xref: /openbmc/linux/drivers/scsi/cxlflash/main.c (revision 0bea2a65)
1 /*
2  * CXL Flash Device Driver
3  *
4  * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5  *             Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6  *
7  * Copyright (C) 2015 IBM Corporation
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 
20 #include <asm/unaligned.h>
21 
22 #include <misc/cxl.h>
23 
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27 
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31 
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36 
37 static struct class *cxlflash_class;
38 static u32 cxlflash_major;
39 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
40 
41 /**
42  * process_cmd_err() - command error handler
43  * @cmd:	AFU command that experienced the error.
44  * @scp:	SCSI command associated with the AFU command in error.
45  *
46  * Translates error bits from AFU command to SCSI command results.
47  */
48 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
49 {
50 	struct afu *afu = cmd->parent;
51 	struct cxlflash_cfg *cfg = afu->parent;
52 	struct device *dev = &cfg->dev->dev;
53 	struct sisl_ioarcb *ioarcb;
54 	struct sisl_ioasa *ioasa;
55 	u32 resid;
56 
57 	if (unlikely(!cmd))
58 		return;
59 
60 	ioarcb = &(cmd->rcb);
61 	ioasa = &(cmd->sa);
62 
63 	if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
64 		resid = ioasa->resid;
65 		scsi_set_resid(scp, resid);
66 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
67 			__func__, cmd, scp, resid);
68 	}
69 
70 	if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
71 		dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
72 			__func__, cmd, scp);
73 		scp->result = (DID_ERROR << 16);
74 	}
75 
76 	dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
77 		"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
78 		ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
79 		ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
80 
81 	if (ioasa->rc.scsi_rc) {
82 		/* We have a SCSI status */
83 		if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
84 			memcpy(scp->sense_buffer, ioasa->sense_data,
85 			       SISL_SENSE_DATA_LEN);
86 			scp->result = ioasa->rc.scsi_rc;
87 		} else
88 			scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
89 	}
90 
91 	/*
92 	 * We encountered an error. Set scp->result based on nature
93 	 * of error.
94 	 */
95 	if (ioasa->rc.fc_rc) {
96 		/* We have an FC status */
97 		switch (ioasa->rc.fc_rc) {
98 		case SISL_FC_RC_LINKDOWN:
99 			scp->result = (DID_REQUEUE << 16);
100 			break;
101 		case SISL_FC_RC_RESID:
102 			/* This indicates an FCP resid underrun */
103 			if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
104 				/* If the SISL_RC_FLAGS_OVERRUN flag was set,
105 				 * then we will handle this error else where.
106 				 * If not then we must handle it here.
107 				 * This is probably an AFU bug.
108 				 */
109 				scp->result = (DID_ERROR << 16);
110 			}
111 			break;
112 		case SISL_FC_RC_RESIDERR:
113 			/* Resid mismatch between adapter and device */
114 		case SISL_FC_RC_TGTABORT:
115 		case SISL_FC_RC_ABORTOK:
116 		case SISL_FC_RC_ABORTFAIL:
117 		case SISL_FC_RC_NOLOGI:
118 		case SISL_FC_RC_ABORTPEND:
119 		case SISL_FC_RC_WRABORTPEND:
120 		case SISL_FC_RC_NOEXP:
121 		case SISL_FC_RC_INUSE:
122 			scp->result = (DID_ERROR << 16);
123 			break;
124 		}
125 	}
126 
127 	if (ioasa->rc.afu_rc) {
128 		/* We have an AFU error */
129 		switch (ioasa->rc.afu_rc) {
130 		case SISL_AFU_RC_NO_CHANNELS:
131 			scp->result = (DID_NO_CONNECT << 16);
132 			break;
133 		case SISL_AFU_RC_DATA_DMA_ERR:
134 			switch (ioasa->afu_extra) {
135 			case SISL_AFU_DMA_ERR_PAGE_IN:
136 				/* Retry */
137 				scp->result = (DID_IMM_RETRY << 16);
138 				break;
139 			case SISL_AFU_DMA_ERR_INVALID_EA:
140 			default:
141 				scp->result = (DID_ERROR << 16);
142 			}
143 			break;
144 		case SISL_AFU_RC_OUT_OF_DATA_BUFS:
145 			/* Retry */
146 			scp->result = (DID_ALLOC_FAILURE << 16);
147 			break;
148 		default:
149 			scp->result = (DID_ERROR << 16);
150 		}
151 	}
152 }
153 
154 /**
155  * cmd_complete() - command completion handler
156  * @cmd:	AFU command that has completed.
157  *
158  * For SCSI commands this routine prepares and submits commands that have
159  * either completed or timed out to the SCSI stack. For internal commands
160  * (TMF or AFU), this routine simply notifies the originator that the
161  * command has completed.
162  */
163 static void cmd_complete(struct afu_cmd *cmd)
164 {
165 	struct scsi_cmnd *scp;
166 	ulong lock_flags;
167 	struct afu *afu = cmd->parent;
168 	struct cxlflash_cfg *cfg = afu->parent;
169 	struct device *dev = &cfg->dev->dev;
170 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
171 
172 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
173 	list_del(&cmd->list);
174 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
175 
176 	if (cmd->scp) {
177 		scp = cmd->scp;
178 		if (unlikely(cmd->sa.ioasc))
179 			process_cmd_err(cmd, scp);
180 		else
181 			scp->result = (DID_OK << 16);
182 
183 		dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
184 				    __func__, scp, scp->result, cmd->sa.ioasc);
185 		scp->scsi_done(scp);
186 	} else if (cmd->cmd_tmf) {
187 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
188 		cfg->tmf_active = false;
189 		wake_up_all_locked(&cfg->tmf_waitq);
190 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
191 	} else
192 		complete(&cmd->cevent);
193 }
194 
195 /**
196  * flush_pending_cmds() - flush all pending commands on this hardware queue
197  * @hwq:	Hardware queue to flush.
198  *
199  * The hardware send queue lock associated with this hardware queue must be
200  * held when calling this routine.
201  */
202 static void flush_pending_cmds(struct hwq *hwq)
203 {
204 	struct cxlflash_cfg *cfg = hwq->afu->parent;
205 	struct afu_cmd *cmd, *tmp;
206 	struct scsi_cmnd *scp;
207 	ulong lock_flags;
208 
209 	list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
210 		/* Bypass command when on a doneq, cmd_complete() will handle */
211 		if (!list_empty(&cmd->queue))
212 			continue;
213 
214 		list_del(&cmd->list);
215 
216 		if (cmd->scp) {
217 			scp = cmd->scp;
218 			scp->result = (DID_IMM_RETRY << 16);
219 			scp->scsi_done(scp);
220 		} else {
221 			cmd->cmd_aborted = true;
222 
223 			if (cmd->cmd_tmf) {
224 				spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
225 				cfg->tmf_active = false;
226 				wake_up_all_locked(&cfg->tmf_waitq);
227 				spin_unlock_irqrestore(&cfg->tmf_slock,
228 						       lock_flags);
229 			} else
230 				complete(&cmd->cevent);
231 		}
232 	}
233 }
234 
235 /**
236  * context_reset() - reset context via specified register
237  * @hwq:	Hardware queue owning the context to be reset.
238  * @reset_reg:	MMIO register to perform reset.
239  *
240  * When the reset is successful, the SISLite specification guarantees that
241  * the AFU has aborted all currently pending I/O. Accordingly, these commands
242  * must be flushed.
243  *
244  * Return: 0 on success, -errno on failure
245  */
246 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
247 {
248 	struct cxlflash_cfg *cfg = hwq->afu->parent;
249 	struct device *dev = &cfg->dev->dev;
250 	int rc = -ETIMEDOUT;
251 	int nretry = 0;
252 	u64 val = 0x1;
253 	ulong lock_flags;
254 
255 	dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
256 
257 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
258 
259 	writeq_be(val, reset_reg);
260 	do {
261 		val = readq_be(reset_reg);
262 		if ((val & 0x1) == 0x0) {
263 			rc = 0;
264 			break;
265 		}
266 
267 		/* Double delay each time */
268 		udelay(1 << nretry);
269 	} while (nretry++ < MC_ROOM_RETRY_CNT);
270 
271 	if (!rc)
272 		flush_pending_cmds(hwq);
273 
274 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
275 
276 	dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
277 		__func__, rc, val, nretry);
278 	return rc;
279 }
280 
281 /**
282  * context_reset_ioarrin() - reset context via IOARRIN register
283  * @hwq:	Hardware queue owning the context to be reset.
284  *
285  * Return: 0 on success, -errno on failure
286  */
287 static int context_reset_ioarrin(struct hwq *hwq)
288 {
289 	return context_reset(hwq, &hwq->host_map->ioarrin);
290 }
291 
292 /**
293  * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
294  * @hwq:	Hardware queue owning the context to be reset.
295  *
296  * Return: 0 on success, -errno on failure
297  */
298 static int context_reset_sq(struct hwq *hwq)
299 {
300 	return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
301 }
302 
303 /**
304  * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
305  * @afu:	AFU associated with the host.
306  * @cmd:	AFU command to send.
307  *
308  * Return:
309  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
310  */
311 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
312 {
313 	struct cxlflash_cfg *cfg = afu->parent;
314 	struct device *dev = &cfg->dev->dev;
315 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
316 	int rc = 0;
317 	s64 room;
318 	ulong lock_flags;
319 
320 	/*
321 	 * To avoid the performance penalty of MMIO, spread the update of
322 	 * 'room' over multiple commands.
323 	 */
324 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
325 	if (--hwq->room < 0) {
326 		room = readq_be(&hwq->host_map->cmd_room);
327 		if (room <= 0) {
328 			dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
329 					    "0x%02X, room=0x%016llX\n",
330 					    __func__, cmd->rcb.cdb[0], room);
331 			hwq->room = 0;
332 			rc = SCSI_MLQUEUE_HOST_BUSY;
333 			goto out;
334 		}
335 		hwq->room = room - 1;
336 	}
337 
338 	list_add(&cmd->list, &hwq->pending_cmds);
339 	writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
340 out:
341 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
342 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
343 		cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
344 	return rc;
345 }
346 
347 /**
348  * send_cmd_sq() - sends an AFU command via SQ ring
349  * @afu:	AFU associated with the host.
350  * @cmd:	AFU command to send.
351  *
352  * Return:
353  *	0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
354  */
355 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
356 {
357 	struct cxlflash_cfg *cfg = afu->parent;
358 	struct device *dev = &cfg->dev->dev;
359 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
360 	int rc = 0;
361 	int newval;
362 	ulong lock_flags;
363 
364 	newval = atomic_dec_if_positive(&hwq->hsq_credits);
365 	if (newval <= 0) {
366 		rc = SCSI_MLQUEUE_HOST_BUSY;
367 		goto out;
368 	}
369 
370 	cmd->rcb.ioasa = &cmd->sa;
371 
372 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
373 
374 	*hwq->hsq_curr = cmd->rcb;
375 	if (hwq->hsq_curr < hwq->hsq_end)
376 		hwq->hsq_curr++;
377 	else
378 		hwq->hsq_curr = hwq->hsq_start;
379 
380 	list_add(&cmd->list, &hwq->pending_cmds);
381 	writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
382 
383 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
384 out:
385 	dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
386 	       "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
387 	       cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
388 	       readq_be(&hwq->host_map->sq_head),
389 	       readq_be(&hwq->host_map->sq_tail));
390 	return rc;
391 }
392 
393 /**
394  * wait_resp() - polls for a response or timeout to a sent AFU command
395  * @afu:	AFU associated with the host.
396  * @cmd:	AFU command that was sent.
397  *
398  * Return: 0 on success, -errno on failure
399  */
400 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
401 {
402 	struct cxlflash_cfg *cfg = afu->parent;
403 	struct device *dev = &cfg->dev->dev;
404 	int rc = 0;
405 	ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
406 
407 	timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
408 	if (!timeout)
409 		rc = -ETIMEDOUT;
410 
411 	if (cmd->cmd_aborted)
412 		rc = -EAGAIN;
413 
414 	if (unlikely(cmd->sa.ioasc != 0)) {
415 		dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
416 			__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
417 		rc = -EIO;
418 	}
419 
420 	return rc;
421 }
422 
423 /**
424  * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
425  * @host:	SCSI host associated with device.
426  * @scp:	SCSI command to send.
427  * @afu:	SCSI command to send.
428  *
429  * Hashes a command based upon the hardware queue mode.
430  *
431  * Return: Trusted index of target hardware queue
432  */
433 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
434 			     struct afu *afu)
435 {
436 	u32 tag;
437 	u32 hwq = 0;
438 
439 	if (afu->num_hwqs == 1)
440 		return 0;
441 
442 	switch (afu->hwq_mode) {
443 	case HWQ_MODE_RR:
444 		hwq = afu->hwq_rr_count++ % afu->num_hwqs;
445 		break;
446 	case HWQ_MODE_TAG:
447 		tag = blk_mq_unique_tag(scp->request);
448 		hwq = blk_mq_unique_tag_to_hwq(tag);
449 		break;
450 	case HWQ_MODE_CPU:
451 		hwq = smp_processor_id() % afu->num_hwqs;
452 		break;
453 	default:
454 		WARN_ON_ONCE(1);
455 	}
456 
457 	return hwq;
458 }
459 
460 /**
461  * send_tmf() - sends a Task Management Function (TMF)
462  * @cfg:	Internal structure associated with the host.
463  * @sdev:	SCSI device destined for TMF.
464  * @tmfcmd:	TMF command to send.
465  *
466  * Return:
467  *	0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
468  */
469 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
470 		    u64 tmfcmd)
471 {
472 	struct afu *afu = cfg->afu;
473 	struct afu_cmd *cmd = NULL;
474 	struct device *dev = &cfg->dev->dev;
475 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
476 	char *buf = NULL;
477 	ulong lock_flags;
478 	int rc = 0;
479 	ulong to;
480 
481 	buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
482 	if (unlikely(!buf)) {
483 		dev_err(dev, "%s: no memory for command\n", __func__);
484 		rc = -ENOMEM;
485 		goto out;
486 	}
487 
488 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
489 	INIT_LIST_HEAD(&cmd->queue);
490 
491 	/* When Task Management Function is active do not send another */
492 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
493 	if (cfg->tmf_active)
494 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
495 						  !cfg->tmf_active,
496 						  cfg->tmf_slock);
497 	cfg->tmf_active = true;
498 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
499 
500 	cmd->parent = afu;
501 	cmd->cmd_tmf = true;
502 	cmd->hwq_index = hwq->index;
503 
504 	cmd->rcb.ctx_id = hwq->ctx_hndl;
505 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
506 	cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
507 	cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
508 	cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
509 			      SISL_REQ_FLAGS_SUP_UNDERRUN |
510 			      SISL_REQ_FLAGS_TMF_CMD);
511 	memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
512 
513 	rc = afu->send_cmd(afu, cmd);
514 	if (unlikely(rc)) {
515 		spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
516 		cfg->tmf_active = false;
517 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
518 		goto out;
519 	}
520 
521 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
522 	to = msecs_to_jiffies(5000);
523 	to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
524 						       !cfg->tmf_active,
525 						       cfg->tmf_slock,
526 						       to);
527 	if (!to) {
528 		dev_err(dev, "%s: TMF timed out\n", __func__);
529 		rc = -ETIMEDOUT;
530 	} else if (cmd->cmd_aborted) {
531 		dev_err(dev, "%s: TMF aborted\n", __func__);
532 		rc = -EAGAIN;
533 	} else if (cmd->sa.ioasc) {
534 		dev_err(dev, "%s: TMF failed ioasc=%08x\n",
535 			__func__, cmd->sa.ioasc);
536 		rc = -EIO;
537 	}
538 	cfg->tmf_active = false;
539 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
540 out:
541 	kfree(buf);
542 	return rc;
543 }
544 
545 /**
546  * cxlflash_driver_info() - information handler for this host driver
547  * @host:	SCSI host associated with device.
548  *
549  * Return: A string describing the device.
550  */
551 static const char *cxlflash_driver_info(struct Scsi_Host *host)
552 {
553 	return CXLFLASH_ADAPTER_NAME;
554 }
555 
556 /**
557  * cxlflash_queuecommand() - sends a mid-layer request
558  * @host:	SCSI host associated with device.
559  * @scp:	SCSI command to send.
560  *
561  * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
562  */
563 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
564 {
565 	struct cxlflash_cfg *cfg = shost_priv(host);
566 	struct afu *afu = cfg->afu;
567 	struct device *dev = &cfg->dev->dev;
568 	struct afu_cmd *cmd = sc_to_afuci(scp);
569 	struct scatterlist *sg = scsi_sglist(scp);
570 	int hwq_index = cmd_to_target_hwq(host, scp, afu);
571 	struct hwq *hwq = get_hwq(afu, hwq_index);
572 	u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
573 	ulong lock_flags;
574 	int rc = 0;
575 
576 	dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
577 			    "cdb=(%08x-%08x-%08x-%08x)\n",
578 			    __func__, scp, host->host_no, scp->device->channel,
579 			    scp->device->id, scp->device->lun,
580 			    get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
581 			    get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
582 			    get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
583 			    get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
584 
585 	/*
586 	 * If a Task Management Function is active, wait for it to complete
587 	 * before continuing with regular commands.
588 	 */
589 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
590 	if (cfg->tmf_active) {
591 		spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
592 		rc = SCSI_MLQUEUE_HOST_BUSY;
593 		goto out;
594 	}
595 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
596 
597 	switch (cfg->state) {
598 	case STATE_PROBING:
599 	case STATE_PROBED:
600 	case STATE_RESET:
601 		dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
602 		rc = SCSI_MLQUEUE_HOST_BUSY;
603 		goto out;
604 	case STATE_FAILTERM:
605 		dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
606 		scp->result = (DID_NO_CONNECT << 16);
607 		scp->scsi_done(scp);
608 		rc = 0;
609 		goto out;
610 	default:
611 		break;
612 	}
613 
614 	if (likely(sg)) {
615 		cmd->rcb.data_len = sg->length;
616 		cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
617 	}
618 
619 	cmd->scp = scp;
620 	cmd->parent = afu;
621 	cmd->hwq_index = hwq_index;
622 
623 	cmd->rcb.ctx_id = hwq->ctx_hndl;
624 	cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
625 	cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
626 	cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
627 
628 	if (scp->sc_data_direction == DMA_TO_DEVICE)
629 		req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
630 
631 	cmd->rcb.req_flags = req_flags;
632 	memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
633 
634 	rc = afu->send_cmd(afu, cmd);
635 out:
636 	return rc;
637 }
638 
639 /**
640  * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
641  * @cfg:	Internal structure associated with the host.
642  */
643 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
644 {
645 	struct pci_dev *pdev = cfg->dev;
646 
647 	if (pci_channel_offline(pdev))
648 		wait_event_timeout(cfg->reset_waitq,
649 				   !pci_channel_offline(pdev),
650 				   CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
651 }
652 
653 /**
654  * free_mem() - free memory associated with the AFU
655  * @cfg:	Internal structure associated with the host.
656  */
657 static void free_mem(struct cxlflash_cfg *cfg)
658 {
659 	struct afu *afu = cfg->afu;
660 
661 	if (cfg->afu) {
662 		free_pages((ulong)afu, get_order(sizeof(struct afu)));
663 		cfg->afu = NULL;
664 	}
665 }
666 
667 /**
668  * cxlflash_reset_sync() - synchronizing point for asynchronous resets
669  * @cfg:	Internal structure associated with the host.
670  */
671 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
672 {
673 	if (cfg->async_reset_cookie == 0)
674 		return;
675 
676 	/* Wait until all async calls prior to this cookie have completed */
677 	async_synchronize_cookie(cfg->async_reset_cookie + 1);
678 	cfg->async_reset_cookie = 0;
679 }
680 
681 /**
682  * stop_afu() - stops the AFU command timers and unmaps the MMIO space
683  * @cfg:	Internal structure associated with the host.
684  *
685  * Safe to call with AFU in a partially allocated/initialized state.
686  *
687  * Cancels scheduled worker threads, waits for any active internal AFU
688  * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
689  */
690 static void stop_afu(struct cxlflash_cfg *cfg)
691 {
692 	struct afu *afu = cfg->afu;
693 	struct hwq *hwq;
694 	int i;
695 
696 	cancel_work_sync(&cfg->work_q);
697 	if (!current_is_async())
698 		cxlflash_reset_sync(cfg);
699 
700 	if (likely(afu)) {
701 		while (atomic_read(&afu->cmds_active))
702 			ssleep(1);
703 
704 		if (afu_is_irqpoll_enabled(afu)) {
705 			for (i = 0; i < afu->num_hwqs; i++) {
706 				hwq = get_hwq(afu, i);
707 
708 				irq_poll_disable(&hwq->irqpoll);
709 			}
710 		}
711 
712 		if (likely(afu->afu_map)) {
713 			cxl_psa_unmap((void __iomem *)afu->afu_map);
714 			afu->afu_map = NULL;
715 		}
716 	}
717 }
718 
719 /**
720  * term_intr() - disables all AFU interrupts
721  * @cfg:	Internal structure associated with the host.
722  * @level:	Depth of allocation, where to begin waterfall tear down.
723  * @index:	Index of the hardware queue.
724  *
725  * Safe to call with AFU/MC in partially allocated/initialized state.
726  */
727 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
728 		      u32 index)
729 {
730 	struct afu *afu = cfg->afu;
731 	struct device *dev = &cfg->dev->dev;
732 	struct hwq *hwq;
733 
734 	if (!afu) {
735 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
736 		return;
737 	}
738 
739 	hwq = get_hwq(afu, index);
740 
741 	if (!hwq->ctx) {
742 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
743 		return;
744 	}
745 
746 	switch (level) {
747 	case UNMAP_THREE:
748 		/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
749 		if (index == PRIMARY_HWQ)
750 			cxl_unmap_afu_irq(hwq->ctx, 3, hwq);
751 	case UNMAP_TWO:
752 		cxl_unmap_afu_irq(hwq->ctx, 2, hwq);
753 	case UNMAP_ONE:
754 		cxl_unmap_afu_irq(hwq->ctx, 1, hwq);
755 	case FREE_IRQ:
756 		cxl_free_afu_irqs(hwq->ctx);
757 		/* fall through */
758 	case UNDO_NOOP:
759 		/* No action required */
760 		break;
761 	}
762 }
763 
764 /**
765  * term_mc() - terminates the master context
766  * @cfg:	Internal structure associated with the host.
767  * @index:	Index of the hardware queue.
768  *
769  * Safe to call with AFU/MC in partially allocated/initialized state.
770  */
771 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
772 {
773 	struct afu *afu = cfg->afu;
774 	struct device *dev = &cfg->dev->dev;
775 	struct hwq *hwq;
776 	ulong lock_flags;
777 
778 	if (!afu) {
779 		dev_err(dev, "%s: returning with NULL afu\n", __func__);
780 		return;
781 	}
782 
783 	hwq = get_hwq(afu, index);
784 
785 	if (!hwq->ctx) {
786 		dev_err(dev, "%s: returning with NULL MC\n", __func__);
787 		return;
788 	}
789 
790 	WARN_ON(cxl_stop_context(hwq->ctx));
791 	if (index != PRIMARY_HWQ)
792 		WARN_ON(cxl_release_context(hwq->ctx));
793 	hwq->ctx = NULL;
794 
795 	spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
796 	flush_pending_cmds(hwq);
797 	spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
798 }
799 
800 /**
801  * term_afu() - terminates the AFU
802  * @cfg:	Internal structure associated with the host.
803  *
804  * Safe to call with AFU/MC in partially allocated/initialized state.
805  */
806 static void term_afu(struct cxlflash_cfg *cfg)
807 {
808 	struct device *dev = &cfg->dev->dev;
809 	int k;
810 
811 	/*
812 	 * Tear down is carefully orchestrated to ensure
813 	 * no interrupts can come in when the problem state
814 	 * area is unmapped.
815 	 *
816 	 * 1) Disable all AFU interrupts for each master
817 	 * 2) Unmap the problem state area
818 	 * 3) Stop each master context
819 	 */
820 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
821 		term_intr(cfg, UNMAP_THREE, k);
822 
823 	stop_afu(cfg);
824 
825 	for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
826 		term_mc(cfg, k);
827 
828 	dev_dbg(dev, "%s: returning\n", __func__);
829 }
830 
831 /**
832  * notify_shutdown() - notifies device of pending shutdown
833  * @cfg:	Internal structure associated with the host.
834  * @wait:	Whether to wait for shutdown processing to complete.
835  *
836  * This function will notify the AFU that the adapter is being shutdown
837  * and will wait for shutdown processing to complete if wait is true.
838  * This notification should flush pending I/Os to the device and halt
839  * further I/Os until the next AFU reset is issued and device restarted.
840  */
841 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
842 {
843 	struct afu *afu = cfg->afu;
844 	struct device *dev = &cfg->dev->dev;
845 	struct dev_dependent_vals *ddv;
846 	__be64 __iomem *fc_port_regs;
847 	u64 reg, status;
848 	int i, retry_cnt = 0;
849 
850 	ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
851 	if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
852 		return;
853 
854 	if (!afu || !afu->afu_map) {
855 		dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
856 		return;
857 	}
858 
859 	/* Notify AFU */
860 	for (i = 0; i < cfg->num_fc_ports; i++) {
861 		fc_port_regs = get_fc_port_regs(cfg, i);
862 
863 		reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
864 		reg |= SISL_FC_SHUTDOWN_NORMAL;
865 		writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
866 	}
867 
868 	if (!wait)
869 		return;
870 
871 	/* Wait up to 1.5 seconds for shutdown processing to complete */
872 	for (i = 0; i < cfg->num_fc_ports; i++) {
873 		fc_port_regs = get_fc_port_regs(cfg, i);
874 		retry_cnt = 0;
875 
876 		while (true) {
877 			status = readq_be(&fc_port_regs[FC_STATUS / 8]);
878 			if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
879 				break;
880 			if (++retry_cnt >= MC_RETRY_CNT) {
881 				dev_dbg(dev, "%s: port %d shutdown processing "
882 					"not yet completed\n", __func__, i);
883 				break;
884 			}
885 			msleep(100 * retry_cnt);
886 		}
887 	}
888 }
889 
890 /**
891  * cxlflash_get_minor() - gets the first available minor number
892  *
893  * Return: Unique minor number that can be used to create the character device.
894  */
895 static int cxlflash_get_minor(void)
896 {
897 	int minor;
898 	long bit;
899 
900 	bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
901 	if (bit >= CXLFLASH_MAX_ADAPTERS)
902 		return -1;
903 
904 	minor = bit & MINORMASK;
905 	set_bit(minor, cxlflash_minor);
906 	return minor;
907 }
908 
909 /**
910  * cxlflash_put_minor() - releases the minor number
911  * @minor:	Minor number that is no longer needed.
912  */
913 static void cxlflash_put_minor(int minor)
914 {
915 	clear_bit(minor, cxlflash_minor);
916 }
917 
918 /**
919  * cxlflash_release_chrdev() - release the character device for the host
920  * @cfg:	Internal structure associated with the host.
921  */
922 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
923 {
924 	device_unregister(cfg->chardev);
925 	cfg->chardev = NULL;
926 	cdev_del(&cfg->cdev);
927 	cxlflash_put_minor(MINOR(cfg->cdev.dev));
928 }
929 
930 /**
931  * cxlflash_remove() - PCI entry point to tear down host
932  * @pdev:	PCI device associated with the host.
933  *
934  * Safe to use as a cleanup in partially allocated/initialized state. Note that
935  * the reset_waitq is flushed as part of the stop/termination of user contexts.
936  */
937 static void cxlflash_remove(struct pci_dev *pdev)
938 {
939 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
940 	struct device *dev = &pdev->dev;
941 	ulong lock_flags;
942 
943 	if (!pci_is_enabled(pdev)) {
944 		dev_dbg(dev, "%s: Device is disabled\n", __func__);
945 		return;
946 	}
947 
948 	/* If a Task Management Function is active, wait for it to complete
949 	 * before continuing with remove.
950 	 */
951 	spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
952 	if (cfg->tmf_active)
953 		wait_event_interruptible_lock_irq(cfg->tmf_waitq,
954 						  !cfg->tmf_active,
955 						  cfg->tmf_slock);
956 	spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
957 
958 	/* Notify AFU and wait for shutdown processing to complete */
959 	notify_shutdown(cfg, true);
960 
961 	cfg->state = STATE_FAILTERM;
962 	cxlflash_stop_term_user_contexts(cfg);
963 
964 	switch (cfg->init_state) {
965 	case INIT_STATE_CDEV:
966 		cxlflash_release_chrdev(cfg);
967 	case INIT_STATE_SCSI:
968 		cxlflash_term_local_luns(cfg);
969 		scsi_remove_host(cfg->host);
970 	case INIT_STATE_AFU:
971 		term_afu(cfg);
972 	case INIT_STATE_PCI:
973 		pci_disable_device(pdev);
974 	case INIT_STATE_NONE:
975 		free_mem(cfg);
976 		scsi_host_put(cfg->host);
977 		break;
978 	}
979 
980 	dev_dbg(dev, "%s: returning\n", __func__);
981 }
982 
983 /**
984  * alloc_mem() - allocates the AFU and its command pool
985  * @cfg:	Internal structure associated with the host.
986  *
987  * A partially allocated state remains on failure.
988  *
989  * Return:
990  *	0 on success
991  *	-ENOMEM on failure to allocate memory
992  */
993 static int alloc_mem(struct cxlflash_cfg *cfg)
994 {
995 	int rc = 0;
996 	struct device *dev = &cfg->dev->dev;
997 
998 	/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
999 	cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1000 					    get_order(sizeof(struct afu)));
1001 	if (unlikely(!cfg->afu)) {
1002 		dev_err(dev, "%s: cannot get %d free pages\n",
1003 			__func__, get_order(sizeof(struct afu)));
1004 		rc = -ENOMEM;
1005 		goto out;
1006 	}
1007 	cfg->afu->parent = cfg;
1008 	cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1009 	cfg->afu->afu_map = NULL;
1010 out:
1011 	return rc;
1012 }
1013 
1014 /**
1015  * init_pci() - initializes the host as a PCI device
1016  * @cfg:	Internal structure associated with the host.
1017  *
1018  * Return: 0 on success, -errno on failure
1019  */
1020 static int init_pci(struct cxlflash_cfg *cfg)
1021 {
1022 	struct pci_dev *pdev = cfg->dev;
1023 	struct device *dev = &cfg->dev->dev;
1024 	int rc = 0;
1025 
1026 	rc = pci_enable_device(pdev);
1027 	if (rc || pci_channel_offline(pdev)) {
1028 		if (pci_channel_offline(pdev)) {
1029 			cxlflash_wait_for_pci_err_recovery(cfg);
1030 			rc = pci_enable_device(pdev);
1031 		}
1032 
1033 		if (rc) {
1034 			dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1035 			cxlflash_wait_for_pci_err_recovery(cfg);
1036 			goto out;
1037 		}
1038 	}
1039 
1040 out:
1041 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1042 	return rc;
1043 }
1044 
1045 /**
1046  * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1047  * @cfg:	Internal structure associated with the host.
1048  *
1049  * Return: 0 on success, -errno on failure
1050  */
1051 static int init_scsi(struct cxlflash_cfg *cfg)
1052 {
1053 	struct pci_dev *pdev = cfg->dev;
1054 	struct device *dev = &cfg->dev->dev;
1055 	int rc = 0;
1056 
1057 	rc = scsi_add_host(cfg->host, &pdev->dev);
1058 	if (rc) {
1059 		dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1060 		goto out;
1061 	}
1062 
1063 	scsi_scan_host(cfg->host);
1064 
1065 out:
1066 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1067 	return rc;
1068 }
1069 
1070 /**
1071  * set_port_online() - transitions the specified host FC port to online state
1072  * @fc_regs:	Top of MMIO region defined for specified port.
1073  *
1074  * The provided MMIO region must be mapped prior to call. Online state means
1075  * that the FC link layer has synced, completed the handshaking process, and
1076  * is ready for login to start.
1077  */
1078 static void set_port_online(__be64 __iomem *fc_regs)
1079 {
1080 	u64 cmdcfg;
1081 
1082 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1083 	cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE);	/* clear OFF_LINE */
1084 	cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE);	/* set ON_LINE */
1085 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1086 }
1087 
1088 /**
1089  * set_port_offline() - transitions the specified host FC port to offline state
1090  * @fc_regs:	Top of MMIO region defined for specified port.
1091  *
1092  * The provided MMIO region must be mapped prior to call.
1093  */
1094 static void set_port_offline(__be64 __iomem *fc_regs)
1095 {
1096 	u64 cmdcfg;
1097 
1098 	cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1099 	cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE);	/* clear ON_LINE */
1100 	cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE);	/* set OFF_LINE */
1101 	writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1102 }
1103 
1104 /**
1105  * wait_port_online() - waits for the specified host FC port come online
1106  * @fc_regs:	Top of MMIO region defined for specified port.
1107  * @delay_us:	Number of microseconds to delay between reading port status.
1108  * @nretry:	Number of cycles to retry reading port status.
1109  *
1110  * The provided MMIO region must be mapped prior to call. This will timeout
1111  * when the cable is not plugged in.
1112  *
1113  * Return:
1114  *	TRUE (1) when the specified port is online
1115  *	FALSE (0) when the specified port fails to come online after timeout
1116  */
1117 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1118 {
1119 	u64 status;
1120 
1121 	WARN_ON(delay_us < 1000);
1122 
1123 	do {
1124 		msleep(delay_us / 1000);
1125 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1126 		if (status == U64_MAX)
1127 			nretry /= 2;
1128 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1129 		 nretry--);
1130 
1131 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1132 }
1133 
1134 /**
1135  * wait_port_offline() - waits for the specified host FC port go offline
1136  * @fc_regs:	Top of MMIO region defined for specified port.
1137  * @delay_us:	Number of microseconds to delay between reading port status.
1138  * @nretry:	Number of cycles to retry reading port status.
1139  *
1140  * The provided MMIO region must be mapped prior to call.
1141  *
1142  * Return:
1143  *	TRUE (1) when the specified port is offline
1144  *	FALSE (0) when the specified port fails to go offline after timeout
1145  */
1146 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1147 {
1148 	u64 status;
1149 
1150 	WARN_ON(delay_us < 1000);
1151 
1152 	do {
1153 		msleep(delay_us / 1000);
1154 		status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1155 		if (status == U64_MAX)
1156 			nretry /= 2;
1157 	} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1158 		 nretry--);
1159 
1160 	return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1161 }
1162 
1163 /**
1164  * afu_set_wwpn() - configures the WWPN for the specified host FC port
1165  * @afu:	AFU associated with the host that owns the specified FC port.
1166  * @port:	Port number being configured.
1167  * @fc_regs:	Top of MMIO region defined for specified port.
1168  * @wwpn:	The world-wide-port-number previously discovered for port.
1169  *
1170  * The provided MMIO region must be mapped prior to call. As part of the
1171  * sequence to configure the WWPN, the port is toggled offline and then back
1172  * online. This toggling action can cause this routine to delay up to a few
1173  * seconds. When configured to use the internal LUN feature of the AFU, a
1174  * failure to come online is overridden.
1175  */
1176 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1177 			 u64 wwpn)
1178 {
1179 	struct cxlflash_cfg *cfg = afu->parent;
1180 	struct device *dev = &cfg->dev->dev;
1181 
1182 	set_port_offline(fc_regs);
1183 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1184 			       FC_PORT_STATUS_RETRY_CNT)) {
1185 		dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1186 			__func__, port);
1187 	}
1188 
1189 	writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1190 
1191 	set_port_online(fc_regs);
1192 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1193 			      FC_PORT_STATUS_RETRY_CNT)) {
1194 		dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1195 			__func__, port);
1196 	}
1197 }
1198 
1199 /**
1200  * afu_link_reset() - resets the specified host FC port
1201  * @afu:	AFU associated with the host that owns the specified FC port.
1202  * @port:	Port number being configured.
1203  * @fc_regs:	Top of MMIO region defined for specified port.
1204  *
1205  * The provided MMIO region must be mapped prior to call. The sequence to
1206  * reset the port involves toggling it offline and then back online. This
1207  * action can cause this routine to delay up to a few seconds. An effort
1208  * is made to maintain link with the device by switching to host to use
1209  * the alternate port exclusively while the reset takes place.
1210  * failure to come online is overridden.
1211  */
1212 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1213 {
1214 	struct cxlflash_cfg *cfg = afu->parent;
1215 	struct device *dev = &cfg->dev->dev;
1216 	u64 port_sel;
1217 
1218 	/* first switch the AFU to the other links, if any */
1219 	port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1220 	port_sel &= ~(1ULL << port);
1221 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1222 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1223 
1224 	set_port_offline(fc_regs);
1225 	if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1226 			       FC_PORT_STATUS_RETRY_CNT))
1227 		dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1228 			__func__, port);
1229 
1230 	set_port_online(fc_regs);
1231 	if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1232 			      FC_PORT_STATUS_RETRY_CNT))
1233 		dev_err(dev, "%s: wait on port %d to go online timed out\n",
1234 			__func__, port);
1235 
1236 	/* switch back to include this port */
1237 	port_sel |= (1ULL << port);
1238 	writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1239 	cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1240 
1241 	dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1242 }
1243 
1244 /**
1245  * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1246  * @afu:	AFU associated with the host.
1247  */
1248 static void afu_err_intr_init(struct afu *afu)
1249 {
1250 	struct cxlflash_cfg *cfg = afu->parent;
1251 	__be64 __iomem *fc_port_regs;
1252 	int i;
1253 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1254 	u64 reg;
1255 
1256 	/* global async interrupts: AFU clears afu_ctrl on context exit
1257 	 * if async interrupts were sent to that context. This prevents
1258 	 * the AFU form sending further async interrupts when
1259 	 * there is
1260 	 * nobody to receive them.
1261 	 */
1262 
1263 	/* mask all */
1264 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1265 	/* set LISN# to send and point to primary master context */
1266 	reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1267 
1268 	if (afu->internal_lun)
1269 		reg |= 1;	/* Bit 63 indicates local lun */
1270 	writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1271 	/* clear all */
1272 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1273 	/* unmask bits that are of interest */
1274 	/* note: afu can send an interrupt after this step */
1275 	writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1276 	/* clear again in case a bit came on after previous clear but before */
1277 	/* unmask */
1278 	writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1279 
1280 	/* Clear/Set internal lun bits */
1281 	fc_port_regs = get_fc_port_regs(cfg, 0);
1282 	reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1283 	reg &= SISL_FC_INTERNAL_MASK;
1284 	if (afu->internal_lun)
1285 		reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1286 	writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1287 
1288 	/* now clear FC errors */
1289 	for (i = 0; i < cfg->num_fc_ports; i++) {
1290 		fc_port_regs = get_fc_port_regs(cfg, i);
1291 
1292 		writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1293 		writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1294 	}
1295 
1296 	/* sync interrupts for master's IOARRIN write */
1297 	/* note that unlike asyncs, there can be no pending sync interrupts */
1298 	/* at this time (this is a fresh context and master has not written */
1299 	/* IOARRIN yet), so there is nothing to clear. */
1300 
1301 	/* set LISN#, it is always sent to the context that wrote IOARRIN */
1302 	for (i = 0; i < afu->num_hwqs; i++) {
1303 		hwq = get_hwq(afu, i);
1304 
1305 		writeq_be(SISL_MSI_SYNC_ERROR, &hwq->host_map->ctx_ctrl);
1306 		writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1307 	}
1308 }
1309 
1310 /**
1311  * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1312  * @irq:	Interrupt number.
1313  * @data:	Private data provided at interrupt registration, the AFU.
1314  *
1315  * Return: Always return IRQ_HANDLED.
1316  */
1317 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1318 {
1319 	struct hwq *hwq = (struct hwq *)data;
1320 	struct cxlflash_cfg *cfg = hwq->afu->parent;
1321 	struct device *dev = &cfg->dev->dev;
1322 	u64 reg;
1323 	u64 reg_unmasked;
1324 
1325 	reg = readq_be(&hwq->host_map->intr_status);
1326 	reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1327 
1328 	if (reg_unmasked == 0UL) {
1329 		dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1330 			__func__, reg);
1331 		goto cxlflash_sync_err_irq_exit;
1332 	}
1333 
1334 	dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1335 		__func__, reg);
1336 
1337 	writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1338 
1339 cxlflash_sync_err_irq_exit:
1340 	return IRQ_HANDLED;
1341 }
1342 
1343 /**
1344  * process_hrrq() - process the read-response queue
1345  * @afu:	AFU associated with the host.
1346  * @doneq:	Queue of commands harvested from the RRQ.
1347  * @budget:	Threshold of RRQ entries to process.
1348  *
1349  * This routine must be called holding the disabled RRQ spin lock.
1350  *
1351  * Return: The number of entries processed.
1352  */
1353 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1354 {
1355 	struct afu *afu = hwq->afu;
1356 	struct afu_cmd *cmd;
1357 	struct sisl_ioasa *ioasa;
1358 	struct sisl_ioarcb *ioarcb;
1359 	bool toggle = hwq->toggle;
1360 	int num_hrrq = 0;
1361 	u64 entry,
1362 	    *hrrq_start = hwq->hrrq_start,
1363 	    *hrrq_end = hwq->hrrq_end,
1364 	    *hrrq_curr = hwq->hrrq_curr;
1365 
1366 	/* Process ready RRQ entries up to the specified budget (if any) */
1367 	while (true) {
1368 		entry = *hrrq_curr;
1369 
1370 		if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1371 			break;
1372 
1373 		entry &= ~SISL_RESP_HANDLE_T_BIT;
1374 
1375 		if (afu_is_sq_cmd_mode(afu)) {
1376 			ioasa = (struct sisl_ioasa *)entry;
1377 			cmd = container_of(ioasa, struct afu_cmd, sa);
1378 		} else {
1379 			ioarcb = (struct sisl_ioarcb *)entry;
1380 			cmd = container_of(ioarcb, struct afu_cmd, rcb);
1381 		}
1382 
1383 		list_add_tail(&cmd->queue, doneq);
1384 
1385 		/* Advance to next entry or wrap and flip the toggle bit */
1386 		if (hrrq_curr < hrrq_end)
1387 			hrrq_curr++;
1388 		else {
1389 			hrrq_curr = hrrq_start;
1390 			toggle ^= SISL_RESP_HANDLE_T_BIT;
1391 		}
1392 
1393 		atomic_inc(&hwq->hsq_credits);
1394 		num_hrrq++;
1395 
1396 		if (budget > 0 && num_hrrq >= budget)
1397 			break;
1398 	}
1399 
1400 	hwq->hrrq_curr = hrrq_curr;
1401 	hwq->toggle = toggle;
1402 
1403 	return num_hrrq;
1404 }
1405 
1406 /**
1407  * process_cmd_doneq() - process a queue of harvested RRQ commands
1408  * @doneq:	Queue of completed commands.
1409  *
1410  * Note that upon return the queue can no longer be trusted.
1411  */
1412 static void process_cmd_doneq(struct list_head *doneq)
1413 {
1414 	struct afu_cmd *cmd, *tmp;
1415 
1416 	WARN_ON(list_empty(doneq));
1417 
1418 	list_for_each_entry_safe(cmd, tmp, doneq, queue)
1419 		cmd_complete(cmd);
1420 }
1421 
1422 /**
1423  * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1424  * @irqpoll:	IRQ poll structure associated with queue to poll.
1425  * @budget:	Threshold of RRQ entries to process per poll.
1426  *
1427  * Return: The number of entries processed.
1428  */
1429 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1430 {
1431 	struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1432 	unsigned long hrrq_flags;
1433 	LIST_HEAD(doneq);
1434 	int num_entries = 0;
1435 
1436 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1437 
1438 	num_entries = process_hrrq(hwq, &doneq, budget);
1439 	if (num_entries < budget)
1440 		irq_poll_complete(irqpoll);
1441 
1442 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1443 
1444 	process_cmd_doneq(&doneq);
1445 	return num_entries;
1446 }
1447 
1448 /**
1449  * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1450  * @irq:	Interrupt number.
1451  * @data:	Private data provided at interrupt registration, the AFU.
1452  *
1453  * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1454  */
1455 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1456 {
1457 	struct hwq *hwq = (struct hwq *)data;
1458 	struct afu *afu = hwq->afu;
1459 	unsigned long hrrq_flags;
1460 	LIST_HEAD(doneq);
1461 	int num_entries = 0;
1462 
1463 	spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1464 
1465 	if (afu_is_irqpoll_enabled(afu)) {
1466 		irq_poll_sched(&hwq->irqpoll);
1467 		spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1468 		return IRQ_HANDLED;
1469 	}
1470 
1471 	num_entries = process_hrrq(hwq, &doneq, -1);
1472 	spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1473 
1474 	if (num_entries == 0)
1475 		return IRQ_NONE;
1476 
1477 	process_cmd_doneq(&doneq);
1478 	return IRQ_HANDLED;
1479 }
1480 
1481 /*
1482  * Asynchronous interrupt information table
1483  *
1484  * NOTE:
1485  *	- Order matters here as this array is indexed by bit position.
1486  *
1487  *	- The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1488  *	  as complex and complains due to a lack of parentheses/braces.
1489  */
1490 #define ASTATUS_FC(_a, _b, _c, _d)					 \
1491 	{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1492 
1493 #define BUILD_SISL_ASTATUS_FC_PORT(_a)					 \
1494 	ASTATUS_FC(_a, LINK_UP, "link up", 0),				 \
1495 	ASTATUS_FC(_a, LINK_DN, "link down", 0),			 \
1496 	ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST),		 \
1497 	ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR),		 \
1498 	ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1499 	ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET),	 \
1500 	ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0),		 \
1501 	ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1502 
1503 static const struct asyc_intr_info ainfo[] = {
1504 	BUILD_SISL_ASTATUS_FC_PORT(1),
1505 	BUILD_SISL_ASTATUS_FC_PORT(0),
1506 	BUILD_SISL_ASTATUS_FC_PORT(3),
1507 	BUILD_SISL_ASTATUS_FC_PORT(2)
1508 };
1509 
1510 /**
1511  * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1512  * @irq:	Interrupt number.
1513  * @data:	Private data provided at interrupt registration, the AFU.
1514  *
1515  * Return: Always return IRQ_HANDLED.
1516  */
1517 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1518 {
1519 	struct hwq *hwq = (struct hwq *)data;
1520 	struct afu *afu = hwq->afu;
1521 	struct cxlflash_cfg *cfg = afu->parent;
1522 	struct device *dev = &cfg->dev->dev;
1523 	const struct asyc_intr_info *info;
1524 	struct sisl_global_map __iomem *global = &afu->afu_map->global;
1525 	__be64 __iomem *fc_port_regs;
1526 	u64 reg_unmasked;
1527 	u64 reg;
1528 	u64 bit;
1529 	u8 port;
1530 
1531 	reg = readq_be(&global->regs.aintr_status);
1532 	reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1533 
1534 	if (unlikely(reg_unmasked == 0)) {
1535 		dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1536 			__func__, reg);
1537 		goto out;
1538 	}
1539 
1540 	/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1541 	writeq_be(reg_unmasked, &global->regs.aintr_clear);
1542 
1543 	/* Check each bit that is on */
1544 	for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1545 		if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1546 			WARN_ON_ONCE(1);
1547 			continue;
1548 		}
1549 
1550 		info = &ainfo[bit];
1551 		if (unlikely(info->status != 1ULL << bit)) {
1552 			WARN_ON_ONCE(1);
1553 			continue;
1554 		}
1555 
1556 		port = info->port;
1557 		fc_port_regs = get_fc_port_regs(cfg, port);
1558 
1559 		dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1560 			__func__, port, info->desc,
1561 		       readq_be(&fc_port_regs[FC_STATUS / 8]));
1562 
1563 		/*
1564 		 * Do link reset first, some OTHER errors will set FC_ERROR
1565 		 * again if cleared before or w/o a reset
1566 		 */
1567 		if (info->action & LINK_RESET) {
1568 			dev_err(dev, "%s: FC Port %d: resetting link\n",
1569 				__func__, port);
1570 			cfg->lr_state = LINK_RESET_REQUIRED;
1571 			cfg->lr_port = port;
1572 			schedule_work(&cfg->work_q);
1573 		}
1574 
1575 		if (info->action & CLR_FC_ERROR) {
1576 			reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1577 
1578 			/*
1579 			 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1580 			 * should be the same and tracing one is sufficient.
1581 			 */
1582 
1583 			dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1584 				__func__, port, reg);
1585 
1586 			writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1587 			writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1588 		}
1589 
1590 		if (info->action & SCAN_HOST) {
1591 			atomic_inc(&cfg->scan_host_needed);
1592 			schedule_work(&cfg->work_q);
1593 		}
1594 	}
1595 
1596 out:
1597 	return IRQ_HANDLED;
1598 }
1599 
1600 /**
1601  * start_context() - starts the master context
1602  * @cfg:	Internal structure associated with the host.
1603  * @index:	Index of the hardware queue.
1604  *
1605  * Return: A success or failure value from CXL services.
1606  */
1607 static int start_context(struct cxlflash_cfg *cfg, u32 index)
1608 {
1609 	struct device *dev = &cfg->dev->dev;
1610 	struct hwq *hwq = get_hwq(cfg->afu, index);
1611 	int rc = 0;
1612 
1613 	rc = cxl_start_context(hwq->ctx,
1614 			       hwq->work.work_element_descriptor,
1615 			       NULL);
1616 
1617 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1618 	return rc;
1619 }
1620 
1621 /**
1622  * read_vpd() - obtains the WWPNs from VPD
1623  * @cfg:	Internal structure associated with the host.
1624  * @wwpn:	Array of size MAX_FC_PORTS to pass back WWPNs
1625  *
1626  * Return: 0 on success, -errno on failure
1627  */
1628 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1629 {
1630 	struct device *dev = &cfg->dev->dev;
1631 	struct pci_dev *pdev = cfg->dev;
1632 	int rc = 0;
1633 	int ro_start, ro_size, i, j, k;
1634 	ssize_t vpd_size;
1635 	char vpd_data[CXLFLASH_VPD_LEN];
1636 	char tmp_buf[WWPN_BUF_LEN] = { 0 };
1637 	const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1638 						cfg->dev_id->driver_data;
1639 	const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1640 	const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1641 
1642 	/* Get the VPD data from the device */
1643 	vpd_size = cxl_read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1644 	if (unlikely(vpd_size <= 0)) {
1645 		dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1646 			__func__, vpd_size);
1647 		rc = -ENODEV;
1648 		goto out;
1649 	}
1650 
1651 	/* Get the read only section offset */
1652 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1653 				    PCI_VPD_LRDT_RO_DATA);
1654 	if (unlikely(ro_start < 0)) {
1655 		dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1656 		rc = -ENODEV;
1657 		goto out;
1658 	}
1659 
1660 	/* Get the read only section size, cap when extends beyond read VPD */
1661 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1662 	j = ro_size;
1663 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1664 	if (unlikely((i + j) > vpd_size)) {
1665 		dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1666 			__func__, (i + j), vpd_size);
1667 		ro_size = vpd_size - i;
1668 	}
1669 
1670 	/*
1671 	 * Find the offset of the WWPN tag within the read only
1672 	 * VPD data and validate the found field (partials are
1673 	 * no good to us). Convert the ASCII data to an integer
1674 	 * value. Note that we must copy to a temporary buffer
1675 	 * because the conversion service requires that the ASCII
1676 	 * string be terminated.
1677 	 *
1678 	 * Allow for WWPN not being found for all devices, setting
1679 	 * the returned WWPN to zero when not found. Notify with a
1680 	 * log error for cards that should have had WWPN keywords
1681 	 * in the VPD - cards requiring WWPN will not have their
1682 	 * ports programmed and operate in an undefined state.
1683 	 */
1684 	for (k = 0; k < cfg->num_fc_ports; k++) {
1685 		j = ro_size;
1686 		i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1687 
1688 		i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1689 		if (i < 0) {
1690 			if (wwpn_vpd_required)
1691 				dev_err(dev, "%s: Port %d WWPN not found\n",
1692 					__func__, k);
1693 			wwpn[k] = 0ULL;
1694 			continue;
1695 		}
1696 
1697 		j = pci_vpd_info_field_size(&vpd_data[i]);
1698 		i += PCI_VPD_INFO_FLD_HDR_SIZE;
1699 		if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1700 			dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1701 				__func__, k);
1702 			rc = -ENODEV;
1703 			goto out;
1704 		}
1705 
1706 		memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1707 		rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1708 		if (unlikely(rc)) {
1709 			dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1710 				__func__, k);
1711 			rc = -ENODEV;
1712 			goto out;
1713 		}
1714 
1715 		dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1716 	}
1717 
1718 out:
1719 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1720 	return rc;
1721 }
1722 
1723 /**
1724  * init_pcr() - initialize the provisioning and control registers
1725  * @cfg:	Internal structure associated with the host.
1726  *
1727  * Also sets up fast access to the mapped registers and initializes AFU
1728  * command fields that never change.
1729  */
1730 static void init_pcr(struct cxlflash_cfg *cfg)
1731 {
1732 	struct afu *afu = cfg->afu;
1733 	struct sisl_ctrl_map __iomem *ctrl_map;
1734 	struct hwq *hwq;
1735 	int i;
1736 
1737 	for (i = 0; i < MAX_CONTEXT; i++) {
1738 		ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1739 		/* Disrupt any clients that could be running */
1740 		/* e.g. clients that survived a master restart */
1741 		writeq_be(0, &ctrl_map->rht_start);
1742 		writeq_be(0, &ctrl_map->rht_cnt_id);
1743 		writeq_be(0, &ctrl_map->ctx_cap);
1744 	}
1745 
1746 	/* Copy frequently used fields into hwq */
1747 	for (i = 0; i < afu->num_hwqs; i++) {
1748 		hwq = get_hwq(afu, i);
1749 
1750 		hwq->ctx_hndl = (u16) cxl_process_element(hwq->ctx);
1751 		hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1752 		hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1753 
1754 		/* Program the Endian Control for the master context */
1755 		writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1756 	}
1757 }
1758 
1759 /**
1760  * init_global() - initialize AFU global registers
1761  * @cfg:	Internal structure associated with the host.
1762  */
1763 static int init_global(struct cxlflash_cfg *cfg)
1764 {
1765 	struct afu *afu = cfg->afu;
1766 	struct device *dev = &cfg->dev->dev;
1767 	struct hwq *hwq;
1768 	struct sisl_host_map __iomem *hmap;
1769 	__be64 __iomem *fc_port_regs;
1770 	u64 wwpn[MAX_FC_PORTS];	/* wwpn of AFU ports */
1771 	int i = 0, num_ports = 0;
1772 	int rc = 0;
1773 	u64 reg;
1774 
1775 	rc = read_vpd(cfg, &wwpn[0]);
1776 	if (rc) {
1777 		dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1778 		goto out;
1779 	}
1780 
1781 	/* Set up RRQ and SQ in HWQ for master issued cmds */
1782 	for (i = 0; i < afu->num_hwqs; i++) {
1783 		hwq = get_hwq(afu, i);
1784 		hmap = hwq->host_map;
1785 
1786 		writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1787 		writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1788 
1789 		if (afu_is_sq_cmd_mode(afu)) {
1790 			writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1791 			writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1792 		}
1793 	}
1794 
1795 	/* AFU configuration */
1796 	reg = readq_be(&afu->afu_map->global.regs.afu_config);
1797 	reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1798 	/* enable all auto retry options and control endianness */
1799 	/* leave others at default: */
1800 	/* CTX_CAP write protected, mbox_r does not clear on read and */
1801 	/* checker on if dual afu */
1802 	writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1803 
1804 	/* Global port select: select either port */
1805 	if (afu->internal_lun) {
1806 		/* Only use port 0 */
1807 		writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1808 		num_ports = 0;
1809 	} else {
1810 		writeq_be(PORT_MASK(cfg->num_fc_ports),
1811 			  &afu->afu_map->global.regs.afu_port_sel);
1812 		num_ports = cfg->num_fc_ports;
1813 	}
1814 
1815 	for (i = 0; i < num_ports; i++) {
1816 		fc_port_regs = get_fc_port_regs(cfg, i);
1817 
1818 		/* Unmask all errors (but they are still masked at AFU) */
1819 		writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1820 		/* Clear CRC error cnt & set a threshold */
1821 		(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1822 		writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1823 
1824 		/* Set WWPNs. If already programmed, wwpn[i] is 0 */
1825 		if (wwpn[i] != 0)
1826 			afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1827 		/* Programming WWPN back to back causes additional
1828 		 * offline/online transitions and a PLOGI
1829 		 */
1830 		msleep(100);
1831 	}
1832 
1833 	/* Set up master's own CTX_CAP to allow real mode, host translation */
1834 	/* tables, afu cmds and read/write GSCSI cmds. */
1835 	/* First, unlock ctx_cap write by reading mbox */
1836 	for (i = 0; i < afu->num_hwqs; i++) {
1837 		hwq = get_hwq(afu, i);
1838 
1839 		(void)readq_be(&hwq->ctrl_map->mbox_r);	/* unlock ctx_cap */
1840 		writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1841 			SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1842 			SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1843 			&hwq->ctrl_map->ctx_cap);
1844 	}
1845 
1846 	/*
1847 	 * Determine write-same unmap support for host by evaluating the unmap
1848 	 * sector support bit of the context control register associated with
1849 	 * the primary hardware queue. Note that while this status is reflected
1850 	 * in a context register, the outcome can be assumed to be host-wide.
1851 	 */
1852 	hwq = get_hwq(afu, PRIMARY_HWQ);
1853 	reg = readq_be(&hwq->host_map->ctx_ctrl);
1854 	if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1855 		cfg->ws_unmap = true;
1856 
1857 	/* Initialize heartbeat */
1858 	afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1859 out:
1860 	return rc;
1861 }
1862 
1863 /**
1864  * start_afu() - initializes and starts the AFU
1865  * @cfg:	Internal structure associated with the host.
1866  */
1867 static int start_afu(struct cxlflash_cfg *cfg)
1868 {
1869 	struct afu *afu = cfg->afu;
1870 	struct device *dev = &cfg->dev->dev;
1871 	struct hwq *hwq;
1872 	int rc = 0;
1873 	int i;
1874 
1875 	init_pcr(cfg);
1876 
1877 	/* Initialize each HWQ */
1878 	for (i = 0; i < afu->num_hwqs; i++) {
1879 		hwq = get_hwq(afu, i);
1880 
1881 		/* After an AFU reset, RRQ entries are stale, clear them */
1882 		memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1883 
1884 		/* Initialize RRQ pointers */
1885 		hwq->hrrq_start = &hwq->rrq_entry[0];
1886 		hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1887 		hwq->hrrq_curr = hwq->hrrq_start;
1888 		hwq->toggle = 1;
1889 
1890 		/* Initialize spin locks */
1891 		spin_lock_init(&hwq->hrrq_slock);
1892 		spin_lock_init(&hwq->hsq_slock);
1893 
1894 		/* Initialize SQ */
1895 		if (afu_is_sq_cmd_mode(afu)) {
1896 			memset(&hwq->sq, 0, sizeof(hwq->sq));
1897 			hwq->hsq_start = &hwq->sq[0];
1898 			hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1899 			hwq->hsq_curr = hwq->hsq_start;
1900 
1901 			atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1902 		}
1903 
1904 		/* Initialize IRQ poll */
1905 		if (afu_is_irqpoll_enabled(afu))
1906 			irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1907 				      cxlflash_irqpoll);
1908 
1909 	}
1910 
1911 	rc = init_global(cfg);
1912 
1913 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1914 	return rc;
1915 }
1916 
1917 /**
1918  * init_intr() - setup interrupt handlers for the master context
1919  * @cfg:	Internal structure associated with the host.
1920  * @hwq:	Hardware queue to initialize.
1921  *
1922  * Return: 0 on success, -errno on failure
1923  */
1924 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1925 				 struct hwq *hwq)
1926 {
1927 	struct device *dev = &cfg->dev->dev;
1928 	struct cxl_context *ctx = hwq->ctx;
1929 	int rc = 0;
1930 	enum undo_level level = UNDO_NOOP;
1931 	bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1932 	int num_irqs = is_primary_hwq ? 3 : 2;
1933 
1934 	rc = cxl_allocate_afu_irqs(ctx, num_irqs);
1935 	if (unlikely(rc)) {
1936 		dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1937 			__func__, rc);
1938 		level = UNDO_NOOP;
1939 		goto out;
1940 	}
1941 
1942 	rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1943 			     "SISL_MSI_SYNC_ERROR");
1944 	if (unlikely(rc <= 0)) {
1945 		dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1946 		level = FREE_IRQ;
1947 		goto out;
1948 	}
1949 
1950 	rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1951 			     "SISL_MSI_RRQ_UPDATED");
1952 	if (unlikely(rc <= 0)) {
1953 		dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1954 		level = UNMAP_ONE;
1955 		goto out;
1956 	}
1957 
1958 	/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1959 	if (!is_primary_hwq)
1960 		goto out;
1961 
1962 	rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1963 			     "SISL_MSI_ASYNC_ERROR");
1964 	if (unlikely(rc <= 0)) {
1965 		dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1966 		level = UNMAP_TWO;
1967 		goto out;
1968 	}
1969 out:
1970 	return level;
1971 }
1972 
1973 /**
1974  * init_mc() - create and register as the master context
1975  * @cfg:	Internal structure associated with the host.
1976  * index:	HWQ Index of the master context.
1977  *
1978  * Return: 0 on success, -errno on failure
1979  */
1980 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1981 {
1982 	struct cxl_context *ctx;
1983 	struct device *dev = &cfg->dev->dev;
1984 	struct hwq *hwq = get_hwq(cfg->afu, index);
1985 	int rc = 0;
1986 	enum undo_level level;
1987 
1988 	hwq->afu = cfg->afu;
1989 	hwq->index = index;
1990 	INIT_LIST_HEAD(&hwq->pending_cmds);
1991 
1992 	if (index == PRIMARY_HWQ)
1993 		ctx = cxl_get_context(cfg->dev);
1994 	else
1995 		ctx = cxl_dev_context_init(cfg->dev);
1996 	if (unlikely(!ctx)) {
1997 		rc = -ENOMEM;
1998 		goto err1;
1999 	}
2000 
2001 	WARN_ON(hwq->ctx);
2002 	hwq->ctx = ctx;
2003 
2004 	/* Set it up as a master with the CXL */
2005 	cxl_set_master(ctx);
2006 
2007 	/* Reset AFU when initializing primary context */
2008 	if (index == PRIMARY_HWQ) {
2009 		rc = cxl_afu_reset(ctx);
2010 		if (unlikely(rc)) {
2011 			dev_err(dev, "%s: AFU reset failed rc=%d\n",
2012 				      __func__, rc);
2013 			goto err1;
2014 		}
2015 	}
2016 
2017 	level = init_intr(cfg, hwq);
2018 	if (unlikely(level)) {
2019 		dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2020 		goto err2;
2021 	}
2022 
2023 	/* This performs the equivalent of the CXL_IOCTL_START_WORK.
2024 	 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
2025 	 * element (pe) that is embedded in the context (ctx)
2026 	 */
2027 	rc = start_context(cfg, index);
2028 	if (unlikely(rc)) {
2029 		dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2030 		level = UNMAP_THREE;
2031 		goto err2;
2032 	}
2033 
2034 out:
2035 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2036 	return rc;
2037 err2:
2038 	term_intr(cfg, level, index);
2039 	if (index != PRIMARY_HWQ)
2040 		cxl_release_context(ctx);
2041 err1:
2042 	hwq->ctx = NULL;
2043 	goto out;
2044 }
2045 
2046 /**
2047  * get_num_afu_ports() - determines and configures the number of AFU ports
2048  * @cfg:	Internal structure associated with the host.
2049  *
2050  * This routine determines the number of AFU ports by converting the global
2051  * port selection mask. The converted value is only valid following an AFU
2052  * reset (explicit or power-on). This routine must be invoked shortly after
2053  * mapping as other routines are dependent on the number of ports during the
2054  * initialization sequence.
2055  *
2056  * To support legacy AFUs that might not have reflected an initial global
2057  * port mask (value read is 0), default to the number of ports originally
2058  * supported by the cxlflash driver (2) before hardware with other port
2059  * offerings was introduced.
2060  */
2061 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2062 {
2063 	struct afu *afu = cfg->afu;
2064 	struct device *dev = &cfg->dev->dev;
2065 	u64 port_mask;
2066 	int num_fc_ports = LEGACY_FC_PORTS;
2067 
2068 	port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2069 	if (port_mask != 0ULL)
2070 		num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2071 
2072 	dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2073 		__func__, port_mask, num_fc_ports);
2074 
2075 	cfg->num_fc_ports = num_fc_ports;
2076 	cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2077 }
2078 
2079 /**
2080  * init_afu() - setup as master context and start AFU
2081  * @cfg:	Internal structure associated with the host.
2082  *
2083  * This routine is a higher level of control for configuring the
2084  * AFU on probe and reset paths.
2085  *
2086  * Return: 0 on success, -errno on failure
2087  */
2088 static int init_afu(struct cxlflash_cfg *cfg)
2089 {
2090 	u64 reg;
2091 	int rc = 0;
2092 	struct afu *afu = cfg->afu;
2093 	struct device *dev = &cfg->dev->dev;
2094 	struct hwq *hwq;
2095 	int i;
2096 
2097 	cxl_perst_reloads_same_image(cfg->cxl_afu, true);
2098 
2099 	afu->num_hwqs = afu->desired_hwqs;
2100 	for (i = 0; i < afu->num_hwqs; i++) {
2101 		rc = init_mc(cfg, i);
2102 		if (rc) {
2103 			dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2104 				__func__, rc, i);
2105 			goto err1;
2106 		}
2107 	}
2108 
2109 	/* Map the entire MMIO space of the AFU using the first context */
2110 	hwq = get_hwq(afu, PRIMARY_HWQ);
2111 	afu->afu_map = cxl_psa_map(hwq->ctx);
2112 	if (!afu->afu_map) {
2113 		dev_err(dev, "%s: cxl_psa_map failed\n", __func__);
2114 		rc = -ENOMEM;
2115 		goto err1;
2116 	}
2117 
2118 	/* No byte reverse on reading afu_version or string will be backwards */
2119 	reg = readq(&afu->afu_map->global.regs.afu_version);
2120 	memcpy(afu->version, &reg, sizeof(reg));
2121 	afu->interface_version =
2122 	    readq_be(&afu->afu_map->global.regs.interface_version);
2123 	if ((afu->interface_version + 1) == 0) {
2124 		dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2125 			"interface version %016llx\n", afu->version,
2126 		       afu->interface_version);
2127 		rc = -EINVAL;
2128 		goto err1;
2129 	}
2130 
2131 	if (afu_is_sq_cmd_mode(afu)) {
2132 		afu->send_cmd = send_cmd_sq;
2133 		afu->context_reset = context_reset_sq;
2134 	} else {
2135 		afu->send_cmd = send_cmd_ioarrin;
2136 		afu->context_reset = context_reset_ioarrin;
2137 	}
2138 
2139 	dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2140 		afu->version, afu->interface_version);
2141 
2142 	get_num_afu_ports(cfg);
2143 
2144 	rc = start_afu(cfg);
2145 	if (rc) {
2146 		dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2147 		goto err1;
2148 	}
2149 
2150 	afu_err_intr_init(cfg->afu);
2151 	for (i = 0; i < afu->num_hwqs; i++) {
2152 		hwq = get_hwq(afu, i);
2153 
2154 		hwq->room = readq_be(&hwq->host_map->cmd_room);
2155 	}
2156 
2157 	/* Restore the LUN mappings */
2158 	cxlflash_restore_luntable(cfg);
2159 out:
2160 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2161 	return rc;
2162 
2163 err1:
2164 	for (i = afu->num_hwqs - 1; i >= 0; i--) {
2165 		term_intr(cfg, UNMAP_THREE, i);
2166 		term_mc(cfg, i);
2167 	}
2168 	goto out;
2169 }
2170 
2171 /**
2172  * afu_reset() - resets the AFU
2173  * @cfg:	Internal structure associated with the host.
2174  *
2175  * Return: 0 on success, -errno on failure
2176  */
2177 static int afu_reset(struct cxlflash_cfg *cfg)
2178 {
2179 	struct device *dev = &cfg->dev->dev;
2180 	int rc = 0;
2181 
2182 	/* Stop the context before the reset. Since the context is
2183 	 * no longer available restart it after the reset is complete
2184 	 */
2185 	term_afu(cfg);
2186 
2187 	rc = init_afu(cfg);
2188 
2189 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2190 	return rc;
2191 }
2192 
2193 /**
2194  * drain_ioctls() - wait until all currently executing ioctls have completed
2195  * @cfg:	Internal structure associated with the host.
2196  *
2197  * Obtain write access to read/write semaphore that wraps ioctl
2198  * handling to 'drain' ioctls currently executing.
2199  */
2200 static void drain_ioctls(struct cxlflash_cfg *cfg)
2201 {
2202 	down_write(&cfg->ioctl_rwsem);
2203 	up_write(&cfg->ioctl_rwsem);
2204 }
2205 
2206 /**
2207  * cxlflash_async_reset_host() - asynchronous host reset handler
2208  * @data:	Private data provided while scheduling reset.
2209  * @cookie:	Cookie that can be used for checkpointing.
2210  */
2211 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2212 {
2213 	struct cxlflash_cfg *cfg = data;
2214 	struct device *dev = &cfg->dev->dev;
2215 	int rc = 0;
2216 
2217 	if (cfg->state != STATE_RESET) {
2218 		dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2219 			__func__, cfg->state);
2220 		goto out;
2221 	}
2222 
2223 	drain_ioctls(cfg);
2224 	cxlflash_mark_contexts_error(cfg);
2225 	rc = afu_reset(cfg);
2226 	if (rc)
2227 		cfg->state = STATE_FAILTERM;
2228 	else
2229 		cfg->state = STATE_NORMAL;
2230 	wake_up_all(&cfg->reset_waitq);
2231 
2232 out:
2233 	scsi_unblock_requests(cfg->host);
2234 }
2235 
2236 /**
2237  * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2238  * @cfg:	Internal structure associated with the host.
2239  */
2240 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2241 {
2242 	struct device *dev = &cfg->dev->dev;
2243 
2244 	if (cfg->state != STATE_NORMAL) {
2245 		dev_dbg(dev, "%s: Not performing reset state=%d\n",
2246 			__func__, cfg->state);
2247 		return;
2248 	}
2249 
2250 	cfg->state = STATE_RESET;
2251 	scsi_block_requests(cfg->host);
2252 	cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2253 						 cfg);
2254 }
2255 
2256 /**
2257  * send_afu_cmd() - builds and sends an internal AFU command
2258  * @afu:	AFU associated with the host.
2259  * @rcb:	Pre-populated IOARCB describing command to send.
2260  *
2261  * The AFU can only take one internal AFU command at a time. This limitation is
2262  * enforced by using a mutex to provide exclusive access to the AFU during the
2263  * operation. This design point requires calling threads to not be on interrupt
2264  * context due to the possibility of sleeping during concurrent AFU operations.
2265  *
2266  * The command status is optionally passed back to the caller when the caller
2267  * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2268  *
2269  * Return:
2270  *	0 on success, -errno on failure
2271  */
2272 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2273 {
2274 	struct cxlflash_cfg *cfg = afu->parent;
2275 	struct device *dev = &cfg->dev->dev;
2276 	struct afu_cmd *cmd = NULL;
2277 	struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2278 	char *buf = NULL;
2279 	int rc = 0;
2280 	int nretry = 0;
2281 	static DEFINE_MUTEX(sync_active);
2282 
2283 	if (cfg->state != STATE_NORMAL) {
2284 		dev_dbg(dev, "%s: Sync not required state=%u\n",
2285 			__func__, cfg->state);
2286 		return 0;
2287 	}
2288 
2289 	mutex_lock(&sync_active);
2290 	atomic_inc(&afu->cmds_active);
2291 	buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2292 	if (unlikely(!buf)) {
2293 		dev_err(dev, "%s: no memory for command\n", __func__);
2294 		rc = -ENOMEM;
2295 		goto out;
2296 	}
2297 
2298 	cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2299 
2300 retry:
2301 	memset(cmd, 0, sizeof(*cmd));
2302 	memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2303 	INIT_LIST_HEAD(&cmd->queue);
2304 	init_completion(&cmd->cevent);
2305 	cmd->parent = afu;
2306 	cmd->hwq_index = hwq->index;
2307 	cmd->rcb.ctx_id = hwq->ctx_hndl;
2308 
2309 	dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2310 		__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2311 
2312 	rc = afu->send_cmd(afu, cmd);
2313 	if (unlikely(rc)) {
2314 		rc = -ENOBUFS;
2315 		goto out;
2316 	}
2317 
2318 	rc = wait_resp(afu, cmd);
2319 	switch (rc) {
2320 	case -ETIMEDOUT:
2321 		rc = afu->context_reset(hwq);
2322 		if (rc) {
2323 			cxlflash_schedule_async_reset(cfg);
2324 			break;
2325 		}
2326 		/* fall through to retry */
2327 	case -EAGAIN:
2328 		if (++nretry < 2)
2329 			goto retry;
2330 		/* fall through to exit */
2331 	default:
2332 		break;
2333 	}
2334 
2335 	if (rcb->ioasa)
2336 		*rcb->ioasa = cmd->sa;
2337 out:
2338 	atomic_dec(&afu->cmds_active);
2339 	mutex_unlock(&sync_active);
2340 	kfree(buf);
2341 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2342 	return rc;
2343 }
2344 
2345 /**
2346  * cxlflash_afu_sync() - builds and sends an AFU sync command
2347  * @afu:	AFU associated with the host.
2348  * @ctx:	Identifies context requesting sync.
2349  * @res:	Identifies resource requesting sync.
2350  * @mode:	Type of sync to issue (lightweight, heavyweight, global).
2351  *
2352  * AFU sync operations are only necessary and allowed when the device is
2353  * operating normally. When not operating normally, sync requests can occur as
2354  * part of cleaning up resources associated with an adapter prior to removal.
2355  * In this scenario, these requests are simply ignored (safe due to the AFU
2356  * going away).
2357  *
2358  * Return:
2359  *	0 on success, -errno on failure
2360  */
2361 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2362 {
2363 	struct cxlflash_cfg *cfg = afu->parent;
2364 	struct device *dev = &cfg->dev->dev;
2365 	struct sisl_ioarcb rcb = { 0 };
2366 
2367 	dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2368 		__func__, afu, ctx, res, mode);
2369 
2370 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2371 	rcb.msi = SISL_MSI_RRQ_UPDATED;
2372 	rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2373 
2374 	rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2375 	rcb.cdb[1] = mode;
2376 	put_unaligned_be16(ctx, &rcb.cdb[2]);
2377 	put_unaligned_be32(res, &rcb.cdb[4]);
2378 
2379 	return send_afu_cmd(afu, &rcb);
2380 }
2381 
2382 /**
2383  * cxlflash_eh_abort_handler() - abort a SCSI command
2384  * @scp:	SCSI command to abort.
2385  *
2386  * CXL Flash devices do not support a single command abort. Reset the context
2387  * as per SISLite specification. Flush any pending commands in the hardware
2388  * queue before the reset.
2389  *
2390  * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2391  */
2392 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2393 {
2394 	int rc = FAILED;
2395 	struct Scsi_Host *host = scp->device->host;
2396 	struct cxlflash_cfg *cfg = shost_priv(host);
2397 	struct afu_cmd *cmd = sc_to_afuc(scp);
2398 	struct device *dev = &cfg->dev->dev;
2399 	struct afu *afu = cfg->afu;
2400 	struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2401 
2402 	dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2403 		"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2404 		scp->device->channel, scp->device->id, scp->device->lun,
2405 		get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2406 		get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2407 		get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2408 		get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2409 
2410 	/* When the state is not normal, another reset/reload is in progress.
2411 	 * Return failed and the mid-layer will invoke host reset handler.
2412 	 */
2413 	if (cfg->state != STATE_NORMAL) {
2414 		dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2415 			__func__, cfg->state);
2416 		goto out;
2417 	}
2418 
2419 	rc = afu->context_reset(hwq);
2420 	if (unlikely(rc))
2421 		goto out;
2422 
2423 	rc = SUCCESS;
2424 
2425 out:
2426 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2427 	return rc;
2428 }
2429 
2430 /**
2431  * cxlflash_eh_device_reset_handler() - reset a single LUN
2432  * @scp:	SCSI command to send.
2433  *
2434  * Return:
2435  *	SUCCESS as defined in scsi/scsi.h
2436  *	FAILED as defined in scsi/scsi.h
2437  */
2438 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2439 {
2440 	int rc = SUCCESS;
2441 	struct scsi_device *sdev = scp->device;
2442 	struct Scsi_Host *host = sdev->host;
2443 	struct cxlflash_cfg *cfg = shost_priv(host);
2444 	struct device *dev = &cfg->dev->dev;
2445 	int rcr = 0;
2446 
2447 	dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2448 		host->host_no, sdev->channel, sdev->id, sdev->lun);
2449 retry:
2450 	switch (cfg->state) {
2451 	case STATE_NORMAL:
2452 		rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2453 		if (unlikely(rcr))
2454 			rc = FAILED;
2455 		break;
2456 	case STATE_RESET:
2457 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2458 		goto retry;
2459 	default:
2460 		rc = FAILED;
2461 		break;
2462 	}
2463 
2464 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2465 	return rc;
2466 }
2467 
2468 /**
2469  * cxlflash_eh_host_reset_handler() - reset the host adapter
2470  * @scp:	SCSI command from stack identifying host.
2471  *
2472  * Following a reset, the state is evaluated again in case an EEH occurred
2473  * during the reset. In such a scenario, the host reset will either yield
2474  * until the EEH recovery is complete or return success or failure based
2475  * upon the current device state.
2476  *
2477  * Return:
2478  *	SUCCESS as defined in scsi/scsi.h
2479  *	FAILED as defined in scsi/scsi.h
2480  */
2481 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2482 {
2483 	int rc = SUCCESS;
2484 	int rcr = 0;
2485 	struct Scsi_Host *host = scp->device->host;
2486 	struct cxlflash_cfg *cfg = shost_priv(host);
2487 	struct device *dev = &cfg->dev->dev;
2488 
2489 	dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2490 
2491 	switch (cfg->state) {
2492 	case STATE_NORMAL:
2493 		cfg->state = STATE_RESET;
2494 		drain_ioctls(cfg);
2495 		cxlflash_mark_contexts_error(cfg);
2496 		rcr = afu_reset(cfg);
2497 		if (rcr) {
2498 			rc = FAILED;
2499 			cfg->state = STATE_FAILTERM;
2500 		} else
2501 			cfg->state = STATE_NORMAL;
2502 		wake_up_all(&cfg->reset_waitq);
2503 		ssleep(1);
2504 		/* fall through */
2505 	case STATE_RESET:
2506 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2507 		if (cfg->state == STATE_NORMAL)
2508 			break;
2509 		/* fall through */
2510 	default:
2511 		rc = FAILED;
2512 		break;
2513 	}
2514 
2515 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2516 	return rc;
2517 }
2518 
2519 /**
2520  * cxlflash_change_queue_depth() - change the queue depth for the device
2521  * @sdev:	SCSI device destined for queue depth change.
2522  * @qdepth:	Requested queue depth value to set.
2523  *
2524  * The requested queue depth is capped to the maximum supported value.
2525  *
2526  * Return: The actual queue depth set.
2527  */
2528 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2529 {
2530 
2531 	if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2532 		qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2533 
2534 	scsi_change_queue_depth(sdev, qdepth);
2535 	return sdev->queue_depth;
2536 }
2537 
2538 /**
2539  * cxlflash_show_port_status() - queries and presents the current port status
2540  * @port:	Desired port for status reporting.
2541  * @cfg:	Internal structure associated with the host.
2542  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2543  *
2544  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2545  */
2546 static ssize_t cxlflash_show_port_status(u32 port,
2547 					 struct cxlflash_cfg *cfg,
2548 					 char *buf)
2549 {
2550 	struct device *dev = &cfg->dev->dev;
2551 	char *disp_status;
2552 	u64 status;
2553 	__be64 __iomem *fc_port_regs;
2554 
2555 	WARN_ON(port >= MAX_FC_PORTS);
2556 
2557 	if (port >= cfg->num_fc_ports) {
2558 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2559 			__func__, port);
2560 		return -EINVAL;
2561 	}
2562 
2563 	fc_port_regs = get_fc_port_regs(cfg, port);
2564 	status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2565 	status &= FC_MTIP_STATUS_MASK;
2566 
2567 	if (status == FC_MTIP_STATUS_ONLINE)
2568 		disp_status = "online";
2569 	else if (status == FC_MTIP_STATUS_OFFLINE)
2570 		disp_status = "offline";
2571 	else
2572 		disp_status = "unknown";
2573 
2574 	return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2575 }
2576 
2577 /**
2578  * port0_show() - queries and presents the current status of port 0
2579  * @dev:	Generic device associated with the host owning the port.
2580  * @attr:	Device attribute representing the port.
2581  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2582  *
2583  * Return: The size of the ASCII string returned in @buf.
2584  */
2585 static ssize_t port0_show(struct device *dev,
2586 			  struct device_attribute *attr,
2587 			  char *buf)
2588 {
2589 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2590 
2591 	return cxlflash_show_port_status(0, cfg, buf);
2592 }
2593 
2594 /**
2595  * port1_show() - queries and presents the current status of port 1
2596  * @dev:	Generic device associated with the host owning the port.
2597  * @attr:	Device attribute representing the port.
2598  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2599  *
2600  * Return: The size of the ASCII string returned in @buf.
2601  */
2602 static ssize_t port1_show(struct device *dev,
2603 			  struct device_attribute *attr,
2604 			  char *buf)
2605 {
2606 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2607 
2608 	return cxlflash_show_port_status(1, cfg, buf);
2609 }
2610 
2611 /**
2612  * port2_show() - queries and presents the current status of port 2
2613  * @dev:	Generic device associated with the host owning the port.
2614  * @attr:	Device attribute representing the port.
2615  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2616  *
2617  * Return: The size of the ASCII string returned in @buf.
2618  */
2619 static ssize_t port2_show(struct device *dev,
2620 			  struct device_attribute *attr,
2621 			  char *buf)
2622 {
2623 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2624 
2625 	return cxlflash_show_port_status(2, cfg, buf);
2626 }
2627 
2628 /**
2629  * port3_show() - queries and presents the current status of port 3
2630  * @dev:	Generic device associated with the host owning the port.
2631  * @attr:	Device attribute representing the port.
2632  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2633  *
2634  * Return: The size of the ASCII string returned in @buf.
2635  */
2636 static ssize_t port3_show(struct device *dev,
2637 			  struct device_attribute *attr,
2638 			  char *buf)
2639 {
2640 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2641 
2642 	return cxlflash_show_port_status(3, cfg, buf);
2643 }
2644 
2645 /**
2646  * lun_mode_show() - presents the current LUN mode of the host
2647  * @dev:	Generic device associated with the host.
2648  * @attr:	Device attribute representing the LUN mode.
2649  * @buf:	Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2650  *
2651  * Return: The size of the ASCII string returned in @buf.
2652  */
2653 static ssize_t lun_mode_show(struct device *dev,
2654 			     struct device_attribute *attr, char *buf)
2655 {
2656 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2657 	struct afu *afu = cfg->afu;
2658 
2659 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2660 }
2661 
2662 /**
2663  * lun_mode_store() - sets the LUN mode of the host
2664  * @dev:	Generic device associated with the host.
2665  * @attr:	Device attribute representing the LUN mode.
2666  * @buf:	Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2667  * @count:	Length of data resizing in @buf.
2668  *
2669  * The CXL Flash AFU supports a dummy LUN mode where the external
2670  * links and storage are not required. Space on the FPGA is used
2671  * to create 1 or 2 small LUNs which are presented to the system
2672  * as if they were a normal storage device. This feature is useful
2673  * during development and also provides manufacturing with a way
2674  * to test the AFU without an actual device.
2675  *
2676  * 0 = external LUN[s] (default)
2677  * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2678  * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2679  * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2680  * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2681  *
2682  * Return: The size of the ASCII string returned in @buf.
2683  */
2684 static ssize_t lun_mode_store(struct device *dev,
2685 			      struct device_attribute *attr,
2686 			      const char *buf, size_t count)
2687 {
2688 	struct Scsi_Host *shost = class_to_shost(dev);
2689 	struct cxlflash_cfg *cfg = shost_priv(shost);
2690 	struct afu *afu = cfg->afu;
2691 	int rc;
2692 	u32 lun_mode;
2693 
2694 	rc = kstrtouint(buf, 10, &lun_mode);
2695 	if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2696 		afu->internal_lun = lun_mode;
2697 
2698 		/*
2699 		 * When configured for internal LUN, there is only one channel,
2700 		 * channel number 0, else there will be one less than the number
2701 		 * of fc ports for this card.
2702 		 */
2703 		if (afu->internal_lun)
2704 			shost->max_channel = 0;
2705 		else
2706 			shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2707 
2708 		afu_reset(cfg);
2709 		scsi_scan_host(cfg->host);
2710 	}
2711 
2712 	return count;
2713 }
2714 
2715 /**
2716  * ioctl_version_show() - presents the current ioctl version of the host
2717  * @dev:	Generic device associated with the host.
2718  * @attr:	Device attribute representing the ioctl version.
2719  * @buf:	Buffer of length PAGE_SIZE to report back the ioctl version.
2720  *
2721  * Return: The size of the ASCII string returned in @buf.
2722  */
2723 static ssize_t ioctl_version_show(struct device *dev,
2724 				  struct device_attribute *attr, char *buf)
2725 {
2726 	ssize_t bytes = 0;
2727 
2728 	bytes = scnprintf(buf, PAGE_SIZE,
2729 			  "disk: %u\n", DK_CXLFLASH_VERSION_0);
2730 	bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2731 			   "host: %u\n", HT_CXLFLASH_VERSION_0);
2732 
2733 	return bytes;
2734 }
2735 
2736 /**
2737  * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2738  * @port:	Desired port for status reporting.
2739  * @cfg:	Internal structure associated with the host.
2740  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2741  *
2742  * Return: The size of the ASCII string returned in @buf or -EINVAL.
2743  */
2744 static ssize_t cxlflash_show_port_lun_table(u32 port,
2745 					    struct cxlflash_cfg *cfg,
2746 					    char *buf)
2747 {
2748 	struct device *dev = &cfg->dev->dev;
2749 	__be64 __iomem *fc_port_luns;
2750 	int i;
2751 	ssize_t bytes = 0;
2752 
2753 	WARN_ON(port >= MAX_FC_PORTS);
2754 
2755 	if (port >= cfg->num_fc_ports) {
2756 		dev_info(dev, "%s: Port %d not supported on this card.\n",
2757 			__func__, port);
2758 		return -EINVAL;
2759 	}
2760 
2761 	fc_port_luns = get_fc_port_luns(cfg, port);
2762 
2763 	for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2764 		bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2765 				   "%03d: %016llx\n",
2766 				   i, readq_be(&fc_port_luns[i]));
2767 	return bytes;
2768 }
2769 
2770 /**
2771  * port0_lun_table_show() - presents the current LUN table of port 0
2772  * @dev:	Generic device associated with the host owning the port.
2773  * @attr:	Device attribute representing the port.
2774  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2775  *
2776  * Return: The size of the ASCII string returned in @buf.
2777  */
2778 static ssize_t port0_lun_table_show(struct device *dev,
2779 				    struct device_attribute *attr,
2780 				    char *buf)
2781 {
2782 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2783 
2784 	return cxlflash_show_port_lun_table(0, cfg, buf);
2785 }
2786 
2787 /**
2788  * port1_lun_table_show() - presents the current LUN table of port 1
2789  * @dev:	Generic device associated with the host owning the port.
2790  * @attr:	Device attribute representing the port.
2791  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2792  *
2793  * Return: The size of the ASCII string returned in @buf.
2794  */
2795 static ssize_t port1_lun_table_show(struct device *dev,
2796 				    struct device_attribute *attr,
2797 				    char *buf)
2798 {
2799 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2800 
2801 	return cxlflash_show_port_lun_table(1, cfg, buf);
2802 }
2803 
2804 /**
2805  * port2_lun_table_show() - presents the current LUN table of port 2
2806  * @dev:	Generic device associated with the host owning the port.
2807  * @attr:	Device attribute representing the port.
2808  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2809  *
2810  * Return: The size of the ASCII string returned in @buf.
2811  */
2812 static ssize_t port2_lun_table_show(struct device *dev,
2813 				    struct device_attribute *attr,
2814 				    char *buf)
2815 {
2816 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2817 
2818 	return cxlflash_show_port_lun_table(2, cfg, buf);
2819 }
2820 
2821 /**
2822  * port3_lun_table_show() - presents the current LUN table of port 3
2823  * @dev:	Generic device associated with the host owning the port.
2824  * @attr:	Device attribute representing the port.
2825  * @buf:	Buffer of length PAGE_SIZE to report back port status in ASCII.
2826  *
2827  * Return: The size of the ASCII string returned in @buf.
2828  */
2829 static ssize_t port3_lun_table_show(struct device *dev,
2830 				    struct device_attribute *attr,
2831 				    char *buf)
2832 {
2833 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2834 
2835 	return cxlflash_show_port_lun_table(3, cfg, buf);
2836 }
2837 
2838 /**
2839  * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2840  * @dev:	Generic device associated with the host.
2841  * @attr:	Device attribute representing the IRQ poll weight.
2842  * @buf:	Buffer of length PAGE_SIZE to report back the current IRQ poll
2843  *		weight in ASCII.
2844  *
2845  * An IRQ poll weight of 0 indicates polling is disabled.
2846  *
2847  * Return: The size of the ASCII string returned in @buf.
2848  */
2849 static ssize_t irqpoll_weight_show(struct device *dev,
2850 				   struct device_attribute *attr, char *buf)
2851 {
2852 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2853 	struct afu *afu = cfg->afu;
2854 
2855 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2856 }
2857 
2858 /**
2859  * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2860  * @dev:	Generic device associated with the host.
2861  * @attr:	Device attribute representing the IRQ poll weight.
2862  * @buf:	Buffer of length PAGE_SIZE containing the desired IRQ poll
2863  *		weight in ASCII.
2864  * @count:	Length of data resizing in @buf.
2865  *
2866  * An IRQ poll weight of 0 indicates polling is disabled.
2867  *
2868  * Return: The size of the ASCII string returned in @buf.
2869  */
2870 static ssize_t irqpoll_weight_store(struct device *dev,
2871 				    struct device_attribute *attr,
2872 				    const char *buf, size_t count)
2873 {
2874 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2875 	struct device *cfgdev = &cfg->dev->dev;
2876 	struct afu *afu = cfg->afu;
2877 	struct hwq *hwq;
2878 	u32 weight;
2879 	int rc, i;
2880 
2881 	rc = kstrtouint(buf, 10, &weight);
2882 	if (rc)
2883 		return -EINVAL;
2884 
2885 	if (weight > 256) {
2886 		dev_info(cfgdev,
2887 			 "Invalid IRQ poll weight. It must be 256 or less.\n");
2888 		return -EINVAL;
2889 	}
2890 
2891 	if (weight == afu->irqpoll_weight) {
2892 		dev_info(cfgdev,
2893 			 "Current IRQ poll weight has the same weight.\n");
2894 		return -EINVAL;
2895 	}
2896 
2897 	if (afu_is_irqpoll_enabled(afu)) {
2898 		for (i = 0; i < afu->num_hwqs; i++) {
2899 			hwq = get_hwq(afu, i);
2900 
2901 			irq_poll_disable(&hwq->irqpoll);
2902 		}
2903 	}
2904 
2905 	afu->irqpoll_weight = weight;
2906 
2907 	if (weight > 0) {
2908 		for (i = 0; i < afu->num_hwqs; i++) {
2909 			hwq = get_hwq(afu, i);
2910 
2911 			irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2912 		}
2913 	}
2914 
2915 	return count;
2916 }
2917 
2918 /**
2919  * num_hwqs_show() - presents the number of hardware queues for the host
2920  * @dev:	Generic device associated with the host.
2921  * @attr:	Device attribute representing the number of hardware queues.
2922  * @buf:	Buffer of length PAGE_SIZE to report back the number of hardware
2923  *		queues in ASCII.
2924  *
2925  * Return: The size of the ASCII string returned in @buf.
2926  */
2927 static ssize_t num_hwqs_show(struct device *dev,
2928 			     struct device_attribute *attr, char *buf)
2929 {
2930 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2931 	struct afu *afu = cfg->afu;
2932 
2933 	return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2934 }
2935 
2936 /**
2937  * num_hwqs_store() - sets the number of hardware queues for the host
2938  * @dev:	Generic device associated with the host.
2939  * @attr:	Device attribute representing the number of hardware queues.
2940  * @buf:	Buffer of length PAGE_SIZE containing the number of hardware
2941  *		queues in ASCII.
2942  * @count:	Length of data resizing in @buf.
2943  *
2944  * n > 0: num_hwqs = n
2945  * n = 0: num_hwqs = num_online_cpus()
2946  * n < 0: num_online_cpus() / abs(n)
2947  *
2948  * Return: The size of the ASCII string returned in @buf.
2949  */
2950 static ssize_t num_hwqs_store(struct device *dev,
2951 			      struct device_attribute *attr,
2952 			      const char *buf, size_t count)
2953 {
2954 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2955 	struct afu *afu = cfg->afu;
2956 	int rc;
2957 	int nhwqs, num_hwqs;
2958 
2959 	rc = kstrtoint(buf, 10, &nhwqs);
2960 	if (rc)
2961 		return -EINVAL;
2962 
2963 	if (nhwqs >= 1)
2964 		num_hwqs = nhwqs;
2965 	else if (nhwqs == 0)
2966 		num_hwqs = num_online_cpus();
2967 	else
2968 		num_hwqs = num_online_cpus() / abs(nhwqs);
2969 
2970 	afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2971 	WARN_ON_ONCE(afu->desired_hwqs == 0);
2972 
2973 retry:
2974 	switch (cfg->state) {
2975 	case STATE_NORMAL:
2976 		cfg->state = STATE_RESET;
2977 		drain_ioctls(cfg);
2978 		cxlflash_mark_contexts_error(cfg);
2979 		rc = afu_reset(cfg);
2980 		if (rc)
2981 			cfg->state = STATE_FAILTERM;
2982 		else
2983 			cfg->state = STATE_NORMAL;
2984 		wake_up_all(&cfg->reset_waitq);
2985 		break;
2986 	case STATE_RESET:
2987 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2988 		if (cfg->state == STATE_NORMAL)
2989 			goto retry;
2990 	default:
2991 		/* Ideally should not happen */
2992 		dev_err(dev, "%s: Device is not ready, state=%d\n",
2993 			__func__, cfg->state);
2994 		break;
2995 	}
2996 
2997 	return count;
2998 }
2999 
3000 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3001 
3002 /**
3003  * hwq_mode_show() - presents the HWQ steering mode for the host
3004  * @dev:	Generic device associated with the host.
3005  * @attr:	Device attribute representing the HWQ steering mode.
3006  * @buf:	Buffer of length PAGE_SIZE to report back the HWQ steering mode
3007  *		as a character string.
3008  *
3009  * Return: The size of the ASCII string returned in @buf.
3010  */
3011 static ssize_t hwq_mode_show(struct device *dev,
3012 			     struct device_attribute *attr, char *buf)
3013 {
3014 	struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3015 	struct afu *afu = cfg->afu;
3016 
3017 	return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3018 }
3019 
3020 /**
3021  * hwq_mode_store() - sets the HWQ steering mode for the host
3022  * @dev:	Generic device associated with the host.
3023  * @attr:	Device attribute representing the HWQ steering mode.
3024  * @buf:	Buffer of length PAGE_SIZE containing the HWQ steering mode
3025  *		as a character string.
3026  * @count:	Length of data resizing in @buf.
3027  *
3028  * rr = Round-Robin
3029  * tag = Block MQ Tagging
3030  * cpu = CPU Affinity
3031  *
3032  * Return: The size of the ASCII string returned in @buf.
3033  */
3034 static ssize_t hwq_mode_store(struct device *dev,
3035 			      struct device_attribute *attr,
3036 			      const char *buf, size_t count)
3037 {
3038 	struct Scsi_Host *shost = class_to_shost(dev);
3039 	struct cxlflash_cfg *cfg = shost_priv(shost);
3040 	struct device *cfgdev = &cfg->dev->dev;
3041 	struct afu *afu = cfg->afu;
3042 	int i;
3043 	u32 mode = MAX_HWQ_MODE;
3044 
3045 	for (i = 0; i < MAX_HWQ_MODE; i++) {
3046 		if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3047 			mode = i;
3048 			break;
3049 		}
3050 	}
3051 
3052 	if (mode >= MAX_HWQ_MODE) {
3053 		dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3054 		return -EINVAL;
3055 	}
3056 
3057 	if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) {
3058 		dev_info(cfgdev, "SCSI-MQ is not enabled, use a different "
3059 			 "HWQ steering mode.\n");
3060 		return -EINVAL;
3061 	}
3062 
3063 	afu->hwq_mode = mode;
3064 
3065 	return count;
3066 }
3067 
3068 /**
3069  * mode_show() - presents the current mode of the device
3070  * @dev:	Generic device associated with the device.
3071  * @attr:	Device attribute representing the device mode.
3072  * @buf:	Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3073  *
3074  * Return: The size of the ASCII string returned in @buf.
3075  */
3076 static ssize_t mode_show(struct device *dev,
3077 			 struct device_attribute *attr, char *buf)
3078 {
3079 	struct scsi_device *sdev = to_scsi_device(dev);
3080 
3081 	return scnprintf(buf, PAGE_SIZE, "%s\n",
3082 			 sdev->hostdata ? "superpipe" : "legacy");
3083 }
3084 
3085 /*
3086  * Host attributes
3087  */
3088 static DEVICE_ATTR_RO(port0);
3089 static DEVICE_ATTR_RO(port1);
3090 static DEVICE_ATTR_RO(port2);
3091 static DEVICE_ATTR_RO(port3);
3092 static DEVICE_ATTR_RW(lun_mode);
3093 static DEVICE_ATTR_RO(ioctl_version);
3094 static DEVICE_ATTR_RO(port0_lun_table);
3095 static DEVICE_ATTR_RO(port1_lun_table);
3096 static DEVICE_ATTR_RO(port2_lun_table);
3097 static DEVICE_ATTR_RO(port3_lun_table);
3098 static DEVICE_ATTR_RW(irqpoll_weight);
3099 static DEVICE_ATTR_RW(num_hwqs);
3100 static DEVICE_ATTR_RW(hwq_mode);
3101 
3102 static struct device_attribute *cxlflash_host_attrs[] = {
3103 	&dev_attr_port0,
3104 	&dev_attr_port1,
3105 	&dev_attr_port2,
3106 	&dev_attr_port3,
3107 	&dev_attr_lun_mode,
3108 	&dev_attr_ioctl_version,
3109 	&dev_attr_port0_lun_table,
3110 	&dev_attr_port1_lun_table,
3111 	&dev_attr_port2_lun_table,
3112 	&dev_attr_port3_lun_table,
3113 	&dev_attr_irqpoll_weight,
3114 	&dev_attr_num_hwqs,
3115 	&dev_attr_hwq_mode,
3116 	NULL
3117 };
3118 
3119 /*
3120  * Device attributes
3121  */
3122 static DEVICE_ATTR_RO(mode);
3123 
3124 static struct device_attribute *cxlflash_dev_attrs[] = {
3125 	&dev_attr_mode,
3126 	NULL
3127 };
3128 
3129 /*
3130  * Host template
3131  */
3132 static struct scsi_host_template driver_template = {
3133 	.module = THIS_MODULE,
3134 	.name = CXLFLASH_ADAPTER_NAME,
3135 	.info = cxlflash_driver_info,
3136 	.ioctl = cxlflash_ioctl,
3137 	.proc_name = CXLFLASH_NAME,
3138 	.queuecommand = cxlflash_queuecommand,
3139 	.eh_abort_handler = cxlflash_eh_abort_handler,
3140 	.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3141 	.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3142 	.change_queue_depth = cxlflash_change_queue_depth,
3143 	.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3144 	.can_queue = CXLFLASH_MAX_CMDS,
3145 	.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3146 	.this_id = -1,
3147 	.sg_tablesize = 1,	/* No scatter gather support */
3148 	.max_sectors = CXLFLASH_MAX_SECTORS,
3149 	.use_clustering = ENABLE_CLUSTERING,
3150 	.shost_attrs = cxlflash_host_attrs,
3151 	.sdev_attrs = cxlflash_dev_attrs,
3152 };
3153 
3154 /*
3155  * Device dependent values
3156  */
3157 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3158 					CXLFLASH_WWPN_VPD_REQUIRED };
3159 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3160 					CXLFLASH_NOTIFY_SHUTDOWN };
3161 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3162 					CXLFLASH_NOTIFY_SHUTDOWN };
3163 
3164 /*
3165  * PCI device binding table
3166  */
3167 static struct pci_device_id cxlflash_pci_table[] = {
3168 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3169 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3170 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3171 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3172 	{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3173 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3174 	{}
3175 };
3176 
3177 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3178 
3179 /**
3180  * cxlflash_worker_thread() - work thread handler for the AFU
3181  * @work:	Work structure contained within cxlflash associated with host.
3182  *
3183  * Handles the following events:
3184  * - Link reset which cannot be performed on interrupt context due to
3185  * blocking up to a few seconds
3186  * - Rescan the host
3187  */
3188 static void cxlflash_worker_thread(struct work_struct *work)
3189 {
3190 	struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3191 						work_q);
3192 	struct afu *afu = cfg->afu;
3193 	struct device *dev = &cfg->dev->dev;
3194 	__be64 __iomem *fc_port_regs;
3195 	int port;
3196 	ulong lock_flags;
3197 
3198 	/* Avoid MMIO if the device has failed */
3199 
3200 	if (cfg->state != STATE_NORMAL)
3201 		return;
3202 
3203 	spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3204 
3205 	if (cfg->lr_state == LINK_RESET_REQUIRED) {
3206 		port = cfg->lr_port;
3207 		if (port < 0)
3208 			dev_err(dev, "%s: invalid port index %d\n",
3209 				__func__, port);
3210 		else {
3211 			spin_unlock_irqrestore(cfg->host->host_lock,
3212 					       lock_flags);
3213 
3214 			/* The reset can block... */
3215 			fc_port_regs = get_fc_port_regs(cfg, port);
3216 			afu_link_reset(afu, port, fc_port_regs);
3217 			spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3218 		}
3219 
3220 		cfg->lr_state = LINK_RESET_COMPLETE;
3221 	}
3222 
3223 	spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3224 
3225 	if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3226 		scsi_scan_host(cfg->host);
3227 }
3228 
3229 /**
3230  * cxlflash_chr_open() - character device open handler
3231  * @inode:	Device inode associated with this character device.
3232  * @file:	File pointer for this device.
3233  *
3234  * Only users with admin privileges are allowed to open the character device.
3235  *
3236  * Return: 0 on success, -errno on failure
3237  */
3238 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3239 {
3240 	struct cxlflash_cfg *cfg;
3241 
3242 	if (!capable(CAP_SYS_ADMIN))
3243 		return -EACCES;
3244 
3245 	cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3246 	file->private_data = cfg;
3247 
3248 	return 0;
3249 }
3250 
3251 /**
3252  * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3253  * @cmd:        The host ioctl command to decode.
3254  *
3255  * Return: A string identifying the decoded host ioctl.
3256  */
3257 static char *decode_hioctl(int cmd)
3258 {
3259 	switch (cmd) {
3260 	case HT_CXLFLASH_LUN_PROVISION:
3261 		return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3262 	}
3263 
3264 	return "UNKNOWN";
3265 }
3266 
3267 /**
3268  * cxlflash_lun_provision() - host LUN provisioning handler
3269  * @cfg:	Internal structure associated with the host.
3270  * @arg:	Kernel copy of userspace ioctl data structure.
3271  *
3272  * Return: 0 on success, -errno on failure
3273  */
3274 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3275 				  struct ht_cxlflash_lun_provision *lunprov)
3276 {
3277 	struct afu *afu = cfg->afu;
3278 	struct device *dev = &cfg->dev->dev;
3279 	struct sisl_ioarcb rcb;
3280 	struct sisl_ioasa asa;
3281 	__be64 __iomem *fc_port_regs;
3282 	u16 port = lunprov->port;
3283 	u16 scmd = lunprov->hdr.subcmd;
3284 	u16 type;
3285 	u64 reg;
3286 	u64 size;
3287 	u64 lun_id;
3288 	int rc = 0;
3289 
3290 	if (!afu_is_lun_provision(afu)) {
3291 		rc = -ENOTSUPP;
3292 		goto out;
3293 	}
3294 
3295 	if (port >= cfg->num_fc_ports) {
3296 		rc = -EINVAL;
3297 		goto out;
3298 	}
3299 
3300 	switch (scmd) {
3301 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3302 		type = SISL_AFU_LUN_PROVISION_CREATE;
3303 		size = lunprov->size;
3304 		lun_id = 0;
3305 		break;
3306 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3307 		type = SISL_AFU_LUN_PROVISION_DELETE;
3308 		size = 0;
3309 		lun_id = lunprov->lun_id;
3310 		break;
3311 	case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3312 		fc_port_regs = get_fc_port_regs(cfg, port);
3313 
3314 		reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3315 		lunprov->max_num_luns = reg;
3316 		reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3317 		lunprov->cur_num_luns = reg;
3318 		reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3319 		lunprov->max_cap_port = reg;
3320 		reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3321 		lunprov->cur_cap_port = reg;
3322 
3323 		goto out;
3324 	default:
3325 		rc = -EINVAL;
3326 		goto out;
3327 	}
3328 
3329 	memset(&rcb, 0, sizeof(rcb));
3330 	memset(&asa, 0, sizeof(asa));
3331 	rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3332 	rcb.lun_id = lun_id;
3333 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3334 	rcb.timeout = MC_LUN_PROV_TIMEOUT;
3335 	rcb.ioasa = &asa;
3336 
3337 	rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3338 	rcb.cdb[1] = type;
3339 	rcb.cdb[2] = port;
3340 	put_unaligned_be64(size, &rcb.cdb[8]);
3341 
3342 	rc = send_afu_cmd(afu, &rcb);
3343 	if (rc) {
3344 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3345 			__func__, rc, asa.ioasc, asa.afu_extra);
3346 		goto out;
3347 	}
3348 
3349 	if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3350 		lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3351 		memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3352 	}
3353 out:
3354 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3355 	return rc;
3356 }
3357 
3358 /**
3359  * cxlflash_afu_debug() - host AFU debug handler
3360  * @cfg:	Internal structure associated with the host.
3361  * @arg:	Kernel copy of userspace ioctl data structure.
3362  *
3363  * For debug requests requiring a data buffer, always provide an aligned
3364  * (cache line) buffer to the AFU to appease any alignment requirements.
3365  *
3366  * Return: 0 on success, -errno on failure
3367  */
3368 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3369 			      struct ht_cxlflash_afu_debug *afu_dbg)
3370 {
3371 	struct afu *afu = cfg->afu;
3372 	struct device *dev = &cfg->dev->dev;
3373 	struct sisl_ioarcb rcb;
3374 	struct sisl_ioasa asa;
3375 	char *buf = NULL;
3376 	char *kbuf = NULL;
3377 	void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3378 	u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3379 	u32 ulen = afu_dbg->data_len;
3380 	bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3381 	int rc = 0;
3382 
3383 	if (!afu_is_afu_debug(afu)) {
3384 		rc = -ENOTSUPP;
3385 		goto out;
3386 	}
3387 
3388 	if (ulen) {
3389 		req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3390 
3391 		if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3392 			rc = -EINVAL;
3393 			goto out;
3394 		}
3395 
3396 		buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3397 		if (unlikely(!buf)) {
3398 			rc = -ENOMEM;
3399 			goto out;
3400 		}
3401 
3402 		kbuf = PTR_ALIGN(buf, cache_line_size());
3403 
3404 		if (is_write) {
3405 			req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3406 
3407 			if (copy_from_user(kbuf, ubuf, ulen)) {
3408 				rc = -EFAULT;
3409 				goto out;
3410 			}
3411 		}
3412 	}
3413 
3414 	memset(&rcb, 0, sizeof(rcb));
3415 	memset(&asa, 0, sizeof(asa));
3416 
3417 	rcb.req_flags = req_flags;
3418 	rcb.msi = SISL_MSI_RRQ_UPDATED;
3419 	rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3420 	rcb.ioasa = &asa;
3421 
3422 	if (ulen) {
3423 		rcb.data_len = ulen;
3424 		rcb.data_ea = (uintptr_t)kbuf;
3425 	}
3426 
3427 	rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3428 	memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3429 	       HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3430 
3431 	rc = send_afu_cmd(afu, &rcb);
3432 	if (rc) {
3433 		dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3434 			__func__, rc, asa.ioasc, asa.afu_extra);
3435 		goto out;
3436 	}
3437 
3438 	if (ulen && !is_write) {
3439 		if (copy_to_user(ubuf, kbuf, ulen))
3440 			rc = -EFAULT;
3441 	}
3442 out:
3443 	kfree(buf);
3444 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3445 	return rc;
3446 }
3447 
3448 /**
3449  * cxlflash_chr_ioctl() - character device IOCTL handler
3450  * @file:	File pointer for this device.
3451  * @cmd:	IOCTL command.
3452  * @arg:	Userspace ioctl data structure.
3453  *
3454  * A read/write semaphore is used to implement a 'drain' of currently
3455  * running ioctls. The read semaphore is taken at the beginning of each
3456  * ioctl thread and released upon concluding execution. Additionally the
3457  * semaphore should be released and then reacquired in any ioctl execution
3458  * path which will wait for an event to occur that is outside the scope of
3459  * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3460  * a thread simply needs to acquire the write semaphore.
3461  *
3462  * Return: 0 on success, -errno on failure
3463  */
3464 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3465 			       unsigned long arg)
3466 {
3467 	typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3468 
3469 	struct cxlflash_cfg *cfg = file->private_data;
3470 	struct device *dev = &cfg->dev->dev;
3471 	char buf[sizeof(union cxlflash_ht_ioctls)];
3472 	void __user *uarg = (void __user *)arg;
3473 	struct ht_cxlflash_hdr *hdr;
3474 	size_t size = 0;
3475 	bool known_ioctl = false;
3476 	int idx = 0;
3477 	int rc = 0;
3478 	hioctl do_ioctl = NULL;
3479 
3480 	static const struct {
3481 		size_t size;
3482 		hioctl ioctl;
3483 	} ioctl_tbl[] = {	/* NOTE: order matters here */
3484 	{ sizeof(struct ht_cxlflash_lun_provision),
3485 		(hioctl)cxlflash_lun_provision },
3486 	{ sizeof(struct ht_cxlflash_afu_debug),
3487 		(hioctl)cxlflash_afu_debug },
3488 	};
3489 
3490 	/* Hold read semaphore so we can drain if needed */
3491 	down_read(&cfg->ioctl_rwsem);
3492 
3493 	dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3494 		__func__, cmd, idx, sizeof(ioctl_tbl));
3495 
3496 	switch (cmd) {
3497 	case HT_CXLFLASH_LUN_PROVISION:
3498 	case HT_CXLFLASH_AFU_DEBUG:
3499 		known_ioctl = true;
3500 		idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3501 		size = ioctl_tbl[idx].size;
3502 		do_ioctl = ioctl_tbl[idx].ioctl;
3503 
3504 		if (likely(do_ioctl))
3505 			break;
3506 
3507 		/* fall through */
3508 	default:
3509 		rc = -EINVAL;
3510 		goto out;
3511 	}
3512 
3513 	if (unlikely(copy_from_user(&buf, uarg, size))) {
3514 		dev_err(dev, "%s: copy_from_user() fail "
3515 			"size=%lu cmd=%d (%s) uarg=%p\n",
3516 			__func__, size, cmd, decode_hioctl(cmd), uarg);
3517 		rc = -EFAULT;
3518 		goto out;
3519 	}
3520 
3521 	hdr = (struct ht_cxlflash_hdr *)&buf;
3522 	if (hdr->version != HT_CXLFLASH_VERSION_0) {
3523 		dev_dbg(dev, "%s: Version %u not supported for %s\n",
3524 			__func__, hdr->version, decode_hioctl(cmd));
3525 		rc = -EINVAL;
3526 		goto out;
3527 	}
3528 
3529 	if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3530 		dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3531 		rc = -EINVAL;
3532 		goto out;
3533 	}
3534 
3535 	rc = do_ioctl(cfg, (void *)&buf);
3536 	if (likely(!rc))
3537 		if (unlikely(copy_to_user(uarg, &buf, size))) {
3538 			dev_err(dev, "%s: copy_to_user() fail "
3539 				"size=%lu cmd=%d (%s) uarg=%p\n",
3540 				__func__, size, cmd, decode_hioctl(cmd), uarg);
3541 			rc = -EFAULT;
3542 		}
3543 
3544 	/* fall through to exit */
3545 
3546 out:
3547 	up_read(&cfg->ioctl_rwsem);
3548 	if (unlikely(rc && known_ioctl))
3549 		dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3550 			__func__, decode_hioctl(cmd), cmd, rc);
3551 	else
3552 		dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3553 			__func__, decode_hioctl(cmd), cmd, rc);
3554 	return rc;
3555 }
3556 
3557 /*
3558  * Character device file operations
3559  */
3560 static const struct file_operations cxlflash_chr_fops = {
3561 	.owner          = THIS_MODULE,
3562 	.open           = cxlflash_chr_open,
3563 	.unlocked_ioctl	= cxlflash_chr_ioctl,
3564 	.compat_ioctl	= cxlflash_chr_ioctl,
3565 };
3566 
3567 /**
3568  * init_chrdev() - initialize the character device for the host
3569  * @cfg:	Internal structure associated with the host.
3570  *
3571  * Return: 0 on success, -errno on failure
3572  */
3573 static int init_chrdev(struct cxlflash_cfg *cfg)
3574 {
3575 	struct device *dev = &cfg->dev->dev;
3576 	struct device *char_dev;
3577 	dev_t devno;
3578 	int minor;
3579 	int rc = 0;
3580 
3581 	minor = cxlflash_get_minor();
3582 	if (unlikely(minor < 0)) {
3583 		dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3584 		rc = -ENOSPC;
3585 		goto out;
3586 	}
3587 
3588 	devno = MKDEV(cxlflash_major, minor);
3589 	cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3590 
3591 	rc = cdev_add(&cfg->cdev, devno, 1);
3592 	if (rc) {
3593 		dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3594 		goto err1;
3595 	}
3596 
3597 	char_dev = device_create(cxlflash_class, NULL, devno,
3598 				 NULL, "cxlflash%d", minor);
3599 	if (IS_ERR(char_dev)) {
3600 		rc = PTR_ERR(char_dev);
3601 		dev_err(dev, "%s: device_create failed rc=%d\n",
3602 			__func__, rc);
3603 		goto err2;
3604 	}
3605 
3606 	cfg->chardev = char_dev;
3607 out:
3608 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3609 	return rc;
3610 err2:
3611 	cdev_del(&cfg->cdev);
3612 err1:
3613 	cxlflash_put_minor(minor);
3614 	goto out;
3615 }
3616 
3617 /**
3618  * cxlflash_probe() - PCI entry point to add host
3619  * @pdev:	PCI device associated with the host.
3620  * @dev_id:	PCI device id associated with device.
3621  *
3622  * The device will initially start out in a 'probing' state and
3623  * transition to the 'normal' state at the end of a successful
3624  * probe. Should an EEH event occur during probe, the notification
3625  * thread (error_detected()) will wait until the probe handler
3626  * is nearly complete. At that time, the device will be moved to
3627  * a 'probed' state and the EEH thread woken up to drive the slot
3628  * reset and recovery (device moves to 'normal' state). Meanwhile,
3629  * the probe will be allowed to exit successfully.
3630  *
3631  * Return: 0 on success, -errno on failure
3632  */
3633 static int cxlflash_probe(struct pci_dev *pdev,
3634 			  const struct pci_device_id *dev_id)
3635 {
3636 	struct Scsi_Host *host;
3637 	struct cxlflash_cfg *cfg = NULL;
3638 	struct device *dev = &pdev->dev;
3639 	struct dev_dependent_vals *ddv;
3640 	int rc = 0;
3641 	int k;
3642 
3643 	dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3644 		__func__, pdev->irq);
3645 
3646 	ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3647 	driver_template.max_sectors = ddv->max_sectors;
3648 
3649 	host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3650 	if (!host) {
3651 		dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3652 		rc = -ENOMEM;
3653 		goto out;
3654 	}
3655 
3656 	host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3657 	host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3658 	host->unique_id = host->host_no;
3659 	host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3660 
3661 	cfg = shost_priv(host);
3662 	cfg->host = host;
3663 	rc = alloc_mem(cfg);
3664 	if (rc) {
3665 		dev_err(dev, "%s: alloc_mem failed\n", __func__);
3666 		rc = -ENOMEM;
3667 		scsi_host_put(cfg->host);
3668 		goto out;
3669 	}
3670 
3671 	cfg->init_state = INIT_STATE_NONE;
3672 	cfg->dev = pdev;
3673 	cfg->cxl_fops = cxlflash_cxl_fops;
3674 
3675 	/*
3676 	 * Promoted LUNs move to the top of the LUN table. The rest stay on
3677 	 * the bottom half. The bottom half grows from the end (index = 255),
3678 	 * whereas the top half grows from the beginning (index = 0).
3679 	 *
3680 	 * Initialize the last LUN index for all possible ports.
3681 	 */
3682 	cfg->promote_lun_index = 0;
3683 
3684 	for (k = 0; k < MAX_FC_PORTS; k++)
3685 		cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3686 
3687 	cfg->dev_id = (struct pci_device_id *)dev_id;
3688 
3689 	init_waitqueue_head(&cfg->tmf_waitq);
3690 	init_waitqueue_head(&cfg->reset_waitq);
3691 
3692 	INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3693 	cfg->lr_state = LINK_RESET_INVALID;
3694 	cfg->lr_port = -1;
3695 	spin_lock_init(&cfg->tmf_slock);
3696 	mutex_init(&cfg->ctx_tbl_list_mutex);
3697 	mutex_init(&cfg->ctx_recovery_mutex);
3698 	init_rwsem(&cfg->ioctl_rwsem);
3699 	INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3700 	INIT_LIST_HEAD(&cfg->lluns);
3701 
3702 	pci_set_drvdata(pdev, cfg);
3703 
3704 	cfg->cxl_afu = cxl_pci_to_afu(pdev);
3705 
3706 	rc = init_pci(cfg);
3707 	if (rc) {
3708 		dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3709 		goto out_remove;
3710 	}
3711 	cfg->init_state = INIT_STATE_PCI;
3712 
3713 	rc = init_afu(cfg);
3714 	if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3715 		dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3716 		goto out_remove;
3717 	}
3718 	cfg->init_state = INIT_STATE_AFU;
3719 
3720 	rc = init_scsi(cfg);
3721 	if (rc) {
3722 		dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3723 		goto out_remove;
3724 	}
3725 	cfg->init_state = INIT_STATE_SCSI;
3726 
3727 	rc = init_chrdev(cfg);
3728 	if (rc) {
3729 		dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3730 		goto out_remove;
3731 	}
3732 	cfg->init_state = INIT_STATE_CDEV;
3733 
3734 	if (wq_has_sleeper(&cfg->reset_waitq)) {
3735 		cfg->state = STATE_PROBED;
3736 		wake_up_all(&cfg->reset_waitq);
3737 	} else
3738 		cfg->state = STATE_NORMAL;
3739 out:
3740 	dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3741 	return rc;
3742 
3743 out_remove:
3744 	cxlflash_remove(pdev);
3745 	goto out;
3746 }
3747 
3748 /**
3749  * cxlflash_pci_error_detected() - called when a PCI error is detected
3750  * @pdev:	PCI device struct.
3751  * @state:	PCI channel state.
3752  *
3753  * When an EEH occurs during an active reset, wait until the reset is
3754  * complete and then take action based upon the device state.
3755  *
3756  * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3757  */
3758 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3759 						    pci_channel_state_t state)
3760 {
3761 	int rc = 0;
3762 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3763 	struct device *dev = &cfg->dev->dev;
3764 
3765 	dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3766 
3767 	switch (state) {
3768 	case pci_channel_io_frozen:
3769 		wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3770 					     cfg->state != STATE_PROBING);
3771 		if (cfg->state == STATE_FAILTERM)
3772 			return PCI_ERS_RESULT_DISCONNECT;
3773 
3774 		cfg->state = STATE_RESET;
3775 		scsi_block_requests(cfg->host);
3776 		drain_ioctls(cfg);
3777 		rc = cxlflash_mark_contexts_error(cfg);
3778 		if (unlikely(rc))
3779 			dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3780 				__func__, rc);
3781 		term_afu(cfg);
3782 		return PCI_ERS_RESULT_NEED_RESET;
3783 	case pci_channel_io_perm_failure:
3784 		cfg->state = STATE_FAILTERM;
3785 		wake_up_all(&cfg->reset_waitq);
3786 		scsi_unblock_requests(cfg->host);
3787 		return PCI_ERS_RESULT_DISCONNECT;
3788 	default:
3789 		break;
3790 	}
3791 	return PCI_ERS_RESULT_NEED_RESET;
3792 }
3793 
3794 /**
3795  * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3796  * @pdev:	PCI device struct.
3797  *
3798  * This routine is called by the pci error recovery code after the PCI
3799  * slot has been reset, just before we should resume normal operations.
3800  *
3801  * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3802  */
3803 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3804 {
3805 	int rc = 0;
3806 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3807 	struct device *dev = &cfg->dev->dev;
3808 
3809 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3810 
3811 	rc = init_afu(cfg);
3812 	if (unlikely(rc)) {
3813 		dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3814 		return PCI_ERS_RESULT_DISCONNECT;
3815 	}
3816 
3817 	return PCI_ERS_RESULT_RECOVERED;
3818 }
3819 
3820 /**
3821  * cxlflash_pci_resume() - called when normal operation can resume
3822  * @pdev:	PCI device struct
3823  */
3824 static void cxlflash_pci_resume(struct pci_dev *pdev)
3825 {
3826 	struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3827 	struct device *dev = &cfg->dev->dev;
3828 
3829 	dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3830 
3831 	cfg->state = STATE_NORMAL;
3832 	wake_up_all(&cfg->reset_waitq);
3833 	scsi_unblock_requests(cfg->host);
3834 }
3835 
3836 /**
3837  * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3838  * @dev:	Character device.
3839  * @mode:	Mode that can be used to verify access.
3840  *
3841  * Return: Allocated string describing the devtmpfs structure.
3842  */
3843 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3844 {
3845 	return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3846 }
3847 
3848 /**
3849  * cxlflash_class_init() - create character device class
3850  *
3851  * Return: 0 on success, -errno on failure
3852  */
3853 static int cxlflash_class_init(void)
3854 {
3855 	dev_t devno;
3856 	int rc = 0;
3857 
3858 	rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3859 	if (unlikely(rc)) {
3860 		pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3861 		goto out;
3862 	}
3863 
3864 	cxlflash_major = MAJOR(devno);
3865 
3866 	cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3867 	if (IS_ERR(cxlflash_class)) {
3868 		rc = PTR_ERR(cxlflash_class);
3869 		pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3870 		goto err;
3871 	}
3872 
3873 	cxlflash_class->devnode = cxlflash_devnode;
3874 out:
3875 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3876 	return rc;
3877 err:
3878 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3879 	goto out;
3880 }
3881 
3882 /**
3883  * cxlflash_class_exit() - destroy character device class
3884  */
3885 static void cxlflash_class_exit(void)
3886 {
3887 	dev_t devno = MKDEV(cxlflash_major, 0);
3888 
3889 	class_destroy(cxlflash_class);
3890 	unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3891 }
3892 
3893 static const struct pci_error_handlers cxlflash_err_handler = {
3894 	.error_detected = cxlflash_pci_error_detected,
3895 	.slot_reset = cxlflash_pci_slot_reset,
3896 	.resume = cxlflash_pci_resume,
3897 };
3898 
3899 /*
3900  * PCI device structure
3901  */
3902 static struct pci_driver cxlflash_driver = {
3903 	.name = CXLFLASH_NAME,
3904 	.id_table = cxlflash_pci_table,
3905 	.probe = cxlflash_probe,
3906 	.remove = cxlflash_remove,
3907 	.shutdown = cxlflash_remove,
3908 	.err_handler = &cxlflash_err_handler,
3909 };
3910 
3911 /**
3912  * init_cxlflash() - module entry point
3913  *
3914  * Return: 0 on success, -errno on failure
3915  */
3916 static int __init init_cxlflash(void)
3917 {
3918 	int rc;
3919 
3920 	check_sizes();
3921 	cxlflash_list_init();
3922 	rc = cxlflash_class_init();
3923 	if (unlikely(rc))
3924 		goto out;
3925 
3926 	rc = pci_register_driver(&cxlflash_driver);
3927 	if (unlikely(rc))
3928 		goto err;
3929 out:
3930 	pr_debug("%s: returning rc=%d\n", __func__, rc);
3931 	return rc;
3932 err:
3933 	cxlflash_class_exit();
3934 	goto out;
3935 }
3936 
3937 /**
3938  * exit_cxlflash() - module exit point
3939  */
3940 static void __exit exit_cxlflash(void)
3941 {
3942 	cxlflash_term_global_luns();
3943 	cxlflash_free_errpage();
3944 
3945 	pci_unregister_driver(&cxlflash_driver);
3946 	cxlflash_class_exit();
3947 }
3948 
3949 module_init(init_cxlflash);
3950 module_exit(exit_cxlflash);
3951