_mem() - free memory associated with the AFU 660 * @cfg: Internal structure associated with the host. 661 */ 662 static void free_mem(struct cxlflash_cfg *cfg) 663 { 664 struct afu *afu = cfg->afu; 665 666 if (cfg->afu) { 667 free_pages((ulong)afu, get_order(sizeof(struct afu))); 668 cfg->afu = NULL; 669 } 670 } 671 672 /** 673 * cxlflash_reset_sync() - synchronizing point for asynchronous resets 674 * @cfg: Internal structure associated with the host. 675 */ 676 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg) 677 { 678 if (cfg->async_reset_cookie == 0) 679 return; 680 681 /* Wait until all async calls prior to this cookie have completed */ 682 async_synchronize_cookie(cfg->async_reset_cookie + 1); 683 cfg->async_reset_cookie = 0; 684 } 685 686 /** 687 * stop_afu() - stops the AFU command timers and unmaps the MMIO space 688 * @cfg: Internal structure associated with the host. 689 * 690 * Safe to call with AFU in a partially allocated/initialized state. 691 * 692 * Cancels scheduled worker threads, waits for any active internal AFU 693 * commands to timeout, disables IRQ polling and then unmaps the MMIO space. 694 */ 695 static void stop_afu(struct cxlflash_cfg *cfg) 696 { 697 struct afu *afu = cfg->afu; 698 struct hwq *hwq; 699 int i; 700 701 cancel_work_sync(&cfg->work_q); 702 if (!current_is_async()) 703 cxlflash_reset_sync(cfg); 704 705 if (likely(afu)) { 706 while (atomic_read(&afu->cmds_active)) 707 ssleep(1); 708 709 if (afu_is_irqpoll_enabled(afu)) { 710 for (i = 0; i < afu->num_hwqs; i++) { 711 hwq = get_hwq(afu, i); 712 713 irq_poll_disable(&hwq->irqpoll); 714 } 715 } 716 717 if (likely(afu->afu_map)) { 718 cfg->ops->psa_unmap(afu->afu_map); 719 afu->afu_map = NULL; 720 } 721 } 722 } 723 724 /** 725 * term_intr() - disables all AFU interrupts 726 * @cfg: Internal structure associated with the host. 727 * @level: Depth of allocation, where to begin waterfall tear down. 728 * @index: Index of the hardware queue. 729 * 730 * Safe to call with AFU/MC in partially allocated/initialized state. 731 */ 732 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level, 733 u32 index) 734 { 735 struct afu *afu = cfg->afu; 736 struct device *dev = &cfg->dev->dev; 737 struct hwq *hwq; 738 739 if (!afu) { 740 dev_err(dev, "%s: returning with NULL afu\n", __func__); 741 return; 742 } 743 744 hwq = get_hwq(afu, index); 745 746 if (!hwq->ctx_cookie) { 747 dev_err(dev, "%s: returning with NULL MC\n", __func__); 748 return; 749 } 750 751 switch (level) { 752 case UNMAP_THREE: 753 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 754 if (index == PRIMARY_HWQ) 755 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq); 756 /* fall through */ 757 case UNMAP_TWO: 758 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq); 759 /* fall through */ 760 case UNMAP_ONE: 761 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq); 762 /* fall through */ 763 case FREE_IRQ: 764 cfg->ops->free_afu_irqs(hwq->ctx_cookie); 765 /* fall through */ 766 case UNDO_NOOP: 767 /* No action required */ 768 break; 769 } 770 } 771 772 /** 773 * term_mc() - terminates the master context 774 * @cfg: Internal structure associated with the host. 775 * @index: Index of the hardware queue. 776 * 777 * Safe to call with AFU/MC in partially allocated/initialized state. 778 */ 779 static void term_mc(struct cxlflash_cfg *cfg, u32 index) 780 { 781 struct afu *afu = cfg->afu; 782 struct device *dev = &cfg->dev->dev; 783 struct hwq *hwq; 784 ulong lock_flags; 785 786 if (!afu) { 787 dev_err(dev, "%s: returning with NULL afu\n", __func__); 788 return; 789 } 790 791 hwq = get_hwq(afu, index); 792 793 if (!hwq->ctx_cookie) { 794 dev_err(dev, "%s: returning with NULL MC\n", __func__); 795 return; 796 } 797 798 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie)); 799 if (index != PRIMARY_HWQ) 800 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie)); 801 hwq->ctx_cookie = NULL; 802 803 spin_lock_irqsave(&hwq->hrrq_slock, lock_flags); 804 hwq->hrrq_online = false; 805 spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags); 806 807 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 808 flush_pending_cmds(hwq); 809 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 810 } 811 812 /** 813 * term_afu() - terminates the AFU 814 * @cfg: Internal structure associated with the host. 815 * 816 * Safe to call with AFU/MC in partially allocated/initialized state. 817 */ 818 static void term_afu(struct cxlflash_cfg *cfg) 819 { 820 struct device *dev = &cfg->dev->dev; 821 int k; 822 823 /* 824 * Tear down is carefully orchestrated to ensure 825 * no interrupts can come in when the problem state 826 * area is unmapped. 827 * 828 * 1) Disable all AFU interrupts for each master 829 * 2) Unmap the problem state area 830 * 3) Stop each master context 831 */ 832 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 833 term_intr(cfg, UNMAP_THREE, k); 834 835 stop_afu(cfg); 836 837 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--) 838 term_mc(cfg, k); 839 840 dev_dbg(dev, "%s: returning\n", __func__); 841 } 842 843 /** 844 * notify_shutdown() - notifies device of pending shutdown 845 * @cfg: Internal structure associated with the host. 846 * @wait: Whether to wait for shutdown processing to complete. 847 * 848 * This function will notify the AFU that the adapter is being shutdown 849 * and will wait for shutdown processing to complete if wait is true. 850 * This notification should flush pending I/Os to the device and halt 851 * further I/Os until the next AFU reset is issued and device restarted. 852 */ 853 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) 854 { 855 struct afu *afu = cfg->afu; 856 struct device *dev = &cfg->dev->dev; 857 struct dev_dependent_vals *ddv; 858 __be64 __iomem *fc_port_regs; 859 u64 reg, status; 860 int i, retry_cnt = 0; 861 862 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; 863 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) 864 return; 865 866 if (!afu || !afu->afu_map) { 867 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__); 868 return; 869 } 870 871 /* Notify AFU */ 872 for (i = 0; i < cfg->num_fc_ports; i++) { 873 fc_port_regs = get_fc_port_regs(cfg, i); 874 875 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 876 reg |= SISL_FC_SHUTDOWN_NORMAL; 877 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 878 } 879 880 if (!wait) 881 return; 882 883 /* Wait up to 1.5 seconds for shutdown processing to complete */ 884 for (i = 0; i < cfg->num_fc_ports; i++) { 885 fc_port_regs = get_fc_port_regs(cfg, i); 886 retry_cnt = 0; 887 888 while (true) { 889 status = readq_be(&fc_port_regs[FC_STATUS / 8]); 890 if (status & SISL_STATUS_SHUTDOWN_COMPLETE) 891 break; 892 if (++retry_cnt >= MC_RETRY_CNT) { 893 dev_dbg(dev, "%s: port %d shutdown processing " 894 "not yet completed\n", __func__, i); 895 break; 896 } 897 msleep(100 * retry_cnt); 898 } 899 } 900 } 901 902 /** 903 * cxlflash_get_minor() - gets the first available minor number 904 * 905 * Return: Unique minor number that can be used to create the character device. 906 */ 907 static int cxlflash_get_minor(void) 908 { 909 int minor; 910 long bit; 911 912 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS); 913 if (bit >= CXLFLASH_MAX_ADAPTERS) 914 return -1; 915 916 minor = bit & MINORMASK; 917 set_bit(minor, cxlflash_minor); 918 return minor; 919 } 920 921 /** 922 * cxlflash_put_minor() - releases the minor number 923 * @minor: Minor number that is no longer needed. 924 */ 925 static void cxlflash_put_minor(int minor) 926 { 927 clear_bit(minor, cxlflash_minor); 928 } 929 930 /** 931 * cxlflash_release_chrdev() - release the character device for the host 932 * @cfg: Internal structure associated with the host. 933 */ 934 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg) 935 { 936 device_unregister(cfg->chardev); 937 cfg->chardev = NULL; 938 cdev_del(&cfg->cdev); 939 cxlflash_put_minor(MINOR(cfg->cdev.dev)); 940 } 941 942 /** 943 * cxlflash_remove() - PCI entry point to tear down host 944 * @pdev: PCI device associated with the host. 945 * 946 * Safe to use as a cleanup in partially allocated/initialized state. Note that 947 * the reset_waitq is flushed as part of the stop/termination of user contexts. 948 */ 949 static void cxlflash_remove(struct pci_dev *pdev) 950 { 951 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 952 struct device *dev = &pdev->dev; 953 ulong lock_flags; 954 955 if (!pci_is_enabled(pdev)) { 956 dev_dbg(dev, "%s: Device is disabled\n", __func__); 957 return; 958 } 959 960 /* Yield to running recovery threads before continuing with remove */ 961 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 962 cfg->state != STATE_PROBING); 963 spin_lock_irqsave(&cfg->tmf_slock, lock_flags); 964 if (cfg->tmf_active) 965 wait_event_interruptible_lock_irq(cfg->tmf_waitq, 966 !cfg->tmf_active, 967 cfg->tmf_slock); 968 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); 969 970 /* Notify AFU and wait for shutdown processing to complete */ 971 notify_shutdown(cfg, true); 972 973 cfg->state = STATE_FAILTERM; 974 cxlflash_stop_term_user_contexts(cfg); 975 976 switch (cfg->init_state) { 977 case INIT_STATE_CDEV: 978 cxlflash_release_chrdev(cfg); 979 /* fall through */ 980 case INIT_STATE_SCSI: 981 cxlflash_term_local_luns(cfg); 982 scsi_remove_host(cfg->host); 983 /* fall through */ 984 case INIT_STATE_AFU: 985 term_afu(cfg); 986 /* fall through */ 987 case INIT_STATE_PCI: 988 cfg->ops->destroy_afu(cfg->afu_cookie); 989 pci_disable_device(pdev); 990 /* fall through */ 991 case INIT_STATE_NONE: 992 free_mem(cfg); 993 scsi_host_put(cfg->host); 994 break; 995 } 996 997 dev_dbg(dev, "%s: returning\n", __func__); 998 } 999 1000 /** 1001 * alloc_mem() - allocates the AFU and its command pool 1002 * @cfg: Internal structure associated with the host. 1003 * 1004 * A partially allocated state remains on failure. 1005 * 1006 * Return: 1007 * 0 on success 1008 * -ENOMEM on failure to allocate memory 1009 */ 1010 static int alloc_mem(struct cxlflash_cfg *cfg) 1011 { 1012 int rc = 0; 1013 struct device *dev = &cfg->dev->dev; 1014 1015 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */ 1016 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1017 get_order(sizeof(struct afu))); 1018 if (unlikely(!cfg->afu)) { 1019 dev_err(dev, "%s: cannot get %d free pages\n", 1020 __func__, get_order(sizeof(struct afu))); 1021 rc = -ENOMEM; 1022 goto out; 1023 } 1024 cfg->afu->parent = cfg; 1025 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS; 1026 cfg->afu->afu_map = NULL; 1027 out: 1028 return rc; 1029 } 1030 1031 /** 1032 * init_pci() - initializes the host as a PCI device 1033 * @cfg: Internal structure associated with the host. 1034 * 1035 * Return: 0 on success, -errno on failure 1036 */ 1037 static int init_pci(struct cxlflash_cfg *cfg) 1038 { 1039 struct pci_dev *pdev = cfg->dev; 1040 struct device *dev = &cfg->dev->dev; 1041 int rc = 0; 1042 1043 rc = pci_enable_device(pdev); 1044 if (rc || pci_channel_offline(pdev)) { 1045 if (pci_channel_offline(pdev)) { 1046 cxlflash_wait_for_pci_err_recovery(cfg); 1047 rc = pci_enable_device(pdev); 1048 } 1049 1050 if (rc) { 1051 dev_err(dev, "%s: Cannot enable adapter\n", __func__); 1052 cxlflash_wait_for_pci_err_recovery(cfg); 1053 goto out; 1054 } 1055 } 1056 1057 out: 1058 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1059 return rc; 1060 } 1061 1062 /** 1063 * init_scsi() - adds the host to the SCSI stack and kicks off host scan 1064 * @cfg: Internal structure associated with the host. 1065 * 1066 * Return: 0 on success, -errno on failure 1067 */ 1068 static int init_scsi(struct cxlflash_cfg *cfg) 1069 { 1070 struct pci_dev *pdev = cfg->dev; 1071 struct device *dev = &cfg->dev->dev; 1072 int rc = 0; 1073 1074 rc = scsi_add_host(cfg->host, &pdev->dev); 1075 if (rc) { 1076 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc); 1077 goto out; 1078 } 1079 1080 scsi_scan_host(cfg->host); 1081 1082 out: 1083 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1084 return rc; 1085 } 1086 1087 /** 1088 * set_port_online() - transitions the specified host FC port to online state 1089 * @fc_regs: Top of MMIO region defined for specified port. 1090 * 1091 * The provided MMIO region must be mapped prior to call. Online state means 1092 * that the FC link layer has synced, completed the handshaking process, and 1093 * is ready for login to start. 1094 */ 1095 static void set_port_online(__be64 __iomem *fc_regs) 1096 { 1097 u64 cmdcfg; 1098 1099 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1100 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ 1101 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ 1102 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1103 } 1104 1105 /** 1106 * set_port_offline() - transitions the specified host FC port to offline state 1107 * @fc_regs: Top of MMIO region defined for specified port. 1108 * 1109 * The provided MMIO region must be mapped prior to call. 1110 */ 1111 static void set_port_offline(__be64 __iomem *fc_regs) 1112 { 1113 u64 cmdcfg; 1114 1115 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); 1116 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ 1117 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ 1118 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); 1119 } 1120 1121 /** 1122 * wait_port_online() - waits for the specified host FC port come online 1123 * @fc_regs: Top of MMIO region defined for specified port. 1124 * @delay_us: Number of microseconds to delay between reading port status. 1125 * @nretry: Number of cycles to retry reading port status. 1126 * 1127 * The provided MMIO region must be mapped prior to call. This will timeout 1128 * when the cable is not plugged in. 1129 * 1130 * Return: 1131 * TRUE (1) when the specified port is online 1132 * FALSE (0) when the specified port fails to come online after timeout 1133 */ 1134 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1135 { 1136 u64 status; 1137 1138 WARN_ON(delay_us < 1000); 1139 1140 do { 1141 msleep(delay_us / 1000); 1142 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1143 if (status == U64_MAX) 1144 nretry /= 2; 1145 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && 1146 nretry--); 1147 1148 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); 1149 } 1150 1151 /** 1152 * wait_port_offline() - waits for the specified host FC port go offline 1153 * @fc_regs: Top of MMIO region defined for specified port. 1154 * @delay_us: Number of microseconds to delay between reading port status. 1155 * @nretry: Number of cycles to retry reading port status. 1156 * 1157 * The provided MMIO region must be mapped prior to call. 1158 * 1159 * Return: 1160 * TRUE (1) when the specified port is offline 1161 * FALSE (0) when the specified port fails to go offline after timeout 1162 */ 1163 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) 1164 { 1165 u64 status; 1166 1167 WARN_ON(delay_us < 1000); 1168 1169 do { 1170 msleep(delay_us / 1000); 1171 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); 1172 if (status == U64_MAX) 1173 nretry /= 2; 1174 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && 1175 nretry--); 1176 1177 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); 1178 } 1179 1180 /** 1181 * afu_set_wwpn() - configures the WWPN for the specified host FC port 1182 * @afu: AFU associated with the host that owns the specified FC port. 1183 * @port: Port number being configured. 1184 * @fc_regs: Top of MMIO region defined for specified port. 1185 * @wwpn: The world-wide-port-number previously discovered for port. 1186 * 1187 * The provided MMIO region must be mapped prior to call. As part of the 1188 * sequence to configure the WWPN, the port is toggled offline and then back 1189 * online. This toggling action can cause this routine to delay up to a few 1190 * seconds. When configured to use the internal LUN feature of the AFU, a 1191 * failure to come online is overridden. 1192 */ 1193 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, 1194 u64 wwpn) 1195 { 1196 struct cxlflash_cfg *cfg = afu->parent; 1197 struct device *dev = &cfg->dev->dev; 1198 1199 set_port_offline(fc_regs); 1200 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1201 FC_PORT_STATUS_RETRY_CNT)) { 1202 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n", 1203 __func__, port); 1204 } 1205 1206 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); 1207 1208 set_port_online(fc_regs); 1209 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1210 FC_PORT_STATUS_RETRY_CNT)) { 1211 dev_dbg(dev, "%s: wait on port %d to go online timed out\n", 1212 __func__, port); 1213 } 1214 } 1215 1216 /** 1217 * afu_link_reset() - resets the specified host FC port 1218 * @afu: AFU associated with the host that owns the specified FC port. 1219 * @port: Port number being configured. 1220 * @fc_regs: Top of MMIO region defined for specified port. 1221 * 1222 * The provided MMIO region must be mapped prior to call. The sequence to 1223 * reset the port involves toggling it offline and then back online. This 1224 * action can cause this routine to delay up to a few seconds. An effort 1225 * is made to maintain link with the device by switching to host to use 1226 * the alternate port exclusively while the reset takes place. 1227 * failure to come online is overridden. 1228 */ 1229 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) 1230 { 1231 struct cxlflash_cfg *cfg = afu->parent; 1232 struct device *dev = &cfg->dev->dev; 1233 u64 port_sel; 1234 1235 /* first switch the AFU to the other links, if any */ 1236 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); 1237 port_sel &= ~(1ULL << port); 1238 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1239 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1240 1241 set_port_offline(fc_regs); 1242 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1243 FC_PORT_STATUS_RETRY_CNT)) 1244 dev_err(dev, "%s: wait on port %d to go offline timed out\n", 1245 __func__, port); 1246 1247 set_port_online(fc_regs); 1248 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, 1249 FC_PORT_STATUS_RETRY_CNT)) 1250 dev_err(dev, "%s: wait on port %d to go online timed out\n", 1251 __func__, port); 1252 1253 /* switch back to include this port */ 1254 port_sel |= (1ULL << port); 1255 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); 1256 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); 1257 1258 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel); 1259 } 1260 1261 /** 1262 * afu_err_intr_init() - clears and initializes the AFU for error interrupts 1263 * @afu: AFU associated with the host. 1264 */ 1265 static void afu_err_intr_init(struct afu *afu) 1266 { 1267 struct cxlflash_cfg *cfg = afu->parent; 1268 __be64 __iomem *fc_port_regs; 1269 int i; 1270 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 1271 u64 reg; 1272 1273 /* global async interrupts: AFU clears afu_ctrl on context exit 1274 * if async interrupts were sent to that context. This prevents 1275 * the AFU form sending further async interrupts when 1276 * there is 1277 * nobody to receive them. 1278 */ 1279 1280 /* mask all */ 1281 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); 1282 /* set LISN# to send and point to primary master context */ 1283 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); 1284 1285 if (afu->internal_lun) 1286 reg |= 1; /* Bit 63 indicates local lun */ 1287 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); 1288 /* clear all */ 1289 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1290 /* unmask bits that are of interest */ 1291 /* note: afu can send an interrupt after this step */ 1292 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); 1293 /* clear again in case a bit came on after previous clear but before */ 1294 /* unmask */ 1295 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); 1296 1297 /* Clear/Set internal lun bits */ 1298 fc_port_regs = get_fc_port_regs(cfg, 0); 1299 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]); 1300 reg &= SISL_FC_INTERNAL_MASK; 1301 if (afu->internal_lun) 1302 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); 1303 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]); 1304 1305 /* now clear FC errors */ 1306 for (i = 0; i < cfg->num_fc_ports; i++) { 1307 fc_port_regs = get_fc_port_regs(cfg, i); 1308 1309 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]); 1310 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1311 } 1312 1313 /* sync interrupts for master's IOARRIN write */ 1314 /* note that unlike asyncs, there can be no pending sync interrupts */ 1315 /* at this time (this is a fresh context and master has not written */ 1316 /* IOARRIN yet), so there is nothing to clear. */ 1317 1318 /* set LISN#, it is always sent to the context that wrote IOARRIN */ 1319 for (i = 0; i < afu->num_hwqs; i++) { 1320 hwq = get_hwq(afu, i); 1321 1322 reg = readq_be(&hwq->host_map->ctx_ctrl); 1323 WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0); 1324 reg |= SISL_MSI_SYNC_ERROR; 1325 writeq_be(reg, &hwq->host_map->ctx_ctrl); 1326 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask); 1327 } 1328 } 1329 1330 /** 1331 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors 1332 * @irq: Interrupt number. 1333 * @data: Private data provided at interrupt registration, the AFU. 1334 * 1335 * Return: Always return IRQ_HANDLED. 1336 */ 1337 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) 1338 { 1339 struct hwq *hwq = (struct hwq *)data; 1340 struct cxlflash_cfg *cfg = hwq->afu->parent; 1341 struct device *dev = &cfg->dev->dev; 1342 u64 reg; 1343 u64 reg_unmasked; 1344 1345 reg = readq_be(&hwq->host_map->intr_status); 1346 reg_unmasked = (reg & SISL_ISTATUS_UNMASK); 1347 1348 if (reg_unmasked == 0UL) { 1349 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n", 1350 __func__, reg); 1351 goto cxlflash_sync_err_irq_exit; 1352 } 1353 1354 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n", 1355 __func__, reg); 1356 1357 writeq_be(reg_unmasked, &hwq->host_map->intr_clear); 1358 1359 cxlflash_sync_err_irq_exit: 1360 return IRQ_HANDLED; 1361 } 1362 1363 /** 1364 * process_hrrq() - process the read-response queue 1365 * @afu: AFU associated with the host. 1366 * @doneq: Queue of commands harvested from the RRQ. 1367 * @budget: Threshold of RRQ entries to process. 1368 * 1369 * This routine must be called holding the disabled RRQ spin lock. 1370 * 1371 * Return: The number of entries processed. 1372 */ 1373 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget) 1374 { 1375 struct afu *afu = hwq->afu; 1376 struct afu_cmd *cmd; 1377 struct sisl_ioasa *ioasa; 1378 struct sisl_ioarcb *ioarcb; 1379 bool toggle = hwq->toggle; 1380 int num_hrrq = 0; 1381 u64 entry, 1382 *hrrq_start = hwq->hrrq_start, 1383 *hrrq_end = hwq->hrrq_end, 1384 *hrrq_curr = hwq->hrrq_curr; 1385 1386 /* Process ready RRQ entries up to the specified budget (if any) */ 1387 while (true) { 1388 entry = *hrrq_curr; 1389 1390 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) 1391 break; 1392 1393 entry &= ~SISL_RESP_HANDLE_T_BIT; 1394 1395 if (afu_is_sq_cmd_mode(afu)) { 1396 ioasa = (struct sisl_ioasa *)entry; 1397 cmd = container_of(ioasa, struct afu_cmd, sa); 1398 } else { 1399 ioarcb = (struct sisl_ioarcb *)entry; 1400 cmd = container_of(ioarcb, struct afu_cmd, rcb); 1401 } 1402 1403 list_add_tail(&cmd->queue, doneq); 1404 1405 /* Advance to next entry or wrap and flip the toggle bit */ 1406 if (hrrq_curr < hrrq_end) 1407 hrrq_curr++; 1408 else { 1409 hrrq_curr = hrrq_start; 1410 toggle ^= SISL_RESP_HANDLE_T_BIT; 1411 } 1412 1413 atomic_inc(&hwq->hsq_credits); 1414 num_hrrq++; 1415 1416 if (budget > 0 && num_hrrq >= budget) 1417 break; 1418 } 1419 1420 hwq->hrrq_curr = hrrq_curr; 1421 hwq->toggle = toggle; 1422 1423 return num_hrrq; 1424 } 1425 1426 /** 1427 * process_cmd_doneq() - process a queue of harvested RRQ commands 1428 * @doneq: Queue of completed commands. 1429 * 1430 * Note that upon return the queue can no longer be trusted. 1431 */ 1432 static void process_cmd_doneq(struct list_head *doneq) 1433 { 1434 struct afu_cmd *cmd, *tmp; 1435 1436 WARN_ON(list_empty(doneq)); 1437 1438 list_for_each_entry_safe(cmd, tmp, doneq, queue) 1439 cmd_complete(cmd); 1440 } 1441 1442 /** 1443 * cxlflash_irqpoll() - process a queue of harvested RRQ commands 1444 * @irqpoll: IRQ poll structure associated with queue to poll. 1445 * @budget: Threshold of RRQ entries to process per poll. 1446 * 1447 * Return: The number of entries processed. 1448 */ 1449 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget) 1450 { 1451 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll); 1452 unsigned long hrrq_flags; 1453 LIST_HEAD(doneq); 1454 int num_entries = 0; 1455 1456 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1457 1458 num_entries = process_hrrq(hwq, &doneq, budget); 1459 if (num_entries < budget) 1460 irq_poll_complete(irqpoll); 1461 1462 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1463 1464 process_cmd_doneq(&doneq); 1465 return num_entries; 1466 } 1467 1468 /** 1469 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) 1470 * @irq: Interrupt number. 1471 * @data: Private data provided at interrupt registration, the AFU. 1472 * 1473 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found. 1474 */ 1475 static irqreturn_t cxlflash_rrq_irq(int irq, void *data) 1476 { 1477 struct hwq *hwq = (struct hwq *)data; 1478 struct afu *afu = hwq->afu; 1479 unsigned long hrrq_flags; 1480 LIST_HEAD(doneq); 1481 int num_entries = 0; 1482 1483 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags); 1484 1485 /* Silently drop spurious interrupts when queue is not online */ 1486 if (!hwq->hrrq_online) { 1487 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1488 return IRQ_HANDLED; 1489 } 1490 1491 if (afu_is_irqpoll_enabled(afu)) { 1492 irq_poll_sched(&hwq->irqpoll); 1493 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1494 return IRQ_HANDLED; 1495 } 1496 1497 num_entries = process_hrrq(hwq, &doneq, -1); 1498 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags); 1499 1500 if (num_entries == 0) 1501 return IRQ_NONE; 1502 1503 process_cmd_doneq(&doneq); 1504 return IRQ_HANDLED; 1505 } 1506 1507 /* 1508 * Asynchronous interrupt information table 1509 * 1510 * NOTE: 1511 * - Order matters here as this array is indexed by bit position. 1512 * 1513 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro 1514 * as complex and complains due to a lack of parentheses/braces. 1515 */ 1516 #define ASTATUS_FC(_a, _b, _c, _d) \ 1517 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) } 1518 1519 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \ 1520 ASTATUS_FC(_a, LINK_UP, "link up", 0), \ 1521 ASTATUS_FC(_a, LINK_DN, "link down", 0), \ 1522 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \ 1523 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \ 1524 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \ 1525 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \ 1526 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \ 1527 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET) 1528 1529 static const struct asyc_intr_info ainfo[] = { 1530 BUILD_SISL_ASTATUS_FC_PORT(1), 1531 BUILD_SISL_ASTATUS_FC_PORT(0), 1532 BUILD_SISL_ASTATUS_FC_PORT(3), 1533 BUILD_SISL_ASTATUS_FC_PORT(2) 1534 }; 1535 1536 /** 1537 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors 1538 * @irq: Interrupt number. 1539 * @data: Private data provided at interrupt registration, the AFU. 1540 * 1541 * Return: Always return IRQ_HANDLED. 1542 */ 1543 static irqreturn_t cxlflash_async_err_irq(int irq, void *data) 1544 { 1545 struct hwq *hwq = (struct hwq *)data; 1546 struct afu *afu = hwq->afu; 1547 struct cxlflash_cfg *cfg = afu->parent; 1548 struct device *dev = &cfg->dev->dev; 1549 const struct asyc_intr_info *info; 1550 struct sisl_global_map __iomem *global = &afu->afu_map->global; 1551 __be64 __iomem *fc_port_regs; 1552 u64 reg_unmasked; 1553 u64 reg; 1554 u64 bit; 1555 u8 port; 1556 1557 reg = readq_be(&global->regs.aintr_status); 1558 reg_unmasked = (reg & SISL_ASTATUS_UNMASK); 1559 1560 if (unlikely(reg_unmasked == 0)) { 1561 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n", 1562 __func__, reg); 1563 goto out; 1564 } 1565 1566 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ 1567 writeq_be(reg_unmasked, &global->regs.aintr_clear); 1568 1569 /* Check each bit that is on */ 1570 for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) { 1571 if (unlikely(bit >= ARRAY_SIZE(ainfo))) { 1572 WARN_ON_ONCE(1); 1573 continue; 1574 } 1575 1576 info = &ainfo[bit]; 1577 if (unlikely(info->status != 1ULL << bit)) { 1578 WARN_ON_ONCE(1); 1579 continue; 1580 } 1581 1582 port = info->port; 1583 fc_port_regs = get_fc_port_regs(cfg, port); 1584 1585 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n", 1586 __func__, port, info->desc, 1587 readq_be(&fc_port_regs[FC_STATUS / 8])); 1588 1589 /* 1590 * Do link reset first, some OTHER errors will set FC_ERROR 1591 * again if cleared before or w/o a reset 1592 */ 1593 if (info->action & LINK_RESET) { 1594 dev_err(dev, "%s: FC Port %d: resetting link\n", 1595 __func__, port); 1596 cfg->lr_state = LINK_RESET_REQUIRED; 1597 cfg->lr_port = port; 1598 schedule_work(&cfg->work_q); 1599 } 1600 1601 if (info->action & CLR_FC_ERROR) { 1602 reg = readq_be(&fc_port_regs[FC_ERROR / 8]); 1603 1604 /* 1605 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP 1606 * should be the same and tracing one is sufficient. 1607 */ 1608 1609 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n", 1610 __func__, port, reg); 1611 1612 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]); 1613 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]); 1614 } 1615 1616 if (info->action & SCAN_HOST) { 1617 atomic_inc(&cfg->scan_host_needed); 1618 schedule_work(&cfg->work_q); 1619 } 1620 } 1621 1622 out: 1623 return IRQ_HANDLED; 1624 } 1625 1626 /** 1627 * read_vpd() - obtains the WWPNs from VPD 1628 * @cfg: Internal structure associated with the host. 1629 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs 1630 * 1631 * Return: 0 on success, -errno on failure 1632 */ 1633 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) 1634 { 1635 struct device *dev = &cfg->dev->dev; 1636 struct pci_dev *pdev = cfg->dev; 1637 int rc = 0; 1638 int ro_start, ro_size, i, j, k; 1639 ssize_t vpd_size; 1640 char vpd_data[CXLFLASH_VPD_LEN]; 1641 char tmp_buf[WWPN_BUF_LEN] = { 0 }; 1642 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *) 1643 cfg->dev_id->driver_data; 1644 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED; 1645 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" }; 1646 1647 /* Get the VPD data from the device */ 1648 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data)); 1649 if (unlikely(vpd_size <= 0)) { 1650 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n", 1651 __func__, vpd_size); 1652 rc = -ENODEV; 1653 goto out; 1654 } 1655 1656 /* Get the read only section offset */ 1657 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, 1658 PCI_VPD_LRDT_RO_DATA); 1659 if (unlikely(ro_start < 0)) { 1660 dev_err(dev, "%s: VPD Read-only data not found\n", __func__); 1661 rc = -ENODEV; 1662 goto out; 1663 } 1664 1665 /* Get the read only section size, cap when extends beyond read VPD */ 1666 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 1667 j = ro_size; 1668 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1669 if (unlikely((i + j) > vpd_size)) { 1670 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n", 1671 __func__, (i + j), vpd_size); 1672 ro_size = vpd_size - i; 1673 } 1674 1675 /* 1676 * Find the offset of the WWPN tag within the read only 1677 * VPD data and validate the found field (partials are 1678 * no good to us). Convert the ASCII data to an integer 1679 * value. Note that we must copy to a temporary buffer 1680 * because the conversion service requires that the ASCII 1681 * string be terminated. 1682 * 1683 * Allow for WWPN not being found for all devices, setting 1684 * the returned WWPN to zero when not found. Notify with a 1685 * log error for cards that should have had WWPN keywords 1686 * in the VPD - cards requiring WWPN will not have their 1687 * ports programmed and operate in an undefined state. 1688 */ 1689 for (k = 0; k < cfg->num_fc_ports; k++) { 1690 j = ro_size; 1691 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 1692 1693 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); 1694 if (i < 0) { 1695 if (wwpn_vpd_required) 1696 dev_err(dev, "%s: Port %d WWPN not found\n", 1697 __func__, k); 1698 wwpn[k] = 0ULL; 1699 continue; 1700 } 1701 1702 j = pci_vpd_info_field_size(&vpd_data[i]); 1703 i += PCI_VPD_INFO_FLD_HDR_SIZE; 1704 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { 1705 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n", 1706 __func__, k); 1707 rc = -ENODEV; 1708 goto out; 1709 } 1710 1711 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); 1712 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); 1713 if (unlikely(rc)) { 1714 dev_err(dev, "%s: WWPN conversion failed for port %d\n", 1715 __func__, k); 1716 rc = -ENODEV; 1717 goto out; 1718 } 1719 1720 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]); 1721 } 1722 1723 out: 1724 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1725 return rc; 1726 } 1727 1728 /** 1729 * init_pcr() - initialize the provisioning and control registers 1730 * @cfg: Internal structure associated with the host. 1731 * 1732 * Also sets up fast access to the mapped registers and initializes AFU 1733 * command fields that never change. 1734 */ 1735 static void init_pcr(struct cxlflash_cfg *cfg) 1736 { 1737 struct afu *afu = cfg->afu; 1738 struct sisl_ctrl_map __iomem *ctrl_map; 1739 struct hwq *hwq; 1740 void *cookie; 1741 int i; 1742 1743 for (i = 0; i < MAX_CONTEXT; i++) { 1744 ctrl_map = &afu->afu_map->ctrls[i].ctrl; 1745 /* Disrupt any clients that could be running */ 1746 /* e.g. clients that survived a master restart */ 1747 writeq_be(0, &ctrl_map->rht_start); 1748 writeq_be(0, &ctrl_map->rht_cnt_id); 1749 writeq_be(0, &ctrl_map->ctx_cap); 1750 } 1751 1752 /* Copy frequently used fields into hwq */ 1753 for (i = 0; i < afu->num_hwqs; i++) { 1754 hwq = get_hwq(afu, i); 1755 cookie = hwq->ctx_cookie; 1756 1757 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie); 1758 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host; 1759 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl; 1760 1761 /* Program the Endian Control for the master context */ 1762 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl); 1763 } 1764 } 1765 1766 /** 1767 * init_global() - initialize AFU global registers 1768 * @cfg: Internal structure associated with the host. 1769 */ 1770 static int init_global(struct cxlflash_cfg *cfg) 1771 { 1772 struct afu *afu = cfg->afu; 1773 struct device *dev = &cfg->dev->dev; 1774 struct hwq *hwq; 1775 struct sisl_host_map __iomem *hmap; 1776 __be64 __iomem *fc_port_regs; 1777 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */ 1778 int i = 0, num_ports = 0; 1779 int rc = 0; 1780 int j; 1781 void *ctx; 1782 u64 reg; 1783 1784 rc = read_vpd(cfg, &wwpn[0]); 1785 if (rc) { 1786 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); 1787 goto out; 1788 } 1789 1790 /* Set up RRQ and SQ in HWQ for master issued cmds */ 1791 for (i = 0; i < afu->num_hwqs; i++) { 1792 hwq = get_hwq(afu, i); 1793 hmap = hwq->host_map; 1794 1795 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start); 1796 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end); 1797 hwq->hrrq_online = true; 1798 1799 if (afu_is_sq_cmd_mode(afu)) { 1800 writeq_be((u64)hwq->hsq_start, &hmap->sq_start); 1801 writeq_be((u64)hwq->hsq_end, &hmap->sq_end); 1802 } 1803 } 1804 1805 /* AFU configuration */ 1806 reg = readq_be(&afu->afu_map->global.regs.afu_config); 1807 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; 1808 /* enable all auto retry options and control endianness */ 1809 /* leave others at default: */ 1810 /* CTX_CAP write protected, mbox_r does not clear on read and */ 1811 /* checker on if dual afu */ 1812 writeq_be(reg, &afu->afu_map->global.regs.afu_config); 1813 1814 /* Global port select: select either port */ 1815 if (afu->internal_lun) { 1816 /* Only use port 0 */ 1817 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); 1818 num_ports = 0; 1819 } else { 1820 writeq_be(PORT_MASK(cfg->num_fc_ports), 1821 &afu->afu_map->global.regs.afu_port_sel); 1822 num_ports = cfg->num_fc_ports; 1823 } 1824 1825 for (i = 0; i < num_ports; i++) { 1826 fc_port_regs = get_fc_port_regs(cfg, i); 1827 1828 /* Unmask all errors (but they are still masked at AFU) */ 1829 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]); 1830 /* Clear CRC error cnt & set a threshold */ 1831 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]); 1832 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]); 1833 1834 /* Set WWPNs. If already programmed, wwpn[i] is 0 */ 1835 if (wwpn[i] != 0) 1836 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]); 1837 /* Programming WWPN back to back causes additional 1838 * offline/online transitions and a PLOGI 1839 */ 1840 msleep(100); 1841 } 1842 1843 if (afu_is_ocxl_lisn(afu)) { 1844 /* Set up the LISN effective address for each master */ 1845 for (i = 0; i < afu->num_hwqs; i++) { 1846 hwq = get_hwq(afu, i); 1847 ctx = hwq->ctx_cookie; 1848 1849 for (j = 0; j < hwq->num_irqs; j++) { 1850 reg = cfg->ops->get_irq_objhndl(ctx, j); 1851 writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]); 1852 } 1853 1854 reg = hwq->ctx_hndl; 1855 writeq_be(SISL_LISN_PASID(reg, reg), 1856 &hwq->ctrl_map->lisn_pasid[0]); 1857 writeq_be(SISL_LISN_PASID(0UL, reg), 1858 &hwq->ctrl_map->lisn_pasid[1]); 1859 } 1860 } 1861 1862 /* Set up master's own CTX_CAP to allow real mode, host translation */ 1863 /* tables, afu cmds and read/write GSCSI cmds. */ 1864 /* First, unlock ctx_cap write by reading mbox */ 1865 for (i = 0; i < afu->num_hwqs; i++) { 1866 hwq = get_hwq(afu, i); 1867 1868 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */ 1869 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | 1870 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | 1871 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), 1872 &hwq->ctrl_map->ctx_cap); 1873 } 1874 1875 /* 1876 * Determine write-same unmap support for host by evaluating the unmap 1877 * sector support bit of the context control register associated with 1878 * the primary hardware queue. Note that while this status is reflected 1879 * in a context register, the outcome can be assumed to be host-wide. 1880 */ 1881 hwq = get_hwq(afu, PRIMARY_HWQ); 1882 reg = readq_be(&hwq->host_map->ctx_ctrl); 1883 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR) 1884 cfg->ws_unmap = true; 1885 1886 /* Initialize heartbeat */ 1887 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); 1888 out: 1889 return rc; 1890 } 1891 1892 /** 1893 * start_afu() - initializes and starts the AFU 1894 * @cfg: Internal structure associated with the host. 1895 */ 1896 static int start_afu(struct cxlflash_cfg *cfg) 1897 { 1898 struct afu *afu = cfg->afu; 1899 struct device *dev = &cfg->dev->dev; 1900 struct hwq *hwq; 1901 int rc = 0; 1902 int i; 1903 1904 init_pcr(cfg); 1905 1906 /* Initialize each HWQ */ 1907 for (i = 0; i < afu->num_hwqs; i++) { 1908 hwq = get_hwq(afu, i); 1909 1910 /* After an AFU reset, RRQ entries are stale, clear them */ 1911 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry)); 1912 1913 /* Initialize RRQ pointers */ 1914 hwq->hrrq_start = &hwq->rrq_entry[0]; 1915 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1]; 1916 hwq->hrrq_curr = hwq->hrrq_start; 1917 hwq->toggle = 1; 1918 1919 /* Initialize spin locks */ 1920 spin_lock_init(&hwq->hrrq_slock); 1921 spin_lock_init(&hwq->hsq_slock); 1922 1923 /* Initialize SQ */ 1924 if (afu_is_sq_cmd_mode(afu)) { 1925 memset(&hwq->sq, 0, sizeof(hwq->sq)); 1926 hwq->hsq_start = &hwq->sq[0]; 1927 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1]; 1928 hwq->hsq_curr = hwq->hsq_start; 1929 1930 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1); 1931 } 1932 1933 /* Initialize IRQ poll */ 1934 if (afu_is_irqpoll_enabled(afu)) 1935 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight, 1936 cxlflash_irqpoll); 1937 1938 } 1939 1940 rc = init_global(cfg); 1941 1942 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 1943 return rc; 1944 } 1945 1946 /** 1947 * init_intr() - setup interrupt handlers for the master context 1948 * @cfg: Internal structure associated with the host. 1949 * @hwq: Hardware queue to initialize. 1950 * 1951 * Return: 0 on success, -errno on failure 1952 */ 1953 static enum undo_level init_intr(struct cxlflash_cfg *cfg, 1954 struct hwq *hwq) 1955 { 1956 struct device *dev = &cfg->dev->dev; 1957 void *ctx = hwq->ctx_cookie; 1958 int rc = 0; 1959 enum undo_level level = UNDO_NOOP; 1960 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ); 1961 int num_irqs = hwq->num_irqs; 1962 1963 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs); 1964 if (unlikely(rc)) { 1965 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n", 1966 __func__, rc); 1967 level = UNDO_NOOP; 1968 goto out; 1969 } 1970 1971 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq, 1972 "SISL_MSI_SYNC_ERROR"); 1973 if (unlikely(rc <= 0)) { 1974 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__); 1975 level = FREE_IRQ; 1976 goto out; 1977 } 1978 1979 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq, 1980 "SISL_MSI_RRQ_UPDATED"); 1981 if (unlikely(rc <= 0)) { 1982 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__); 1983 level = UNMAP_ONE; 1984 goto out; 1985 } 1986 1987 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */ 1988 if (!is_primary_hwq) 1989 goto out; 1990 1991 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq, 1992 "SISL_MSI_ASYNC_ERROR"); 1993 if (unlikely(rc <= 0)) { 1994 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__); 1995 level = UNMAP_TWO; 1996 goto out; 1997 } 1998 out: 1999 return level; 2000 } 2001 2002 /** 2003 * init_mc() - create and register as the master context 2004 * @cfg: Internal structure associated with the host. 2005 * index: HWQ Index of the master context. 2006 * 2007 * Return: 0 on success, -errno on failure 2008 */ 2009 static int init_mc(struct cxlflash_cfg *cfg, u32 index) 2010 { 2011 void *ctx; 2012 struct device *dev = &cfg->dev->dev; 2013 struct hwq *hwq = get_hwq(cfg->afu, index); 2014 int rc = 0; 2015 int num_irqs; 2016 enum undo_level level; 2017 2018 hwq->afu = cfg->afu; 2019 hwq->index = index; 2020 INIT_LIST_HEAD(&hwq->pending_cmds); 2021 2022 if (index == PRIMARY_HWQ) { 2023 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie); 2024 num_irqs = 3; 2025 } else { 2026 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie); 2027 num_irqs = 2; 2028 } 2029 if (IS_ERR_OR_NULL(ctx)) { 2030 rc = -ENOMEM; 2031 goto err1; 2032 } 2033 2034 WARN_ON(hwq->ctx_cookie); 2035 hwq->ctx_cookie = ctx; 2036 hwq->num_irqs = num_irqs; 2037 2038 /* Set it up as a master with the CXL */ 2039 cfg->ops->set_master(ctx); 2040 2041 /* Reset AFU when initializing primary context */ 2042 if (index == PRIMARY_HWQ) { 2043 rc = cfg->ops->afu_reset(ctx); 2044 if (unlikely(rc)) { 2045 dev_err(dev, "%s: AFU reset failed rc=%d\n", 2046 __func__, rc); 2047 goto err1; 2048 } 2049 } 2050 2051 level = init_intr(cfg, hwq); 2052 if (unlikely(level)) { 2053 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc); 2054 goto err2; 2055 } 2056 2057 /* Finally, activate the context by starting it */ 2058 rc = cfg->ops->start_context(hwq->ctx_cookie); 2059 if (unlikely(rc)) { 2060 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); 2061 level = UNMAP_THREE; 2062 goto err2; 2063 } 2064 2065 out: 2066 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2067 return rc; 2068 err2: 2069 term_intr(cfg, level, index); 2070 if (index != PRIMARY_HWQ) 2071 cfg->ops->release_context(ctx); 2072 err1: 2073 hwq->ctx_cookie = NULL; 2074 goto out; 2075 } 2076 2077 /** 2078 * get_num_afu_ports() - determines and configures the number of AFU ports 2079 * @cfg: Internal structure associated with the host. 2080 * 2081 * This routine determines the number of AFU ports by converting the global 2082 * port selection mask. The converted value is only valid following an AFU 2083 * reset (explicit or power-on). This routine must be invoked shortly after 2084 * mapping as other routines are dependent on the number of ports during the 2085 * initialization sequence. 2086 * 2087 * To support legacy AFUs that might not have reflected an initial global 2088 * port mask (value read is 0), default to the number of ports originally 2089 * supported by the cxlflash driver (2) before hardware with other port 2090 * offerings was introduced. 2091 */ 2092 static void get_num_afu_ports(struct cxlflash_cfg *cfg) 2093 { 2094 struct afu *afu = cfg->afu; 2095 struct device *dev = &cfg->dev->dev; 2096 u64 port_mask; 2097 int num_fc_ports = LEGACY_FC_PORTS; 2098 2099 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel); 2100 if (port_mask != 0ULL) 2101 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS); 2102 2103 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n", 2104 __func__, port_mask, num_fc_ports); 2105 2106 cfg->num_fc_ports = num_fc_ports; 2107 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports); 2108 } 2109 2110 /** 2111 * init_afu() - setup as master context and start AFU 2112 * @cfg: Internal structure associated with the host. 2113 * 2114 * This routine is a higher level of control for configuring the 2115 * AFU on probe and reset paths. 2116 * 2117 * Return: 0 on success, -errno on failure 2118 */ 2119 static int init_afu(struct cxlflash_cfg *cfg) 2120 { 2121 u64 reg; 2122 int rc = 0; 2123 struct afu *afu = cfg->afu; 2124 struct device *dev = &cfg->dev->dev; 2125 struct hwq *hwq; 2126 int i; 2127 2128 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true); 2129 2130 mutex_init(&afu->sync_active); 2131 afu->num_hwqs = afu->desired_hwqs; 2132 for (i = 0; i < afu->num_hwqs; i++) { 2133 rc = init_mc(cfg, i); 2134 if (rc) { 2135 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n", 2136 __func__, rc, i); 2137 goto err1; 2138 } 2139 } 2140 2141 /* Map the entire MMIO space of the AFU using the first context */ 2142 hwq = get_hwq(afu, PRIMARY_HWQ); 2143 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie); 2144 if (!afu->afu_map) { 2145 dev_err(dev, "%s: psa_map failed\n", __func__); 2146 rc = -ENOMEM; 2147 goto err1; 2148 } 2149 2150 /* No byte reverse on reading afu_version or string will be backwards */ 2151 reg = readq(&afu->afu_map->global.regs.afu_version); 2152 memcpy(afu->version, ®, sizeof(reg)); 2153 afu->interface_version = 2154 readq_be(&afu->afu_map->global.regs.interface_version); 2155 if ((afu->interface_version + 1) == 0) { 2156 dev_err(dev, "Back level AFU, please upgrade. AFU version %s " 2157 "interface version %016llx\n", afu->version, 2158 afu->interface_version); 2159 rc = -EINVAL; 2160 goto err1; 2161 } 2162 2163 if (afu_is_sq_cmd_mode(afu)) { 2164 afu->send_cmd = send_cmd_sq; 2165 afu->context_reset = context_reset_sq; 2166 } else { 2167 afu->send_cmd = send_cmd_ioarrin; 2168 afu->context_reset = context_reset_ioarrin; 2169 } 2170 2171 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__, 2172 afu->version, afu->interface_version); 2173 2174 get_num_afu_ports(cfg); 2175 2176 rc = start_afu(cfg); 2177 if (rc) { 2178 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc); 2179 goto err1; 2180 } 2181 2182 afu_err_intr_init(cfg->afu); 2183 for (i = 0; i < afu->num_hwqs; i++) { 2184 hwq = get_hwq(afu, i); 2185 2186 hwq->room = readq_be(&hwq->host_map->cmd_room); 2187 } 2188 2189 /* Restore the LUN mappings */ 2190 cxlflash_restore_luntable(cfg); 2191 out: 2192 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2193 return rc; 2194 2195 err1: 2196 for (i = afu->num_hwqs - 1; i >= 0; i--) { 2197 term_intr(cfg, UNMAP_THREE, i); 2198 term_mc(cfg, i); 2199 } 2200 goto out; 2201 } 2202 2203 /** 2204 * afu_reset() - resets the AFU 2205 * @cfg: Internal structure associated with the host. 2206 * 2207 * Return: 0 on success, -errno on failure 2208 */ 2209 static int afu_reset(struct cxlflash_cfg *cfg) 2210 { 2211 struct device *dev = &cfg->dev->dev; 2212 int rc = 0; 2213 2214 /* Stop the context before the reset. Since the context is 2215 * no longer available restart it after the reset is complete 2216 */ 2217 term_afu(cfg); 2218 2219 rc = init_afu(cfg); 2220 2221 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2222 return rc; 2223 } 2224 2225 /** 2226 * drain_ioctls() - wait until all currently executing ioctls have completed 2227 * @cfg: Internal structure associated with the host. 2228 * 2229 * Obtain write access to read/write semaphore that wraps ioctl 2230 * handling to 'drain' ioctls currently executing. 2231 */ 2232 static void drain_ioctls(struct cxlflash_cfg *cfg) 2233 { 2234 down_write(&cfg->ioctl_rwsem); 2235 up_write(&cfg->ioctl_rwsem); 2236 } 2237 2238 /** 2239 * cxlflash_async_reset_host() - asynchronous host reset handler 2240 * @data: Private data provided while scheduling reset. 2241 * @cookie: Cookie that can be used for checkpointing. 2242 */ 2243 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie) 2244 { 2245 struct cxlflash_cfg *cfg = data; 2246 struct device *dev = &cfg->dev->dev; 2247 int rc = 0; 2248 2249 if (cfg->state != STATE_RESET) { 2250 dev_dbg(dev, "%s: Not performing a reset, state=%d\n", 2251 __func__, cfg->state); 2252 goto out; 2253 } 2254 2255 drain_ioctls(cfg); 2256 cxlflash_mark_contexts_error(cfg); 2257 rc = afu_reset(cfg); 2258 if (rc) 2259 cfg->state = STATE_FAILTERM; 2260 else 2261 cfg->state = STATE_NORMAL; 2262 wake_up_all(&cfg->reset_waitq); 2263 2264 out: 2265 scsi_unblock_requests(cfg->host); 2266 } 2267 2268 /** 2269 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset 2270 * @cfg: Internal structure associated with the host. 2271 */ 2272 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg) 2273 { 2274 struct device *dev = &cfg->dev->dev; 2275 2276 if (cfg->state != STATE_NORMAL) { 2277 dev_dbg(dev, "%s: Not performing reset state=%d\n", 2278 __func__, cfg->state); 2279 return; 2280 } 2281 2282 cfg->state = STATE_RESET; 2283 scsi_block_requests(cfg->host); 2284 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host, 2285 cfg); 2286 } 2287 2288 /** 2289 * send_afu_cmd() - builds and sends an internal AFU command 2290 * @afu: AFU associated with the host. 2291 * @rcb: Pre-populated IOARCB describing command to send. 2292 * 2293 * The AFU can only take one internal AFU command at a time. This limitation is 2294 * enforced by using a mutex to provide exclusive access to the AFU during the 2295 * operation. This design point requires calling threads to not be on interrupt 2296 * context due to the possibility of sleeping during concurrent AFU operations. 2297 * 2298 * The command status is optionally passed back to the caller when the caller 2299 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure. 2300 * 2301 * Return: 2302 * 0 on success, -errno on failure 2303 */ 2304 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb) 2305 { 2306 struct cxlflash_cfg *cfg = afu->parent; 2307 struct device *dev = &cfg->dev->dev; 2308 struct afu_cmd *cmd = NULL; 2309 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ); 2310 ulong lock_flags; 2311 char *buf = NULL; 2312 int rc = 0; 2313 int nretry = 0; 2314 2315 if (cfg->state != STATE_NORMAL) { 2316 dev_dbg(dev, "%s: Sync not required state=%u\n", 2317 __func__, cfg->state); 2318 return 0; 2319 } 2320 2321 mutex_lock(&afu->sync_active); 2322 atomic_inc(&afu->cmds_active); 2323 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL); 2324 if (unlikely(!buf)) { 2325 dev_err(dev, "%s: no memory for command\n", __func__); 2326 rc = -ENOMEM; 2327 goto out; 2328 } 2329 2330 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd)); 2331 2332 retry: 2333 memset(cmd, 0, sizeof(*cmd)); 2334 memcpy(&cmd->rcb, rcb, sizeof(*rcb)); 2335 INIT_LIST_HEAD(&cmd->queue); 2336 init_completion(&cmd->cevent); 2337 cmd->parent = afu; 2338 cmd->hwq_index = hwq->index; 2339 cmd->rcb.ctx_id = hwq->ctx_hndl; 2340 2341 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n", 2342 __func__, afu, cmd, cmd->rcb.cdb[0], nretry); 2343 2344 rc = afu->send_cmd(afu, cmd); 2345 if (unlikely(rc)) { 2346 rc = -ENOBUFS; 2347 goto out; 2348 } 2349 2350 rc = wait_resp(afu, cmd); 2351 switch (rc) { 2352 case -ETIMEDOUT: 2353 rc = afu->context_reset(hwq); 2354 if (rc) { 2355 /* Delete the command from pending_cmds list */ 2356 spin_lock_irqsave(&hwq->hsq_slock, lock_flags); 2357 list_del(&cmd->list); 2358 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags); 2359 2360 cxlflash_schedule_async_reset(cfg); 2361 break; 2362 } 2363 /* fall through - to retry */ 2364 case -EAGAIN: 2365 if (++nretry < 2) 2366 goto retry; 2367 /* fall through - to exit */ 2368 default: 2369 break; 2370 } 2371 2372 if (rcb->ioasa) 2373 *rcb->ioasa = cmd->sa; 2374 out: 2375 atomic_dec(&afu->cmds_active); 2376 mutex_unlock(&afu->sync_active); 2377 kfree(buf); 2378 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2379 return rc; 2380 } 2381 2382 /** 2383 * cxlflash_afu_sync() - builds and sends an AFU sync command 2384 * @afu: AFU associated with the host. 2385 * @ctx: Identifies context requesting sync. 2386 * @res: Identifies resource requesting sync. 2387 * @mode: Type of sync to issue (lightweight, heavyweight, global). 2388 * 2389 * AFU sync operations are only necessary and allowed when the device is 2390 * operating normally. When not operating normally, sync requests can occur as 2391 * part of cleaning up resources associated with an adapter prior to removal. 2392 * In this scenario, these requests are simply ignored (safe due to the AFU 2393 * going away). 2394 * 2395 * Return: 2396 * 0 on success, -errno on failure 2397 */ 2398 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode) 2399 { 2400 struct cxlflash_cfg *cfg = afu->parent; 2401 struct device *dev = &cfg->dev->dev; 2402 struct sisl_ioarcb rcb = { 0 }; 2403 2404 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n", 2405 __func__, afu, ctx, res, mode); 2406 2407 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 2408 rcb.msi = SISL_MSI_RRQ_UPDATED; 2409 rcb.timeout = MC_AFU_SYNC_TIMEOUT; 2410 2411 rcb.cdb[0] = SISL_AFU_CMD_SYNC; 2412 rcb.cdb[1] = mode; 2413 put_unaligned_be16(ctx, &rcb.cdb[2]); 2414 put_unaligned_be32(res, &rcb.cdb[4]); 2415 2416 return send_afu_cmd(afu, &rcb); 2417 } 2418 2419 /** 2420 * cxlflash_eh_abort_handler() - abort a SCSI command 2421 * @scp: SCSI command to abort. 2422 * 2423 * CXL Flash devices do not support a single command abort. Reset the context 2424 * as per SISLite specification. Flush any pending commands in the hardware 2425 * queue before the reset. 2426 * 2427 * Return: SUCCESS/FAILED as defined in scsi/scsi.h 2428 */ 2429 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp) 2430 { 2431 int rc = FAILED; 2432 struct Scsi_Host *host = scp->device->host; 2433 struct cxlflash_cfg *cfg = shost_priv(host); 2434 struct afu_cmd *cmd = sc_to_afuc(scp); 2435 struct device *dev = &cfg->dev->dev; 2436 struct afu *afu = cfg->afu; 2437 struct hwq *hwq = get_hwq(afu, cmd->hwq_index); 2438 2439 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu " 2440 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no, 2441 scp->device->channel, scp->device->id, scp->device->lun, 2442 get_unaligned_be32(&((u32 *)scp->cmnd)[0]), 2443 get_unaligned_be32(&((u32 *)scp->cmnd)[1]), 2444 get_unaligned_be32(&((u32 *)scp->cmnd)[2]), 2445 get_unaligned_be32(&((u32 *)scp->cmnd)[3])); 2446 2447 /* When the state is not normal, another reset/reload is in progress. 2448 * Return failed and the mid-layer will invoke host reset handler. 2449 */ 2450 if (cfg->state != STATE_NORMAL) { 2451 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n", 2452 __func__, cfg->state); 2453 goto out; 2454 } 2455 2456 rc = afu->context_reset(hwq); 2457 if (unlikely(rc)) 2458 goto out; 2459 2460 rc = SUCCESS; 2461 2462 out: 2463 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2464 return rc; 2465 } 2466 2467 /** 2468 * cxlflash_eh_device_reset_handler() - reset a single LUN 2469 * @scp: SCSI command to send. 2470 * 2471 * Return: 2472 * SUCCESS as defined in scsi/scsi.h 2473 * FAILED as defined in scsi/scsi.h 2474 */ 2475 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) 2476 { 2477 int rc = SUCCESS; 2478 struct scsi_device *sdev = scp->device; 2479 struct Scsi_Host *host = sdev->host; 2480 struct cxlflash_cfg *cfg = shost_priv(host); 2481 struct device *dev = &cfg->dev->dev; 2482 int rcr = 0; 2483 2484 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__, 2485 host->host_no, sdev->channel, sdev->id, sdev->lun); 2486 retry: 2487 switch (cfg->state) { 2488 case STATE_NORMAL: 2489 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET); 2490 if (unlikely(rcr)) 2491 rc = FAILED; 2492 break; 2493 case STATE_RESET: 2494 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2495 goto retry; 2496 default: 2497 rc = FAILED; 2498 break; 2499 } 2500 2501 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2502 return rc; 2503 } 2504 2505 /** 2506 * cxlflash_eh_host_reset_handler() - reset the host adapter 2507 * @scp: SCSI command from stack identifying host. 2508 * 2509 * Following a reset, the state is evaluated again in case an EEH occurred 2510 * during the reset. In such a scenario, the host reset will either yield 2511 * until the EEH recovery is complete or return success or failure based 2512 * upon the current device state. 2513 * 2514 * Return: 2515 * SUCCESS as defined in scsi/scsi.h 2516 * FAILED as defined in scsi/scsi.h 2517 */ 2518 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) 2519 { 2520 int rc = SUCCESS; 2521 int rcr = 0; 2522 struct Scsi_Host *host = scp->device->host; 2523 struct cxlflash_cfg *cfg = shost_priv(host); 2524 struct device *dev = &cfg->dev->dev; 2525 2526 dev_dbg(dev, "%s: %d\n", __func__, host->host_no); 2527 2528 switch (cfg->state) { 2529 case STATE_NORMAL: 2530 cfg->state = STATE_RESET; 2531 drain_ioctls(cfg); 2532 cxlflash_mark_contexts_error(cfg); 2533 rcr = afu_reset(cfg); 2534 if (rcr) { 2535 rc = FAILED; 2536 cfg->state = STATE_FAILTERM; 2537 } else 2538 cfg->state = STATE_NORMAL; 2539 wake_up_all(&cfg->reset_waitq); 2540 ssleep(1); 2541 /* fall through */ 2542 case STATE_RESET: 2543 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 2544 if (cfg->state == STATE_NORMAL) 2545 break; 2546 /* fall through */ 2547 default: 2548 rc = FAILED; 2549 break; 2550 } 2551 2552 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 2553 return rc; 2554 } 2555 2556 /** 2557 * cxlflash_change_queue_depth() - change the queue depth for the device 2558 * @sdev: SCSI device destined for queue depth change. 2559 * @qdepth: Requested queue depth value to set. 2560 * 2561 * The requested queue depth is capped to the maximum supported value. 2562 * 2563 * Return: The actual queue depth set. 2564 */ 2565 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) 2566 { 2567 2568 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) 2569 qdepth = CXLFLASH_MAX_CMDS_PER_LUN; 2570 2571 scsi_change_queue_depth(sdev, qdepth); 2572 return sdev->queue_depth; 2573 } 2574 2575 /** 2576 * cxlflash_show_port_status() - queries and presents the current port status 2577 * @port: Desired port for status reporting. 2578 * @cfg: Internal structure associated with the host. 2579 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2580 * 2581 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2582 */ 2583 static ssize_t cxlflash_show_port_status(u32 port, 2584 struct cxlflash_cfg *cfg, 2585 char *buf) 2586 { 2587 struct device *dev = &cfg->dev->dev; 2588 char *disp_status; 2589 u64 status; 2590 __be64 __iomem *fc_port_regs; 2591 2592 WARN_ON(port >= MAX_FC_PORTS); 2593 2594 if (port >= cfg->num_fc_ports) { 2595 dev_info(dev, "%s: Port %d not supported on this card.\n", 2596 __func__, port); 2597 return -EINVAL; 2598 } 2599 2600 fc_port_regs = get_fc_port_regs(cfg, port); 2601 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]); 2602 status &= FC_MTIP_STATUS_MASK; 2603 2604 if (status == FC_MTIP_STATUS_ONLINE) 2605 disp_status = "online"; 2606 else if (status == FC_MTIP_STATUS_OFFLINE) 2607 disp_status = "offline"; 2608 else 2609 disp_status = "unknown"; 2610 2611 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); 2612 } 2613 2614 /** 2615 * port0_show() - queries and presents the current status of port 0 2616 * @dev: Generic device associated with the host owning the port. 2617 * @attr: Device attribute representing the port. 2618 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2619 * 2620 * Return: The size of the ASCII string returned in @buf. 2621 */ 2622 static ssize_t port0_show(struct device *dev, 2623 struct device_attribute *attr, 2624 char *buf) 2625 { 2626 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2627 2628 return cxlflash_show_port_status(0, cfg, buf); 2629 } 2630 2631 /** 2632 * port1_show() - queries and presents the current status of port 1 2633 * @dev: Generic device associated with the host owning the port. 2634 * @attr: Device attribute representing the port. 2635 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2636 * 2637 * Return: The size of the ASCII string returned in @buf. 2638 */ 2639 static ssize_t port1_show(struct device *dev, 2640 struct device_attribute *attr, 2641 char *buf) 2642 { 2643 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2644 2645 return cxlflash_show_port_status(1, cfg, buf); 2646 } 2647 2648 /** 2649 * port2_show() - queries and presents the current status of port 2 2650 * @dev: Generic device associated with the host owning the port. 2651 * @attr: Device attribute representing the port. 2652 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2653 * 2654 * Return: The size of the ASCII string returned in @buf. 2655 */ 2656 static ssize_t port2_show(struct device *dev, 2657 struct device_attribute *attr, 2658 char *buf) 2659 { 2660 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2661 2662 return cxlflash_show_port_status(2, cfg, buf); 2663 } 2664 2665 /** 2666 * port3_show() - queries and presents the current status of port 3 2667 * @dev: Generic device associated with the host owning the port. 2668 * @attr: Device attribute representing the port. 2669 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2670 * 2671 * Return: The size of the ASCII string returned in @buf. 2672 */ 2673 static ssize_t port3_show(struct device *dev, 2674 struct device_attribute *attr, 2675 char *buf) 2676 { 2677 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2678 2679 return cxlflash_show_port_status(3, cfg, buf); 2680 } 2681 2682 /** 2683 * lun_mode_show() - presents the current LUN mode of the host 2684 * @dev: Generic device associated with the host. 2685 * @attr: Device attribute representing the LUN mode. 2686 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. 2687 * 2688 * Return: The size of the ASCII string returned in @buf. 2689 */ 2690 static ssize_t lun_mode_show(struct device *dev, 2691 struct device_attribute *attr, char *buf) 2692 { 2693 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2694 struct afu *afu = cfg->afu; 2695 2696 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); 2697 } 2698 2699 /** 2700 * lun_mode_store() - sets the LUN mode of the host 2701 * @dev: Generic device associated with the host. 2702 * @attr: Device attribute representing the LUN mode. 2703 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. 2704 * @count: Length of data resizing in @buf. 2705 * 2706 * The CXL Flash AFU supports a dummy LUN mode where the external 2707 * links and storage are not required. Space on the FPGA is used 2708 * to create 1 or 2 small LUNs which are presented to the system 2709 * as if they were a normal storage device. This feature is useful 2710 * during development and also provides manufacturing with a way 2711 * to test the AFU without an actual device. 2712 * 2713 * 0 = external LUN[s] (default) 2714 * 1 = internal LUN (1 x 64K, 512B blocks, id 0) 2715 * 2 = internal LUN (1 x 64K, 4K blocks, id 0) 2716 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) 2717 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) 2718 * 2719 * Return: The size of the ASCII string returned in @buf. 2720 */ 2721 static ssize_t lun_mode_store(struct device *dev, 2722 struct device_attribute *attr, 2723 const char *buf, size_t count) 2724 { 2725 struct Scsi_Host *shost = class_to_shost(dev); 2726 struct cxlflash_cfg *cfg = shost_priv(shost); 2727 struct afu *afu = cfg->afu; 2728 int rc; 2729 u32 lun_mode; 2730 2731 rc = kstrtouint(buf, 10, &lun_mode); 2732 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { 2733 afu->internal_lun = lun_mode; 2734 2735 /* 2736 * When configured for internal LUN, there is only one channel, 2737 * channel number 0, else there will be one less than the number 2738 * of fc ports for this card. 2739 */ 2740 if (afu->internal_lun) 2741 shost->max_channel = 0; 2742 else 2743 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports); 2744 2745 afu_reset(cfg); 2746 scsi_scan_host(cfg->host); 2747 } 2748 2749 return count; 2750 } 2751 2752 /** 2753 * ioctl_version_show() - presents the current ioctl version of the host 2754 * @dev: Generic device associated with the host. 2755 * @attr: Device attribute representing the ioctl version. 2756 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. 2757 * 2758 * Return: The size of the ASCII string returned in @buf. 2759 */ 2760 static ssize_t ioctl_version_show(struct device *dev, 2761 struct device_attribute *attr, char *buf) 2762 { 2763 ssize_t bytes = 0; 2764 2765 bytes = scnprintf(buf, PAGE_SIZE, 2766 "disk: %u\n", DK_CXLFLASH_VERSION_0); 2767 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2768 "host: %u\n", HT_CXLFLASH_VERSION_0); 2769 2770 return bytes; 2771 } 2772 2773 /** 2774 * cxlflash_show_port_lun_table() - queries and presents the port LUN table 2775 * @port: Desired port for status reporting. 2776 * @cfg: Internal structure associated with the host. 2777 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2778 * 2779 * Return: The size of the ASCII string returned in @buf or -EINVAL. 2780 */ 2781 static ssize_t cxlflash_show_port_lun_table(u32 port, 2782 struct cxlflash_cfg *cfg, 2783 char *buf) 2784 { 2785 struct device *dev = &cfg->dev->dev; 2786 __be64 __iomem *fc_port_luns; 2787 int i; 2788 ssize_t bytes = 0; 2789 2790 WARN_ON(port >= MAX_FC_PORTS); 2791 2792 if (port >= cfg->num_fc_ports) { 2793 dev_info(dev, "%s: Port %d not supported on this card.\n", 2794 __func__, port); 2795 return -EINVAL; 2796 } 2797 2798 fc_port_luns = get_fc_port_luns(cfg, port); 2799 2800 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) 2801 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 2802 "%03d: %016llx\n", 2803 i, readq_be(&fc_port_luns[i])); 2804 return bytes; 2805 } 2806 2807 /** 2808 * port0_lun_table_show() - presents the current LUN table of port 0 2809 * @dev: Generic device associated with the host owning the port. 2810 * @attr: Device attribute representing the port. 2811 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2812 * 2813 * Return: The size of the ASCII string returned in @buf. 2814 */ 2815 static ssize_t port0_lun_table_show(struct device *dev, 2816 struct device_attribute *attr, 2817 char *buf) 2818 { 2819 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2820 2821 return cxlflash_show_port_lun_table(0, cfg, buf); 2822 } 2823 2824 /** 2825 * port1_lun_table_show() - presents the current LUN table of port 1 2826 * @dev: Generic device associated with the host owning the port. 2827 * @attr: Device attribute representing the port. 2828 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2829 * 2830 * Return: The size of the ASCII string returned in @buf. 2831 */ 2832 static ssize_t port1_lun_table_show(struct device *dev, 2833 struct device_attribute *attr, 2834 char *buf) 2835 { 2836 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2837 2838 return cxlflash_show_port_lun_table(1, cfg, buf); 2839 } 2840 2841 /** 2842 * port2_lun_table_show() - presents the current LUN table of port 2 2843 * @dev: Generic device associated with the host owning the port. 2844 * @attr: Device attribute representing the port. 2845 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2846 * 2847 * Return: The size of the ASCII string returned in @buf. 2848 */ 2849 static ssize_t port2_lun_table_show(struct device *dev, 2850 struct device_attribute *attr, 2851 char *buf) 2852 { 2853 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2854 2855 return cxlflash_show_port_lun_table(2, cfg, buf); 2856 } 2857 2858 /** 2859 * port3_lun_table_show() - presents the current LUN table of port 3 2860 * @dev: Generic device associated with the host owning the port. 2861 * @attr: Device attribute representing the port. 2862 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. 2863 * 2864 * Return: The size of the ASCII string returned in @buf. 2865 */ 2866 static ssize_t port3_lun_table_show(struct device *dev, 2867 struct device_attribute *attr, 2868 char *buf) 2869 { 2870 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2871 2872 return cxlflash_show_port_lun_table(3, cfg, buf); 2873 } 2874 2875 /** 2876 * irqpoll_weight_show() - presents the current IRQ poll weight for the host 2877 * @dev: Generic device associated with the host. 2878 * @attr: Device attribute representing the IRQ poll weight. 2879 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll 2880 * weight in ASCII. 2881 * 2882 * An IRQ poll weight of 0 indicates polling is disabled. 2883 * 2884 * Return: The size of the ASCII string returned in @buf. 2885 */ 2886 static ssize_t irqpoll_weight_show(struct device *dev, 2887 struct device_attribute *attr, char *buf) 2888 { 2889 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2890 struct afu *afu = cfg->afu; 2891 2892 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight); 2893 } 2894 2895 /** 2896 * irqpoll_weight_store() - sets the current IRQ poll weight for the host 2897 * @dev: Generic device associated with the host. 2898 * @attr: Device attribute representing the IRQ poll weight. 2899 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll 2900 * weight in ASCII. 2901 * @count: Length of data resizing in @buf. 2902 * 2903 * An IRQ poll weight of 0 indicates polling is disabled. 2904 * 2905 * Return: The size of the ASCII string returned in @buf. 2906 */ 2907 static ssize_t irqpoll_weight_store(struct device *dev, 2908 struct device_attribute *attr, 2909 const char *buf, size_t count) 2910 { 2911 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2912 struct device *cfgdev = &cfg->dev->dev; 2913 struct afu *afu = cfg->afu; 2914 struct hwq *hwq; 2915 u32 weight; 2916 int rc, i; 2917 2918 rc = kstrtouint(buf, 10, &weight); 2919 if (rc) 2920 return -EINVAL; 2921 2922 if (weight > 256) { 2923 dev_info(cfgdev, 2924 "Invalid IRQ poll weight. It must be 256 or less.\n"); 2925 return -EINVAL; 2926 } 2927 2928 if (weight == afu->irqpoll_weight) { 2929 dev_info(cfgdev, 2930 "Current IRQ poll weight has the same weight.\n"); 2931 return -EINVAL; 2932 } 2933 2934 if (afu_is_irqpoll_enabled(afu)) { 2935 for (i = 0; i < afu->num_hwqs; i++) { 2936 hwq = get_hwq(afu, i); 2937 2938 irq_poll_disable(&hwq->irqpoll); 2939 } 2940 } 2941 2942 afu->irqpoll_weight = weight; 2943 2944 if (weight > 0) { 2945 for (i = 0; i < afu->num_hwqs; i++) { 2946 hwq = get_hwq(afu, i); 2947 2948 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll); 2949 } 2950 } 2951 2952 return count; 2953 } 2954 2955 /** 2956 * num_hwqs_show() - presents the number of hardware queues for the host 2957 * @dev: Generic device associated with the host. 2958 * @attr: Device attribute representing the number of hardware queues. 2959 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware 2960 * queues in ASCII. 2961 * 2962 * Return: The size of the ASCII string returned in @buf. 2963 */ 2964 static ssize_t num_hwqs_show(struct device *dev, 2965 struct device_attribute *attr, char *buf) 2966 { 2967 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2968 struct afu *afu = cfg->afu; 2969 2970 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs); 2971 } 2972 2973 /** 2974 * num_hwqs_store() - sets the number of hardware queues for the host 2975 * @dev: Generic device associated with the host. 2976 * @attr: Device attribute representing the number of hardware queues. 2977 * @buf: Buffer of length PAGE_SIZE containing the number of hardware 2978 * queues in ASCII. 2979 * @count: Length of data resizing in @buf. 2980 * 2981 * n > 0: num_hwqs = n 2982 * n = 0: num_hwqs = num_online_cpus() 2983 * n < 0: num_online_cpus() / abs(n) 2984 * 2985 * Return: The size of the ASCII string returned in @buf. 2986 */ 2987 static ssize_t num_hwqs_store(struct device *dev, 2988 struct device_attribute *attr, 2989 const char *buf, size_t count) 2990 { 2991 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 2992 struct afu *afu = cfg->afu; 2993 int rc; 2994 int nhwqs, num_hwqs; 2995 2996 rc = kstrtoint(buf, 10, &nhwqs); 2997 if (rc) 2998 return -EINVAL; 2999 3000 if (nhwqs >= 1) 3001 num_hwqs = nhwqs; 3002 else if (nhwqs == 0) 3003 num_hwqs = num_online_cpus(); 3004 else 3005 num_hwqs = num_online_cpus() / abs(nhwqs); 3006 3007 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS); 3008 WARN_ON_ONCE(afu->desired_hwqs == 0); 3009 3010 retry: 3011 switch (cfg->state) { 3012 case STATE_NORMAL: 3013 cfg->state = STATE_RESET; 3014 drain_ioctls(cfg); 3015 cxlflash_mark_contexts_error(cfg); 3016 rc = afu_reset(cfg); 3017 if (rc) 3018 cfg->state = STATE_FAILTERM; 3019 else 3020 cfg->state = STATE_NORMAL; 3021 wake_up_all(&cfg->reset_waitq); 3022 break; 3023 case STATE_RESET: 3024 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); 3025 if (cfg->state == STATE_NORMAL) 3026 goto retry; 3027 /* else, fall through */ 3028 default: 3029 /* Ideally should not happen */ 3030 dev_err(dev, "%s: Device is not ready, state=%d\n", 3031 __func__, cfg->state); 3032 break; 3033 } 3034 3035 return count; 3036 } 3037 3038 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" }; 3039 3040 /** 3041 * hwq_mode_show() - presents the HWQ steering mode for the host 3042 * @dev: Generic device associated with the host. 3043 * @attr: Device attribute representing the HWQ steering mode. 3044 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode 3045 * as a character string. 3046 * 3047 * Return: The size of the ASCII string returned in @buf. 3048 */ 3049 static ssize_t hwq_mode_show(struct device *dev, 3050 struct device_attribute *attr, char *buf) 3051 { 3052 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev)); 3053 struct afu *afu = cfg->afu; 3054 3055 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]); 3056 } 3057 3058 /** 3059 * hwq_mode_store() - sets the HWQ steering mode for the host 3060 * @dev: Generic device associated with the host. 3061 * @attr: Device attribute representing the HWQ steering mode. 3062 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode 3063 * as a character string. 3064 * @count: Length of data resizing in @buf. 3065 * 3066 * rr = Round-Robin 3067 * tag = Block MQ Tagging 3068 * cpu = CPU Affinity 3069 * 3070 * Return: The size of the ASCII string returned in @buf. 3071 */ 3072 static ssize_t hwq_mode_store(struct device *dev, 3073 struct device_attribute *attr, 3074 const char *buf, size_t count) 3075 { 3076 struct Scsi_Host *shost = class_to_shost(dev); 3077 struct cxlflash_cfg *cfg = shost_priv(shost); 3078 struct device *cfgdev = &cfg->dev->dev; 3079 struct afu *afu = cfg->afu; 3080 int i; 3081 u32 mode = MAX_HWQ_MODE; 3082 3083 for (i = 0; i < MAX_HWQ_MODE; i++) { 3084 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) { 3085 mode = i; 3086 break; 3087 } 3088 } 3089 3090 if (mode >= MAX_HWQ_MODE) { 3091 dev_info(cfgdev, "Invalid HWQ steering mode.\n"); 3092 return -EINVAL; 3093 } 3094 3095 afu->hwq_mode = mode; 3096 3097 return count; 3098 } 3099 3100 /** 3101 * mode_show() - presents the current mode of the device 3102 * @dev: Generic device associated with the device. 3103 * @attr: Device attribute representing the device mode. 3104 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. 3105 * 3106 * Return: The size of the ASCII string returned in @buf. 3107 */ 3108 static ssize_t mode_show(struct device *dev, 3109 struct device_attribute *attr, char *buf) 3110 { 3111 struct scsi_device *sdev = to_scsi_device(dev); 3112 3113 return scnprintf(buf, PAGE_SIZE, "%s\n", 3114 sdev->hostdata ? "superpipe" : "legacy"); 3115 } 3116 3117 /* 3118 * Host attributes 3119 */ 3120 static DEVICE_ATTR_RO(port0); 3121 static DEVICE_ATTR_RO(port1); 3122 static DEVICE_ATTR_RO(port2); 3123 static DEVICE_ATTR_RO(port3); 3124 static DEVICE_ATTR_RW(lun_mode); 3125 static DEVICE_ATTR_RO(ioctl_version); 3126 static DEVICE_ATTR_RO(port0_lun_table); 3127 static DEVICE_ATTR_RO(port1_lun_table); 3128 static DEVICE_ATTR_RO(port2_lun_table); 3129 static DEVICE_ATTR_RO(port3_lun_table); 3130 static DEVICE_ATTR_RW(irqpoll_weight); 3131 static DEVICE_ATTR_RW(num_hwqs); 3132 static DEVICE_ATTR_RW(hwq_mode); 3133 3134 static struct device_attribute *cxlflash_host_attrs[] = { 3135 &dev_attr_port0, 3136 &dev_attr_port1, 3137 &dev_attr_port2, 3138 &dev_attr_port3, 3139 &dev_attr_lun_mode, 3140 &dev_attr_ioctl_version, 3141 &dev_attr_port0_lun_table, 3142 &dev_attr_port1_lun_table, 3143 &dev_attr_port2_lun_table, 3144 &dev_attr_port3_lun_table, 3145 &dev_attr_irqpoll_weight, 3146 &dev_attr_num_hwqs, 3147 &dev_attr_hwq_mode, 3148 NULL 3149 }; 3150 3151 /* 3152 * Device attributes 3153 */ 3154 static DEVICE_ATTR_RO(mode); 3155 3156 static struct device_attribute *cxlflash_dev_attrs[] = { 3157 &dev_attr_mode, 3158 NULL 3159 }; 3160 3161 /* 3162 * Host template 3163 */ 3164 static struct scsi_host_template driver_template = { 3165 .module = THIS_MODULE, 3166 .name = CXLFLASH_ADAPTER_NAME, 3167 .info = cxlflash_driver_info, 3168 .ioctl = cxlflash_ioctl, 3169 .proc_name = CXLFLASH_NAME, 3170 .queuecommand = cxlflash_queuecommand, 3171 .eh_abort_handler = cxlflash_eh_abort_handler, 3172 .eh_device_reset_handler = cxlflash_eh_device_reset_handler, 3173 .eh_host_reset_handler = cxlflash_eh_host_reset_handler, 3174 .change_queue_depth = cxlflash_change_queue_depth, 3175 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, 3176 .can_queue = CXLFLASH_MAX_CMDS, 3177 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1, 3178 .this_id = -1, 3179 .sg_tablesize = 1, /* No scatter gather support */ 3180 .max_sectors = CXLFLASH_MAX_SECTORS, 3181 .shost_attrs = cxlflash_host_attrs, 3182 .sdev_attrs = cxlflash_dev_attrs, 3183 }; 3184 3185 /* 3186 * Device dependent values 3187 */ 3188 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, 3189 CXLFLASH_WWPN_VPD_REQUIRED }; 3190 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, 3191 CXLFLASH_NOTIFY_SHUTDOWN }; 3192 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS, 3193 (CXLFLASH_NOTIFY_SHUTDOWN | 3194 CXLFLASH_OCXL_DEV) }; 3195 3196 /* 3197 * PCI device binding table 3198 */ 3199 static struct pci_device_id cxlflash_pci_table[] = { 3200 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, 3201 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, 3202 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, 3203 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, 3204 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD, 3205 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals}, 3206 {} 3207 }; 3208 3209 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); 3210 3211 /** 3212 * cxlflash_worker_thread() - work thread handler for the AFU 3213 * @work: Work structure contained within cxlflash associated with host. 3214 * 3215 * Handles the following events: 3216 * - Link reset which cannot be performed on interrupt context due to 3217 * blocking up to a few seconds 3218 * - Rescan the host 3219 */ 3220 static void cxlflash_worker_thread(struct work_struct *work) 3221 { 3222 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, 3223 work_q); 3224 struct afu *afu = cfg->afu; 3225 struct device *dev = &cfg->dev->dev; 3226 __be64 __iomem *fc_port_regs; 3227 int port; 3228 ulong lock_flags; 3229 3230 /* Avoid MMIO if the device has failed */ 3231 3232 if (cfg->state != STATE_NORMAL) 3233 return; 3234 3235 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3236 3237 if (cfg->lr_state == LINK_RESET_REQUIRED) { 3238 port = cfg->lr_port; 3239 if (port < 0) 3240 dev_err(dev, "%s: invalid port index %d\n", 3241 __func__, port); 3242 else { 3243 spin_unlock_irqrestore(cfg->host->host_lock, 3244 lock_flags); 3245 3246 /* The reset can block... */ 3247 fc_port_regs = get_fc_port_regs(cfg, port); 3248 afu_link_reset(afu, port, fc_port_regs); 3249 spin_lock_irqsave(cfg->host->host_lock, lock_flags); 3250 } 3251 3252 cfg->lr_state = LINK_RESET_COMPLETE; 3253 } 3254 3255 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); 3256 3257 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) 3258 scsi_scan_host(cfg->host); 3259 } 3260 3261 /** 3262 * cxlflash_chr_open() - character device open handler 3263 * @inode: Device inode associated with this character device. 3264 * @file: File pointer for this device. 3265 * 3266 * Only users with admin privileges are allowed to open the character device. 3267 * 3268 * Return: 0 on success, -errno on failure 3269 */ 3270 static int cxlflash_chr_open(struct inode *inode, struct file *file) 3271 { 3272 struct cxlflash_cfg *cfg; 3273 3274 if (!capable(CAP_SYS_ADMIN)) 3275 return -EACCES; 3276 3277 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev); 3278 file->private_data = cfg; 3279 3280 return 0; 3281 } 3282 3283 /** 3284 * decode_hioctl() - translates encoded host ioctl to easily identifiable string 3285 * @cmd: The host ioctl command to decode. 3286 * 3287 * Return: A string identifying the decoded host ioctl. 3288 */ 3289 static char *decode_hioctl(unsigned int cmd) 3290 { 3291 switch (cmd) { 3292 case HT_CXLFLASH_LUN_PROVISION: 3293 return __stringify_1(HT_CXLFLASH_LUN_PROVISION); 3294 } 3295 3296 return "UNKNOWN"; 3297 } 3298 3299 /** 3300 * cxlflash_lun_provision() - host LUN provisioning handler 3301 * @cfg: Internal structure associated with the host. 3302 * @arg: Kernel copy of userspace ioctl data structure. 3303 * 3304 * Return: 0 on success, -errno on failure 3305 */ 3306 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg, 3307 struct ht_cxlflash_lun_provision *lunprov) 3308 { 3309 struct afu *afu = cfg->afu; 3310 struct device *dev = &cfg->dev->dev; 3311 struct sisl_ioarcb rcb; 3312 struct sisl_ioasa asa; 3313 __be64 __iomem *fc_port_regs; 3314 u16 port = lunprov->port; 3315 u16 scmd = lunprov->hdr.subcmd; 3316 u16 type; 3317 u64 reg; 3318 u64 size; 3319 u64 lun_id; 3320 int rc = 0; 3321 3322 if (!afu_is_lun_provision(afu)) { 3323 rc = -ENOTSUPP; 3324 goto out; 3325 } 3326 3327 if (port >= cfg->num_fc_ports) { 3328 rc = -EINVAL; 3329 goto out; 3330 } 3331 3332 switch (scmd) { 3333 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN: 3334 type = SISL_AFU_LUN_PROVISION_CREATE; 3335 size = lunprov->size; 3336 lun_id = 0; 3337 break; 3338 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN: 3339 type = SISL_AFU_LUN_PROVISION_DELETE; 3340 size = 0; 3341 lun_id = lunprov->lun_id; 3342 break; 3343 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT: 3344 fc_port_regs = get_fc_port_regs(cfg, port); 3345 3346 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]); 3347 lunprov->max_num_luns = reg; 3348 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]); 3349 lunprov->cur_num_luns = reg; 3350 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]); 3351 lunprov->max_cap_port = reg; 3352 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]); 3353 lunprov->cur_cap_port = reg; 3354 3355 goto out; 3356 default: 3357 rc = -EINVAL; 3358 goto out; 3359 } 3360 3361 memset(&rcb, 0, sizeof(rcb)); 3362 memset(&asa, 0, sizeof(asa)); 3363 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; 3364 rcb.lun_id = lun_id; 3365 rcb.msi = SISL_MSI_RRQ_UPDATED; 3366 rcb.timeout = MC_LUN_PROV_TIMEOUT; 3367 rcb.ioasa = &asa; 3368 3369 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION; 3370 rcb.cdb[1] = type; 3371 rcb.cdb[2] = port; 3372 put_unaligned_be64(size, &rcb.cdb[8]); 3373 3374 rc = send_afu_cmd(afu, &rcb); 3375 if (rc) { 3376 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3377 __func__, rc, asa.ioasc, asa.afu_extra); 3378 goto out; 3379 } 3380 3381 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) { 3382 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo; 3383 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid)); 3384 } 3385 out: 3386 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3387 return rc; 3388 } 3389 3390 /** 3391 * cxlflash_afu_debug() - host AFU debug handler 3392 * @cfg: Internal structure associated with the host. 3393 * @arg: Kernel copy of userspace ioctl data structure. 3394 * 3395 * For debug requests requiring a data buffer, always provide an aligned 3396 * (cache line) buffer to the AFU to appease any alignment requirements. 3397 * 3398 * Return: 0 on success, -errno on failure 3399 */ 3400 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg, 3401 struct ht_cxlflash_afu_debug *afu_dbg) 3402 { 3403 struct afu *afu = cfg->afu; 3404 struct device *dev = &cfg->dev->dev; 3405 struct sisl_ioarcb rcb; 3406 struct sisl_ioasa asa; 3407 char *buf = NULL; 3408 char *kbuf = NULL; 3409 void __user *ubuf = (__force void __user *)afu_dbg->data_ea; 3410 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD; 3411 u32 ulen = afu_dbg->data_len; 3412 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE; 3413 int rc = 0; 3414 3415 if (!afu_is_afu_debug(afu)) { 3416 rc = -ENOTSUPP; 3417 goto out; 3418 } 3419 3420 if (ulen) { 3421 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN; 3422 3423 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) { 3424 rc = -EINVAL; 3425 goto out; 3426 } 3427 3428 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL); 3429 if (unlikely(!buf)) { 3430 rc = -ENOMEM; 3431 goto out; 3432 } 3433 3434 kbuf = PTR_ALIGN(buf, cache_line_size()); 3435 3436 if (is_write) { 3437 req_flags |= SISL_REQ_FLAGS_HOST_WRITE; 3438 3439 if (copy_from_user(kbuf, ubuf, ulen)) { 3440 rc = -EFAULT; 3441 goto out; 3442 } 3443 } 3444 } 3445 3446 memset(&rcb, 0, sizeof(rcb)); 3447 memset(&asa, 0, sizeof(asa)); 3448 3449 rcb.req_flags = req_flags; 3450 rcb.msi = SISL_MSI_RRQ_UPDATED; 3451 rcb.timeout = MC_AFU_DEBUG_TIMEOUT; 3452 rcb.ioasa = &asa; 3453 3454 if (ulen) { 3455 rcb.data_len = ulen; 3456 rcb.data_ea = (uintptr_t)kbuf; 3457 } 3458 3459 rcb.cdb[0] = SISL_AFU_CMD_DEBUG; 3460 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd, 3461 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN); 3462 3463 rc = send_afu_cmd(afu, &rcb); 3464 if (rc) { 3465 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n", 3466 __func__, rc, asa.ioasc, asa.afu_extra); 3467 goto out; 3468 } 3469 3470 if (ulen && !is_write) { 3471 if (copy_to_user(ubuf, kbuf, ulen)) 3472 rc = -EFAULT; 3473 } 3474 out: 3475 kfree(buf); 3476 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3477 return rc; 3478 } 3479 3480 /** 3481 * cxlflash_chr_ioctl() - character device IOCTL handler 3482 * @file: File pointer for this device. 3483 * @cmd: IOCTL command. 3484 * @arg: Userspace ioctl data structure. 3485 * 3486 * A read/write semaphore is used to implement a 'drain' of currently 3487 * running ioctls. The read semaphore is taken at the beginning of each 3488 * ioctl thread and released upon concluding execution. Additionally the 3489 * semaphore should be released and then reacquired in any ioctl execution 3490 * path which will wait for an event to occur that is outside the scope of 3491 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running, 3492 * a thread simply needs to acquire the write semaphore. 3493 * 3494 * Return: 0 on success, -errno on failure 3495 */ 3496 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd, 3497 unsigned long arg) 3498 { 3499 typedef int (*hioctl) (struct cxlflash_cfg *, void *); 3500 3501 struct cxlflash_cfg *cfg = file->private_data; 3502 struct device *dev = &cfg->dev->dev; 3503 char buf[sizeof(union cxlflash_ht_ioctls)]; 3504 void __user *uarg = (void __user *)arg; 3505 struct ht_cxlflash_hdr *hdr; 3506 size_t size = 0; 3507 bool known_ioctl = false; 3508 int idx = 0; 3509 int rc = 0; 3510 hioctl do_ioctl = NULL; 3511 3512 static const struct { 3513 size_t size; 3514 hioctl ioctl; 3515 } ioctl_tbl[] = { /* NOTE: order matters here */ 3516 { sizeof(struct ht_cxlflash_lun_provision), 3517 (hioctl)cxlflash_lun_provision }, 3518 { sizeof(struct ht_cxlflash_afu_debug), 3519 (hioctl)cxlflash_afu_debug }, 3520 }; 3521 3522 /* Hold read semaphore so we can drain if needed */ 3523 down_read(&cfg->ioctl_rwsem); 3524 3525 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n", 3526 __func__, cmd, idx, sizeof(ioctl_tbl)); 3527 3528 switch (cmd) { 3529 case HT_CXLFLASH_LUN_PROVISION: 3530 case HT_CXLFLASH_AFU_DEBUG: 3531 known_ioctl = true; 3532 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd); 3533 size = ioctl_tbl[idx].size; 3534 do_ioctl = ioctl_tbl[idx].ioctl; 3535 3536 if (likely(do_ioctl)) 3537 break; 3538 3539 /* fall through */ 3540 default: 3541 rc = -EINVAL; 3542 goto out; 3543 } 3544 3545 if (unlikely(copy_from_user(&buf, uarg, size))) { 3546 dev_err(dev, "%s: copy_from_user() fail " 3547 "size=%lu cmd=%d (%s) uarg=%p\n", 3548 __func__, size, cmd, decode_hioctl(cmd), uarg); 3549 rc = -EFAULT; 3550 goto out; 3551 } 3552 3553 hdr = (struct ht_cxlflash_hdr *)&buf; 3554 if (hdr->version != HT_CXLFLASH_VERSION_0) { 3555 dev_dbg(dev, "%s: Version %u not supported for %s\n", 3556 __func__, hdr->version, decode_hioctl(cmd)); 3557 rc = -EINVAL; 3558 goto out; 3559 } 3560 3561 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) { 3562 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__); 3563 rc = -EINVAL; 3564 goto out; 3565 } 3566 3567 rc = do_ioctl(cfg, (void *)&buf); 3568 if (likely(!rc)) 3569 if (unlikely(copy_to_user(uarg, &buf, size))) { 3570 dev_err(dev, "%s: copy_to_user() fail " 3571 "size=%lu cmd=%d (%s) uarg=%p\n", 3572 __func__, size, cmd, decode_hioctl(cmd), uarg); 3573 rc = -EFAULT; 3574 } 3575 3576 /* fall through to exit */ 3577 3578 out: 3579 up_read(&cfg->ioctl_rwsem); 3580 if (unlikely(rc && known_ioctl)) 3581 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3582 __func__, decode_hioctl(cmd), cmd, rc); 3583 else 3584 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n", 3585 __func__, decode_hioctl(cmd), cmd, rc); 3586 return rc; 3587 } 3588 3589 /* 3590 * Character device file operations 3591 */ 3592 static const struct file_operations cxlflash_chr_fops = { 3593 .owner = THIS_MODULE, 3594 .open = cxlflash_chr_open, 3595 .unlocked_ioctl = cxlflash_chr_ioctl, 3596 .compat_ioctl = cxlflash_chr_ioctl, 3597 }; 3598 3599 /** 3600 * init_chrdev() - initialize the character device for the host 3601 * @cfg: Internal structure associated with the host. 3602 * 3603 * Return: 0 on success, -errno on failure 3604 */ 3605 static int init_chrdev(struct cxlflash_cfg *cfg) 3606 { 3607 struct device *dev = &cfg->dev->dev; 3608 struct device *char_dev; 3609 dev_t devno; 3610 int minor; 3611 int rc = 0; 3612 3613 minor = cxlflash_get_minor(); 3614 if (unlikely(minor < 0)) { 3615 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__); 3616 rc = -ENOSPC; 3617 goto out; 3618 } 3619 3620 devno = MKDEV(cxlflash_major, minor); 3621 cdev_init(&cfg->cdev, &cxlflash_chr_fops); 3622 3623 rc = cdev_add(&cfg->cdev, devno, 1); 3624 if (rc) { 3625 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc); 3626 goto err1; 3627 } 3628 3629 char_dev = device_create(cxlflash_class, NULL, devno, 3630 NULL, "cxlflash%d", minor); 3631 if (IS_ERR(char_dev)) { 3632 rc = PTR_ERR(char_dev); 3633 dev_err(dev, "%s: device_create failed rc=%d\n", 3634 __func__, rc); 3635 goto err2; 3636 } 3637 3638 cfg->chardev = char_dev; 3639 out: 3640 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3641 return rc; 3642 err2: 3643 cdev_del(&cfg->cdev); 3644 err1: 3645 cxlflash_put_minor(minor); 3646 goto out; 3647 } 3648 3649 /** 3650 * cxlflash_probe() - PCI entry point to add host 3651 * @pdev: PCI device associated with the host. 3652 * @dev_id: PCI device id associated with device. 3653 * 3654 * The device will initially start out in a 'probing' state and 3655 * transition to the 'normal' state at the end of a successful 3656 * probe. Should an EEH event occur during probe, the notification 3657 * thread (error_detected()) will wait until the probe handler 3658 * is nearly complete. At that time, the device will be moved to 3659 * a 'probed' state and the EEH thread woken up to drive the slot 3660 * reset and recovery (device moves to 'normal' state). Meanwhile, 3661 * the probe will be allowed to exit successfully. 3662 * 3663 * Return: 0 on success, -errno on failure 3664 */ 3665 static int cxlflash_probe(struct pci_dev *pdev, 3666 const struct pci_device_id *dev_id) 3667 { 3668 struct Scsi_Host *host; 3669 struct cxlflash_cfg *cfg = NULL; 3670 struct device *dev = &pdev->dev; 3671 struct dev_dependent_vals *ddv; 3672 int rc = 0; 3673 int k; 3674 3675 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", 3676 __func__, pdev->irq); 3677 3678 ddv = (struct dev_dependent_vals *)dev_id->driver_data; 3679 driver_template.max_sectors = ddv->max_sectors; 3680 3681 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); 3682 if (!host) { 3683 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__); 3684 rc = -ENOMEM; 3685 goto out; 3686 } 3687 3688 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; 3689 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; 3690 host->unique_id = host->host_no; 3691 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; 3692 3693 cfg = shost_priv(host); 3694 cfg->state = STATE_PROBING; 3695 cfg->host = host; 3696 rc = alloc_mem(cfg); 3697 if (rc) { 3698 dev_err(dev, "%s: alloc_mem failed\n", __func__); 3699 rc = -ENOMEM; 3700 scsi_host_put(cfg->host); 3701 goto out; 3702 } 3703 3704 cfg->init_state = INIT_STATE_NONE; 3705 cfg->dev = pdev; 3706 cfg->cxl_fops = cxlflash_cxl_fops; 3707 cfg->ops = cxlflash_assign_ops(ddv); 3708 WARN_ON_ONCE(!cfg->ops); 3709 3710 /* 3711 * Promoted LUNs move to the top of the LUN table. The rest stay on 3712 * the bottom half. The bottom half grows from the end (index = 255), 3713 * whereas the top half grows from the beginning (index = 0). 3714 * 3715 * Initialize the last LUN index for all possible ports. 3716 */ 3717 cfg->promote_lun_index = 0; 3718 3719 for (k = 0; k < MAX_FC_PORTS; k++) 3720 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1; 3721 3722 cfg->dev_id = (struct pci_device_id *)dev_id; 3723 3724 init_waitqueue_head(&cfg->tmf_waitq); 3725 init_waitqueue_head(&cfg->reset_waitq); 3726 3727 INIT_WORK(&cfg->work_q, cxlflash_worker_thread); 3728 cfg->lr_state = LINK_RESET_INVALID; 3729 cfg->lr_port = -1; 3730 spin_lock_init(&cfg->tmf_slock); 3731 mutex_init(&cfg->ctx_tbl_list_mutex); 3732 mutex_init(&cfg->ctx_recovery_mutex); 3733 init_rwsem(&cfg->ioctl_rwsem); 3734 INIT_LIST_HEAD(&cfg->ctx_err_recovery); 3735 INIT_LIST_HEAD(&cfg->lluns); 3736 3737 pci_set_drvdata(pdev, cfg); 3738 3739 rc = init_pci(cfg); 3740 if (rc) { 3741 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc); 3742 goto out_remove; 3743 } 3744 cfg->init_state = INIT_STATE_PCI; 3745 3746 cfg->afu_cookie = cfg->ops->create_afu(pdev); 3747 if (unlikely(!cfg->afu_cookie)) { 3748 dev_err(dev, "%s: create_afu failed\n", __func__); 3749 goto out_remove; 3750 } 3751 3752 rc = init_afu(cfg); 3753 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) { 3754 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc); 3755 goto out_remove; 3756 } 3757 cfg->init_state = INIT_STATE_AFU; 3758 3759 rc = init_scsi(cfg); 3760 if (rc) { 3761 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc); 3762 goto out_remove; 3763 } 3764 cfg->init_state = INIT_STATE_SCSI; 3765 3766 rc = init_chrdev(cfg); 3767 if (rc) { 3768 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc); 3769 goto out_remove; 3770 } 3771 cfg->init_state = INIT_STATE_CDEV; 3772 3773 if (wq_has_sleeper(&cfg->reset_waitq)) { 3774 cfg->state = STATE_PROBED; 3775 wake_up_all(&cfg->reset_waitq); 3776 } else 3777 cfg->state = STATE_NORMAL; 3778 out: 3779 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); 3780 return rc; 3781 3782 out_remove: 3783 cfg->state = STATE_PROBED; 3784 cxlflash_remove(pdev); 3785 goto out; 3786 } 3787 3788 /** 3789 * cxlflash_pci_error_detected() - called when a PCI error is detected 3790 * @pdev: PCI device struct. 3791 * @state: PCI channel state. 3792 * 3793 * When an EEH occurs during an active reset, wait until the reset is 3794 * complete and then take action based upon the device state. 3795 * 3796 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT 3797 */ 3798 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, 3799 pci_channel_state_t state) 3800 { 3801 int rc = 0; 3802 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3803 struct device *dev = &cfg->dev->dev; 3804 3805 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); 3806 3807 switch (state) { 3808 case pci_channel_io_frozen: 3809 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET && 3810 cfg->state != STATE_PROBING); 3811 if (cfg->state == STATE_FAILTERM) 3812 return PCI_ERS_RESULT_DISCONNECT; 3813 3814 cfg->state = STATE_RESET; 3815 scsi_block_requests(cfg->host); 3816 drain_ioctls(cfg); 3817 rc = cxlflash_mark_contexts_error(cfg); 3818 if (unlikely(rc)) 3819 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n", 3820 __func__, rc); 3821 term_afu(cfg); 3822 return PCI_ERS_RESULT_NEED_RESET; 3823 case pci_channel_io_perm_failure: 3824 cfg->state = STATE_FAILTERM; 3825 wake_up_all(&cfg->reset_waitq); 3826 scsi_unblock_requests(cfg->host); 3827 return PCI_ERS_RESULT_DISCONNECT; 3828 default: 3829 break; 3830 } 3831 return PCI_ERS_RESULT_NEED_RESET; 3832 } 3833 3834 /** 3835 * cxlflash_pci_slot_reset() - called when PCI slot has been reset 3836 * @pdev: PCI device struct. 3837 * 3838 * This routine is called by the pci error recovery code after the PCI 3839 * slot has been reset, just before we should resume normal operations. 3840 * 3841 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT 3842 */ 3843 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) 3844 { 3845 int rc = 0; 3846 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3847 struct device *dev = &cfg->dev->dev; 3848 3849 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3850 3851 rc = init_afu(cfg); 3852 if (unlikely(rc)) { 3853 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc); 3854 return PCI_ERS_RESULT_DISCONNECT; 3855 } 3856 3857 return PCI_ERS_RESULT_RECOVERED; 3858 } 3859 3860 /** 3861 * cxlflash_pci_resume() - called when normal operation can resume 3862 * @pdev: PCI device struct 3863 */ 3864 static void cxlflash_pci_resume(struct pci_dev *pdev) 3865 { 3866 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); 3867 struct device *dev = &cfg->dev->dev; 3868 3869 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); 3870 3871 cfg->state = STATE_NORMAL; 3872 wake_up_all(&cfg->reset_waitq); 3873 scsi_unblock_requests(cfg->host); 3874 } 3875 3876 /** 3877 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class 3878 * @dev: Character device. 3879 * @mode: Mode that can be used to verify access. 3880 * 3881 * Return: Allocated string describing the devtmpfs structure. 3882 */ 3883 static char *cxlflash_devnode(struct device *dev, umode_t *mode) 3884 { 3885 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev)); 3886 } 3887 3888 /** 3889 * cxlflash_class_init() - create character device class 3890 * 3891 * Return: 0 on success, -errno on failure 3892 */ 3893 static int cxlflash_class_init(void) 3894 { 3895 dev_t devno; 3896 int rc = 0; 3897 3898 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash"); 3899 if (unlikely(rc)) { 3900 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc); 3901 goto out; 3902 } 3903 3904 cxlflash_major = MAJOR(devno); 3905 3906 cxlflash_class = class_create(THIS_MODULE, "cxlflash"); 3907 if (IS_ERR(cxlflash_class)) { 3908 rc = PTR_ERR(cxlflash_class); 3909 pr_err("%s: class_create failed rc=%d\n", __func__, rc); 3910 goto err; 3911 } 3912 3913 cxlflash_class->devnode = cxlflash_devnode; 3914 out: 3915 pr_debug("%s: returning rc=%d\n", __func__, rc); 3916 return rc; 3917 err: 3918 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3919 goto out; 3920 } 3921 3922 /** 3923 * cxlflash_class_exit() - destroy character device class 3924 */ 3925 static void cxlflash_class_exit(void) 3926 { 3927 dev_t devno = MKDEV(cxlflash_major, 0); 3928 3929 class_destroy(cxlflash_class); 3930 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS); 3931 } 3932 3933 static const struct pci_error_handlers cxlflash_err_handler = { 3934 .error_detected = cxlflash_pci_error_detected, 3935 .slot_reset = cxlflash_pci_slot_reset, 3936 .resume = cxlflash_pci_resume, 3937 }; 3938 3939 /* 3940 * PCI device structure 3941 */ 3942 static struct pci_driver cxlflash_driver = { 3943 .name = CXLFLASH_NAME, 3944 .id_table = cxlflash_pci_table, 3945 .probe = cxlflash_probe, 3946 .remove = cxlflash_remove, 3947 .shutdown = cxlflash_remove, 3948 .err_handler = &cxlflash_err_handler, 3949 }; 3950 3951 /** 3952 * init_cxlflash() - module entry point 3953 * 3954 * Return: 0 on success, -errno on failure 3955 */ 3956 static int __init init_cxlflash(void) 3957 { 3958 int rc; 3959 3960 check_sizes(); 3961 cxlflash_list_init(); 3962 rc = cxlflash_class_init(); 3963 if (unlikely(rc)) 3964 goto out; 3965 3966 rc = pci_register_driver(&cxlflash_driver); 3967 if (unlikely(rc)) 3968 goto err; 3969 out: 3970 pr_debug("%s: returning rc=%d\n", __func__, rc); 3971 return rc; 3972 err: 3973 cxlflash_class_exit(); 3974 goto out; 3975 } 3976 3977 /** 3978 * exit_cxlflash() - module exit point 3979 */ 3980 static void __exit exit_cxlflash(void) 3981 { 3982 cxlflash_term_global_luns(); 3983 cxlflash_free_errpage(); 3984 3985 pci_unregister_driver(&cxlflash_driver); 3986 cxlflash_class_exit(); 3987 } 3988 3989 module_init(init_cxlflash); 3990 module_exit(exit_cxlflash); 3991