1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/device.h>
36 #include <linux/delay.h>
37 #include <linux/ctype.h>
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/export.h>
43 #include <linux/module.h>
44 #include <asm/unaligned.h>
45 #include <asm/page.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_transport_fc.h>
49 
50 #include "csio_hw.h"
51 #include "csio_lnode.h"
52 #include "csio_rnode.h"
53 #include "csio_scsi.h"
54 #include "csio_init.h"
55 
56 int csio_scsi_eqsize = 65536;
57 int csio_scsi_iqlen = 128;
58 int csio_scsi_ioreqs = 2048;
59 uint32_t csio_max_scan_tmo;
60 uint32_t csio_delta_scan_tmo = 5;
61 int csio_lun_qdepth = 32;
62 
63 static int csio_ddp_descs = 128;
64 
65 static int csio_do_abrt_cls(struct csio_hw *,
66 				      struct csio_ioreq *, bool);
67 
68 static void csio_scsis_uninit(struct csio_ioreq *, enum csio_scsi_ev);
69 static void csio_scsis_io_active(struct csio_ioreq *, enum csio_scsi_ev);
70 static void csio_scsis_tm_active(struct csio_ioreq *, enum csio_scsi_ev);
71 static void csio_scsis_aborting(struct csio_ioreq *, enum csio_scsi_ev);
72 static void csio_scsis_closing(struct csio_ioreq *, enum csio_scsi_ev);
73 static void csio_scsis_shost_cmpl_await(struct csio_ioreq *, enum csio_scsi_ev);
74 
75 /*
76  * csio_scsi_match_io - Match an ioreq with the given SCSI level data.
77  * @ioreq: The I/O request
78  * @sld: Level information
79  *
80  * Should be called with lock held.
81  *
82  */
83 static bool
84 csio_scsi_match_io(struct csio_ioreq *ioreq, struct csio_scsi_level_data *sld)
85 {
86 	struct scsi_cmnd *scmnd = csio_scsi_cmnd(ioreq);
87 
88 	switch (sld->level) {
89 	case CSIO_LEV_LUN:
90 		if (scmnd == NULL)
91 			return false;
92 
93 		return ((ioreq->lnode == sld->lnode) &&
94 			(ioreq->rnode == sld->rnode) &&
95 			((uint64_t)scmnd->device->lun == sld->oslun));
96 
97 	case CSIO_LEV_RNODE:
98 		return ((ioreq->lnode == sld->lnode) &&
99 				(ioreq->rnode == sld->rnode));
100 	case CSIO_LEV_LNODE:
101 		return (ioreq->lnode == sld->lnode);
102 	case CSIO_LEV_ALL:
103 		return true;
104 	default:
105 		return false;
106 	}
107 }
108 
109 /*
110  * csio_scsi_gather_active_ios - Gather active I/Os based on level
111  * @scm: SCSI module
112  * @sld: Level information
113  * @dest: The queue where these I/Os have to be gathered.
114  *
115  * Should be called with lock held.
116  */
117 static void
118 csio_scsi_gather_active_ios(struct csio_scsim *scm,
119 			    struct csio_scsi_level_data *sld,
120 			    struct list_head *dest)
121 {
122 	struct list_head *tmp, *next;
123 
124 	if (list_empty(&scm->active_q))
125 		return;
126 
127 	/* Just splice the entire active_q into dest */
128 	if (sld->level == CSIO_LEV_ALL) {
129 		list_splice_tail_init(&scm->active_q, dest);
130 		return;
131 	}
132 
133 	list_for_each_safe(tmp, next, &scm->active_q) {
134 		if (csio_scsi_match_io((struct csio_ioreq *)tmp, sld)) {
135 			list_del_init(tmp);
136 			list_add_tail(tmp, dest);
137 		}
138 	}
139 }
140 
141 static inline bool
142 csio_scsi_itnexus_loss_error(uint16_t error)
143 {
144 	switch (error) {
145 	case FW_ERR_LINK_DOWN:
146 	case FW_RDEV_NOT_READY:
147 	case FW_ERR_RDEV_LOST:
148 	case FW_ERR_RDEV_LOGO:
149 	case FW_ERR_RDEV_IMPL_LOGO:
150 		return 1;
151 	}
152 	return 0;
153 }
154 
155 static inline void
156 csio_scsi_tag(struct scsi_cmnd *scmnd, uint8_t *tag, uint8_t hq,
157 	      uint8_t oq, uint8_t sq)
158 {
159 	char stag[2];
160 
161 	if (scsi_populate_tag_msg(scmnd, stag)) {
162 		switch (stag[0]) {
163 		case HEAD_OF_QUEUE_TAG:
164 			*tag = hq;
165 			break;
166 		case ORDERED_QUEUE_TAG:
167 			*tag = oq;
168 			break;
169 		default:
170 			*tag = sq;
171 			break;
172 		}
173 	} else
174 		*tag = 0;
175 }
176 
177 /*
178  * csio_scsi_fcp_cmnd - Frame the SCSI FCP command paylod.
179  * @req: IO req structure.
180  * @addr: DMA location to place the payload.
181  *
182  * This routine is shared between FCP_WRITE, FCP_READ and FCP_CMD requests.
183  */
184 static inline void
185 csio_scsi_fcp_cmnd(struct csio_ioreq *req, void *addr)
186 {
187 	struct fcp_cmnd *fcp_cmnd = (struct fcp_cmnd *)addr;
188 	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
189 
190 	/* Check for Task Management */
191 	if (likely(scmnd->SCp.Message == 0)) {
192 		int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun);
193 		fcp_cmnd->fc_tm_flags = 0;
194 		fcp_cmnd->fc_cmdref = 0;
195 		fcp_cmnd->fc_pri_ta = 0;
196 
197 		memcpy(fcp_cmnd->fc_cdb, scmnd->cmnd, 16);
198 		csio_scsi_tag(scmnd, &fcp_cmnd->fc_pri_ta,
199 			      FCP_PTA_HEADQ, FCP_PTA_ORDERED, FCP_PTA_SIMPLE);
200 		fcp_cmnd->fc_dl = cpu_to_be32(scsi_bufflen(scmnd));
201 
202 		if (req->nsge)
203 			if (req->datadir == DMA_TO_DEVICE)
204 				fcp_cmnd->fc_flags = FCP_CFL_WRDATA;
205 			else
206 				fcp_cmnd->fc_flags = FCP_CFL_RDDATA;
207 		else
208 			fcp_cmnd->fc_flags = 0;
209 	} else {
210 		memset(fcp_cmnd, 0, sizeof(*fcp_cmnd));
211 		int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun);
212 		fcp_cmnd->fc_tm_flags = (uint8_t)scmnd->SCp.Message;
213 	}
214 }
215 
216 /*
217  * csio_scsi_init_cmd_wr - Initialize the SCSI CMD WR.
218  * @req: IO req structure.
219  * @addr: DMA location to place the payload.
220  * @size: Size of WR (including FW WR + immed data + rsp SG entry
221  *
222  * Wrapper for populating fw_scsi_cmd_wr.
223  */
224 static inline void
225 csio_scsi_init_cmd_wr(struct csio_ioreq *req, void *addr, uint32_t size)
226 {
227 	struct csio_hw *hw = req->lnode->hwp;
228 	struct csio_rnode *rn = req->rnode;
229 	struct fw_scsi_cmd_wr *wr = (struct fw_scsi_cmd_wr *)addr;
230 	struct csio_dma_buf *dma_buf;
231 	uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
232 
233 	wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_CMD_WR) |
234 					  FW_SCSI_CMD_WR_IMMDLEN(imm));
235 	wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) |
236 					    FW_WR_LEN16(
237 						DIV_ROUND_UP(size, 16)));
238 
239 	wr->cookie = (uintptr_t) req;
240 	wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
241 	wr->tmo_val = (uint8_t) req->tmo;
242 	wr->r3 = 0;
243 	memset(&wr->r5, 0, 8);
244 
245 	/* Get RSP DMA buffer */
246 	dma_buf = &req->dma_buf;
247 
248 	/* Prepare RSP SGL */
249 	wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
250 	wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
251 
252 	wr->r6 = 0;
253 
254 	wr->u.fcoe.ctl_pri = 0;
255 	wr->u.fcoe.cp_en_class = 0;
256 	wr->u.fcoe.r4_lo[0] = 0;
257 	wr->u.fcoe.r4_lo[1] = 0;
258 
259 	/* Frame a FCP command */
260 	csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)addr +
261 				    sizeof(struct fw_scsi_cmd_wr)));
262 }
263 
264 #define CSIO_SCSI_CMD_WR_SZ(_imm)					\
265 	(sizeof(struct fw_scsi_cmd_wr) +		/* WR size */	\
266 	 ALIGN((_imm), 16))				/* Immed data */
267 
268 #define CSIO_SCSI_CMD_WR_SZ_16(_imm)					\
269 			(ALIGN(CSIO_SCSI_CMD_WR_SZ((_imm)), 16))
270 
271 /*
272  * csio_scsi_cmd - Create a SCSI CMD WR.
273  * @req: IO req structure.
274  *
275  * Gets a WR slot in the ingress queue and initializes it with SCSI CMD WR.
276  *
277  */
278 static inline void
279 csio_scsi_cmd(struct csio_ioreq *req)
280 {
281 	struct csio_wr_pair wrp;
282 	struct csio_hw *hw = req->lnode->hwp;
283 	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
284 	uint32_t size = CSIO_SCSI_CMD_WR_SZ_16(scsim->proto_cmd_len);
285 
286 	req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
287 	if (unlikely(req->drv_status != 0))
288 		return;
289 
290 	if (wrp.size1 >= size) {
291 		/* Initialize WR in one shot */
292 		csio_scsi_init_cmd_wr(req, wrp.addr1, size);
293 	} else {
294 		uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
295 
296 		/*
297 		 * Make a temporary copy of the WR and write back
298 		 * the copy into the WR pair.
299 		 */
300 		csio_scsi_init_cmd_wr(req, (void *)tmpwr, size);
301 		memcpy(wrp.addr1, tmpwr, wrp.size1);
302 		memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
303 	}
304 }
305 
306 /*
307  * csio_scsi_init_ulptx_dsgl - Fill in a ULP_TX_SC_DSGL
308  * @hw: HW module
309  * @req: IO request
310  * @sgl: ULP TX SGL pointer.
311  *
312  */
313 static inline void
314 csio_scsi_init_ultptx_dsgl(struct csio_hw *hw, struct csio_ioreq *req,
315 			   struct ulptx_sgl *sgl)
316 {
317 	struct ulptx_sge_pair *sge_pair = NULL;
318 	struct scatterlist *sgel;
319 	uint32_t i = 0;
320 	uint32_t xfer_len;
321 	struct list_head *tmp;
322 	struct csio_dma_buf *dma_buf;
323 	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
324 
325 	sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_MORE |
326 				     ULPTX_NSGE(req->nsge));
327 	/* Now add the data SGLs */
328 	if (likely(!req->dcopy)) {
329 		scsi_for_each_sg(scmnd, sgel, req->nsge, i) {
330 			if (i == 0) {
331 				sgl->addr0 = cpu_to_be64(sg_dma_address(sgel));
332 				sgl->len0 = cpu_to_be32(sg_dma_len(sgel));
333 				sge_pair = (struct ulptx_sge_pair *)(sgl + 1);
334 				continue;
335 			}
336 			if ((i - 1) & 0x1) {
337 				sge_pair->addr[1] = cpu_to_be64(
338 							sg_dma_address(sgel));
339 				sge_pair->len[1] = cpu_to_be32(
340 							sg_dma_len(sgel));
341 				sge_pair++;
342 			} else {
343 				sge_pair->addr[0] = cpu_to_be64(
344 							sg_dma_address(sgel));
345 				sge_pair->len[0] = cpu_to_be32(
346 							sg_dma_len(sgel));
347 			}
348 		}
349 	} else {
350 		/* Program sg elements with driver's DDP buffer */
351 		xfer_len = scsi_bufflen(scmnd);
352 		list_for_each(tmp, &req->gen_list) {
353 			dma_buf = (struct csio_dma_buf *)tmp;
354 			if (i == 0) {
355 				sgl->addr0 = cpu_to_be64(dma_buf->paddr);
356 				sgl->len0 = cpu_to_be32(
357 						min(xfer_len, dma_buf->len));
358 				sge_pair = (struct ulptx_sge_pair *)(sgl + 1);
359 			} else if ((i - 1) & 0x1) {
360 				sge_pair->addr[1] = cpu_to_be64(dma_buf->paddr);
361 				sge_pair->len[1] = cpu_to_be32(
362 						min(xfer_len, dma_buf->len));
363 				sge_pair++;
364 			} else {
365 				sge_pair->addr[0] = cpu_to_be64(dma_buf->paddr);
366 				sge_pair->len[0] = cpu_to_be32(
367 						min(xfer_len, dma_buf->len));
368 			}
369 			xfer_len -= min(xfer_len, dma_buf->len);
370 			i++;
371 		}
372 	}
373 }
374 
375 /*
376  * csio_scsi_init_read_wr - Initialize the READ SCSI WR.
377  * @req: IO req structure.
378  * @wrp: DMA location to place the payload.
379  * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL
380  *
381  * Wrapper for populating fw_scsi_read_wr.
382  */
383 static inline void
384 csio_scsi_init_read_wr(struct csio_ioreq *req, void *wrp, uint32_t size)
385 {
386 	struct csio_hw *hw = req->lnode->hwp;
387 	struct csio_rnode *rn = req->rnode;
388 	struct fw_scsi_read_wr *wr = (struct fw_scsi_read_wr *)wrp;
389 	struct ulptx_sgl *sgl;
390 	struct csio_dma_buf *dma_buf;
391 	uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
392 	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
393 
394 	wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_READ_WR) |
395 				     FW_SCSI_READ_WR_IMMDLEN(imm));
396 	wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) |
397 				       FW_WR_LEN16(DIV_ROUND_UP(size, 16)));
398 	wr->cookie = (uintptr_t)req;
399 	wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
400 	wr->tmo_val = (uint8_t)(req->tmo);
401 	wr->use_xfer_cnt = 1;
402 	wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
403 	wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
404 	/* Get RSP DMA buffer */
405 	dma_buf = &req->dma_buf;
406 
407 	/* Prepare RSP SGL */
408 	wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
409 	wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
410 
411 	wr->r4 = 0;
412 
413 	wr->u.fcoe.ctl_pri = 0;
414 	wr->u.fcoe.cp_en_class = 0;
415 	wr->u.fcoe.r3_lo[0] = 0;
416 	wr->u.fcoe.r3_lo[1] = 0;
417 	csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp +
418 					sizeof(struct fw_scsi_read_wr)));
419 
420 	/* Move WR pointer past command and immediate data */
421 	sgl = (struct ulptx_sgl *)((uintptr_t)wrp +
422 			      sizeof(struct fw_scsi_read_wr) + ALIGN(imm, 16));
423 
424 	/* Fill in the DSGL */
425 	csio_scsi_init_ultptx_dsgl(hw, req, sgl);
426 }
427 
428 /*
429  * csio_scsi_init_write_wr - Initialize the WRITE SCSI WR.
430  * @req: IO req structure.
431  * @wrp: DMA location to place the payload.
432  * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL
433  *
434  * Wrapper for populating fw_scsi_write_wr.
435  */
436 static inline void
437 csio_scsi_init_write_wr(struct csio_ioreq *req, void *wrp, uint32_t size)
438 {
439 	struct csio_hw *hw = req->lnode->hwp;
440 	struct csio_rnode *rn = req->rnode;
441 	struct fw_scsi_write_wr *wr = (struct fw_scsi_write_wr *)wrp;
442 	struct ulptx_sgl *sgl;
443 	struct csio_dma_buf *dma_buf;
444 	uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
445 	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
446 
447 	wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_WRITE_WR) |
448 				     FW_SCSI_WRITE_WR_IMMDLEN(imm));
449 	wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) |
450 				       FW_WR_LEN16(DIV_ROUND_UP(size, 16)));
451 	wr->cookie = (uintptr_t)req;
452 	wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
453 	wr->tmo_val = (uint8_t)(req->tmo);
454 	wr->use_xfer_cnt = 1;
455 	wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
456 	wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
457 	/* Get RSP DMA buffer */
458 	dma_buf = &req->dma_buf;
459 
460 	/* Prepare RSP SGL */
461 	wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
462 	wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
463 
464 	wr->r4 = 0;
465 
466 	wr->u.fcoe.ctl_pri = 0;
467 	wr->u.fcoe.cp_en_class = 0;
468 	wr->u.fcoe.r3_lo[0] = 0;
469 	wr->u.fcoe.r3_lo[1] = 0;
470 	csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp +
471 					sizeof(struct fw_scsi_write_wr)));
472 
473 	/* Move WR pointer past command and immediate data */
474 	sgl = (struct ulptx_sgl *)((uintptr_t)wrp +
475 			      sizeof(struct fw_scsi_write_wr) + ALIGN(imm, 16));
476 
477 	/* Fill in the DSGL */
478 	csio_scsi_init_ultptx_dsgl(hw, req, sgl);
479 }
480 
481 /* Calculate WR size needed for fw_scsi_read_wr/fw_scsi_write_wr */
482 #define CSIO_SCSI_DATA_WRSZ(req, oper, sz, imm)				       \
483 do {									       \
484 	(sz) = sizeof(struct fw_scsi_##oper##_wr) +	/* WR size */          \
485 	       ALIGN((imm), 16) +			/* Immed data */       \
486 	       sizeof(struct ulptx_sgl);		/* ulptx_sgl */	       \
487 									       \
488 	if (unlikely((req)->nsge > 1))				               \
489 		(sz) += (sizeof(struct ulptx_sge_pair) *		       \
490 				(ALIGN(((req)->nsge - 1), 2) / 2));            \
491 							/* Data SGE */	       \
492 } while (0)
493 
494 /*
495  * csio_scsi_read - Create a SCSI READ WR.
496  * @req: IO req structure.
497  *
498  * Gets a WR slot in the ingress queue and initializes it with
499  * SCSI READ WR.
500  *
501  */
502 static inline void
503 csio_scsi_read(struct csio_ioreq *req)
504 {
505 	struct csio_wr_pair wrp;
506 	uint32_t size;
507 	struct csio_hw *hw = req->lnode->hwp;
508 	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
509 
510 	CSIO_SCSI_DATA_WRSZ(req, read, size, scsim->proto_cmd_len);
511 	size = ALIGN(size, 16);
512 
513 	req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
514 	if (likely(req->drv_status == 0)) {
515 		if (likely(wrp.size1 >= size)) {
516 			/* Initialize WR in one shot */
517 			csio_scsi_init_read_wr(req, wrp.addr1, size);
518 		} else {
519 			uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
520 			/*
521 			 * Make a temporary copy of the WR and write back
522 			 * the copy into the WR pair.
523 			 */
524 			csio_scsi_init_read_wr(req, (void *)tmpwr, size);
525 			memcpy(wrp.addr1, tmpwr, wrp.size1);
526 			memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
527 		}
528 	}
529 }
530 
531 /*
532  * csio_scsi_write - Create a SCSI WRITE WR.
533  * @req: IO req structure.
534  *
535  * Gets a WR slot in the ingress queue and initializes it with
536  * SCSI WRITE WR.
537  *
538  */
539 static inline void
540 csio_scsi_write(struct csio_ioreq *req)
541 {
542 	struct csio_wr_pair wrp;
543 	uint32_t size;
544 	struct csio_hw *hw = req->lnode->hwp;
545 	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
546 
547 	CSIO_SCSI_DATA_WRSZ(req, write, size, scsim->proto_cmd_len);
548 	size = ALIGN(size, 16);
549 
550 	req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
551 	if (likely(req->drv_status == 0)) {
552 		if (likely(wrp.size1 >= size)) {
553 			/* Initialize WR in one shot */
554 			csio_scsi_init_write_wr(req, wrp.addr1, size);
555 		} else {
556 			uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
557 			/*
558 			 * Make a temporary copy of the WR and write back
559 			 * the copy into the WR pair.
560 			 */
561 			csio_scsi_init_write_wr(req, (void *)tmpwr, size);
562 			memcpy(wrp.addr1, tmpwr, wrp.size1);
563 			memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
564 		}
565 	}
566 }
567 
568 /*
569  * csio_setup_ddp - Setup DDP buffers for Read request.
570  * @req: IO req structure.
571  *
572  * Checks SGLs/Data buffers are virtually contiguous required for DDP.
573  * If contiguous,driver posts SGLs in the WR otherwise post internal
574  * buffers for such request for DDP.
575  */
576 static inline void
577 csio_setup_ddp(struct csio_scsim *scsim, struct csio_ioreq *req)
578 {
579 #ifdef __CSIO_DEBUG__
580 	struct csio_hw *hw = req->lnode->hwp;
581 #endif
582 	struct scatterlist *sgel = NULL;
583 	struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
584 	uint64_t sg_addr = 0;
585 	uint32_t ddp_pagesz = 4096;
586 	uint32_t buf_off;
587 	struct csio_dma_buf *dma_buf = NULL;
588 	uint32_t alloc_len = 0;
589 	uint32_t xfer_len = 0;
590 	uint32_t sg_len = 0;
591 	uint32_t i;
592 
593 	scsi_for_each_sg(scmnd, sgel, req->nsge, i) {
594 		sg_addr = sg_dma_address(sgel);
595 		sg_len	= sg_dma_len(sgel);
596 
597 		buf_off = sg_addr & (ddp_pagesz - 1);
598 
599 		/* Except 1st buffer,all buffer addr have to be Page aligned */
600 		if (i != 0 && buf_off) {
601 			csio_dbg(hw, "SGL addr not DDP aligned (%llx:%d)\n",
602 				 sg_addr, sg_len);
603 			goto unaligned;
604 		}
605 
606 		/* Except last buffer,all buffer must end on page boundary */
607 		if ((i != (req->nsge - 1)) &&
608 			((buf_off + sg_len) & (ddp_pagesz - 1))) {
609 			csio_dbg(hw,
610 				 "SGL addr not ending on page boundary"
611 				 "(%llx:%d)\n", sg_addr, sg_len);
612 			goto unaligned;
613 		}
614 	}
615 
616 	/* SGL's are virtually contiguous. HW will DDP to SGLs */
617 	req->dcopy = 0;
618 	csio_scsi_read(req);
619 
620 	return;
621 
622 unaligned:
623 	CSIO_INC_STATS(scsim, n_unaligned);
624 	/*
625 	 * For unaligned SGLs, driver will allocate internal DDP buffer.
626 	 * Once command is completed data from DDP buffer copied to SGLs
627 	 */
628 	req->dcopy = 1;
629 
630 	/* Use gen_list to store the DDP buffers */
631 	INIT_LIST_HEAD(&req->gen_list);
632 	xfer_len = scsi_bufflen(scmnd);
633 
634 	i = 0;
635 	/* Allocate ddp buffers for this request */
636 	while (alloc_len < xfer_len) {
637 		dma_buf = csio_get_scsi_ddp(scsim);
638 		if (dma_buf == NULL || i > scsim->max_sge) {
639 			req->drv_status = -EBUSY;
640 			break;
641 		}
642 		alloc_len += dma_buf->len;
643 		/* Added to IO req */
644 		list_add_tail(&dma_buf->list, &req->gen_list);
645 		i++;
646 	}
647 
648 	if (!req->drv_status) {
649 		/* set number of ddp bufs used */
650 		req->nsge = i;
651 		csio_scsi_read(req);
652 		return;
653 	}
654 
655 	 /* release dma descs */
656 	if (i > 0)
657 		csio_put_scsi_ddp_list(scsim, &req->gen_list, i);
658 }
659 
660 /*
661  * csio_scsi_init_abrt_cls_wr - Initialize an ABORT/CLOSE WR.
662  * @req: IO req structure.
663  * @addr: DMA location to place the payload.
664  * @size: Size of WR
665  * @abort: abort OR close
666  *
667  * Wrapper for populating fw_scsi_cmd_wr.
668  */
669 static inline void
670 csio_scsi_init_abrt_cls_wr(struct csio_ioreq *req, void *addr, uint32_t size,
671 			   bool abort)
672 {
673 	struct csio_hw *hw = req->lnode->hwp;
674 	struct csio_rnode *rn = req->rnode;
675 	struct fw_scsi_abrt_cls_wr *wr = (struct fw_scsi_abrt_cls_wr *)addr;
676 
677 	wr->op_immdlen = cpu_to_be32(FW_WR_OP(FW_SCSI_ABRT_CLS_WR));
678 	wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID(rn->flowid) |
679 					    FW_WR_LEN16(
680 						DIV_ROUND_UP(size, 16)));
681 
682 	wr->cookie = (uintptr_t) req;
683 	wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
684 	wr->tmo_val = (uint8_t) req->tmo;
685 	/* 0 for CHK_ALL_IO tells FW to look up t_cookie */
686 	wr->sub_opcode_to_chk_all_io =
687 				(FW_SCSI_ABRT_CLS_WR_SUB_OPCODE(abort) |
688 				 FW_SCSI_ABRT_CLS_WR_CHK_ALL_IO(0));
689 	wr->r3[0] = 0;
690 	wr->r3[1] = 0;
691 	wr->r3[2] = 0;
692 	wr->r3[3] = 0;
693 	/* Since we re-use the same ioreq for abort as well */
694 	wr->t_cookie = (uintptr_t) req;
695 }
696 
697 static inline void
698 csio_scsi_abrt_cls(struct csio_ioreq *req, bool abort)
699 {
700 	struct csio_wr_pair wrp;
701 	struct csio_hw *hw = req->lnode->hwp;
702 	uint32_t size = ALIGN(sizeof(struct fw_scsi_abrt_cls_wr), 16);
703 
704 	req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
705 	if (req->drv_status != 0)
706 		return;
707 
708 	if (wrp.size1 >= size) {
709 		/* Initialize WR in one shot */
710 		csio_scsi_init_abrt_cls_wr(req, wrp.addr1, size, abort);
711 	} else {
712 		uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
713 		/*
714 		 * Make a temporary copy of the WR and write back
715 		 * the copy into the WR pair.
716 		 */
717 		csio_scsi_init_abrt_cls_wr(req, (void *)tmpwr, size, abort);
718 		memcpy(wrp.addr1, tmpwr, wrp.size1);
719 		memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
720 	}
721 }
722 
723 /*****************************************************************************/
724 /* START: SCSI SM                                                            */
725 /*****************************************************************************/
726 static void
727 csio_scsis_uninit(struct csio_ioreq *req, enum csio_scsi_ev evt)
728 {
729 	struct csio_hw *hw = req->lnode->hwp;
730 	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
731 
732 	switch (evt) {
733 	case CSIO_SCSIE_START_IO:
734 
735 		if (req->nsge) {
736 			if (req->datadir == DMA_TO_DEVICE) {
737 				req->dcopy = 0;
738 				csio_scsi_write(req);
739 			} else
740 				csio_setup_ddp(scsim, req);
741 		} else {
742 			csio_scsi_cmd(req);
743 		}
744 
745 		if (likely(req->drv_status == 0)) {
746 			/* change state and enqueue on active_q */
747 			csio_set_state(&req->sm, csio_scsis_io_active);
748 			list_add_tail(&req->sm.sm_list, &scsim->active_q);
749 			csio_wr_issue(hw, req->eq_idx, false);
750 			CSIO_INC_STATS(scsim, n_active);
751 
752 			return;
753 		}
754 		break;
755 
756 	case CSIO_SCSIE_START_TM:
757 		csio_scsi_cmd(req);
758 		if (req->drv_status == 0) {
759 			/*
760 			 * NOTE: We collect the affected I/Os prior to issuing
761 			 * LUN reset, and not after it. This is to prevent
762 			 * aborting I/Os that get issued after the LUN reset,
763 			 * but prior to LUN reset completion (in the event that
764 			 * the host stack has not blocked I/Os to a LUN that is
765 			 * being reset.
766 			 */
767 			csio_set_state(&req->sm, csio_scsis_tm_active);
768 			list_add_tail(&req->sm.sm_list, &scsim->active_q);
769 			csio_wr_issue(hw, req->eq_idx, false);
770 			CSIO_INC_STATS(scsim, n_tm_active);
771 		}
772 		return;
773 
774 	case CSIO_SCSIE_ABORT:
775 	case CSIO_SCSIE_CLOSE:
776 		/*
777 		 * NOTE:
778 		 * We could get here due to  :
779 		 * - a window in the cleanup path of the SCSI module
780 		 *   (csio_scsi_abort_io()). Please see NOTE in this function.
781 		 * - a window in the time we tried to issue an abort/close
782 		 *   of a request to FW, and the FW completed the request
783 		 *   itself.
784 		 *   Print a message for now, and return INVAL either way.
785 		 */
786 		req->drv_status = -EINVAL;
787 		csio_warn(hw, "Trying to abort/close completed IO:%p!\n", req);
788 		break;
789 
790 	default:
791 		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
792 		CSIO_DB_ASSERT(0);
793 	}
794 }
795 
796 static void
797 csio_scsis_io_active(struct csio_ioreq *req, enum csio_scsi_ev evt)
798 {
799 	struct csio_hw *hw = req->lnode->hwp;
800 	struct csio_scsim *scm = csio_hw_to_scsim(hw);
801 	struct csio_rnode *rn;
802 
803 	switch (evt) {
804 	case CSIO_SCSIE_COMPLETED:
805 		CSIO_DEC_STATS(scm, n_active);
806 		list_del_init(&req->sm.sm_list);
807 		csio_set_state(&req->sm, csio_scsis_uninit);
808 		/*
809 		 * In MSIX mode, with multiple queues, the SCSI compeltions
810 		 * could reach us sooner than the FW events sent to indicate
811 		 * I-T nexus loss (link down, remote device logo etc). We
812 		 * dont want to be returning such I/Os to the upper layer
813 		 * immediately, since we wouldnt have reported the I-T nexus
814 		 * loss itself. This forces us to serialize such completions
815 		 * with the reporting of the I-T nexus loss. Therefore, we
816 		 * internally queue up such up such completions in the rnode.
817 		 * The reporting of I-T nexus loss to the upper layer is then
818 		 * followed by the returning of I/Os in this internal queue.
819 		 * Having another state alongwith another queue helps us take
820 		 * actions for events such as ABORT received while we are
821 		 * in this rnode queue.
822 		 */
823 		if (unlikely(req->wr_status != FW_SUCCESS)) {
824 			rn = req->rnode;
825 			/*
826 			 * FW says remote device is lost, but rnode
827 			 * doesnt reflect it.
828 			 */
829 			if (csio_scsi_itnexus_loss_error(req->wr_status) &&
830 						csio_is_rnode_ready(rn)) {
831 				csio_set_state(&req->sm,
832 						csio_scsis_shost_cmpl_await);
833 				list_add_tail(&req->sm.sm_list,
834 					      &rn->host_cmpl_q);
835 			}
836 		}
837 
838 		break;
839 
840 	case CSIO_SCSIE_ABORT:
841 		csio_scsi_abrt_cls(req, SCSI_ABORT);
842 		if (req->drv_status == 0) {
843 			csio_wr_issue(hw, req->eq_idx, false);
844 			csio_set_state(&req->sm, csio_scsis_aborting);
845 		}
846 		break;
847 
848 	case CSIO_SCSIE_CLOSE:
849 		csio_scsi_abrt_cls(req, SCSI_CLOSE);
850 		if (req->drv_status == 0) {
851 			csio_wr_issue(hw, req->eq_idx, false);
852 			csio_set_state(&req->sm, csio_scsis_closing);
853 		}
854 		break;
855 
856 	case CSIO_SCSIE_DRVCLEANUP:
857 		req->wr_status = FW_HOSTERROR;
858 		CSIO_DEC_STATS(scm, n_active);
859 		csio_set_state(&req->sm, csio_scsis_uninit);
860 		break;
861 
862 	default:
863 		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
864 		CSIO_DB_ASSERT(0);
865 	}
866 }
867 
868 static void
869 csio_scsis_tm_active(struct csio_ioreq *req, enum csio_scsi_ev evt)
870 {
871 	struct csio_hw *hw = req->lnode->hwp;
872 	struct csio_scsim *scm = csio_hw_to_scsim(hw);
873 
874 	switch (evt) {
875 	case CSIO_SCSIE_COMPLETED:
876 		CSIO_DEC_STATS(scm, n_tm_active);
877 		list_del_init(&req->sm.sm_list);
878 		csio_set_state(&req->sm, csio_scsis_uninit);
879 
880 		break;
881 
882 	case CSIO_SCSIE_ABORT:
883 		csio_scsi_abrt_cls(req, SCSI_ABORT);
884 		if (req->drv_status == 0) {
885 			csio_wr_issue(hw, req->eq_idx, false);
886 			csio_set_state(&req->sm, csio_scsis_aborting);
887 		}
888 		break;
889 
890 
891 	case CSIO_SCSIE_CLOSE:
892 		csio_scsi_abrt_cls(req, SCSI_CLOSE);
893 		if (req->drv_status == 0) {
894 			csio_wr_issue(hw, req->eq_idx, false);
895 			csio_set_state(&req->sm, csio_scsis_closing);
896 		}
897 		break;
898 
899 	case CSIO_SCSIE_DRVCLEANUP:
900 		req->wr_status = FW_HOSTERROR;
901 		CSIO_DEC_STATS(scm, n_tm_active);
902 		csio_set_state(&req->sm, csio_scsis_uninit);
903 		break;
904 
905 	default:
906 		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
907 		CSIO_DB_ASSERT(0);
908 	}
909 }
910 
911 static void
912 csio_scsis_aborting(struct csio_ioreq *req, enum csio_scsi_ev evt)
913 {
914 	struct csio_hw *hw = req->lnode->hwp;
915 	struct csio_scsim *scm = csio_hw_to_scsim(hw);
916 
917 	switch (evt) {
918 	case CSIO_SCSIE_COMPLETED:
919 		csio_dbg(hw,
920 			 "ioreq %p recvd cmpltd (wr_status:%d) "
921 			 "in aborting st\n", req, req->wr_status);
922 		/*
923 		 * Use -ECANCELED to explicitly tell the ABORTED event that
924 		 * the original I/O was returned to driver by FW.
925 		 * We dont really care if the I/O was returned with success by
926 		 * FW (because the ABORT and completion of the I/O crossed each
927 		 * other), or any other return value. Once we are in aborting
928 		 * state, the success or failure of the I/O is unimportant to
929 		 * us.
930 		 */
931 		req->drv_status = -ECANCELED;
932 		break;
933 
934 	case CSIO_SCSIE_ABORT:
935 		CSIO_INC_STATS(scm, n_abrt_dups);
936 		break;
937 
938 	case CSIO_SCSIE_ABORTED:
939 
940 		csio_dbg(hw, "abort of %p return status:0x%x drv_status:%x\n",
941 			 req, req->wr_status, req->drv_status);
942 		/*
943 		 * Check if original I/O WR completed before the Abort
944 		 * completion.
945 		 */
946 		if (req->drv_status != -ECANCELED) {
947 			csio_warn(hw,
948 				  "Abort completed before original I/O,"
949 				   " req:%p\n", req);
950 			CSIO_DB_ASSERT(0);
951 		}
952 
953 		/*
954 		 * There are the following possible scenarios:
955 		 * 1. The abort completed successfully, FW returned FW_SUCCESS.
956 		 * 2. The completion of an I/O and the receipt of
957 		 *    abort for that I/O by the FW crossed each other.
958 		 *    The FW returned FW_EINVAL. The original I/O would have
959 		 *    returned with FW_SUCCESS or any other SCSI error.
960 		 * 3. The FW couldnt sent the abort out on the wire, as there
961 		 *    was an I-T nexus loss (link down, remote device logged
962 		 *    out etc). FW sent back an appropriate IT nexus loss status
963 		 *    for the abort.
964 		 * 4. FW sent an abort, but abort timed out (remote device
965 		 *    didnt respond). FW replied back with
966 		 *    FW_SCSI_ABORT_TIMEDOUT.
967 		 * 5. FW couldnt genuinely abort the request for some reason,
968 		 *    and sent us an error.
969 		 *
970 		 * The first 3 scenarios are treated as  succesful abort
971 		 * operations by the host, while the last 2 are failed attempts
972 		 * to abort. Manipulate the return value of the request
973 		 * appropriately, so that host can convey these results
974 		 * back to the upper layer.
975 		 */
976 		if ((req->wr_status == FW_SUCCESS) ||
977 		    (req->wr_status == FW_EINVAL) ||
978 		    csio_scsi_itnexus_loss_error(req->wr_status))
979 			req->wr_status = FW_SCSI_ABORT_REQUESTED;
980 
981 		CSIO_DEC_STATS(scm, n_active);
982 		list_del_init(&req->sm.sm_list);
983 		csio_set_state(&req->sm, csio_scsis_uninit);
984 		break;
985 
986 	case CSIO_SCSIE_DRVCLEANUP:
987 		req->wr_status = FW_HOSTERROR;
988 		CSIO_DEC_STATS(scm, n_active);
989 		csio_set_state(&req->sm, csio_scsis_uninit);
990 		break;
991 
992 	case CSIO_SCSIE_CLOSE:
993 		/*
994 		 * We can receive this event from the module
995 		 * cleanup paths, if the FW forgot to reply to the ABORT WR
996 		 * and left this ioreq in this state. For now, just ignore
997 		 * the event. The CLOSE event is sent to this state, as
998 		 * the LINK may have already gone down.
999 		 */
1000 		break;
1001 
1002 	default:
1003 		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
1004 		CSIO_DB_ASSERT(0);
1005 	}
1006 }
1007 
1008 static void
1009 csio_scsis_closing(struct csio_ioreq *req, enum csio_scsi_ev evt)
1010 {
1011 	struct csio_hw *hw = req->lnode->hwp;
1012 	struct csio_scsim *scm = csio_hw_to_scsim(hw);
1013 
1014 	switch (evt) {
1015 	case CSIO_SCSIE_COMPLETED:
1016 		csio_dbg(hw,
1017 			 "ioreq %p recvd cmpltd (wr_status:%d) "
1018 			 "in closing st\n", req, req->wr_status);
1019 		/*
1020 		 * Use -ECANCELED to explicitly tell the CLOSED event that
1021 		 * the original I/O was returned to driver by FW.
1022 		 * We dont really care if the I/O was returned with success by
1023 		 * FW (because the CLOSE and completion of the I/O crossed each
1024 		 * other), or any other return value. Once we are in aborting
1025 		 * state, the success or failure of the I/O is unimportant to
1026 		 * us.
1027 		 */
1028 		req->drv_status = -ECANCELED;
1029 		break;
1030 
1031 	case CSIO_SCSIE_CLOSED:
1032 		/*
1033 		 * Check if original I/O WR completed before the Close
1034 		 * completion.
1035 		 */
1036 		if (req->drv_status != -ECANCELED) {
1037 			csio_fatal(hw,
1038 				   "Close completed before original I/O,"
1039 				   " req:%p\n", req);
1040 			CSIO_DB_ASSERT(0);
1041 		}
1042 
1043 		/*
1044 		 * Either close succeeded, or we issued close to FW at the
1045 		 * same time FW compelted it to us. Either way, the I/O
1046 		 * is closed.
1047 		 */
1048 		CSIO_DB_ASSERT((req->wr_status == FW_SUCCESS) ||
1049 					(req->wr_status == FW_EINVAL));
1050 		req->wr_status = FW_SCSI_CLOSE_REQUESTED;
1051 
1052 		CSIO_DEC_STATS(scm, n_active);
1053 		list_del_init(&req->sm.sm_list);
1054 		csio_set_state(&req->sm, csio_scsis_uninit);
1055 		break;
1056 
1057 	case CSIO_SCSIE_CLOSE:
1058 		break;
1059 
1060 	case CSIO_SCSIE_DRVCLEANUP:
1061 		req->wr_status = FW_HOSTERROR;
1062 		CSIO_DEC_STATS(scm, n_active);
1063 		csio_set_state(&req->sm, csio_scsis_uninit);
1064 		break;
1065 
1066 	default:
1067 		csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
1068 		CSIO_DB_ASSERT(0);
1069 	}
1070 }
1071 
1072 static void
1073 csio_scsis_shost_cmpl_await(struct csio_ioreq *req, enum csio_scsi_ev evt)
1074 {
1075 	switch (evt) {
1076 	case CSIO_SCSIE_ABORT:
1077 	case CSIO_SCSIE_CLOSE:
1078 		/*
1079 		 * Just succeed the abort request, and hope that
1080 		 * the remote device unregister path will cleanup
1081 		 * this I/O to the upper layer within a sane
1082 		 * amount of time.
1083 		 */
1084 		/*
1085 		 * A close can come in during a LINK DOWN. The FW would have
1086 		 * returned us the I/O back, but not the remote device lost
1087 		 * FW event. In this interval, if the I/O times out at the upper
1088 		 * layer, a close can come in. Take the same action as abort:
1089 		 * return success, and hope that the remote device unregister
1090 		 * path will cleanup this I/O. If the FW still doesnt send
1091 		 * the msg, the close times out, and the upper layer resorts
1092 		 * to the next level of error recovery.
1093 		 */
1094 		req->drv_status = 0;
1095 		break;
1096 	case CSIO_SCSIE_DRVCLEANUP:
1097 		csio_set_state(&req->sm, csio_scsis_uninit);
1098 		break;
1099 	default:
1100 		csio_dbg(req->lnode->hwp, "Unhandled event:%d sent to req:%p\n",
1101 			 evt, req);
1102 		CSIO_DB_ASSERT(0);
1103 	}
1104 }
1105 
1106 /*
1107  * csio_scsi_cmpl_handler - WR completion handler for SCSI.
1108  * @hw: HW module.
1109  * @wr: The completed WR from the ingress queue.
1110  * @len: Length of the WR.
1111  * @flb: Freelist buffer array.
1112  * @priv: Private object
1113  * @scsiwr: Pointer to SCSI WR.
1114  *
1115  * This is the WR completion handler called per completion from the
1116  * ISR. It is called with lock held. It walks past the RSS and CPL message
1117  * header where the actual WR is present.
1118  * It then gets the status, WR handle (ioreq pointer) and the len of
1119  * the WR, based on WR opcode. Only on a non-good status is the entire
1120  * WR copied into the WR cache (ioreq->fw_wr).
1121  * The ioreq corresponding to the WR is returned to the caller.
1122  * NOTE: The SCSI queue doesnt allocate a freelist today, hence
1123  * no freelist buffer is expected.
1124  */
1125 struct csio_ioreq *
1126 csio_scsi_cmpl_handler(struct csio_hw *hw, void *wr, uint32_t len,
1127 		     struct csio_fl_dma_buf *flb, void *priv, uint8_t **scsiwr)
1128 {
1129 	struct csio_ioreq *ioreq = NULL;
1130 	struct cpl_fw6_msg *cpl;
1131 	uint8_t *tempwr;
1132 	uint8_t	status;
1133 	struct csio_scsim *scm = csio_hw_to_scsim(hw);
1134 
1135 	/* skip RSS header */
1136 	cpl = (struct cpl_fw6_msg *)((uintptr_t)wr + sizeof(__be64));
1137 
1138 	if (unlikely(cpl->opcode != CPL_FW6_MSG)) {
1139 		csio_warn(hw, "Error: Invalid CPL msg %x recvd on SCSI q\n",
1140 			  cpl->opcode);
1141 		CSIO_INC_STATS(scm, n_inval_cplop);
1142 		return NULL;
1143 	}
1144 
1145 	tempwr = (uint8_t *)(cpl->data);
1146 	status = csio_wr_status(tempwr);
1147 	*scsiwr = tempwr;
1148 
1149 	if (likely((*tempwr == FW_SCSI_READ_WR) ||
1150 			(*tempwr == FW_SCSI_WRITE_WR) ||
1151 			(*tempwr == FW_SCSI_CMD_WR))) {
1152 		ioreq = (struct csio_ioreq *)((uintptr_t)
1153 				 (((struct fw_scsi_read_wr *)tempwr)->cookie));
1154 		CSIO_DB_ASSERT(virt_addr_valid(ioreq));
1155 
1156 		ioreq->wr_status = status;
1157 
1158 		return ioreq;
1159 	}
1160 
1161 	if (*tempwr == FW_SCSI_ABRT_CLS_WR) {
1162 		ioreq = (struct csio_ioreq *)((uintptr_t)
1163 			 (((struct fw_scsi_abrt_cls_wr *)tempwr)->cookie));
1164 		CSIO_DB_ASSERT(virt_addr_valid(ioreq));
1165 
1166 		ioreq->wr_status = status;
1167 		return ioreq;
1168 	}
1169 
1170 	csio_warn(hw, "WR with invalid opcode in SCSI IQ: %x\n", *tempwr);
1171 	CSIO_INC_STATS(scm, n_inval_scsiop);
1172 	return NULL;
1173 }
1174 
1175 /*
1176  * csio_scsi_cleanup_io_q - Cleanup the given queue.
1177  * @scm: SCSI module.
1178  * @q: Queue to be cleaned up.
1179  *
1180  * Called with lock held. Has to exit with lock held.
1181  */
1182 void
1183 csio_scsi_cleanup_io_q(struct csio_scsim *scm, struct list_head *q)
1184 {
1185 	struct csio_hw *hw = scm->hw;
1186 	struct csio_ioreq *ioreq;
1187 	struct list_head *tmp, *next;
1188 	struct scsi_cmnd *scmnd;
1189 
1190 	/* Call back the completion routines of the active_q */
1191 	list_for_each_safe(tmp, next, q) {
1192 		ioreq = (struct csio_ioreq *)tmp;
1193 		csio_scsi_drvcleanup(ioreq);
1194 		list_del_init(&ioreq->sm.sm_list);
1195 		scmnd = csio_scsi_cmnd(ioreq);
1196 		spin_unlock_irq(&hw->lock);
1197 
1198 		/*
1199 		 * Upper layers may have cleared this command, hence this
1200 		 * check to avoid accessing stale references.
1201 		 */
1202 		if (scmnd != NULL)
1203 			ioreq->io_cbfn(hw, ioreq);
1204 
1205 		spin_lock_irq(&scm->freelist_lock);
1206 		csio_put_scsi_ioreq(scm, ioreq);
1207 		spin_unlock_irq(&scm->freelist_lock);
1208 
1209 		spin_lock_irq(&hw->lock);
1210 	}
1211 }
1212 
1213 #define CSIO_SCSI_ABORT_Q_POLL_MS		2000
1214 
1215 static void
1216 csio_abrt_cls(struct csio_ioreq *ioreq, struct scsi_cmnd *scmnd)
1217 {
1218 	struct csio_lnode *ln = ioreq->lnode;
1219 	struct csio_hw *hw = ln->hwp;
1220 	int ready = 0;
1221 	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
1222 	int rv;
1223 
1224 	if (csio_scsi_cmnd(ioreq) != scmnd) {
1225 		CSIO_INC_STATS(scsim, n_abrt_race_comp);
1226 		return;
1227 	}
1228 
1229 	ready = csio_is_lnode_ready(ln);
1230 
1231 	rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE));
1232 	if (rv != 0) {
1233 		if (ready)
1234 			CSIO_INC_STATS(scsim, n_abrt_busy_error);
1235 		else
1236 			CSIO_INC_STATS(scsim, n_cls_busy_error);
1237 	}
1238 }
1239 
1240 /*
1241  * csio_scsi_abort_io_q - Abort all I/Os on given queue
1242  * @scm: SCSI module.
1243  * @q: Queue to abort.
1244  * @tmo: Timeout in ms
1245  *
1246  * Attempt to abort all I/Os on given queue, and wait for a max
1247  * of tmo milliseconds for them to complete. Returns success
1248  * if all I/Os are aborted. Else returns -ETIMEDOUT.
1249  * Should be entered with lock held. Exits with lock held.
1250  * NOTE:
1251  * Lock has to be held across the loop that aborts I/Os, since dropping the lock
1252  * in between can cause the list to be corrupted. As a result, the caller
1253  * of this function has to ensure that the number of I/os to be aborted
1254  * is finite enough to not cause lock-held-for-too-long issues.
1255  */
1256 static int
1257 csio_scsi_abort_io_q(struct csio_scsim *scm, struct list_head *q, uint32_t tmo)
1258 {
1259 	struct csio_hw *hw = scm->hw;
1260 	struct list_head *tmp, *next;
1261 	int count = DIV_ROUND_UP(tmo, CSIO_SCSI_ABORT_Q_POLL_MS);
1262 	struct scsi_cmnd *scmnd;
1263 
1264 	if (list_empty(q))
1265 		return 0;
1266 
1267 	csio_dbg(hw, "Aborting SCSI I/Os\n");
1268 
1269 	/* Now abort/close I/Os in the queue passed */
1270 	list_for_each_safe(tmp, next, q) {
1271 		scmnd = csio_scsi_cmnd((struct csio_ioreq *)tmp);
1272 		csio_abrt_cls((struct csio_ioreq *)tmp, scmnd);
1273 	}
1274 
1275 	/* Wait till all active I/Os are completed/aborted/closed */
1276 	while (!list_empty(q) && count--) {
1277 		spin_unlock_irq(&hw->lock);
1278 		msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
1279 		spin_lock_irq(&hw->lock);
1280 	}
1281 
1282 	/* all aborts completed */
1283 	if (list_empty(q))
1284 		return 0;
1285 
1286 	return -ETIMEDOUT;
1287 }
1288 
1289 /*
1290  * csio_scsim_cleanup_io - Cleanup all I/Os in SCSI module.
1291  * @scm: SCSI module.
1292  * @abort: abort required.
1293  * Called with lock held, should exit with lock held.
1294  * Can sleep when waiting for I/Os to complete.
1295  */
1296 int
1297 csio_scsim_cleanup_io(struct csio_scsim *scm, bool abort)
1298 {
1299 	struct csio_hw *hw = scm->hw;
1300 	int rv = 0;
1301 	int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS);
1302 
1303 	/* No I/Os pending */
1304 	if (list_empty(&scm->active_q))
1305 		return 0;
1306 
1307 	/* Wait until all active I/Os are completed */
1308 	while (!list_empty(&scm->active_q) && count--) {
1309 		spin_unlock_irq(&hw->lock);
1310 		msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
1311 		spin_lock_irq(&hw->lock);
1312 	}
1313 
1314 	/* all I/Os completed */
1315 	if (list_empty(&scm->active_q))
1316 		return 0;
1317 
1318 	/* Else abort */
1319 	if (abort) {
1320 		rv = csio_scsi_abort_io_q(scm, &scm->active_q, 30000);
1321 		if (rv == 0)
1322 			return rv;
1323 		csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n");
1324 	}
1325 
1326 	csio_scsi_cleanup_io_q(scm, &scm->active_q);
1327 
1328 	CSIO_DB_ASSERT(list_empty(&scm->active_q));
1329 
1330 	return rv;
1331 }
1332 
1333 /*
1334  * csio_scsim_cleanup_io_lnode - Cleanup all I/Os of given lnode.
1335  * @scm: SCSI module.
1336  * @lnode: lnode
1337  *
1338  * Called with lock held, should exit with lock held.
1339  * Can sleep (with dropped lock) when waiting for I/Os to complete.
1340  */
1341 int
1342 csio_scsim_cleanup_io_lnode(struct csio_scsim *scm, struct csio_lnode *ln)
1343 {
1344 	struct csio_hw *hw = scm->hw;
1345 	struct csio_scsi_level_data sld;
1346 	int rv;
1347 	int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS);
1348 
1349 	csio_dbg(hw, "Gathering all SCSI I/Os on lnode %p\n", ln);
1350 
1351 	sld.level = CSIO_LEV_LNODE;
1352 	sld.lnode = ln;
1353 	INIT_LIST_HEAD(&ln->cmpl_q);
1354 	csio_scsi_gather_active_ios(scm, &sld, &ln->cmpl_q);
1355 
1356 	/* No I/Os pending on this lnode  */
1357 	if (list_empty(&ln->cmpl_q))
1358 		return 0;
1359 
1360 	/* Wait until all active I/Os on this lnode are completed */
1361 	while (!list_empty(&ln->cmpl_q) && count--) {
1362 		spin_unlock_irq(&hw->lock);
1363 		msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
1364 		spin_lock_irq(&hw->lock);
1365 	}
1366 
1367 	/* all I/Os completed */
1368 	if (list_empty(&ln->cmpl_q))
1369 		return 0;
1370 
1371 	csio_dbg(hw, "Some I/Os pending on ln:%p, aborting them..\n", ln);
1372 
1373 	/* I/Os are pending, abort them */
1374 	rv = csio_scsi_abort_io_q(scm, &ln->cmpl_q, 30000);
1375 	if (rv != 0) {
1376 		csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n");
1377 		csio_scsi_cleanup_io_q(scm, &ln->cmpl_q);
1378 	}
1379 
1380 	CSIO_DB_ASSERT(list_empty(&ln->cmpl_q));
1381 
1382 	return rv;
1383 }
1384 
1385 static ssize_t
1386 csio_show_hw_state(struct device *dev,
1387 		   struct device_attribute *attr, char *buf)
1388 {
1389 	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1390 	struct csio_hw *hw = csio_lnode_to_hw(ln);
1391 
1392 	if (csio_is_hw_ready(hw))
1393 		return snprintf(buf, PAGE_SIZE, "ready\n");
1394 	else
1395 		return snprintf(buf, PAGE_SIZE, "not ready\n");
1396 }
1397 
1398 /* Device reset */
1399 static ssize_t
1400 csio_device_reset(struct device *dev,
1401 		   struct device_attribute *attr, const char *buf, size_t count)
1402 {
1403 	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1404 	struct csio_hw *hw = csio_lnode_to_hw(ln);
1405 
1406 	if (*buf != '1')
1407 		return -EINVAL;
1408 
1409 	/* Delete NPIV lnodes */
1410 	 csio_lnodes_exit(hw, 1);
1411 
1412 	/* Block upper IOs */
1413 	csio_lnodes_block_request(hw);
1414 
1415 	spin_lock_irq(&hw->lock);
1416 	csio_hw_reset(hw);
1417 	spin_unlock_irq(&hw->lock);
1418 
1419 	/* Unblock upper IOs */
1420 	csio_lnodes_unblock_request(hw);
1421 	return count;
1422 }
1423 
1424 /* disable port */
1425 static ssize_t
1426 csio_disable_port(struct device *dev,
1427 		   struct device_attribute *attr, const char *buf, size_t count)
1428 {
1429 	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1430 	struct csio_hw *hw = csio_lnode_to_hw(ln);
1431 	bool disable;
1432 
1433 	if (*buf == '1' || *buf == '0')
1434 		disable = (*buf == '1') ? true : false;
1435 	else
1436 		return -EINVAL;
1437 
1438 	/* Block upper IOs */
1439 	csio_lnodes_block_by_port(hw, ln->portid);
1440 
1441 	spin_lock_irq(&hw->lock);
1442 	csio_disable_lnodes(hw, ln->portid, disable);
1443 	spin_unlock_irq(&hw->lock);
1444 
1445 	/* Unblock upper IOs */
1446 	csio_lnodes_unblock_by_port(hw, ln->portid);
1447 	return count;
1448 }
1449 
1450 /* Show debug level */
1451 static ssize_t
1452 csio_show_dbg_level(struct device *dev,
1453 		   struct device_attribute *attr, char *buf)
1454 {
1455 	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1456 
1457 	return snprintf(buf, PAGE_SIZE, "%x\n", ln->params.log_level);
1458 }
1459 
1460 /* Store debug level */
1461 static ssize_t
1462 csio_store_dbg_level(struct device *dev,
1463 		   struct device_attribute *attr, const char *buf, size_t count)
1464 {
1465 	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1466 	struct csio_hw *hw = csio_lnode_to_hw(ln);
1467 	uint32_t dbg_level = 0;
1468 
1469 	if (!isdigit(buf[0]))
1470 		return -EINVAL;
1471 
1472 	if (sscanf(buf, "%i", &dbg_level))
1473 		return -EINVAL;
1474 
1475 	ln->params.log_level = dbg_level;
1476 	hw->params.log_level = dbg_level;
1477 
1478 	return 0;
1479 }
1480 
1481 static DEVICE_ATTR(hw_state, S_IRUGO, csio_show_hw_state, NULL);
1482 static DEVICE_ATTR(device_reset, S_IWUSR, NULL, csio_device_reset);
1483 static DEVICE_ATTR(disable_port, S_IWUSR, NULL, csio_disable_port);
1484 static DEVICE_ATTR(dbg_level, S_IRUGO | S_IWUSR, csio_show_dbg_level,
1485 		  csio_store_dbg_level);
1486 
1487 static struct device_attribute *csio_fcoe_lport_attrs[] = {
1488 	&dev_attr_hw_state,
1489 	&dev_attr_device_reset,
1490 	&dev_attr_disable_port,
1491 	&dev_attr_dbg_level,
1492 	NULL,
1493 };
1494 
1495 static ssize_t
1496 csio_show_num_reg_rnodes(struct device *dev,
1497 		     struct device_attribute *attr, char *buf)
1498 {
1499 	struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1500 
1501 	return snprintf(buf, PAGE_SIZE, "%d\n", ln->num_reg_rnodes);
1502 }
1503 
1504 static DEVICE_ATTR(num_reg_rnodes, S_IRUGO, csio_show_num_reg_rnodes, NULL);
1505 
1506 static struct device_attribute *csio_fcoe_vport_attrs[] = {
1507 	&dev_attr_num_reg_rnodes,
1508 	&dev_attr_dbg_level,
1509 	NULL,
1510 };
1511 
1512 static inline uint32_t
1513 csio_scsi_copy_to_sgl(struct csio_hw *hw, struct csio_ioreq *req)
1514 {
1515 	struct scsi_cmnd *scmnd  = (struct scsi_cmnd *)csio_scsi_cmnd(req);
1516 	struct scatterlist *sg;
1517 	uint32_t bytes_left;
1518 	uint32_t bytes_copy;
1519 	uint32_t buf_off = 0;
1520 	uint32_t start_off = 0;
1521 	uint32_t sg_off = 0;
1522 	void *sg_addr;
1523 	void *buf_addr;
1524 	struct csio_dma_buf *dma_buf;
1525 
1526 	bytes_left = scsi_bufflen(scmnd);
1527 	sg = scsi_sglist(scmnd);
1528 	dma_buf = (struct csio_dma_buf *)csio_list_next(&req->gen_list);
1529 
1530 	/* Copy data from driver buffer to SGs of SCSI CMD */
1531 	while (bytes_left > 0 && sg && dma_buf) {
1532 		if (buf_off >= dma_buf->len) {
1533 			buf_off = 0;
1534 			dma_buf = (struct csio_dma_buf *)
1535 					csio_list_next(dma_buf);
1536 			continue;
1537 		}
1538 
1539 		if (start_off >= sg->length) {
1540 			start_off -= sg->length;
1541 			sg = sg_next(sg);
1542 			continue;
1543 		}
1544 
1545 		buf_addr = dma_buf->vaddr + buf_off;
1546 		sg_off = sg->offset + start_off;
1547 		bytes_copy = min((dma_buf->len - buf_off),
1548 				sg->length - start_off);
1549 		bytes_copy = min((uint32_t)(PAGE_SIZE - (sg_off & ~PAGE_MASK)),
1550 				 bytes_copy);
1551 
1552 		sg_addr = kmap_atomic(sg_page(sg) + (sg_off >> PAGE_SHIFT));
1553 		if (!sg_addr) {
1554 			csio_err(hw, "failed to kmap sg:%p of ioreq:%p\n",
1555 				sg, req);
1556 			break;
1557 		}
1558 
1559 		csio_dbg(hw, "copy_to_sgl:sg_addr %p sg_off %d buf %p len %d\n",
1560 				sg_addr, sg_off, buf_addr, bytes_copy);
1561 		memcpy(sg_addr + (sg_off & ~PAGE_MASK), buf_addr, bytes_copy);
1562 		kunmap_atomic(sg_addr);
1563 
1564 		start_off +=  bytes_copy;
1565 		buf_off += bytes_copy;
1566 		bytes_left -= bytes_copy;
1567 	}
1568 
1569 	if (bytes_left > 0)
1570 		return DID_ERROR;
1571 	else
1572 		return DID_OK;
1573 }
1574 
1575 /*
1576  * csio_scsi_err_handler - SCSI error handler.
1577  * @hw: HW module.
1578  * @req: IO request.
1579  *
1580  */
1581 static inline void
1582 csio_scsi_err_handler(struct csio_hw *hw, struct csio_ioreq *req)
1583 {
1584 	struct scsi_cmnd *cmnd  = (struct scsi_cmnd *)csio_scsi_cmnd(req);
1585 	struct csio_scsim *scm = csio_hw_to_scsim(hw);
1586 	struct fcp_resp_with_ext *fcp_resp;
1587 	struct fcp_resp_rsp_info *rsp_info;
1588 	struct csio_dma_buf *dma_buf;
1589 	uint8_t flags, scsi_status = 0;
1590 	uint32_t host_status = DID_OK;
1591 	uint32_t rsp_len = 0, sns_len = 0;
1592 	struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
1593 
1594 
1595 	switch (req->wr_status) {
1596 	case FW_HOSTERROR:
1597 		if (unlikely(!csio_is_hw_ready(hw)))
1598 			return;
1599 
1600 		host_status = DID_ERROR;
1601 		CSIO_INC_STATS(scm, n_hosterror);
1602 
1603 		break;
1604 	case FW_SCSI_RSP_ERR:
1605 		dma_buf = &req->dma_buf;
1606 		fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr;
1607 		rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1);
1608 		flags = fcp_resp->resp.fr_flags;
1609 		scsi_status = fcp_resp->resp.fr_status;
1610 
1611 		if (flags & FCP_RSP_LEN_VAL) {
1612 			rsp_len = be32_to_cpu(fcp_resp->ext.fr_rsp_len);
1613 			if ((rsp_len != 0 && rsp_len != 4 && rsp_len != 8) ||
1614 				(rsp_info->rsp_code != FCP_TMF_CMPL)) {
1615 				host_status = DID_ERROR;
1616 				goto out;
1617 			}
1618 		}
1619 
1620 		if ((flags & FCP_SNS_LEN_VAL) && fcp_resp->ext.fr_sns_len) {
1621 			sns_len = be32_to_cpu(fcp_resp->ext.fr_sns_len);
1622 			if (sns_len > SCSI_SENSE_BUFFERSIZE)
1623 				sns_len = SCSI_SENSE_BUFFERSIZE;
1624 
1625 			memcpy(cmnd->sense_buffer,
1626 			       &rsp_info->_fr_resvd[0] + rsp_len, sns_len);
1627 			CSIO_INC_STATS(scm, n_autosense);
1628 		}
1629 
1630 		scsi_set_resid(cmnd, 0);
1631 
1632 		/* Under run */
1633 		if (flags & FCP_RESID_UNDER) {
1634 			scsi_set_resid(cmnd,
1635 				       be32_to_cpu(fcp_resp->ext.fr_resid));
1636 
1637 			if (!(flags & FCP_SNS_LEN_VAL) &&
1638 			    (scsi_status == SAM_STAT_GOOD) &&
1639 			    ((scsi_bufflen(cmnd) - scsi_get_resid(cmnd))
1640 							< cmnd->underflow))
1641 				host_status = DID_ERROR;
1642 		} else if (flags & FCP_RESID_OVER)
1643 			host_status = DID_ERROR;
1644 
1645 		CSIO_INC_STATS(scm, n_rsperror);
1646 		break;
1647 
1648 	case FW_SCSI_OVER_FLOW_ERR:
1649 		csio_warn(hw,
1650 			  "Over-flow error,cmnd:0x%x expected len:0x%x"
1651 			  " resid:0x%x\n", cmnd->cmnd[0],
1652 			  scsi_bufflen(cmnd), scsi_get_resid(cmnd));
1653 		host_status = DID_ERROR;
1654 		CSIO_INC_STATS(scm, n_ovflerror);
1655 		break;
1656 
1657 	case FW_SCSI_UNDER_FLOW_ERR:
1658 		csio_warn(hw,
1659 			  "Under-flow error,cmnd:0x%x expected"
1660 			  " len:0x%x resid:0x%x lun:0x%x ssn:0x%x\n",
1661 			  cmnd->cmnd[0], scsi_bufflen(cmnd),
1662 			  scsi_get_resid(cmnd), cmnd->device->lun,
1663 			  rn->flowid);
1664 		host_status = DID_ERROR;
1665 		CSIO_INC_STATS(scm, n_unflerror);
1666 		break;
1667 
1668 	case FW_SCSI_ABORT_REQUESTED:
1669 	case FW_SCSI_ABORTED:
1670 	case FW_SCSI_CLOSE_REQUESTED:
1671 		csio_dbg(hw, "Req %p cmd:%p op:%x %s\n", req, cmnd,
1672 			     cmnd->cmnd[0],
1673 			    (req->wr_status == FW_SCSI_CLOSE_REQUESTED) ?
1674 			    "closed" : "aborted");
1675 		/*
1676 		 * csio_eh_abort_handler checks this value to
1677 		 * succeed or fail the abort request.
1678 		 */
1679 		host_status = DID_REQUEUE;
1680 		if (req->wr_status == FW_SCSI_CLOSE_REQUESTED)
1681 			CSIO_INC_STATS(scm, n_closed);
1682 		else
1683 			CSIO_INC_STATS(scm, n_aborted);
1684 		break;
1685 
1686 	case FW_SCSI_ABORT_TIMEDOUT:
1687 		/* FW timed out the abort itself */
1688 		csio_dbg(hw, "FW timed out abort req:%p cmnd:%p status:%x\n",
1689 			 req, cmnd, req->wr_status);
1690 		host_status = DID_ERROR;
1691 		CSIO_INC_STATS(scm, n_abrt_timedout);
1692 		break;
1693 
1694 	case FW_RDEV_NOT_READY:
1695 		/*
1696 		 * In firmware, a RDEV can get into this state
1697 		 * temporarily, before moving into dissapeared/lost
1698 		 * state. So, the driver should complete the request equivalent
1699 		 * to device-disappeared!
1700 		 */
1701 		CSIO_INC_STATS(scm, n_rdev_nr_error);
1702 		host_status = DID_ERROR;
1703 		break;
1704 
1705 	case FW_ERR_RDEV_LOST:
1706 		CSIO_INC_STATS(scm, n_rdev_lost_error);
1707 		host_status = DID_ERROR;
1708 		break;
1709 
1710 	case FW_ERR_RDEV_LOGO:
1711 		CSIO_INC_STATS(scm, n_rdev_logo_error);
1712 		host_status = DID_ERROR;
1713 		break;
1714 
1715 	case FW_ERR_RDEV_IMPL_LOGO:
1716 		host_status = DID_ERROR;
1717 		break;
1718 
1719 	case FW_ERR_LINK_DOWN:
1720 		CSIO_INC_STATS(scm, n_link_down_error);
1721 		host_status = DID_ERROR;
1722 		break;
1723 
1724 	case FW_FCOE_NO_XCHG:
1725 		CSIO_INC_STATS(scm, n_no_xchg_error);
1726 		host_status = DID_ERROR;
1727 		break;
1728 
1729 	default:
1730 		csio_err(hw, "Unknown SCSI FW WR status:%d req:%p cmnd:%p\n",
1731 			    req->wr_status, req, cmnd);
1732 		CSIO_DB_ASSERT(0);
1733 
1734 		CSIO_INC_STATS(scm, n_unknown_error);
1735 		host_status = DID_ERROR;
1736 		break;
1737 	}
1738 
1739 out:
1740 	if (req->nsge > 0)
1741 		scsi_dma_unmap(cmnd);
1742 
1743 	cmnd->result = (((host_status) << 16) | scsi_status);
1744 	cmnd->scsi_done(cmnd);
1745 
1746 	/* Wake up waiting threads */
1747 	csio_scsi_cmnd(req) = NULL;
1748 	complete_all(&req->cmplobj);
1749 }
1750 
1751 /*
1752  * csio_scsi_cbfn - SCSI callback function.
1753  * @hw: HW module.
1754  * @req: IO request.
1755  *
1756  */
1757 static void
1758 csio_scsi_cbfn(struct csio_hw *hw, struct csio_ioreq *req)
1759 {
1760 	struct scsi_cmnd *cmnd  = (struct scsi_cmnd *)csio_scsi_cmnd(req);
1761 	uint8_t scsi_status = SAM_STAT_GOOD;
1762 	uint32_t host_status = DID_OK;
1763 
1764 	if (likely(req->wr_status == FW_SUCCESS)) {
1765 		if (req->nsge > 0) {
1766 			scsi_dma_unmap(cmnd);
1767 			if (req->dcopy)
1768 				host_status = csio_scsi_copy_to_sgl(hw, req);
1769 		}
1770 
1771 		cmnd->result = (((host_status) << 16) | scsi_status);
1772 		cmnd->scsi_done(cmnd);
1773 		csio_scsi_cmnd(req) = NULL;
1774 		CSIO_INC_STATS(csio_hw_to_scsim(hw), n_tot_success);
1775 	} else {
1776 		/* Error handling */
1777 		csio_scsi_err_handler(hw, req);
1778 	}
1779 }
1780 
1781 /**
1782  * csio_queuecommand - Entry point to kickstart an I/O request.
1783  * @host:	The scsi_host pointer.
1784  * @cmnd:	The I/O request from ML.
1785  *
1786  * This routine does the following:
1787  *	- Checks for HW and Rnode module readiness.
1788  *	- Gets a free ioreq structure (which is already initialized
1789  *	  to uninit during its allocation).
1790  *	- Maps SG elements.
1791  *	- Initializes ioreq members.
1792  *	- Kicks off the SCSI state machine for this IO.
1793  *	- Returns busy status on error.
1794  */
1795 static int
1796 csio_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmnd)
1797 {
1798 	struct csio_lnode *ln = shost_priv(host);
1799 	struct csio_hw *hw = csio_lnode_to_hw(ln);
1800 	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
1801 	struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
1802 	struct csio_ioreq *ioreq = NULL;
1803 	unsigned long flags;
1804 	int nsge = 0;
1805 	int rv = SCSI_MLQUEUE_HOST_BUSY, nr;
1806 	int retval;
1807 	int cpu;
1808 	struct csio_scsi_qset *sqset;
1809 	struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
1810 
1811 	if (!blk_rq_cpu_valid(cmnd->request))
1812 		cpu = smp_processor_id();
1813 	else
1814 		cpu = cmnd->request->cpu;
1815 
1816 	sqset = &hw->sqset[ln->portid][cpu];
1817 
1818 	nr = fc_remote_port_chkready(rport);
1819 	if (nr) {
1820 		cmnd->result = nr;
1821 		CSIO_INC_STATS(scsim, n_rn_nr_error);
1822 		goto err_done;
1823 	}
1824 
1825 	if (unlikely(!csio_is_hw_ready(hw))) {
1826 		cmnd->result = (DID_REQUEUE << 16);
1827 		CSIO_INC_STATS(scsim, n_hw_nr_error);
1828 		goto err_done;
1829 	}
1830 
1831 	/* Get req->nsge, if there are SG elements to be mapped  */
1832 	nsge = scsi_dma_map(cmnd);
1833 	if (unlikely(nsge < 0)) {
1834 		CSIO_INC_STATS(scsim, n_dmamap_error);
1835 		goto err;
1836 	}
1837 
1838 	/* Do we support so many mappings? */
1839 	if (unlikely(nsge > scsim->max_sge)) {
1840 		csio_warn(hw,
1841 			  "More SGEs than can be supported."
1842 			  " SGEs: %d, Max SGEs: %d\n", nsge, scsim->max_sge);
1843 		CSIO_INC_STATS(scsim, n_unsupp_sge_error);
1844 		goto err_dma_unmap;
1845 	}
1846 
1847 	/* Get a free ioreq structure - SM is already set to uninit */
1848 	ioreq = csio_get_scsi_ioreq_lock(hw, scsim);
1849 	if (!ioreq) {
1850 		csio_err(hw, "Out of I/O request elements. Active #:%d\n",
1851 			 scsim->stats.n_active);
1852 		CSIO_INC_STATS(scsim, n_no_req_error);
1853 		goto err_dma_unmap;
1854 	}
1855 
1856 	ioreq->nsge		= nsge;
1857 	ioreq->lnode		= ln;
1858 	ioreq->rnode		= rn;
1859 	ioreq->iq_idx		= sqset->iq_idx;
1860 	ioreq->eq_idx		= sqset->eq_idx;
1861 	ioreq->wr_status	= 0;
1862 	ioreq->drv_status	= 0;
1863 	csio_scsi_cmnd(ioreq)	= (void *)cmnd;
1864 	ioreq->tmo		= 0;
1865 	ioreq->datadir		= cmnd->sc_data_direction;
1866 
1867 	if (cmnd->sc_data_direction == DMA_TO_DEVICE) {
1868 		CSIO_INC_STATS(ln, n_output_requests);
1869 		ln->stats.n_output_bytes += scsi_bufflen(cmnd);
1870 	} else if (cmnd->sc_data_direction == DMA_FROM_DEVICE) {
1871 		CSIO_INC_STATS(ln, n_input_requests);
1872 		ln->stats.n_input_bytes += scsi_bufflen(cmnd);
1873 	} else
1874 		CSIO_INC_STATS(ln, n_control_requests);
1875 
1876 	/* Set cbfn */
1877 	ioreq->io_cbfn = csio_scsi_cbfn;
1878 
1879 	/* Needed during abort */
1880 	cmnd->host_scribble = (unsigned char *)ioreq;
1881 	cmnd->SCp.Message = 0;
1882 
1883 	/* Kick off SCSI IO SM on the ioreq */
1884 	spin_lock_irqsave(&hw->lock, flags);
1885 	retval = csio_scsi_start_io(ioreq);
1886 	spin_unlock_irqrestore(&hw->lock, flags);
1887 
1888 	if (retval != 0) {
1889 		csio_err(hw, "ioreq: %p couldnt be started, status:%d\n",
1890 			 ioreq, retval);
1891 		CSIO_INC_STATS(scsim, n_busy_error);
1892 		goto err_put_req;
1893 	}
1894 
1895 	return 0;
1896 
1897 err_put_req:
1898 	csio_put_scsi_ioreq_lock(hw, scsim, ioreq);
1899 err_dma_unmap:
1900 	if (nsge > 0)
1901 		scsi_dma_unmap(cmnd);
1902 err:
1903 	return rv;
1904 
1905 err_done:
1906 	cmnd->scsi_done(cmnd);
1907 	return 0;
1908 }
1909 
1910 static int
1911 csio_do_abrt_cls(struct csio_hw *hw, struct csio_ioreq *ioreq, bool abort)
1912 {
1913 	int rv;
1914 	int cpu = smp_processor_id();
1915 	struct csio_lnode *ln = ioreq->lnode;
1916 	struct csio_scsi_qset *sqset = &hw->sqset[ln->portid][cpu];
1917 
1918 	ioreq->tmo = CSIO_SCSI_ABRT_TMO_MS;
1919 	/*
1920 	 * Use current processor queue for posting the abort/close, but retain
1921 	 * the ingress queue ID of the original I/O being aborted/closed - we
1922 	 * need the abort/close completion to be received on the same queue
1923 	 * as the original I/O.
1924 	 */
1925 	ioreq->eq_idx = sqset->eq_idx;
1926 
1927 	if (abort == SCSI_ABORT)
1928 		rv = csio_scsi_abort(ioreq);
1929 	else
1930 		rv = csio_scsi_close(ioreq);
1931 
1932 	return rv;
1933 }
1934 
1935 static int
1936 csio_eh_abort_handler(struct scsi_cmnd *cmnd)
1937 {
1938 	struct csio_ioreq *ioreq;
1939 	struct csio_lnode *ln = shost_priv(cmnd->device->host);
1940 	struct csio_hw *hw = csio_lnode_to_hw(ln);
1941 	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
1942 	int ready = 0, ret;
1943 	unsigned long tmo = 0;
1944 	int rv;
1945 	struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
1946 
1947 	ret = fc_block_scsi_eh(cmnd);
1948 	if (ret)
1949 		return ret;
1950 
1951 	ioreq = (struct csio_ioreq *)cmnd->host_scribble;
1952 	if (!ioreq)
1953 		return SUCCESS;
1954 
1955 	if (!rn)
1956 		return FAILED;
1957 
1958 	csio_dbg(hw,
1959 		 "Request to abort ioreq:%p cmd:%p cdb:%08llx"
1960 		 " ssni:0x%x lun:%d iq:0x%x\n",
1961 		ioreq, cmnd, *((uint64_t *)cmnd->cmnd), rn->flowid,
1962 		cmnd->device->lun, csio_q_physiqid(hw, ioreq->iq_idx));
1963 
1964 	if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) != cmnd) {
1965 		CSIO_INC_STATS(scsim, n_abrt_race_comp);
1966 		return SUCCESS;
1967 	}
1968 
1969 	ready = csio_is_lnode_ready(ln);
1970 	tmo = CSIO_SCSI_ABRT_TMO_MS;
1971 
1972 	spin_lock_irq(&hw->lock);
1973 	rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE));
1974 	spin_unlock_irq(&hw->lock);
1975 
1976 	if (rv != 0) {
1977 		if (rv == -EINVAL) {
1978 			/* Return success, if abort/close request issued on
1979 			 * already completed IO
1980 			 */
1981 			return SUCCESS;
1982 		}
1983 		if (ready)
1984 			CSIO_INC_STATS(scsim, n_abrt_busy_error);
1985 		else
1986 			CSIO_INC_STATS(scsim, n_cls_busy_error);
1987 
1988 		goto inval_scmnd;
1989 	}
1990 
1991 	/* Wait for completion */
1992 	init_completion(&ioreq->cmplobj);
1993 	wait_for_completion_timeout(&ioreq->cmplobj, msecs_to_jiffies(tmo));
1994 
1995 	/* FW didnt respond to abort within our timeout */
1996 	if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) {
1997 
1998 		csio_err(hw, "Abort timed out -- req: %p\n", ioreq);
1999 		CSIO_INC_STATS(scsim, n_abrt_timedout);
2000 
2001 inval_scmnd:
2002 		if (ioreq->nsge > 0)
2003 			scsi_dma_unmap(cmnd);
2004 
2005 		spin_lock_irq(&hw->lock);
2006 		csio_scsi_cmnd(ioreq) = NULL;
2007 		spin_unlock_irq(&hw->lock);
2008 
2009 		cmnd->result = (DID_ERROR << 16);
2010 		cmnd->scsi_done(cmnd);
2011 
2012 		return FAILED;
2013 	}
2014 
2015 	/* FW successfully aborted the request */
2016 	if (host_byte(cmnd->result) == DID_REQUEUE) {
2017 		csio_info(hw,
2018 			"Aborted SCSI command to (%d:%d) serial#:0x%lx\n",
2019 			cmnd->device->id, cmnd->device->lun,
2020 			cmnd->serial_number);
2021 		return SUCCESS;
2022 	} else {
2023 		csio_info(hw,
2024 			"Failed to abort SCSI command, (%d:%d) serial#:0x%lx\n",
2025 			cmnd->device->id, cmnd->device->lun,
2026 			cmnd->serial_number);
2027 		return FAILED;
2028 	}
2029 }
2030 
2031 /*
2032  * csio_tm_cbfn - TM callback function.
2033  * @hw: HW module.
2034  * @req: IO request.
2035  *
2036  * Cache the result in 'cmnd', since ioreq will be freed soon
2037  * after we return from here, and the waiting thread shouldnt trust
2038  * the ioreq contents.
2039  */
2040 static void
2041 csio_tm_cbfn(struct csio_hw *hw, struct csio_ioreq *req)
2042 {
2043 	struct scsi_cmnd *cmnd  = (struct scsi_cmnd *)csio_scsi_cmnd(req);
2044 	struct csio_dma_buf *dma_buf;
2045 	uint8_t flags = 0;
2046 	struct fcp_resp_with_ext *fcp_resp;
2047 	struct fcp_resp_rsp_info *rsp_info;
2048 
2049 	csio_dbg(hw, "req: %p in csio_tm_cbfn status: %d\n",
2050 		      req, req->wr_status);
2051 
2052 	/* Cache FW return status */
2053 	cmnd->SCp.Status = req->wr_status;
2054 
2055 	/* Special handling based on FCP response */
2056 
2057 	/*
2058 	 * FW returns us this error, if flags were set. FCP4 says
2059 	 * FCP_RSP_LEN_VAL in flags shall be set for TM completions.
2060 	 * So if a target were to set this bit, we expect that the
2061 	 * rsp_code is set to FCP_TMF_CMPL for a successful TM
2062 	 * completion. Any other rsp_code means TM operation failed.
2063 	 * If a target were to just ignore setting flags, we treat
2064 	 * the TM operation as success, and FW returns FW_SUCCESS.
2065 	 */
2066 	if (req->wr_status == FW_SCSI_RSP_ERR) {
2067 		dma_buf = &req->dma_buf;
2068 		fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr;
2069 		rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1);
2070 
2071 		flags = fcp_resp->resp.fr_flags;
2072 
2073 		/* Modify return status if flags indicate success */
2074 		if (flags & FCP_RSP_LEN_VAL)
2075 			if (rsp_info->rsp_code == FCP_TMF_CMPL)
2076 				cmnd->SCp.Status = FW_SUCCESS;
2077 
2078 		csio_dbg(hw, "TM FCP rsp code: %d\n", rsp_info->rsp_code);
2079 	}
2080 
2081 	/* Wake up the TM handler thread */
2082 	csio_scsi_cmnd(req) = NULL;
2083 }
2084 
2085 static int
2086 csio_eh_lun_reset_handler(struct scsi_cmnd *cmnd)
2087 {
2088 	struct csio_lnode *ln = shost_priv(cmnd->device->host);
2089 	struct csio_hw *hw = csio_lnode_to_hw(ln);
2090 	struct csio_scsim *scsim = csio_hw_to_scsim(hw);
2091 	struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
2092 	struct csio_ioreq *ioreq = NULL;
2093 	struct csio_scsi_qset *sqset;
2094 	unsigned long flags;
2095 	int retval;
2096 	int count, ret;
2097 	LIST_HEAD(local_q);
2098 	struct csio_scsi_level_data sld;
2099 
2100 	if (!rn)
2101 		goto fail;
2102 
2103 	csio_dbg(hw, "Request to reset LUN:%d (ssni:0x%x tgtid:%d)\n",
2104 		      cmnd->device->lun, rn->flowid, rn->scsi_id);
2105 
2106 	if (!csio_is_lnode_ready(ln)) {
2107 		csio_err(hw,
2108 			 "LUN reset cannot be issued on non-ready"
2109 			 " local node vnpi:0x%x (LUN:%d)\n",
2110 			 ln->vnp_flowid, cmnd->device->lun);
2111 		goto fail;
2112 	}
2113 
2114 	/* Lnode is ready, now wait on rport node readiness */
2115 	ret = fc_block_scsi_eh(cmnd);
2116 	if (ret)
2117 		return ret;
2118 
2119 	/*
2120 	 * If we have blocked in the previous call, at this point, either the
2121 	 * remote node has come back online, or device loss timer has fired
2122 	 * and the remote node is destroyed. Allow the LUN reset only for
2123 	 * the former case, since LUN reset is a TMF I/O on the wire, and we
2124 	 * need a valid session to issue it.
2125 	 */
2126 	if (fc_remote_port_chkready(rn->rport)) {
2127 		csio_err(hw,
2128 			 "LUN reset cannot be issued on non-ready"
2129 			 " remote node ssni:0x%x (LUN:%d)\n",
2130 			 rn->flowid, cmnd->device->lun);
2131 		goto fail;
2132 	}
2133 
2134 	/* Get a free ioreq structure - SM is already set to uninit */
2135 	ioreq = csio_get_scsi_ioreq_lock(hw, scsim);
2136 
2137 	if (!ioreq) {
2138 		csio_err(hw, "Out of IO request elements. Active # :%d\n",
2139 			 scsim->stats.n_active);
2140 		goto fail;
2141 	}
2142 
2143 	sqset			= &hw->sqset[ln->portid][smp_processor_id()];
2144 	ioreq->nsge		= 0;
2145 	ioreq->lnode		= ln;
2146 	ioreq->rnode		= rn;
2147 	ioreq->iq_idx		= sqset->iq_idx;
2148 	ioreq->eq_idx		= sqset->eq_idx;
2149 
2150 	csio_scsi_cmnd(ioreq)	= cmnd;
2151 	cmnd->host_scribble	= (unsigned char *)ioreq;
2152 	cmnd->SCp.Status	= 0;
2153 
2154 	cmnd->SCp.Message	= FCP_TMF_LUN_RESET;
2155 	ioreq->tmo		= CSIO_SCSI_LUNRST_TMO_MS / 1000;
2156 
2157 	/*
2158 	 * FW times the LUN reset for ioreq->tmo, so we got to wait a little
2159 	 * longer (10s for now) than that to allow FW to return the timed
2160 	 * out command.
2161 	 */
2162 	count = DIV_ROUND_UP((ioreq->tmo + 10) * 1000, CSIO_SCSI_TM_POLL_MS);
2163 
2164 	/* Set cbfn */
2165 	ioreq->io_cbfn = csio_tm_cbfn;
2166 
2167 	/* Save of the ioreq info for later use */
2168 	sld.level = CSIO_LEV_LUN;
2169 	sld.lnode = ioreq->lnode;
2170 	sld.rnode = ioreq->rnode;
2171 	sld.oslun = (uint64_t)cmnd->device->lun;
2172 
2173 	spin_lock_irqsave(&hw->lock, flags);
2174 	/* Kick off TM SM on the ioreq */
2175 	retval = csio_scsi_start_tm(ioreq);
2176 	spin_unlock_irqrestore(&hw->lock, flags);
2177 
2178 	if (retval != 0) {
2179 		csio_err(hw, "Failed to issue LUN reset, req:%p, status:%d\n",
2180 			    ioreq, retval);
2181 		goto fail_ret_ioreq;
2182 	}
2183 
2184 	csio_dbg(hw, "Waiting max %d secs for LUN reset completion\n",
2185 		    count * (CSIO_SCSI_TM_POLL_MS / 1000));
2186 	/* Wait for completion */
2187 	while ((((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd)
2188 								&& count--)
2189 		msleep(CSIO_SCSI_TM_POLL_MS);
2190 
2191 	/* LUN reset timed-out */
2192 	if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) {
2193 		csio_err(hw, "LUN reset (%d:%d) timed out\n",
2194 			 cmnd->device->id, cmnd->device->lun);
2195 
2196 		spin_lock_irq(&hw->lock);
2197 		csio_scsi_drvcleanup(ioreq);
2198 		list_del_init(&ioreq->sm.sm_list);
2199 		spin_unlock_irq(&hw->lock);
2200 
2201 		goto fail_ret_ioreq;
2202 	}
2203 
2204 	/* LUN reset returned, check cached status */
2205 	if (cmnd->SCp.Status != FW_SUCCESS) {
2206 		csio_err(hw, "LUN reset failed (%d:%d), status: %d\n",
2207 			 cmnd->device->id, cmnd->device->lun, cmnd->SCp.Status);
2208 		goto fail;
2209 	}
2210 
2211 	/* LUN reset succeeded, Start aborting affected I/Os */
2212 	/*
2213 	 * Since the host guarantees during LUN reset that there
2214 	 * will not be any more I/Os to that LUN, until the LUN reset
2215 	 * completes, we gather pending I/Os after the LUN reset.
2216 	 */
2217 	spin_lock_irq(&hw->lock);
2218 	csio_scsi_gather_active_ios(scsim, &sld, &local_q);
2219 
2220 	retval = csio_scsi_abort_io_q(scsim, &local_q, 30000);
2221 	spin_unlock_irq(&hw->lock);
2222 
2223 	/* Aborts may have timed out */
2224 	if (retval != 0) {
2225 		csio_err(hw,
2226 			 "Attempt to abort I/Os during LUN reset of %d"
2227 			 " returned %d\n", cmnd->device->lun, retval);
2228 		/* Return I/Os back to active_q */
2229 		spin_lock_irq(&hw->lock);
2230 		list_splice_tail_init(&local_q, &scsim->active_q);
2231 		spin_unlock_irq(&hw->lock);
2232 		goto fail;
2233 	}
2234 
2235 	CSIO_INC_STATS(rn, n_lun_rst);
2236 
2237 	csio_info(hw, "LUN reset occurred (%d:%d)\n",
2238 		  cmnd->device->id, cmnd->device->lun);
2239 
2240 	return SUCCESS;
2241 
2242 fail_ret_ioreq:
2243 	csio_put_scsi_ioreq_lock(hw, scsim, ioreq);
2244 fail:
2245 	CSIO_INC_STATS(rn, n_lun_rst_fail);
2246 	return FAILED;
2247 }
2248 
2249 static int
2250 csio_slave_alloc(struct scsi_device *sdev)
2251 {
2252 	struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
2253 
2254 	if (!rport || fc_remote_port_chkready(rport))
2255 		return -ENXIO;
2256 
2257 	sdev->hostdata = *((struct csio_lnode **)(rport->dd_data));
2258 
2259 	return 0;
2260 }
2261 
2262 static int
2263 csio_slave_configure(struct scsi_device *sdev)
2264 {
2265 	if (sdev->tagged_supported)
2266 		scsi_activate_tcq(sdev, csio_lun_qdepth);
2267 	else
2268 		scsi_deactivate_tcq(sdev, csio_lun_qdepth);
2269 
2270 	return 0;
2271 }
2272 
2273 static void
2274 csio_slave_destroy(struct scsi_device *sdev)
2275 {
2276 	sdev->hostdata = NULL;
2277 }
2278 
2279 static int
2280 csio_scan_finished(struct Scsi_Host *shost, unsigned long time)
2281 {
2282 	struct csio_lnode *ln = shost_priv(shost);
2283 	int rv = 1;
2284 
2285 	spin_lock_irq(shost->host_lock);
2286 	if (!ln->hwp || csio_list_deleted(&ln->sm.sm_list))
2287 		goto out;
2288 
2289 	rv = csio_scan_done(ln, jiffies, time, csio_max_scan_tmo * HZ,
2290 			    csio_delta_scan_tmo * HZ);
2291 out:
2292 	spin_unlock_irq(shost->host_lock);
2293 
2294 	return rv;
2295 }
2296 
2297 struct scsi_host_template csio_fcoe_shost_template = {
2298 	.module			= THIS_MODULE,
2299 	.name			= CSIO_DRV_DESC,
2300 	.proc_name		= KBUILD_MODNAME,
2301 	.queuecommand		= csio_queuecommand,
2302 	.eh_abort_handler	= csio_eh_abort_handler,
2303 	.eh_device_reset_handler = csio_eh_lun_reset_handler,
2304 	.slave_alloc		= csio_slave_alloc,
2305 	.slave_configure	= csio_slave_configure,
2306 	.slave_destroy		= csio_slave_destroy,
2307 	.scan_finished		= csio_scan_finished,
2308 	.this_id		= -1,
2309 	.sg_tablesize		= CSIO_SCSI_MAX_SGE,
2310 	.cmd_per_lun		= CSIO_MAX_CMD_PER_LUN,
2311 	.use_clustering		= ENABLE_CLUSTERING,
2312 	.shost_attrs		= csio_fcoe_lport_attrs,
2313 	.max_sectors		= CSIO_MAX_SECTOR_SIZE,
2314 };
2315 
2316 struct scsi_host_template csio_fcoe_shost_vport_template = {
2317 	.module			= THIS_MODULE,
2318 	.name			= CSIO_DRV_DESC,
2319 	.proc_name		= KBUILD_MODNAME,
2320 	.queuecommand		= csio_queuecommand,
2321 	.eh_abort_handler	= csio_eh_abort_handler,
2322 	.eh_device_reset_handler = csio_eh_lun_reset_handler,
2323 	.slave_alloc		= csio_slave_alloc,
2324 	.slave_configure	= csio_slave_configure,
2325 	.slave_destroy		= csio_slave_destroy,
2326 	.scan_finished		= csio_scan_finished,
2327 	.this_id		= -1,
2328 	.sg_tablesize		= CSIO_SCSI_MAX_SGE,
2329 	.cmd_per_lun		= CSIO_MAX_CMD_PER_LUN,
2330 	.use_clustering		= ENABLE_CLUSTERING,
2331 	.shost_attrs		= csio_fcoe_vport_attrs,
2332 	.max_sectors		= CSIO_MAX_SECTOR_SIZE,
2333 };
2334 
2335 /*
2336  * csio_scsi_alloc_ddp_bufs - Allocate buffers for DDP of unaligned SGLs.
2337  * @scm: SCSI Module
2338  * @hw: HW device.
2339  * @buf_size: buffer size
2340  * @num_buf : Number of buffers.
2341  *
2342  * This routine allocates DMA buffers required for SCSI Data xfer, if
2343  * each SGL buffer for a SCSI Read request posted by SCSI midlayer are
2344  * not virtually contiguous.
2345  */
2346 static int
2347 csio_scsi_alloc_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw,
2348 			 int buf_size, int num_buf)
2349 {
2350 	int n = 0;
2351 	struct list_head *tmp;
2352 	struct csio_dma_buf *ddp_desc = NULL;
2353 	uint32_t unit_size = 0;
2354 
2355 	if (!num_buf)
2356 		return 0;
2357 
2358 	if (!buf_size)
2359 		return -EINVAL;
2360 
2361 	INIT_LIST_HEAD(&scm->ddp_freelist);
2362 
2363 	/* Align buf size to page size */
2364 	buf_size = (buf_size + PAGE_SIZE - 1) & PAGE_MASK;
2365 	/* Initialize dma descriptors */
2366 	for (n = 0; n < num_buf; n++) {
2367 		/* Set unit size to request size */
2368 		unit_size = buf_size;
2369 		ddp_desc = kzalloc(sizeof(struct csio_dma_buf), GFP_KERNEL);
2370 		if (!ddp_desc) {
2371 			csio_err(hw,
2372 				 "Failed to allocate ddp descriptors,"
2373 				 " Num allocated = %d.\n",
2374 				 scm->stats.n_free_ddp);
2375 			goto no_mem;
2376 		}
2377 
2378 		/* Allocate Dma buffers for DDP */
2379 		ddp_desc->vaddr = pci_alloc_consistent(hw->pdev, unit_size,
2380 							&ddp_desc->paddr);
2381 		if (!ddp_desc->vaddr) {
2382 			csio_err(hw,
2383 				 "SCSI response DMA buffer (ddp) allocation"
2384 				 " failed!\n");
2385 			kfree(ddp_desc);
2386 			goto no_mem;
2387 		}
2388 
2389 		ddp_desc->len = unit_size;
2390 
2391 		/* Added it to scsi ddp freelist */
2392 		list_add_tail(&ddp_desc->list, &scm->ddp_freelist);
2393 		CSIO_INC_STATS(scm, n_free_ddp);
2394 	}
2395 
2396 	return 0;
2397 no_mem:
2398 	/* release dma descs back to freelist and free dma memory */
2399 	list_for_each(tmp, &scm->ddp_freelist) {
2400 		ddp_desc = (struct csio_dma_buf *) tmp;
2401 		tmp = csio_list_prev(tmp);
2402 		pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr,
2403 				    ddp_desc->paddr);
2404 		list_del_init(&ddp_desc->list);
2405 		kfree(ddp_desc);
2406 	}
2407 	scm->stats.n_free_ddp = 0;
2408 
2409 	return -ENOMEM;
2410 }
2411 
2412 /*
2413  * csio_scsi_free_ddp_bufs - free DDP buffers of unaligned SGLs.
2414  * @scm: SCSI Module
2415  * @hw: HW device.
2416  *
2417  * This routine frees ddp buffers.
2418  */
2419 static void
2420 csio_scsi_free_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw)
2421 {
2422 	struct list_head *tmp;
2423 	struct csio_dma_buf *ddp_desc;
2424 
2425 	/* release dma descs back to freelist and free dma memory */
2426 	list_for_each(tmp, &scm->ddp_freelist) {
2427 		ddp_desc = (struct csio_dma_buf *) tmp;
2428 		tmp = csio_list_prev(tmp);
2429 		pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr,
2430 				    ddp_desc->paddr);
2431 		list_del_init(&ddp_desc->list);
2432 		kfree(ddp_desc);
2433 	}
2434 	scm->stats.n_free_ddp = 0;
2435 }
2436 
2437 /**
2438  * csio_scsim_init - Initialize SCSI Module
2439  * @scm:	SCSI Module
2440  * @hw:		HW module
2441  *
2442  */
2443 int
2444 csio_scsim_init(struct csio_scsim *scm, struct csio_hw *hw)
2445 {
2446 	int i;
2447 	struct csio_ioreq *ioreq;
2448 	struct csio_dma_buf *dma_buf;
2449 
2450 	INIT_LIST_HEAD(&scm->active_q);
2451 	scm->hw = hw;
2452 
2453 	scm->proto_cmd_len = sizeof(struct fcp_cmnd);
2454 	scm->proto_rsp_len = CSIO_SCSI_RSP_LEN;
2455 	scm->max_sge = CSIO_SCSI_MAX_SGE;
2456 
2457 	spin_lock_init(&scm->freelist_lock);
2458 
2459 	/* Pre-allocate ioreqs and initialize them */
2460 	INIT_LIST_HEAD(&scm->ioreq_freelist);
2461 	for (i = 0; i < csio_scsi_ioreqs; i++) {
2462 
2463 		ioreq = kzalloc(sizeof(struct csio_ioreq), GFP_KERNEL);
2464 		if (!ioreq) {
2465 			csio_err(hw,
2466 				 "I/O request element allocation failed, "
2467 				 " Num allocated = %d.\n",
2468 				 scm->stats.n_free_ioreq);
2469 
2470 			goto free_ioreq;
2471 		}
2472 
2473 		/* Allocate Dma buffers for Response Payload */
2474 		dma_buf = &ioreq->dma_buf;
2475 		dma_buf->vaddr = pci_pool_alloc(hw->scsi_pci_pool, GFP_KERNEL,
2476 						&dma_buf->paddr);
2477 		if (!dma_buf->vaddr) {
2478 			csio_err(hw,
2479 				 "SCSI response DMA buffer allocation"
2480 				 " failed!\n");
2481 			kfree(ioreq);
2482 			goto free_ioreq;
2483 		}
2484 
2485 		dma_buf->len = scm->proto_rsp_len;
2486 
2487 		/* Set state to uninit */
2488 		csio_init_state(&ioreq->sm, csio_scsis_uninit);
2489 		INIT_LIST_HEAD(&ioreq->gen_list);
2490 		init_completion(&ioreq->cmplobj);
2491 
2492 		list_add_tail(&ioreq->sm.sm_list, &scm->ioreq_freelist);
2493 		CSIO_INC_STATS(scm, n_free_ioreq);
2494 	}
2495 
2496 	if (csio_scsi_alloc_ddp_bufs(scm, hw, PAGE_SIZE, csio_ddp_descs))
2497 		goto free_ioreq;
2498 
2499 	return 0;
2500 
2501 free_ioreq:
2502 	/*
2503 	 * Free up existing allocations, since an error
2504 	 * from here means we are returning for good
2505 	 */
2506 	while (!list_empty(&scm->ioreq_freelist)) {
2507 		struct csio_sm *tmp;
2508 
2509 		tmp = list_first_entry(&scm->ioreq_freelist,
2510 				       struct csio_sm, sm_list);
2511 		list_del_init(&tmp->sm_list);
2512 		ioreq = (struct csio_ioreq *)tmp;
2513 
2514 		dma_buf = &ioreq->dma_buf;
2515 		pci_pool_free(hw->scsi_pci_pool, dma_buf->vaddr,
2516 			      dma_buf->paddr);
2517 
2518 		kfree(ioreq);
2519 	}
2520 
2521 	scm->stats.n_free_ioreq = 0;
2522 
2523 	return -ENOMEM;
2524 }
2525 
2526 /**
2527  * csio_scsim_exit: Uninitialize SCSI Module
2528  * @scm: SCSI Module
2529  *
2530  */
2531 void
2532 csio_scsim_exit(struct csio_scsim *scm)
2533 {
2534 	struct csio_ioreq *ioreq;
2535 	struct csio_dma_buf *dma_buf;
2536 
2537 	while (!list_empty(&scm->ioreq_freelist)) {
2538 		struct csio_sm *tmp;
2539 
2540 		tmp = list_first_entry(&scm->ioreq_freelist,
2541 				       struct csio_sm, sm_list);
2542 		list_del_init(&tmp->sm_list);
2543 		ioreq = (struct csio_ioreq *)tmp;
2544 
2545 		dma_buf = &ioreq->dma_buf;
2546 		pci_pool_free(scm->hw->scsi_pci_pool, dma_buf->vaddr,
2547 			      dma_buf->paddr);
2548 
2549 		kfree(ioreq);
2550 	}
2551 
2552 	scm->stats.n_free_ioreq = 0;
2553 
2554 	csio_scsi_free_ddp_bufs(scm, scm->hw);
2555 }
2556