1 /* 2 * This file is part of the Chelsio FCoE driver for Linux. 3 * 4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/device.h> 36 #include <linux/delay.h> 37 #include <linux/ctype.h> 38 #include <linux/kernel.h> 39 #include <linux/slab.h> 40 #include <linux/string.h> 41 #include <linux/compiler.h> 42 #include <linux/export.h> 43 #include <linux/module.h> 44 #include <asm/unaligned.h> 45 #include <asm/page.h> 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_transport_fc.h> 49 50 #include "csio_hw.h" 51 #include "csio_lnode.h" 52 #include "csio_rnode.h" 53 #include "csio_scsi.h" 54 #include "csio_init.h" 55 56 int csio_scsi_eqsize = 65536; 57 int csio_scsi_iqlen = 128; 58 int csio_scsi_ioreqs = 2048; 59 uint32_t csio_max_scan_tmo; 60 uint32_t csio_delta_scan_tmo = 5; 61 int csio_lun_qdepth = 32; 62 63 static int csio_ddp_descs = 128; 64 65 static int csio_do_abrt_cls(struct csio_hw *, 66 struct csio_ioreq *, bool); 67 68 static void csio_scsis_uninit(struct csio_ioreq *, enum csio_scsi_ev); 69 static void csio_scsis_io_active(struct csio_ioreq *, enum csio_scsi_ev); 70 static void csio_scsis_tm_active(struct csio_ioreq *, enum csio_scsi_ev); 71 static void csio_scsis_aborting(struct csio_ioreq *, enum csio_scsi_ev); 72 static void csio_scsis_closing(struct csio_ioreq *, enum csio_scsi_ev); 73 static void csio_scsis_shost_cmpl_await(struct csio_ioreq *, enum csio_scsi_ev); 74 75 /* 76 * csio_scsi_match_io - Match an ioreq with the given SCSI level data. 77 * @ioreq: The I/O request 78 * @sld: Level information 79 * 80 * Should be called with lock held. 81 * 82 */ 83 static bool 84 csio_scsi_match_io(struct csio_ioreq *ioreq, struct csio_scsi_level_data *sld) 85 { 86 struct scsi_cmnd *scmnd = csio_scsi_cmnd(ioreq); 87 88 switch (sld->level) { 89 case CSIO_LEV_LUN: 90 if (scmnd == NULL) 91 return false; 92 93 return ((ioreq->lnode == sld->lnode) && 94 (ioreq->rnode == sld->rnode) && 95 ((uint64_t)scmnd->device->lun == sld->oslun)); 96 97 case CSIO_LEV_RNODE: 98 return ((ioreq->lnode == sld->lnode) && 99 (ioreq->rnode == sld->rnode)); 100 case CSIO_LEV_LNODE: 101 return (ioreq->lnode == sld->lnode); 102 case CSIO_LEV_ALL: 103 return true; 104 default: 105 return false; 106 } 107 } 108 109 /* 110 * csio_scsi_gather_active_ios - Gather active I/Os based on level 111 * @scm: SCSI module 112 * @sld: Level information 113 * @dest: The queue where these I/Os have to be gathered. 114 * 115 * Should be called with lock held. 116 */ 117 static void 118 csio_scsi_gather_active_ios(struct csio_scsim *scm, 119 struct csio_scsi_level_data *sld, 120 struct list_head *dest) 121 { 122 struct list_head *tmp, *next; 123 124 if (list_empty(&scm->active_q)) 125 return; 126 127 /* Just splice the entire active_q into dest */ 128 if (sld->level == CSIO_LEV_ALL) { 129 list_splice_tail_init(&scm->active_q, dest); 130 return; 131 } 132 133 list_for_each_safe(tmp, next, &scm->active_q) { 134 if (csio_scsi_match_io((struct csio_ioreq *)tmp, sld)) { 135 list_del_init(tmp); 136 list_add_tail(tmp, dest); 137 } 138 } 139 } 140 141 static inline bool 142 csio_scsi_itnexus_loss_error(uint16_t error) 143 { 144 switch (error) { 145 case FW_ERR_LINK_DOWN: 146 case FW_RDEV_NOT_READY: 147 case FW_ERR_RDEV_LOST: 148 case FW_ERR_RDEV_LOGO: 149 case FW_ERR_RDEV_IMPL_LOGO: 150 return 1; 151 } 152 return 0; 153 } 154 155 /* 156 * csio_scsi_fcp_cmnd - Frame the SCSI FCP command paylod. 157 * @req: IO req structure. 158 * @addr: DMA location to place the payload. 159 * 160 * This routine is shared between FCP_WRITE, FCP_READ and FCP_CMD requests. 161 */ 162 static inline void 163 csio_scsi_fcp_cmnd(struct csio_ioreq *req, void *addr) 164 { 165 struct fcp_cmnd *fcp_cmnd = (struct fcp_cmnd *)addr; 166 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); 167 168 /* Check for Task Management */ 169 if (likely(scmnd->SCp.Message == 0)) { 170 int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun); 171 fcp_cmnd->fc_tm_flags = 0; 172 fcp_cmnd->fc_cmdref = 0; 173 174 memcpy(fcp_cmnd->fc_cdb, scmnd->cmnd, 16); 175 fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE; 176 fcp_cmnd->fc_dl = cpu_to_be32(scsi_bufflen(scmnd)); 177 178 if (req->nsge) 179 if (req->datadir == DMA_TO_DEVICE) 180 fcp_cmnd->fc_flags = FCP_CFL_WRDATA; 181 else 182 fcp_cmnd->fc_flags = FCP_CFL_RDDATA; 183 else 184 fcp_cmnd->fc_flags = 0; 185 } else { 186 memset(fcp_cmnd, 0, sizeof(*fcp_cmnd)); 187 int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun); 188 fcp_cmnd->fc_tm_flags = (uint8_t)scmnd->SCp.Message; 189 } 190 } 191 192 /* 193 * csio_scsi_init_cmd_wr - Initialize the SCSI CMD WR. 194 * @req: IO req structure. 195 * @addr: DMA location to place the payload. 196 * @size: Size of WR (including FW WR + immed data + rsp SG entry 197 * 198 * Wrapper for populating fw_scsi_cmd_wr. 199 */ 200 static inline void 201 csio_scsi_init_cmd_wr(struct csio_ioreq *req, void *addr, uint32_t size) 202 { 203 struct csio_hw *hw = req->lnode->hwp; 204 struct csio_rnode *rn = req->rnode; 205 struct fw_scsi_cmd_wr *wr = (struct fw_scsi_cmd_wr *)addr; 206 struct csio_dma_buf *dma_buf; 207 uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len; 208 209 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_CMD_WR) | 210 FW_SCSI_CMD_WR_IMMDLEN(imm)); 211 wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) | 212 FW_WR_LEN16_V( 213 DIV_ROUND_UP(size, 16))); 214 215 wr->cookie = (uintptr_t) req; 216 wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx)); 217 wr->tmo_val = (uint8_t) req->tmo; 218 wr->r3 = 0; 219 memset(&wr->r5, 0, 8); 220 221 /* Get RSP DMA buffer */ 222 dma_buf = &req->dma_buf; 223 224 /* Prepare RSP SGL */ 225 wr->rsp_dmalen = cpu_to_be32(dma_buf->len); 226 wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr); 227 228 wr->r6 = 0; 229 230 wr->u.fcoe.ctl_pri = 0; 231 wr->u.fcoe.cp_en_class = 0; 232 wr->u.fcoe.r4_lo[0] = 0; 233 wr->u.fcoe.r4_lo[1] = 0; 234 235 /* Frame a FCP command */ 236 csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)addr + 237 sizeof(struct fw_scsi_cmd_wr))); 238 } 239 240 #define CSIO_SCSI_CMD_WR_SZ(_imm) \ 241 (sizeof(struct fw_scsi_cmd_wr) + /* WR size */ \ 242 ALIGN((_imm), 16)) /* Immed data */ 243 244 #define CSIO_SCSI_CMD_WR_SZ_16(_imm) \ 245 (ALIGN(CSIO_SCSI_CMD_WR_SZ((_imm)), 16)) 246 247 /* 248 * csio_scsi_cmd - Create a SCSI CMD WR. 249 * @req: IO req structure. 250 * 251 * Gets a WR slot in the ingress queue and initializes it with SCSI CMD WR. 252 * 253 */ 254 static inline void 255 csio_scsi_cmd(struct csio_ioreq *req) 256 { 257 struct csio_wr_pair wrp; 258 struct csio_hw *hw = req->lnode->hwp; 259 struct csio_scsim *scsim = csio_hw_to_scsim(hw); 260 uint32_t size = CSIO_SCSI_CMD_WR_SZ_16(scsim->proto_cmd_len); 261 262 req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp); 263 if (unlikely(req->drv_status != 0)) 264 return; 265 266 if (wrp.size1 >= size) { 267 /* Initialize WR in one shot */ 268 csio_scsi_init_cmd_wr(req, wrp.addr1, size); 269 } else { 270 uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx); 271 272 /* 273 * Make a temporary copy of the WR and write back 274 * the copy into the WR pair. 275 */ 276 csio_scsi_init_cmd_wr(req, (void *)tmpwr, size); 277 memcpy(wrp.addr1, tmpwr, wrp.size1); 278 memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1); 279 } 280 } 281 282 /* 283 * csio_scsi_init_ulptx_dsgl - Fill in a ULP_TX_SC_DSGL 284 * @hw: HW module 285 * @req: IO request 286 * @sgl: ULP TX SGL pointer. 287 * 288 */ 289 static inline void 290 csio_scsi_init_ultptx_dsgl(struct csio_hw *hw, struct csio_ioreq *req, 291 struct ulptx_sgl *sgl) 292 { 293 struct ulptx_sge_pair *sge_pair = NULL; 294 struct scatterlist *sgel; 295 uint32_t i = 0; 296 uint32_t xfer_len; 297 struct list_head *tmp; 298 struct csio_dma_buf *dma_buf; 299 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); 300 301 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_MORE_F | 302 ULPTX_NSGE_V(req->nsge)); 303 /* Now add the data SGLs */ 304 if (likely(!req->dcopy)) { 305 scsi_for_each_sg(scmnd, sgel, req->nsge, i) { 306 if (i == 0) { 307 sgl->addr0 = cpu_to_be64(sg_dma_address(sgel)); 308 sgl->len0 = cpu_to_be32(sg_dma_len(sgel)); 309 sge_pair = (struct ulptx_sge_pair *)(sgl + 1); 310 continue; 311 } 312 if ((i - 1) & 0x1) { 313 sge_pair->addr[1] = cpu_to_be64( 314 sg_dma_address(sgel)); 315 sge_pair->len[1] = cpu_to_be32( 316 sg_dma_len(sgel)); 317 sge_pair++; 318 } else { 319 sge_pair->addr[0] = cpu_to_be64( 320 sg_dma_address(sgel)); 321 sge_pair->len[0] = cpu_to_be32( 322 sg_dma_len(sgel)); 323 } 324 } 325 } else { 326 /* Program sg elements with driver's DDP buffer */ 327 xfer_len = scsi_bufflen(scmnd); 328 list_for_each(tmp, &req->gen_list) { 329 dma_buf = (struct csio_dma_buf *)tmp; 330 if (i == 0) { 331 sgl->addr0 = cpu_to_be64(dma_buf->paddr); 332 sgl->len0 = cpu_to_be32( 333 min(xfer_len, dma_buf->len)); 334 sge_pair = (struct ulptx_sge_pair *)(sgl + 1); 335 } else if ((i - 1) & 0x1) { 336 sge_pair->addr[1] = cpu_to_be64(dma_buf->paddr); 337 sge_pair->len[1] = cpu_to_be32( 338 min(xfer_len, dma_buf->len)); 339 sge_pair++; 340 } else { 341 sge_pair->addr[0] = cpu_to_be64(dma_buf->paddr); 342 sge_pair->len[0] = cpu_to_be32( 343 min(xfer_len, dma_buf->len)); 344 } 345 xfer_len -= min(xfer_len, dma_buf->len); 346 i++; 347 } 348 } 349 } 350 351 /* 352 * csio_scsi_init_read_wr - Initialize the READ SCSI WR. 353 * @req: IO req structure. 354 * @wrp: DMA location to place the payload. 355 * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL 356 * 357 * Wrapper for populating fw_scsi_read_wr. 358 */ 359 static inline void 360 csio_scsi_init_read_wr(struct csio_ioreq *req, void *wrp, uint32_t size) 361 { 362 struct csio_hw *hw = req->lnode->hwp; 363 struct csio_rnode *rn = req->rnode; 364 struct fw_scsi_read_wr *wr = (struct fw_scsi_read_wr *)wrp; 365 struct ulptx_sgl *sgl; 366 struct csio_dma_buf *dma_buf; 367 uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len; 368 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); 369 370 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_READ_WR) | 371 FW_SCSI_READ_WR_IMMDLEN(imm)); 372 wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) | 373 FW_WR_LEN16_V(DIV_ROUND_UP(size, 16))); 374 wr->cookie = (uintptr_t)req; 375 wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx)); 376 wr->tmo_val = (uint8_t)(req->tmo); 377 wr->use_xfer_cnt = 1; 378 wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd)); 379 wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd)); 380 /* Get RSP DMA buffer */ 381 dma_buf = &req->dma_buf; 382 383 /* Prepare RSP SGL */ 384 wr->rsp_dmalen = cpu_to_be32(dma_buf->len); 385 wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr); 386 387 wr->r4 = 0; 388 389 wr->u.fcoe.ctl_pri = 0; 390 wr->u.fcoe.cp_en_class = 0; 391 wr->u.fcoe.r3_lo[0] = 0; 392 wr->u.fcoe.r3_lo[1] = 0; 393 csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp + 394 sizeof(struct fw_scsi_read_wr))); 395 396 /* Move WR pointer past command and immediate data */ 397 sgl = (struct ulptx_sgl *)((uintptr_t)wrp + 398 sizeof(struct fw_scsi_read_wr) + ALIGN(imm, 16)); 399 400 /* Fill in the DSGL */ 401 csio_scsi_init_ultptx_dsgl(hw, req, sgl); 402 } 403 404 /* 405 * csio_scsi_init_write_wr - Initialize the WRITE SCSI WR. 406 * @req: IO req structure. 407 * @wrp: DMA location to place the payload. 408 * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL 409 * 410 * Wrapper for populating fw_scsi_write_wr. 411 */ 412 static inline void 413 csio_scsi_init_write_wr(struct csio_ioreq *req, void *wrp, uint32_t size) 414 { 415 struct csio_hw *hw = req->lnode->hwp; 416 struct csio_rnode *rn = req->rnode; 417 struct fw_scsi_write_wr *wr = (struct fw_scsi_write_wr *)wrp; 418 struct ulptx_sgl *sgl; 419 struct csio_dma_buf *dma_buf; 420 uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len; 421 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); 422 423 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_WRITE_WR) | 424 FW_SCSI_WRITE_WR_IMMDLEN(imm)); 425 wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) | 426 FW_WR_LEN16_V(DIV_ROUND_UP(size, 16))); 427 wr->cookie = (uintptr_t)req; 428 wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx)); 429 wr->tmo_val = (uint8_t)(req->tmo); 430 wr->use_xfer_cnt = 1; 431 wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd)); 432 wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd)); 433 /* Get RSP DMA buffer */ 434 dma_buf = &req->dma_buf; 435 436 /* Prepare RSP SGL */ 437 wr->rsp_dmalen = cpu_to_be32(dma_buf->len); 438 wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr); 439 440 wr->r4 = 0; 441 442 wr->u.fcoe.ctl_pri = 0; 443 wr->u.fcoe.cp_en_class = 0; 444 wr->u.fcoe.r3_lo[0] = 0; 445 wr->u.fcoe.r3_lo[1] = 0; 446 csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp + 447 sizeof(struct fw_scsi_write_wr))); 448 449 /* Move WR pointer past command and immediate data */ 450 sgl = (struct ulptx_sgl *)((uintptr_t)wrp + 451 sizeof(struct fw_scsi_write_wr) + ALIGN(imm, 16)); 452 453 /* Fill in the DSGL */ 454 csio_scsi_init_ultptx_dsgl(hw, req, sgl); 455 } 456 457 /* Calculate WR size needed for fw_scsi_read_wr/fw_scsi_write_wr */ 458 #define CSIO_SCSI_DATA_WRSZ(req, oper, sz, imm) \ 459 do { \ 460 (sz) = sizeof(struct fw_scsi_##oper##_wr) + /* WR size */ \ 461 ALIGN((imm), 16) + /* Immed data */ \ 462 sizeof(struct ulptx_sgl); /* ulptx_sgl */ \ 463 \ 464 if (unlikely((req)->nsge > 1)) \ 465 (sz) += (sizeof(struct ulptx_sge_pair) * \ 466 (ALIGN(((req)->nsge - 1), 2) / 2)); \ 467 /* Data SGE */ \ 468 } while (0) 469 470 /* 471 * csio_scsi_read - Create a SCSI READ WR. 472 * @req: IO req structure. 473 * 474 * Gets a WR slot in the ingress queue and initializes it with 475 * SCSI READ WR. 476 * 477 */ 478 static inline void 479 csio_scsi_read(struct csio_ioreq *req) 480 { 481 struct csio_wr_pair wrp; 482 uint32_t size; 483 struct csio_hw *hw = req->lnode->hwp; 484 struct csio_scsim *scsim = csio_hw_to_scsim(hw); 485 486 CSIO_SCSI_DATA_WRSZ(req, read, size, scsim->proto_cmd_len); 487 size = ALIGN(size, 16); 488 489 req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp); 490 if (likely(req->drv_status == 0)) { 491 if (likely(wrp.size1 >= size)) { 492 /* Initialize WR in one shot */ 493 csio_scsi_init_read_wr(req, wrp.addr1, size); 494 } else { 495 uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx); 496 /* 497 * Make a temporary copy of the WR and write back 498 * the copy into the WR pair. 499 */ 500 csio_scsi_init_read_wr(req, (void *)tmpwr, size); 501 memcpy(wrp.addr1, tmpwr, wrp.size1); 502 memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1); 503 } 504 } 505 } 506 507 /* 508 * csio_scsi_write - Create a SCSI WRITE WR. 509 * @req: IO req structure. 510 * 511 * Gets a WR slot in the ingress queue and initializes it with 512 * SCSI WRITE WR. 513 * 514 */ 515 static inline void 516 csio_scsi_write(struct csio_ioreq *req) 517 { 518 struct csio_wr_pair wrp; 519 uint32_t size; 520 struct csio_hw *hw = req->lnode->hwp; 521 struct csio_scsim *scsim = csio_hw_to_scsim(hw); 522 523 CSIO_SCSI_DATA_WRSZ(req, write, size, scsim->proto_cmd_len); 524 size = ALIGN(size, 16); 525 526 req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp); 527 if (likely(req->drv_status == 0)) { 528 if (likely(wrp.size1 >= size)) { 529 /* Initialize WR in one shot */ 530 csio_scsi_init_write_wr(req, wrp.addr1, size); 531 } else { 532 uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx); 533 /* 534 * Make a temporary copy of the WR and write back 535 * the copy into the WR pair. 536 */ 537 csio_scsi_init_write_wr(req, (void *)tmpwr, size); 538 memcpy(wrp.addr1, tmpwr, wrp.size1); 539 memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1); 540 } 541 } 542 } 543 544 /* 545 * csio_setup_ddp - Setup DDP buffers for Read request. 546 * @req: IO req structure. 547 * 548 * Checks SGLs/Data buffers are virtually contiguous required for DDP. 549 * If contiguous,driver posts SGLs in the WR otherwise post internal 550 * buffers for such request for DDP. 551 */ 552 static inline void 553 csio_setup_ddp(struct csio_scsim *scsim, struct csio_ioreq *req) 554 { 555 #ifdef __CSIO_DEBUG__ 556 struct csio_hw *hw = req->lnode->hwp; 557 #endif 558 struct scatterlist *sgel = NULL; 559 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req); 560 uint64_t sg_addr = 0; 561 uint32_t ddp_pagesz = 4096; 562 uint32_t buf_off; 563 struct csio_dma_buf *dma_buf = NULL; 564 uint32_t alloc_len = 0; 565 uint32_t xfer_len = 0; 566 uint32_t sg_len = 0; 567 uint32_t i; 568 569 scsi_for_each_sg(scmnd, sgel, req->nsge, i) { 570 sg_addr = sg_dma_address(sgel); 571 sg_len = sg_dma_len(sgel); 572 573 buf_off = sg_addr & (ddp_pagesz - 1); 574 575 /* Except 1st buffer,all buffer addr have to be Page aligned */ 576 if (i != 0 && buf_off) { 577 csio_dbg(hw, "SGL addr not DDP aligned (%llx:%d)\n", 578 sg_addr, sg_len); 579 goto unaligned; 580 } 581 582 /* Except last buffer,all buffer must end on page boundary */ 583 if ((i != (req->nsge - 1)) && 584 ((buf_off + sg_len) & (ddp_pagesz - 1))) { 585 csio_dbg(hw, 586 "SGL addr not ending on page boundary" 587 "(%llx:%d)\n", sg_addr, sg_len); 588 goto unaligned; 589 } 590 } 591 592 /* SGL's are virtually contiguous. HW will DDP to SGLs */ 593 req->dcopy = 0; 594 csio_scsi_read(req); 595 596 return; 597 598 unaligned: 599 CSIO_INC_STATS(scsim, n_unaligned); 600 /* 601 * For unaligned SGLs, driver will allocate internal DDP buffer. 602 * Once command is completed data from DDP buffer copied to SGLs 603 */ 604 req->dcopy = 1; 605 606 /* Use gen_list to store the DDP buffers */ 607 INIT_LIST_HEAD(&req->gen_list); 608 xfer_len = scsi_bufflen(scmnd); 609 610 i = 0; 611 /* Allocate ddp buffers for this request */ 612 while (alloc_len < xfer_len) { 613 dma_buf = csio_get_scsi_ddp(scsim); 614 if (dma_buf == NULL || i > scsim->max_sge) { 615 req->drv_status = -EBUSY; 616 break; 617 } 618 alloc_len += dma_buf->len; 619 /* Added to IO req */ 620 list_add_tail(&dma_buf->list, &req->gen_list); 621 i++; 622 } 623 624 if (!req->drv_status) { 625 /* set number of ddp bufs used */ 626 req->nsge = i; 627 csio_scsi_read(req); 628 return; 629 } 630 631 /* release dma descs */ 632 if (i > 0) 633 csio_put_scsi_ddp_list(scsim, &req->gen_list, i); 634 } 635 636 /* 637 * csio_scsi_init_abrt_cls_wr - Initialize an ABORT/CLOSE WR. 638 * @req: IO req structure. 639 * @addr: DMA location to place the payload. 640 * @size: Size of WR 641 * @abort: abort OR close 642 * 643 * Wrapper for populating fw_scsi_cmd_wr. 644 */ 645 static inline void 646 csio_scsi_init_abrt_cls_wr(struct csio_ioreq *req, void *addr, uint32_t size, 647 bool abort) 648 { 649 struct csio_hw *hw = req->lnode->hwp; 650 struct csio_rnode *rn = req->rnode; 651 struct fw_scsi_abrt_cls_wr *wr = (struct fw_scsi_abrt_cls_wr *)addr; 652 653 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_ABRT_CLS_WR)); 654 wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) | 655 FW_WR_LEN16_V( 656 DIV_ROUND_UP(size, 16))); 657 658 wr->cookie = (uintptr_t) req; 659 wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx)); 660 wr->tmo_val = (uint8_t) req->tmo; 661 /* 0 for CHK_ALL_IO tells FW to look up t_cookie */ 662 wr->sub_opcode_to_chk_all_io = 663 (FW_SCSI_ABRT_CLS_WR_SUB_OPCODE(abort) | 664 FW_SCSI_ABRT_CLS_WR_CHK_ALL_IO(0)); 665 wr->r3[0] = 0; 666 wr->r3[1] = 0; 667 wr->r3[2] = 0; 668 wr->r3[3] = 0; 669 /* Since we re-use the same ioreq for abort as well */ 670 wr->t_cookie = (uintptr_t) req; 671 } 672 673 static inline void 674 csio_scsi_abrt_cls(struct csio_ioreq *req, bool abort) 675 { 676 struct csio_wr_pair wrp; 677 struct csio_hw *hw = req->lnode->hwp; 678 uint32_t size = ALIGN(sizeof(struct fw_scsi_abrt_cls_wr), 16); 679 680 req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp); 681 if (req->drv_status != 0) 682 return; 683 684 if (wrp.size1 >= size) { 685 /* Initialize WR in one shot */ 686 csio_scsi_init_abrt_cls_wr(req, wrp.addr1, size, abort); 687 } else { 688 uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx); 689 /* 690 * Make a temporary copy of the WR and write back 691 * the copy into the WR pair. 692 */ 693 csio_scsi_init_abrt_cls_wr(req, (void *)tmpwr, size, abort); 694 memcpy(wrp.addr1, tmpwr, wrp.size1); 695 memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1); 696 } 697 } 698 699 /*****************************************************************************/ 700 /* START: SCSI SM */ 701 /*****************************************************************************/ 702 static void 703 csio_scsis_uninit(struct csio_ioreq *req, enum csio_scsi_ev evt) 704 { 705 struct csio_hw *hw = req->lnode->hwp; 706 struct csio_scsim *scsim = csio_hw_to_scsim(hw); 707 708 switch (evt) { 709 case CSIO_SCSIE_START_IO: 710 711 if (req->nsge) { 712 if (req->datadir == DMA_TO_DEVICE) { 713 req->dcopy = 0; 714 csio_scsi_write(req); 715 } else 716 csio_setup_ddp(scsim, req); 717 } else { 718 csio_scsi_cmd(req); 719 } 720 721 if (likely(req->drv_status == 0)) { 722 /* change state and enqueue on active_q */ 723 csio_set_state(&req->sm, csio_scsis_io_active); 724 list_add_tail(&req->sm.sm_list, &scsim->active_q); 725 csio_wr_issue(hw, req->eq_idx, false); 726 CSIO_INC_STATS(scsim, n_active); 727 728 return; 729 } 730 break; 731 732 case CSIO_SCSIE_START_TM: 733 csio_scsi_cmd(req); 734 if (req->drv_status == 0) { 735 /* 736 * NOTE: We collect the affected I/Os prior to issuing 737 * LUN reset, and not after it. This is to prevent 738 * aborting I/Os that get issued after the LUN reset, 739 * but prior to LUN reset completion (in the event that 740 * the host stack has not blocked I/Os to a LUN that is 741 * being reset. 742 */ 743 csio_set_state(&req->sm, csio_scsis_tm_active); 744 list_add_tail(&req->sm.sm_list, &scsim->active_q); 745 csio_wr_issue(hw, req->eq_idx, false); 746 CSIO_INC_STATS(scsim, n_tm_active); 747 } 748 return; 749 750 case CSIO_SCSIE_ABORT: 751 case CSIO_SCSIE_CLOSE: 752 /* 753 * NOTE: 754 * We could get here due to : 755 * - a window in the cleanup path of the SCSI module 756 * (csio_scsi_abort_io()). Please see NOTE in this function. 757 * - a window in the time we tried to issue an abort/close 758 * of a request to FW, and the FW completed the request 759 * itself. 760 * Print a message for now, and return INVAL either way. 761 */ 762 req->drv_status = -EINVAL; 763 csio_warn(hw, "Trying to abort/close completed IO:%p!\n", req); 764 break; 765 766 default: 767 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); 768 CSIO_DB_ASSERT(0); 769 } 770 } 771 772 static void 773 csio_scsis_io_active(struct csio_ioreq *req, enum csio_scsi_ev evt) 774 { 775 struct csio_hw *hw = req->lnode->hwp; 776 struct csio_scsim *scm = csio_hw_to_scsim(hw); 777 struct csio_rnode *rn; 778 779 switch (evt) { 780 case CSIO_SCSIE_COMPLETED: 781 CSIO_DEC_STATS(scm, n_active); 782 list_del_init(&req->sm.sm_list); 783 csio_set_state(&req->sm, csio_scsis_uninit); 784 /* 785 * In MSIX mode, with multiple queues, the SCSI compeltions 786 * could reach us sooner than the FW events sent to indicate 787 * I-T nexus loss (link down, remote device logo etc). We 788 * dont want to be returning such I/Os to the upper layer 789 * immediately, since we wouldnt have reported the I-T nexus 790 * loss itself. This forces us to serialize such completions 791 * with the reporting of the I-T nexus loss. Therefore, we 792 * internally queue up such up such completions in the rnode. 793 * The reporting of I-T nexus loss to the upper layer is then 794 * followed by the returning of I/Os in this internal queue. 795 * Having another state alongwith another queue helps us take 796 * actions for events such as ABORT received while we are 797 * in this rnode queue. 798 */ 799 if (unlikely(req->wr_status != FW_SUCCESS)) { 800 rn = req->rnode; 801 /* 802 * FW says remote device is lost, but rnode 803 * doesnt reflect it. 804 */ 805 if (csio_scsi_itnexus_loss_error(req->wr_status) && 806 csio_is_rnode_ready(rn)) { 807 csio_set_state(&req->sm, 808 csio_scsis_shost_cmpl_await); 809 list_add_tail(&req->sm.sm_list, 810 &rn->host_cmpl_q); 811 } 812 } 813 814 break; 815 816 case CSIO_SCSIE_ABORT: 817 csio_scsi_abrt_cls(req, SCSI_ABORT); 818 if (req->drv_status == 0) { 819 csio_wr_issue(hw, req->eq_idx, false); 820 csio_set_state(&req->sm, csio_scsis_aborting); 821 } 822 break; 823 824 case CSIO_SCSIE_CLOSE: 825 csio_scsi_abrt_cls(req, SCSI_CLOSE); 826 if (req->drv_status == 0) { 827 csio_wr_issue(hw, req->eq_idx, false); 828 csio_set_state(&req->sm, csio_scsis_closing); 829 } 830 break; 831 832 case CSIO_SCSIE_DRVCLEANUP: 833 req->wr_status = FW_HOSTERROR; 834 CSIO_DEC_STATS(scm, n_active); 835 csio_set_state(&req->sm, csio_scsis_uninit); 836 break; 837 838 default: 839 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); 840 CSIO_DB_ASSERT(0); 841 } 842 } 843 844 static void 845 csio_scsis_tm_active(struct csio_ioreq *req, enum csio_scsi_ev evt) 846 { 847 struct csio_hw *hw = req->lnode->hwp; 848 struct csio_scsim *scm = csio_hw_to_scsim(hw); 849 850 switch (evt) { 851 case CSIO_SCSIE_COMPLETED: 852 CSIO_DEC_STATS(scm, n_tm_active); 853 list_del_init(&req->sm.sm_list); 854 csio_set_state(&req->sm, csio_scsis_uninit); 855 856 break; 857 858 case CSIO_SCSIE_ABORT: 859 csio_scsi_abrt_cls(req, SCSI_ABORT); 860 if (req->drv_status == 0) { 861 csio_wr_issue(hw, req->eq_idx, false); 862 csio_set_state(&req->sm, csio_scsis_aborting); 863 } 864 break; 865 866 867 case CSIO_SCSIE_CLOSE: 868 csio_scsi_abrt_cls(req, SCSI_CLOSE); 869 if (req->drv_status == 0) { 870 csio_wr_issue(hw, req->eq_idx, false); 871 csio_set_state(&req->sm, csio_scsis_closing); 872 } 873 break; 874 875 case CSIO_SCSIE_DRVCLEANUP: 876 req->wr_status = FW_HOSTERROR; 877 CSIO_DEC_STATS(scm, n_tm_active); 878 csio_set_state(&req->sm, csio_scsis_uninit); 879 break; 880 881 default: 882 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); 883 CSIO_DB_ASSERT(0); 884 } 885 } 886 887 static void 888 csio_scsis_aborting(struct csio_ioreq *req, enum csio_scsi_ev evt) 889 { 890 struct csio_hw *hw = req->lnode->hwp; 891 struct csio_scsim *scm = csio_hw_to_scsim(hw); 892 893 switch (evt) { 894 case CSIO_SCSIE_COMPLETED: 895 csio_dbg(hw, 896 "ioreq %p recvd cmpltd (wr_status:%d) " 897 "in aborting st\n", req, req->wr_status); 898 /* 899 * Use -ECANCELED to explicitly tell the ABORTED event that 900 * the original I/O was returned to driver by FW. 901 * We dont really care if the I/O was returned with success by 902 * FW (because the ABORT and completion of the I/O crossed each 903 * other), or any other return value. Once we are in aborting 904 * state, the success or failure of the I/O is unimportant to 905 * us. 906 */ 907 req->drv_status = -ECANCELED; 908 break; 909 910 case CSIO_SCSIE_ABORT: 911 CSIO_INC_STATS(scm, n_abrt_dups); 912 break; 913 914 case CSIO_SCSIE_ABORTED: 915 916 csio_dbg(hw, "abort of %p return status:0x%x drv_status:%x\n", 917 req, req->wr_status, req->drv_status); 918 /* 919 * Check if original I/O WR completed before the Abort 920 * completion. 921 */ 922 if (req->drv_status != -ECANCELED) { 923 csio_warn(hw, 924 "Abort completed before original I/O," 925 " req:%p\n", req); 926 CSIO_DB_ASSERT(0); 927 } 928 929 /* 930 * There are the following possible scenarios: 931 * 1. The abort completed successfully, FW returned FW_SUCCESS. 932 * 2. The completion of an I/O and the receipt of 933 * abort for that I/O by the FW crossed each other. 934 * The FW returned FW_EINVAL. The original I/O would have 935 * returned with FW_SUCCESS or any other SCSI error. 936 * 3. The FW couldnt sent the abort out on the wire, as there 937 * was an I-T nexus loss (link down, remote device logged 938 * out etc). FW sent back an appropriate IT nexus loss status 939 * for the abort. 940 * 4. FW sent an abort, but abort timed out (remote device 941 * didnt respond). FW replied back with 942 * FW_SCSI_ABORT_TIMEDOUT. 943 * 5. FW couldnt genuinely abort the request for some reason, 944 * and sent us an error. 945 * 946 * The first 3 scenarios are treated as succesful abort 947 * operations by the host, while the last 2 are failed attempts 948 * to abort. Manipulate the return value of the request 949 * appropriately, so that host can convey these results 950 * back to the upper layer. 951 */ 952 if ((req->wr_status == FW_SUCCESS) || 953 (req->wr_status == FW_EINVAL) || 954 csio_scsi_itnexus_loss_error(req->wr_status)) 955 req->wr_status = FW_SCSI_ABORT_REQUESTED; 956 957 CSIO_DEC_STATS(scm, n_active); 958 list_del_init(&req->sm.sm_list); 959 csio_set_state(&req->sm, csio_scsis_uninit); 960 break; 961 962 case CSIO_SCSIE_DRVCLEANUP: 963 req->wr_status = FW_HOSTERROR; 964 CSIO_DEC_STATS(scm, n_active); 965 csio_set_state(&req->sm, csio_scsis_uninit); 966 break; 967 968 case CSIO_SCSIE_CLOSE: 969 /* 970 * We can receive this event from the module 971 * cleanup paths, if the FW forgot to reply to the ABORT WR 972 * and left this ioreq in this state. For now, just ignore 973 * the event. The CLOSE event is sent to this state, as 974 * the LINK may have already gone down. 975 */ 976 break; 977 978 default: 979 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); 980 CSIO_DB_ASSERT(0); 981 } 982 } 983 984 static void 985 csio_scsis_closing(struct csio_ioreq *req, enum csio_scsi_ev evt) 986 { 987 struct csio_hw *hw = req->lnode->hwp; 988 struct csio_scsim *scm = csio_hw_to_scsim(hw); 989 990 switch (evt) { 991 case CSIO_SCSIE_COMPLETED: 992 csio_dbg(hw, 993 "ioreq %p recvd cmpltd (wr_status:%d) " 994 "in closing st\n", req, req->wr_status); 995 /* 996 * Use -ECANCELED to explicitly tell the CLOSED event that 997 * the original I/O was returned to driver by FW. 998 * We dont really care if the I/O was returned with success by 999 * FW (because the CLOSE and completion of the I/O crossed each 1000 * other), or any other return value. Once we are in aborting 1001 * state, the success or failure of the I/O is unimportant to 1002 * us. 1003 */ 1004 req->drv_status = -ECANCELED; 1005 break; 1006 1007 case CSIO_SCSIE_CLOSED: 1008 /* 1009 * Check if original I/O WR completed before the Close 1010 * completion. 1011 */ 1012 if (req->drv_status != -ECANCELED) { 1013 csio_fatal(hw, 1014 "Close completed before original I/O," 1015 " req:%p\n", req); 1016 CSIO_DB_ASSERT(0); 1017 } 1018 1019 /* 1020 * Either close succeeded, or we issued close to FW at the 1021 * same time FW compelted it to us. Either way, the I/O 1022 * is closed. 1023 */ 1024 CSIO_DB_ASSERT((req->wr_status == FW_SUCCESS) || 1025 (req->wr_status == FW_EINVAL)); 1026 req->wr_status = FW_SCSI_CLOSE_REQUESTED; 1027 1028 CSIO_DEC_STATS(scm, n_active); 1029 list_del_init(&req->sm.sm_list); 1030 csio_set_state(&req->sm, csio_scsis_uninit); 1031 break; 1032 1033 case CSIO_SCSIE_CLOSE: 1034 break; 1035 1036 case CSIO_SCSIE_DRVCLEANUP: 1037 req->wr_status = FW_HOSTERROR; 1038 CSIO_DEC_STATS(scm, n_active); 1039 csio_set_state(&req->sm, csio_scsis_uninit); 1040 break; 1041 1042 default: 1043 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req); 1044 CSIO_DB_ASSERT(0); 1045 } 1046 } 1047 1048 static void 1049 csio_scsis_shost_cmpl_await(struct csio_ioreq *req, enum csio_scsi_ev evt) 1050 { 1051 switch (evt) { 1052 case CSIO_SCSIE_ABORT: 1053 case CSIO_SCSIE_CLOSE: 1054 /* 1055 * Just succeed the abort request, and hope that 1056 * the remote device unregister path will cleanup 1057 * this I/O to the upper layer within a sane 1058 * amount of time. 1059 */ 1060 /* 1061 * A close can come in during a LINK DOWN. The FW would have 1062 * returned us the I/O back, but not the remote device lost 1063 * FW event. In this interval, if the I/O times out at the upper 1064 * layer, a close can come in. Take the same action as abort: 1065 * return success, and hope that the remote device unregister 1066 * path will cleanup this I/O. If the FW still doesnt send 1067 * the msg, the close times out, and the upper layer resorts 1068 * to the next level of error recovery. 1069 */ 1070 req->drv_status = 0; 1071 break; 1072 case CSIO_SCSIE_DRVCLEANUP: 1073 csio_set_state(&req->sm, csio_scsis_uninit); 1074 break; 1075 default: 1076 csio_dbg(req->lnode->hwp, "Unhandled event:%d sent to req:%p\n", 1077 evt, req); 1078 CSIO_DB_ASSERT(0); 1079 } 1080 } 1081 1082 /* 1083 * csio_scsi_cmpl_handler - WR completion handler for SCSI. 1084 * @hw: HW module. 1085 * @wr: The completed WR from the ingress queue. 1086 * @len: Length of the WR. 1087 * @flb: Freelist buffer array. 1088 * @priv: Private object 1089 * @scsiwr: Pointer to SCSI WR. 1090 * 1091 * This is the WR completion handler called per completion from the 1092 * ISR. It is called with lock held. It walks past the RSS and CPL message 1093 * header where the actual WR is present. 1094 * It then gets the status, WR handle (ioreq pointer) and the len of 1095 * the WR, based on WR opcode. Only on a non-good status is the entire 1096 * WR copied into the WR cache (ioreq->fw_wr). 1097 * The ioreq corresponding to the WR is returned to the caller. 1098 * NOTE: The SCSI queue doesnt allocate a freelist today, hence 1099 * no freelist buffer is expected. 1100 */ 1101 struct csio_ioreq * 1102 csio_scsi_cmpl_handler(struct csio_hw *hw, void *wr, uint32_t len, 1103 struct csio_fl_dma_buf *flb, void *priv, uint8_t **scsiwr) 1104 { 1105 struct csio_ioreq *ioreq = NULL; 1106 struct cpl_fw6_msg *cpl; 1107 uint8_t *tempwr; 1108 uint8_t status; 1109 struct csio_scsim *scm = csio_hw_to_scsim(hw); 1110 1111 /* skip RSS header */ 1112 cpl = (struct cpl_fw6_msg *)((uintptr_t)wr + sizeof(__be64)); 1113 1114 if (unlikely(cpl->opcode != CPL_FW6_MSG)) { 1115 csio_warn(hw, "Error: Invalid CPL msg %x recvd on SCSI q\n", 1116 cpl->opcode); 1117 CSIO_INC_STATS(scm, n_inval_cplop); 1118 return NULL; 1119 } 1120 1121 tempwr = (uint8_t *)(cpl->data); 1122 status = csio_wr_status(tempwr); 1123 *scsiwr = tempwr; 1124 1125 if (likely((*tempwr == FW_SCSI_READ_WR) || 1126 (*tempwr == FW_SCSI_WRITE_WR) || 1127 (*tempwr == FW_SCSI_CMD_WR))) { 1128 ioreq = (struct csio_ioreq *)((uintptr_t) 1129 (((struct fw_scsi_read_wr *)tempwr)->cookie)); 1130 CSIO_DB_ASSERT(virt_addr_valid(ioreq)); 1131 1132 ioreq->wr_status = status; 1133 1134 return ioreq; 1135 } 1136 1137 if (*tempwr == FW_SCSI_ABRT_CLS_WR) { 1138 ioreq = (struct csio_ioreq *)((uintptr_t) 1139 (((struct fw_scsi_abrt_cls_wr *)tempwr)->cookie)); 1140 CSIO_DB_ASSERT(virt_addr_valid(ioreq)); 1141 1142 ioreq->wr_status = status; 1143 return ioreq; 1144 } 1145 1146 csio_warn(hw, "WR with invalid opcode in SCSI IQ: %x\n", *tempwr); 1147 CSIO_INC_STATS(scm, n_inval_scsiop); 1148 return NULL; 1149 } 1150 1151 /* 1152 * csio_scsi_cleanup_io_q - Cleanup the given queue. 1153 * @scm: SCSI module. 1154 * @q: Queue to be cleaned up. 1155 * 1156 * Called with lock held. Has to exit with lock held. 1157 */ 1158 void 1159 csio_scsi_cleanup_io_q(struct csio_scsim *scm, struct list_head *q) 1160 { 1161 struct csio_hw *hw = scm->hw; 1162 struct csio_ioreq *ioreq; 1163 struct list_head *tmp, *next; 1164 struct scsi_cmnd *scmnd; 1165 1166 /* Call back the completion routines of the active_q */ 1167 list_for_each_safe(tmp, next, q) { 1168 ioreq = (struct csio_ioreq *)tmp; 1169 csio_scsi_drvcleanup(ioreq); 1170 list_del_init(&ioreq->sm.sm_list); 1171 scmnd = csio_scsi_cmnd(ioreq); 1172 spin_unlock_irq(&hw->lock); 1173 1174 /* 1175 * Upper layers may have cleared this command, hence this 1176 * check to avoid accessing stale references. 1177 */ 1178 if (scmnd != NULL) 1179 ioreq->io_cbfn(hw, ioreq); 1180 1181 spin_lock_irq(&scm->freelist_lock); 1182 csio_put_scsi_ioreq(scm, ioreq); 1183 spin_unlock_irq(&scm->freelist_lock); 1184 1185 spin_lock_irq(&hw->lock); 1186 } 1187 } 1188 1189 #define CSIO_SCSI_ABORT_Q_POLL_MS 2000 1190 1191 static void 1192 csio_abrt_cls(struct csio_ioreq *ioreq, struct scsi_cmnd *scmnd) 1193 { 1194 struct csio_lnode *ln = ioreq->lnode; 1195 struct csio_hw *hw = ln->hwp; 1196 int ready = 0; 1197 struct csio_scsim *scsim = csio_hw_to_scsim(hw); 1198 int rv; 1199 1200 if (csio_scsi_cmnd(ioreq) != scmnd) { 1201 CSIO_INC_STATS(scsim, n_abrt_race_comp); 1202 return; 1203 } 1204 1205 ready = csio_is_lnode_ready(ln); 1206 1207 rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE)); 1208 if (rv != 0) { 1209 if (ready) 1210 CSIO_INC_STATS(scsim, n_abrt_busy_error); 1211 else 1212 CSIO_INC_STATS(scsim, n_cls_busy_error); 1213 } 1214 } 1215 1216 /* 1217 * csio_scsi_abort_io_q - Abort all I/Os on given queue 1218 * @scm: SCSI module. 1219 * @q: Queue to abort. 1220 * @tmo: Timeout in ms 1221 * 1222 * Attempt to abort all I/Os on given queue, and wait for a max 1223 * of tmo milliseconds for them to complete. Returns success 1224 * if all I/Os are aborted. Else returns -ETIMEDOUT. 1225 * Should be entered with lock held. Exits with lock held. 1226 * NOTE: 1227 * Lock has to be held across the loop that aborts I/Os, since dropping the lock 1228 * in between can cause the list to be corrupted. As a result, the caller 1229 * of this function has to ensure that the number of I/os to be aborted 1230 * is finite enough to not cause lock-held-for-too-long issues. 1231 */ 1232 static int 1233 csio_scsi_abort_io_q(struct csio_scsim *scm, struct list_head *q, uint32_t tmo) 1234 { 1235 struct csio_hw *hw = scm->hw; 1236 struct list_head *tmp, *next; 1237 int count = DIV_ROUND_UP(tmo, CSIO_SCSI_ABORT_Q_POLL_MS); 1238 struct scsi_cmnd *scmnd; 1239 1240 if (list_empty(q)) 1241 return 0; 1242 1243 csio_dbg(hw, "Aborting SCSI I/Os\n"); 1244 1245 /* Now abort/close I/Os in the queue passed */ 1246 list_for_each_safe(tmp, next, q) { 1247 scmnd = csio_scsi_cmnd((struct csio_ioreq *)tmp); 1248 csio_abrt_cls((struct csio_ioreq *)tmp, scmnd); 1249 } 1250 1251 /* Wait till all active I/Os are completed/aborted/closed */ 1252 while (!list_empty(q) && count--) { 1253 spin_unlock_irq(&hw->lock); 1254 msleep(CSIO_SCSI_ABORT_Q_POLL_MS); 1255 spin_lock_irq(&hw->lock); 1256 } 1257 1258 /* all aborts completed */ 1259 if (list_empty(q)) 1260 return 0; 1261 1262 return -ETIMEDOUT; 1263 } 1264 1265 /* 1266 * csio_scsim_cleanup_io - Cleanup all I/Os in SCSI module. 1267 * @scm: SCSI module. 1268 * @abort: abort required. 1269 * Called with lock held, should exit with lock held. 1270 * Can sleep when waiting for I/Os to complete. 1271 */ 1272 int 1273 csio_scsim_cleanup_io(struct csio_scsim *scm, bool abort) 1274 { 1275 struct csio_hw *hw = scm->hw; 1276 int rv = 0; 1277 int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS); 1278 1279 /* No I/Os pending */ 1280 if (list_empty(&scm->active_q)) 1281 return 0; 1282 1283 /* Wait until all active I/Os are completed */ 1284 while (!list_empty(&scm->active_q) && count--) { 1285 spin_unlock_irq(&hw->lock); 1286 msleep(CSIO_SCSI_ABORT_Q_POLL_MS); 1287 spin_lock_irq(&hw->lock); 1288 } 1289 1290 /* all I/Os completed */ 1291 if (list_empty(&scm->active_q)) 1292 return 0; 1293 1294 /* Else abort */ 1295 if (abort) { 1296 rv = csio_scsi_abort_io_q(scm, &scm->active_q, 30000); 1297 if (rv == 0) 1298 return rv; 1299 csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n"); 1300 } 1301 1302 csio_scsi_cleanup_io_q(scm, &scm->active_q); 1303 1304 CSIO_DB_ASSERT(list_empty(&scm->active_q)); 1305 1306 return rv; 1307 } 1308 1309 /* 1310 * csio_scsim_cleanup_io_lnode - Cleanup all I/Os of given lnode. 1311 * @scm: SCSI module. 1312 * @lnode: lnode 1313 * 1314 * Called with lock held, should exit with lock held. 1315 * Can sleep (with dropped lock) when waiting for I/Os to complete. 1316 */ 1317 int 1318 csio_scsim_cleanup_io_lnode(struct csio_scsim *scm, struct csio_lnode *ln) 1319 { 1320 struct csio_hw *hw = scm->hw; 1321 struct csio_scsi_level_data sld; 1322 int rv; 1323 int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS); 1324 1325 csio_dbg(hw, "Gathering all SCSI I/Os on lnode %p\n", ln); 1326 1327 sld.level = CSIO_LEV_LNODE; 1328 sld.lnode = ln; 1329 INIT_LIST_HEAD(&ln->cmpl_q); 1330 csio_scsi_gather_active_ios(scm, &sld, &ln->cmpl_q); 1331 1332 /* No I/Os pending on this lnode */ 1333 if (list_empty(&ln->cmpl_q)) 1334 return 0; 1335 1336 /* Wait until all active I/Os on this lnode are completed */ 1337 while (!list_empty(&ln->cmpl_q) && count--) { 1338 spin_unlock_irq(&hw->lock); 1339 msleep(CSIO_SCSI_ABORT_Q_POLL_MS); 1340 spin_lock_irq(&hw->lock); 1341 } 1342 1343 /* all I/Os completed */ 1344 if (list_empty(&ln->cmpl_q)) 1345 return 0; 1346 1347 csio_dbg(hw, "Some I/Os pending on ln:%p, aborting them..\n", ln); 1348 1349 /* I/Os are pending, abort them */ 1350 rv = csio_scsi_abort_io_q(scm, &ln->cmpl_q, 30000); 1351 if (rv != 0) { 1352 csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n"); 1353 csio_scsi_cleanup_io_q(scm, &ln->cmpl_q); 1354 } 1355 1356 CSIO_DB_ASSERT(list_empty(&ln->cmpl_q)); 1357 1358 return rv; 1359 } 1360 1361 static ssize_t 1362 csio_show_hw_state(struct device *dev, 1363 struct device_attribute *attr, char *buf) 1364 { 1365 struct csio_lnode *ln = shost_priv(class_to_shost(dev)); 1366 struct csio_hw *hw = csio_lnode_to_hw(ln); 1367 1368 if (csio_is_hw_ready(hw)) 1369 return snprintf(buf, PAGE_SIZE, "ready\n"); 1370 else 1371 return snprintf(buf, PAGE_SIZE, "not ready\n"); 1372 } 1373 1374 /* Device reset */ 1375 static ssize_t 1376 csio_device_reset(struct device *dev, 1377 struct device_attribute *attr, const char *buf, size_t count) 1378 { 1379 struct csio_lnode *ln = shost_priv(class_to_shost(dev)); 1380 struct csio_hw *hw = csio_lnode_to_hw(ln); 1381 1382 if (*buf != '1') 1383 return -EINVAL; 1384 1385 /* Delete NPIV lnodes */ 1386 csio_lnodes_exit(hw, 1); 1387 1388 /* Block upper IOs */ 1389 csio_lnodes_block_request(hw); 1390 1391 spin_lock_irq(&hw->lock); 1392 csio_hw_reset(hw); 1393 spin_unlock_irq(&hw->lock); 1394 1395 /* Unblock upper IOs */ 1396 csio_lnodes_unblock_request(hw); 1397 return count; 1398 } 1399 1400 /* disable port */ 1401 static ssize_t 1402 csio_disable_port(struct device *dev, 1403 struct device_attribute *attr, const char *buf, size_t count) 1404 { 1405 struct csio_lnode *ln = shost_priv(class_to_shost(dev)); 1406 struct csio_hw *hw = csio_lnode_to_hw(ln); 1407 bool disable; 1408 1409 if (*buf == '1' || *buf == '0') 1410 disable = (*buf == '1') ? true : false; 1411 else 1412 return -EINVAL; 1413 1414 /* Block upper IOs */ 1415 csio_lnodes_block_by_port(hw, ln->portid); 1416 1417 spin_lock_irq(&hw->lock); 1418 csio_disable_lnodes(hw, ln->portid, disable); 1419 spin_unlock_irq(&hw->lock); 1420 1421 /* Unblock upper IOs */ 1422 csio_lnodes_unblock_by_port(hw, ln->portid); 1423 return count; 1424 } 1425 1426 /* Show debug level */ 1427 static ssize_t 1428 csio_show_dbg_level(struct device *dev, 1429 struct device_attribute *attr, char *buf) 1430 { 1431 struct csio_lnode *ln = shost_priv(class_to_shost(dev)); 1432 1433 return snprintf(buf, PAGE_SIZE, "%x\n", ln->params.log_level); 1434 } 1435 1436 /* Store debug level */ 1437 static ssize_t 1438 csio_store_dbg_level(struct device *dev, 1439 struct device_attribute *attr, const char *buf, size_t count) 1440 { 1441 struct csio_lnode *ln = shost_priv(class_to_shost(dev)); 1442 struct csio_hw *hw = csio_lnode_to_hw(ln); 1443 uint32_t dbg_level = 0; 1444 1445 if (!isdigit(buf[0])) 1446 return -EINVAL; 1447 1448 if (sscanf(buf, "%i", &dbg_level)) 1449 return -EINVAL; 1450 1451 ln->params.log_level = dbg_level; 1452 hw->params.log_level = dbg_level; 1453 1454 return 0; 1455 } 1456 1457 static DEVICE_ATTR(hw_state, S_IRUGO, csio_show_hw_state, NULL); 1458 static DEVICE_ATTR(device_reset, S_IWUSR, NULL, csio_device_reset); 1459 static DEVICE_ATTR(disable_port, S_IWUSR, NULL, csio_disable_port); 1460 static DEVICE_ATTR(dbg_level, S_IRUGO | S_IWUSR, csio_show_dbg_level, 1461 csio_store_dbg_level); 1462 1463 static struct device_attribute *csio_fcoe_lport_attrs[] = { 1464 &dev_attr_hw_state, 1465 &dev_attr_device_reset, 1466 &dev_attr_disable_port, 1467 &dev_attr_dbg_level, 1468 NULL, 1469 }; 1470 1471 static ssize_t 1472 csio_show_num_reg_rnodes(struct device *dev, 1473 struct device_attribute *attr, char *buf) 1474 { 1475 struct csio_lnode *ln = shost_priv(class_to_shost(dev)); 1476 1477 return snprintf(buf, PAGE_SIZE, "%d\n", ln->num_reg_rnodes); 1478 } 1479 1480 static DEVICE_ATTR(num_reg_rnodes, S_IRUGO, csio_show_num_reg_rnodes, NULL); 1481 1482 static struct device_attribute *csio_fcoe_vport_attrs[] = { 1483 &dev_attr_num_reg_rnodes, 1484 &dev_attr_dbg_level, 1485 NULL, 1486 }; 1487 1488 static inline uint32_t 1489 csio_scsi_copy_to_sgl(struct csio_hw *hw, struct csio_ioreq *req) 1490 { 1491 struct scsi_cmnd *scmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req); 1492 struct scatterlist *sg; 1493 uint32_t bytes_left; 1494 uint32_t bytes_copy; 1495 uint32_t buf_off = 0; 1496 uint32_t start_off = 0; 1497 uint32_t sg_off = 0; 1498 void *sg_addr; 1499 void *buf_addr; 1500 struct csio_dma_buf *dma_buf; 1501 1502 bytes_left = scsi_bufflen(scmnd); 1503 sg = scsi_sglist(scmnd); 1504 dma_buf = (struct csio_dma_buf *)csio_list_next(&req->gen_list); 1505 1506 /* Copy data from driver buffer to SGs of SCSI CMD */ 1507 while (bytes_left > 0 && sg && dma_buf) { 1508 if (buf_off >= dma_buf->len) { 1509 buf_off = 0; 1510 dma_buf = (struct csio_dma_buf *) 1511 csio_list_next(dma_buf); 1512 continue; 1513 } 1514 1515 if (start_off >= sg->length) { 1516 start_off -= sg->length; 1517 sg = sg_next(sg); 1518 continue; 1519 } 1520 1521 buf_addr = dma_buf->vaddr + buf_off; 1522 sg_off = sg->offset + start_off; 1523 bytes_copy = min((dma_buf->len - buf_off), 1524 sg->length - start_off); 1525 bytes_copy = min((uint32_t)(PAGE_SIZE - (sg_off & ~PAGE_MASK)), 1526 bytes_copy); 1527 1528 sg_addr = kmap_atomic(sg_page(sg) + (sg_off >> PAGE_SHIFT)); 1529 if (!sg_addr) { 1530 csio_err(hw, "failed to kmap sg:%p of ioreq:%p\n", 1531 sg, req); 1532 break; 1533 } 1534 1535 csio_dbg(hw, "copy_to_sgl:sg_addr %p sg_off %d buf %p len %d\n", 1536 sg_addr, sg_off, buf_addr, bytes_copy); 1537 memcpy(sg_addr + (sg_off & ~PAGE_MASK), buf_addr, bytes_copy); 1538 kunmap_atomic(sg_addr); 1539 1540 start_off += bytes_copy; 1541 buf_off += bytes_copy; 1542 bytes_left -= bytes_copy; 1543 } 1544 1545 if (bytes_left > 0) 1546 return DID_ERROR; 1547 else 1548 return DID_OK; 1549 } 1550 1551 /* 1552 * csio_scsi_err_handler - SCSI error handler. 1553 * @hw: HW module. 1554 * @req: IO request. 1555 * 1556 */ 1557 static inline void 1558 csio_scsi_err_handler(struct csio_hw *hw, struct csio_ioreq *req) 1559 { 1560 struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req); 1561 struct csio_scsim *scm = csio_hw_to_scsim(hw); 1562 struct fcp_resp_with_ext *fcp_resp; 1563 struct fcp_resp_rsp_info *rsp_info; 1564 struct csio_dma_buf *dma_buf; 1565 uint8_t flags, scsi_status = 0; 1566 uint32_t host_status = DID_OK; 1567 uint32_t rsp_len = 0, sns_len = 0; 1568 struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata); 1569 1570 1571 switch (req->wr_status) { 1572 case FW_HOSTERROR: 1573 if (unlikely(!csio_is_hw_ready(hw))) 1574 return; 1575 1576 host_status = DID_ERROR; 1577 CSIO_INC_STATS(scm, n_hosterror); 1578 1579 break; 1580 case FW_SCSI_RSP_ERR: 1581 dma_buf = &req->dma_buf; 1582 fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr; 1583 rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1); 1584 flags = fcp_resp->resp.fr_flags; 1585 scsi_status = fcp_resp->resp.fr_status; 1586 1587 if (flags & FCP_RSP_LEN_VAL) { 1588 rsp_len = be32_to_cpu(fcp_resp->ext.fr_rsp_len); 1589 if ((rsp_len != 0 && rsp_len != 4 && rsp_len != 8) || 1590 (rsp_info->rsp_code != FCP_TMF_CMPL)) { 1591 host_status = DID_ERROR; 1592 goto out; 1593 } 1594 } 1595 1596 if ((flags & FCP_SNS_LEN_VAL) && fcp_resp->ext.fr_sns_len) { 1597 sns_len = be32_to_cpu(fcp_resp->ext.fr_sns_len); 1598 if (sns_len > SCSI_SENSE_BUFFERSIZE) 1599 sns_len = SCSI_SENSE_BUFFERSIZE; 1600 1601 memcpy(cmnd->sense_buffer, 1602 &rsp_info->_fr_resvd[0] + rsp_len, sns_len); 1603 CSIO_INC_STATS(scm, n_autosense); 1604 } 1605 1606 scsi_set_resid(cmnd, 0); 1607 1608 /* Under run */ 1609 if (flags & FCP_RESID_UNDER) { 1610 scsi_set_resid(cmnd, 1611 be32_to_cpu(fcp_resp->ext.fr_resid)); 1612 1613 if (!(flags & FCP_SNS_LEN_VAL) && 1614 (scsi_status == SAM_STAT_GOOD) && 1615 ((scsi_bufflen(cmnd) - scsi_get_resid(cmnd)) 1616 < cmnd->underflow)) 1617 host_status = DID_ERROR; 1618 } else if (flags & FCP_RESID_OVER) 1619 host_status = DID_ERROR; 1620 1621 CSIO_INC_STATS(scm, n_rsperror); 1622 break; 1623 1624 case FW_SCSI_OVER_FLOW_ERR: 1625 csio_warn(hw, 1626 "Over-flow error,cmnd:0x%x expected len:0x%x" 1627 " resid:0x%x\n", cmnd->cmnd[0], 1628 scsi_bufflen(cmnd), scsi_get_resid(cmnd)); 1629 host_status = DID_ERROR; 1630 CSIO_INC_STATS(scm, n_ovflerror); 1631 break; 1632 1633 case FW_SCSI_UNDER_FLOW_ERR: 1634 csio_warn(hw, 1635 "Under-flow error,cmnd:0x%x expected" 1636 " len:0x%x resid:0x%x lun:0x%llx ssn:0x%x\n", 1637 cmnd->cmnd[0], scsi_bufflen(cmnd), 1638 scsi_get_resid(cmnd), cmnd->device->lun, 1639 rn->flowid); 1640 host_status = DID_ERROR; 1641 CSIO_INC_STATS(scm, n_unflerror); 1642 break; 1643 1644 case FW_SCSI_ABORT_REQUESTED: 1645 case FW_SCSI_ABORTED: 1646 case FW_SCSI_CLOSE_REQUESTED: 1647 csio_dbg(hw, "Req %p cmd:%p op:%x %s\n", req, cmnd, 1648 cmnd->cmnd[0], 1649 (req->wr_status == FW_SCSI_CLOSE_REQUESTED) ? 1650 "closed" : "aborted"); 1651 /* 1652 * csio_eh_abort_handler checks this value to 1653 * succeed or fail the abort request. 1654 */ 1655 host_status = DID_REQUEUE; 1656 if (req->wr_status == FW_SCSI_CLOSE_REQUESTED) 1657 CSIO_INC_STATS(scm, n_closed); 1658 else 1659 CSIO_INC_STATS(scm, n_aborted); 1660 break; 1661 1662 case FW_SCSI_ABORT_TIMEDOUT: 1663 /* FW timed out the abort itself */ 1664 csio_dbg(hw, "FW timed out abort req:%p cmnd:%p status:%x\n", 1665 req, cmnd, req->wr_status); 1666 host_status = DID_ERROR; 1667 CSIO_INC_STATS(scm, n_abrt_timedout); 1668 break; 1669 1670 case FW_RDEV_NOT_READY: 1671 /* 1672 * In firmware, a RDEV can get into this state 1673 * temporarily, before moving into dissapeared/lost 1674 * state. So, the driver should complete the request equivalent 1675 * to device-disappeared! 1676 */ 1677 CSIO_INC_STATS(scm, n_rdev_nr_error); 1678 host_status = DID_ERROR; 1679 break; 1680 1681 case FW_ERR_RDEV_LOST: 1682 CSIO_INC_STATS(scm, n_rdev_lost_error); 1683 host_status = DID_ERROR; 1684 break; 1685 1686 case FW_ERR_RDEV_LOGO: 1687 CSIO_INC_STATS(scm, n_rdev_logo_error); 1688 host_status = DID_ERROR; 1689 break; 1690 1691 case FW_ERR_RDEV_IMPL_LOGO: 1692 host_status = DID_ERROR; 1693 break; 1694 1695 case FW_ERR_LINK_DOWN: 1696 CSIO_INC_STATS(scm, n_link_down_error); 1697 host_status = DID_ERROR; 1698 break; 1699 1700 case FW_FCOE_NO_XCHG: 1701 CSIO_INC_STATS(scm, n_no_xchg_error); 1702 host_status = DID_ERROR; 1703 break; 1704 1705 default: 1706 csio_err(hw, "Unknown SCSI FW WR status:%d req:%p cmnd:%p\n", 1707 req->wr_status, req, cmnd); 1708 CSIO_DB_ASSERT(0); 1709 1710 CSIO_INC_STATS(scm, n_unknown_error); 1711 host_status = DID_ERROR; 1712 break; 1713 } 1714 1715 out: 1716 if (req->nsge > 0) 1717 scsi_dma_unmap(cmnd); 1718 1719 cmnd->result = (((host_status) << 16) | scsi_status); 1720 cmnd->scsi_done(cmnd); 1721 1722 /* Wake up waiting threads */ 1723 csio_scsi_cmnd(req) = NULL; 1724 complete(&req->cmplobj); 1725 } 1726 1727 /* 1728 * csio_scsi_cbfn - SCSI callback function. 1729 * @hw: HW module. 1730 * @req: IO request. 1731 * 1732 */ 1733 static void 1734 csio_scsi_cbfn(struct csio_hw *hw, struct csio_ioreq *req) 1735 { 1736 struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req); 1737 uint8_t scsi_status = SAM_STAT_GOOD; 1738 uint32_t host_status = DID_OK; 1739 1740 if (likely(req->wr_status == FW_SUCCESS)) { 1741 if (req->nsge > 0) { 1742 scsi_dma_unmap(cmnd); 1743 if (req->dcopy) 1744 host_status = csio_scsi_copy_to_sgl(hw, req); 1745 } 1746 1747 cmnd->result = (((host_status) << 16) | scsi_status); 1748 cmnd->scsi_done(cmnd); 1749 csio_scsi_cmnd(req) = NULL; 1750 CSIO_INC_STATS(csio_hw_to_scsim(hw), n_tot_success); 1751 } else { 1752 /* Error handling */ 1753 csio_scsi_err_handler(hw, req); 1754 } 1755 } 1756 1757 /** 1758 * csio_queuecommand - Entry point to kickstart an I/O request. 1759 * @host: The scsi_host pointer. 1760 * @cmnd: The I/O request from ML. 1761 * 1762 * This routine does the following: 1763 * - Checks for HW and Rnode module readiness. 1764 * - Gets a free ioreq structure (which is already initialized 1765 * to uninit during its allocation). 1766 * - Maps SG elements. 1767 * - Initializes ioreq members. 1768 * - Kicks off the SCSI state machine for this IO. 1769 * - Returns busy status on error. 1770 */ 1771 static int 1772 csio_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmnd) 1773 { 1774 struct csio_lnode *ln = shost_priv(host); 1775 struct csio_hw *hw = csio_lnode_to_hw(ln); 1776 struct csio_scsim *scsim = csio_hw_to_scsim(hw); 1777 struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata); 1778 struct csio_ioreq *ioreq = NULL; 1779 unsigned long flags; 1780 int nsge = 0; 1781 int rv = SCSI_MLQUEUE_HOST_BUSY, nr; 1782 int retval; 1783 int cpu; 1784 struct csio_scsi_qset *sqset; 1785 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); 1786 1787 if (!blk_rq_cpu_valid(cmnd->request)) 1788 cpu = smp_processor_id(); 1789 else 1790 cpu = cmnd->request->cpu; 1791 1792 sqset = &hw->sqset[ln->portid][cpu]; 1793 1794 nr = fc_remote_port_chkready(rport); 1795 if (nr) { 1796 cmnd->result = nr; 1797 CSIO_INC_STATS(scsim, n_rn_nr_error); 1798 goto err_done; 1799 } 1800 1801 if (unlikely(!csio_is_hw_ready(hw))) { 1802 cmnd->result = (DID_REQUEUE << 16); 1803 CSIO_INC_STATS(scsim, n_hw_nr_error); 1804 goto err_done; 1805 } 1806 1807 /* Get req->nsge, if there are SG elements to be mapped */ 1808 nsge = scsi_dma_map(cmnd); 1809 if (unlikely(nsge < 0)) { 1810 CSIO_INC_STATS(scsim, n_dmamap_error); 1811 goto err; 1812 } 1813 1814 /* Do we support so many mappings? */ 1815 if (unlikely(nsge > scsim->max_sge)) { 1816 csio_warn(hw, 1817 "More SGEs than can be supported." 1818 " SGEs: %d, Max SGEs: %d\n", nsge, scsim->max_sge); 1819 CSIO_INC_STATS(scsim, n_unsupp_sge_error); 1820 goto err_dma_unmap; 1821 } 1822 1823 /* Get a free ioreq structure - SM is already set to uninit */ 1824 ioreq = csio_get_scsi_ioreq_lock(hw, scsim); 1825 if (!ioreq) { 1826 csio_err(hw, "Out of I/O request elements. Active #:%d\n", 1827 scsim->stats.n_active); 1828 CSIO_INC_STATS(scsim, n_no_req_error); 1829 goto err_dma_unmap; 1830 } 1831 1832 ioreq->nsge = nsge; 1833 ioreq->lnode = ln; 1834 ioreq->rnode = rn; 1835 ioreq->iq_idx = sqset->iq_idx; 1836 ioreq->eq_idx = sqset->eq_idx; 1837 ioreq->wr_status = 0; 1838 ioreq->drv_status = 0; 1839 csio_scsi_cmnd(ioreq) = (void *)cmnd; 1840 ioreq->tmo = 0; 1841 ioreq->datadir = cmnd->sc_data_direction; 1842 1843 if (cmnd->sc_data_direction == DMA_TO_DEVICE) { 1844 CSIO_INC_STATS(ln, n_output_requests); 1845 ln->stats.n_output_bytes += scsi_bufflen(cmnd); 1846 } else if (cmnd->sc_data_direction == DMA_FROM_DEVICE) { 1847 CSIO_INC_STATS(ln, n_input_requests); 1848 ln->stats.n_input_bytes += scsi_bufflen(cmnd); 1849 } else 1850 CSIO_INC_STATS(ln, n_control_requests); 1851 1852 /* Set cbfn */ 1853 ioreq->io_cbfn = csio_scsi_cbfn; 1854 1855 /* Needed during abort */ 1856 cmnd->host_scribble = (unsigned char *)ioreq; 1857 cmnd->SCp.Message = 0; 1858 1859 /* Kick off SCSI IO SM on the ioreq */ 1860 spin_lock_irqsave(&hw->lock, flags); 1861 retval = csio_scsi_start_io(ioreq); 1862 spin_unlock_irqrestore(&hw->lock, flags); 1863 1864 if (retval != 0) { 1865 csio_err(hw, "ioreq: %p couldnt be started, status:%d\n", 1866 ioreq, retval); 1867 CSIO_INC_STATS(scsim, n_busy_error); 1868 goto err_put_req; 1869 } 1870 1871 return 0; 1872 1873 err_put_req: 1874 csio_put_scsi_ioreq_lock(hw, scsim, ioreq); 1875 err_dma_unmap: 1876 if (nsge > 0) 1877 scsi_dma_unmap(cmnd); 1878 err: 1879 return rv; 1880 1881 err_done: 1882 cmnd->scsi_done(cmnd); 1883 return 0; 1884 } 1885 1886 static int 1887 csio_do_abrt_cls(struct csio_hw *hw, struct csio_ioreq *ioreq, bool abort) 1888 { 1889 int rv; 1890 int cpu = smp_processor_id(); 1891 struct csio_lnode *ln = ioreq->lnode; 1892 struct csio_scsi_qset *sqset = &hw->sqset[ln->portid][cpu]; 1893 1894 ioreq->tmo = CSIO_SCSI_ABRT_TMO_MS; 1895 /* 1896 * Use current processor queue for posting the abort/close, but retain 1897 * the ingress queue ID of the original I/O being aborted/closed - we 1898 * need the abort/close completion to be received on the same queue 1899 * as the original I/O. 1900 */ 1901 ioreq->eq_idx = sqset->eq_idx; 1902 1903 if (abort == SCSI_ABORT) 1904 rv = csio_scsi_abort(ioreq); 1905 else 1906 rv = csio_scsi_close(ioreq); 1907 1908 return rv; 1909 } 1910 1911 static int 1912 csio_eh_abort_handler(struct scsi_cmnd *cmnd) 1913 { 1914 struct csio_ioreq *ioreq; 1915 struct csio_lnode *ln = shost_priv(cmnd->device->host); 1916 struct csio_hw *hw = csio_lnode_to_hw(ln); 1917 struct csio_scsim *scsim = csio_hw_to_scsim(hw); 1918 int ready = 0, ret; 1919 unsigned long tmo = 0; 1920 int rv; 1921 struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata); 1922 1923 ret = fc_block_scsi_eh(cmnd); 1924 if (ret) 1925 return ret; 1926 1927 ioreq = (struct csio_ioreq *)cmnd->host_scribble; 1928 if (!ioreq) 1929 return SUCCESS; 1930 1931 if (!rn) 1932 return FAILED; 1933 1934 csio_dbg(hw, 1935 "Request to abort ioreq:%p cmd:%p cdb:%08llx" 1936 " ssni:0x%x lun:%llu iq:0x%x\n", 1937 ioreq, cmnd, *((uint64_t *)cmnd->cmnd), rn->flowid, 1938 cmnd->device->lun, csio_q_physiqid(hw, ioreq->iq_idx)); 1939 1940 if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) != cmnd) { 1941 CSIO_INC_STATS(scsim, n_abrt_race_comp); 1942 return SUCCESS; 1943 } 1944 1945 ready = csio_is_lnode_ready(ln); 1946 tmo = CSIO_SCSI_ABRT_TMO_MS; 1947 1948 reinit_completion(&ioreq->cmplobj); 1949 spin_lock_irq(&hw->lock); 1950 rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE)); 1951 spin_unlock_irq(&hw->lock); 1952 1953 if (rv != 0) { 1954 if (rv == -EINVAL) { 1955 /* Return success, if abort/close request issued on 1956 * already completed IO 1957 */ 1958 return SUCCESS; 1959 } 1960 if (ready) 1961 CSIO_INC_STATS(scsim, n_abrt_busy_error); 1962 else 1963 CSIO_INC_STATS(scsim, n_cls_busy_error); 1964 1965 goto inval_scmnd; 1966 } 1967 1968 wait_for_completion_timeout(&ioreq->cmplobj, msecs_to_jiffies(tmo)); 1969 1970 /* FW didnt respond to abort within our timeout */ 1971 if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) { 1972 1973 csio_err(hw, "Abort timed out -- req: %p\n", ioreq); 1974 CSIO_INC_STATS(scsim, n_abrt_timedout); 1975 1976 inval_scmnd: 1977 if (ioreq->nsge > 0) 1978 scsi_dma_unmap(cmnd); 1979 1980 spin_lock_irq(&hw->lock); 1981 csio_scsi_cmnd(ioreq) = NULL; 1982 spin_unlock_irq(&hw->lock); 1983 1984 cmnd->result = (DID_ERROR << 16); 1985 cmnd->scsi_done(cmnd); 1986 1987 return FAILED; 1988 } 1989 1990 /* FW successfully aborted the request */ 1991 if (host_byte(cmnd->result) == DID_REQUEUE) { 1992 csio_info(hw, 1993 "Aborted SCSI command to (%d:%llu) serial#:0x%lx\n", 1994 cmnd->device->id, cmnd->device->lun, 1995 cmnd->serial_number); 1996 return SUCCESS; 1997 } else { 1998 csio_info(hw, 1999 "Failed to abort SCSI command, (%d:%llu) serial#:0x%lx\n", 2000 cmnd->device->id, cmnd->device->lun, 2001 cmnd->serial_number); 2002 return FAILED; 2003 } 2004 } 2005 2006 /* 2007 * csio_tm_cbfn - TM callback function. 2008 * @hw: HW module. 2009 * @req: IO request. 2010 * 2011 * Cache the result in 'cmnd', since ioreq will be freed soon 2012 * after we return from here, and the waiting thread shouldnt trust 2013 * the ioreq contents. 2014 */ 2015 static void 2016 csio_tm_cbfn(struct csio_hw *hw, struct csio_ioreq *req) 2017 { 2018 struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req); 2019 struct csio_dma_buf *dma_buf; 2020 uint8_t flags = 0; 2021 struct fcp_resp_with_ext *fcp_resp; 2022 struct fcp_resp_rsp_info *rsp_info; 2023 2024 csio_dbg(hw, "req: %p in csio_tm_cbfn status: %d\n", 2025 req, req->wr_status); 2026 2027 /* Cache FW return status */ 2028 cmnd->SCp.Status = req->wr_status; 2029 2030 /* Special handling based on FCP response */ 2031 2032 /* 2033 * FW returns us this error, if flags were set. FCP4 says 2034 * FCP_RSP_LEN_VAL in flags shall be set for TM completions. 2035 * So if a target were to set this bit, we expect that the 2036 * rsp_code is set to FCP_TMF_CMPL for a successful TM 2037 * completion. Any other rsp_code means TM operation failed. 2038 * If a target were to just ignore setting flags, we treat 2039 * the TM operation as success, and FW returns FW_SUCCESS. 2040 */ 2041 if (req->wr_status == FW_SCSI_RSP_ERR) { 2042 dma_buf = &req->dma_buf; 2043 fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr; 2044 rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1); 2045 2046 flags = fcp_resp->resp.fr_flags; 2047 2048 /* Modify return status if flags indicate success */ 2049 if (flags & FCP_RSP_LEN_VAL) 2050 if (rsp_info->rsp_code == FCP_TMF_CMPL) 2051 cmnd->SCp.Status = FW_SUCCESS; 2052 2053 csio_dbg(hw, "TM FCP rsp code: %d\n", rsp_info->rsp_code); 2054 } 2055 2056 /* Wake up the TM handler thread */ 2057 csio_scsi_cmnd(req) = NULL; 2058 } 2059 2060 static int 2061 csio_eh_lun_reset_handler(struct scsi_cmnd *cmnd) 2062 { 2063 struct csio_lnode *ln = shost_priv(cmnd->device->host); 2064 struct csio_hw *hw = csio_lnode_to_hw(ln); 2065 struct csio_scsim *scsim = csio_hw_to_scsim(hw); 2066 struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata); 2067 struct csio_ioreq *ioreq = NULL; 2068 struct csio_scsi_qset *sqset; 2069 unsigned long flags; 2070 int retval; 2071 int count, ret; 2072 LIST_HEAD(local_q); 2073 struct csio_scsi_level_data sld; 2074 2075 if (!rn) 2076 goto fail; 2077 2078 csio_dbg(hw, "Request to reset LUN:%llu (ssni:0x%x tgtid:%d)\n", 2079 cmnd->device->lun, rn->flowid, rn->scsi_id); 2080 2081 if (!csio_is_lnode_ready(ln)) { 2082 csio_err(hw, 2083 "LUN reset cannot be issued on non-ready" 2084 " local node vnpi:0x%x (LUN:%llu)\n", 2085 ln->vnp_flowid, cmnd->device->lun); 2086 goto fail; 2087 } 2088 2089 /* Lnode is ready, now wait on rport node readiness */ 2090 ret = fc_block_scsi_eh(cmnd); 2091 if (ret) 2092 return ret; 2093 2094 /* 2095 * If we have blocked in the previous call, at this point, either the 2096 * remote node has come back online, or device loss timer has fired 2097 * and the remote node is destroyed. Allow the LUN reset only for 2098 * the former case, since LUN reset is a TMF I/O on the wire, and we 2099 * need a valid session to issue it. 2100 */ 2101 if (fc_remote_port_chkready(rn->rport)) { 2102 csio_err(hw, 2103 "LUN reset cannot be issued on non-ready" 2104 " remote node ssni:0x%x (LUN:%llu)\n", 2105 rn->flowid, cmnd->device->lun); 2106 goto fail; 2107 } 2108 2109 /* Get a free ioreq structure - SM is already set to uninit */ 2110 ioreq = csio_get_scsi_ioreq_lock(hw, scsim); 2111 2112 if (!ioreq) { 2113 csio_err(hw, "Out of IO request elements. Active # :%d\n", 2114 scsim->stats.n_active); 2115 goto fail; 2116 } 2117 2118 sqset = &hw->sqset[ln->portid][smp_processor_id()]; 2119 ioreq->nsge = 0; 2120 ioreq->lnode = ln; 2121 ioreq->rnode = rn; 2122 ioreq->iq_idx = sqset->iq_idx; 2123 ioreq->eq_idx = sqset->eq_idx; 2124 2125 csio_scsi_cmnd(ioreq) = cmnd; 2126 cmnd->host_scribble = (unsigned char *)ioreq; 2127 cmnd->SCp.Status = 0; 2128 2129 cmnd->SCp.Message = FCP_TMF_LUN_RESET; 2130 ioreq->tmo = CSIO_SCSI_LUNRST_TMO_MS / 1000; 2131 2132 /* 2133 * FW times the LUN reset for ioreq->tmo, so we got to wait a little 2134 * longer (10s for now) than that to allow FW to return the timed 2135 * out command. 2136 */ 2137 count = DIV_ROUND_UP((ioreq->tmo + 10) * 1000, CSIO_SCSI_TM_POLL_MS); 2138 2139 /* Set cbfn */ 2140 ioreq->io_cbfn = csio_tm_cbfn; 2141 2142 /* Save of the ioreq info for later use */ 2143 sld.level = CSIO_LEV_LUN; 2144 sld.lnode = ioreq->lnode; 2145 sld.rnode = ioreq->rnode; 2146 sld.oslun = cmnd->device->lun; 2147 2148 spin_lock_irqsave(&hw->lock, flags); 2149 /* Kick off TM SM on the ioreq */ 2150 retval = csio_scsi_start_tm(ioreq); 2151 spin_unlock_irqrestore(&hw->lock, flags); 2152 2153 if (retval != 0) { 2154 csio_err(hw, "Failed to issue LUN reset, req:%p, status:%d\n", 2155 ioreq, retval); 2156 goto fail_ret_ioreq; 2157 } 2158 2159 csio_dbg(hw, "Waiting max %d secs for LUN reset completion\n", 2160 count * (CSIO_SCSI_TM_POLL_MS / 1000)); 2161 /* Wait for completion */ 2162 while ((((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) 2163 && count--) 2164 msleep(CSIO_SCSI_TM_POLL_MS); 2165 2166 /* LUN reset timed-out */ 2167 if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) { 2168 csio_err(hw, "LUN reset (%d:%llu) timed out\n", 2169 cmnd->device->id, cmnd->device->lun); 2170 2171 spin_lock_irq(&hw->lock); 2172 csio_scsi_drvcleanup(ioreq); 2173 list_del_init(&ioreq->sm.sm_list); 2174 spin_unlock_irq(&hw->lock); 2175 2176 goto fail_ret_ioreq; 2177 } 2178 2179 /* LUN reset returned, check cached status */ 2180 if (cmnd->SCp.Status != FW_SUCCESS) { 2181 csio_err(hw, "LUN reset failed (%d:%llu), status: %d\n", 2182 cmnd->device->id, cmnd->device->lun, cmnd->SCp.Status); 2183 goto fail; 2184 } 2185 2186 /* LUN reset succeeded, Start aborting affected I/Os */ 2187 /* 2188 * Since the host guarantees during LUN reset that there 2189 * will not be any more I/Os to that LUN, until the LUN reset 2190 * completes, we gather pending I/Os after the LUN reset. 2191 */ 2192 spin_lock_irq(&hw->lock); 2193 csio_scsi_gather_active_ios(scsim, &sld, &local_q); 2194 2195 retval = csio_scsi_abort_io_q(scsim, &local_q, 30000); 2196 spin_unlock_irq(&hw->lock); 2197 2198 /* Aborts may have timed out */ 2199 if (retval != 0) { 2200 csio_err(hw, 2201 "Attempt to abort I/Os during LUN reset of %llu" 2202 " returned %d\n", cmnd->device->lun, retval); 2203 /* Return I/Os back to active_q */ 2204 spin_lock_irq(&hw->lock); 2205 list_splice_tail_init(&local_q, &scsim->active_q); 2206 spin_unlock_irq(&hw->lock); 2207 goto fail; 2208 } 2209 2210 CSIO_INC_STATS(rn, n_lun_rst); 2211 2212 csio_info(hw, "LUN reset occurred (%d:%llu)\n", 2213 cmnd->device->id, cmnd->device->lun); 2214 2215 return SUCCESS; 2216 2217 fail_ret_ioreq: 2218 csio_put_scsi_ioreq_lock(hw, scsim, ioreq); 2219 fail: 2220 CSIO_INC_STATS(rn, n_lun_rst_fail); 2221 return FAILED; 2222 } 2223 2224 static int 2225 csio_slave_alloc(struct scsi_device *sdev) 2226 { 2227 struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); 2228 2229 if (!rport || fc_remote_port_chkready(rport)) 2230 return -ENXIO; 2231 2232 sdev->hostdata = *((struct csio_lnode **)(rport->dd_data)); 2233 2234 return 0; 2235 } 2236 2237 static int 2238 csio_slave_configure(struct scsi_device *sdev) 2239 { 2240 scsi_change_queue_depth(sdev, csio_lun_qdepth); 2241 return 0; 2242 } 2243 2244 static void 2245 csio_slave_destroy(struct scsi_device *sdev) 2246 { 2247 sdev->hostdata = NULL; 2248 } 2249 2250 static int 2251 csio_scan_finished(struct Scsi_Host *shost, unsigned long time) 2252 { 2253 struct csio_lnode *ln = shost_priv(shost); 2254 int rv = 1; 2255 2256 spin_lock_irq(shost->host_lock); 2257 if (!ln->hwp || csio_list_deleted(&ln->sm.sm_list)) 2258 goto out; 2259 2260 rv = csio_scan_done(ln, jiffies, time, csio_max_scan_tmo * HZ, 2261 csio_delta_scan_tmo * HZ); 2262 out: 2263 spin_unlock_irq(shost->host_lock); 2264 2265 return rv; 2266 } 2267 2268 struct scsi_host_template csio_fcoe_shost_template = { 2269 .module = THIS_MODULE, 2270 .name = CSIO_DRV_DESC, 2271 .proc_name = KBUILD_MODNAME, 2272 .queuecommand = csio_queuecommand, 2273 .eh_timed_out = fc_eh_timed_out, 2274 .eh_abort_handler = csio_eh_abort_handler, 2275 .eh_device_reset_handler = csio_eh_lun_reset_handler, 2276 .slave_alloc = csio_slave_alloc, 2277 .slave_configure = csio_slave_configure, 2278 .slave_destroy = csio_slave_destroy, 2279 .scan_finished = csio_scan_finished, 2280 .this_id = -1, 2281 .sg_tablesize = CSIO_SCSI_MAX_SGE, 2282 .cmd_per_lun = CSIO_MAX_CMD_PER_LUN, 2283 .use_clustering = ENABLE_CLUSTERING, 2284 .shost_attrs = csio_fcoe_lport_attrs, 2285 .max_sectors = CSIO_MAX_SECTOR_SIZE, 2286 }; 2287 2288 struct scsi_host_template csio_fcoe_shost_vport_template = { 2289 .module = THIS_MODULE, 2290 .name = CSIO_DRV_DESC, 2291 .proc_name = KBUILD_MODNAME, 2292 .queuecommand = csio_queuecommand, 2293 .eh_timed_out = fc_eh_timed_out, 2294 .eh_abort_handler = csio_eh_abort_handler, 2295 .eh_device_reset_handler = csio_eh_lun_reset_handler, 2296 .slave_alloc = csio_slave_alloc, 2297 .slave_configure = csio_slave_configure, 2298 .slave_destroy = csio_slave_destroy, 2299 .scan_finished = csio_scan_finished, 2300 .this_id = -1, 2301 .sg_tablesize = CSIO_SCSI_MAX_SGE, 2302 .cmd_per_lun = CSIO_MAX_CMD_PER_LUN, 2303 .use_clustering = ENABLE_CLUSTERING, 2304 .shost_attrs = csio_fcoe_vport_attrs, 2305 .max_sectors = CSIO_MAX_SECTOR_SIZE, 2306 }; 2307 2308 /* 2309 * csio_scsi_alloc_ddp_bufs - Allocate buffers for DDP of unaligned SGLs. 2310 * @scm: SCSI Module 2311 * @hw: HW device. 2312 * @buf_size: buffer size 2313 * @num_buf : Number of buffers. 2314 * 2315 * This routine allocates DMA buffers required for SCSI Data xfer, if 2316 * each SGL buffer for a SCSI Read request posted by SCSI midlayer are 2317 * not virtually contiguous. 2318 */ 2319 static int 2320 csio_scsi_alloc_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw, 2321 int buf_size, int num_buf) 2322 { 2323 int n = 0; 2324 struct list_head *tmp; 2325 struct csio_dma_buf *ddp_desc = NULL; 2326 uint32_t unit_size = 0; 2327 2328 if (!num_buf) 2329 return 0; 2330 2331 if (!buf_size) 2332 return -EINVAL; 2333 2334 INIT_LIST_HEAD(&scm->ddp_freelist); 2335 2336 /* Align buf size to page size */ 2337 buf_size = (buf_size + PAGE_SIZE - 1) & PAGE_MASK; 2338 /* Initialize dma descriptors */ 2339 for (n = 0; n < num_buf; n++) { 2340 /* Set unit size to request size */ 2341 unit_size = buf_size; 2342 ddp_desc = kzalloc(sizeof(struct csio_dma_buf), GFP_KERNEL); 2343 if (!ddp_desc) { 2344 csio_err(hw, 2345 "Failed to allocate ddp descriptors," 2346 " Num allocated = %d.\n", 2347 scm->stats.n_free_ddp); 2348 goto no_mem; 2349 } 2350 2351 /* Allocate Dma buffers for DDP */ 2352 ddp_desc->vaddr = dma_alloc_coherent(&hw->pdev->dev, unit_size, 2353 &ddp_desc->paddr, GFP_KERNEL); 2354 if (!ddp_desc->vaddr) { 2355 csio_err(hw, 2356 "SCSI response DMA buffer (ddp) allocation" 2357 " failed!\n"); 2358 kfree(ddp_desc); 2359 goto no_mem; 2360 } 2361 2362 ddp_desc->len = unit_size; 2363 2364 /* Added it to scsi ddp freelist */ 2365 list_add_tail(&ddp_desc->list, &scm->ddp_freelist); 2366 CSIO_INC_STATS(scm, n_free_ddp); 2367 } 2368 2369 return 0; 2370 no_mem: 2371 /* release dma descs back to freelist and free dma memory */ 2372 list_for_each(tmp, &scm->ddp_freelist) { 2373 ddp_desc = (struct csio_dma_buf *) tmp; 2374 tmp = csio_list_prev(tmp); 2375 dma_free_coherent(&hw->pdev->dev, ddp_desc->len, 2376 ddp_desc->vaddr, ddp_desc->paddr); 2377 list_del_init(&ddp_desc->list); 2378 kfree(ddp_desc); 2379 } 2380 scm->stats.n_free_ddp = 0; 2381 2382 return -ENOMEM; 2383 } 2384 2385 /* 2386 * csio_scsi_free_ddp_bufs - free DDP buffers of unaligned SGLs. 2387 * @scm: SCSI Module 2388 * @hw: HW device. 2389 * 2390 * This routine frees ddp buffers. 2391 */ 2392 static void 2393 csio_scsi_free_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw) 2394 { 2395 struct list_head *tmp; 2396 struct csio_dma_buf *ddp_desc; 2397 2398 /* release dma descs back to freelist and free dma memory */ 2399 list_for_each(tmp, &scm->ddp_freelist) { 2400 ddp_desc = (struct csio_dma_buf *) tmp; 2401 tmp = csio_list_prev(tmp); 2402 dma_free_coherent(&hw->pdev->dev, ddp_desc->len, 2403 ddp_desc->vaddr, ddp_desc->paddr); 2404 list_del_init(&ddp_desc->list); 2405 kfree(ddp_desc); 2406 } 2407 scm->stats.n_free_ddp = 0; 2408 } 2409 2410 /** 2411 * csio_scsim_init - Initialize SCSI Module 2412 * @scm: SCSI Module 2413 * @hw: HW module 2414 * 2415 */ 2416 int 2417 csio_scsim_init(struct csio_scsim *scm, struct csio_hw *hw) 2418 { 2419 int i; 2420 struct csio_ioreq *ioreq; 2421 struct csio_dma_buf *dma_buf; 2422 2423 INIT_LIST_HEAD(&scm->active_q); 2424 scm->hw = hw; 2425 2426 scm->proto_cmd_len = sizeof(struct fcp_cmnd); 2427 scm->proto_rsp_len = CSIO_SCSI_RSP_LEN; 2428 scm->max_sge = CSIO_SCSI_MAX_SGE; 2429 2430 spin_lock_init(&scm->freelist_lock); 2431 2432 /* Pre-allocate ioreqs and initialize them */ 2433 INIT_LIST_HEAD(&scm->ioreq_freelist); 2434 for (i = 0; i < csio_scsi_ioreqs; i++) { 2435 2436 ioreq = kzalloc(sizeof(struct csio_ioreq), GFP_KERNEL); 2437 if (!ioreq) { 2438 csio_err(hw, 2439 "I/O request element allocation failed, " 2440 " Num allocated = %d.\n", 2441 scm->stats.n_free_ioreq); 2442 2443 goto free_ioreq; 2444 } 2445 2446 /* Allocate Dma buffers for Response Payload */ 2447 dma_buf = &ioreq->dma_buf; 2448 dma_buf->vaddr = dma_pool_alloc(hw->scsi_dma_pool, GFP_KERNEL, 2449 &dma_buf->paddr); 2450 if (!dma_buf->vaddr) { 2451 csio_err(hw, 2452 "SCSI response DMA buffer allocation" 2453 " failed!\n"); 2454 kfree(ioreq); 2455 goto free_ioreq; 2456 } 2457 2458 dma_buf->len = scm->proto_rsp_len; 2459 2460 /* Set state to uninit */ 2461 csio_init_state(&ioreq->sm, csio_scsis_uninit); 2462 INIT_LIST_HEAD(&ioreq->gen_list); 2463 init_completion(&ioreq->cmplobj); 2464 2465 list_add_tail(&ioreq->sm.sm_list, &scm->ioreq_freelist); 2466 CSIO_INC_STATS(scm, n_free_ioreq); 2467 } 2468 2469 if (csio_scsi_alloc_ddp_bufs(scm, hw, PAGE_SIZE, csio_ddp_descs)) 2470 goto free_ioreq; 2471 2472 return 0; 2473 2474 free_ioreq: 2475 /* 2476 * Free up existing allocations, since an error 2477 * from here means we are returning for good 2478 */ 2479 while (!list_empty(&scm->ioreq_freelist)) { 2480 struct csio_sm *tmp; 2481 2482 tmp = list_first_entry(&scm->ioreq_freelist, 2483 struct csio_sm, sm_list); 2484 list_del_init(&tmp->sm_list); 2485 ioreq = (struct csio_ioreq *)tmp; 2486 2487 dma_buf = &ioreq->dma_buf; 2488 dma_pool_free(hw->scsi_dma_pool, dma_buf->vaddr, 2489 dma_buf->paddr); 2490 2491 kfree(ioreq); 2492 } 2493 2494 scm->stats.n_free_ioreq = 0; 2495 2496 return -ENOMEM; 2497 } 2498 2499 /** 2500 * csio_scsim_exit: Uninitialize SCSI Module 2501 * @scm: SCSI Module 2502 * 2503 */ 2504 void 2505 csio_scsim_exit(struct csio_scsim *scm) 2506 { 2507 struct csio_ioreq *ioreq; 2508 struct csio_dma_buf *dma_buf; 2509 2510 while (!list_empty(&scm->ioreq_freelist)) { 2511 struct csio_sm *tmp; 2512 2513 tmp = list_first_entry(&scm->ioreq_freelist, 2514 struct csio_sm, sm_list); 2515 list_del_init(&tmp->sm_list); 2516 ioreq = (struct csio_ioreq *)tmp; 2517 2518 dma_buf = &ioreq->dma_buf; 2519 dma_pool_free(scm->hw->scsi_dma_pool, dma_buf->vaddr, 2520 dma_buf->paddr); 2521 2522 kfree(ioreq); 2523 } 2524 2525 scm->stats.n_free_ioreq = 0; 2526 2527 csio_scsi_free_ddp_bufs(scm, scm->hw); 2528 } 2529