1 /* 2 * This file is part of the Chelsio FCoE driver for Linux. 3 * 4 * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include "csio_hw.h" 35 #include "csio_init.h" 36 37 static int 38 csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win) 39 { 40 u32 mem_win_base; 41 /* 42 * Truncation intentional: we only read the bottom 32-bits of the 43 * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to 44 * read BAR0 instead of using pci_resource_start() because we could be 45 * operating from within a Virtual Machine which is trapping our 46 * accesses to our Configuration Space and we need to set up the PCI-E 47 * Memory Window decoders with the actual addresses which will be 48 * coming across the PCI-E link. 49 */ 50 51 /* For T5, only relative offset inside the PCIe BAR is passed */ 52 mem_win_base = MEMWIN_BASE; 53 54 /* 55 * Set up memory window for accessing adapter memory ranges. (Read 56 * back MA register to ensure that changes propagate before we attempt 57 * to use the new values.) 58 */ 59 csio_wr_reg32(hw, mem_win_base | BIR_V(0) | 60 WINDOW_V(ilog2(MEMWIN_APERTURE) - 10), 61 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); 62 csio_rd_reg32(hw, 63 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); 64 65 return 0; 66 } 67 68 /* 69 * Interrupt handler for the PCIE module. 70 */ 71 static void 72 csio_t5_pcie_intr_handler(struct csio_hw *hw) 73 { 74 static struct intr_info pcie_intr_info[] = { 75 { MSTGRPPERR_F, "Master Response Read Queue parity error", 76 -1, 1 }, 77 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 78 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 79 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 80 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 81 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 82 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 83 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 84 -1, 1 }, 85 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 86 -1, 1 }, 87 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 88 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 89 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 90 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 91 { DREQWRPERR_F, "PCI DMA channel write request parity error", 92 -1, 1 }, 93 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 94 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 95 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 96 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 97 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 98 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 99 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 100 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 101 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 102 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 103 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 104 -1, 1 }, 105 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 106 -1, 1 }, 107 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 108 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 109 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 110 { READRSPERR_F, "Outbound read error", -1, 0 }, 111 { 0, NULL, 0, 0 } 112 }; 113 114 int fat; 115 fat = csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info); 116 if (fat) 117 csio_hw_fatal_err(hw); 118 } 119 120 /* 121 * csio_t5_flash_cfg_addr - return the address of the flash configuration file 122 * @hw: the HW module 123 * 124 * Return the address within the flash where the Firmware Configuration 125 * File is stored. 126 */ 127 static unsigned int 128 csio_t5_flash_cfg_addr(struct csio_hw *hw) 129 { 130 return FLASH_CFG_START; 131 } 132 133 /* 134 * csio_t5_mc_read - read from MC through backdoor accesses 135 * @hw: the hw module 136 * @idx: index to the register 137 * @addr: address of first byte requested 138 * @data: 64 bytes of data containing the requested address 139 * @ecc: where to store the corresponding 64-bit ECC word 140 * 141 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 142 * that covers the requested address @addr. If @parity is not %NULL it 143 * is assigned the 64-bit ECC word for the read data. 144 */ 145 static int 146 csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, 147 uint64_t *ecc) 148 { 149 int i; 150 uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; 151 uint32_t mc_bist_data_pattern_reg; 152 153 mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx); 154 mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx); 155 mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx); 156 mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx); 157 158 if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F) 159 return -EBUSY; 160 csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg); 161 csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg); 162 csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg); 163 csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1), 164 mc_bist_cmd_reg); 165 i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F, 166 0, 10, 1, NULL); 167 if (i) 168 return i; 169 170 #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i) 171 172 for (i = 15; i >= 0; i--) 173 *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i))); 174 if (ecc) 175 *ecc = csio_rd_reg64(hw, MC_DATA(16)); 176 #undef MC_DATA 177 return 0; 178 } 179 180 /* 181 * csio_t5_edc_read - read from EDC through backdoor accesses 182 * @hw: the hw module 183 * @idx: which EDC to access 184 * @addr: address of first byte requested 185 * @data: 64 bytes of data containing the requested address 186 * @ecc: where to store the corresponding 64-bit ECC word 187 * 188 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 189 * that covers the requested address @addr. If @parity is not %NULL it 190 * is assigned the 64-bit ECC word for the read data. 191 */ 192 static int 193 csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, 194 uint64_t *ecc) 195 { 196 int i; 197 uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; 198 uint32_t edc_bist_cmd_data_pattern; 199 200 /* 201 * These macro are missing in t4_regs.h file. 202 */ 203 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) 204 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) 205 206 edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx); 207 edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx); 208 edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx); 209 edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx); 210 #undef EDC_REG_T5 211 #undef EDC_STRIDE_T5 212 213 if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F) 214 return -EBUSY; 215 csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg); 216 csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg); 217 csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern); 218 csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1), 219 edc_bist_cmd_reg); 220 i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F, 221 0, 10, 1, NULL); 222 if (i) 223 return i; 224 225 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx) 226 227 for (i = 15; i >= 0; i--) 228 *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i))); 229 if (ecc) 230 *ecc = csio_rd_reg64(hw, EDC_DATA(16)); 231 #undef EDC_DATA 232 return 0; 233 } 234 235 /* 236 * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 237 * @hw: the csio_hw 238 * @win: PCI-E memory Window to use 239 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1 240 * @addr: address within indicated memory type 241 * @len: amount of memory to transfer 242 * @buf: host memory buffer 243 * @dir: direction of transfer 1 => read, 0 => write 244 * 245 * Reads/writes an [almost] arbitrary memory region in the firmware: the 246 * firmware memory address, length and host buffer must be aligned on 247 * 32-bit boundaries. The memory is transferred as a raw byte sequence 248 * from/to the firmware's memory. If this memory contains data 249 * structures which contain multi-byte integers, it's the callers 250 * responsibility to perform appropriate byte order conversions. 251 */ 252 static int 253 csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr, 254 u32 len, uint32_t *buf, int dir) 255 { 256 u32 pos, start, offset, memoffset; 257 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; 258 259 /* 260 * Argument sanity checks ... 261 */ 262 if ((addr & 0x3) || (len & 0x3)) 263 return -EINVAL; 264 265 /* Offset into the region of memory which is being accessed 266 * MEM_EDC0 = 0 267 * MEM_EDC1 = 1 268 * MEM_MC = 2 -- T4 269 * MEM_MC0 = 2 -- For T5 270 * MEM_MC1 = 3 -- For T5 271 */ 272 edc_size = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A)); 273 if (mtype != MEM_MC1) 274 memoffset = (mtype * (edc_size * 1024 * 1024)); 275 else { 276 mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw, 277 MA_EXT_MEMORY_BAR_A)); 278 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 279 } 280 281 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 282 addr = addr + memoffset; 283 284 /* 285 * Each PCI-E Memory Window is programmed with a window size -- or 286 * "aperture" -- which controls the granularity of its mapping onto 287 * adapter memory. We need to grab that aperture in order to know 288 * how to use the specified window. The window is also programmed 289 * with the base address of the Memory Window in BAR0's address 290 * space. For T4 this is an absolute PCI-E Bus Address. For T5 291 * the address is relative to BAR0. 292 */ 293 mem_reg = csio_rd_reg32(hw, 294 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); 295 mem_aperture = 1 << (WINDOW_V(mem_reg) + 10); 296 mem_base = PCIEOFST_G(mem_reg) << 10; 297 298 start = addr & ~(mem_aperture-1); 299 offset = addr - start; 300 win_pf = PFNUM_V(hw->pfn); 301 302 csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n", 303 mem_reg, mem_aperture); 304 csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n", 305 mem_base, memoffset); 306 csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n", 307 start, offset, win_pf); 308 csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n", 309 mtype, addr, len); 310 311 for (pos = start; len > 0; pos += mem_aperture, offset = 0) { 312 /* 313 * Move PCI-E Memory Window to our current transfer 314 * position. Read it back to ensure that changes propagate 315 * before we attempt to use the new value. 316 */ 317 csio_wr_reg32(hw, pos | win_pf, 318 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 319 csio_rd_reg32(hw, 320 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 321 322 while (offset < mem_aperture && len > 0) { 323 if (dir) 324 *buf++ = csio_rd_reg32(hw, mem_base + offset); 325 else 326 csio_wr_reg32(hw, *buf++, mem_base + offset); 327 328 offset += sizeof(__be32); 329 len -= sizeof(__be32); 330 } 331 } 332 return 0; 333 } 334 335 /* 336 * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values 337 * @hw: the csio_hw 338 * 339 * This function creates files in the debugfs with external memory region 340 * MC0 & MC1. 341 */ 342 static void 343 csio_t5_dfs_create_ext_mem(struct csio_hw *hw) 344 { 345 u32 size; 346 int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A); 347 348 if (i & EXT_MEM_ENABLE_F) { 349 size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A); 350 csio_add_debugfs_mem(hw, "mc0", MEM_MC0, 351 EXT_MEM_SIZE_G(size)); 352 } 353 if (i & EXT_MEM1_ENABLE_F) { 354 size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A); 355 csio_add_debugfs_mem(hw, "mc1", MEM_MC1, 356 EXT_MEM_SIZE_G(size)); 357 } 358 } 359 360 /* T5 adapter specific function */ 361 struct csio_hw_chip_ops t5_ops = { 362 .chip_set_mem_win = csio_t5_set_mem_win, 363 .chip_pcie_intr_handler = csio_t5_pcie_intr_handler, 364 .chip_flash_cfg_addr = csio_t5_flash_cfg_addr, 365 .chip_mc_read = csio_t5_mc_read, 366 .chip_edc_read = csio_t5_edc_read, 367 .chip_memory_rw = csio_t5_memory_rw, 368 .chip_dfs_create_ext_mem = csio_t5_dfs_create_ext_mem, 369 }; 370