xref: /openbmc/linux/drivers/scsi/cxlflash/main.c (revision 20e2fc42)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * CXL Flash Device Driver
4  *
5  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
6  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
7  *
8  * Copyright (C) 2015 IBM Corporation
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 
16 #include <asm/unaligned.h>
17 
18 #include <scsi/scsi_cmnd.h>
19 #include <scsi/scsi_host.h>
20 #include <uapi/scsi/cxlflash_ioctl.h>
21 
22 #include "main.h"
23 #include "sislite.h"
24 #include "common.h"
25 
26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
29 MODULE_LICENSE("GPL");
30 
31 static struct class *cxlflash_class;
32 static u32 cxlflash_major;
33 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
34 
35 /**
36  * process_cmd_err() - command error handler
37  * @cmd:	AFU command that experienced the error.
38  * @scp:	SCSI command associated with the AFU command in error.
39  *
40  * Translates error bits from AFU command to SCSI command results.
41  */
42 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
43 {
44 	struct afu *afu = cmd->parent;
45 	struct cxlflash_cfg *cfg = afu->parent;
46 	struct device *dev = &cfg->dev->dev;
47 	struct sisl_ioarcb *ioarcb;
48 	struct sisl_ioasa *ioasa;
49 	u32 resid;
50 
51 	if (unlikely(!cmd))
52 		return;
53 
54 	ioarcb = &(cmd->rcb);
55 	ioasa = &(cmd->sa);
56 
57 	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
58 		resid = ioasa->resid;
59 		scsi_set_resid(scp, resid);
60 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
61 			__func__, cmd, scp, resid);
62 	}
63 
64 	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
65 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
66 			__func__, cmd, scp);
67 		scp->result = (DID_ERROR << 16);
68 	}
69 
70 	dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
71 		"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
72 		ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
73 		ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
74 
75 	if (ioasa->rc.scsi_rc) {
76 		/* We have a SCSI status */
77 		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
78 			memcpy(scp->sense_buffer, ioasa->sense_data,
79 			       SISL_SENSE_DATA_LEN);
80 			scp->result = ioasa->rc.scsi_rc;
81 		} else
82 			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
83 	}
84 
85 	/*
86 	 * We encountered an error. Set scp->result based on nature
87 	 * of error.
88 	 */
89 	if (ioasa->rc.fc_rc) {
90 		/* We have an FC status */
91 		switch (ioasa->rc.fc_rc) {
92 		case SISL_FC_RC_LINKDOWN:
93 			scp->result = (DID_REQUEUE << 16);
94 			break;
95 		case SISL_FC_RC_RESID:
96 			/* This indicates an FCP resid underrun */
97 			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
98 				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
99 				 * then we will handle this error else where.
100 				 * If not then we must handle it here.
101 				 * This is probably an AFU bug.
102 				 */
103 				scp->result = (DID_ERROR << 16);
104 			}
105 			break;
106 		case SISL_FC_RC_RESIDERR:
107 			/* Resid mismatch between adapter and device */
108 		case SISL_FC_RC_TGTABORT:
109 		case SISL_FC_RC_ABORTOK:
110 		case SISL_FC_RC_ABORTFAIL:
111 		case SISL_FC_RC_NOLOGI:
112 		case SISL_FC_RC_ABORTPEND:
113 		case SISL_FC_RC_WRABORTPEND:
114 		case SISL_FC_RC_NOEXP:
115 		case SISL_FC_RC_INUSE:
116 			scp->result = (DID_ERROR << 16);
117 			break;
118 		}
119 	}
120 
121 	if (ioasa->rc.afu_rc) {
122 		/* We have an AFU error */
123 		switch (ioasa->rc.afu_rc) {
124 		case SISL_AFU_RC_NO_CHANNELS:
125 			scp->result = (DID_NO_CONNECT << 16);
126 			break;
127 		case SISL_AFU_RC_DATA_DMA_ERR:
128 			switch (ioasa->afu_extra) {
129 			case SISL_AFU_DMA_ERR_PAGE_IN:
130 				/* Retry */
131 				scp->result = (DID_IMM_RETRY << 16);
132 				break;
133 			case SISL_AFU_DMA_ERR_INVALID_EA:
134 			default:
135 				scp->result = (DID_ERROR << 16);
136 			}
137 			break;
138 		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
139 			/* Retry */
140 			scp->result = (DID_ALLOC_FAILURE << 16);
141 			break;
142 		default:
143 			scp->result = (DID_ERROR << 16);
144 		}
145 	}
146 }
147 
148 /**
149  * cmd_complete() - command completion handler
150  * @cmd:	AFU command that has completed.
151  *
152  * For SCSI commands this routine prepares and submits commands that have
153  * either completed or timed out to the SCSI stack. For internal commands
154  * (TMF or AFU), this routine simply notifies the originator that the
155  * command has completed.
156  */
157 static void cmd_complete(struct afu_cmd *cmd)
158 {
159 	struct scsi_cmnd *scp;
160 	ulong lock_flags;
161 	struct afu *afu = cmd->parent;
162 	struct cxlflash_cfg *cfg = afu->parent;
163 	struct device *dev = &cfg->dev->dev;
164 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
165 
166 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
167 	list_del(&cmd->list);
168 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
169 
170 	if (cmd->scp) {
171 		scp = cmd->scp;
172 		if (unlikely(cmd->sa.ioasc))
173 			process_cmd_err(cmd, scp);
174 		else
175 			scp->result = (DID_OK << 16);
176 
177 		dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
178 				    __func__, scp, scp->result, cmd->sa.ioasc);
179 		scp->scsi_done(scp);
180 	} else if (cmd->cmd_tmf) {
181 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
182 		cfg->tmf_active = false;
183 		wake_up_all_locked(&cfg->tmf_waitq);
184 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
185 	} else
186 		complete(&cmd->cevent);
187 }
188 
189 /**
190  * flush_pending_cmds() - flush all pending commands on this hardware queue
191  * @hwq:	Hardware queue to flush.
192  *
193  * The hardware send queue lock associated with this hardware queue must be
194  * held when calling this routine.
195  */
196 static void flush_pending_cmds(struct hwq *hwq)
197 {
198 	struct cxlflash_cfg *cfg = hwq->afu->parent;
199 	struct afu_cmd *cmd, *tmp;
200 	struct scsi_cmnd *scp;
201 	ulong lock_flags;
202 
203 	list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
204 		/* Bypass command when on a doneq, cmd_complete() will handle */
205 		if (!list_empty(&cmd->queue))
206 			continue;
207 
208 		list_del(&cmd->list);
209 
210 		if (cmd->scp) {
211 			scp = cmd->scp;
212 			scp->result = (DID_IMM_RETRY << 16);
213 			scp->scsi_done(scp);
214 		} else {
215 			cmd->cmd_aborted = true;
216 
217 			if (cmd->cmd_tmf) {
218 				spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
219 				cfg->tmf_active = false;
220 				wake_up_all_locked(&cfg->tmf_waitq);
221 				spin_unlock_irqrestore(&cfg->tmf_slock,
222 						       lock_flags);
223 			} else
224 				complete(&cmd->cevent);
225 		}
226 	}
227 }
228 
229 /**
230  * context_reset() - reset context via specified register
231  * @hwq:	Hardware queue owning the context to be reset.
232  * @reset_reg:	MMIO register to perform reset.
233  *
234  * When the reset is successful, the SISLite specification guarantees that
235  * the AFU has aborted all currently pending I/O. Accordingly, these commands
236  * must be flushed.
237  *
238  * Return: 0 on success, -errno on failure
239  */
240 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
241 {
242 	struct cxlflash_cfg *cfg = hwq->afu->parent;
243 	struct device *dev = &cfg->dev->dev;
244 	int rc = -ETIMEDOUT;
245 	int nretry = 0;
246 	u64 val = 0x1;
247 	ulong lock_flags;
248 
249 	dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
250 
251 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
252 
253 	writeq_be(val, reset_reg);
254 	do {
255 		val = readq_be(reset_reg);
256 		if ((val & 0x1) == 0x0) {
257 			rc = 0;
258 			break;
259 		}
260 
261 		/* Double delay each time */
262 		udelay(1 << nretry);
263 	} while (nretry++ < MC_ROOM_RETRY_CNT);
264 
265 	if (!rc)
266 		flush_pending_cmds(hwq);
267 
268 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
269 
270 	dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
271 		__func__, rc, val, nretry);
272 	return rc;
273 }
274 
275 /**
276  * context_reset_ioarrin() - reset context via IOARRIN register
277  * @hwq:	Hardware queue owning the context to be reset.
278  *
279  * Return: 0 on success, -errno on failure
280  */
281 static int context_reset_ioarrin(struct hwq *hwq)
282 {
283 	return context_reset(hwq, &hwq->host_map->ioarrin);
284 }
285 
286 /**
287  * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
288  * @hwq:	Hardware queue owning the context to be reset.
289  *
290  * Return: 0 on success, -errno on failure
291  */
292 static int context_reset_sq(struct hwq *hwq)
293 {
294 	return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
295 }
296 
297 /**
298  * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
299  * @afu:	AFU associated with the host.
300  * @cmd:	AFU command to send.
301  *
302  * Return:
303  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
304  */
305 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
306 {
307 	struct cxlflash_cfg *cfg = afu->parent;
308 	struct device *dev = &cfg->dev->dev;
309 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
310 	int rc = 0;
311 	s64 room;
312 	ulong lock_flags;
313 
314 	/*
315 	 * To avoid the performance penalty of MMIO, spread the update of
316 	 * 'room' over multiple commands.
317 	 */
318 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
319 	if (--hwq->room < 0) {
320 		room = readq_be(&hwq->host_map->cmd_room);
321 		if (room <= 0) {
322 			dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
323 					    "0x%02X, room=0x%016llX\n",
324 					    __func__, cmd->rcb.cdb[0], room);
325 			hwq->room = 0;
326 			rc = SCSI_MLQUEUE_HOST_BUSY;
327 			goto out;
328 		}
329 		hwq->room = room - 1;
330 	}
331 
332 	list_add(&cmd->list, &hwq->pending_cmds);
333 	writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
334 out:
335 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
336 	dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
337 		__func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
338 	return rc;
339 }
340 
341 /**
342  * send_cmd_sq() - sends an AFU command via SQ ring
343  * @afu:	AFU associated with the host.
344  * @cmd:	AFU command to send.
345  *
346  * Return:
347  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
348  */
349 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
350 {
351 	struct cxlflash_cfg *cfg = afu->parent;
352 	struct device *dev = &cfg->dev->dev;
353 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
354 	int rc = 0;
355 	int newval;
356 	ulong lock_flags;
357 
358 	newval = atomic_dec_if_positive(&hwq->hsq_credits);
359 	if (newval <= 0) {
360 		rc = SCSI_MLQUEUE_HOST_BUSY;
361 		goto out;
362 	}
363 
364 	cmd->rcb.ioasa = &cmd->sa;
365 
366 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
367 
368 	*hwq->hsq_curr = cmd->rcb;
369 	if (hwq->hsq_curr < hwq->hsq_end)
370 		hwq->hsq_curr++;
371 	else
372 		hwq->hsq_curr = hwq->hsq_start;
373 
374 	list_add(&cmd->list, &hwq->pending_cmds);
375 	writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
376 
377 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
378 out:
379 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
380 	       "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
381 	       cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
382 	       readq_be(&hwq->host_map->sq_head),
383 	       readq_be(&hwq->host_map->sq_tail));
384 	return rc;
385 }
386 
387 /**
388  * wait_resp() - polls for a response or timeout to a sent AFU command
389  * @afu:	AFU associated with the host.
390  * @cmd:	AFU command that was sent.
391  *
392  * Return: 0 on success, -errno on failure
393  */
394 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
395 {
396 	struct cxlflash_cfg *cfg = afu->parent;
397 	struct device *dev = &cfg->dev->dev;
398 	int rc = 0;
399 	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
400 
401 	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
402 	if (!timeout)
403 		rc = -ETIMEDOUT;
404 
405 	if (cmd->cmd_aborted)
406 		rc = -EAGAIN;
407 
408 	if (unlikely(cmd->sa.ioasc != 0)) {
409 		dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
410 			__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
411 		rc = -EIO;
412 	}
413 
414 	return rc;
415 }
416 
417 /**
418  * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
419  * @host:	SCSI host associated with device.
420  * @scp:	SCSI command to send.
421  * @afu:	SCSI command to send.
422  *
423  * Hashes a command based upon the hardware queue mode.
424  *
425  * Return: Trusted index of target hardware queue
426  */
427 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
428 			     struct afu *afu)
429 {
430 	u32 tag;
431 	u32 hwq = 0;
432 
433 	if (afu->num_hwqs == 1)
434 		return 0;
435 
436 	switch (afu->hwq_mode) {
437 	case HWQ_MODE_RR:
438 		hwq = afu->hwq_rr_count++ % afu->num_hwqs;
439 		break;
440 	case HWQ_MODE_TAG:
441 		tag = blk_mq_unique_tag(scp->request);
442 		hwq = blk_mq_unique_tag_to_hwq(tag);
443 		break;
444 	case HWQ_MODE_CPU:
445 		hwq = smp_processor_id() % afu->num_hwqs;
446 		break;
447 	default:
448 		WARN_ON_ONCE(1);
449 	}
450 
451 	return hwq;
452 }
453 
454 /**
455  * send_tmf() - sends a Task Management Function (TMF)
456  * @cfg:	Internal structure associated with the host.
457  * @sdev:	SCSI device destined for TMF.
458  * @tmfcmd:	TMF command to send.
459  *
460  * Return:
461  *	0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
462  */
463 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
464 		    u64 tmfcmd)
465 {
466 	struct afu *afu = cfg->afu;
467 	struct afu_cmd *cmd = NULL;
468 	struct device *dev = &cfg->dev->dev;
469 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
470 	bool needs_deletion = false;
471 	char *buf = NULL;
472 	ulong lock_flags;
473 	int rc = 0;
474 	ulong to;
475 
476 	buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
477 	if (unlikely(!buf)) {
478 		dev_err(dev, "%s: no memory for command\n", __func__);
479 		rc = -ENOMEM;
480 		goto out;
481 	}
482 
483 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
484 	INIT_LIST_HEAD(&cmd->queue);
485 
486 	/* When Task Management Function is active do not send another */
487 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
488 	if (cfg->tmf_active)
489 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
490 						  !cfg->tmf_active,
491 						  cfg->tmf_slock);
492 	cfg->tmf_active = true;
493 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
494 
495 	cmd->parent = afu;
496 	cmd->cmd_tmf = true;
497 	cmd->hwq_index = hwq->index;
498 
499 	cmd->rcb.ctx_id = hwq->ctx_hndl;
500 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
501 	cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
502 	cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
503 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
504 			      SISL_REQ_FLAGS_SUP_UNDERRUN |
505 			      SISL_REQ_FLAGS_TMF_CMD);
506 	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
507 
508 	rc = afu->send_cmd(afu, cmd);
509 	if (unlikely(rc)) {
510 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
511 		cfg->tmf_active = false;
512 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
513 		goto out;
514 	}
515 
516 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
517 	to = msecs_to_jiffies(5000);
518 	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
519 						       !cfg->tmf_active,
520 						       cfg->tmf_slock,
521 						       to);
522 	if (!to) {
523 		dev_err(dev, "%s: TMF timed out\n", __func__);
524 		rc = -ETIMEDOUT;
525 		needs_deletion = true;
526 	} else if (cmd->cmd_aborted) {
527 		dev_err(dev, "%s: TMF aborted\n", __func__);
528 		rc = -EAGAIN;
529 	} else if (cmd->sa.ioasc) {
530 		dev_err(dev, "%s: TMF failed ioasc=%08x\n",
531 			__func__, cmd->sa.ioasc);
532 		rc = -EIO;
533 	}
534 	cfg->tmf_active = false;
535 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
536 
537 	if (needs_deletion) {
538 		spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
539 		list_del(&cmd->list);
540 		spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
541 	}
542 out:
543 	kfree(buf);
544 	return rc;
545 }
546 
547 /**
548  * cxlflash_driver_info() - information handler for this host driver
549  * @host:	SCSI host associated with device.
550  *
551  * Return: A string describing the device.
552  */
553 static const char *cxlflash_driver_info(struct Scsi_Host *host)
554 {
555 	return CXLFLASH_ADAPTER_NAME;
556 }
557 
558 /**
559  * cxlflash_queuecommand() - sends a mid-layer request
560  * @host:	SCSI host associated with device.
561  * @scp:	SCSI command to send.
562  *
563  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
564  */
565 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
566 {
567 	struct cxlflash_cfg *cfg = shost_priv(host);
568 	struct afu *afu = cfg->afu;
569 	struct device *dev = &cfg->dev->dev;
570 	struct afu_cmd *cmd = sc_to_afuci(scp);
571 	struct scatterlist *sg = scsi_sglist(scp);
572 	int hwq_index = cmd_to_target_hwq(host, scp, afu);
573 	struct hwq *hwq = get_hwq(afu, hwq_index);
574 	u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
575 	ulong lock_flags;
576 	int rc = 0;
577 
578 	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
579 			    "cdb=(%08x-%08x-%08x-%08x)\n",
580 			    __func__, scp, host->host_no, scp->device->channel,
581 			    scp->device->id, scp->device->lun,
582 			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
583 			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
584 			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
585 			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
586 
587 	/*
588 	 * If a Task Management Function is active, wait for it to complete
589 	 * before continuing with regular commands.
590 	 */
591 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
592 	if (cfg->tmf_active) {
593 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
594 		rc = SCSI_MLQUEUE_HOST_BUSY;
595 		goto out;
596 	}
597 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
598 
599 	switch (cfg->state) {
600 	case STATE_PROBING:
601 	case STATE_PROBED:
602 	case STATE_RESET:
603 		dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
604 		rc = SCSI_MLQUEUE_HOST_BUSY;
605 		goto out;
606 	case STATE_FAILTERM:
607 		dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
608 		scp->result = (DID_NO_CONNECT << 16);
609 		scp->scsi_done(scp);
610 		rc = 0;
611 		goto out;
612 	default:
613 		atomic_inc(&afu->cmds_active);
614 		break;
615 	}
616 
617 	if (likely(sg)) {
618 		cmd->rcb.data_len = sg->length;
619 		cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
620 	}
621 
622 	cmd->scp = scp;
623 	cmd->parent = afu;
624 	cmd->hwq_index = hwq_index;
625 
626 	cmd->sa.ioasc = 0;
627 	cmd->rcb.ctx_id = hwq->ctx_hndl;
628 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
629 	cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
630 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
631 
632 	if (scp->sc_data_direction == DMA_TO_DEVICE)
633 		req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
634 
635 	cmd->rcb.req_flags = req_flags;
636 	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
637 
638 	rc = afu->send_cmd(afu, cmd);
639 	atomic_dec(&afu->cmds_active);
640 out:
641 	return rc;
642 }
643 
644 /**
645  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
646  * @cfg:	Internal structure associated with the host.
647  */
648 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
649 {
650 	struct pci_dev *pdev = cfg->dev;
651 
652 	if (pci_channel_offline(pdev))
653 		wait_event_timeout(cfg->reset_waitq,
654 				   !pci_channel_offline(pdev),
655 				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
656 }
657 
658 /**
659  * free_mem() - free memory associated with the AFU
660  * @cfg:	Internal structure associated with the host.
661  */
662 static void free_mem(struct cxlflash_cfg *cfg)
663 {
664 	struct afu *afu = cfg->afu;
665 
666 	if (cfg->afu) {
667 		free_pages((ulong)afu, get_order(sizeof(struct afu)));
668 		cfg->afu = NULL;
669 	}
670 }
671 
672 /**
673  * cxlflash_reset_sync() - synchronizing point for asynchronous resets
674  * @cfg:	Internal structure associated with the host.
675  */
676 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
677 {
678 	if (cfg->async_reset_cookie == 0)
679 		return;
680 
681 	/* Wait until all async calls prior to this cookie have completed */
682 	async_synchronize_cookie(cfg->async_reset_cookie + 1);
683 	cfg->async_reset_cookie = 0;
684 }
685 
686 /**
687  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
688  * @cfg:	Internal structure associated with the host.
689  *
690  * Safe to call with AFU in a partially allocated/initialized state.
691  *
692  * Cancels scheduled worker threads, waits for any active internal AFU
693  * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
694  */
695 static void stop_afu(struct cxlflash_cfg *cfg)
696 {
697 	struct afu *afu = cfg->afu;
698 	struct hwq *hwq;
699 	int i;
700 
701 	cancel_work_sync(&cfg->work_q);
702 	if (!current_is_async())
703 		cxlflash_reset_sync(cfg);
704 
705 	if (likely(afu)) {
706 		while (atomic_read(&afu->cmds_active))
707 			ssleep(1);
708 
709 		if (afu_is_irqpoll_enabled(afu)) {
710 			for (i = 0; i < afu->num_hwqs; i++) {
711 				hwq = get_hwq(afu, i);
712 
713 				irq_poll_disable(&hwq->irqpoll);
714 			}
715 		}
716 
717 		if (likely(afu->afu_map)) {
718 			cfg->ops->psa_unmap(afu->afu_map);
719 			afu->afu_map = NULL;
720 		}
721 	}
722 }
723 
724 /**
725  * term_intr() - disables all AFU interrupts
726  * @cfg:	Internal structure associated with the host.
727  * @level:	Depth of allocation, where to begin waterfall tear down.
728  * @index:	Index of the hardware queue.
729  *
730  * Safe to call with AFU/MC in partially allocated/initialized state.
731  */
732 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
733 		      u32 index)
734 {
735 	struct afu *afu = cfg->afu;
736 	struct device *dev = &cfg->dev->dev;
737 	struct hwq *hwq;
738 
739 	if (!afu) {
740 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
741 		return;
742 	}
743 
744 	hwq = get_hwq(afu, index);
745 
746 	if (!hwq->ctx_cookie) {
747 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
748 		return;
749 	}
750 
751 	switch (level) {
752 	case UNMAP_THREE:
753 		/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
754 		if (index == PRIMARY_HWQ)
755 			cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
756 		/* fall through */
757 	case UNMAP_TWO:
758 		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
759 		/* fall through */
760 	case UNMAP_ONE:
761 		cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
762 		/* fall through */
763 	case FREE_IRQ:
764 		cfg->ops->free_afu_irqs(hwq->ctx_cookie);
765 		/* fall through */
766 	case UNDO_NOOP:
767 		/* No action required */
768 		break;
769 	}
770 }
771 
772 /**
773  * term_mc() - terminates the master context
774  * @cfg:	Internal structure associated with the host.
775  * @index:	Index of the hardware queue.
776  *
777  * Safe to call with AFU/MC in partially allocated/initialized state.
778  */
779 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
780 {
781 	struct afu *afu = cfg->afu;
782 	struct device *dev = &cfg->dev->dev;
783 	struct hwq *hwq;
784 	ulong lock_flags;
785 
786 	if (!afu) {
787 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
788 		return;
789 	}
790 
791 	hwq = get_hwq(afu, index);
792 
793 	if (!hwq->ctx_cookie) {
794 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
795 		return;
796 	}
797 
798 	WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
799 	if (index != PRIMARY_HWQ)
800 		WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
801 	hwq->ctx_cookie = NULL;
802 
803 	spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
804 	hwq->hrrq_online = false;
805 	spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
806 
807 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
808 	flush_pending_cmds(hwq);
809 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
810 }
811 
812 /**
813  * term_afu() - terminates the AFU
814  * @cfg:	Internal structure associated with the host.
815  *
816  * Safe to call with AFU/MC in partially allocated/initialized state.
817  */
818 static void term_afu(struct cxlflash_cfg *cfg)
819 {
820 	struct device *dev = &cfg->dev->dev;
821 	int k;
822 
823 	/*
824 	 * Tear down is carefully orchestrated to ensure
825 	 * no interrupts can come in when the problem state
826 	 * area is unmapped.
827 	 *
828 	 * 1) Disable all AFU interrupts for each master
829 	 * 2) Unmap the problem state area
830 	 * 3) Stop each master context
831 	 */
832 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
833 		term_intr(cfg, UNMAP_THREE, k);
834 
835 	stop_afu(cfg);
836 
837 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
838 		term_mc(cfg, k);
839 
840 	dev_dbg(dev, "%s: returning\n", __func__);
841 }
842 
843 /**
844  * notify_shutdown() - notifies device of pending shutdown
845  * @cfg:	Internal structure associated with the host.
846  * @wait:	Whether to wait for shutdown processing to complete.
847  *
848  * This function will notify the AFU that the adapter is being shutdown
849  * and will wait for shutdown processing to complete if wait is true.
850  * This notification should flush pending I/Os to the device and halt
851  * further I/Os until the next AFU reset is issued and device restarted.
852  */
853 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
854 {
855 	struct afu *afu = cfg->afu;
856 	struct device *dev = &cfg->dev->dev;
857 	struct dev_dependent_vals *ddv;
858 	__be64 __iomem *fc_port_regs;
859 	u64 reg, status;
860 	int i, retry_cnt = 0;
861 
862 	ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
863 	if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
864 		return;
865 
866 	if (!afu || !afu->afu_map) {
867 		dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
868 		return;
869 	}
870 
871 	/* Notify AFU */
872 	for (i = 0; i < cfg->num_fc_ports; i++) {
873 		fc_port_regs = get_fc_port_regs(cfg, i);
874 
875 		reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
876 		reg |= SISL_FC_SHUTDOWN_NORMAL;
877 		writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
878 	}
879 
880 	if (!wait)
881 		return;
882 
883 	/* Wait up to 1.5 seconds for shutdown processing to complete */
884 	for (i = 0; i < cfg->num_fc_ports; i++) {
885 		fc_port_regs = get_fc_port_regs(cfg, i);
886 		retry_cnt = 0;
887 
888 		while (true) {
889 			status = readq_be(&fc_port_regs[FC_STATUS / 8]);
890 			if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
891 				break;
892 			if (++retry_cnt >= MC_RETRY_CNT) {
893 				dev_dbg(dev, "%s: port %d shutdown processing "
894 					"not yet completed\n", __func__, i);
895 				break;
896 			}
897 			msleep(100 * retry_cnt);
898 		}
899 	}
900 }
901 
902 /**
903  * cxlflash_get_minor() - gets the first available minor number
904  *
905  * Return: Unique minor number that can be used to create the character device.
906  */
907 static int cxlflash_get_minor(void)
908 {
909 	int minor;
910 	long bit;
911 
912 	bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
913 	if (bit >= CXLFLASH_MAX_ADAPTERS)
914 		return -1;
915 
916 	minor = bit & MINORMASK;
917 	set_bit(minor, cxlflash_minor);
918 	return minor;
919 }
920 
921 /**
922  * cxlflash_put_minor() - releases the minor number
923  * @minor:	Minor number that is no longer needed.
924  */
925 static void cxlflash_put_minor(int minor)
926 {
927 	clear_bit(minor, cxlflash_minor);
928 }
929 
930 /**
931  * cxlflash_release_chrdev() - release the character device for the host
932  * @cfg:	Internal structure associated with the host.
933  */
934 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
935 {
936 	device_unregister(cfg->chardev);
937 	cfg->chardev = NULL;
938 	cdev_del(&cfg->cdev);
939 	cxlflash_put_minor(MINOR(cfg->cdev.dev));
940 }
941 
942 /**
943  * cxlflash_remove() - PCI entry point to tear down host
944  * @pdev:	PCI device associated with the host.
945  *
946  * Safe to use as a cleanup in partially allocated/initialized state. Note that
947  * the reset_waitq is flushed as part of the stop/termination of user contexts.
948  */
949 static void cxlflash_remove(struct pci_dev *pdev)
950 {
951 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
952 	struct device *dev = &pdev->dev;
953 	ulong lock_flags;
954 
955 	if (!pci_is_enabled(pdev)) {
956 		dev_dbg(dev, "%s: Device is disabled\n", __func__);
957 		return;
958 	}
959 
960 	/* Yield to running recovery threads before continuing with remove */
961 	wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
962 				     cfg->state != STATE_PROBING);
963 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
964 	if (cfg->tmf_active)
965 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
966 						  !cfg->tmf_active,
967 						  cfg->tmf_slock);
968 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
969 
970 	/* Notify AFU and wait for shutdown processing to complete */
971 	notify_shutdown(cfg, true);
972 
973 	cfg->state = STATE_FAILTERM;
974 	cxlflash_stop_term_user_contexts(cfg);
975 
976 	switch (cfg->init_state) {
977 	case INIT_STATE_CDEV:
978 		cxlflash_release_chrdev(cfg);
979 		/* fall through */
980 	case INIT_STATE_SCSI:
981 		cxlflash_term_local_luns(cfg);
982 		scsi_remove_host(cfg->host);
983 		/* fall through */
984 	case INIT_STATE_AFU:
985 		term_afu(cfg);
986 		/* fall through */
987 	case INIT_STATE_PCI:
988 		cfg->ops->destroy_afu(cfg->afu_cookie);
989 		pci_disable_device(pdev);
990 		/* fall through */
991 	case INIT_STATE_NONE:
992 		free_mem(cfg);
993 		scsi_host_put(cfg->host);
994 		break;
995 	}
996 
997 	dev_dbg(dev, "%s: returning\n", __func__);
998 }
999 
1000 /**
1001  * alloc_mem() - allocates the AFU and its command pool
1002  * @cfg:	Internal structure associated with the host.
1003  *
1004  * A partially allocated state remains on failure.
1005  *
1006  * Return:
1007  *	0 on success
1008  *	-ENOMEM on failure to allocate memory
1009  */
1010 static int alloc_mem(struct cxlflash_cfg *cfg)
1011 {
1012 	int rc = 0;
1013 	struct device *dev = &cfg->dev->dev;
1014 
1015 	/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1016 	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1017 					    get_order(sizeof(struct afu)));
1018 	if (unlikely(!cfg->afu)) {
1019 		dev_err(dev, "%s: cannot get %d free pages\n",
1020 			__func__, get_order(sizeof(struct afu)));
1021 		rc = -ENOMEM;
1022 		goto out;
1023 	}
1024 	cfg->afu->parent = cfg;
1025 	cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1026 	cfg->afu->afu_map = NULL;
1027 out:
1028 	return rc;
1029 }
1030 
1031 /**
1032  * init_pci() - initializes the host as a PCI device
1033  * @cfg:	Internal structure associated with the host.
1034  *
1035  * Return: 0 on success, -errno on failure
1036  */
1037 static int init_pci(struct cxlflash_cfg *cfg)
1038 {
1039 	struct pci_dev *pdev = cfg->dev;
1040 	struct device *dev = &cfg->dev->dev;
1041 	int rc = 0;
1042 
1043 	rc = pci_enable_device(pdev);
1044 	if (rc || pci_channel_offline(pdev)) {
1045 		if (pci_channel_offline(pdev)) {
1046 			cxlflash_wait_for_pci_err_recovery(cfg);
1047 			rc = pci_enable_device(pdev);
1048 		}
1049 
1050 		if (rc) {
1051 			dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1052 			cxlflash_wait_for_pci_err_recovery(cfg);
1053 			goto out;
1054 		}
1055 	}
1056 
1057 out:
1058 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1059 	return rc;
1060 }
1061 
1062 /**
1063  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1064  * @cfg:	Internal structure associated with the host.
1065  *
1066  * Return: 0 on success, -errno on failure
1067  */
1068 static int init_scsi(struct cxlflash_cfg *cfg)
1069 {
1070 	struct pci_dev *pdev = cfg->dev;
1071 	struct device *dev = &cfg->dev->dev;
1072 	int rc = 0;
1073 
1074 	rc = scsi_add_host(cfg->host, &pdev->dev);
1075 	if (rc) {
1076 		dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1077 		goto out;
1078 	}
1079 
1080 	scsi_scan_host(cfg->host);
1081 
1082 out:
1083 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1084 	return rc;
1085 }
1086 
1087 /**
1088  * set_port_online() - transitions the specified host FC port to online state
1089  * @fc_regs:	Top of MMIO region defined for specified port.
1090  *
1091  * The provided MMIO region must be mapped prior to call. Online state means
1092  * that the FC link layer has synced, completed the handshaking process, and
1093  * is ready for login to start.
1094  */
1095 static void set_port_online(__be64 __iomem *fc_regs)
1096 {
1097 	u64 cmdcfg;
1098 
1099 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1100 	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
1101 	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
1102 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1103 }
1104 
1105 /**
1106  * set_port_offline() - transitions the specified host FC port to offline state
1107  * @fc_regs:	Top of MMIO region defined for specified port.
1108  *
1109  * The provided MMIO region must be mapped prior to call.
1110  */
1111 static void set_port_offline(__be64 __iomem *fc_regs)
1112 {
1113 	u64 cmdcfg;
1114 
1115 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1116 	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
1117 	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
1118 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1119 }
1120 
1121 /**
1122  * wait_port_online() - waits for the specified host FC port come online
1123  * @fc_regs:	Top of MMIO region defined for specified port.
1124  * @delay_us:	Number of microseconds to delay between reading port status.
1125  * @nretry:	Number of cycles to retry reading port status.
1126  *
1127  * The provided MMIO region must be mapped prior to call. This will timeout
1128  * when the cable is not plugged in.
1129  *
1130  * Return:
1131  *	TRUE (1) when the specified port is online
1132  *	FALSE (0) when the specified port fails to come online after timeout
1133  */
1134 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1135 {
1136 	u64 status;
1137 
1138 	WARN_ON(delay_us < 1000);
1139 
1140 	do {
1141 		msleep(delay_us / 1000);
1142 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1143 		if (status == U64_MAX)
1144 			nretry /= 2;
1145 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1146 		 nretry--);
1147 
1148 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1149 }
1150 
1151 /**
1152  * wait_port_offline() - waits for the specified host FC port go offline
1153  * @fc_regs:	Top of MMIO region defined for specified port.
1154  * @delay_us:	Number of microseconds to delay between reading port status.
1155  * @nretry:	Number of cycles to retry reading port status.
1156  *
1157  * The provided MMIO region must be mapped prior to call.
1158  *
1159  * Return:
1160  *	TRUE (1) when the specified port is offline
1161  *	FALSE (0) when the specified port fails to go offline after timeout
1162  */
1163 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1164 {
1165 	u64 status;
1166 
1167 	WARN_ON(delay_us < 1000);
1168 
1169 	do {
1170 		msleep(delay_us / 1000);
1171 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1172 		if (status == U64_MAX)
1173 			nretry /= 2;
1174 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1175 		 nretry--);
1176 
1177 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1178 }
1179 
1180 /**
1181  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1182  * @afu:	AFU associated with the host that owns the specified FC port.
1183  * @port:	Port number being configured.
1184  * @fc_regs:	Top of MMIO region defined for specified port.
1185  * @wwpn:	The world-wide-port-number previously discovered for port.
1186  *
1187  * The provided MMIO region must be mapped prior to call. As part of the
1188  * sequence to configure the WWPN, the port is toggled offline and then back
1189  * online. This toggling action can cause this routine to delay up to a few
1190  * seconds. When configured to use the internal LUN feature of the AFU, a
1191  * failure to come online is overridden.
1192  */
1193 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1194 			 u64 wwpn)
1195 {
1196 	struct cxlflash_cfg *cfg = afu->parent;
1197 	struct device *dev = &cfg->dev->dev;
1198 
1199 	set_port_offline(fc_regs);
1200 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1201 			       FC_PORT_STATUS_RETRY_CNT)) {
1202 		dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1203 			__func__, port);
1204 	}
1205 
1206 	writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1207 
1208 	set_port_online(fc_regs);
1209 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1210 			      FC_PORT_STATUS_RETRY_CNT)) {
1211 		dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1212 			__func__, port);
1213 	}
1214 }
1215 
1216 /**
1217  * afu_link_reset() - resets the specified host FC port
1218  * @afu:	AFU associated with the host that owns the specified FC port.
1219  * @port:	Port number being configured.
1220  * @fc_regs:	Top of MMIO region defined for specified port.
1221  *
1222  * The provided MMIO region must be mapped prior to call. The sequence to
1223  * reset the port involves toggling it offline and then back online. This
1224  * action can cause this routine to delay up to a few seconds. An effort
1225  * is made to maintain link with the device by switching to host to use
1226  * the alternate port exclusively while the reset takes place.
1227  * failure to come online is overridden.
1228  */
1229 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1230 {
1231 	struct cxlflash_cfg *cfg = afu->parent;
1232 	struct device *dev = &cfg->dev->dev;
1233 	u64 port_sel;
1234 
1235 	/* first switch the AFU to the other links, if any */
1236 	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1237 	port_sel &= ~(1ULL << port);
1238 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1239 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1240 
1241 	set_port_offline(fc_regs);
1242 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1243 			       FC_PORT_STATUS_RETRY_CNT))
1244 		dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1245 			__func__, port);
1246 
1247 	set_port_online(fc_regs);
1248 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1249 			      FC_PORT_STATUS_RETRY_CNT))
1250 		dev_err(dev, "%s: wait on port %d to go online timed out\n",
1251 			__func__, port);
1252 
1253 	/* switch back to include this port */
1254 	port_sel |= (1ULL << port);
1255 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1256 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1257 
1258 	dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1259 }
1260 
1261 /**
1262  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1263  * @afu:	AFU associated with the host.
1264  */
1265 static void afu_err_intr_init(struct afu *afu)
1266 {
1267 	struct cxlflash_cfg *cfg = afu->parent;
1268 	__be64 __iomem *fc_port_regs;
1269 	int i;
1270 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1271 	u64 reg;
1272 
1273 	/* global async interrupts: AFU clears afu_ctrl on context exit
1274 	 * if async interrupts were sent to that context. This prevents
1275 	 * the AFU form sending further async interrupts when
1276 	 * there is
1277 	 * nobody to receive them.
1278 	 */
1279 
1280 	/* mask all */
1281 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1282 	/* set LISN# to send and point to primary master context */
1283 	reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1284 
1285 	if (afu->internal_lun)
1286 		reg |= 1;	/* Bit 63 indicates local lun */
1287 	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1288 	/* clear all */
1289 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1290 	/* unmask bits that are of interest */
1291 	/* note: afu can send an interrupt after this step */
1292 	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1293 	/* clear again in case a bit came on after previous clear but before */
1294 	/* unmask */
1295 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1296 
1297 	/* Clear/Set internal lun bits */
1298 	fc_port_regs = get_fc_port_regs(cfg, 0);
1299 	reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1300 	reg &= SISL_FC_INTERNAL_MASK;
1301 	if (afu->internal_lun)
1302 		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1303 	writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1304 
1305 	/* now clear FC errors */
1306 	for (i = 0; i < cfg->num_fc_ports; i++) {
1307 		fc_port_regs = get_fc_port_regs(cfg, i);
1308 
1309 		writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1310 		writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1311 	}
1312 
1313 	/* sync interrupts for master's IOARRIN write */
1314 	/* note that unlike asyncs, there can be no pending sync interrupts */
1315 	/* at this time (this is a fresh context and master has not written */
1316 	/* IOARRIN yet), so there is nothing to clear. */
1317 
1318 	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1319 	for (i = 0; i < afu->num_hwqs; i++) {
1320 		hwq = get_hwq(afu, i);
1321 
1322 		reg = readq_be(&hwq->host_map->ctx_ctrl);
1323 		WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
1324 		reg |= SISL_MSI_SYNC_ERROR;
1325 		writeq_be(reg, &hwq->host_map->ctx_ctrl);
1326 		writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1327 	}
1328 }
1329 
1330 /**
1331  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1332  * @irq:	Interrupt number.
1333  * @data:	Private data provided at interrupt registration, the AFU.
1334  *
1335  * Return: Always return IRQ_HANDLED.
1336  */
1337 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1338 {
1339 	struct hwq *hwq = (struct hwq *)data;
1340 	struct cxlflash_cfg *cfg = hwq->afu->parent;
1341 	struct device *dev = &cfg->dev->dev;
1342 	u64 reg;
1343 	u64 reg_unmasked;
1344 
1345 	reg = readq_be(&hwq->host_map->intr_status);
1346 	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1347 
1348 	if (reg_unmasked == 0UL) {
1349 		dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1350 			__func__, reg);
1351 		goto cxlflash_sync_err_irq_exit;
1352 	}
1353 
1354 	dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1355 		__func__, reg);
1356 
1357 	writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1358 
1359 cxlflash_sync_err_irq_exit:
1360 	return IRQ_HANDLED;
1361 }
1362 
1363 /**
1364  * process_hrrq() - process the read-response queue
1365  * @afu:	AFU associated with the host.
1366  * @doneq:	Queue of commands harvested from the RRQ.
1367  * @budget:	Threshold of RRQ entries to process.
1368  *
1369  * This routine must be called holding the disabled RRQ spin lock.
1370  *
1371  * Return: The number of entries processed.
1372  */
1373 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1374 {
1375 	struct afu *afu = hwq->afu;
1376 	struct afu_cmd *cmd;
1377 	struct sisl_ioasa *ioasa;
1378 	struct sisl_ioarcb *ioarcb;
1379 	bool toggle = hwq->toggle;
1380 	int num_hrrq = 0;
1381 	u64 entry,
1382 	    *hrrq_start = hwq->hrrq_start,
1383 	    *hrrq_end = hwq->hrrq_end,
1384 	    *hrrq_curr = hwq->hrrq_curr;
1385 
1386 	/* Process ready RRQ entries up to the specified budget (if any) */
1387 	while (true) {
1388 		entry = *hrrq_curr;
1389 
1390 		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1391 			break;
1392 
1393 		entry &= ~SISL_RESP_HANDLE_T_BIT;
1394 
1395 		if (afu_is_sq_cmd_mode(afu)) {
1396 			ioasa = (struct sisl_ioasa *)entry;
1397 			cmd = container_of(ioasa, struct afu_cmd, sa);
1398 		} else {
1399 			ioarcb = (struct sisl_ioarcb *)entry;
1400 			cmd = container_of(ioarcb, struct afu_cmd, rcb);
1401 		}
1402 
1403 		list_add_tail(&cmd->queue, doneq);
1404 
1405 		/* Advance to next entry or wrap and flip the toggle bit */
1406 		if (hrrq_curr < hrrq_end)
1407 			hrrq_curr++;
1408 		else {
1409 			hrrq_curr = hrrq_start;
1410 			toggle ^= SISL_RESP_HANDLE_T_BIT;
1411 		}
1412 
1413 		atomic_inc(&hwq->hsq_credits);
1414 		num_hrrq++;
1415 
1416 		if (budget > 0 && num_hrrq >= budget)
1417 			break;
1418 	}
1419 
1420 	hwq->hrrq_curr = hrrq_curr;
1421 	hwq->toggle = toggle;
1422 
1423 	return num_hrrq;
1424 }
1425 
1426 /**
1427  * process_cmd_doneq() - process a queue of harvested RRQ commands
1428  * @doneq:	Queue of completed commands.
1429  *
1430  * Note that upon return the queue can no longer be trusted.
1431  */
1432 static void process_cmd_doneq(struct list_head *doneq)
1433 {
1434 	struct afu_cmd *cmd, *tmp;
1435 
1436 	WARN_ON(list_empty(doneq));
1437 
1438 	list_for_each_entry_safe(cmd, tmp, doneq, queue)
1439 		cmd_complete(cmd);
1440 }
1441 
1442 /**
1443  * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1444  * @irqpoll:	IRQ poll structure associated with queue to poll.
1445  * @budget:	Threshold of RRQ entries to process per poll.
1446  *
1447  * Return: The number of entries processed.
1448  */
1449 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1450 {
1451 	struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1452 	unsigned long hrrq_flags;
1453 	LIST_HEAD(doneq);
1454 	int num_entries = 0;
1455 
1456 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1457 
1458 	num_entries = process_hrrq(hwq, &doneq, budget);
1459 	if (num_entries < budget)
1460 		irq_poll_complete(irqpoll);
1461 
1462 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1463 
1464 	process_cmd_doneq(&doneq);
1465 	return num_entries;
1466 }
1467 
1468 /**
1469  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1470  * @irq:	Interrupt number.
1471  * @data:	Private data provided at interrupt registration, the AFU.
1472  *
1473  * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1474  */
1475 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1476 {
1477 	struct hwq *hwq = (struct hwq *)data;
1478 	struct afu *afu = hwq->afu;
1479 	unsigned long hrrq_flags;
1480 	LIST_HEAD(doneq);
1481 	int num_entries = 0;
1482 
1483 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1484 
1485 	/* Silently drop spurious interrupts when queue is not online */
1486 	if (!hwq->hrrq_online) {
1487 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1488 		return IRQ_HANDLED;
1489 	}
1490 
1491 	if (afu_is_irqpoll_enabled(afu)) {
1492 		irq_poll_sched(&hwq->irqpoll);
1493 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1494 		return IRQ_HANDLED;
1495 	}
1496 
1497 	num_entries = process_hrrq(hwq, &doneq, -1);
1498 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1499 
1500 	if (num_entries == 0)
1501 		return IRQ_NONE;
1502 
1503 	process_cmd_doneq(&doneq);
1504 	return IRQ_HANDLED;
1505 }
1506 
1507 /*
1508  * Asynchronous interrupt information table
1509  *
1510  * NOTE:
1511  *	- Order matters here as this array is indexed by bit position.
1512  *
1513  *	- The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1514  *	  as complex and complains due to a lack of parentheses/braces.
1515  */
1516 #define ASTATUS_FC(_a, _b, _c, _d)					 \
1517 	{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1518 
1519 #define BUILD_SISL_ASTATUS_FC_PORT(_a)					 \
1520 	ASTATUS_FC(_a, LINK_UP, "link up", 0),				 \
1521 	ASTATUS_FC(_a, LINK_DN, "link down", 0),			 \
1522 	ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),		 \
1523 	ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),		 \
1524 	ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1525 	ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),	 \
1526 	ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),		 \
1527 	ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1528 
1529 static const struct asyc_intr_info ainfo[] = {
1530 	BUILD_SISL_ASTATUS_FC_PORT(1),
1531 	BUILD_SISL_ASTATUS_FC_PORT(0),
1532 	BUILD_SISL_ASTATUS_FC_PORT(3),
1533 	BUILD_SISL_ASTATUS_FC_PORT(2)
1534 };
1535 
1536 /**
1537  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1538  * @irq:	Interrupt number.
1539  * @data:	Private data provided at interrupt registration, the AFU.
1540  *
1541  * Return: Always return IRQ_HANDLED.
1542  */
1543 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1544 {
1545 	struct hwq *hwq = (struct hwq *)data;
1546 	struct afu *afu = hwq->afu;
1547 	struct cxlflash_cfg *cfg = afu->parent;
1548 	struct device *dev = &cfg->dev->dev;
1549 	const struct asyc_intr_info *info;
1550 	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1551 	__be64 __iomem *fc_port_regs;
1552 	u64 reg_unmasked;
1553 	u64 reg;
1554 	u64 bit;
1555 	u8 port;
1556 
1557 	reg = readq_be(&global->regs.aintr_status);
1558 	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1559 
1560 	if (unlikely(reg_unmasked == 0)) {
1561 		dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1562 			__func__, reg);
1563 		goto out;
1564 	}
1565 
1566 	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1567 	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1568 
1569 	/* Check each bit that is on */
1570 	for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1571 		if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1572 			WARN_ON_ONCE(1);
1573 			continue;
1574 		}
1575 
1576 		info = &ainfo[bit];
1577 		if (unlikely(info->status != 1ULL << bit)) {
1578 			WARN_ON_ONCE(1);
1579 			continue;
1580 		}
1581 
1582 		port = info->port;
1583 		fc_port_regs = get_fc_port_regs(cfg, port);
1584 
1585 		dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1586 			__func__, port, info->desc,
1587 		       readq_be(&fc_port_regs[FC_STATUS / 8]));
1588 
1589 		/*
1590 		 * Do link reset first, some OTHER errors will set FC_ERROR
1591 		 * again if cleared before or w/o a reset
1592 		 */
1593 		if (info->action & LINK_RESET) {
1594 			dev_err(dev, "%s: FC Port %d: resetting link\n",
1595 				__func__, port);
1596 			cfg->lr_state = LINK_RESET_REQUIRED;
1597 			cfg->lr_port = port;
1598 			schedule_work(&cfg->work_q);
1599 		}
1600 
1601 		if (info->action & CLR_FC_ERROR) {
1602 			reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1603 
1604 			/*
1605 			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1606 			 * should be the same and tracing one is sufficient.
1607 			 */
1608 
1609 			dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1610 				__func__, port, reg);
1611 
1612 			writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1613 			writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1614 		}
1615 
1616 		if (info->action & SCAN_HOST) {
1617 			atomic_inc(&cfg->scan_host_needed);
1618 			schedule_work(&cfg->work_q);
1619 		}
1620 	}
1621 
1622 out:
1623 	return IRQ_HANDLED;
1624 }
1625 
1626 /**
1627  * read_vpd() - obtains the WWPNs from VPD
1628  * @cfg:	Internal structure associated with the host.
1629  * @wwpn:	Array of size MAX_FC_PORTS to pass back WWPNs
1630  *
1631  * Return: 0 on success, -errno on failure
1632  */
1633 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1634 {
1635 	struct device *dev = &cfg->dev->dev;
1636 	struct pci_dev *pdev = cfg->dev;
1637 	int rc = 0;
1638 	int ro_start, ro_size, i, j, k;
1639 	ssize_t vpd_size;
1640 	char vpd_data[CXLFLASH_VPD_LEN];
1641 	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1642 	const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1643 						cfg->dev_id->driver_data;
1644 	const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1645 	const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1646 
1647 	/* Get the VPD data from the device */
1648 	vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1649 	if (unlikely(vpd_size <= 0)) {
1650 		dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1651 			__func__, vpd_size);
1652 		rc = -ENODEV;
1653 		goto out;
1654 	}
1655 
1656 	/* Get the read only section offset */
1657 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1658 				    PCI_VPD_LRDT_RO_DATA);
1659 	if (unlikely(ro_start < 0)) {
1660 		dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1661 		rc = -ENODEV;
1662 		goto out;
1663 	}
1664 
1665 	/* Get the read only section size, cap when extends beyond read VPD */
1666 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1667 	j = ro_size;
1668 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1669 	if (unlikely((i + j) > vpd_size)) {
1670 		dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1671 			__func__, (i + j), vpd_size);
1672 		ro_size = vpd_size - i;
1673 	}
1674 
1675 	/*
1676 	 * Find the offset of the WWPN tag within the read only
1677 	 * VPD data and validate the found field (partials are
1678 	 * no good to us). Convert the ASCII data to an integer
1679 	 * value. Note that we must copy to a temporary buffer
1680 	 * because the conversion service requires that the ASCII
1681 	 * string be terminated.
1682 	 *
1683 	 * Allow for WWPN not being found for all devices, setting
1684 	 * the returned WWPN to zero when not found. Notify with a
1685 	 * log error for cards that should have had WWPN keywords
1686 	 * in the VPD - cards requiring WWPN will not have their
1687 	 * ports programmed and operate in an undefined state.
1688 	 */
1689 	for (k = 0; k < cfg->num_fc_ports; k++) {
1690 		j = ro_size;
1691 		i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1692 
1693 		i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1694 		if (i < 0) {
1695 			if (wwpn_vpd_required)
1696 				dev_err(dev, "%s: Port %d WWPN not found\n",
1697 					__func__, k);
1698 			wwpn[k] = 0ULL;
1699 			continue;
1700 		}
1701 
1702 		j = pci_vpd_info_field_size(&vpd_data[i]);
1703 		i += PCI_VPD_INFO_FLD_HDR_SIZE;
1704 		if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1705 			dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1706 				__func__, k);
1707 			rc = -ENODEV;
1708 			goto out;
1709 		}
1710 
1711 		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1712 		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1713 		if (unlikely(rc)) {
1714 			dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1715 				__func__, k);
1716 			rc = -ENODEV;
1717 			goto out;
1718 		}
1719 
1720 		dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1721 	}
1722 
1723 out:
1724 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1725 	return rc;
1726 }
1727 
1728 /**
1729  * init_pcr() - initialize the provisioning and control registers
1730  * @cfg:	Internal structure associated with the host.
1731  *
1732  * Also sets up fast access to the mapped registers and initializes AFU
1733  * command fields that never change.
1734  */
1735 static void init_pcr(struct cxlflash_cfg *cfg)
1736 {
1737 	struct afu *afu = cfg->afu;
1738 	struct sisl_ctrl_map __iomem *ctrl_map;
1739 	struct hwq *hwq;
1740 	void *cookie;
1741 	int i;
1742 
1743 	for (i = 0; i < MAX_CONTEXT; i++) {
1744 		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1745 		/* Disrupt any clients that could be running */
1746 		/* e.g. clients that survived a master restart */
1747 		writeq_be(0, &ctrl_map->rht_start);
1748 		writeq_be(0, &ctrl_map->rht_cnt_id);
1749 		writeq_be(0, &ctrl_map->ctx_cap);
1750 	}
1751 
1752 	/* Copy frequently used fields into hwq */
1753 	for (i = 0; i < afu->num_hwqs; i++) {
1754 		hwq = get_hwq(afu, i);
1755 		cookie = hwq->ctx_cookie;
1756 
1757 		hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1758 		hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1759 		hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1760 
1761 		/* Program the Endian Control for the master context */
1762 		writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1763 	}
1764 }
1765 
1766 /**
1767  * init_global() - initialize AFU global registers
1768  * @cfg:	Internal structure associated with the host.
1769  */
1770 static int init_global(struct cxlflash_cfg *cfg)
1771 {
1772 	struct afu *afu = cfg->afu;
1773 	struct device *dev = &cfg->dev->dev;
1774 	struct hwq *hwq;
1775 	struct sisl_host_map __iomem *hmap;
1776 	__be64 __iomem *fc_port_regs;
1777 	u64 wwpn[MAX_FC_PORTS];	/* wwpn of AFU ports */
1778 	int i = 0, num_ports = 0;
1779 	int rc = 0;
1780 	int j;
1781 	void *ctx;
1782 	u64 reg;
1783 
1784 	rc = read_vpd(cfg, &wwpn[0]);
1785 	if (rc) {
1786 		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1787 		goto out;
1788 	}
1789 
1790 	/* Set up RRQ and SQ in HWQ for master issued cmds */
1791 	for (i = 0; i < afu->num_hwqs; i++) {
1792 		hwq = get_hwq(afu, i);
1793 		hmap = hwq->host_map;
1794 
1795 		writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1796 		writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1797 		hwq->hrrq_online = true;
1798 
1799 		if (afu_is_sq_cmd_mode(afu)) {
1800 			writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1801 			writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1802 		}
1803 	}
1804 
1805 	/* AFU configuration */
1806 	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1807 	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1808 	/* enable all auto retry options and control endianness */
1809 	/* leave others at default: */
1810 	/* CTX_CAP write protected, mbox_r does not clear on read and */
1811 	/* checker on if dual afu */
1812 	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1813 
1814 	/* Global port select: select either port */
1815 	if (afu->internal_lun) {
1816 		/* Only use port 0 */
1817 		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1818 		num_ports = 0;
1819 	} else {
1820 		writeq_be(PORT_MASK(cfg->num_fc_ports),
1821 			  &afu->afu_map->global.regs.afu_port_sel);
1822 		num_ports = cfg->num_fc_ports;
1823 	}
1824 
1825 	for (i = 0; i < num_ports; i++) {
1826 		fc_port_regs = get_fc_port_regs(cfg, i);
1827 
1828 		/* Unmask all errors (but they are still masked at AFU) */
1829 		writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1830 		/* Clear CRC error cnt & set a threshold */
1831 		(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1832 		writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1833 
1834 		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1835 		if (wwpn[i] != 0)
1836 			afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1837 		/* Programming WWPN back to back causes additional
1838 		 * offline/online transitions and a PLOGI
1839 		 */
1840 		msleep(100);
1841 	}
1842 
1843 	if (afu_is_ocxl_lisn(afu)) {
1844 		/* Set up the LISN effective address for each master */
1845 		for (i = 0; i < afu->num_hwqs; i++) {
1846 			hwq = get_hwq(afu, i);
1847 			ctx = hwq->ctx_cookie;
1848 
1849 			for (j = 0; j < hwq->num_irqs; j++) {
1850 				reg = cfg->ops->get_irq_objhndl(ctx, j);
1851 				writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
1852 			}
1853 
1854 			reg = hwq->ctx_hndl;
1855 			writeq_be(SISL_LISN_PASID(reg, reg),
1856 				  &hwq->ctrl_map->lisn_pasid[0]);
1857 			writeq_be(SISL_LISN_PASID(0UL, reg),
1858 				  &hwq->ctrl_map->lisn_pasid[1]);
1859 		}
1860 	}
1861 
1862 	/* Set up master's own CTX_CAP to allow real mode, host translation */
1863 	/* tables, afu cmds and read/write GSCSI cmds. */
1864 	/* First, unlock ctx_cap write by reading mbox */
1865 	for (i = 0; i < afu->num_hwqs; i++) {
1866 		hwq = get_hwq(afu, i);
1867 
1868 		(void)readq_be(&hwq->ctrl_map->mbox_r);	/* unlock ctx_cap */
1869 		writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1870 			SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1871 			SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1872 			&hwq->ctrl_map->ctx_cap);
1873 	}
1874 
1875 	/*
1876 	 * Determine write-same unmap support for host by evaluating the unmap
1877 	 * sector support bit of the context control register associated with
1878 	 * the primary hardware queue. Note that while this status is reflected
1879 	 * in a context register, the outcome can be assumed to be host-wide.
1880 	 */
1881 	hwq = get_hwq(afu, PRIMARY_HWQ);
1882 	reg = readq_be(&hwq->host_map->ctx_ctrl);
1883 	if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1884 		cfg->ws_unmap = true;
1885 
1886 	/* Initialize heartbeat */
1887 	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1888 out:
1889 	return rc;
1890 }
1891 
1892 /**
1893  * start_afu() - initializes and starts the AFU
1894  * @cfg:	Internal structure associated with the host.
1895  */
1896 static int start_afu(struct cxlflash_cfg *cfg)
1897 {
1898 	struct afu *afu = cfg->afu;
1899 	struct device *dev = &cfg->dev->dev;
1900 	struct hwq *hwq;
1901 	int rc = 0;
1902 	int i;
1903 
1904 	init_pcr(cfg);
1905 
1906 	/* Initialize each HWQ */
1907 	for (i = 0; i < afu->num_hwqs; i++) {
1908 		hwq = get_hwq(afu, i);
1909 
1910 		/* After an AFU reset, RRQ entries are stale, clear them */
1911 		memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1912 
1913 		/* Initialize RRQ pointers */
1914 		hwq->hrrq_start = &hwq->rrq_entry[0];
1915 		hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1916 		hwq->hrrq_curr = hwq->hrrq_start;
1917 		hwq->toggle = 1;
1918 
1919 		/* Initialize spin locks */
1920 		spin_lock_init(&hwq->hrrq_slock);
1921 		spin_lock_init(&hwq->hsq_slock);
1922 
1923 		/* Initialize SQ */
1924 		if (afu_is_sq_cmd_mode(afu)) {
1925 			memset(&hwq->sq, 0, sizeof(hwq->sq));
1926 			hwq->hsq_start = &hwq->sq[0];
1927 			hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1928 			hwq->hsq_curr = hwq->hsq_start;
1929 
1930 			atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1931 		}
1932 
1933 		/* Initialize IRQ poll */
1934 		if (afu_is_irqpoll_enabled(afu))
1935 			irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1936 				      cxlflash_irqpoll);
1937 
1938 	}
1939 
1940 	rc = init_global(cfg);
1941 
1942 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1943 	return rc;
1944 }
1945 
1946 /**
1947  * init_intr() - setup interrupt handlers for the master context
1948  * @cfg:	Internal structure associated with the host.
1949  * @hwq:	Hardware queue to initialize.
1950  *
1951  * Return: 0 on success, -errno on failure
1952  */
1953 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1954 				 struct hwq *hwq)
1955 {
1956 	struct device *dev = &cfg->dev->dev;
1957 	void *ctx = hwq->ctx_cookie;
1958 	int rc = 0;
1959 	enum undo_level level = UNDO_NOOP;
1960 	bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1961 	int num_irqs = hwq->num_irqs;
1962 
1963 	rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1964 	if (unlikely(rc)) {
1965 		dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1966 			__func__, rc);
1967 		level = UNDO_NOOP;
1968 		goto out;
1969 	}
1970 
1971 	rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1972 				   "SISL_MSI_SYNC_ERROR");
1973 	if (unlikely(rc <= 0)) {
1974 		dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1975 		level = FREE_IRQ;
1976 		goto out;
1977 	}
1978 
1979 	rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1980 				   "SISL_MSI_RRQ_UPDATED");
1981 	if (unlikely(rc <= 0)) {
1982 		dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1983 		level = UNMAP_ONE;
1984 		goto out;
1985 	}
1986 
1987 	/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1988 	if (!is_primary_hwq)
1989 		goto out;
1990 
1991 	rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1992 				   "SISL_MSI_ASYNC_ERROR");
1993 	if (unlikely(rc <= 0)) {
1994 		dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1995 		level = UNMAP_TWO;
1996 		goto out;
1997 	}
1998 out:
1999 	return level;
2000 }
2001 
2002 /**
2003  * init_mc() - create and register as the master context
2004  * @cfg:	Internal structure associated with the host.
2005  * index:	HWQ Index of the master context.
2006  *
2007  * Return: 0 on success, -errno on failure
2008  */
2009 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
2010 {
2011 	void *ctx;
2012 	struct device *dev = &cfg->dev->dev;
2013 	struct hwq *hwq = get_hwq(cfg->afu, index);
2014 	int rc = 0;
2015 	int num_irqs;
2016 	enum undo_level level;
2017 
2018 	hwq->afu = cfg->afu;
2019 	hwq->index = index;
2020 	INIT_LIST_HEAD(&hwq->pending_cmds);
2021 
2022 	if (index == PRIMARY_HWQ) {
2023 		ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
2024 		num_irqs = 3;
2025 	} else {
2026 		ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
2027 		num_irqs = 2;
2028 	}
2029 	if (IS_ERR_OR_NULL(ctx)) {
2030 		rc = -ENOMEM;
2031 		goto err1;
2032 	}
2033 
2034 	WARN_ON(hwq->ctx_cookie);
2035 	hwq->ctx_cookie = ctx;
2036 	hwq->num_irqs = num_irqs;
2037 
2038 	/* Set it up as a master with the CXL */
2039 	cfg->ops->set_master(ctx);
2040 
2041 	/* Reset AFU when initializing primary context */
2042 	if (index == PRIMARY_HWQ) {
2043 		rc = cfg->ops->afu_reset(ctx);
2044 		if (unlikely(rc)) {
2045 			dev_err(dev, "%s: AFU reset failed rc=%d\n",
2046 				      __func__, rc);
2047 			goto err1;
2048 		}
2049 	}
2050 
2051 	level = init_intr(cfg, hwq);
2052 	if (unlikely(level)) {
2053 		dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2054 		goto err2;
2055 	}
2056 
2057 	/* Finally, activate the context by starting it */
2058 	rc = cfg->ops->start_context(hwq->ctx_cookie);
2059 	if (unlikely(rc)) {
2060 		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2061 		level = UNMAP_THREE;
2062 		goto err2;
2063 	}
2064 
2065 out:
2066 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2067 	return rc;
2068 err2:
2069 	term_intr(cfg, level, index);
2070 	if (index != PRIMARY_HWQ)
2071 		cfg->ops->release_context(ctx);
2072 err1:
2073 	hwq->ctx_cookie = NULL;
2074 	goto out;
2075 }
2076 
2077 /**
2078  * get_num_afu_ports() - determines and configures the number of AFU ports
2079  * @cfg:	Internal structure associated with the host.
2080  *
2081  * This routine determines the number of AFU ports by converting the global
2082  * port selection mask. The converted value is only valid following an AFU
2083  * reset (explicit or power-on). This routine must be invoked shortly after
2084  * mapping as other routines are dependent on the number of ports during the
2085  * initialization sequence.
2086  *
2087  * To support legacy AFUs that might not have reflected an initial global
2088  * port mask (value read is 0), default to the number of ports originally
2089  * supported by the cxlflash driver (2) before hardware with other port
2090  * offerings was introduced.
2091  */
2092 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2093 {
2094 	struct afu *afu = cfg->afu;
2095 	struct device *dev = &cfg->dev->dev;
2096 	u64 port_mask;
2097 	int num_fc_ports = LEGACY_FC_PORTS;
2098 
2099 	port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2100 	if (port_mask != 0ULL)
2101 		num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2102 
2103 	dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2104 		__func__, port_mask, num_fc_ports);
2105 
2106 	cfg->num_fc_ports = num_fc_ports;
2107 	cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2108 }
2109 
2110 /**
2111  * init_afu() - setup as master context and start AFU
2112  * @cfg:	Internal structure associated with the host.
2113  *
2114  * This routine is a higher level of control for configuring the
2115  * AFU on probe and reset paths.
2116  *
2117  * Return: 0 on success, -errno on failure
2118  */
2119 static int init_afu(struct cxlflash_cfg *cfg)
2120 {
2121 	u64 reg;
2122 	int rc = 0;
2123 	struct afu *afu = cfg->afu;
2124 	struct device *dev = &cfg->dev->dev;
2125 	struct hwq *hwq;
2126 	int i;
2127 
2128 	cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2129 
2130 	mutex_init(&afu->sync_active);
2131 	afu->num_hwqs = afu->desired_hwqs;
2132 	for (i = 0; i < afu->num_hwqs; i++) {
2133 		rc = init_mc(cfg, i);
2134 		if (rc) {
2135 			dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2136 				__func__, rc, i);
2137 			goto err1;
2138 		}
2139 	}
2140 
2141 	/* Map the entire MMIO space of the AFU using the first context */
2142 	hwq = get_hwq(afu, PRIMARY_HWQ);
2143 	afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2144 	if (!afu->afu_map) {
2145 		dev_err(dev, "%s: psa_map failed\n", __func__);
2146 		rc = -ENOMEM;
2147 		goto err1;
2148 	}
2149 
2150 	/* No byte reverse on reading afu_version or string will be backwards */
2151 	reg = readq(&afu->afu_map->global.regs.afu_version);
2152 	memcpy(afu->version, &reg, sizeof(reg));
2153 	afu->interface_version =
2154 	    readq_be(&afu->afu_map->global.regs.interface_version);
2155 	if ((afu->interface_version + 1) == 0) {
2156 		dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2157 			"interface version %016llx\n", afu->version,
2158 		       afu->interface_version);
2159 		rc = -EINVAL;
2160 		goto err1;
2161 	}
2162 
2163 	if (afu_is_sq_cmd_mode(afu)) {
2164 		afu->send_cmd = send_cmd_sq;
2165 		afu->context_reset = context_reset_sq;
2166 	} else {
2167 		afu->send_cmd = send_cmd_ioarrin;
2168 		afu->context_reset = context_reset_ioarrin;
2169 	}
2170 
2171 	dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2172 		afu->version, afu->interface_version);
2173 
2174 	get_num_afu_ports(cfg);
2175 
2176 	rc = start_afu(cfg);
2177 	if (rc) {
2178 		dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2179 		goto err1;
2180 	}
2181 
2182 	afu_err_intr_init(cfg->afu);
2183 	for (i = 0; i < afu->num_hwqs; i++) {
2184 		hwq = get_hwq(afu, i);
2185 
2186 		hwq->room = readq_be(&hwq->host_map->cmd_room);
2187 	}
2188 
2189 	/* Restore the LUN mappings */
2190 	cxlflash_restore_luntable(cfg);
2191 out:
2192 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2193 	return rc;
2194 
2195 err1:
2196 	for (i = afu->num_hwqs - 1; i >= 0; i--) {
2197 		term_intr(cfg, UNMAP_THREE, i);
2198 		term_mc(cfg, i);
2199 	}
2200 	goto out;
2201 }
2202 
2203 /**
2204  * afu_reset() - resets the AFU
2205  * @cfg:	Internal structure associated with the host.
2206  *
2207  * Return: 0 on success, -errno on failure
2208  */
2209 static int afu_reset(struct cxlflash_cfg *cfg)
2210 {
2211 	struct device *dev = &cfg->dev->dev;
2212 	int rc = 0;
2213 
2214 	/* Stop the context before the reset. Since the context is
2215 	 * no longer available restart it after the reset is complete
2216 	 */
2217 	term_afu(cfg);
2218 
2219 	rc = init_afu(cfg);
2220 
2221 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2222 	return rc;
2223 }
2224 
2225 /**
2226  * drain_ioctls() - wait until all currently executing ioctls have completed
2227  * @cfg:	Internal structure associated with the host.
2228  *
2229  * Obtain write access to read/write semaphore that wraps ioctl
2230  * handling to 'drain' ioctls currently executing.
2231  */
2232 static void drain_ioctls(struct cxlflash_cfg *cfg)
2233 {
2234 	down_write(&cfg->ioctl_rwsem);
2235 	up_write(&cfg->ioctl_rwsem);
2236 }
2237 
2238 /**
2239  * cxlflash_async_reset_host() - asynchronous host reset handler
2240  * @data:	Private data provided while scheduling reset.
2241  * @cookie:	Cookie that can be used for checkpointing.
2242  */
2243 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2244 {
2245 	struct cxlflash_cfg *cfg = data;
2246 	struct device *dev = &cfg->dev->dev;
2247 	int rc = 0;
2248 
2249 	if (cfg->state != STATE_RESET) {
2250 		dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2251 			__func__, cfg->state);
2252 		goto out;
2253 	}
2254 
2255 	drain_ioctls(cfg);
2256 	cxlflash_mark_contexts_error(cfg);
2257 	rc = afu_reset(cfg);
2258 	if (rc)
2259 		cfg->state = STATE_FAILTERM;
2260 	else
2261 		cfg->state = STATE_NORMAL;
2262 	wake_up_all(&cfg->reset_waitq);
2263 
2264 out:
2265 	scsi_unblock_requests(cfg->host);
2266 }
2267 
2268 /**
2269  * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2270  * @cfg:	Internal structure associated with the host.
2271  */
2272 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2273 {
2274 	struct device *dev = &cfg->dev->dev;
2275 
2276 	if (cfg->state != STATE_NORMAL) {
2277 		dev_dbg(dev, "%s: Not performing reset state=%d\n",
2278 			__func__, cfg->state);
2279 		return;
2280 	}
2281 
2282 	cfg->state = STATE_RESET;
2283 	scsi_block_requests(cfg->host);
2284 	cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2285 						 cfg);
2286 }
2287 
2288 /**
2289  * send_afu_cmd() - builds and sends an internal AFU command
2290  * @afu:	AFU associated with the host.
2291  * @rcb:	Pre-populated IOARCB describing command to send.
2292  *
2293  * The AFU can only take one internal AFU command at a time. This limitation is
2294  * enforced by using a mutex to provide exclusive access to the AFU during the
2295  * operation. This design point requires calling threads to not be on interrupt
2296  * context due to the possibility of sleeping during concurrent AFU operations.
2297  *
2298  * The command status is optionally passed back to the caller when the caller
2299  * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2300  *
2301  * Return:
2302  *	0 on success, -errno on failure
2303  */
2304 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2305 {
2306 	struct cxlflash_cfg *cfg = afu->parent;
2307 	struct device *dev = &cfg->dev->dev;
2308 	struct afu_cmd *cmd = NULL;
2309 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2310 	ulong lock_flags;
2311 	char *buf = NULL;
2312 	int rc = 0;
2313 	int nretry = 0;
2314 
2315 	if (cfg->state != STATE_NORMAL) {
2316 		dev_dbg(dev, "%s: Sync not required state=%u\n",
2317 			__func__, cfg->state);
2318 		return 0;
2319 	}
2320 
2321 	mutex_lock(&afu->sync_active);
2322 	atomic_inc(&afu->cmds_active);
2323 	buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2324 	if (unlikely(!buf)) {
2325 		dev_err(dev, "%s: no memory for command\n", __func__);
2326 		rc = -ENOMEM;
2327 		goto out;
2328 	}
2329 
2330 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2331 
2332 retry:
2333 	memset(cmd, 0, sizeof(*cmd));
2334 	memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2335 	INIT_LIST_HEAD(&cmd->queue);
2336 	init_completion(&cmd->cevent);
2337 	cmd->parent = afu;
2338 	cmd->hwq_index = hwq->index;
2339 	cmd->rcb.ctx_id = hwq->ctx_hndl;
2340 
2341 	dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2342 		__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2343 
2344 	rc = afu->send_cmd(afu, cmd);
2345 	if (unlikely(rc)) {
2346 		rc = -ENOBUFS;
2347 		goto out;
2348 	}
2349 
2350 	rc = wait_resp(afu, cmd);
2351 	switch (rc) {
2352 	case -ETIMEDOUT:
2353 		rc = afu->context_reset(hwq);
2354 		if (rc) {
2355 			/* Delete the command from pending_cmds list */
2356 			spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
2357 			list_del(&cmd->list);
2358 			spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
2359 
2360 			cxlflash_schedule_async_reset(cfg);
2361 			break;
2362 		}
2363 		/* fall through - to retry */
2364 	case -EAGAIN:
2365 		if (++nretry < 2)
2366 			goto retry;
2367 		/* fall through - to exit */
2368 	default:
2369 		break;
2370 	}
2371 
2372 	if (rcb->ioasa)
2373 		*rcb->ioasa = cmd->sa;
2374 out:
2375 	atomic_dec(&afu->cmds_active);
2376 	mutex_unlock(&afu->sync_active);
2377 	kfree(buf);
2378 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2379 	return rc;
2380 }
2381 
2382 /**
2383  * cxlflash_afu_sync() - builds and sends an AFU sync command
2384  * @afu:	AFU associated with the host.
2385  * @ctx:	Identifies context requesting sync.
2386  * @res:	Identifies resource requesting sync.
2387  * @mode:	Type of sync to issue (lightweight, heavyweight, global).
2388  *
2389  * AFU sync operations are only necessary and allowed when the device is
2390  * operating normally. When not operating normally, sync requests can occur as
2391  * part of cleaning up resources associated with an adapter prior to removal.
2392  * In this scenario, these requests are simply ignored (safe due to the AFU
2393  * going away).
2394  *
2395  * Return:
2396  *	0 on success, -errno on failure
2397  */
2398 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2399 {
2400 	struct cxlflash_cfg *cfg = afu->parent;
2401 	struct device *dev = &cfg->dev->dev;
2402 	struct sisl_ioarcb rcb = { 0 };
2403 
2404 	dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2405 		__func__, afu, ctx, res, mode);
2406 
2407 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2408 	rcb.msi = SISL_MSI_RRQ_UPDATED;
2409 	rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2410 
2411 	rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2412 	rcb.cdb[1] = mode;
2413 	put_unaligned_be16(ctx, &rcb.cdb[2]);
2414 	put_unaligned_be32(res, &rcb.cdb[4]);
2415 
2416 	return send_afu_cmd(afu, &rcb);
2417 }
2418 
2419 /**
2420  * cxlflash_eh_abort_handler() - abort a SCSI command
2421  * @scp:	SCSI command to abort.
2422  *
2423  * CXL Flash devices do not support a single command abort. Reset the context
2424  * as per SISLite specification. Flush any pending commands in the hardware
2425  * queue before the reset.
2426  *
2427  * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2428  */
2429 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2430 {
2431 	int rc = FAILED;
2432 	struct Scsi_Host *host = scp->device->host;
2433 	struct cxlflash_cfg *cfg = shost_priv(host);
2434 	struct afu_cmd *cmd = sc_to_afuc(scp);
2435 	struct device *dev = &cfg->dev->dev;
2436 	struct afu *afu = cfg->afu;
2437 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2438 
2439 	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2440 		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2441 		scp->device->channel, scp->device->id, scp->device->lun,
2442 		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2443 		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2444 		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2445 		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2446 
2447 	/* When the state is not normal, another reset/reload is in progress.
2448 	 * Return failed and the mid-layer will invoke host reset handler.
2449 	 */
2450 	if (cfg->state != STATE_NORMAL) {
2451 		dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2452 			__func__, cfg->state);
2453 		goto out;
2454 	}
2455 
2456 	rc = afu->context_reset(hwq);
2457 	if (unlikely(rc))
2458 		goto out;
2459 
2460 	rc = SUCCESS;
2461 
2462 out:
2463 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2464 	return rc;
2465 }
2466 
2467 /**
2468  * cxlflash_eh_device_reset_handler() - reset a single LUN
2469  * @scp:	SCSI command to send.
2470  *
2471  * Return:
2472  *	SUCCESS as defined in scsi/scsi.h
2473  *	FAILED as defined in scsi/scsi.h
2474  */
2475 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2476 {
2477 	int rc = SUCCESS;
2478 	struct scsi_device *sdev = scp->device;
2479 	struct Scsi_Host *host = sdev->host;
2480 	struct cxlflash_cfg *cfg = shost_priv(host);
2481 	struct device *dev = &cfg->dev->dev;
2482 	int rcr = 0;
2483 
2484 	dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2485 		host->host_no, sdev->channel, sdev->id, sdev->lun);
2486 retry:
2487 	switch (cfg->state) {
2488 	case STATE_NORMAL:
2489 		rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2490 		if (unlikely(rcr))
2491 			rc = FAILED;
2492 		break;
2493 	case STATE_RESET:
2494 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2495 		goto retry;
2496 	default:
2497 		rc = FAILED;
2498 		break;
2499 	}
2500 
2501 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2502 	return rc;
2503 }
2504 
2505 /**
2506  * cxlflash_eh_host_reset_handler() - reset the host adapter
2507  * @scp:	SCSI command from stack identifying host.
2508  *
2509  * Following a reset, the state is evaluated again in case an EEH occurred
2510  * during the reset. In such a scenario, the host reset will either yield
2511  * until the EEH recovery is complete or return success or failure based
2512  * upon the current device state.
2513  *
2514  * Return:
2515  *	SUCCESS as defined in scsi/scsi.h
2516  *	FAILED as defined in scsi/scsi.h
2517  */
2518 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2519 {
2520 	int rc = SUCCESS;
2521 	int rcr = 0;
2522 	struct Scsi_Host *host = scp->device->host;
2523 	struct cxlflash_cfg *cfg = shost_priv(host);
2524 	struct device *dev = &cfg->dev->dev;
2525 
2526 	dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2527 
2528 	switch (cfg->state) {
2529 	case STATE_NORMAL:
2530 		cfg->state = STATE_RESET;
2531 		drain_ioctls(cfg);
2532 		cxlflash_mark_contexts_error(cfg);
2533 		rcr = afu_reset(cfg);
2534 		if (rcr) {
2535 			rc = FAILED;
2536 			cfg->state = STATE_FAILTERM;
2537 		} else
2538 			cfg->state = STATE_NORMAL;
2539 		wake_up_all(&cfg->reset_waitq);
2540 		ssleep(1);
2541 		/* fall through */
2542 	case STATE_RESET:
2543 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2544 		if (cfg->state == STATE_NORMAL)
2545 			break;
2546 		/* fall through */
2547 	default:
2548 		rc = FAILED;
2549 		break;
2550 	}
2551 
2552 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2553 	return rc;
2554 }
2555 
2556 /**
2557  * cxlflash_change_queue_depth() - change the queue depth for the device
2558  * @sdev:	SCSI device destined for queue depth change.
2559  * @qdepth:	Requested queue depth value to set.
2560  *
2561  * The requested queue depth is capped to the maximum supported value.
2562  *
2563  * Return: The actual queue depth set.
2564  */
2565 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2566 {
2567 
2568 	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2569 		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2570 
2571 	scsi_change_queue_depth(sdev, qdepth);
2572 	return sdev->queue_depth;
2573 }
2574 
2575 /**
2576  * cxlflash_show_port_status() - queries and presents the current port status
2577  * @port:	Desired port for status reporting.
2578  * @cfg:	Internal structure associated with the host.
2579  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2580  *
2581  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2582  */
2583 static ssize_t cxlflash_show_port_status(u32 port,
2584 					 struct cxlflash_cfg *cfg,
2585 					 char *buf)
2586 {
2587 	struct device *dev = &cfg->dev->dev;
2588 	char *disp_status;
2589 	u64 status;
2590 	__be64 __iomem *fc_port_regs;
2591 
2592 	WARN_ON(port >= MAX_FC_PORTS);
2593 
2594 	if (port >= cfg->num_fc_ports) {
2595 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2596 			__func__, port);
2597 		return -EINVAL;
2598 	}
2599 
2600 	fc_port_regs = get_fc_port_regs(cfg, port);
2601 	status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2602 	status &= FC_MTIP_STATUS_MASK;
2603 
2604 	if (status == FC_MTIP_STATUS_ONLINE)
2605 		disp_status = "online";
2606 	else if (status == FC_MTIP_STATUS_OFFLINE)
2607 		disp_status = "offline";
2608 	else
2609 		disp_status = "unknown";
2610 
2611 	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2612 }
2613 
2614 /**
2615  * port0_show() - queries and presents the current status of port 0
2616  * @dev:	Generic device associated with the host owning the port.
2617  * @attr:	Device attribute representing the port.
2618  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2619  *
2620  * Return: The size of the ASCII string returned in @buf.
2621  */
2622 static ssize_t port0_show(struct device *dev,
2623 			  struct device_attribute *attr,
2624 			  char *buf)
2625 {
2626 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2627 
2628 	return cxlflash_show_port_status(0, cfg, buf);
2629 }
2630 
2631 /**
2632  * port1_show() - queries and presents the current status of port 1
2633  * @dev:	Generic device associated with the host owning the port.
2634  * @attr:	Device attribute representing the port.
2635  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2636  *
2637  * Return: The size of the ASCII string returned in @buf.
2638  */
2639 static ssize_t port1_show(struct device *dev,
2640 			  struct device_attribute *attr,
2641 			  char *buf)
2642 {
2643 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2644 
2645 	return cxlflash_show_port_status(1, cfg, buf);
2646 }
2647 
2648 /**
2649  * port2_show() - queries and presents the current status of port 2
2650  * @dev:	Generic device associated with the host owning the port.
2651  * @attr:	Device attribute representing the port.
2652  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2653  *
2654  * Return: The size of the ASCII string returned in @buf.
2655  */
2656 static ssize_t port2_show(struct device *dev,
2657 			  struct device_attribute *attr,
2658 			  char *buf)
2659 {
2660 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2661 
2662 	return cxlflash_show_port_status(2, cfg, buf);
2663 }
2664 
2665 /**
2666  * port3_show() - queries and presents the current status of port 3
2667  * @dev:	Generic device associated with the host owning the port.
2668  * @attr:	Device attribute representing the port.
2669  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2670  *
2671  * Return: The size of the ASCII string returned in @buf.
2672  */
2673 static ssize_t port3_show(struct device *dev,
2674 			  struct device_attribute *attr,
2675 			  char *buf)
2676 {
2677 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2678 
2679 	return cxlflash_show_port_status(3, cfg, buf);
2680 }
2681 
2682 /**
2683  * lun_mode_show() - presents the current LUN mode of the host
2684  * @dev:	Generic device associated with the host.
2685  * @attr:	Device attribute representing the LUN mode.
2686  * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2687  *
2688  * Return: The size of the ASCII string returned in @buf.
2689  */
2690 static ssize_t lun_mode_show(struct device *dev,
2691 			     struct device_attribute *attr, char *buf)
2692 {
2693 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2694 	struct afu *afu = cfg->afu;
2695 
2696 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2697 }
2698 
2699 /**
2700  * lun_mode_store() - sets the LUN mode of the host
2701  * @dev:	Generic device associated with the host.
2702  * @attr:	Device attribute representing the LUN mode.
2703  * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2704  * @count:	Length of data resizing in @buf.
2705  *
2706  * The CXL Flash AFU supports a dummy LUN mode where the external
2707  * links and storage are not required. Space on the FPGA is used
2708  * to create 1 or 2 small LUNs which are presented to the system
2709  * as if they were a normal storage device. This feature is useful
2710  * during development and also provides manufacturing with a way
2711  * to test the AFU without an actual device.
2712  *
2713  * 0 = external LUN[s] (default)
2714  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2715  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2716  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2717  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2718  *
2719  * Return: The size of the ASCII string returned in @buf.
2720  */
2721 static ssize_t lun_mode_store(struct device *dev,
2722 			      struct device_attribute *attr,
2723 			      const char *buf, size_t count)
2724 {
2725 	struct Scsi_Host *shost = class_to_shost(dev);
2726 	struct cxlflash_cfg *cfg = shost_priv(shost);
2727 	struct afu *afu = cfg->afu;
2728 	int rc;
2729 	u32 lun_mode;
2730 
2731 	rc = kstrtouint(buf, 10, &lun_mode);
2732 	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2733 		afu->internal_lun = lun_mode;
2734 
2735 		/*
2736 		 * When configured for internal LUN, there is only one channel,
2737 		 * channel number 0, else there will be one less than the number
2738 		 * of fc ports for this card.
2739 		 */
2740 		if (afu->internal_lun)
2741 			shost->max_channel = 0;
2742 		else
2743 			shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2744 
2745 		afu_reset(cfg);
2746 		scsi_scan_host(cfg->host);
2747 	}
2748 
2749 	return count;
2750 }
2751 
2752 /**
2753  * ioctl_version_show() - presents the current ioctl version of the host
2754  * @dev:	Generic device associated with the host.
2755  * @attr:	Device attribute representing the ioctl version.
2756  * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2757  *
2758  * Return: The size of the ASCII string returned in @buf.
2759  */
2760 static ssize_t ioctl_version_show(struct device *dev,
2761 				  struct device_attribute *attr, char *buf)
2762 {
2763 	ssize_t bytes = 0;
2764 
2765 	bytes = scnprintf(buf, PAGE_SIZE,
2766 			  "disk: %u\n", DK_CXLFLASH_VERSION_0);
2767 	bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2768 			   "host: %u\n", HT_CXLFLASH_VERSION_0);
2769 
2770 	return bytes;
2771 }
2772 
2773 /**
2774  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2775  * @port:	Desired port for status reporting.
2776  * @cfg:	Internal structure associated with the host.
2777  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2778  *
2779  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2780  */
2781 static ssize_t cxlflash_show_port_lun_table(u32 port,
2782 					    struct cxlflash_cfg *cfg,
2783 					    char *buf)
2784 {
2785 	struct device *dev = &cfg->dev->dev;
2786 	__be64 __iomem *fc_port_luns;
2787 	int i;
2788 	ssize_t bytes = 0;
2789 
2790 	WARN_ON(port >= MAX_FC_PORTS);
2791 
2792 	if (port >= cfg->num_fc_ports) {
2793 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2794 			__func__, port);
2795 		return -EINVAL;
2796 	}
2797 
2798 	fc_port_luns = get_fc_port_luns(cfg, port);
2799 
2800 	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2801 		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2802 				   "%03d: %016llx\n",
2803 				   i, readq_be(&fc_port_luns[i]));
2804 	return bytes;
2805 }
2806 
2807 /**
2808  * port0_lun_table_show() - presents the current LUN table of port 0
2809  * @dev:	Generic device associated with the host owning the port.
2810  * @attr:	Device attribute representing the port.
2811  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2812  *
2813  * Return: The size of the ASCII string returned in @buf.
2814  */
2815 static ssize_t port0_lun_table_show(struct device *dev,
2816 				    struct device_attribute *attr,
2817 				    char *buf)
2818 {
2819 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2820 
2821 	return cxlflash_show_port_lun_table(0, cfg, buf);
2822 }
2823 
2824 /**
2825  * port1_lun_table_show() - presents the current LUN table of port 1
2826  * @dev:	Generic device associated with the host owning the port.
2827  * @attr:	Device attribute representing the port.
2828  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2829  *
2830  * Return: The size of the ASCII string returned in @buf.
2831  */
2832 static ssize_t port1_lun_table_show(struct device *dev,
2833 				    struct device_attribute *attr,
2834 				    char *buf)
2835 {
2836 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2837 
2838 	return cxlflash_show_port_lun_table(1, cfg, buf);
2839 }
2840 
2841 /**
2842  * port2_lun_table_show() - presents the current LUN table of port 2
2843  * @dev:	Generic device associated with the host owning the port.
2844  * @attr:	Device attribute representing the port.
2845  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2846  *
2847  * Return: The size of the ASCII string returned in @buf.
2848  */
2849 static ssize_t port2_lun_table_show(struct device *dev,
2850 				    struct device_attribute *attr,
2851 				    char *buf)
2852 {
2853 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2854 
2855 	return cxlflash_show_port_lun_table(2, cfg, buf);
2856 }
2857 
2858 /**
2859  * port3_lun_table_show() - presents the current LUN table of port 3
2860  * @dev:	Generic device associated with the host owning the port.
2861  * @attr:	Device attribute representing the port.
2862  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2863  *
2864  * Return: The size of the ASCII string returned in @buf.
2865  */
2866 static ssize_t port3_lun_table_show(struct device *dev,
2867 				    struct device_attribute *attr,
2868 				    char *buf)
2869 {
2870 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2871 
2872 	return cxlflash_show_port_lun_table(3, cfg, buf);
2873 }
2874 
2875 /**
2876  * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2877  * @dev:	Generic device associated with the host.
2878  * @attr:	Device attribute representing the IRQ poll weight.
2879  * @buf:	Buffer of length PAGE_SIZE to report back the current IRQ poll
2880  *		weight in ASCII.
2881  *
2882  * An IRQ poll weight of 0 indicates polling is disabled.
2883  *
2884  * Return: The size of the ASCII string returned in @buf.
2885  */
2886 static ssize_t irqpoll_weight_show(struct device *dev,
2887 				   struct device_attribute *attr, char *buf)
2888 {
2889 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2890 	struct afu *afu = cfg->afu;
2891 
2892 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2893 }
2894 
2895 /**
2896  * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2897  * @dev:	Generic device associated with the host.
2898  * @attr:	Device attribute representing the IRQ poll weight.
2899  * @buf:	Buffer of length PAGE_SIZE containing the desired IRQ poll
2900  *		weight in ASCII.
2901  * @count:	Length of data resizing in @buf.
2902  *
2903  * An IRQ poll weight of 0 indicates polling is disabled.
2904  *
2905  * Return: The size of the ASCII string returned in @buf.
2906  */
2907 static ssize_t irqpoll_weight_store(struct device *dev,
2908 				    struct device_attribute *attr,
2909 				    const char *buf, size_t count)
2910 {
2911 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2912 	struct device *cfgdev = &cfg->dev->dev;
2913 	struct afu *afu = cfg->afu;
2914 	struct hwq *hwq;
2915 	u32 weight;
2916 	int rc, i;
2917 
2918 	rc = kstrtouint(buf, 10, &weight);
2919 	if (rc)
2920 		return -EINVAL;
2921 
2922 	if (weight > 256) {
2923 		dev_info(cfgdev,
2924 			 "Invalid IRQ poll weight. It must be 256 or less.\n");
2925 		return -EINVAL;
2926 	}
2927 
2928 	if (weight == afu->irqpoll_weight) {
2929 		dev_info(cfgdev,
2930 			 "Current IRQ poll weight has the same weight.\n");
2931 		return -EINVAL;
2932 	}
2933 
2934 	if (afu_is_irqpoll_enabled(afu)) {
2935 		for (i = 0; i < afu->num_hwqs; i++) {
2936 			hwq = get_hwq(afu, i);
2937 
2938 			irq_poll_disable(&hwq->irqpoll);
2939 		}
2940 	}
2941 
2942 	afu->irqpoll_weight = weight;
2943 
2944 	if (weight > 0) {
2945 		for (i = 0; i < afu->num_hwqs; i++) {
2946 			hwq = get_hwq(afu, i);
2947 
2948 			irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2949 		}
2950 	}
2951 
2952 	return count;
2953 }
2954 
2955 /**
2956  * num_hwqs_show() - presents the number of hardware queues for the host
2957  * @dev:	Generic device associated with the host.
2958  * @attr:	Device attribute representing the number of hardware queues.
2959  * @buf:	Buffer of length PAGE_SIZE to report back the number of hardware
2960  *		queues in ASCII.
2961  *
2962  * Return: The size of the ASCII string returned in @buf.
2963  */
2964 static ssize_t num_hwqs_show(struct device *dev,
2965 			     struct device_attribute *attr, char *buf)
2966 {
2967 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2968 	struct afu *afu = cfg->afu;
2969 
2970 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2971 }
2972 
2973 /**
2974  * num_hwqs_store() - sets the number of hardware queues for the host
2975  * @dev:	Generic device associated with the host.
2976  * @attr:	Device attribute representing the number of hardware queues.
2977  * @buf:	Buffer of length PAGE_SIZE containing the number of hardware
2978  *		queues in ASCII.
2979  * @count:	Length of data resizing in @buf.
2980  *
2981  * n > 0: num_hwqs = n
2982  * n = 0: num_hwqs = num_online_cpus()
2983  * n < 0: num_online_cpus() / abs(n)
2984  *
2985  * Return: The size of the ASCII string returned in @buf.
2986  */
2987 static ssize_t num_hwqs_store(struct device *dev,
2988 			      struct device_attribute *attr,
2989 			      const char *buf, size_t count)
2990 {
2991 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2992 	struct afu *afu = cfg->afu;
2993 	int rc;
2994 	int nhwqs, num_hwqs;
2995 
2996 	rc = kstrtoint(buf, 10, &nhwqs);
2997 	if (rc)
2998 		return -EINVAL;
2999 
3000 	if (nhwqs >= 1)
3001 		num_hwqs = nhwqs;
3002 	else if (nhwqs == 0)
3003 		num_hwqs = num_online_cpus();
3004 	else
3005 		num_hwqs = num_online_cpus() / abs(nhwqs);
3006 
3007 	afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
3008 	WARN_ON_ONCE(afu->desired_hwqs == 0);
3009 
3010 retry:
3011 	switch (cfg->state) {
3012 	case STATE_NORMAL:
3013 		cfg->state = STATE_RESET;
3014 		drain_ioctls(cfg);
3015 		cxlflash_mark_contexts_error(cfg);
3016 		rc = afu_reset(cfg);
3017 		if (rc)
3018 			cfg->state = STATE_FAILTERM;
3019 		else
3020 			cfg->state = STATE_NORMAL;
3021 		wake_up_all(&cfg->reset_waitq);
3022 		break;
3023 	case STATE_RESET:
3024 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
3025 		if (cfg->state == STATE_NORMAL)
3026 			goto retry;
3027 		/* else, fall through */
3028 	default:
3029 		/* Ideally should not happen */
3030 		dev_err(dev, "%s: Device is not ready, state=%d\n",
3031 			__func__, cfg->state);
3032 		break;
3033 	}
3034 
3035 	return count;
3036 }
3037 
3038 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3039 
3040 /**
3041  * hwq_mode_show() - presents the HWQ steering mode for the host
3042  * @dev:	Generic device associated with the host.
3043  * @attr:	Device attribute representing the HWQ steering mode.
3044  * @buf:	Buffer of length PAGE_SIZE to report back the HWQ steering mode
3045  *		as a character string.
3046  *
3047  * Return: The size of the ASCII string returned in @buf.
3048  */
3049 static ssize_t hwq_mode_show(struct device *dev,
3050 			     struct device_attribute *attr, char *buf)
3051 {
3052 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3053 	struct afu *afu = cfg->afu;
3054 
3055 	return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3056 }
3057 
3058 /**
3059  * hwq_mode_store() - sets the HWQ steering mode for the host
3060  * @dev:	Generic device associated with the host.
3061  * @attr:	Device attribute representing the HWQ steering mode.
3062  * @buf:	Buffer of length PAGE_SIZE containing the HWQ steering mode
3063  *		as a character string.
3064  * @count:	Length of data resizing in @buf.
3065  *
3066  * rr = Round-Robin
3067  * tag = Block MQ Tagging
3068  * cpu = CPU Affinity
3069  *
3070  * Return: The size of the ASCII string returned in @buf.
3071  */
3072 static ssize_t hwq_mode_store(struct device *dev,
3073 			      struct device_attribute *attr,
3074 			      const char *buf, size_t count)
3075 {
3076 	struct Scsi_Host *shost = class_to_shost(dev);
3077 	struct cxlflash_cfg *cfg = shost_priv(shost);
3078 	struct device *cfgdev = &cfg->dev->dev;
3079 	struct afu *afu = cfg->afu;
3080 	int i;
3081 	u32 mode = MAX_HWQ_MODE;
3082 
3083 	for (i = 0; i < MAX_HWQ_MODE; i++) {
3084 		if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3085 			mode = i;
3086 			break;
3087 		}
3088 	}
3089 
3090 	if (mode >= MAX_HWQ_MODE) {
3091 		dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3092 		return -EINVAL;
3093 	}
3094 
3095 	afu->hwq_mode = mode;
3096 
3097 	return count;
3098 }
3099 
3100 /**
3101  * mode_show() - presents the current mode of the device
3102  * @dev:	Generic device associated with the device.
3103  * @attr:	Device attribute representing the device mode.
3104  * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3105  *
3106  * Return: The size of the ASCII string returned in @buf.
3107  */
3108 static ssize_t mode_show(struct device *dev,
3109 			 struct device_attribute *attr, char *buf)
3110 {
3111 	struct scsi_device *sdev = to_scsi_device(dev);
3112 
3113 	return scnprintf(buf, PAGE_SIZE, "%s\n",
3114 			 sdev->hostdata ? "superpipe" : "legacy");
3115 }
3116 
3117 /*
3118  * Host attributes
3119  */
3120 static DEVICE_ATTR_RO(port0);
3121 static DEVICE_ATTR_RO(port1);
3122 static DEVICE_ATTR_RO(port2);
3123 static DEVICE_ATTR_RO(port3);
3124 static DEVICE_ATTR_RW(lun_mode);
3125 static DEVICE_ATTR_RO(ioctl_version);
3126 static DEVICE_ATTR_RO(port0_lun_table);
3127 static DEVICE_ATTR_RO(port1_lun_table);
3128 static DEVICE_ATTR_RO(port2_lun_table);
3129 static DEVICE_ATTR_RO(port3_lun_table);
3130 static DEVICE_ATTR_RW(irqpoll_weight);
3131 static DEVICE_ATTR_RW(num_hwqs);
3132 static DEVICE_ATTR_RW(hwq_mode);
3133 
3134 static struct device_attribute *cxlflash_host_attrs[] = {
3135 	&dev_attr_port0,
3136 	&dev_attr_port1,
3137 	&dev_attr_port2,
3138 	&dev_attr_port3,
3139 	&dev_attr_lun_mode,
3140 	&dev_attr_ioctl_version,
3141 	&dev_attr_port0_lun_table,
3142 	&dev_attr_port1_lun_table,
3143 	&dev_attr_port2_lun_table,
3144 	&dev_attr_port3_lun_table,
3145 	&dev_attr_irqpoll_weight,
3146 	&dev_attr_num_hwqs,
3147 	&dev_attr_hwq_mode,
3148 	NULL
3149 };
3150 
3151 /*
3152  * Device attributes
3153  */
3154 static DEVICE_ATTR_RO(mode);
3155 
3156 static struct device_attribute *cxlflash_dev_attrs[] = {
3157 	&dev_attr_mode,
3158 	NULL
3159 };
3160 
3161 /*
3162  * Host template
3163  */
3164 static struct scsi_host_template driver_template = {
3165 	.module = THIS_MODULE,
3166 	.name = CXLFLASH_ADAPTER_NAME,
3167 	.info = cxlflash_driver_info,
3168 	.ioctl = cxlflash_ioctl,
3169 	.proc_name = CXLFLASH_NAME,
3170 	.queuecommand = cxlflash_queuecommand,
3171 	.eh_abort_handler = cxlflash_eh_abort_handler,
3172 	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3173 	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3174 	.change_queue_depth = cxlflash_change_queue_depth,
3175 	.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3176 	.can_queue = CXLFLASH_MAX_CMDS,
3177 	.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3178 	.this_id = -1,
3179 	.sg_tablesize = 1,	/* No scatter gather support */
3180 	.max_sectors = CXLFLASH_MAX_SECTORS,
3181 	.shost_attrs = cxlflash_host_attrs,
3182 	.sdev_attrs = cxlflash_dev_attrs,
3183 };
3184 
3185 /*
3186  * Device dependent values
3187  */
3188 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3189 					CXLFLASH_WWPN_VPD_REQUIRED };
3190 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3191 					CXLFLASH_NOTIFY_SHUTDOWN };
3192 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3193 					(CXLFLASH_NOTIFY_SHUTDOWN |
3194 					CXLFLASH_OCXL_DEV) };
3195 
3196 /*
3197  * PCI device binding table
3198  */
3199 static struct pci_device_id cxlflash_pci_table[] = {
3200 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3201 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3202 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3203 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3204 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3205 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3206 	{}
3207 };
3208 
3209 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3210 
3211 /**
3212  * cxlflash_worker_thread() - work thread handler for the AFU
3213  * @work:	Work structure contained within cxlflash associated with host.
3214  *
3215  * Handles the following events:
3216  * - Link reset which cannot be performed on interrupt context due to
3217  * blocking up to a few seconds
3218  * - Rescan the host
3219  */
3220 static void cxlflash_worker_thread(struct work_struct *work)
3221 {
3222 	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3223 						work_q);
3224 	struct afu *afu = cfg->afu;
3225 	struct device *dev = &cfg->dev->dev;
3226 	__be64 __iomem *fc_port_regs;
3227 	int port;
3228 	ulong lock_flags;
3229 
3230 	/* Avoid MMIO if the device has failed */
3231 
3232 	if (cfg->state != STATE_NORMAL)
3233 		return;
3234 
3235 	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3236 
3237 	if (cfg->lr_state == LINK_RESET_REQUIRED) {
3238 		port = cfg->lr_port;
3239 		if (port < 0)
3240 			dev_err(dev, "%s: invalid port index %d\n",
3241 				__func__, port);
3242 		else {
3243 			spin_unlock_irqrestore(cfg->host->host_lock,
3244 					       lock_flags);
3245 
3246 			/* The reset can block... */
3247 			fc_port_regs = get_fc_port_regs(cfg, port);
3248 			afu_link_reset(afu, port, fc_port_regs);
3249 			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3250 		}
3251 
3252 		cfg->lr_state = LINK_RESET_COMPLETE;
3253 	}
3254 
3255 	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3256 
3257 	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3258 		scsi_scan_host(cfg->host);
3259 }
3260 
3261 /**
3262  * cxlflash_chr_open() - character device open handler
3263  * @inode:	Device inode associated with this character device.
3264  * @file:	File pointer for this device.
3265  *
3266  * Only users with admin privileges are allowed to open the character device.
3267  *
3268  * Return: 0 on success, -errno on failure
3269  */
3270 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3271 {
3272 	struct cxlflash_cfg *cfg;
3273 
3274 	if (!capable(CAP_SYS_ADMIN))
3275 		return -EACCES;
3276 
3277 	cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3278 	file->private_data = cfg;
3279 
3280 	return 0;
3281 }
3282 
3283 /**
3284  * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3285  * @cmd:        The host ioctl command to decode.
3286  *
3287  * Return: A string identifying the decoded host ioctl.
3288  */
3289 static char *decode_hioctl(unsigned int cmd)
3290 {
3291 	switch (cmd) {
3292 	case HT_CXLFLASH_LUN_PROVISION:
3293 		return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3294 	}
3295 
3296 	return "UNKNOWN";
3297 }
3298 
3299 /**
3300  * cxlflash_lun_provision() - host LUN provisioning handler
3301  * @cfg:	Internal structure associated with the host.
3302  * @arg:	Kernel copy of userspace ioctl data structure.
3303  *
3304  * Return: 0 on success, -errno on failure
3305  */
3306 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3307 				  struct ht_cxlflash_lun_provision *lunprov)
3308 {
3309 	struct afu *afu = cfg->afu;
3310 	struct device *dev = &cfg->dev->dev;
3311 	struct sisl_ioarcb rcb;
3312 	struct sisl_ioasa asa;
3313 	__be64 __iomem *fc_port_regs;
3314 	u16 port = lunprov->port;
3315 	u16 scmd = lunprov->hdr.subcmd;
3316 	u16 type;
3317 	u64 reg;
3318 	u64 size;
3319 	u64 lun_id;
3320 	int rc = 0;
3321 
3322 	if (!afu_is_lun_provision(afu)) {
3323 		rc = -ENOTSUPP;
3324 		goto out;
3325 	}
3326 
3327 	if (port >= cfg->num_fc_ports) {
3328 		rc = -EINVAL;
3329 		goto out;
3330 	}
3331 
3332 	switch (scmd) {
3333 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3334 		type = SISL_AFU_LUN_PROVISION_CREATE;
3335 		size = lunprov->size;
3336 		lun_id = 0;
3337 		break;
3338 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3339 		type = SISL_AFU_LUN_PROVISION_DELETE;
3340 		size = 0;
3341 		lun_id = lunprov->lun_id;
3342 		break;
3343 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3344 		fc_port_regs = get_fc_port_regs(cfg, port);
3345 
3346 		reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3347 		lunprov->max_num_luns = reg;
3348 		reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3349 		lunprov->cur_num_luns = reg;
3350 		reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3351 		lunprov->max_cap_port = reg;
3352 		reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3353 		lunprov->cur_cap_port = reg;
3354 
3355 		goto out;
3356 	default:
3357 		rc = -EINVAL;
3358 		goto out;
3359 	}
3360 
3361 	memset(&rcb, 0, sizeof(rcb));
3362 	memset(&asa, 0, sizeof(asa));
3363 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3364 	rcb.lun_id = lun_id;
3365 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3366 	rcb.timeout = MC_LUN_PROV_TIMEOUT;
3367 	rcb.ioasa = &asa;
3368 
3369 	rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3370 	rcb.cdb[1] = type;
3371 	rcb.cdb[2] = port;
3372 	put_unaligned_be64(size, &rcb.cdb[8]);
3373 
3374 	rc = send_afu_cmd(afu, &rcb);
3375 	if (rc) {
3376 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3377 			__func__, rc, asa.ioasc, asa.afu_extra);
3378 		goto out;
3379 	}
3380 
3381 	if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3382 		lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3383 		memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3384 	}
3385 out:
3386 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3387 	return rc;
3388 }
3389 
3390 /**
3391  * cxlflash_afu_debug() - host AFU debug handler
3392  * @cfg:	Internal structure associated with the host.
3393  * @arg:	Kernel copy of userspace ioctl data structure.
3394  *
3395  * For debug requests requiring a data buffer, always provide an aligned
3396  * (cache line) buffer to the AFU to appease any alignment requirements.
3397  *
3398  * Return: 0 on success, -errno on failure
3399  */
3400 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3401 			      struct ht_cxlflash_afu_debug *afu_dbg)
3402 {
3403 	struct afu *afu = cfg->afu;
3404 	struct device *dev = &cfg->dev->dev;
3405 	struct sisl_ioarcb rcb;
3406 	struct sisl_ioasa asa;
3407 	char *buf = NULL;
3408 	char *kbuf = NULL;
3409 	void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3410 	u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3411 	u32 ulen = afu_dbg->data_len;
3412 	bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3413 	int rc = 0;
3414 
3415 	if (!afu_is_afu_debug(afu)) {
3416 		rc = -ENOTSUPP;
3417 		goto out;
3418 	}
3419 
3420 	if (ulen) {
3421 		req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3422 
3423 		if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3424 			rc = -EINVAL;
3425 			goto out;
3426 		}
3427 
3428 		buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3429 		if (unlikely(!buf)) {
3430 			rc = -ENOMEM;
3431 			goto out;
3432 		}
3433 
3434 		kbuf = PTR_ALIGN(buf, cache_line_size());
3435 
3436 		if (is_write) {
3437 			req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3438 
3439 			if (copy_from_user(kbuf, ubuf, ulen)) {
3440 				rc = -EFAULT;
3441 				goto out;
3442 			}
3443 		}
3444 	}
3445 
3446 	memset(&rcb, 0, sizeof(rcb));
3447 	memset(&asa, 0, sizeof(asa));
3448 
3449 	rcb.req_flags = req_flags;
3450 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3451 	rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3452 	rcb.ioasa = &asa;
3453 
3454 	if (ulen) {
3455 		rcb.data_len = ulen;
3456 		rcb.data_ea = (uintptr_t)kbuf;
3457 	}
3458 
3459 	rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3460 	memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3461 	       HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3462 
3463 	rc = send_afu_cmd(afu, &rcb);
3464 	if (rc) {
3465 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3466 			__func__, rc, asa.ioasc, asa.afu_extra);
3467 		goto out;
3468 	}
3469 
3470 	if (ulen && !is_write) {
3471 		if (copy_to_user(ubuf, kbuf, ulen))
3472 			rc = -EFAULT;
3473 	}
3474 out:
3475 	kfree(buf);
3476 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3477 	return rc;
3478 }
3479 
3480 /**
3481  * cxlflash_chr_ioctl() - character device IOCTL handler
3482  * @file:	File pointer for this device.
3483  * @cmd:	IOCTL command.
3484  * @arg:	Userspace ioctl data structure.
3485  *
3486  * A read/write semaphore is used to implement a 'drain' of currently
3487  * running ioctls. The read semaphore is taken at the beginning of each
3488  * ioctl thread and released upon concluding execution. Additionally the
3489  * semaphore should be released and then reacquired in any ioctl execution
3490  * path which will wait for an event to occur that is outside the scope of
3491  * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3492  * a thread simply needs to acquire the write semaphore.
3493  *
3494  * Return: 0 on success, -errno on failure
3495  */
3496 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3497 			       unsigned long arg)
3498 {
3499 	typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3500 
3501 	struct cxlflash_cfg *cfg = file->private_data;
3502 	struct device *dev = &cfg->dev->dev;
3503 	char buf[sizeof(union cxlflash_ht_ioctls)];
3504 	void __user *uarg = (void __user *)arg;
3505 	struct ht_cxlflash_hdr *hdr;
3506 	size_t size = 0;
3507 	bool known_ioctl = false;
3508 	int idx = 0;
3509 	int rc = 0;
3510 	hioctl do_ioctl = NULL;
3511 
3512 	static const struct {
3513 		size_t size;
3514 		hioctl ioctl;
3515 	} ioctl_tbl[] = {	/* NOTE: order matters here */
3516 	{ sizeof(struct ht_cxlflash_lun_provision),
3517 		(hioctl)cxlflash_lun_provision },
3518 	{ sizeof(struct ht_cxlflash_afu_debug),
3519 		(hioctl)cxlflash_afu_debug },
3520 	};
3521 
3522 	/* Hold read semaphore so we can drain if needed */
3523 	down_read(&cfg->ioctl_rwsem);
3524 
3525 	dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3526 		__func__, cmd, idx, sizeof(ioctl_tbl));
3527 
3528 	switch (cmd) {
3529 	case HT_CXLFLASH_LUN_PROVISION:
3530 	case HT_CXLFLASH_AFU_DEBUG:
3531 		known_ioctl = true;
3532 		idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3533 		size = ioctl_tbl[idx].size;
3534 		do_ioctl = ioctl_tbl[idx].ioctl;
3535 
3536 		if (likely(do_ioctl))
3537 			break;
3538 
3539 		/* fall through */
3540 	default:
3541 		rc = -EINVAL;
3542 		goto out;
3543 	}
3544 
3545 	if (unlikely(copy_from_user(&buf, uarg, size))) {
3546 		dev_err(dev, "%s: copy_from_user() fail "
3547 			"size=%lu cmd=%d (%s) uarg=%p\n",
3548 			__func__, size, cmd, decode_hioctl(cmd), uarg);
3549 		rc = -EFAULT;
3550 		goto out;
3551 	}
3552 
3553 	hdr = (struct ht_cxlflash_hdr *)&buf;
3554 	if (hdr->version != HT_CXLFLASH_VERSION_0) {
3555 		dev_dbg(dev, "%s: Version %u not supported for %s\n",
3556 			__func__, hdr->version, decode_hioctl(cmd));
3557 		rc = -EINVAL;
3558 		goto out;
3559 	}
3560 
3561 	if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3562 		dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3563 		rc = -EINVAL;
3564 		goto out;
3565 	}
3566 
3567 	rc = do_ioctl(cfg, (void *)&buf);
3568 	if (likely(!rc))
3569 		if (unlikely(copy_to_user(uarg, &buf, size))) {
3570 			dev_err(dev, "%s: copy_to_user() fail "
3571 				"size=%lu cmd=%d (%s) uarg=%p\n",
3572 				__func__, size, cmd, decode_hioctl(cmd), uarg);
3573 			rc = -EFAULT;
3574 		}
3575 
3576 	/* fall through to exit */
3577 
3578 out:
3579 	up_read(&cfg->ioctl_rwsem);
3580 	if (unlikely(rc && known_ioctl))
3581 		dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3582 			__func__, decode_hioctl(cmd), cmd, rc);
3583 	else
3584 		dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3585 			__func__, decode_hioctl(cmd), cmd, rc);
3586 	return rc;
3587 }
3588 
3589 /*
3590  * Character device file operations
3591  */
3592 static const struct file_operations cxlflash_chr_fops = {
3593 	.owner          = THIS_MODULE,
3594 	.open           = cxlflash_chr_open,
3595 	.unlocked_ioctl	= cxlflash_chr_ioctl,
3596 	.compat_ioctl	= cxlflash_chr_ioctl,
3597 };
3598 
3599 /**
3600  * init_chrdev() - initialize the character device for the host
3601  * @cfg:	Internal structure associated with the host.
3602  *
3603  * Return: 0 on success, -errno on failure
3604  */
3605 static int init_chrdev(struct cxlflash_cfg *cfg)
3606 {
3607 	struct device *dev = &cfg->dev->dev;
3608 	struct device *char_dev;
3609 	dev_t devno;
3610 	int minor;
3611 	int rc = 0;
3612 
3613 	minor = cxlflash_get_minor();
3614 	if (unlikely(minor < 0)) {
3615 		dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3616 		rc = -ENOSPC;
3617 		goto out;
3618 	}
3619 
3620 	devno = MKDEV(cxlflash_major, minor);
3621 	cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3622 
3623 	rc = cdev_add(&cfg->cdev, devno, 1);
3624 	if (rc) {
3625 		dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3626 		goto err1;
3627 	}
3628 
3629 	char_dev = device_create(cxlflash_class, NULL, devno,
3630 				 NULL, "cxlflash%d", minor);
3631 	if (IS_ERR(char_dev)) {
3632 		rc = PTR_ERR(char_dev);
3633 		dev_err(dev, "%s: device_create failed rc=%d\n",
3634 			__func__, rc);
3635 		goto err2;
3636 	}
3637 
3638 	cfg->chardev = char_dev;
3639 out:
3640 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3641 	return rc;
3642 err2:
3643 	cdev_del(&cfg->cdev);
3644 err1:
3645 	cxlflash_put_minor(minor);
3646 	goto out;
3647 }
3648 
3649 /**
3650  * cxlflash_probe() - PCI entry point to add host
3651  * @pdev:	PCI device associated with the host.
3652  * @dev_id:	PCI device id associated with device.
3653  *
3654  * The device will initially start out in a 'probing' state and
3655  * transition to the 'normal' state at the end of a successful
3656  * probe. Should an EEH event occur during probe, the notification
3657  * thread (error_detected()) will wait until the probe handler
3658  * is nearly complete. At that time, the device will be moved to
3659  * a 'probed' state and the EEH thread woken up to drive the slot
3660  * reset and recovery (device moves to 'normal' state). Meanwhile,
3661  * the probe will be allowed to exit successfully.
3662  *
3663  * Return: 0 on success, -errno on failure
3664  */
3665 static int cxlflash_probe(struct pci_dev *pdev,
3666 			  const struct pci_device_id *dev_id)
3667 {
3668 	struct Scsi_Host *host;
3669 	struct cxlflash_cfg *cfg = NULL;
3670 	struct device *dev = &pdev->dev;
3671 	struct dev_dependent_vals *ddv;
3672 	int rc = 0;
3673 	int k;
3674 
3675 	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3676 		__func__, pdev->irq);
3677 
3678 	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3679 	driver_template.max_sectors = ddv->max_sectors;
3680 
3681 	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3682 	if (!host) {
3683 		dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3684 		rc = -ENOMEM;
3685 		goto out;
3686 	}
3687 
3688 	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3689 	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3690 	host->unique_id = host->host_no;
3691 	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3692 
3693 	cfg = shost_priv(host);
3694 	cfg->state = STATE_PROBING;
3695 	cfg->host = host;
3696 	rc = alloc_mem(cfg);
3697 	if (rc) {
3698 		dev_err(dev, "%s: alloc_mem failed\n", __func__);
3699 		rc = -ENOMEM;
3700 		scsi_host_put(cfg->host);
3701 		goto out;
3702 	}
3703 
3704 	cfg->init_state = INIT_STATE_NONE;
3705 	cfg->dev = pdev;
3706 	cfg->cxl_fops = cxlflash_cxl_fops;
3707 	cfg->ops = cxlflash_assign_ops(ddv);
3708 	WARN_ON_ONCE(!cfg->ops);
3709 
3710 	/*
3711 	 * Promoted LUNs move to the top of the LUN table. The rest stay on
3712 	 * the bottom half. The bottom half grows from the end (index = 255),
3713 	 * whereas the top half grows from the beginning (index = 0).
3714 	 *
3715 	 * Initialize the last LUN index for all possible ports.
3716 	 */
3717 	cfg->promote_lun_index = 0;
3718 
3719 	for (k = 0; k < MAX_FC_PORTS; k++)
3720 		cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3721 
3722 	cfg->dev_id = (struct pci_device_id *)dev_id;
3723 
3724 	init_waitqueue_head(&cfg->tmf_waitq);
3725 	init_waitqueue_head(&cfg->reset_waitq);
3726 
3727 	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3728 	cfg->lr_state = LINK_RESET_INVALID;
3729 	cfg->lr_port = -1;
3730 	spin_lock_init(&cfg->tmf_slock);
3731 	mutex_init(&cfg->ctx_tbl_list_mutex);
3732 	mutex_init(&cfg->ctx_recovery_mutex);
3733 	init_rwsem(&cfg->ioctl_rwsem);
3734 	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3735 	INIT_LIST_HEAD(&cfg->lluns);
3736 
3737 	pci_set_drvdata(pdev, cfg);
3738 
3739 	rc = init_pci(cfg);
3740 	if (rc) {
3741 		dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3742 		goto out_remove;
3743 	}
3744 	cfg->init_state = INIT_STATE_PCI;
3745 
3746 	cfg->afu_cookie = cfg->ops->create_afu(pdev);
3747 	if (unlikely(!cfg->afu_cookie)) {
3748 		dev_err(dev, "%s: create_afu failed\n", __func__);
3749 		goto out_remove;
3750 	}
3751 
3752 	rc = init_afu(cfg);
3753 	if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3754 		dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3755 		goto out_remove;
3756 	}
3757 	cfg->init_state = INIT_STATE_AFU;
3758 
3759 	rc = init_scsi(cfg);
3760 	if (rc) {
3761 		dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3762 		goto out_remove;
3763 	}
3764 	cfg->init_state = INIT_STATE_SCSI;
3765 
3766 	rc = init_chrdev(cfg);
3767 	if (rc) {
3768 		dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3769 		goto out_remove;
3770 	}
3771 	cfg->init_state = INIT_STATE_CDEV;
3772 
3773 	if (wq_has_sleeper(&cfg->reset_waitq)) {
3774 		cfg->state = STATE_PROBED;
3775 		wake_up_all(&cfg->reset_waitq);
3776 	} else
3777 		cfg->state = STATE_NORMAL;
3778 out:
3779 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3780 	return rc;
3781 
3782 out_remove:
3783 	cfg->state = STATE_PROBED;
3784 	cxlflash_remove(pdev);
3785 	goto out;
3786 }
3787 
3788 /**
3789  * cxlflash_pci_error_detected() - called when a PCI error is detected
3790  * @pdev:	PCI device struct.
3791  * @state:	PCI channel state.
3792  *
3793  * When an EEH occurs during an active reset, wait until the reset is
3794  * complete and then take action based upon the device state.
3795  *
3796  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3797  */
3798 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3799 						    pci_channel_state_t state)
3800 {
3801 	int rc = 0;
3802 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3803 	struct device *dev = &cfg->dev->dev;
3804 
3805 	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3806 
3807 	switch (state) {
3808 	case pci_channel_io_frozen:
3809 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3810 					     cfg->state != STATE_PROBING);
3811 		if (cfg->state == STATE_FAILTERM)
3812 			return PCI_ERS_RESULT_DISCONNECT;
3813 
3814 		cfg->state = STATE_RESET;
3815 		scsi_block_requests(cfg->host);
3816 		drain_ioctls(cfg);
3817 		rc = cxlflash_mark_contexts_error(cfg);
3818 		if (unlikely(rc))
3819 			dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3820 				__func__, rc);
3821 		term_afu(cfg);
3822 		return PCI_ERS_RESULT_NEED_RESET;
3823 	case pci_channel_io_perm_failure:
3824 		cfg->state = STATE_FAILTERM;
3825 		wake_up_all(&cfg->reset_waitq);
3826 		scsi_unblock_requests(cfg->host);
3827 		return PCI_ERS_RESULT_DISCONNECT;
3828 	default:
3829 		break;
3830 	}
3831 	return PCI_ERS_RESULT_NEED_RESET;
3832 }
3833 
3834 /**
3835  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3836  * @pdev:	PCI device struct.
3837  *
3838  * This routine is called by the pci error recovery code after the PCI
3839  * slot has been reset, just before we should resume normal operations.
3840  *
3841  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3842  */
3843 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3844 {
3845 	int rc = 0;
3846 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3847 	struct device *dev = &cfg->dev->dev;
3848 
3849 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3850 
3851 	rc = init_afu(cfg);
3852 	if (unlikely(rc)) {
3853 		dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3854 		return PCI_ERS_RESULT_DISCONNECT;
3855 	}
3856 
3857 	return PCI_ERS_RESULT_RECOVERED;
3858 }
3859 
3860 /**
3861  * cxlflash_pci_resume() - called when normal operation can resume
3862  * @pdev:	PCI device struct
3863  */
3864 static void cxlflash_pci_resume(struct pci_dev *pdev)
3865 {
3866 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3867 	struct device *dev = &cfg->dev->dev;
3868 
3869 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3870 
3871 	cfg->state = STATE_NORMAL;
3872 	wake_up_all(&cfg->reset_waitq);
3873 	scsi_unblock_requests(cfg->host);
3874 }
3875 
3876 /**
3877  * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3878  * @dev:	Character device.
3879  * @mode:	Mode that can be used to verify access.
3880  *
3881  * Return: Allocated string describing the devtmpfs structure.
3882  */
3883 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3884 {
3885 	return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3886 }
3887 
3888 /**
3889  * cxlflash_class_init() - create character device class
3890  *
3891  * Return: 0 on success, -errno on failure
3892  */
3893 static int cxlflash_class_init(void)
3894 {
3895 	dev_t devno;
3896 	int rc = 0;
3897 
3898 	rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3899 	if (unlikely(rc)) {
3900 		pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3901 		goto out;
3902 	}
3903 
3904 	cxlflash_major = MAJOR(devno);
3905 
3906 	cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3907 	if (IS_ERR(cxlflash_class)) {
3908 		rc = PTR_ERR(cxlflash_class);
3909 		pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3910 		goto err;
3911 	}
3912 
3913 	cxlflash_class->devnode = cxlflash_devnode;
3914 out:
3915 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3916 	return rc;
3917 err:
3918 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3919 	goto out;
3920 }
3921 
3922 /**
3923  * cxlflash_class_exit() - destroy character device class
3924  */
3925 static void cxlflash_class_exit(void)
3926 {
3927 	dev_t devno = MKDEV(cxlflash_major, 0);
3928 
3929 	class_destroy(cxlflash_class);
3930 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3931 }
3932 
3933 static const struct pci_error_handlers cxlflash_err_handler = {
3934 	.error_detected = cxlflash_pci_error_detected,
3935 	.slot_reset = cxlflash_pci_slot_reset,
3936 	.resume = cxlflash_pci_resume,
3937 };
3938 
3939 /*
3940  * PCI device structure
3941  */
3942 static struct pci_driver cxlflash_driver = {
3943 	.name = CXLFLASH_NAME,
3944 	.id_table = cxlflash_pci_table,
3945 	.probe = cxlflash_probe,
3946 	.remove = cxlflash_remove,
3947 	.shutdown = cxlflash_remove,
3948 	.err_handler = &cxlflash_err_handler,
3949 };
3950 
3951 /**
3952  * init_cxlflash() - module entry point
3953  *
3954  * Return: 0 on success, -errno on failure
3955  */
3956 static int __init init_cxlflash(void)
3957 {
3958 	int rc;
3959 
3960 	check_sizes();
3961 	cxlflash_list_init();
3962 	rc = cxlflash_class_init();
3963 	if (unlikely(rc))
3964 		goto out;
3965 
3966 	rc = pci_register_driver(&cxlflash_driver);
3967 	if (unlikely(rc))
3968 		goto err;
3969 out:
3970 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3971 	return rc;
3972 err:
3973 	cxlflash_class_exit();
3974 	goto out;
3975 }
3976 
3977 /**
3978  * exit_cxlflash() - module exit point
3979  */
3980 static void __exit exit_cxlflash(void)
3981 {
3982 	cxlflash_term_global_luns();
3983 	cxlflash_free_errpage();
3984 
3985 	pci_unregister_driver(&cxlflash_driver);
3986 	cxlflash_class_exit();
3987 }
3988 
3989 module_init(init_cxlflash);
3990 module_exit(exit_cxlflash);
3991