xref: /openbmc/linux/drivers/scsi/csiostor/csio_hw.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45 
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49 
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
52 
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55 
56 /* Default MSI param level */
57 int csio_msi = 2;
58 
59 /* FCoE function instances */
60 static int dev_num;
61 
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 	{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 	{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 	{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 	{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 	{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 	{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 	{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 	{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 	{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 	{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 	{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 	{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 	{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 	{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 	{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 	{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 	{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 	{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 	{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 	{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 	{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86 };
87 
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
90 
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101 
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
105 
106 int csio_is_hw_ready(struct csio_hw *hw)
107 {
108 	return csio_match_state(hw, csio_hws_ready);
109 }
110 
111 int csio_is_hw_removing(struct csio_hw *hw)
112 {
113 	return csio_match_state(hw, csio_hws_removing);
114 }
115 
116 
117 /*
118  *	csio_hw_wait_op_done_val - wait until an operation is completed
119  *	@hw: the HW module
120  *	@reg: the register to check for completion
121  *	@mask: a single-bit field within @reg that indicates completion
122  *	@polarity: the value of the field when the operation is completed
123  *	@attempts: number of check iterations
124  *	@delay: delay in usecs between iterations
125  *	@valp: where to store the value of the register at completion time
126  *
127  *	Wait until an operation is completed by checking a bit in a register
128  *	up to @attempts times.  If @valp is not NULL the value of the register
129  *	at the time it indicated completion is stored there.  Returns 0 if the
130  *	operation completes and	-EAGAIN	otherwise.
131  */
132 int
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 			 int polarity, int attempts, int delay, uint32_t *valp)
135 {
136 	uint32_t val;
137 	while (1) {
138 		val = csio_rd_reg32(hw, reg);
139 
140 		if (!!(val & mask) == polarity) {
141 			if (valp)
142 				*valp = val;
143 			return 0;
144 		}
145 
146 		if (--attempts == 0)
147 			return -EAGAIN;
148 		if (delay)
149 			udelay(delay);
150 	}
151 }
152 
153 /*
154  *	csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155  *	@hw: the adapter
156  *	@addr: the indirect TP register address
157  *	@mask: specifies the field within the register to modify
158  *	@val: new value for the field
159  *
160  *	Sets a field of an indirect TP register to the given value.
161  */
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 			unsigned int mask, unsigned int val)
165 {
166 	csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 	val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 	csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169 }
170 
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 		   uint32_t value)
174 {
175 	uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176 
177 	csio_wr_reg32(hw, val | value, reg);
178 	/* Flush */
179 	csio_rd_reg32(hw, reg);
180 
181 }
182 
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185 {
186 	return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 					    addr, len, buf, 0);
188 }
189 
190 /*
191  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192  */
193 #define EEPROM_MAX_RD_POLL	40
194 #define EEPROM_MAX_WR_POLL	6
195 #define EEPROM_STAT_ADDR	0x7bfc
196 #define VPD_BASE		0x400
197 #define VPD_BASE_OLD		0
198 #define VPD_LEN			1024
199 #define VPD_INFO_FLD_HDR_SIZE	3
200 
201 /*
202  *	csio_hw_seeprom_read - read a serial EEPROM location
203  *	@hw: hw to read
204  *	@addr: EEPROM virtual address
205  *	@data: where to store the read data
206  *
207  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
208  *	VPD capability.  Note that this function must be called with a virtual
209  *	address.
210  */
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213 {
214 	uint16_t val = 0;
215 	int attempts = EEPROM_MAX_RD_POLL;
216 	uint32_t base = hw->params.pci.vpd_cap_addr;
217 
218 	if (addr >= EEPROMVSIZE || (addr & 3))
219 		return -EINVAL;
220 
221 	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222 
223 	do {
224 		udelay(10);
225 		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
227 
228 	if (!(val & PCI_VPD_ADDR_F)) {
229 		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 		return -EINVAL;
231 	}
232 
233 	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 	*data = le32_to_cpu(*(__le32 *)data);
235 
236 	return 0;
237 }
238 
239 /*
240  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
241  * VPD-R sections.
242  */
243 struct t4_vpd_hdr {
244 	u8  id_tag;
245 	u8  id_len[2];
246 	u8  id_data[ID_LEN];
247 	u8  vpdr_tag;
248 	u8  vpdr_len[2];
249 };
250 
251 /*
252  *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253  *				      the VPD
254  *	@v: Pointer to buffered vpd data structure
255  *	@kw: The keyword to search for
256  *
257  *	Returns the value of the information field keyword or
258  *	-EINVAL otherwise.
259  */
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262 {
263 	int32_t i;
264 	int32_t offset , len;
265 	const uint8_t *buf = &v->id_tag;
266 	const uint8_t *vpdr_len = &v->vpdr_tag;
267 	offset = sizeof(struct t4_vpd_hdr);
268 	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269 
270 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 		return -EINVAL;
272 
273 	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 		if (memcmp(buf + i , kw, 2) == 0) {
275 			i += VPD_INFO_FLD_HDR_SIZE;
276 			return i;
277 		}
278 
279 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280 	}
281 
282 	return -EINVAL;
283 }
284 
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287 {
288 	*pos = pci_find_capability(pdev, cap);
289 	if (*pos)
290 		return 0;
291 
292 	return -1;
293 }
294 
295 /*
296  *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297  *	@hw: HW module
298  *	@p: where to store the parameters
299  *
300  *	Reads card parameters stored in VPD EEPROM.
301  */
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304 {
305 	int i, ret, ec, sn, addr;
306 	uint8_t *vpd, csum;
307 	const struct t4_vpd_hdr *v;
308 	/* To get around compilation warning from strstrip */
309 	char *s;
310 
311 	if (csio_is_valid_vpd(hw))
312 		return 0;
313 
314 	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 				  &hw->params.pci.vpd_cap_addr);
316 	if (ret)
317 		return -EINVAL;
318 
319 	vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 	if (vpd == NULL)
321 		return -ENOMEM;
322 
323 	/*
324 	 * Card information normally starts at VPD_BASE but early cards had
325 	 * it at 0.
326 	 */
327 	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329 
330 	for (i = 0; i < VPD_LEN; i += 4) {
331 		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 		if (ret) {
333 			kfree(vpd);
334 			return ret;
335 		}
336 	}
337 
338 	/* Reset the VPD flag! */
339 	hw->flags &= (~CSIO_HWF_VPD_VALID);
340 
341 	v = (const struct t4_vpd_hdr *)vpd;
342 
343 #define FIND_VPD_KW(var, name) do { \
344 	var = csio_hw_get_vpd_keyword_val(v, name); \
345 	if (var < 0) { \
346 		csio_err(hw, "missing VPD keyword " name "\n"); \
347 		kfree(vpd); \
348 		return -EINVAL; \
349 	} \
350 } while (0)
351 
352 	FIND_VPD_KW(i, "RV");
353 	for (csum = 0; i >= 0; i--)
354 		csum += vpd[i];
355 
356 	if (csum) {
357 		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 		kfree(vpd);
359 		return -EINVAL;
360 	}
361 	FIND_VPD_KW(ec, "EC");
362 	FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
364 
365 	memcpy(p->id, v->id_data, ID_LEN);
366 	s = strstrip(p->id);
367 	memcpy(p->ec, vpd + ec, EC_LEN);
368 	s = strstrip(p->ec);
369 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 	s = strstrip(p->sn);
372 
373 	csio_valid_vpd_copied(hw);
374 
375 	kfree(vpd);
376 	return 0;
377 }
378 
379 /*
380  *	csio_hw_sf1_read - read data from the serial flash
381  *	@hw: the HW module
382  *	@byte_cnt: number of bytes to read
383  *	@cont: whether another operation will be chained
384  *      @lock: whether to lock SF for PL access only
385  *	@valp: where to store the read data
386  *
387  *	Reads up to 4 bytes of data from the serial flash.  The location of
388  *	the read needs to be specified prior to calling this by issuing the
389  *	appropriate commands to the serial flash.
390  */
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 		 int32_t lock, uint32_t *valp)
394 {
395 	int ret;
396 
397 	if (!byte_cnt || byte_cnt > 4)
398 		return -EINVAL;
399 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 		return -EBUSY;
401 
402 	csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 		      BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 	ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 				       10, NULL);
406 	if (!ret)
407 		*valp = csio_rd_reg32(hw, SF_DATA_A);
408 	return ret;
409 }
410 
411 /*
412  *	csio_hw_sf1_write - write data to the serial flash
413  *	@hw: the HW module
414  *	@byte_cnt: number of bytes to write
415  *	@cont: whether another operation will be chained
416  *      @lock: whether to lock SF for PL access only
417  *	@val: value to write
418  *
419  *	Writes up to 4 bytes of data to the serial flash.  The location of
420  *	the write needs to be specified prior to calling this by issuing the
421  *	appropriate commands to the serial flash.
422  */
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 		  int32_t lock, uint32_t val)
426 {
427 	if (!byte_cnt || byte_cnt > 4)
428 		return -EINVAL;
429 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 		return -EBUSY;
431 
432 	csio_wr_reg32(hw, val, SF_DATA_A);
433 	csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 		      OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435 
436 	return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 					10, NULL);
438 }
439 
440 /*
441  *	csio_hw_flash_wait_op - wait for a flash operation to complete
442  *	@hw: the HW module
443  *	@attempts: max number of polls of the status register
444  *	@delay: delay between polls in ms
445  *
446  *	Wait for a flash operation to complete by polling the status register.
447  */
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450 {
451 	int ret;
452 	uint32_t status;
453 
454 	while (1) {
455 		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 		if (ret != 0)
457 			return ret;
458 
459 		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 		if (ret != 0)
461 			return ret;
462 
463 		if (!(status & 1))
464 			return 0;
465 		if (--attempts == 0)
466 			return -EAGAIN;
467 		if (delay)
468 			msleep(delay);
469 	}
470 }
471 
472 /*
473  *	csio_hw_read_flash - read words from serial flash
474  *	@hw: the HW module
475  *	@addr: the start address for the read
476  *	@nwords: how many 32-bit words to read
477  *	@data: where to store the read data
478  *	@byte_oriented: whether to store data as bytes or as words
479  *
480  *	Read the specified number of 32-bit words from the serial flash.
481  *	If @byte_oriented is set the read data is stored as a byte array
482  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
483  *	natural endianess.
484  */
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 		  uint32_t *data, int32_t byte_oriented)
488 {
489 	int ret;
490 
491 	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 		return -EINVAL;
493 
494 	addr = swab32(addr) | SF_RD_DATA_FAST;
495 
496 	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 	if (ret != 0)
498 		return ret;
499 
500 	ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 	if (ret != 0)
502 		return ret;
503 
504 	for ( ; nwords; nwords--, data++) {
505 		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 		if (nwords == 1)
507 			csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
508 		if (ret)
509 			return ret;
510 		if (byte_oriented)
511 			*data = (__force __u32) htonl(*data);
512 	}
513 	return 0;
514 }
515 
516 /*
517  *	csio_hw_write_flash - write up to a page of data to the serial flash
518  *	@hw: the hw
519  *	@addr: the start address to write
520  *	@n: length of data to write in bytes
521  *	@data: the data to write
522  *
523  *	Writes up to a page of data (256 bytes) to the serial flash starting
524  *	at the given address.  All the data must be written to the same page.
525  */
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 		    uint32_t n, const uint8_t *data)
529 {
530 	int ret = -EINVAL;
531 	uint32_t buf[64];
532 	uint32_t i, c, left, val, offset = addr & 0xff;
533 
534 	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 		return -EINVAL;
536 
537 	val = swab32(addr) | SF_PROG_PAGE;
538 
539 	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 	if (ret != 0)
541 		goto unlock;
542 
543 	ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 	if (ret != 0)
545 		goto unlock;
546 
547 	for (left = n; left; left -= c) {
548 		c = min(left, 4U);
549 		for (val = 0, i = 0; i < c; ++i)
550 			val = (val << 8) + *data++;
551 
552 		ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 		if (ret)
554 			goto unlock;
555 	}
556 	ret = csio_hw_flash_wait_op(hw, 8, 1);
557 	if (ret)
558 		goto unlock;
559 
560 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
561 
562 	/* Read the page to verify the write succeeded */
563 	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 	if (ret)
565 		return ret;
566 
567 	if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 		csio_err(hw,
569 			 "failed to correctly write the flash page at %#x\n",
570 			 addr);
571 		return -EINVAL;
572 	}
573 
574 	return 0;
575 
576 unlock:
577 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
578 	return ret;
579 }
580 
581 /*
582  *	csio_hw_flash_erase_sectors - erase a range of flash sectors
583  *	@hw: the HW module
584  *	@start: the first sector to erase
585  *	@end: the last sector to erase
586  *
587  *	Erases the sectors in the given inclusive range.
588  */
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591 {
592 	int ret = 0;
593 
594 	while (start <= end) {
595 
596 		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 		if (ret != 0)
598 			goto out;
599 
600 		ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 					SF_ERASE_SECTOR | (start << 8));
602 		if (ret != 0)
603 			goto out;
604 
605 		ret = csio_hw_flash_wait_op(hw, 14, 500);
606 		if (ret != 0)
607 			goto out;
608 
609 		start++;
610 	}
611 out:
612 	if (ret)
613 		csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 			 start, ret);
615 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
616 	return 0;
617 }
618 
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621 {
622 	csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 		    FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 		    FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 		    FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 		    FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627 }
628 
629 /*
630  * csio_hw_get_fw_version - read the firmware version
631  * @hw: HW module
632  * @vers: where to place the version
633  *
634  * Reads the FW version from flash.
635  */
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638 {
639 	return csio_hw_read_flash(hw, FLASH_FW_START +
640 				  offsetof(struct fw_hdr, fw_ver), 1,
641 				  vers, 0);
642 }
643 
644 /*
645  *	csio_hw_get_tp_version - read the TP microcode version
646  *	@hw: HW module
647  *	@vers: where to place the version
648  *
649  *	Reads the TP microcode version from flash.
650  */
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653 {
654 	return csio_hw_read_flash(hw, FLASH_FW_START +
655 			offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 			vers, 0);
657 }
658 
659 /*
660  * csio_hw_fw_dload - download firmware.
661  * @hw: HW module
662  * @fw_data: firmware image to write.
663  * @size: image size
664  *
665  * Write the supplied firmware image to the card's serial flash.
666  */
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669 {
670 	uint32_t csum;
671 	int32_t addr;
672 	int ret;
673 	uint32_t i;
674 	uint8_t first_page[SF_PAGE_SIZE];
675 	const __be32 *p = (const __be32 *)fw_data;
676 	struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 	uint32_t sf_sec_size;
678 
679 	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 		csio_err(hw, "Serial Flash data invalid\n");
681 		return -EINVAL;
682 	}
683 
684 	if (!size) {
685 		csio_err(hw, "FW image has no data\n");
686 		return -EINVAL;
687 	}
688 
689 	if (size & 511) {
690 		csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 		return -EINVAL;
692 	}
693 
694 	if (ntohs(hdr->len512) * 512 != size) {
695 		csio_err(hw, "FW image size differs from size in FW header\n");
696 		return -EINVAL;
697 	}
698 
699 	if (size > FLASH_FW_MAX_SIZE) {
700 		csio_err(hw, "FW image too large, max is %u bytes\n",
701 			    FLASH_FW_MAX_SIZE);
702 		return -EINVAL;
703 	}
704 
705 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 		csum += ntohl(p[i]);
707 
708 	if (csum != 0xffffffff) {
709 		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 		return -EINVAL;
711 	}
712 
713 	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
715 
716 	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 			  FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718 
719 	ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 					  FLASH_FW_START_SEC + i - 1);
721 	if (ret) {
722 		csio_err(hw, "Flash Erase failed\n");
723 		goto out;
724 	}
725 
726 	/*
727 	 * We write the correct version at the end so the driver can see a bad
728 	 * version if the FW write fails.  Start by writing a copy of the
729 	 * first page with a bad version.
730 	 */
731 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 	ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 	if (ret)
735 		goto out;
736 
737 	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 		    FW_IMG_START, FW_IMG_START + size);
739 
740 	addr = FLASH_FW_START;
741 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 		addr += SF_PAGE_SIZE;
743 		fw_data += SF_PAGE_SIZE;
744 		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 		if (ret)
746 			goto out;
747 	}
748 
749 	ret = csio_hw_write_flash(hw,
750 				  FLASH_FW_START +
751 					offsetof(struct fw_hdr, fw_ver),
752 				  sizeof(hdr->fw_ver),
753 				  (const uint8_t *)&hdr->fw_ver);
754 
755 out:
756 	if (ret)
757 		csio_err(hw, "firmware download failed, error %d\n", ret);
758 	return ret;
759 }
760 
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
763 {
764 	int ret;
765 	uint32_t info = 0;
766 
767 	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
768 	if (!ret)
769 		ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
770 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
771 	if (ret != 0)
772 		return ret;
773 
774 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
775 		return -EINVAL;
776 	info >>= 16;				/* log2 of size */
777 	if (info >= 0x14 && info < 0x18)
778 		hw->params.sf_nsec = 1 << (info - 16);
779 	else if (info == 0x18)
780 		hw->params.sf_nsec = 64;
781 	else
782 		return -EINVAL;
783 	hw->params.sf_size = 1 << info;
784 
785 	return 0;
786 }
787 
788 /*****************************************************************************/
789 /* HW State machine assists                                                  */
790 /*****************************************************************************/
791 
792 static int
793 csio_hw_dev_ready(struct csio_hw *hw)
794 {
795 	uint32_t reg;
796 	int cnt = 6;
797 
798 	while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
799 	       (--cnt != 0))
800 		mdelay(100);
801 
802 	if ((cnt == 0) && (((int32_t)(SOURCEPF_G(reg)) < 0) ||
803 			   (SOURCEPF_G(reg) >= CSIO_MAX_PFN))) {
804 		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
805 		return -EIO;
806 	}
807 
808 	hw->pfn = SOURCEPF_G(reg);
809 
810 	return 0;
811 }
812 
813 /*
814  * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
815  * @hw: HW module
816  * @state: Device state
817  *
818  * FW_HELLO_CMD has to be polled for completion.
819  */
820 static int
821 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
822 {
823 	struct csio_mb	*mbp;
824 	int	rv = 0;
825 	enum fw_retval retval;
826 	uint8_t mpfn;
827 	char state_str[16];
828 	int retries = FW_CMD_HELLO_RETRIES;
829 
830 	memset(state_str, 0, sizeof(state_str));
831 
832 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
833 	if (!mbp) {
834 		rv = -ENOMEM;
835 		CSIO_INC_STATS(hw, n_err_nomem);
836 		goto out;
837 	}
838 
839 retry:
840 	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
841 		      hw->pfn, CSIO_MASTER_MAY, NULL);
842 
843 	rv = csio_mb_issue(hw, mbp);
844 	if (rv) {
845 		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
846 		goto out_free_mb;
847 	}
848 
849 	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
850 	if (retval != FW_SUCCESS) {
851 		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
852 		rv = -EINVAL;
853 		goto out_free_mb;
854 	}
855 
856 	/* Firmware has designated us to be master */
857 	if (hw->pfn == mpfn) {
858 		hw->flags |= CSIO_HWF_MASTER;
859 	} else if (*state == CSIO_DEV_STATE_UNINIT) {
860 		/*
861 		 * If we're not the Master PF then we need to wait around for
862 		 * the Master PF Driver to finish setting up the adapter.
863 		 *
864 		 * Note that we also do this wait if we're a non-Master-capable
865 		 * PF and there is no current Master PF; a Master PF may show up
866 		 * momentarily and we wouldn't want to fail pointlessly.  (This
867 		 * can happen when an OS loads lots of different drivers rapidly
868 		 * at the same time). In this case, the Master PF returned by
869 		 * the firmware will be PCIE_FW_MASTER_MASK so the test below
870 		 * will work ...
871 		 */
872 
873 		int waiting = FW_CMD_HELLO_TIMEOUT;
874 
875 		/*
876 		 * Wait for the firmware to either indicate an error or
877 		 * initialized state.  If we see either of these we bail out
878 		 * and report the issue to the caller.  If we exhaust the
879 		 * "hello timeout" and we haven't exhausted our retries, try
880 		 * again.  Otherwise bail with a timeout error.
881 		 */
882 		for (;;) {
883 			uint32_t pcie_fw;
884 
885 			spin_unlock_irq(&hw->lock);
886 			msleep(50);
887 			spin_lock_irq(&hw->lock);
888 			waiting -= 50;
889 
890 			/*
891 			 * If neither Error nor Initialialized are indicated
892 			 * by the firmware keep waiting till we exaust our
893 			 * timeout ... and then retry if we haven't exhausted
894 			 * our retries ...
895 			 */
896 			pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
897 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
898 				if (waiting <= 0) {
899 					if (retries-- > 0)
900 						goto retry;
901 
902 					rv = -ETIMEDOUT;
903 					break;
904 				}
905 				continue;
906 			}
907 
908 			/*
909 			 * We either have an Error or Initialized condition
910 			 * report errors preferentially.
911 			 */
912 			if (state) {
913 				if (pcie_fw & PCIE_FW_ERR_F) {
914 					*state = CSIO_DEV_STATE_ERR;
915 					rv = -ETIMEDOUT;
916 				} else if (pcie_fw & PCIE_FW_INIT_F)
917 					*state = CSIO_DEV_STATE_INIT;
918 			}
919 
920 			/*
921 			 * If we arrived before a Master PF was selected and
922 			 * there's not a valid Master PF, grab its identity
923 			 * for our caller.
924 			 */
925 			if (mpfn == PCIE_FW_MASTER_M &&
926 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
927 				mpfn = PCIE_FW_MASTER_G(pcie_fw);
928 			break;
929 		}
930 		hw->flags &= ~CSIO_HWF_MASTER;
931 	}
932 
933 	switch (*state) {
934 	case CSIO_DEV_STATE_UNINIT:
935 		strcpy(state_str, "Initializing");
936 		break;
937 	case CSIO_DEV_STATE_INIT:
938 		strcpy(state_str, "Initialized");
939 		break;
940 	case CSIO_DEV_STATE_ERR:
941 		strcpy(state_str, "Error");
942 		break;
943 	default:
944 		strcpy(state_str, "Unknown");
945 		break;
946 	}
947 
948 	if (hw->pfn == mpfn)
949 		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
950 			hw->pfn, state_str);
951 	else
952 		csio_info(hw,
953 		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
954 		    hw->pfn, mpfn, state_str);
955 
956 out_free_mb:
957 	mempool_free(mbp, hw->mb_mempool);
958 out:
959 	return rv;
960 }
961 
962 /*
963  * csio_do_bye - Perform the BYE FW Mailbox command and process response.
964  * @hw: HW module
965  *
966  */
967 static int
968 csio_do_bye(struct csio_hw *hw)
969 {
970 	struct csio_mb	*mbp;
971 	enum fw_retval retval;
972 
973 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
974 	if (!mbp) {
975 		CSIO_INC_STATS(hw, n_err_nomem);
976 		return -ENOMEM;
977 	}
978 
979 	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
980 
981 	if (csio_mb_issue(hw, mbp)) {
982 		csio_err(hw, "Issue of BYE command failed\n");
983 		mempool_free(mbp, hw->mb_mempool);
984 		return -EINVAL;
985 	}
986 
987 	retval = csio_mb_fw_retval(mbp);
988 	if (retval != FW_SUCCESS) {
989 		mempool_free(mbp, hw->mb_mempool);
990 		return -EINVAL;
991 	}
992 
993 	mempool_free(mbp, hw->mb_mempool);
994 
995 	return 0;
996 }
997 
998 /*
999  * csio_do_reset- Perform the device reset.
1000  * @hw: HW module
1001  * @fw_rst: FW reset
1002  *
1003  * If fw_rst is set, issues FW reset mbox cmd otherwise
1004  * does PIO reset.
1005  * Performs reset of the function.
1006  */
1007 static int
1008 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1009 {
1010 	struct csio_mb	*mbp;
1011 	enum fw_retval retval;
1012 
1013 	if (!fw_rst) {
1014 		/* PIO reset */
1015 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1016 		mdelay(2000);
1017 		return 0;
1018 	}
1019 
1020 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1021 	if (!mbp) {
1022 		CSIO_INC_STATS(hw, n_err_nomem);
1023 		return -ENOMEM;
1024 	}
1025 
1026 	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1027 		      PIORSTMODE_F | PIORST_F, 0, NULL);
1028 
1029 	if (csio_mb_issue(hw, mbp)) {
1030 		csio_err(hw, "Issue of RESET command failed.n");
1031 		mempool_free(mbp, hw->mb_mempool);
1032 		return -EINVAL;
1033 	}
1034 
1035 	retval = csio_mb_fw_retval(mbp);
1036 	if (retval != FW_SUCCESS) {
1037 		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1038 		mempool_free(mbp, hw->mb_mempool);
1039 		return -EINVAL;
1040 	}
1041 
1042 	mempool_free(mbp, hw->mb_mempool);
1043 
1044 	return 0;
1045 }
1046 
1047 static int
1048 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1049 {
1050 	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1051 	uint16_t caps;
1052 
1053 	caps = ntohs(rsp->fcoecaps);
1054 
1055 	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1056 		csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1057 		return -EINVAL;
1058 	}
1059 
1060 	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1061 		csio_err(hw, "No FCoE Control Offload capability\n");
1062 		return -EINVAL;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 /*
1069  *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1070  *	@hw: the HW module
1071  *	@mbox: mailbox to use for the FW RESET command (if desired)
1072  *	@force: force uP into RESET even if FW RESET command fails
1073  *
1074  *	Issues a RESET command to firmware (if desired) with a HALT indication
1075  *	and then puts the microprocessor into RESET state.  The RESET command
1076  *	will only be issued if a legitimate mailbox is provided (mbox <=
1077  *	PCIE_FW_MASTER_MASK).
1078  *
1079  *	This is generally used in order for the host to safely manipulate the
1080  *	adapter without fear of conflicting with whatever the firmware might
1081  *	be doing.  The only way out of this state is to RESTART the firmware
1082  *	...
1083  */
1084 static int
1085 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1086 {
1087 	enum fw_retval retval = 0;
1088 
1089 	/*
1090 	 * If a legitimate mailbox is provided, issue a RESET command
1091 	 * with a HALT indication.
1092 	 */
1093 	if (mbox <= PCIE_FW_MASTER_M) {
1094 		struct csio_mb	*mbp;
1095 
1096 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1097 		if (!mbp) {
1098 			CSIO_INC_STATS(hw, n_err_nomem);
1099 			return -ENOMEM;
1100 		}
1101 
1102 		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1103 			      PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1104 			      NULL);
1105 
1106 		if (csio_mb_issue(hw, mbp)) {
1107 			csio_err(hw, "Issue of RESET command failed!\n");
1108 			mempool_free(mbp, hw->mb_mempool);
1109 			return -EINVAL;
1110 		}
1111 
1112 		retval = csio_mb_fw_retval(mbp);
1113 		mempool_free(mbp, hw->mb_mempool);
1114 	}
1115 
1116 	/*
1117 	 * Normally we won't complete the operation if the firmware RESET
1118 	 * command fails but if our caller insists we'll go ahead and put the
1119 	 * uP into RESET.  This can be useful if the firmware is hung or even
1120 	 * missing ...  We'll have to take the risk of putting the uP into
1121 	 * RESET without the cooperation of firmware in that case.
1122 	 *
1123 	 * We also force the firmware's HALT flag to be on in case we bypassed
1124 	 * the firmware RESET command above or we're dealing with old firmware
1125 	 * which doesn't have the HALT capability.  This will serve as a flag
1126 	 * for the incoming firmware to know that it's coming out of a HALT
1127 	 * rather than a RESET ... if it's new enough to understand that ...
1128 	 */
1129 	if (retval == 0 || force) {
1130 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1131 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1132 				   PCIE_FW_HALT_F);
1133 	}
1134 
1135 	/*
1136 	 * And we always return the result of the firmware RESET command
1137 	 * even when we force the uP into RESET ...
1138 	 */
1139 	return retval ? -EINVAL : 0;
1140 }
1141 
1142 /*
1143  *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1144  *	@hw: the HW module
1145  *	@reset: if we want to do a RESET to restart things
1146  *
1147  *	Restart firmware previously halted by csio_hw_fw_halt().  On successful
1148  *	return the previous PF Master remains as the new PF Master and there
1149  *	is no need to issue a new HELLO command, etc.
1150  *
1151  *	We do this in two ways:
1152  *
1153  *	 1. If we're dealing with newer firmware we'll simply want to take
1154  *	    the chip's microprocessor out of RESET.  This will cause the
1155  *	    firmware to start up from its start vector.  And then we'll loop
1156  *	    until the firmware indicates it's started again (PCIE_FW.HALT
1157  *	    reset to 0) or we timeout.
1158  *
1159  *	 2. If we're dealing with older firmware then we'll need to RESET
1160  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
1161  *	    flag and automatically RESET itself on startup.
1162  */
1163 static int
1164 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1165 {
1166 	if (reset) {
1167 		/*
1168 		 * Since we're directing the RESET instead of the firmware
1169 		 * doing it automatically, we need to clear the PCIE_FW.HALT
1170 		 * bit.
1171 		 */
1172 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1173 
1174 		/*
1175 		 * If we've been given a valid mailbox, first try to get the
1176 		 * firmware to do the RESET.  If that works, great and we can
1177 		 * return success.  Otherwise, if we haven't been given a
1178 		 * valid mailbox or the RESET command failed, fall back to
1179 		 * hitting the chip with a hammer.
1180 		 */
1181 		if (mbox <= PCIE_FW_MASTER_M) {
1182 			csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1183 			msleep(100);
1184 			if (csio_do_reset(hw, true) == 0)
1185 				return 0;
1186 		}
1187 
1188 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1189 		msleep(2000);
1190 	} else {
1191 		int ms;
1192 
1193 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1194 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1195 			if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1196 				return 0;
1197 			msleep(100);
1198 			ms += 100;
1199 		}
1200 		return -ETIMEDOUT;
1201 	}
1202 	return 0;
1203 }
1204 
1205 /*
1206  *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1207  *	@hw: the HW module
1208  *	@mbox: mailbox to use for the FW RESET command (if desired)
1209  *	@fw_data: the firmware image to write
1210  *	@size: image size
1211  *	@force: force upgrade even if firmware doesn't cooperate
1212  *
1213  *	Perform all of the steps necessary for upgrading an adapter's
1214  *	firmware image.  Normally this requires the cooperation of the
1215  *	existing firmware in order to halt all existing activities
1216  *	but if an invalid mailbox token is passed in we skip that step
1217  *	(though we'll still put the adapter microprocessor into RESET in
1218  *	that case).
1219  *
1220  *	On successful return the new firmware will have been loaded and
1221  *	the adapter will have been fully RESET losing all previous setup
1222  *	state.  On unsuccessful return the adapter may be completely hosed ...
1223  *	positive errno indicates that the adapter is ~probably~ intact, a
1224  *	negative errno indicates that things are looking bad ...
1225  */
1226 static int
1227 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1228 		  const u8 *fw_data, uint32_t size, int32_t force)
1229 {
1230 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1231 	int reset, ret;
1232 
1233 	ret = csio_hw_fw_halt(hw, mbox, force);
1234 	if (ret != 0 && !force)
1235 		return ret;
1236 
1237 	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1238 	if (ret != 0)
1239 		return ret;
1240 
1241 	/*
1242 	 * Older versions of the firmware don't understand the new
1243 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1244 	 * restart.  So for newly loaded older firmware we'll have to do the
1245 	 * RESET for it so it starts up on a clean slate.  We can tell if
1246 	 * the newly loaded firmware will handle this right by checking
1247 	 * its header flags to see if it advertises the capability.
1248 	 */
1249 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1250 	return csio_hw_fw_restart(hw, mbox, reset);
1251 }
1252 
1253 /*
1254  * csio_get_device_params - Get device parameters.
1255  * @hw: HW module
1256  *
1257  */
1258 static int
1259 csio_get_device_params(struct csio_hw *hw)
1260 {
1261 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1262 	struct csio_mb	*mbp;
1263 	enum fw_retval retval;
1264 	u32 param[6];
1265 	int i, j = 0;
1266 
1267 	/* Initialize portids to -1 */
1268 	for (i = 0; i < CSIO_MAX_PPORTS; i++)
1269 		hw->pport[i].portid = -1;
1270 
1271 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1272 	if (!mbp) {
1273 		CSIO_INC_STATS(hw, n_err_nomem);
1274 		return -ENOMEM;
1275 	}
1276 
1277 	/* Get port vec information. */
1278 	param[0] = FW_PARAM_DEV(PORTVEC);
1279 
1280 	/* Get Core clock. */
1281 	param[1] = FW_PARAM_DEV(CCLK);
1282 
1283 	/* Get EQ id start and end. */
1284 	param[2] = FW_PARAM_PFVF(EQ_START);
1285 	param[3] = FW_PARAM_PFVF(EQ_END);
1286 
1287 	/* Get IQ id start and end. */
1288 	param[4] = FW_PARAM_PFVF(IQFLINT_START);
1289 	param[5] = FW_PARAM_PFVF(IQFLINT_END);
1290 
1291 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1292 		       ARRAY_SIZE(param), param, NULL, false, NULL);
1293 	if (csio_mb_issue(hw, mbp)) {
1294 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1295 		mempool_free(mbp, hw->mb_mempool);
1296 		return -EINVAL;
1297 	}
1298 
1299 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1300 			ARRAY_SIZE(param), param);
1301 	if (retval != FW_SUCCESS) {
1302 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1303 				retval);
1304 		mempool_free(mbp, hw->mb_mempool);
1305 		return -EINVAL;
1306 	}
1307 
1308 	/* cache the information. */
1309 	hw->port_vec = param[0];
1310 	hw->vpd.cclk = param[1];
1311 	wrm->fw_eq_start = param[2];
1312 	wrm->fw_iq_start = param[4];
1313 
1314 	/* Using FW configured max iqs & eqs */
1315 	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1316 		!csio_is_hw_master(hw)) {
1317 		hw->cfg_niq = param[5] - param[4] + 1;
1318 		hw->cfg_neq = param[3] - param[2] + 1;
1319 		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1320 			hw->cfg_niq, hw->cfg_neq);
1321 	}
1322 
1323 	hw->port_vec &= csio_port_mask;
1324 
1325 	hw->num_pports	= hweight32(hw->port_vec);
1326 
1327 	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1328 		    hw->port_vec, hw->num_pports);
1329 
1330 	for (i = 0; i < hw->num_pports; i++) {
1331 		while ((hw->port_vec & (1 << j)) == 0)
1332 			j++;
1333 		hw->pport[i].portid = j++;
1334 		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1335 	}
1336 	mempool_free(mbp, hw->mb_mempool);
1337 
1338 	return 0;
1339 }
1340 
1341 
1342 /*
1343  * csio_config_device_caps - Get and set device capabilities.
1344  * @hw: HW module
1345  *
1346  */
1347 static int
1348 csio_config_device_caps(struct csio_hw *hw)
1349 {
1350 	struct csio_mb	*mbp;
1351 	enum fw_retval retval;
1352 	int rv = -EINVAL;
1353 
1354 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1355 	if (!mbp) {
1356 		CSIO_INC_STATS(hw, n_err_nomem);
1357 		return -ENOMEM;
1358 	}
1359 
1360 	/* Get device capabilities */
1361 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1362 
1363 	if (csio_mb_issue(hw, mbp)) {
1364 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1365 		goto out;
1366 	}
1367 
1368 	retval = csio_mb_fw_retval(mbp);
1369 	if (retval != FW_SUCCESS) {
1370 		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1371 		goto out;
1372 	}
1373 
1374 	/* Validate device capabilities */
1375 	rv = csio_hw_validate_caps(hw, mbp);
1376 	if (rv != 0)
1377 		goto out;
1378 
1379 	/* Don't config device capabilities if already configured */
1380 	if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1381 		rv = 0;
1382 		goto out;
1383 	}
1384 
1385 	/* Write back desired device capabilities */
1386 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1387 			    false, true, NULL);
1388 
1389 	if (csio_mb_issue(hw, mbp)) {
1390 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1391 		goto out;
1392 	}
1393 
1394 	retval = csio_mb_fw_retval(mbp);
1395 	if (retval != FW_SUCCESS) {
1396 		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1397 		goto out;
1398 	}
1399 
1400 	rv = 0;
1401 out:
1402 	mempool_free(mbp, hw->mb_mempool);
1403 	return rv;
1404 }
1405 
1406 /*
1407  * csio_enable_ports - Bring up all available ports.
1408  * @hw: HW module.
1409  *
1410  */
1411 static int
1412 csio_enable_ports(struct csio_hw *hw)
1413 {
1414 	struct csio_mb  *mbp;
1415 	enum fw_retval retval;
1416 	uint8_t portid;
1417 	int i;
1418 
1419 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1420 	if (!mbp) {
1421 		CSIO_INC_STATS(hw, n_err_nomem);
1422 		return -ENOMEM;
1423 	}
1424 
1425 	for (i = 0; i < hw->num_pports; i++) {
1426 		portid = hw->pport[i].portid;
1427 
1428 		/* Read PORT information */
1429 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1430 			     false, 0, 0, NULL);
1431 
1432 		if (csio_mb_issue(hw, mbp)) {
1433 			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1434 				 portid);
1435 			mempool_free(mbp, hw->mb_mempool);
1436 			return -EINVAL;
1437 		}
1438 
1439 		csio_mb_process_read_port_rsp(hw, mbp, &retval,
1440 					      &hw->pport[i].pcap);
1441 		if (retval != FW_SUCCESS) {
1442 			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1443 				 portid, retval);
1444 			mempool_free(mbp, hw->mb_mempool);
1445 			return -EINVAL;
1446 		}
1447 
1448 		/* Write back PORT information */
1449 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1450 			     (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1451 
1452 		if (csio_mb_issue(hw, mbp)) {
1453 			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1454 				 portid);
1455 			mempool_free(mbp, hw->mb_mempool);
1456 			return -EINVAL;
1457 		}
1458 
1459 		retval = csio_mb_fw_retval(mbp);
1460 		if (retval != FW_SUCCESS) {
1461 			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1462 				 portid, retval);
1463 			mempool_free(mbp, hw->mb_mempool);
1464 			return -EINVAL;
1465 		}
1466 
1467 	} /* For all ports */
1468 
1469 	mempool_free(mbp, hw->mb_mempool);
1470 
1471 	return 0;
1472 }
1473 
1474 /*
1475  * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1476  * @hw: HW module
1477  * Issued with lock held.
1478  */
1479 static int
1480 csio_get_fcoe_resinfo(struct csio_hw *hw)
1481 {
1482 	struct csio_fcoe_res_info *res_info = &hw->fres_info;
1483 	struct fw_fcoe_res_info_cmd *rsp;
1484 	struct csio_mb  *mbp;
1485 	enum fw_retval retval;
1486 
1487 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1488 	if (!mbp) {
1489 		CSIO_INC_STATS(hw, n_err_nomem);
1490 		return -ENOMEM;
1491 	}
1492 
1493 	/* Get FCoE FW resource information */
1494 	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1495 
1496 	if (csio_mb_issue(hw, mbp)) {
1497 		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1498 		mempool_free(mbp, hw->mb_mempool);
1499 		return -EINVAL;
1500 	}
1501 
1502 	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1503 	retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1504 	if (retval != FW_SUCCESS) {
1505 		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1506 			 retval);
1507 		mempool_free(mbp, hw->mb_mempool);
1508 		return -EINVAL;
1509 	}
1510 
1511 	res_info->e_d_tov = ntohs(rsp->e_d_tov);
1512 	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1513 	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1514 	res_info->r_r_tov = ntohs(rsp->r_r_tov);
1515 	res_info->max_xchgs = ntohl(rsp->max_xchgs);
1516 	res_info->max_ssns = ntohl(rsp->max_ssns);
1517 	res_info->used_xchgs = ntohl(rsp->used_xchgs);
1518 	res_info->used_ssns = ntohl(rsp->used_ssns);
1519 	res_info->max_fcfs = ntohl(rsp->max_fcfs);
1520 	res_info->max_vnps = ntohl(rsp->max_vnps);
1521 	res_info->used_fcfs = ntohl(rsp->used_fcfs);
1522 	res_info->used_vnps = ntohl(rsp->used_vnps);
1523 
1524 	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1525 						  res_info->max_xchgs);
1526 	mempool_free(mbp, hw->mb_mempool);
1527 
1528 	return 0;
1529 }
1530 
1531 static int
1532 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1533 {
1534 	struct csio_mb	*mbp;
1535 	enum fw_retval retval;
1536 	u32 _param[1];
1537 
1538 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1539 	if (!mbp) {
1540 		CSIO_INC_STATS(hw, n_err_nomem);
1541 		return -ENOMEM;
1542 	}
1543 
1544 	/*
1545 	 * Find out whether we're dealing with a version of
1546 	 * the firmware which has configuration file support.
1547 	 */
1548 	_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1549 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1550 
1551 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1552 		       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1553 	if (csio_mb_issue(hw, mbp)) {
1554 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1555 		mempool_free(mbp, hw->mb_mempool);
1556 		return -EINVAL;
1557 	}
1558 
1559 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1560 			ARRAY_SIZE(_param), _param);
1561 	if (retval != FW_SUCCESS) {
1562 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1563 				retval);
1564 		mempool_free(mbp, hw->mb_mempool);
1565 		return -EINVAL;
1566 	}
1567 
1568 	mempool_free(mbp, hw->mb_mempool);
1569 	*param = _param[0];
1570 
1571 	return 0;
1572 }
1573 
1574 static int
1575 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1576 {
1577 	int ret = 0;
1578 	const struct firmware *cf;
1579 	struct pci_dev *pci_dev = hw->pdev;
1580 	struct device *dev = &pci_dev->dev;
1581 	unsigned int mtype = 0, maddr = 0;
1582 	uint32_t *cfg_data;
1583 	int value_to_add = 0;
1584 
1585 	if (request_firmware(&cf, FW_CFG_NAME_T5, dev) < 0) {
1586 		csio_err(hw, "could not find config file %s, err: %d\n",
1587 			 FW_CFG_NAME_T5, ret);
1588 		return -ENOENT;
1589 	}
1590 
1591 	if (cf->size%4 != 0)
1592 		value_to_add = 4 - (cf->size % 4);
1593 
1594 	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1595 	if (cfg_data == NULL) {
1596 		ret = -ENOMEM;
1597 		goto leave;
1598 	}
1599 
1600 	memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1601 	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1602 		ret = -EINVAL;
1603 		goto leave;
1604 	}
1605 
1606 	mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1607 	maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1608 
1609 	ret = csio_memory_write(hw, mtype, maddr,
1610 				cf->size + value_to_add, cfg_data);
1611 
1612 	if ((ret == 0) && (value_to_add != 0)) {
1613 		union {
1614 			u32 word;
1615 			char buf[4];
1616 		} last;
1617 		size_t size = cf->size & ~0x3;
1618 		int i;
1619 
1620 		last.word = cfg_data[size >> 2];
1621 		for (i = value_to_add; i < 4; i++)
1622 			last.buf[i] = 0;
1623 		ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1624 	}
1625 	if (ret == 0) {
1626 		csio_info(hw, "config file upgraded to %s\n",
1627 			  FW_CFG_NAME_T5);
1628 		snprintf(path, 64, "%s%s", "/lib/firmware/", FW_CFG_NAME_T5);
1629 	}
1630 
1631 leave:
1632 	kfree(cfg_data);
1633 	release_firmware(cf);
1634 	return ret;
1635 }
1636 
1637 /*
1638  * HW initialization: contact FW, obtain config, perform basic init.
1639  *
1640  * If the firmware we're dealing with has Configuration File support, then
1641  * we use that to perform all configuration -- either using the configuration
1642  * file stored in flash on the adapter or using a filesystem-local file
1643  * if available.
1644  *
1645  * If we don't have configuration file support in the firmware, then we'll
1646  * have to set things up the old fashioned way with hard-coded register
1647  * writes and firmware commands ...
1648  */
1649 
1650 /*
1651  * Attempt to initialize the HW via a Firmware Configuration File.
1652  */
1653 static int
1654 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1655 {
1656 	struct csio_mb	*mbp = NULL;
1657 	struct fw_caps_config_cmd *caps_cmd;
1658 	unsigned int mtype, maddr;
1659 	int rv = -EINVAL;
1660 	uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1661 	char path[64];
1662 	char *config_name = NULL;
1663 
1664 	/*
1665 	 * Reset device if necessary
1666 	 */
1667 	if (reset) {
1668 		rv = csio_do_reset(hw, true);
1669 		if (rv != 0)
1670 			goto bye;
1671 	}
1672 
1673 	/*
1674 	 * If we have a configuration file in host ,
1675 	 * then use that.  Otherwise, use the configuration file stored
1676 	 * in the HW flash ...
1677 	 */
1678 	spin_unlock_irq(&hw->lock);
1679 	rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1680 	spin_lock_irq(&hw->lock);
1681 	if (rv != 0) {
1682 		/*
1683 		 * config file was not found. Use default
1684 		 * config file from flash.
1685 		 */
1686 		config_name = "On FLASH";
1687 		mtype = FW_MEMTYPE_CF_FLASH;
1688 		maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1689 	} else {
1690 		config_name = path;
1691 		mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1692 		maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1693 	}
1694 
1695 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1696 	if (!mbp) {
1697 		CSIO_INC_STATS(hw, n_err_nomem);
1698 		return -ENOMEM;
1699 	}
1700 	/*
1701 	 * Tell the firmware to process the indicated Configuration File.
1702 	 * If there are no errors and the caller has provided return value
1703 	 * pointers for the [fini] section version, checksum and computed
1704 	 * checksum, pass those back to the caller.
1705 	 */
1706 	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1707 	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1708 	caps_cmd->op_to_write =
1709 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1710 		      FW_CMD_REQUEST_F |
1711 		      FW_CMD_READ_F);
1712 	caps_cmd->cfvalid_to_len16 =
1713 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1714 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1715 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1716 		      FW_LEN16(*caps_cmd));
1717 
1718 	if (csio_mb_issue(hw, mbp)) {
1719 		rv = -EINVAL;
1720 		goto bye;
1721 	}
1722 
1723 	rv = csio_mb_fw_retval(mbp);
1724 	 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1725 	  * Configuration File in FLASH), our last gasp effort is to use the
1726 	  * Firmware Configuration File which is embedded in the
1727 	  * firmware.  A very few early versions of the firmware didn't
1728 	  * have one embedded but we can ignore those.
1729 	  */
1730 	if (rv == ENOENT) {
1731 		CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1732 		caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1733 					      FW_CMD_REQUEST_F |
1734 					      FW_CMD_READ_F);
1735 		caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1736 
1737 		if (csio_mb_issue(hw, mbp)) {
1738 			rv = -EINVAL;
1739 			goto bye;
1740 		}
1741 
1742 		rv = csio_mb_fw_retval(mbp);
1743 		config_name = "Firmware Default";
1744 	}
1745 	if (rv != FW_SUCCESS)
1746 		goto bye;
1747 
1748 	finiver = ntohl(caps_cmd->finiver);
1749 	finicsum = ntohl(caps_cmd->finicsum);
1750 	cfcsum = ntohl(caps_cmd->cfcsum);
1751 
1752 	/*
1753 	 * And now tell the firmware to use the configuration we just loaded.
1754 	 */
1755 	caps_cmd->op_to_write =
1756 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1757 		      FW_CMD_REQUEST_F |
1758 		      FW_CMD_WRITE_F);
1759 	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1760 
1761 	if (csio_mb_issue(hw, mbp)) {
1762 		rv = -EINVAL;
1763 		goto bye;
1764 	}
1765 
1766 	rv = csio_mb_fw_retval(mbp);
1767 	if (rv != FW_SUCCESS) {
1768 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1769 		goto bye;
1770 	}
1771 
1772 	mempool_free(mbp, hw->mb_mempool);
1773 	if (finicsum != cfcsum) {
1774 		csio_warn(hw,
1775 		      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1776 		      finicsum, cfcsum);
1777 	}
1778 
1779 	/* Validate device capabilities */
1780 	rv = csio_hw_validate_caps(hw, mbp);
1781 	if (rv != 0)
1782 		goto bye;
1783 	/*
1784 	 * Note that we're operating with parameters
1785 	 * not supplied by the driver, rather than from hard-wired
1786 	 * initialization constants buried in the driver.
1787 	 */
1788 	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1789 
1790 	/* device parameters */
1791 	rv = csio_get_device_params(hw);
1792 	if (rv != 0)
1793 		goto bye;
1794 
1795 	/* Configure SGE */
1796 	csio_wr_sge_init(hw);
1797 
1798 	/*
1799 	 * And finally tell the firmware to initialize itself using the
1800 	 * parameters from the Configuration File.
1801 	 */
1802 	/* Post event to notify completion of configuration */
1803 	csio_post_event(&hw->sm, CSIO_HWE_INIT);
1804 
1805 	csio_info(hw, "Successfully configure using Firmware "
1806 		  "Configuration File %s, version %#x, computed checksum %#x\n",
1807 		  config_name, finiver, cfcsum);
1808 	return 0;
1809 
1810 	/*
1811 	 * Something bad happened.  Return the error ...
1812 	 */
1813 bye:
1814 	if (mbp)
1815 		mempool_free(mbp, hw->mb_mempool);
1816 	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1817 	csio_warn(hw, "Configuration file error %d\n", rv);
1818 	return rv;
1819 }
1820 
1821 /* Is the given firmware API compatible with the one the driver was compiled
1822  * with?
1823  */
1824 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1825 {
1826 
1827 	/* short circuit if it's the exact same firmware version */
1828 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1829 		return 1;
1830 
1831 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1832 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1833 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1834 		return 1;
1835 #undef SAME_INTF
1836 
1837 	return 0;
1838 }
1839 
1840 /* The firmware in the filesystem is usable, but should it be installed?
1841  * This routine explains itself in detail if it indicates the filesystem
1842  * firmware should be installed.
1843  */
1844 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
1845 				int k, int c)
1846 {
1847 	const char *reason;
1848 
1849 	if (!card_fw_usable) {
1850 		reason = "incompatible or unusable";
1851 		goto install;
1852 	}
1853 
1854 	if (k > c) {
1855 		reason = "older than the version supported with this driver";
1856 		goto install;
1857 	}
1858 
1859 	return 0;
1860 
1861 install:
1862 	csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
1863 		"installing firmware %u.%u.%u.%u on card.\n",
1864 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1865 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1866 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1867 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1868 
1869 	return 1;
1870 }
1871 
1872 static struct fw_info fw_info_array[] = {
1873 	{
1874 		.chip = CHELSIO_T5,
1875 		.fs_name = FW_CFG_NAME_T5,
1876 		.fw_mod_name = FW_FNAME_T5,
1877 		.fw_hdr = {
1878 			.chip = FW_HDR_CHIP_T5,
1879 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
1880 			.intfver_nic = FW_INTFVER(T5, NIC),
1881 			.intfver_vnic = FW_INTFVER(T5, VNIC),
1882 			.intfver_ri = FW_INTFVER(T5, RI),
1883 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
1884 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
1885 		},
1886 	}
1887 };
1888 
1889 static struct fw_info *find_fw_info(int chip)
1890 {
1891 	int i;
1892 
1893 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
1894 		if (fw_info_array[i].chip == chip)
1895 			return &fw_info_array[i];
1896 	}
1897 	return NULL;
1898 }
1899 
1900 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
1901 	       const u8 *fw_data, unsigned int fw_size,
1902 	       struct fw_hdr *card_fw, enum csio_dev_state state,
1903 	       int *reset)
1904 {
1905 	int ret, card_fw_usable, fs_fw_usable;
1906 	const struct fw_hdr *fs_fw;
1907 	const struct fw_hdr *drv_fw;
1908 
1909 	drv_fw = &fw_info->fw_hdr;
1910 
1911 	/* Read the header of the firmware on the card */
1912 	ret = csio_hw_read_flash(hw, FLASH_FW_START,
1913 			    sizeof(*card_fw) / sizeof(uint32_t),
1914 			    (uint32_t *)card_fw, 1);
1915 	if (ret == 0) {
1916 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1917 	} else {
1918 		csio_err(hw,
1919 			"Unable to read card's firmware header: %d\n", ret);
1920 		card_fw_usable = 0;
1921 	}
1922 
1923 	if (fw_data != NULL) {
1924 		fs_fw = (const void *)fw_data;
1925 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1926 	} else {
1927 		fs_fw = NULL;
1928 		fs_fw_usable = 0;
1929 	}
1930 
1931 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1932 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1933 		/* Common case: the firmware on the card is an exact match and
1934 		 * the filesystem one is an exact match too, or the filesystem
1935 		 * one is absent/incompatible.
1936 		 */
1937 	} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
1938 		   csio_should_install_fs_fw(hw, card_fw_usable,
1939 					be32_to_cpu(fs_fw->fw_ver),
1940 					be32_to_cpu(card_fw->fw_ver))) {
1941 		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
1942 				     fw_size, 0);
1943 		if (ret != 0) {
1944 			csio_err(hw,
1945 				"failed to install firmware: %d\n", ret);
1946 			goto bye;
1947 		}
1948 
1949 		/* Installed successfully, update the cached header too. */
1950 		memcpy(card_fw, fs_fw, sizeof(*card_fw));
1951 		card_fw_usable = 1;
1952 		*reset = 0;	/* already reset as part of load_fw */
1953 	}
1954 
1955 	if (!card_fw_usable) {
1956 		uint32_t d, c, k;
1957 
1958 		d = be32_to_cpu(drv_fw->fw_ver);
1959 		c = be32_to_cpu(card_fw->fw_ver);
1960 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1961 
1962 		csio_err(hw, "Cannot find a usable firmware: "
1963 			"chip state %d, "
1964 			"driver compiled with %d.%d.%d.%d, "
1965 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1966 			state,
1967 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1968 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1969 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1970 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1971 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1972 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1973 		ret = EINVAL;
1974 		goto bye;
1975 	}
1976 
1977 	/* We're using whatever's on the card and it's known to be good. */
1978 	hw->fwrev = be32_to_cpu(card_fw->fw_ver);
1979 	hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
1980 
1981 bye:
1982 	return ret;
1983 }
1984 
1985 /*
1986  * Returns -EINVAL if attempts to flash the firmware failed
1987  * else returns 0,
1988  * if flashing was not attempted because the card had the
1989  * latest firmware ECANCELED is returned
1990  */
1991 static int
1992 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
1993 {
1994 	int ret = -ECANCELED;
1995 	const struct firmware *fw;
1996 	struct fw_info *fw_info;
1997 	struct fw_hdr *card_fw;
1998 	struct pci_dev *pci_dev = hw->pdev;
1999 	struct device *dev = &pci_dev->dev ;
2000 	const u8 *fw_data = NULL;
2001 	unsigned int fw_size = 0;
2002 
2003 	/* This is the firmware whose headers the driver was compiled
2004 	 * against
2005 	 */
2006 	fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2007 	if (fw_info == NULL) {
2008 		csio_err(hw,
2009 			"unable to get firmware info for chip %d.\n",
2010 			CHELSIO_CHIP_VERSION(hw->chip_id));
2011 		return -EINVAL;
2012 	}
2013 
2014 	if (request_firmware(&fw, FW_FNAME_T5, dev) < 0) {
2015 		csio_err(hw, "could not find firmware image %s, err: %d\n",
2016 			 FW_FNAME_T5, ret);
2017 	} else {
2018 		fw_data = fw->data;
2019 		fw_size = fw->size;
2020 	}
2021 
2022 	/* allocate memory to read the header of the firmware on the
2023 	 * card
2024 	 */
2025 	card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2026 
2027 	/* upgrade FW logic */
2028 	ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2029 			 hw->fw_state, reset);
2030 
2031 	/* Cleaning up */
2032 	if (fw != NULL)
2033 		release_firmware(fw);
2034 	kfree(card_fw);
2035 	return ret;
2036 }
2037 
2038 /*
2039  * csio_hw_configure - Configure HW
2040  * @hw - HW module
2041  *
2042  */
2043 static void
2044 csio_hw_configure(struct csio_hw *hw)
2045 {
2046 	int reset = 1;
2047 	int rv;
2048 	u32 param[1];
2049 
2050 	rv = csio_hw_dev_ready(hw);
2051 	if (rv != 0) {
2052 		CSIO_INC_STATS(hw, n_err_fatal);
2053 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2054 		goto out;
2055 	}
2056 
2057 	/* HW version */
2058 	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2059 
2060 	/* Needed for FW download */
2061 	rv = csio_hw_get_flash_params(hw);
2062 	if (rv != 0) {
2063 		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2064 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2065 		goto out;
2066 	}
2067 
2068 	/* Set PCIe completion timeout to 4 seconds */
2069 	if (pci_is_pcie(hw->pdev))
2070 		pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2071 				PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2072 
2073 	hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2074 
2075 	rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2076 	if (rv != 0)
2077 		goto out;
2078 
2079 	csio_hw_print_fw_version(hw, "Firmware revision");
2080 
2081 	rv = csio_do_hello(hw, &hw->fw_state);
2082 	if (rv != 0) {
2083 		CSIO_INC_STATS(hw, n_err_fatal);
2084 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2085 		goto out;
2086 	}
2087 
2088 	/* Read vpd */
2089 	rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2090 	if (rv != 0)
2091 		goto out;
2092 
2093 	csio_hw_get_fw_version(hw, &hw->fwrev);
2094 	csio_hw_get_tp_version(hw, &hw->tp_vers);
2095 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2096 
2097 			/* Do firmware update */
2098 		spin_unlock_irq(&hw->lock);
2099 		rv = csio_hw_flash_fw(hw, &reset);
2100 		spin_lock_irq(&hw->lock);
2101 
2102 		if (rv != 0)
2103 			goto out;
2104 
2105 		/* If the firmware doesn't support Configuration Files,
2106 		 * return an error.
2107 		 */
2108 		rv = csio_hw_check_fwconfig(hw, param);
2109 		if (rv != 0) {
2110 			csio_info(hw, "Firmware doesn't support "
2111 				  "Firmware Configuration files\n");
2112 			goto out;
2113 		}
2114 
2115 		/* The firmware provides us with a memory buffer where we can
2116 		 * load a Configuration File from the host if we want to
2117 		 * override the Configuration File in flash.
2118 		 */
2119 		rv = csio_hw_use_fwconfig(hw, reset, param);
2120 		if (rv == -ENOENT) {
2121 			csio_info(hw, "Could not initialize "
2122 				  "adapter, error%d\n", rv);
2123 			goto out;
2124 		}
2125 		if (rv != 0) {
2126 			csio_info(hw, "Could not initialize "
2127 				  "adapter, error%d\n", rv);
2128 			goto out;
2129 		}
2130 
2131 	} else {
2132 		if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2133 
2134 			hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2135 
2136 			/* device parameters */
2137 			rv = csio_get_device_params(hw);
2138 			if (rv != 0)
2139 				goto out;
2140 
2141 			/* Get device capabilities */
2142 			rv = csio_config_device_caps(hw);
2143 			if (rv != 0)
2144 				goto out;
2145 
2146 			/* Configure SGE */
2147 			csio_wr_sge_init(hw);
2148 
2149 			/* Post event to notify completion of configuration */
2150 			csio_post_event(&hw->sm, CSIO_HWE_INIT);
2151 			goto out;
2152 		}
2153 	} /* if not master */
2154 
2155 out:
2156 	return;
2157 }
2158 
2159 /*
2160  * csio_hw_initialize - Initialize HW
2161  * @hw - HW module
2162  *
2163  */
2164 static void
2165 csio_hw_initialize(struct csio_hw *hw)
2166 {
2167 	struct csio_mb	*mbp;
2168 	enum fw_retval retval;
2169 	int rv;
2170 	int i;
2171 
2172 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2173 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2174 		if (!mbp)
2175 			goto out;
2176 
2177 		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2178 
2179 		if (csio_mb_issue(hw, mbp)) {
2180 			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2181 			goto free_and_out;
2182 		}
2183 
2184 		retval = csio_mb_fw_retval(mbp);
2185 		if (retval != FW_SUCCESS) {
2186 			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2187 				 retval);
2188 			goto free_and_out;
2189 		}
2190 
2191 		mempool_free(mbp, hw->mb_mempool);
2192 	}
2193 
2194 	rv = csio_get_fcoe_resinfo(hw);
2195 	if (rv != 0) {
2196 		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2197 		goto out;
2198 	}
2199 
2200 	spin_unlock_irq(&hw->lock);
2201 	rv = csio_config_queues(hw);
2202 	spin_lock_irq(&hw->lock);
2203 
2204 	if (rv != 0) {
2205 		csio_err(hw, "Config of queues failed!: %d\n", rv);
2206 		goto out;
2207 	}
2208 
2209 	for (i = 0; i < hw->num_pports; i++)
2210 		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2211 
2212 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2213 		rv = csio_enable_ports(hw);
2214 		if (rv != 0) {
2215 			csio_err(hw, "Failed to enable ports: %d\n", rv);
2216 			goto out;
2217 		}
2218 	}
2219 
2220 	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2221 	return;
2222 
2223 free_and_out:
2224 	mempool_free(mbp, hw->mb_mempool);
2225 out:
2226 	return;
2227 }
2228 
2229 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2230 
2231 /*
2232  * csio_hw_intr_enable - Enable HW interrupts
2233  * @hw: Pointer to HW module.
2234  *
2235  * Enable interrupts in HW registers.
2236  */
2237 static void
2238 csio_hw_intr_enable(struct csio_hw *hw)
2239 {
2240 	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2241 	uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2242 	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2243 
2244 	/*
2245 	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2246 	 * by FW, so do nothing for INTX.
2247 	 */
2248 	if (hw->intr_mode == CSIO_IM_MSIX)
2249 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2250 				   AIVEC_V(AIVEC_M), vec);
2251 	else if (hw->intr_mode == CSIO_IM_MSI)
2252 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2253 				   AIVEC_V(AIVEC_M), 0);
2254 
2255 	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2256 
2257 	/* Turn on MB interrupts - this will internally flush PIO as well */
2258 	csio_mb_intr_enable(hw);
2259 
2260 	/* These are common registers - only a master can modify them */
2261 	if (csio_is_hw_master(hw)) {
2262 		/*
2263 		 * Disable the Serial FLASH interrupt, if enabled!
2264 		 */
2265 		pl &= (~SF_F);
2266 		csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2267 
2268 		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2269 			      EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2270 			      ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2271 			      ERR_DATA_CPL_ON_HIGH_QID1_F |
2272 			      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2273 			      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2274 			      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2275 			      ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2276 			      SGE_INT_ENABLE3_A);
2277 		csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2278 	}
2279 
2280 	hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2281 
2282 }
2283 
2284 /*
2285  * csio_hw_intr_disable - Disable HW interrupts
2286  * @hw: Pointer to HW module.
2287  *
2288  * Turn off Mailbox and PCI_PF_CFG interrupts.
2289  */
2290 void
2291 csio_hw_intr_disable(struct csio_hw *hw)
2292 {
2293 	uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2294 
2295 	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2296 		return;
2297 
2298 	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2299 
2300 	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2301 	if (csio_is_hw_master(hw))
2302 		csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2303 
2304 	/* Turn off MB interrupts */
2305 	csio_mb_intr_disable(hw);
2306 
2307 }
2308 
2309 void
2310 csio_hw_fatal_err(struct csio_hw *hw)
2311 {
2312 	csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2313 	csio_hw_intr_disable(hw);
2314 
2315 	/* Do not reset HW, we may need FW state for debugging */
2316 	csio_fatal(hw, "HW Fatal error encountered!\n");
2317 }
2318 
2319 /*****************************************************************************/
2320 /* START: HW SM                                                              */
2321 /*****************************************************************************/
2322 /*
2323  * csio_hws_uninit - Uninit state
2324  * @hw - HW module
2325  * @evt - Event
2326  *
2327  */
2328 static void
2329 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2330 {
2331 	hw->prev_evt = hw->cur_evt;
2332 	hw->cur_evt = evt;
2333 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2334 
2335 	switch (evt) {
2336 	case CSIO_HWE_CFG:
2337 		csio_set_state(&hw->sm, csio_hws_configuring);
2338 		csio_hw_configure(hw);
2339 		break;
2340 
2341 	default:
2342 		CSIO_INC_STATS(hw, n_evt_unexp);
2343 		break;
2344 	}
2345 }
2346 
2347 /*
2348  * csio_hws_configuring - Configuring state
2349  * @hw - HW module
2350  * @evt - Event
2351  *
2352  */
2353 static void
2354 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2355 {
2356 	hw->prev_evt = hw->cur_evt;
2357 	hw->cur_evt = evt;
2358 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2359 
2360 	switch (evt) {
2361 	case CSIO_HWE_INIT:
2362 		csio_set_state(&hw->sm, csio_hws_initializing);
2363 		csio_hw_initialize(hw);
2364 		break;
2365 
2366 	case CSIO_HWE_INIT_DONE:
2367 		csio_set_state(&hw->sm, csio_hws_ready);
2368 		/* Fan out event to all lnode SMs */
2369 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2370 		break;
2371 
2372 	case CSIO_HWE_FATAL:
2373 		csio_set_state(&hw->sm, csio_hws_uninit);
2374 		break;
2375 
2376 	case CSIO_HWE_PCI_REMOVE:
2377 		csio_do_bye(hw);
2378 		break;
2379 	default:
2380 		CSIO_INC_STATS(hw, n_evt_unexp);
2381 		break;
2382 	}
2383 }
2384 
2385 /*
2386  * csio_hws_initializing - Initialiazing state
2387  * @hw - HW module
2388  * @evt - Event
2389  *
2390  */
2391 static void
2392 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2393 {
2394 	hw->prev_evt = hw->cur_evt;
2395 	hw->cur_evt = evt;
2396 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2397 
2398 	switch (evt) {
2399 	case CSIO_HWE_INIT_DONE:
2400 		csio_set_state(&hw->sm, csio_hws_ready);
2401 
2402 		/* Fan out event to all lnode SMs */
2403 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2404 
2405 		/* Enable interrupts */
2406 		csio_hw_intr_enable(hw);
2407 		break;
2408 
2409 	case CSIO_HWE_FATAL:
2410 		csio_set_state(&hw->sm, csio_hws_uninit);
2411 		break;
2412 
2413 	case CSIO_HWE_PCI_REMOVE:
2414 		csio_do_bye(hw);
2415 		break;
2416 
2417 	default:
2418 		CSIO_INC_STATS(hw, n_evt_unexp);
2419 		break;
2420 	}
2421 }
2422 
2423 /*
2424  * csio_hws_ready - Ready state
2425  * @hw - HW module
2426  * @evt - Event
2427  *
2428  */
2429 static void
2430 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2431 {
2432 	/* Remember the event */
2433 	hw->evtflag = evt;
2434 
2435 	hw->prev_evt = hw->cur_evt;
2436 	hw->cur_evt = evt;
2437 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2438 
2439 	switch (evt) {
2440 	case CSIO_HWE_HBA_RESET:
2441 	case CSIO_HWE_FW_DLOAD:
2442 	case CSIO_HWE_SUSPEND:
2443 	case CSIO_HWE_PCI_REMOVE:
2444 	case CSIO_HWE_PCIERR_DETECTED:
2445 		csio_set_state(&hw->sm, csio_hws_quiescing);
2446 		/* cleanup all outstanding cmds */
2447 		if (evt == CSIO_HWE_HBA_RESET ||
2448 		    evt == CSIO_HWE_PCIERR_DETECTED)
2449 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2450 		else
2451 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2452 
2453 		csio_hw_intr_disable(hw);
2454 		csio_hw_mbm_cleanup(hw);
2455 		csio_evtq_stop(hw);
2456 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2457 		csio_evtq_flush(hw);
2458 		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2459 		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2460 		break;
2461 
2462 	case CSIO_HWE_FATAL:
2463 		csio_set_state(&hw->sm, csio_hws_uninit);
2464 		break;
2465 
2466 	default:
2467 		CSIO_INC_STATS(hw, n_evt_unexp);
2468 		break;
2469 	}
2470 }
2471 
2472 /*
2473  * csio_hws_quiescing - Quiescing state
2474  * @hw - HW module
2475  * @evt - Event
2476  *
2477  */
2478 static void
2479 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2480 {
2481 	hw->prev_evt = hw->cur_evt;
2482 	hw->cur_evt = evt;
2483 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2484 
2485 	switch (evt) {
2486 	case CSIO_HWE_QUIESCED:
2487 		switch (hw->evtflag) {
2488 		case CSIO_HWE_FW_DLOAD:
2489 			csio_set_state(&hw->sm, csio_hws_resetting);
2490 			/* Download firmware */
2491 			/* Fall through */
2492 
2493 		case CSIO_HWE_HBA_RESET:
2494 			csio_set_state(&hw->sm, csio_hws_resetting);
2495 			/* Start reset of the HBA */
2496 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2497 			csio_wr_destroy_queues(hw, false);
2498 			csio_do_reset(hw, false);
2499 			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2500 			break;
2501 
2502 		case CSIO_HWE_PCI_REMOVE:
2503 			csio_set_state(&hw->sm, csio_hws_removing);
2504 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2505 			csio_wr_destroy_queues(hw, true);
2506 			/* Now send the bye command */
2507 			csio_do_bye(hw);
2508 			break;
2509 
2510 		case CSIO_HWE_SUSPEND:
2511 			csio_set_state(&hw->sm, csio_hws_quiesced);
2512 			break;
2513 
2514 		case CSIO_HWE_PCIERR_DETECTED:
2515 			csio_set_state(&hw->sm, csio_hws_pcierr);
2516 			csio_wr_destroy_queues(hw, false);
2517 			break;
2518 
2519 		default:
2520 			CSIO_INC_STATS(hw, n_evt_unexp);
2521 			break;
2522 
2523 		}
2524 		break;
2525 
2526 	default:
2527 		CSIO_INC_STATS(hw, n_evt_unexp);
2528 		break;
2529 	}
2530 }
2531 
2532 /*
2533  * csio_hws_quiesced - Quiesced state
2534  * @hw - HW module
2535  * @evt - Event
2536  *
2537  */
2538 static void
2539 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2540 {
2541 	hw->prev_evt = hw->cur_evt;
2542 	hw->cur_evt = evt;
2543 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2544 
2545 	switch (evt) {
2546 	case CSIO_HWE_RESUME:
2547 		csio_set_state(&hw->sm, csio_hws_configuring);
2548 		csio_hw_configure(hw);
2549 		break;
2550 
2551 	default:
2552 		CSIO_INC_STATS(hw, n_evt_unexp);
2553 		break;
2554 	}
2555 }
2556 
2557 /*
2558  * csio_hws_resetting - HW Resetting state
2559  * @hw - HW module
2560  * @evt - Event
2561  *
2562  */
2563 static void
2564 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2565 {
2566 	hw->prev_evt = hw->cur_evt;
2567 	hw->cur_evt = evt;
2568 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2569 
2570 	switch (evt) {
2571 	case CSIO_HWE_HBA_RESET_DONE:
2572 		csio_evtq_start(hw);
2573 		csio_set_state(&hw->sm, csio_hws_configuring);
2574 		csio_hw_configure(hw);
2575 		break;
2576 
2577 	default:
2578 		CSIO_INC_STATS(hw, n_evt_unexp);
2579 		break;
2580 	}
2581 }
2582 
2583 /*
2584  * csio_hws_removing - PCI Hotplug removing state
2585  * @hw - HW module
2586  * @evt - Event
2587  *
2588  */
2589 static void
2590 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2591 {
2592 	hw->prev_evt = hw->cur_evt;
2593 	hw->cur_evt = evt;
2594 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2595 
2596 	switch (evt) {
2597 	case CSIO_HWE_HBA_RESET:
2598 		if (!csio_is_hw_master(hw))
2599 			break;
2600 		/*
2601 		 * The BYE should have alerady been issued, so we cant
2602 		 * use the mailbox interface. Hence we use the PL_RST
2603 		 * register directly.
2604 		 */
2605 		csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2606 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2607 		mdelay(2000);
2608 		break;
2609 
2610 	/* Should never receive any new events */
2611 	default:
2612 		CSIO_INC_STATS(hw, n_evt_unexp);
2613 		break;
2614 
2615 	}
2616 }
2617 
2618 /*
2619  * csio_hws_pcierr - PCI Error state
2620  * @hw - HW module
2621  * @evt - Event
2622  *
2623  */
2624 static void
2625 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2626 {
2627 	hw->prev_evt = hw->cur_evt;
2628 	hw->cur_evt = evt;
2629 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2630 
2631 	switch (evt) {
2632 	case CSIO_HWE_PCIERR_SLOT_RESET:
2633 		csio_evtq_start(hw);
2634 		csio_set_state(&hw->sm, csio_hws_configuring);
2635 		csio_hw_configure(hw);
2636 		break;
2637 
2638 	default:
2639 		CSIO_INC_STATS(hw, n_evt_unexp);
2640 		break;
2641 	}
2642 }
2643 
2644 /*****************************************************************************/
2645 /* END: HW SM                                                                */
2646 /*****************************************************************************/
2647 
2648 /*
2649  *	csio_handle_intr_status - table driven interrupt handler
2650  *	@hw: HW instance
2651  *	@reg: the interrupt status register to process
2652  *	@acts: table of interrupt actions
2653  *
2654  *	A table driven interrupt handler that applies a set of masks to an
2655  *	interrupt status word and performs the corresponding actions if the
2656  *	interrupts described by the mask have occured.  The actions include
2657  *	optionally emitting a warning or alert message. The table is terminated
2658  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
2659  *	conditions.
2660  */
2661 int
2662 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2663 				 const struct intr_info *acts)
2664 {
2665 	int fatal = 0;
2666 	unsigned int mask = 0;
2667 	unsigned int status = csio_rd_reg32(hw, reg);
2668 
2669 	for ( ; acts->mask; ++acts) {
2670 		if (!(status & acts->mask))
2671 			continue;
2672 		if (acts->fatal) {
2673 			fatal++;
2674 			csio_fatal(hw, "Fatal %s (0x%x)\n",
2675 				    acts->msg, status & acts->mask);
2676 		} else if (acts->msg)
2677 			csio_info(hw, "%s (0x%x)\n",
2678 				    acts->msg, status & acts->mask);
2679 		mask |= acts->mask;
2680 	}
2681 	status &= mask;
2682 	if (status)                           /* clear processed interrupts */
2683 		csio_wr_reg32(hw, status, reg);
2684 	return fatal;
2685 }
2686 
2687 /*
2688  * TP interrupt handler.
2689  */
2690 static void csio_tp_intr_handler(struct csio_hw *hw)
2691 {
2692 	static struct intr_info tp_intr_info[] = {
2693 		{ 0x3fffffff, "TP parity error", -1, 1 },
2694 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2695 		{ 0, NULL, 0, 0 }
2696 	};
2697 
2698 	if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
2699 		csio_hw_fatal_err(hw);
2700 }
2701 
2702 /*
2703  * SGE interrupt handler.
2704  */
2705 static void csio_sge_intr_handler(struct csio_hw *hw)
2706 {
2707 	uint64_t v;
2708 
2709 	static struct intr_info sge_intr_info[] = {
2710 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
2711 		  "SGE received CPL exceeding IQE size", -1, 1 },
2712 		{ ERR_INVALID_CIDX_INC_F,
2713 		  "SGE GTS CIDX increment too large", -1, 0 },
2714 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2715 		{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
2716 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2717 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2718 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2719 		  0 },
2720 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2721 		  0 },
2722 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2723 		  0 },
2724 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2725 		  0 },
2726 		{ ERR_ING_CTXT_PRIO_F,
2727 		  "SGE too many priority ingress contexts", -1, 0 },
2728 		{ ERR_EGR_CTXT_PRIO_F,
2729 		  "SGE too many priority egress contexts", -1, 0 },
2730 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2731 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2732 		{ 0, NULL, 0, 0 }
2733 	};
2734 
2735 	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
2736 	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
2737 	if (v) {
2738 		csio_fatal(hw, "SGE parity error (%#llx)\n",
2739 			    (unsigned long long)v);
2740 		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2741 						SGE_INT_CAUSE1_A);
2742 		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
2743 	}
2744 
2745 	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
2746 
2747 	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
2748 	    v != 0)
2749 		csio_hw_fatal_err(hw);
2750 }
2751 
2752 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2753 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2754 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2755 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2756 
2757 /*
2758  * CIM interrupt handler.
2759  */
2760 static void csio_cim_intr_handler(struct csio_hw *hw)
2761 {
2762 	static struct intr_info cim_intr_info[] = {
2763 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2764 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2765 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2766 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2767 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2768 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2769 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2770 		{ 0, NULL, 0, 0 }
2771 	};
2772 	static struct intr_info cim_upintr_info[] = {
2773 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2774 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2775 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
2776 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
2777 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2778 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2779 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2780 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2781 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2782 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2783 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2784 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2785 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2786 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2787 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2788 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2789 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2790 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2791 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2792 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2793 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2794 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2795 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2796 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2797 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2798 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2799 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2800 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2801 		{ 0, NULL, 0, 0 }
2802 	};
2803 
2804 	int fat;
2805 
2806 	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
2807 				      cim_intr_info) +
2808 	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
2809 				      cim_upintr_info);
2810 	if (fat)
2811 		csio_hw_fatal_err(hw);
2812 }
2813 
2814 /*
2815  * ULP RX interrupt handler.
2816  */
2817 static void csio_ulprx_intr_handler(struct csio_hw *hw)
2818 {
2819 	static struct intr_info ulprx_intr_info[] = {
2820 		{ 0x1800000, "ULPRX context error", -1, 1 },
2821 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2822 		{ 0, NULL, 0, 0 }
2823 	};
2824 
2825 	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2826 		csio_hw_fatal_err(hw);
2827 }
2828 
2829 /*
2830  * ULP TX interrupt handler.
2831  */
2832 static void csio_ulptx_intr_handler(struct csio_hw *hw)
2833 {
2834 	static struct intr_info ulptx_intr_info[] = {
2835 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2836 		  0 },
2837 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2838 		  0 },
2839 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2840 		  0 },
2841 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2842 		  0 },
2843 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2844 		{ 0, NULL, 0, 0 }
2845 	};
2846 
2847 	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
2848 		csio_hw_fatal_err(hw);
2849 }
2850 
2851 /*
2852  * PM TX interrupt handler.
2853  */
2854 static void csio_pmtx_intr_handler(struct csio_hw *hw)
2855 {
2856 	static struct intr_info pmtx_intr_info[] = {
2857 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
2858 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
2859 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
2860 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
2861 		{ 0xffffff0, "PMTX framing error", -1, 1 },
2862 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
2863 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
2864 		  1 },
2865 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
2866 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
2867 		{ 0, NULL, 0, 0 }
2868 	};
2869 
2870 	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
2871 		csio_hw_fatal_err(hw);
2872 }
2873 
2874 /*
2875  * PM RX interrupt handler.
2876  */
2877 static void csio_pmrx_intr_handler(struct csio_hw *hw)
2878 {
2879 	static struct intr_info pmrx_intr_info[] = {
2880 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
2881 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
2882 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
2883 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
2884 		  1 },
2885 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
2886 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
2887 		{ 0, NULL, 0, 0 }
2888 	};
2889 
2890 	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
2891 		csio_hw_fatal_err(hw);
2892 }
2893 
2894 /*
2895  * CPL switch interrupt handler.
2896  */
2897 static void csio_cplsw_intr_handler(struct csio_hw *hw)
2898 {
2899 	static struct intr_info cplsw_intr_info[] = {
2900 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
2901 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
2902 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
2903 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
2904 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
2905 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
2906 		{ 0, NULL, 0, 0 }
2907 	};
2908 
2909 	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
2910 		csio_hw_fatal_err(hw);
2911 }
2912 
2913 /*
2914  * LE interrupt handler.
2915  */
2916 static void csio_le_intr_handler(struct csio_hw *hw)
2917 {
2918 	static struct intr_info le_intr_info[] = {
2919 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
2920 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
2921 		{ PARITYERR_F, "LE parity error", -1, 1 },
2922 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2923 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
2924 		{ 0, NULL, 0, 0 }
2925 	};
2926 
2927 	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A, le_intr_info))
2928 		csio_hw_fatal_err(hw);
2929 }
2930 
2931 /*
2932  * MPS interrupt handler.
2933  */
2934 static void csio_mps_intr_handler(struct csio_hw *hw)
2935 {
2936 	static struct intr_info mps_rx_intr_info[] = {
2937 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
2938 		{ 0, NULL, 0, 0 }
2939 	};
2940 	static struct intr_info mps_tx_intr_info[] = {
2941 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
2942 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2943 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
2944 		  -1, 1 },
2945 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
2946 		  -1, 1 },
2947 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
2948 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
2949 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
2950 		{ 0, NULL, 0, 0 }
2951 	};
2952 	static struct intr_info mps_trc_intr_info[] = {
2953 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
2954 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
2955 		  -1, 1 },
2956 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
2957 		{ 0, NULL, 0, 0 }
2958 	};
2959 	static struct intr_info mps_stat_sram_intr_info[] = {
2960 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2961 		{ 0, NULL, 0, 0 }
2962 	};
2963 	static struct intr_info mps_stat_tx_intr_info[] = {
2964 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2965 		{ 0, NULL, 0, 0 }
2966 	};
2967 	static struct intr_info mps_stat_rx_intr_info[] = {
2968 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2969 		{ 0, NULL, 0, 0 }
2970 	};
2971 	static struct intr_info mps_cls_intr_info[] = {
2972 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
2973 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
2974 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
2975 		{ 0, NULL, 0, 0 }
2976 	};
2977 
2978 	int fat;
2979 
2980 	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
2981 				      mps_rx_intr_info) +
2982 	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
2983 				      mps_tx_intr_info) +
2984 	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
2985 				      mps_trc_intr_info) +
2986 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
2987 				      mps_stat_sram_intr_info) +
2988 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
2989 				      mps_stat_tx_intr_info) +
2990 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
2991 				      mps_stat_rx_intr_info) +
2992 	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
2993 				      mps_cls_intr_info);
2994 
2995 	csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
2996 	csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
2997 	if (fat)
2998 		csio_hw_fatal_err(hw);
2999 }
3000 
3001 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3002 		      ECC_UE_INT_CAUSE_F)
3003 
3004 /*
3005  * EDC/MC interrupt handler.
3006  */
3007 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3008 {
3009 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3010 
3011 	unsigned int addr, cnt_addr, v;
3012 
3013 	if (idx <= MEM_EDC1) {
3014 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3015 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3016 	} else {
3017 		addr = MC_INT_CAUSE_A;
3018 		cnt_addr = MC_ECC_STATUS_A;
3019 	}
3020 
3021 	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3022 	if (v & PERR_INT_CAUSE_F)
3023 		csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3024 	if (v & ECC_CE_INT_CAUSE_F) {
3025 		uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3026 
3027 		csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3028 		csio_warn(hw, "%u %s correctable ECC data error%s\n",
3029 			    cnt, name[idx], cnt > 1 ? "s" : "");
3030 	}
3031 	if (v & ECC_UE_INT_CAUSE_F)
3032 		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3033 
3034 	csio_wr_reg32(hw, v, addr);
3035 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3036 		csio_hw_fatal_err(hw);
3037 }
3038 
3039 /*
3040  * MA interrupt handler.
3041  */
3042 static void csio_ma_intr_handler(struct csio_hw *hw)
3043 {
3044 	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3045 
3046 	if (status & MEM_PERR_INT_CAUSE_F)
3047 		csio_fatal(hw, "MA parity error, parity status %#x\n",
3048 			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3049 	if (status & MEM_WRAP_INT_CAUSE_F) {
3050 		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3051 		csio_fatal(hw,
3052 		   "MA address wrap-around error by client %u to address %#x\n",
3053 		   MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3054 	}
3055 	csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3056 	csio_hw_fatal_err(hw);
3057 }
3058 
3059 /*
3060  * SMB interrupt handler.
3061  */
3062 static void csio_smb_intr_handler(struct csio_hw *hw)
3063 {
3064 	static struct intr_info smb_intr_info[] = {
3065 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3066 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3067 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3068 		{ 0, NULL, 0, 0 }
3069 	};
3070 
3071 	if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3072 		csio_hw_fatal_err(hw);
3073 }
3074 
3075 /*
3076  * NC-SI interrupt handler.
3077  */
3078 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3079 {
3080 	static struct intr_info ncsi_intr_info[] = {
3081 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3082 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3083 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3084 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3085 		{ 0, NULL, 0, 0 }
3086 	};
3087 
3088 	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3089 		csio_hw_fatal_err(hw);
3090 }
3091 
3092 /*
3093  * XGMAC interrupt handler.
3094  */
3095 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3096 {
3097 	uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3098 
3099 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3100 	if (!v)
3101 		return;
3102 
3103 	if (v & TXFIFO_PRTY_ERR_F)
3104 		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3105 	if (v & RXFIFO_PRTY_ERR_F)
3106 		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3107 	csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3108 	csio_hw_fatal_err(hw);
3109 }
3110 
3111 /*
3112  * PL interrupt handler.
3113  */
3114 static void csio_pl_intr_handler(struct csio_hw *hw)
3115 {
3116 	static struct intr_info pl_intr_info[] = {
3117 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
3118 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3119 		{ 0, NULL, 0, 0 }
3120 	};
3121 
3122 	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3123 		csio_hw_fatal_err(hw);
3124 }
3125 
3126 /*
3127  *	csio_hw_slow_intr_handler - control path interrupt handler
3128  *	@hw: HW module
3129  *
3130  *	Interrupt handler for non-data global interrupt events, e.g., errors.
3131  *	The designation 'slow' is because it involves register reads, while
3132  *	data interrupts typically don't involve any MMIOs.
3133  */
3134 int
3135 csio_hw_slow_intr_handler(struct csio_hw *hw)
3136 {
3137 	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3138 
3139 	if (!(cause & CSIO_GLBL_INTR_MASK)) {
3140 		CSIO_INC_STATS(hw, n_plint_unexp);
3141 		return 0;
3142 	}
3143 
3144 	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3145 
3146 	CSIO_INC_STATS(hw, n_plint_cnt);
3147 
3148 	if (cause & CIM_F)
3149 		csio_cim_intr_handler(hw);
3150 
3151 	if (cause & MPS_F)
3152 		csio_mps_intr_handler(hw);
3153 
3154 	if (cause & NCSI_F)
3155 		csio_ncsi_intr_handler(hw);
3156 
3157 	if (cause & PL_F)
3158 		csio_pl_intr_handler(hw);
3159 
3160 	if (cause & SMB_F)
3161 		csio_smb_intr_handler(hw);
3162 
3163 	if (cause & XGMAC0_F)
3164 		csio_xgmac_intr_handler(hw, 0);
3165 
3166 	if (cause & XGMAC1_F)
3167 		csio_xgmac_intr_handler(hw, 1);
3168 
3169 	if (cause & XGMAC_KR0_F)
3170 		csio_xgmac_intr_handler(hw, 2);
3171 
3172 	if (cause & XGMAC_KR1_F)
3173 		csio_xgmac_intr_handler(hw, 3);
3174 
3175 	if (cause & PCIE_F)
3176 		hw->chip_ops->chip_pcie_intr_handler(hw);
3177 
3178 	if (cause & MC_F)
3179 		csio_mem_intr_handler(hw, MEM_MC);
3180 
3181 	if (cause & EDC0_F)
3182 		csio_mem_intr_handler(hw, MEM_EDC0);
3183 
3184 	if (cause & EDC1_F)
3185 		csio_mem_intr_handler(hw, MEM_EDC1);
3186 
3187 	if (cause & LE_F)
3188 		csio_le_intr_handler(hw);
3189 
3190 	if (cause & TP_F)
3191 		csio_tp_intr_handler(hw);
3192 
3193 	if (cause & MA_F)
3194 		csio_ma_intr_handler(hw);
3195 
3196 	if (cause & PM_TX_F)
3197 		csio_pmtx_intr_handler(hw);
3198 
3199 	if (cause & PM_RX_F)
3200 		csio_pmrx_intr_handler(hw);
3201 
3202 	if (cause & ULP_RX_F)
3203 		csio_ulprx_intr_handler(hw);
3204 
3205 	if (cause & CPL_SWITCH_F)
3206 		csio_cplsw_intr_handler(hw);
3207 
3208 	if (cause & SGE_F)
3209 		csio_sge_intr_handler(hw);
3210 
3211 	if (cause & ULP_TX_F)
3212 		csio_ulptx_intr_handler(hw);
3213 
3214 	/* Clear the interrupts just processed for which we are the master. */
3215 	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3216 	csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3217 
3218 	return 1;
3219 }
3220 
3221 /*****************************************************************************
3222  * HW <--> mailbox interfacing routines.
3223  ****************************************************************************/
3224 /*
3225  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3226  *
3227  * @data: Private data pointer.
3228  *
3229  * Called from worker thread context.
3230  */
3231 static void
3232 csio_mberr_worker(void *data)
3233 {
3234 	struct csio_hw *hw = (struct csio_hw *)data;
3235 	struct csio_mbm *mbm = &hw->mbm;
3236 	LIST_HEAD(cbfn_q);
3237 	struct csio_mb *mbp_next;
3238 	int rv;
3239 
3240 	del_timer_sync(&mbm->timer);
3241 
3242 	spin_lock_irq(&hw->lock);
3243 	if (list_empty(&mbm->cbfn_q)) {
3244 		spin_unlock_irq(&hw->lock);
3245 		return;
3246 	}
3247 
3248 	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3249 	mbm->stats.n_cbfnq = 0;
3250 
3251 	/* Try to start waiting mailboxes */
3252 	if (!list_empty(&mbm->req_q)) {
3253 		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3254 		list_del_init(&mbp_next->list);
3255 
3256 		rv = csio_mb_issue(hw, mbp_next);
3257 		if (rv != 0)
3258 			list_add_tail(&mbp_next->list, &mbm->req_q);
3259 		else
3260 			CSIO_DEC_STATS(mbm, n_activeq);
3261 	}
3262 	spin_unlock_irq(&hw->lock);
3263 
3264 	/* Now callback completions */
3265 	csio_mb_completions(hw, &cbfn_q);
3266 }
3267 
3268 /*
3269  * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3270  *
3271  * @data: private data pointer
3272  *
3273  **/
3274 static void
3275 csio_hw_mb_timer(uintptr_t data)
3276 {
3277 	struct csio_hw *hw = (struct csio_hw *)data;
3278 	struct csio_mb *mbp = NULL;
3279 
3280 	spin_lock_irq(&hw->lock);
3281 	mbp = csio_mb_tmo_handler(hw);
3282 	spin_unlock_irq(&hw->lock);
3283 
3284 	/* Call back the function for the timed-out Mailbox */
3285 	if (mbp)
3286 		mbp->mb_cbfn(hw, mbp);
3287 
3288 }
3289 
3290 /*
3291  * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3292  * @hw: HW module
3293  *
3294  * Called with lock held, should exit with lock held.
3295  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3296  * into a local queue. Drops lock and calls the completions. Holds
3297  * lock and returns.
3298  */
3299 static void
3300 csio_hw_mbm_cleanup(struct csio_hw *hw)
3301 {
3302 	LIST_HEAD(cbfn_q);
3303 
3304 	csio_mb_cancel_all(hw, &cbfn_q);
3305 
3306 	spin_unlock_irq(&hw->lock);
3307 	csio_mb_completions(hw, &cbfn_q);
3308 	spin_lock_irq(&hw->lock);
3309 }
3310 
3311 /*****************************************************************************
3312  * Event handling
3313  ****************************************************************************/
3314 int
3315 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3316 			uint16_t len)
3317 {
3318 	struct csio_evt_msg *evt_entry = NULL;
3319 
3320 	if (type >= CSIO_EVT_MAX)
3321 		return -EINVAL;
3322 
3323 	if (len > CSIO_EVT_MSG_SIZE)
3324 		return -EINVAL;
3325 
3326 	if (hw->flags & CSIO_HWF_FWEVT_STOP)
3327 		return -EINVAL;
3328 
3329 	if (list_empty(&hw->evt_free_q)) {
3330 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3331 			 type, len);
3332 		return -ENOMEM;
3333 	}
3334 
3335 	evt_entry = list_first_entry(&hw->evt_free_q,
3336 				     struct csio_evt_msg, list);
3337 	list_del_init(&evt_entry->list);
3338 
3339 	/* copy event msg and queue the event */
3340 	evt_entry->type = type;
3341 	memcpy((void *)evt_entry->data, evt_msg, len);
3342 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3343 
3344 	CSIO_DEC_STATS(hw, n_evt_freeq);
3345 	CSIO_INC_STATS(hw, n_evt_activeq);
3346 
3347 	return 0;
3348 }
3349 
3350 static int
3351 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3352 			uint16_t len, bool msg_sg)
3353 {
3354 	struct csio_evt_msg *evt_entry = NULL;
3355 	struct csio_fl_dma_buf *fl_sg;
3356 	uint32_t off = 0;
3357 	unsigned long flags;
3358 	int n, ret = 0;
3359 
3360 	if (type >= CSIO_EVT_MAX)
3361 		return -EINVAL;
3362 
3363 	if (len > CSIO_EVT_MSG_SIZE)
3364 		return -EINVAL;
3365 
3366 	spin_lock_irqsave(&hw->lock, flags);
3367 	if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3368 		ret = -EINVAL;
3369 		goto out;
3370 	}
3371 
3372 	if (list_empty(&hw->evt_free_q)) {
3373 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3374 			 type, len);
3375 		ret = -ENOMEM;
3376 		goto out;
3377 	}
3378 
3379 	evt_entry = list_first_entry(&hw->evt_free_q,
3380 				     struct csio_evt_msg, list);
3381 	list_del_init(&evt_entry->list);
3382 
3383 	/* copy event msg and queue the event */
3384 	evt_entry->type = type;
3385 
3386 	/* If Payload in SG list*/
3387 	if (msg_sg) {
3388 		fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3389 		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3390 			memcpy((void *)((uintptr_t)evt_entry->data + off),
3391 				fl_sg->flbufs[n].vaddr,
3392 				fl_sg->flbufs[n].len);
3393 			off += fl_sg->flbufs[n].len;
3394 		}
3395 	} else
3396 		memcpy((void *)evt_entry->data, evt_msg, len);
3397 
3398 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3399 	CSIO_DEC_STATS(hw, n_evt_freeq);
3400 	CSIO_INC_STATS(hw, n_evt_activeq);
3401 out:
3402 	spin_unlock_irqrestore(&hw->lock, flags);
3403 	return ret;
3404 }
3405 
3406 static void
3407 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3408 {
3409 	if (evt_entry) {
3410 		spin_lock_irq(&hw->lock);
3411 		list_del_init(&evt_entry->list);
3412 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3413 		CSIO_DEC_STATS(hw, n_evt_activeq);
3414 		CSIO_INC_STATS(hw, n_evt_freeq);
3415 		spin_unlock_irq(&hw->lock);
3416 	}
3417 }
3418 
3419 void
3420 csio_evtq_flush(struct csio_hw *hw)
3421 {
3422 	uint32_t count;
3423 	count = 30;
3424 	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3425 		spin_unlock_irq(&hw->lock);
3426 		msleep(2000);
3427 		spin_lock_irq(&hw->lock);
3428 	}
3429 
3430 	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3431 }
3432 
3433 static void
3434 csio_evtq_stop(struct csio_hw *hw)
3435 {
3436 	hw->flags |= CSIO_HWF_FWEVT_STOP;
3437 }
3438 
3439 static void
3440 csio_evtq_start(struct csio_hw *hw)
3441 {
3442 	hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3443 }
3444 
3445 static void
3446 csio_evtq_cleanup(struct csio_hw *hw)
3447 {
3448 	struct list_head *evt_entry, *next_entry;
3449 
3450 	/* Release outstanding events from activeq to freeq*/
3451 	if (!list_empty(&hw->evt_active_q))
3452 		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3453 
3454 	hw->stats.n_evt_activeq = 0;
3455 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3456 
3457 	/* Freeup event entry */
3458 	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3459 		kfree(evt_entry);
3460 		CSIO_DEC_STATS(hw, n_evt_freeq);
3461 	}
3462 
3463 	hw->stats.n_evt_freeq = 0;
3464 }
3465 
3466 
3467 static void
3468 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3469 			  struct csio_fl_dma_buf *flb, void *priv)
3470 {
3471 	__u8 op;
3472 	void *msg = NULL;
3473 	uint32_t msg_len = 0;
3474 	bool msg_sg = 0;
3475 
3476 	op = ((struct rss_header *) wr)->opcode;
3477 	if (op == CPL_FW6_PLD) {
3478 		CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3479 		if (!flb || !flb->totlen) {
3480 			CSIO_INC_STATS(hw, n_cpl_unexp);
3481 			return;
3482 		}
3483 
3484 		msg = (void *) flb;
3485 		msg_len = flb->totlen;
3486 		msg_sg = 1;
3487 	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3488 
3489 		CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3490 		/* skip RSS header */
3491 		msg = (void *)((uintptr_t)wr + sizeof(__be64));
3492 		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3493 			   sizeof(struct cpl_fw4_msg);
3494 	} else {
3495 		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3496 		CSIO_INC_STATS(hw, n_cpl_unexp);
3497 		return;
3498 	}
3499 
3500 	/*
3501 	 * Enqueue event to EventQ. Events processing happens
3502 	 * in Event worker thread context
3503 	 */
3504 	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3505 				  (uint16_t)msg_len, msg_sg))
3506 		CSIO_INC_STATS(hw, n_evt_drop);
3507 }
3508 
3509 void
3510 csio_evtq_worker(struct work_struct *work)
3511 {
3512 	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3513 	struct list_head *evt_entry, *next_entry;
3514 	LIST_HEAD(evt_q);
3515 	struct csio_evt_msg	*evt_msg;
3516 	struct cpl_fw6_msg *msg;
3517 	struct csio_rnode *rn;
3518 	int rv = 0;
3519 	uint8_t evtq_stop = 0;
3520 
3521 	csio_dbg(hw, "event worker thread active evts#%d\n",
3522 		 hw->stats.n_evt_activeq);
3523 
3524 	spin_lock_irq(&hw->lock);
3525 	while (!list_empty(&hw->evt_active_q)) {
3526 		list_splice_tail_init(&hw->evt_active_q, &evt_q);
3527 		spin_unlock_irq(&hw->lock);
3528 
3529 		list_for_each_safe(evt_entry, next_entry, &evt_q) {
3530 			evt_msg = (struct csio_evt_msg *) evt_entry;
3531 
3532 			/* Drop events if queue is STOPPED */
3533 			spin_lock_irq(&hw->lock);
3534 			if (hw->flags & CSIO_HWF_FWEVT_STOP)
3535 				evtq_stop = 1;
3536 			spin_unlock_irq(&hw->lock);
3537 			if (evtq_stop) {
3538 				CSIO_INC_STATS(hw, n_evt_drop);
3539 				goto free_evt;
3540 			}
3541 
3542 			switch (evt_msg->type) {
3543 			case CSIO_EVT_FW:
3544 				msg = (struct cpl_fw6_msg *)(evt_msg->data);
3545 
3546 				if ((msg->opcode == CPL_FW6_MSG ||
3547 				     msg->opcode == CPL_FW4_MSG) &&
3548 				    !msg->type) {
3549 					rv = csio_mb_fwevt_handler(hw,
3550 								msg->data);
3551 					if (!rv)
3552 						break;
3553 					/* Handle any remaining fw events */
3554 					csio_fcoe_fwevt_handler(hw,
3555 							msg->opcode, msg->data);
3556 				} else if (msg->opcode == CPL_FW6_PLD) {
3557 
3558 					csio_fcoe_fwevt_handler(hw,
3559 							msg->opcode, msg->data);
3560 				} else {
3561 					csio_warn(hw,
3562 					     "Unhandled FW msg op %x type %x\n",
3563 						  msg->opcode, msg->type);
3564 					CSIO_INC_STATS(hw, n_evt_drop);
3565 				}
3566 				break;
3567 
3568 			case CSIO_EVT_MBX:
3569 				csio_mberr_worker(hw);
3570 				break;
3571 
3572 			case CSIO_EVT_DEV_LOSS:
3573 				memcpy(&rn, evt_msg->data, sizeof(rn));
3574 				csio_rnode_devloss_handler(rn);
3575 				break;
3576 
3577 			default:
3578 				csio_warn(hw, "Unhandled event %x on evtq\n",
3579 					  evt_msg->type);
3580 				CSIO_INC_STATS(hw, n_evt_unexp);
3581 				break;
3582 			}
3583 free_evt:
3584 			csio_free_evt(hw, evt_msg);
3585 		}
3586 
3587 		spin_lock_irq(&hw->lock);
3588 	}
3589 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3590 	spin_unlock_irq(&hw->lock);
3591 }
3592 
3593 int
3594 csio_fwevtq_handler(struct csio_hw *hw)
3595 {
3596 	int rv;
3597 
3598 	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3599 		CSIO_INC_STATS(hw, n_int_stray);
3600 		return -EINVAL;
3601 	}
3602 
3603 	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3604 			   csio_process_fwevtq_entry, NULL);
3605 	return rv;
3606 }
3607 
3608 /****************************************************************************
3609  * Entry points
3610  ****************************************************************************/
3611 
3612 /* Management module */
3613 /*
3614  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3615  * mgmt - mgmt module
3616  * @io_req - io request
3617  *
3618  * Return - 0:if given IO Req exists in active Q.
3619  *          -EINVAL  :if lookup fails.
3620  */
3621 int
3622 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3623 {
3624 	struct list_head *tmp;
3625 
3626 	/* Lookup ioreq in the ACTIVEQ */
3627 	list_for_each(tmp, &mgmtm->active_q) {
3628 		if (io_req == (struct csio_ioreq *)tmp)
3629 			return 0;
3630 	}
3631 	return -EINVAL;
3632 }
3633 
3634 #define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */
3635 
3636 /*
3637  * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3638  * @data - Event data.
3639  *
3640  * Return - none.
3641  */
3642 static void
3643 csio_mgmt_tmo_handler(uintptr_t data)
3644 {
3645 	struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3646 	struct list_head *tmp;
3647 	struct csio_ioreq *io_req;
3648 
3649 	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3650 
3651 	spin_lock_irq(&mgmtm->hw->lock);
3652 
3653 	list_for_each(tmp, &mgmtm->active_q) {
3654 		io_req = (struct csio_ioreq *) tmp;
3655 		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3656 
3657 		if (!io_req->tmo) {
3658 			/* Dequeue the request from retry Q. */
3659 			tmp = csio_list_prev(tmp);
3660 			list_del_init(&io_req->sm.sm_list);
3661 			if (io_req->io_cbfn) {
3662 				/* io_req will be freed by completion handler */
3663 				io_req->wr_status = -ETIMEDOUT;
3664 				io_req->io_cbfn(mgmtm->hw, io_req);
3665 			} else {
3666 				CSIO_DB_ASSERT(0);
3667 			}
3668 		}
3669 	}
3670 
3671 	/* If retry queue is not empty, re-arm timer */
3672 	if (!list_empty(&mgmtm->active_q))
3673 		mod_timer(&mgmtm->mgmt_timer,
3674 			  jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3675 	spin_unlock_irq(&mgmtm->hw->lock);
3676 }
3677 
3678 static void
3679 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3680 {
3681 	struct csio_hw *hw = mgmtm->hw;
3682 	struct csio_ioreq *io_req;
3683 	struct list_head *tmp;
3684 	uint32_t count;
3685 
3686 	count = 30;
3687 	/* Wait for all outstanding req to complete gracefully */
3688 	while ((!list_empty(&mgmtm->active_q)) && count--) {
3689 		spin_unlock_irq(&hw->lock);
3690 		msleep(2000);
3691 		spin_lock_irq(&hw->lock);
3692 	}
3693 
3694 	/* release outstanding req from ACTIVEQ */
3695 	list_for_each(tmp, &mgmtm->active_q) {
3696 		io_req = (struct csio_ioreq *) tmp;
3697 		tmp = csio_list_prev(tmp);
3698 		list_del_init(&io_req->sm.sm_list);
3699 		mgmtm->stats.n_active--;
3700 		if (io_req->io_cbfn) {
3701 			/* io_req will be freed by completion handler */
3702 			io_req->wr_status = -ETIMEDOUT;
3703 			io_req->io_cbfn(mgmtm->hw, io_req);
3704 		}
3705 	}
3706 }
3707 
3708 /*
3709  * csio_mgmt_init - Mgmt module init entry point
3710  * @mgmtsm - mgmt module
3711  * @hw	 - HW module
3712  *
3713  * Initialize mgmt timer, resource wait queue, active queue,
3714  * completion q. Allocate Egress and Ingress
3715  * WR queues and save off the queue index returned by the WR
3716  * module for future use. Allocate and save off mgmt reqs in the
3717  * mgmt_req_freelist for future use. Make sure their SM is initialized
3718  * to uninit state.
3719  * Returns: 0 - on success
3720  *          -ENOMEM   - on error.
3721  */
3722 static int
3723 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3724 {
3725 	struct timer_list *timer = &mgmtm->mgmt_timer;
3726 
3727 	init_timer(timer);
3728 	timer->function = csio_mgmt_tmo_handler;
3729 	timer->data = (unsigned long)mgmtm;
3730 
3731 	INIT_LIST_HEAD(&mgmtm->active_q);
3732 	INIT_LIST_HEAD(&mgmtm->cbfn_q);
3733 
3734 	mgmtm->hw = hw;
3735 	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3736 
3737 	return 0;
3738 }
3739 
3740 /*
3741  * csio_mgmtm_exit - MGMT module exit entry point
3742  * @mgmtsm - mgmt module
3743  *
3744  * This function called during MGMT module uninit.
3745  * Stop timers, free ioreqs allocated.
3746  * Returns: None
3747  *
3748  */
3749 static void
3750 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3751 {
3752 	del_timer_sync(&mgmtm->mgmt_timer);
3753 }
3754 
3755 
3756 /**
3757  * csio_hw_start - Kicks off the HW State machine
3758  * @hw:		Pointer to HW module.
3759  *
3760  * It is assumed that the initialization is a synchronous operation.
3761  * So when we return afer posting the event, the HW SM should be in
3762  * the ready state, if there were no errors during init.
3763  */
3764 int
3765 csio_hw_start(struct csio_hw *hw)
3766 {
3767 	spin_lock_irq(&hw->lock);
3768 	csio_post_event(&hw->sm, CSIO_HWE_CFG);
3769 	spin_unlock_irq(&hw->lock);
3770 
3771 	if (csio_is_hw_ready(hw))
3772 		return 0;
3773 	else
3774 		return -EINVAL;
3775 }
3776 
3777 int
3778 csio_hw_stop(struct csio_hw *hw)
3779 {
3780 	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3781 
3782 	if (csio_is_hw_removing(hw))
3783 		return 0;
3784 	else
3785 		return -EINVAL;
3786 }
3787 
3788 /* Max reset retries */
3789 #define CSIO_MAX_RESET_RETRIES	3
3790 
3791 /**
3792  * csio_hw_reset - Reset the hardware
3793  * @hw:		HW module.
3794  *
3795  * Caller should hold lock across this function.
3796  */
3797 int
3798 csio_hw_reset(struct csio_hw *hw)
3799 {
3800 	if (!csio_is_hw_master(hw))
3801 		return -EPERM;
3802 
3803 	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3804 		csio_dbg(hw, "Max hw reset attempts reached..");
3805 		return -EINVAL;
3806 	}
3807 
3808 	hw->rst_retries++;
3809 	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3810 
3811 	if (csio_is_hw_ready(hw)) {
3812 		hw->rst_retries = 0;
3813 		hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3814 		return 0;
3815 	} else
3816 		return -EINVAL;
3817 }
3818 
3819 /*
3820  * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3821  * @hw: HW module.
3822  */
3823 static void
3824 csio_hw_get_device_id(struct csio_hw *hw)
3825 {
3826 	/* Is the adapter device id cached already ?*/
3827 	if (csio_is_dev_id_cached(hw))
3828 		return;
3829 
3830 	/* Get the PCI vendor & device id */
3831 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3832 			     &hw->params.pci.vendor_id);
3833 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3834 			     &hw->params.pci.device_id);
3835 
3836 	csio_dev_id_cached(hw);
3837 	hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3838 
3839 } /* csio_hw_get_device_id */
3840 
3841 /*
3842  * csio_hw_set_description - Set the model, description of the hw.
3843  * @hw: HW module.
3844  * @ven_id: PCI Vendor ID
3845  * @dev_id: PCI Device ID
3846  */
3847 static void
3848 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3849 {
3850 	uint32_t adap_type, prot_type;
3851 
3852 	if (ven_id == CSIO_VENDOR_ID) {
3853 		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3854 		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3855 
3856 		if (prot_type == CSIO_T5_FCOE_ASIC) {
3857 			memcpy(hw->hw_ver,
3858 			       csio_t5_fcoe_adapters[adap_type].model_no, 16);
3859 			memcpy(hw->model_desc,
3860 			       csio_t5_fcoe_adapters[adap_type].description,
3861 			       32);
3862 		} else {
3863 			char tempName[32] = "Chelsio FCoE Controller";
3864 			memcpy(hw->model_desc, tempName, 32);
3865 		}
3866 	}
3867 } /* csio_hw_set_description */
3868 
3869 /**
3870  * csio_hw_init - Initialize HW module.
3871  * @hw:		Pointer to HW module.
3872  *
3873  * Initialize the members of the HW module.
3874  */
3875 int
3876 csio_hw_init(struct csio_hw *hw)
3877 {
3878 	int rv = -EINVAL;
3879 	uint32_t i;
3880 	uint16_t ven_id, dev_id;
3881 	struct csio_evt_msg	*evt_entry;
3882 
3883 	INIT_LIST_HEAD(&hw->sm.sm_list);
3884 	csio_init_state(&hw->sm, csio_hws_uninit);
3885 	spin_lock_init(&hw->lock);
3886 	INIT_LIST_HEAD(&hw->sln_head);
3887 
3888 	/* Get the PCI vendor & device id */
3889 	csio_hw_get_device_id(hw);
3890 
3891 	strcpy(hw->name, CSIO_HW_NAME);
3892 
3893 	/* Initialize the HW chip ops T5 specific ops */
3894 	hw->chip_ops = &t5_ops;
3895 
3896 	/* Set the model & its description */
3897 
3898 	ven_id = hw->params.pci.vendor_id;
3899 	dev_id = hw->params.pci.device_id;
3900 
3901 	csio_hw_set_description(hw, ven_id, dev_id);
3902 
3903 	/* Initialize default log level */
3904 	hw->params.log_level = (uint32_t) csio_dbg_level;
3905 
3906 	csio_set_fwevt_intr_idx(hw, -1);
3907 	csio_set_nondata_intr_idx(hw, -1);
3908 
3909 	/* Init all the modules: Mailbox, WorkRequest and Transport */
3910 	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3911 		goto err;
3912 
3913 	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3914 	if (rv)
3915 		goto err_mbm_exit;
3916 
3917 	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3918 	if (rv)
3919 		goto err_wrm_exit;
3920 
3921 	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3922 	if (rv)
3923 		goto err_scsim_exit;
3924 	/* Pre-allocate evtq and initialize them */
3925 	INIT_LIST_HEAD(&hw->evt_active_q);
3926 	INIT_LIST_HEAD(&hw->evt_free_q);
3927 	for (i = 0; i < csio_evtq_sz; i++) {
3928 
3929 		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
3930 		if (!evt_entry) {
3931 			rv = -ENOMEM;
3932 			csio_err(hw, "Failed to initialize eventq");
3933 			goto err_evtq_cleanup;
3934 		}
3935 
3936 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3937 		CSIO_INC_STATS(hw, n_evt_freeq);
3938 	}
3939 
3940 	hw->dev_num = dev_num;
3941 	dev_num++;
3942 
3943 	return 0;
3944 
3945 err_evtq_cleanup:
3946 	csio_evtq_cleanup(hw);
3947 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3948 err_scsim_exit:
3949 	csio_scsim_exit(csio_hw_to_scsim(hw));
3950 err_wrm_exit:
3951 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3952 err_mbm_exit:
3953 	csio_mbm_exit(csio_hw_to_mbm(hw));
3954 err:
3955 	return rv;
3956 }
3957 
3958 /**
3959  * csio_hw_exit - Un-initialize HW module.
3960  * @hw:		Pointer to HW module.
3961  *
3962  */
3963 void
3964 csio_hw_exit(struct csio_hw *hw)
3965 {
3966 	csio_evtq_cleanup(hw);
3967 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3968 	csio_scsim_exit(csio_hw_to_scsim(hw));
3969 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3970 	csio_mbm_exit(csio_hw_to_mbm(hw));
3971 }
3972