xref: /openbmc/linux/drivers/scsi/csiostor/csio_wr.c (revision f220d3eb)
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
39 #include <asm/page.h>
40 #include <linux/cache.h>
41 
42 #include "t4_values.h"
43 #include "csio_hw.h"
44 #include "csio_wr.h"
45 #include "csio_mb.h"
46 #include "csio_defs.h"
47 
48 int csio_intr_coalesce_cnt;		/* value:SGE_INGRESS_RX_THRESHOLD[0] */
49 static int csio_sge_thresh_reg;		/* SGE_INGRESS_RX_THRESHOLD[0] */
50 
51 int csio_intr_coalesce_time = 10;	/* value:SGE_TIMER_VALUE_1 */
52 static int csio_sge_timer_reg = 1;
53 
54 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val)				\
55 	csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
56 
57 static void
58 csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
59 {
60 	sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
61 							reg * sizeof(uint32_t));
62 }
63 
64 /* Free list buffer size */
65 static inline uint32_t
66 csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
67 {
68 	return sge->sge_fl_buf_size[buf->paddr & 0xF];
69 }
70 
71 /* Size of the egress queue status page */
72 static inline uint32_t
73 csio_wr_qstat_pgsz(struct csio_hw *hw)
74 {
75 	return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ?  128 : 64;
76 }
77 
78 /* Ring freelist doorbell */
79 static inline void
80 csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
81 {
82 	/*
83 	 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
84 	 * number of bytes in the freelist queue. This translates to atleast
85 	 * 8 freelist buffer pointers (since each pointer is 8 bytes).
86 	 */
87 	if (flq->inc_idx >= 8) {
88 		csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
89 				  PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
90 				  MYPF_REG(SGE_PF_KDOORBELL_A));
91 		flq->inc_idx &= 7;
92 	}
93 }
94 
95 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
96 static void
97 csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
98 {
99 	csio_wr_reg32(hw, CIDXINC_V(0)		|
100 			  INGRESSQID_V(iqid)	|
101 			  TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
102 			  MYPF_REG(SGE_PF_GTS_A));
103 }
104 
105 /*
106  * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
107  * @hw: HW module.
108  * @flq: Freelist queue.
109  *
110  * Fill up freelist buffer entries with buffers of size specified
111  * in the size register.
112  *
113  */
114 static int
115 csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
116 {
117 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
118 	struct csio_sge *sge = &wrm->sge;
119 	__be64 *d = (__be64 *)(flq->vstart);
120 	struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
121 	uint64_t paddr;
122 	int sreg = flq->un.fl.sreg;
123 	int n = flq->credits;
124 
125 	while (n--) {
126 		buf->len = sge->sge_fl_buf_size[sreg];
127 		buf->vaddr = pci_alloc_consistent(hw->pdev, buf->len,
128 						  &buf->paddr);
129 		if (!buf->vaddr) {
130 			csio_err(hw, "Could only fill %d buffers!\n", n + 1);
131 			return -ENOMEM;
132 		}
133 
134 		paddr = buf->paddr | (sreg & 0xF);
135 
136 		*d++ = cpu_to_be64(paddr);
137 		buf++;
138 	}
139 
140 	return 0;
141 }
142 
143 /*
144  * csio_wr_update_fl -
145  * @hw: HW module.
146  * @flq: Freelist queue.
147  *
148  *
149  */
150 static inline void
151 csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
152 {
153 
154 	flq->inc_idx += n;
155 	flq->pidx += n;
156 	if (unlikely(flq->pidx >= flq->credits))
157 		flq->pidx -= (uint16_t)flq->credits;
158 
159 	CSIO_INC_STATS(flq, n_flq_refill);
160 }
161 
162 /*
163  * csio_wr_alloc_q - Allocate a WR queue and initialize it.
164  * @hw: HW module
165  * @qsize: Size of the queue in bytes
166  * @wrsize: Since of WR in this queue, if fixed.
167  * @type: Type of queue (Ingress/Egress/Freelist)
168  * @owner: Module that owns this queue.
169  * @nflb: Number of freelist buffers for FL.
170  * @sreg: What is the FL buffer size register?
171  * @iq_int_handler: Ingress queue handler in INTx mode.
172  *
173  * This function allocates and sets up a queue for the caller
174  * of size qsize, aligned at the required boundary. This is subject to
175  * be free entries being available in the queue array. If one is found,
176  * it is initialized with the allocated queue, marked as being used (owner),
177  * and a handle returned to the caller in form of the queue's index
178  * into the q_arr array.
179  * If user has indicated a freelist (by specifying nflb > 0), create
180  * another queue (with its own index into q_arr) for the freelist. Allocate
181  * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
182  * idx in the ingress queue's flq.idx. This is how a Freelist is associated
183  * with its owning ingress queue.
184  */
185 int
186 csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
187 		uint16_t type, void *owner, uint32_t nflb, int sreg,
188 		iq_handler_t iq_intx_handler)
189 {
190 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
191 	struct csio_q	*q, *flq;
192 	int		free_idx = wrm->free_qidx;
193 	int		ret_idx = free_idx;
194 	uint32_t	qsz;
195 	int flq_idx;
196 
197 	if (free_idx >= wrm->num_q) {
198 		csio_err(hw, "No more free queues.\n");
199 		return -1;
200 	}
201 
202 	switch (type) {
203 	case CSIO_EGRESS:
204 		qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
205 		break;
206 	case CSIO_INGRESS:
207 		switch (wrsize) {
208 		case 16:
209 		case 32:
210 		case 64:
211 		case 128:
212 			break;
213 		default:
214 			csio_err(hw, "Invalid Ingress queue WR size:%d\n",
215 				    wrsize);
216 			return -1;
217 		}
218 
219 		/*
220 		 * Number of elements must be a multiple of 16
221 		 * So this includes status page size
222 		 */
223 		qsz = ALIGN(qsize/wrsize, 16) * wrsize;
224 
225 		break;
226 	case CSIO_FREELIST:
227 		qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
228 		break;
229 	default:
230 		csio_err(hw, "Invalid queue type: 0x%x\n", type);
231 		return -1;
232 	}
233 
234 	q = wrm->q_arr[free_idx];
235 
236 	q->vstart = pci_zalloc_consistent(hw->pdev, qsz, &q->pstart);
237 	if (!q->vstart) {
238 		csio_err(hw,
239 			 "Failed to allocate DMA memory for "
240 			 "queue at id: %d size: %d\n", free_idx, qsize);
241 		return -1;
242 	}
243 
244 	q->type		= type;
245 	q->owner	= owner;
246 	q->pidx		= q->cidx = q->inc_idx = 0;
247 	q->size		= qsz;
248 	q->wr_sz	= wrsize;	/* If using fixed size WRs */
249 
250 	wrm->free_qidx++;
251 
252 	if (type == CSIO_INGRESS) {
253 		/* Since queue area is set to zero */
254 		q->un.iq.genbit	= 1;
255 
256 		/*
257 		 * Ingress queue status page size is always the size of
258 		 * the ingress queue entry.
259 		 */
260 		q->credits	= (qsz - q->wr_sz) / q->wr_sz;
261 		q->vwrap	= (void *)((uintptr_t)(q->vstart) + qsz
262 							- q->wr_sz);
263 
264 		/* Allocate memory for FL if requested */
265 		if (nflb > 0) {
266 			flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
267 						  sizeof(__be64), CSIO_FREELIST,
268 						  owner, 0, sreg, NULL);
269 			if (flq_idx == -1) {
270 				csio_err(hw,
271 					 "Failed to allocate FL queue"
272 					 " for IQ idx:%d\n", free_idx);
273 				return -1;
274 			}
275 
276 			/* Associate the new FL with the Ingress quue */
277 			q->un.iq.flq_idx = flq_idx;
278 
279 			flq = wrm->q_arr[q->un.iq.flq_idx];
280 			flq->un.fl.bufs = kcalloc(flq->credits,
281 						  sizeof(struct csio_dma_buf),
282 						  GFP_KERNEL);
283 			if (!flq->un.fl.bufs) {
284 				csio_err(hw,
285 					 "Failed to allocate FL queue bufs"
286 					 " for IQ idx:%d\n", free_idx);
287 				return -1;
288 			}
289 
290 			flq->un.fl.packen = 0;
291 			flq->un.fl.offset = 0;
292 			flq->un.fl.sreg = sreg;
293 
294 			/* Fill up the free list buffers */
295 			if (csio_wr_fill_fl(hw, flq))
296 				return -1;
297 
298 			/*
299 			 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
300 			 * remains unpopulated,otherwise HW thinks
301 			 * FLQ is empty.
302 			 */
303 			flq->pidx = flq->inc_idx = flq->credits - 8;
304 		} else {
305 			q->un.iq.flq_idx = -1;
306 		}
307 
308 		/* Associate the IQ INTx handler. */
309 		q->un.iq.iq_intx_handler = iq_intx_handler;
310 
311 		csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
312 
313 	} else if (type == CSIO_EGRESS) {
314 		q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
315 		q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
316 						- csio_wr_qstat_pgsz(hw));
317 		csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
318 	} else { /* Freelist */
319 		q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
320 		q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
321 						- csio_wr_qstat_pgsz(hw));
322 		csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
323 	}
324 
325 	return ret_idx;
326 }
327 
328 /*
329  * csio_wr_iq_create_rsp - Response handler for IQ creation.
330  * @hw: The HW module.
331  * @mbp: Mailbox.
332  * @iq_idx: Ingress queue that got created.
333  *
334  * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
335  */
336 static int
337 csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
338 {
339 	struct csio_iq_params iqp;
340 	enum fw_retval retval;
341 	uint32_t iq_id;
342 	int flq_idx;
343 
344 	memset(&iqp, 0, sizeof(struct csio_iq_params));
345 
346 	csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
347 
348 	if (retval != FW_SUCCESS) {
349 		csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
350 		mempool_free(mbp, hw->mb_mempool);
351 		return -EINVAL;
352 	}
353 
354 	csio_q_iqid(hw, iq_idx)		= iqp.iqid;
355 	csio_q_physiqid(hw, iq_idx)	= iqp.physiqid;
356 	csio_q_pidx(hw, iq_idx)		= csio_q_cidx(hw, iq_idx) = 0;
357 	csio_q_inc_idx(hw, iq_idx)	= 0;
358 
359 	/* Actual iq-id. */
360 	iq_id = iqp.iqid - hw->wrm.fw_iq_start;
361 
362 	/* Set the iq-id to iq map table. */
363 	if (iq_id >= CSIO_MAX_IQ) {
364 		csio_err(hw,
365 			 "Exceeding MAX_IQ(%d) supported!"
366 			 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
367 			 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
368 		mempool_free(mbp, hw->mb_mempool);
369 		return -EINVAL;
370 	}
371 	csio_q_set_intr_map(hw, iq_idx, iq_id);
372 
373 	/*
374 	 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
375 	 * ingress context of this queue. This will block interrupts to
376 	 * this queue until the next GTS write. Therefore, we do a
377 	 * 0-cidx increment GTS write for this queue just to clear the
378 	 * interrupt_sent bit. This will re-enable interrupts to this
379 	 * queue.
380 	 */
381 	csio_wr_sge_intr_enable(hw, iqp.physiqid);
382 
383 	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
384 	if (flq_idx != -1) {
385 		struct csio_q *flq = hw->wrm.q_arr[flq_idx];
386 
387 		csio_q_flid(hw, flq_idx) = iqp.fl0id;
388 		csio_q_cidx(hw, flq_idx) = 0;
389 		csio_q_pidx(hw, flq_idx)    = csio_q_credits(hw, flq_idx) - 8;
390 		csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
391 
392 		/* Now update SGE about the buffers allocated during init */
393 		csio_wr_ring_fldb(hw, flq);
394 	}
395 
396 	mempool_free(mbp, hw->mb_mempool);
397 
398 	return 0;
399 }
400 
401 /*
402  * csio_wr_iq_create - Configure an Ingress queue with FW.
403  * @hw: The HW module.
404  * @priv: Private data object.
405  * @iq_idx: Ingress queue index in the WR module.
406  * @vec: MSIX vector.
407  * @portid: PCIE Channel to be associated with this queue.
408  * @async: Is this a FW asynchronous message handling queue?
409  * @cbfn: Completion callback.
410  *
411  * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
412  * with alloc/write bits set.
413  */
414 int
415 csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
416 		  uint32_t vec, uint8_t portid, bool async,
417 		  void (*cbfn) (struct csio_hw *, struct csio_mb *))
418 {
419 	struct csio_mb  *mbp;
420 	struct csio_iq_params iqp;
421 	int flq_idx;
422 
423 	memset(&iqp, 0, sizeof(struct csio_iq_params));
424 	csio_q_portid(hw, iq_idx) = portid;
425 
426 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
427 	if (!mbp) {
428 		csio_err(hw, "IQ command out of memory!\n");
429 		return -ENOMEM;
430 	}
431 
432 	switch (hw->intr_mode) {
433 	case CSIO_IM_INTX:
434 	case CSIO_IM_MSI:
435 		/* For interrupt forwarding queue only */
436 		if (hw->intr_iq_idx == iq_idx)
437 			iqp.iqandst	= X_INTERRUPTDESTINATION_PCIE;
438 		else
439 			iqp.iqandst	= X_INTERRUPTDESTINATION_IQ;
440 		iqp.iqandstindex	=
441 			csio_q_physiqid(hw, hw->intr_iq_idx);
442 		break;
443 	case CSIO_IM_MSIX:
444 		iqp.iqandst		= X_INTERRUPTDESTINATION_PCIE;
445 		iqp.iqandstindex	= (uint16_t)vec;
446 		break;
447 	case CSIO_IM_NONE:
448 		mempool_free(mbp, hw->mb_mempool);
449 		return -EINVAL;
450 	}
451 
452 	/* Pass in the ingress queue cmd parameters */
453 	iqp.pfn			= hw->pfn;
454 	iqp.vfn			= 0;
455 	iqp.iq_start		= 1;
456 	iqp.viid		= 0;
457 	iqp.type		= FW_IQ_TYPE_FL_INT_CAP;
458 	iqp.iqasynch		= async;
459 	if (csio_intr_coalesce_cnt)
460 		iqp.iqanus	= X_UPDATESCHEDULING_COUNTER_OPTTIMER;
461 	else
462 		iqp.iqanus	= X_UPDATESCHEDULING_TIMER;
463 	iqp.iqanud		= X_UPDATEDELIVERY_INTERRUPT;
464 	iqp.iqpciech		= portid;
465 	iqp.iqintcntthresh	= (uint8_t)csio_sge_thresh_reg;
466 
467 	switch (csio_q_wr_sz(hw, iq_idx)) {
468 	case 16:
469 		iqp.iqesize = 0; break;
470 	case 32:
471 		iqp.iqesize = 1; break;
472 	case 64:
473 		iqp.iqesize = 2; break;
474 	case 128:
475 		iqp.iqesize = 3; break;
476 	}
477 
478 	iqp.iqsize		= csio_q_size(hw, iq_idx) /
479 						csio_q_wr_sz(hw, iq_idx);
480 	iqp.iqaddr		= csio_q_pstart(hw, iq_idx);
481 
482 	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
483 	if (flq_idx != -1) {
484 		enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
485 		struct csio_q *flq = hw->wrm.q_arr[flq_idx];
486 
487 		iqp.fl0paden	= 1;
488 		iqp.fl0packen	= flq->un.fl.packen ? 1 : 0;
489 		iqp.fl0fbmin	= X_FETCHBURSTMIN_64B;
490 		iqp.fl0fbmax	= ((chip == CHELSIO_T5) ?
491 				  X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
492 		iqp.fl0size	= csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
493 		iqp.fl0addr	= csio_q_pstart(hw, flq_idx);
494 	}
495 
496 	csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
497 
498 	if (csio_mb_issue(hw, mbp)) {
499 		csio_err(hw, "Issue of IQ cmd failed!\n");
500 		mempool_free(mbp, hw->mb_mempool);
501 		return -EINVAL;
502 	}
503 
504 	if (cbfn != NULL)
505 		return 0;
506 
507 	return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
508 }
509 
510 /*
511  * csio_wr_eq_create_rsp - Response handler for EQ creation.
512  * @hw: The HW module.
513  * @mbp: Mailbox.
514  * @eq_idx: Egress queue that got created.
515  *
516  * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
517  */
518 static int
519 csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
520 {
521 	struct csio_eq_params eqp;
522 	enum fw_retval retval;
523 
524 	memset(&eqp, 0, sizeof(struct csio_eq_params));
525 
526 	csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
527 
528 	if (retval != FW_SUCCESS) {
529 		csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
530 		mempool_free(mbp, hw->mb_mempool);
531 		return -EINVAL;
532 	}
533 
534 	csio_q_eqid(hw, eq_idx)	= (uint16_t)eqp.eqid;
535 	csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
536 	csio_q_pidx(hw, eq_idx)	= csio_q_cidx(hw, eq_idx) = 0;
537 	csio_q_inc_idx(hw, eq_idx) = 0;
538 
539 	mempool_free(mbp, hw->mb_mempool);
540 
541 	return 0;
542 }
543 
544 /*
545  * csio_wr_eq_create - Configure an Egress queue with FW.
546  * @hw: HW module.
547  * @priv: Private data.
548  * @eq_idx: Egress queue index in the WR module.
549  * @iq_idx: Associated ingress queue index.
550  * @cbfn: Completion callback.
551  *
552  * This API configures a offload egress queue with FW by issuing a
553  * FW_EQ_OFLD_CMD  (with alloc + write ) mailbox.
554  */
555 int
556 csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
557 		  int iq_idx, uint8_t portid,
558 		  void (*cbfn) (struct csio_hw *, struct csio_mb *))
559 {
560 	struct csio_mb  *mbp;
561 	struct csio_eq_params eqp;
562 
563 	memset(&eqp, 0, sizeof(struct csio_eq_params));
564 
565 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
566 	if (!mbp) {
567 		csio_err(hw, "EQ command out of memory!\n");
568 		return -ENOMEM;
569 	}
570 
571 	eqp.pfn			= hw->pfn;
572 	eqp.vfn			= 0;
573 	eqp.eqstart		= 1;
574 	eqp.hostfcmode		= X_HOSTFCMODE_STATUS_PAGE;
575 	eqp.iqid		= csio_q_iqid(hw, iq_idx);
576 	eqp.fbmin		= X_FETCHBURSTMIN_64B;
577 	eqp.fbmax		= X_FETCHBURSTMAX_512B;
578 	eqp.cidxfthresh		= 0;
579 	eqp.pciechn		= portid;
580 	eqp.eqsize		= csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
581 	eqp.eqaddr		= csio_q_pstart(hw, eq_idx);
582 
583 	csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
584 				    &eqp, cbfn);
585 
586 	if (csio_mb_issue(hw, mbp)) {
587 		csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
588 		mempool_free(mbp, hw->mb_mempool);
589 		return -EINVAL;
590 	}
591 
592 	if (cbfn != NULL)
593 		return 0;
594 
595 	return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
596 }
597 
598 /*
599  * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
600  * @hw: The HW module.
601  * @mbp: Mailbox.
602  * @iq_idx: Ingress queue that was freed.
603  *
604  * Handle FW_IQ_CMD (free) mailbox completion.
605  */
606 static int
607 csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
608 {
609 	enum fw_retval retval = csio_mb_fw_retval(mbp);
610 	int rv = 0;
611 
612 	if (retval != FW_SUCCESS)
613 		rv = -EINVAL;
614 
615 	mempool_free(mbp, hw->mb_mempool);
616 
617 	return rv;
618 }
619 
620 /*
621  * csio_wr_iq_destroy - Free an ingress queue.
622  * @hw: The HW module.
623  * @priv: Private data object.
624  * @iq_idx: Ingress queue index to destroy
625  * @cbfn: Completion callback.
626  *
627  * This API frees an ingress queue by issuing the FW_IQ_CMD
628  * with the free bit set.
629  */
630 static int
631 csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
632 		   void (*cbfn)(struct csio_hw *, struct csio_mb *))
633 {
634 	int rv = 0;
635 	struct csio_mb  *mbp;
636 	struct csio_iq_params iqp;
637 	int flq_idx;
638 
639 	memset(&iqp, 0, sizeof(struct csio_iq_params));
640 
641 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
642 	if (!mbp)
643 		return -ENOMEM;
644 
645 	iqp.pfn		= hw->pfn;
646 	iqp.vfn		= 0;
647 	iqp.iqid	= csio_q_iqid(hw, iq_idx);
648 	iqp.type	= FW_IQ_TYPE_FL_INT_CAP;
649 
650 	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
651 	if (flq_idx != -1)
652 		iqp.fl0id = csio_q_flid(hw, flq_idx);
653 	else
654 		iqp.fl0id = 0xFFFF;
655 
656 	iqp.fl1id = 0xFFFF;
657 
658 	csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
659 
660 	rv = csio_mb_issue(hw, mbp);
661 	if (rv != 0) {
662 		mempool_free(mbp, hw->mb_mempool);
663 		return rv;
664 	}
665 
666 	if (cbfn != NULL)
667 		return 0;
668 
669 	return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
670 }
671 
672 /*
673  * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
674  * @hw: The HW module.
675  * @mbp: Mailbox.
676  * @eq_idx: Egress queue that was freed.
677  *
678  * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
679  */
680 static int
681 csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
682 {
683 	enum fw_retval retval = csio_mb_fw_retval(mbp);
684 	int rv = 0;
685 
686 	if (retval != FW_SUCCESS)
687 		rv = -EINVAL;
688 
689 	mempool_free(mbp, hw->mb_mempool);
690 
691 	return rv;
692 }
693 
694 /*
695  * csio_wr_eq_destroy - Free an Egress queue.
696  * @hw: The HW module.
697  * @priv: Private data object.
698  * @eq_idx: Egress queue index to destroy
699  * @cbfn: Completion callback.
700  *
701  * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
702  * with the free bit set.
703  */
704 static int
705 csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
706 		   void (*cbfn) (struct csio_hw *, struct csio_mb *))
707 {
708 	int rv = 0;
709 	struct csio_mb  *mbp;
710 	struct csio_eq_params eqp;
711 
712 	memset(&eqp, 0, sizeof(struct csio_eq_params));
713 
714 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
715 	if (!mbp)
716 		return -ENOMEM;
717 
718 	eqp.pfn		= hw->pfn;
719 	eqp.vfn		= 0;
720 	eqp.eqid	= csio_q_eqid(hw, eq_idx);
721 
722 	csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
723 
724 	rv = csio_mb_issue(hw, mbp);
725 	if (rv != 0) {
726 		mempool_free(mbp, hw->mb_mempool);
727 		return rv;
728 	}
729 
730 	if (cbfn != NULL)
731 		return 0;
732 
733 	return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
734 }
735 
736 /*
737  * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
738  * @hw: HW module
739  * @qidx: Egress queue index
740  *
741  * Cleanup the Egress queue status page.
742  */
743 static void
744 csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
745 {
746 	struct csio_q	*q = csio_hw_to_wrm(hw)->q_arr[qidx];
747 	struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
748 
749 	memset(stp, 0, sizeof(*stp));
750 }
751 
752 /*
753  * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
754  * @hw: HW module
755  * @qidx: Ingress queue index
756  *
757  * Cleanup the footer entries in the given ingress queue,
758  * set to 1 the internal copy of genbit.
759  */
760 static void
761 csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
762 {
763 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
764 	struct csio_q	*q	= wrm->q_arr[qidx];
765 	void *wr;
766 	struct csio_iqwr_footer *ftr;
767 	uint32_t i = 0;
768 
769 	/* set to 1 since we are just about zero out genbit */
770 	q->un.iq.genbit = 1;
771 
772 	for (i = 0; i < q->credits; i++) {
773 		/* Get the WR */
774 		wr = (void *)((uintptr_t)q->vstart +
775 					   (i * q->wr_sz));
776 		/* Get the footer */
777 		ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
778 					  (q->wr_sz - sizeof(*ftr)));
779 		/* Zero out footer */
780 		memset(ftr, 0, sizeof(*ftr));
781 	}
782 }
783 
784 int
785 csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
786 {
787 	int i, flq_idx;
788 	struct csio_q *q;
789 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
790 	int rv;
791 
792 	for (i = 0; i < wrm->free_qidx; i++) {
793 		q = wrm->q_arr[i];
794 
795 		switch (q->type) {
796 		case CSIO_EGRESS:
797 			if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
798 				csio_wr_cleanup_eq_stpg(hw, i);
799 				if (!cmd) {
800 					csio_q_eqid(hw, i) = CSIO_MAX_QID;
801 					continue;
802 				}
803 
804 				rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
805 				if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
806 					cmd = false;
807 
808 				csio_q_eqid(hw, i) = CSIO_MAX_QID;
809 			}
810 		case CSIO_INGRESS:
811 			if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
812 				csio_wr_cleanup_iq_ftr(hw, i);
813 				if (!cmd) {
814 					csio_q_iqid(hw, i) = CSIO_MAX_QID;
815 					flq_idx = csio_q_iq_flq_idx(hw, i);
816 					if (flq_idx != -1)
817 						csio_q_flid(hw, flq_idx) =
818 								CSIO_MAX_QID;
819 					continue;
820 				}
821 
822 				rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
823 				if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
824 					cmd = false;
825 
826 				csio_q_iqid(hw, i) = CSIO_MAX_QID;
827 				flq_idx = csio_q_iq_flq_idx(hw, i);
828 				if (flq_idx != -1)
829 					csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
830 			}
831 		default:
832 			break;
833 		}
834 	}
835 
836 	hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
837 
838 	return 0;
839 }
840 
841 /*
842  * csio_wr_get - Get requested size of WR entry/entries from queue.
843  * @hw: HW module.
844  * @qidx: Index of queue.
845  * @size: Cumulative size of Work request(s).
846  * @wrp: Work request pair.
847  *
848  * If requested credits are available, return the start address of the
849  * work request in the work request pair. Set pidx accordingly and
850  * return.
851  *
852  * NOTE about WR pair:
853  * ==================
854  * A WR can start towards the end of a queue, and then continue at the
855  * beginning, since the queue is considered to be circular. This will
856  * require a pair of address/size to be passed back to the caller -
857  * hence Work request pair format.
858  */
859 int
860 csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
861 	    struct csio_wr_pair *wrp)
862 {
863 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
864 	struct csio_q *q = wrm->q_arr[qidx];
865 	void *cwr = (void *)((uintptr_t)(q->vstart) +
866 						(q->pidx * CSIO_QCREDIT_SZ));
867 	struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
868 	uint16_t cidx = q->cidx = ntohs(stp->cidx);
869 	uint16_t pidx = q->pidx;
870 	uint32_t req_sz	= ALIGN(size, CSIO_QCREDIT_SZ);
871 	int req_credits	= req_sz / CSIO_QCREDIT_SZ;
872 	int credits;
873 
874 	CSIO_DB_ASSERT(q->owner != NULL);
875 	CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
876 	CSIO_DB_ASSERT(cidx <= q->credits);
877 
878 	/* Calculate credits */
879 	if (pidx > cidx) {
880 		credits = q->credits - (pidx - cidx) - 1;
881 	} else if (cidx > pidx) {
882 		credits = cidx - pidx - 1;
883 	} else {
884 		/* cidx == pidx, empty queue */
885 		credits = q->credits;
886 		CSIO_INC_STATS(q, n_qempty);
887 	}
888 
889 	/*
890 	 * Check if we have enough credits.
891 	 * credits = 1 implies queue is full.
892 	 */
893 	if (!credits || (req_credits > credits)) {
894 		CSIO_INC_STATS(q, n_qfull);
895 		return -EBUSY;
896 	}
897 
898 	/*
899 	 * If we are here, we have enough credits to satisfy the
900 	 * request. Check if we are near the end of q, and if WR spills over.
901 	 * If it does, use the first addr/size to cover the queue until
902 	 * the end. Fit the remainder portion of the request at the top
903 	 * of queue and return it in the second addr/len. Set pidx
904 	 * accordingly.
905 	 */
906 	if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
907 		wrp->addr1 = cwr;
908 		wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
909 		wrp->addr2 = q->vstart;
910 		wrp->size2 = req_sz - wrp->size1;
911 		q->pidx	= (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
912 							CSIO_QCREDIT_SZ);
913 		CSIO_INC_STATS(q, n_qwrap);
914 		CSIO_INC_STATS(q, n_eq_wr_split);
915 	} else {
916 		wrp->addr1 = cwr;
917 		wrp->size1 = req_sz;
918 		wrp->addr2 = NULL;
919 		wrp->size2 = 0;
920 		q->pidx	+= (uint16_t)req_credits;
921 
922 		/* We are the end of queue, roll back pidx to top of queue */
923 		if (unlikely(q->pidx == q->credits)) {
924 			q->pidx = 0;
925 			CSIO_INC_STATS(q, n_qwrap);
926 		}
927 	}
928 
929 	q->inc_idx = (uint16_t)req_credits;
930 
931 	CSIO_INC_STATS(q, n_tot_reqs);
932 
933 	return 0;
934 }
935 
936 /*
937  * csio_wr_copy_to_wrp - Copies given data into WR.
938  * @data_buf - Data buffer
939  * @wrp - Work request pair.
940  * @wr_off - Work request offset.
941  * @data_len - Data length.
942  *
943  * Copies the given data in Work Request. Work request pair(wrp) specifies
944  * address information of Work request.
945  * Returns: none
946  */
947 void
948 csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
949 		   uint32_t wr_off, uint32_t data_len)
950 {
951 	uint32_t nbytes;
952 
953 	/* Number of space available in buffer addr1 of WRP */
954 	nbytes = ((wrp->size1 - wr_off) >= data_len) ?
955 					data_len : (wrp->size1 - wr_off);
956 
957 	memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
958 	data_len -= nbytes;
959 
960 	/* Write the remaining data from the begining of circular buffer */
961 	if (data_len) {
962 		CSIO_DB_ASSERT(data_len <= wrp->size2);
963 		CSIO_DB_ASSERT(wrp->addr2 != NULL);
964 		memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
965 	}
966 }
967 
968 /*
969  * csio_wr_issue - Notify chip of Work request.
970  * @hw: HW module.
971  * @qidx: Index of queue.
972  * @prio: 0: Low priority, 1: High priority
973  *
974  * Rings the SGE Doorbell by writing the current producer index of the passed
975  * in queue into the register.
976  *
977  */
978 int
979 csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
980 {
981 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
982 	struct csio_q *q = wrm->q_arr[qidx];
983 
984 	CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
985 
986 	wmb();
987 	/* Ring SGE Doorbell writing q->pidx into it */
988 	csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
989 			  PIDX_T5_V(q->inc_idx) | DBTYPE_F,
990 			  MYPF_REG(SGE_PF_KDOORBELL_A));
991 	q->inc_idx = 0;
992 
993 	return 0;
994 }
995 
996 static inline uint32_t
997 csio_wr_avail_qcredits(struct csio_q *q)
998 {
999 	if (q->pidx > q->cidx)
1000 		return q->pidx - q->cidx;
1001 	else if (q->cidx > q->pidx)
1002 		return q->credits - (q->cidx - q->pidx);
1003 	else
1004 		return 0;	/* cidx == pidx, empty queue */
1005 }
1006 
1007 /*
1008  * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1009  * @hw: HW module.
1010  * @flq: The freelist queue.
1011  *
1012  * Invalidate the driver's version of a freelist buffer entry,
1013  * without freeing the associated the DMA memory. The entry
1014  * to be invalidated is picked up from the current Free list
1015  * queue cidx.
1016  *
1017  */
1018 static inline void
1019 csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1020 {
1021 	flq->cidx++;
1022 	if (flq->cidx == flq->credits) {
1023 		flq->cidx = 0;
1024 		CSIO_INC_STATS(flq, n_qwrap);
1025 	}
1026 }
1027 
1028 /*
1029  * csio_wr_process_fl - Process a freelist completion.
1030  * @hw: HW module.
1031  * @q: The ingress queue attached to the Freelist.
1032  * @wr: The freelist completion WR in the ingress queue.
1033  * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1034  * @iq_handler: Caller's handler for this completion.
1035  * @priv: Private pointer of caller
1036  *
1037  */
1038 static inline void
1039 csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1040 		   void *wr, uint32_t len_to_qid,
1041 		   void (*iq_handler)(struct csio_hw *, void *,
1042 				      uint32_t, struct csio_fl_dma_buf *,
1043 				      void *),
1044 		   void *priv)
1045 {
1046 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1047 	struct csio_sge *sge = &wrm->sge;
1048 	struct csio_fl_dma_buf flb;
1049 	struct csio_dma_buf *buf, *fbuf;
1050 	uint32_t bufsz, len, lastlen = 0;
1051 	int n;
1052 	struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1053 
1054 	CSIO_DB_ASSERT(flq != NULL);
1055 
1056 	len = len_to_qid;
1057 
1058 	if (len & IQWRF_NEWBUF) {
1059 		if (flq->un.fl.offset > 0) {
1060 			csio_wr_inval_flq_buf(hw, flq);
1061 			flq->un.fl.offset = 0;
1062 		}
1063 		len = IQWRF_LEN_GET(len);
1064 	}
1065 
1066 	CSIO_DB_ASSERT(len != 0);
1067 
1068 	flb.totlen = len;
1069 
1070 	/* Consume all freelist buffers used for len bytes */
1071 	for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
1072 		buf = &flq->un.fl.bufs[flq->cidx];
1073 		bufsz = csio_wr_fl_bufsz(sge, buf);
1074 
1075 		fbuf->paddr	= buf->paddr;
1076 		fbuf->vaddr	= buf->vaddr;
1077 
1078 		flb.offset	= flq->un.fl.offset;
1079 		lastlen		= min(bufsz, len);
1080 		fbuf->len	= lastlen;
1081 
1082 		len -= lastlen;
1083 		if (!len)
1084 			break;
1085 		csio_wr_inval_flq_buf(hw, flq);
1086 	}
1087 
1088 	flb.defer_free = flq->un.fl.packen ? 0 : 1;
1089 
1090 	iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1091 		   &flb, priv);
1092 
1093 	if (flq->un.fl.packen)
1094 		flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1095 	else
1096 		csio_wr_inval_flq_buf(hw, flq);
1097 
1098 }
1099 
1100 /*
1101  * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1102  * @q: Ingress quueue.
1103  * @ftr: Ingress queue WR SGE footer.
1104  *
1105  * The entry is new if our generation bit matches the corresponding
1106  * bit in the footer of the current WR.
1107  */
1108 static inline bool
1109 csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1110 {
1111 	return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1112 }
1113 
1114 /*
1115  * csio_wr_process_iq - Process elements in Ingress queue.
1116  * @hw:  HW pointer
1117  * @qidx: Index of queue
1118  * @iq_handler: Handler for this queue
1119  * @priv: Caller's private pointer
1120  *
1121  * This routine walks through every entry of the ingress queue, calling
1122  * the provided iq_handler with the entry, until the generation bit
1123  * flips.
1124  */
1125 int
1126 csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1127 		   void (*iq_handler)(struct csio_hw *, void *,
1128 				      uint32_t, struct csio_fl_dma_buf *,
1129 				      void *),
1130 		   void *priv)
1131 {
1132 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1133 	void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1134 	struct csio_iqwr_footer *ftr;
1135 	uint32_t wr_type, fw_qid, qid;
1136 	struct csio_q *q_completed;
1137 	struct csio_q *flq = csio_iq_has_fl(q) ?
1138 					wrm->q_arr[q->un.iq.flq_idx] : NULL;
1139 	int rv = 0;
1140 
1141 	/* Get the footer */
1142 	ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1143 					  (q->wr_sz - sizeof(*ftr)));
1144 
1145 	/*
1146 	 * When q wrapped around last time, driver should have inverted
1147 	 * ic.genbit as well.
1148 	 */
1149 	while (csio_is_new_iqwr(q, ftr)) {
1150 
1151 		CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1152 						(uintptr_t)q->vwrap);
1153 		rmb();
1154 		wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1155 
1156 		switch (wr_type) {
1157 		case X_RSPD_TYPE_CPL:
1158 			/* Subtract footer from WR len */
1159 			iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1160 			break;
1161 		case X_RSPD_TYPE_FLBUF:
1162 			csio_wr_process_fl(hw, q, wr,
1163 					   ntohl(ftr->pldbuflen_qid),
1164 					   iq_handler, priv);
1165 			break;
1166 		case X_RSPD_TYPE_INTR:
1167 			fw_qid = ntohl(ftr->pldbuflen_qid);
1168 			qid = fw_qid - wrm->fw_iq_start;
1169 			q_completed = hw->wrm.intr_map[qid];
1170 
1171 			if (unlikely(qid ==
1172 					csio_q_physiqid(hw, hw->intr_iq_idx))) {
1173 				/*
1174 				 * We are already in the Forward Interrupt
1175 				 * Interrupt Queue Service! Do-not service
1176 				 * again!
1177 				 *
1178 				 */
1179 			} else {
1180 				CSIO_DB_ASSERT(q_completed);
1181 				CSIO_DB_ASSERT(
1182 					q_completed->un.iq.iq_intx_handler);
1183 
1184 				/* Call the queue handler. */
1185 				q_completed->un.iq.iq_intx_handler(hw, NULL,
1186 						0, NULL, (void *)q_completed);
1187 			}
1188 			break;
1189 		default:
1190 			csio_warn(hw, "Unknown resp type 0x%x received\n",
1191 				 wr_type);
1192 			CSIO_INC_STATS(q, n_rsp_unknown);
1193 			break;
1194 		}
1195 
1196 		/*
1197 		 * Ingress *always* has fixed size WR entries. Therefore,
1198 		 * there should always be complete WRs towards the end of
1199 		 * queue.
1200 		 */
1201 		if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1202 
1203 			/* Roll over to start of queue */
1204 			q->cidx = 0;
1205 			wr	= q->vstart;
1206 
1207 			/* Toggle genbit */
1208 			q->un.iq.genbit ^= 0x1;
1209 
1210 			CSIO_INC_STATS(q, n_qwrap);
1211 		} else {
1212 			q->cidx++;
1213 			wr	= (void *)((uintptr_t)(q->vstart) +
1214 					   (q->cidx * q->wr_sz));
1215 		}
1216 
1217 		ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1218 						  (q->wr_sz - sizeof(*ftr)));
1219 		q->inc_idx++;
1220 
1221 	} /* while (q->un.iq.genbit == hdr->genbit) */
1222 
1223 	/*
1224 	 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1225 	 * especially in msix mode. With INTx, this may be a common occurence.
1226 	 */
1227 	if (unlikely(!q->inc_idx)) {
1228 		CSIO_INC_STATS(q, n_stray_comp);
1229 		rv = -EINVAL;
1230 		goto restart;
1231 	}
1232 
1233 	/* Replenish free list buffers if pending falls below low water mark */
1234 	if (flq) {
1235 		uint32_t avail  = csio_wr_avail_qcredits(flq);
1236 		if (avail <= 16) {
1237 			/* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1238 			 * remains unpopulated otherwise HW thinks
1239 			 * FLQ is empty.
1240 			 */
1241 			csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1242 			csio_wr_ring_fldb(hw, flq);
1243 		}
1244 	}
1245 
1246 restart:
1247 	/* Now inform SGE about our incremental index value */
1248 	csio_wr_reg32(hw, CIDXINC_V(q->inc_idx)		|
1249 			  INGRESSQID_V(q->un.iq.physiqid)	|
1250 			  TIMERREG_V(csio_sge_timer_reg),
1251 			  MYPF_REG(SGE_PF_GTS_A));
1252 	q->stats.n_tot_rsps += q->inc_idx;
1253 
1254 	q->inc_idx = 0;
1255 
1256 	return rv;
1257 }
1258 
1259 int
1260 csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1261 		   void (*iq_handler)(struct csio_hw *, void *,
1262 				      uint32_t, struct csio_fl_dma_buf *,
1263 				      void *),
1264 		   void *priv)
1265 {
1266 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1267 	struct csio_q	*iq	= wrm->q_arr[qidx];
1268 
1269 	return csio_wr_process_iq(hw, iq, iq_handler, priv);
1270 }
1271 
1272 static int
1273 csio_closest_timer(struct csio_sge *s, int time)
1274 {
1275 	int i, delta, match = 0, min_delta = INT_MAX;
1276 
1277 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1278 		delta = time - s->timer_val[i];
1279 		if (delta < 0)
1280 			delta = -delta;
1281 		if (delta < min_delta) {
1282 			min_delta = delta;
1283 			match = i;
1284 		}
1285 	}
1286 	return match;
1287 }
1288 
1289 static int
1290 csio_closest_thresh(struct csio_sge *s, int cnt)
1291 {
1292 	int i, delta, match = 0, min_delta = INT_MAX;
1293 
1294 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1295 		delta = cnt - s->counter_val[i];
1296 		if (delta < 0)
1297 			delta = -delta;
1298 		if (delta < min_delta) {
1299 			min_delta = delta;
1300 			match = i;
1301 		}
1302 	}
1303 	return match;
1304 }
1305 
1306 static void
1307 csio_wr_fixup_host_params(struct csio_hw *hw)
1308 {
1309 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1310 	struct csio_sge *sge = &wrm->sge;
1311 	uint32_t clsz = L1_CACHE_BYTES;
1312 	uint32_t s_hps = PAGE_SHIFT - 10;
1313 	uint32_t stat_len = clsz > 64 ? 128 : 64;
1314 	u32 fl_align = clsz < 32 ? 32 : clsz;
1315 	u32 pack_align;
1316 	u32 ingpad, ingpack;
1317 	int pcie_cap;
1318 
1319 	csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
1320 		      HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
1321 		      HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
1322 		      HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
1323 		      SGE_HOST_PAGE_SIZE_A);
1324 
1325 	/* T5 introduced the separation of the Free List Padding and
1326 	 * Packing Boundaries.  Thus, we can select a smaller Padding
1327 	 * Boundary to avoid uselessly chewing up PCIe Link and Memory
1328 	 * Bandwidth, and use a Packing Boundary which is large enough
1329 	 * to avoid false sharing between CPUs, etc.
1330 	 *
1331 	 * For the PCI Link, the smaller the Padding Boundary the
1332 	 * better.  For the Memory Controller, a smaller Padding
1333 	 * Boundary is better until we cross under the Memory Line
1334 	 * Size (the minimum unit of transfer to/from Memory).  If we
1335 	 * have a Padding Boundary which is smaller than the Memory
1336 	 * Line Size, that'll involve a Read-Modify-Write cycle on the
1337 	 * Memory Controller which is never good.
1338 	 */
1339 
1340 	/* We want the Packing Boundary to be based on the Cache Line
1341 	 * Size in order to help avoid False Sharing performance
1342 	 * issues between CPUs, etc.  We also want the Packing
1343 	 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
1344 	 * get best performance when the Packing Boundary is a
1345 	 * multiple of the Maximum Payload Size.
1346 	 */
1347 	pack_align = fl_align;
1348 	pcie_cap = pci_find_capability(hw->pdev, PCI_CAP_ID_EXP);
1349 	if (pcie_cap) {
1350 		u32 mps, mps_log;
1351 		u16 devctl;
1352 
1353 		/* The PCIe Device Control Maximum Payload Size field
1354 		 * [bits 7:5] encodes sizes as powers of 2 starting at
1355 		 * 128 bytes.
1356 		 */
1357 		pci_read_config_word(hw->pdev,
1358 				     pcie_cap + PCI_EXP_DEVCTL,
1359 				     &devctl);
1360 		mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
1361 		mps = 1 << mps_log;
1362 		if (mps > pack_align)
1363 			pack_align = mps;
1364 	}
1365 
1366 	/* T5/T6 have a special interpretation of the "0"
1367 	 * value for the Packing Boundary.  This corresponds to 16
1368 	 * bytes instead of the expected 32 bytes.
1369 	 */
1370 	if (pack_align <= 16) {
1371 		ingpack = INGPACKBOUNDARY_16B_X;
1372 		fl_align = 16;
1373 	} else if (pack_align == 32) {
1374 		ingpack = INGPACKBOUNDARY_64B_X;
1375 		fl_align = 64;
1376 	} else {
1377 		u32 pack_align_log = fls(pack_align) - 1;
1378 
1379 		ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
1380 		fl_align = pack_align;
1381 	}
1382 
1383 	/* Use the smallest Ingress Padding which isn't smaller than
1384 	 * the Memory Controller Read/Write Size.  We'll take that as
1385 	 * being 8 bytes since we don't know of any system with a
1386 	 * wider Memory Controller Bus Width.
1387 	 */
1388 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
1389 		ingpad = INGPADBOUNDARY_32B_X;
1390 	else
1391 		ingpad = T6_INGPADBOUNDARY_8B_X;
1392 
1393 	csio_set_reg_field(hw, SGE_CONTROL_A,
1394 			   INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
1395 			   EGRSTATUSPAGESIZE_F,
1396 			   INGPADBOUNDARY_V(ingpad) |
1397 			   EGRSTATUSPAGESIZE_V(stat_len != 64));
1398 	csio_set_reg_field(hw, SGE_CONTROL2_A,
1399 			   INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
1400 			   INGPACKBOUNDARY_V(ingpack));
1401 
1402 	/* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1403 	csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
1404 
1405 	/*
1406 	 * If using hard params, the following will get set correctly
1407 	 * in csio_wr_set_sge().
1408 	 */
1409 	if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1410 		csio_wr_reg32(hw,
1411 			(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
1412 			fl_align - 1) & ~(fl_align - 1),
1413 			SGE_FL_BUFFER_SIZE2_A);
1414 		csio_wr_reg32(hw,
1415 			(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
1416 			fl_align - 1) & ~(fl_align - 1),
1417 			SGE_FL_BUFFER_SIZE3_A);
1418 	}
1419 
1420 	sge->csio_fl_align = fl_align;
1421 
1422 	csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
1423 
1424 	/* default value of rx_dma_offset of the NIC driver */
1425 	csio_set_reg_field(hw, SGE_CONTROL_A,
1426 			   PKTSHIFT_V(PKTSHIFT_M),
1427 			   PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
1428 
1429 	csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
1430 				    CSUM_HAS_PSEUDO_HDR_F, 0);
1431 }
1432 
1433 static void
1434 csio_init_intr_coalesce_parms(struct csio_hw *hw)
1435 {
1436 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1437 	struct csio_sge *sge = &wrm->sge;
1438 
1439 	csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1440 	if (csio_intr_coalesce_cnt) {
1441 		csio_sge_thresh_reg = 0;
1442 		csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1443 		return;
1444 	}
1445 
1446 	csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1447 }
1448 
1449 /*
1450  * csio_wr_get_sge - Get SGE register values.
1451  * @hw: HW module.
1452  *
1453  * Used by non-master functions and by master-functions relying on config file.
1454  */
1455 static void
1456 csio_wr_get_sge(struct csio_hw *hw)
1457 {
1458 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1459 	struct csio_sge *sge = &wrm->sge;
1460 	uint32_t ingpad;
1461 	int i;
1462 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1463 	u32 ingress_rx_threshold;
1464 
1465 	sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1466 
1467 	ingpad = INGPADBOUNDARY_G(sge->sge_control);
1468 
1469 	switch (ingpad) {
1470 	case X_INGPCIEBOUNDARY_32B:
1471 		sge->csio_fl_align = 32; break;
1472 	case X_INGPCIEBOUNDARY_64B:
1473 		sge->csio_fl_align = 64; break;
1474 	case X_INGPCIEBOUNDARY_128B:
1475 		sge->csio_fl_align = 128; break;
1476 	case X_INGPCIEBOUNDARY_256B:
1477 		sge->csio_fl_align = 256; break;
1478 	case X_INGPCIEBOUNDARY_512B:
1479 		sge->csio_fl_align = 512; break;
1480 	case X_INGPCIEBOUNDARY_1024B:
1481 		sge->csio_fl_align = 1024; break;
1482 	case X_INGPCIEBOUNDARY_2048B:
1483 		sge->csio_fl_align = 2048; break;
1484 	case X_INGPCIEBOUNDARY_4096B:
1485 		sge->csio_fl_align = 4096; break;
1486 	}
1487 
1488 	for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1489 		csio_get_flbuf_size(hw, sge, i);
1490 
1491 	timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
1492 	timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
1493 	timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
1494 
1495 	sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1496 					TIMERVALUE0_G(timer_value_0_and_1));
1497 	sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1498 					TIMERVALUE1_G(timer_value_0_and_1));
1499 	sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1500 					TIMERVALUE2_G(timer_value_2_and_3));
1501 	sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1502 					TIMERVALUE3_G(timer_value_2_and_3));
1503 	sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1504 					TIMERVALUE4_G(timer_value_4_and_5));
1505 	sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1506 					TIMERVALUE5_G(timer_value_4_and_5));
1507 
1508 	ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
1509 	sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
1510 	sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
1511 	sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
1512 	sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
1513 
1514 	csio_init_intr_coalesce_parms(hw);
1515 }
1516 
1517 /*
1518  * csio_wr_set_sge - Initialize SGE registers
1519  * @hw: HW module.
1520  *
1521  * Used by Master function to initialize SGE registers in the absence
1522  * of a config file.
1523  */
1524 static void
1525 csio_wr_set_sge(struct csio_hw *hw)
1526 {
1527 	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1528 	struct csio_sge *sge = &wrm->sge;
1529 	int i;
1530 
1531 	/*
1532 	 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1533 	 * Queue and Packet Date to the Free List.
1534 	 */
1535 	csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
1536 
1537 	sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1538 
1539 	/* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1540 
1541 	/*
1542 	 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1543 	 * and generate an interrupt when this occurs so we can recover.
1544 	 */
1545 	csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
1546 			   LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1547 			   LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1548 	csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
1549 			   HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1550 			   HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1551 
1552 	csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
1553 			   ENABLE_DROP_F);
1554 
1555 	/* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1556 
1557 	CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1558 	csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1559 		      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
1560 	csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1561 		      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
1562 	CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1563 	CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1564 	CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1565 	CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1566 	CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1567 
1568 	for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1569 		csio_get_flbuf_size(hw, sge, i);
1570 
1571 	/* Initialize interrupt coalescing attributes */
1572 	sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1573 	sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1574 	sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1575 	sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1576 	sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1577 	sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1578 
1579 	sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1580 	sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1581 	sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1582 	sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1583 
1584 	csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
1585 		      THRESHOLD_1_V(sge->counter_val[1]) |
1586 		      THRESHOLD_2_V(sge->counter_val[2]) |
1587 		      THRESHOLD_3_V(sge->counter_val[3]),
1588 		      SGE_INGRESS_RX_THRESHOLD_A);
1589 
1590 	csio_wr_reg32(hw,
1591 		   TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1592 		   TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1593 		   SGE_TIMER_VALUE_0_AND_1_A);
1594 
1595 	csio_wr_reg32(hw,
1596 		   TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1597 		   TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1598 		   SGE_TIMER_VALUE_2_AND_3_A);
1599 
1600 	csio_wr_reg32(hw,
1601 		   TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1602 		   TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1603 		   SGE_TIMER_VALUE_4_AND_5_A);
1604 
1605 	csio_init_intr_coalesce_parms(hw);
1606 }
1607 
1608 void
1609 csio_wr_sge_init(struct csio_hw *hw)
1610 {
1611 	/*
1612 	 * If we are master and chip is not initialized:
1613 	 *    - If we plan to use the config file, we need to fixup some
1614 	 *      host specific registers, and read the rest of the SGE
1615 	 *      configuration.
1616 	 *    - If we dont plan to use the config file, we need to initialize
1617 	 *      SGE entirely, including fixing the host specific registers.
1618 	 * If we are master and chip is initialized, just read and work off of
1619 	 *	the already initialized SGE values.
1620 	 * If we arent the master, we are only allowed to read and work off of
1621 	 *      the already initialized SGE values.
1622 	 *
1623 	 * Therefore, before calling this function, we assume that the master-
1624 	 * ship of the card, state and whether to use config file or not, have
1625 	 * already been decided.
1626 	 */
1627 	if (csio_is_hw_master(hw)) {
1628 		if (hw->fw_state != CSIO_DEV_STATE_INIT)
1629 			csio_wr_fixup_host_params(hw);
1630 
1631 		if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1632 			csio_wr_get_sge(hw);
1633 		else
1634 			csio_wr_set_sge(hw);
1635 	} else
1636 		csio_wr_get_sge(hw);
1637 }
1638 
1639 /*
1640  * csio_wrm_init - Initialize Work request module.
1641  * @wrm: WR module
1642  * @hw: HW pointer
1643  *
1644  * Allocates memory for an array of queue pointers starting at q_arr.
1645  */
1646 int
1647 csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1648 {
1649 	int i;
1650 
1651 	if (!wrm->num_q) {
1652 		csio_err(hw, "Num queues is not set\n");
1653 		return -EINVAL;
1654 	}
1655 
1656 	wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
1657 	if (!wrm->q_arr)
1658 		goto err;
1659 
1660 	for (i = 0; i < wrm->num_q; i++) {
1661 		wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1662 		if (!wrm->q_arr[i]) {
1663 			while (--i >= 0)
1664 				kfree(wrm->q_arr[i]);
1665 			goto err_free_arr;
1666 		}
1667 	}
1668 	wrm->free_qidx	= 0;
1669 
1670 	return 0;
1671 
1672 err_free_arr:
1673 	kfree(wrm->q_arr);
1674 err:
1675 	return -ENOMEM;
1676 }
1677 
1678 /*
1679  * csio_wrm_exit - Initialize Work request module.
1680  * @wrm: WR module
1681  * @hw: HW module
1682  *
1683  * Uninitialize WR module. Free q_arr and pointers in it.
1684  * We have the additional job of freeing the DMA memory associated
1685  * with the queues.
1686  */
1687 void
1688 csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1689 {
1690 	int i;
1691 	uint32_t j;
1692 	struct csio_q *q;
1693 	struct csio_dma_buf *buf;
1694 
1695 	for (i = 0; i < wrm->num_q; i++) {
1696 		q = wrm->q_arr[i];
1697 
1698 		if (wrm->free_qidx && (i < wrm->free_qidx)) {
1699 			if (q->type == CSIO_FREELIST) {
1700 				if (!q->un.fl.bufs)
1701 					continue;
1702 				for (j = 0; j < q->credits; j++) {
1703 					buf = &q->un.fl.bufs[j];
1704 					if (!buf->vaddr)
1705 						continue;
1706 					pci_free_consistent(hw->pdev, buf->len,
1707 							    buf->vaddr,
1708 							    buf->paddr);
1709 				}
1710 				kfree(q->un.fl.bufs);
1711 			}
1712 			pci_free_consistent(hw->pdev, q->size,
1713 					    q->vstart, q->pstart);
1714 		}
1715 		kfree(q);
1716 	}
1717 
1718 	hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1719 
1720 	kfree(wrm->q_arr);
1721 }
1722